

Francisco Paim de Bruges Rodrigues Miranda

HYTEA - HYBRID TREE EVOLUTIONARY ALGORITHM

FOR HEARING LOSS DIAGNOSIS

Dissertation in the context of the Master in Informatics Engineering, specialization in
Intelligent Systems, advised by Professor Nuno António Marques Lourenço and

Professor Evgheni Polisciuc and presented to the Department of Informatics
Engineering of the Faculty of Sciences and Technology of the University of Coimbra.

September 2022

DEPARTMENT OF INFORMATICS ENGINEERING

Francisco Paim de Bruges Rodrigues Miranda

HyTEA - Hybrid Tree Evolutionary
Algorithm for Hearing Loss

Diagnosis

Dissertation in the context of the Master in Informatics Engineering,
specialization in Intelligent Systems, advised by Professor Nuno António
Marques Lourenço and Professor Evgheni Polisciuc and presented to the

Department of Informatics Engineering of the Faculty of Sciences and
Technology of the University of Coimbra.

September 2022

Acknowledgements

I would like to thank my counselor Nuno Lourenço for the opportunity to work
with him, the constant availability, feedback, reassurance and genuine care. My
co-counselor Evgheni Polisciuc for the precious inputs and for only barely mock-
ing my design skills. My parents for the continuous support over all my life
which led me here and for making me company over the phone wherever I have
to drive alone. My grandparents for always being more excited than me for com-
pleting another step even if they don’t understand why we need artificial intelli-
gence, isn’t natural intelligence enough? My brother for always having a sarcastic
comment at hand. My dog Beckas for always going nuts when I show her a Ten-
nis ball, that somehow makes it easier to go through the toughest days. To all my
friends who contributed to the process of getting here with long talks or drinks,
I’m sorry am not the most present person, but I do not forget and am grateful
for all of you. Finally, to my girlfriend who had a critical role on this journey, for
making it feel easy, for always lifting me up, reminding me to get some sleep and
telling me everything will be ok whenever I’m despairing.

This work was funded by project A4A: Audiology for All (CENTRO-01-0247-
FEDER-047083) financed by the Operational Program for Competitiveness and
Internationalisation of PORTUGAL 2020 through the European Regional Devel-
opment Fund and by the FCT - Foundation for Science and Technology, I.P. /
MCTES through national funds (PIDDAC), within the scope of CISUC R&D Unit
- UIDB/00326/2020 or project code UIDP/00326/2020.

v

Abstract

Hearing Loss affects an ever-growing number of people of all ages. It can occur
due to a multitude of sources such as genetics, diseases, ageing, or noise expo-
sure. If not treated properly and timely it may lead to socioeconomic difficulties
such as poor job performance, hardship in finding a job, and social isolation.

In this work we propose HyTEA (Hybrid Tree Evolutionary Algorithm), a frame-
work based on Evolutionary Computation to create Decision Tree like models to
identify people that are likely to be diagnosed with hearing loss, so they can be
called for screening by a health professional. To achieve this, we will use historic
data about patients who have been tested for hearing problems and complement
it with publicly available socioeconomic information. The models created should
provide some understanding about the reason a decision is being made since this
is key for the health professionals.

To build Decision Trees we usually rely on greedy induction algorithms which
may result in overfitting of the training data. To counter this problem, HyTEA
uses a combination of two Evolutionary Algorithms, namely Structured Gram-
matical Evolution and Differential Evolution to build the models. Additionally
we propose variants of this method that allow evolving Gradient Boosted and
Random Forest ensembles and present visualization tools to aid identifying the
patients that are being wrongly classified.

The results show that HyTEA is capable of consistently modeling the problem
space and predicting hearing loss with an accuracy of 73.8% and F1 of 74.1%,
which was significantly higher than the results obtained with traditional Deci-
sion Trees. HyTEABoost proved capable of further improving the recall metric of
single Decision Trees by up to 4.4%, the accuracy by 0.4% and the F1 by 1%.

The main contributions of this work are methods to generate Decision Trees,
Random Forests and Gradient Boost ensembles with Evolutionary Computation,
methods of predicting general hearing loss and if a screening should be per-
formed and visualization tools to assist the decision of health professionals.

Keywords

Hearing Loss, Machine Learning, Evolutionary Computation, Structured Gram-
matical Evolution, Differential Evolution, Decision Tree, Gradient Boost, Random
Forest.

vii

Resumo

A perda de audição afeta um número cada vez maior de pessoas de todas as
idades. Pode ter uma multitude de origens tais como genética, doenças, idade
e exposição a ruído e, se não tratada devidamente, constitui um problema de
saúde, social e económico. Se não compensada com aparelho auditivo, pode levar
a dificuldades socioeconómicas como por exemplo má performance no trabalho,
dificuldade em encontrar emprego e/ou isolamento social.

Neste trabalho propomos o HyTEA (Hybrid Tree Evolutionary Algorithm), uma
framework baseada em Computação Evolucionária para criar modelos baseados
em Árvores de Decisão para identificar pessoas prováveis de ser diagnosticadas
com perda auditiva, para que sejam chamadas para um exame por um profis-
sional de saúde. Para conseguir isto iremos usar dados históricos de pacientes
testados para perda auditiva e dados publicamente disponíveis sobre informação
socioeconómica. Os modelos criados devem permitir entender o porquê de uma
decisão ser tomada, já que isto é crítico para a utilização por um profissional de
saúde.

Para construir Árvores de decisão normalmente recorre-se a algoritmos de in-
dução gulosos o que pode resultar em overfitting dos dados. Para contrariar este
problema o HyTEA utiliza uma combinação de dois Algoritmos Evolucionários,
nomeadamente o Structured Grammatical Evolution e a Evolução Diferencial
para criar os modelos. Além disto, propomos variantes deste método que per-
mitem evoluir modelos Gradient Boost e Random Forest e apresentamos ferra-
mentas de visualização que ajudam na identificação de pacientes incorretamente
identificados.

Os resultados mostram que o HyTEA é capaz de consistentemente modelar o es-
paço do problema e prever um diagnóstico de perda auditiva com uma accuracy
de 73.8% e F1 de 74.1% o que é significativamente superior aos resultados obtidos
com Árvores de Decisão tradicionais. HyTEABoost mostrou-se capaz de melho-
rar a performance da métrica de Recall de uma Árvore de Decisão individual por
até 4.4%, a accuracy por 0.4% e o F1 por 1%.

As principais contribuições deste trabalho serão métodos para gerar modelos de
Árvores de Decisão, Random Forest e Gradient Boost com Computação Evolu-
cionária, métodos para previsão de se deve ser feito um exame auditivo e ferra-
mentas de visualização para auxiliar a decisão dos profissionais de saúde.

Palavras-Chave

Perda Auditiva, Aprendizagem Computacional, Computação Evolucionária, Struc-
tured Grammatical Evolution, Evolução Diferencial, Árvore de Decisão, Random
Forest, Gradient Boost.

ix

Contents

1 Introduction 1
1.1 Objectives . 2
1.2 Contributions . 2
1.3 Document Structure . 3

2 Background 5
2.1 Machine Learning Background . 5
2.2 Evolutionary Computation Background 20
2.3 Related Work . 28
2.4 Summary . 32

3 Approach 35
3.1 Hybrid Tree Evolutionary Algorithm 35
3.2 HyTEABoost - Evolutionary Gradient Boosting 37
3.3 HyTEAForest . 40
3.4 How did we get here? . 42
3.5 Summary . 44

4 Experimental Study 47
4.1 Dataset . 47
4.2 Experimentation with traditional models 54
4.3 Experimentation with Canonic HyTEA 56
4.4 Experimentation with HyTEABoost 58
4.5 Experimentation with HyTEAForest 59
4.6 Discussion . 61
4.7 Summary . 61

5 Visualization 63
5.1 Analyzing the Best Models using t-SNE 63
5.2 Visualization Tool . 69
5.3 Summary . 74

6 Conclusion 77

Appendix A Extracted and Engineered Features 87

xi

Acronyms

ANN Artificial Neural Network.

AUC Area Under ROC Curve.

CD Cervical Dilation.

DBN Deep Belief Network.

DE Differential Evolution.

DSGE Dynamic Structured Grammatical Evolution.

DT Decision Tree.

EC Evolutionary Computation.

FN False Negative.

FP False Positive.

FPR False Positive Rate.

GA Genetic Algorithm.

GANN Genetic Algorithm Neural Network.

GB Gradient Boost.

GE Grammatical Evolution.

GP Genetic Programming.

HyTEA Hybrid Tree Evolutionary Algorithm.

KNN K-Nearest Neighbors.

LDA Linear Discriminant Analysis.

LR Logistic Regression.

MAE Mean Absolute Error.

ML Machine Learning.

MLP Multilayer Perceptron.

xiii

Chapter 0

MSE Mean Squared Error.

NIHL Noise-Induced Hearing Loss.

NR Newton-Raphson.

PCA Principal Component Analysis.

PTS Permanent Threshold Shift.

R2 Coefficient of Determination.

RF Random Forest.

RMSE Root Mean Squared Error.

ROC Receiver Operating Characteristics.

SGE Structured Grammatical Evolution.

SNE Stochastic Neighbor Embedding.

STS Significant Hearing Threshold Shift.

SVM Support Vector Machines.

t-SNE t-Distributed Stochastic Neighbor Embedding.

TN True Negative.

TP True Positive.

TPR True Positive Rate.

UDysRS Unified Dyskinesia Rating Scale.

UMAP Uniform Manifold Approximation and Projection.

xiv

List of Figures

2.1 Example representation of a neural network with 4 inputs, 2 hid-
den layers and 1 output. xi is ith input, h(k)j is the jth neuron of the

kth hidden layer and ŷ1 is the output value. 8
2.2 Example DT adapted from [Louppe, 2014]. ti are nodes, Xj are

features and ck are classes. 10
2.3 Example Confusion Matrix layout for a binary problem adapted

from [Bhandari, 2020]. 12
2.4 Receiver Operating Characteristics curve example adapted from

[Sklearn documentation]. 14
2.5 Generation of 2 children with two-point crossover. Image adapted

from [Brabazon et al., 2015]. 21
2.6 Example Genetic Programming individual representing the pro-

gram (2 - x) + cos(y). Image taken from [Brabazon et al., 2015]. . . . 22
2.7 Example crossover in Genetic Programming. Image adapted from

[Brabazon et al., 2015]. 23
2.8 Example trees generated with full and grow methods for a maxi-

mum depth of 3. Image adapted from [Brabazon et al., 2015]. 24
2.9 Example of a Context-Free-Grammar in the Backus-Naur form. N

is the set of non-terminal symbols, T is the set of terminal symbols
and S is the grammar’s axiom. Adapted from [Lourenço et al., 2019]. 25

3.1 Overview of the proposed hybrid architecture. 36
3.2 Grammar used by SGE in HyTEA 36
3.3 Grammar used by SGE in HyTEABoost. 38
3.4 Example transformation of a Binary Classification Tree to a Proba-

bilistic Classification Tree. 39
3.5 Grammar template used by SGE in HyTEAForest. 41
3.6 Example grammar used by SGE for HyTEAForest ensemble with 2

Decision Trees. 41
3.7 Grammar used by SGE for multiclass problems. 43

4.1 Entity Relationship Diagram for our Database. "Freguesia", "Con-
celho" and "Distrito" can be translated to "Parish", "County" and
"District". 49

4.2 Progress of average performance metrics over the generations for
the best individuals at each experiment with HyTEABoost. 59

4.3 Progress of average performance metrics over the generations for
the best individuals at each experiment with HyTEAForest. 60

xv

Chapter 0

5.1 t-SNE visualization of the dataset with the colors representing the
known class for each instance. 64

5.2 t-SNE visualization of the dataset with the colors representing the
outputted class by our best HyTEA generated Decision Tree for
each instance. 65

5.3 t-SNE visualization of the dataset with red markers showing the
instances incorrectly classified by our best HyTEA generated Deci-
sion Tree. 66

5.4 t-SNE visualization of the dataset with the colors representing the
outputted class by a Sklearn Decision Tree for each instance. 67

5.5 t-SNE visualization of the dataset with the colors representing the
outputted class by a Sklearn Random Forest for each instance. . . . 68

5.6 Best HyTEA generated Decision Tree with terminal nodes colored
and tagged to be distinguished in the t-SNE visualization. 69

5.7 t-SNE visualization of the dataset with the colors representing the
terminal nodes of our best generated Decision Tree which made
the prediction for each instance of the dataset. 70

5.8 Overview of the developed Visualization and Classification tool. . 71
5.9 Example visualization of a Decision Tree with our tool. 73
5.10 Example t-SNE visualization with our tool. 73
5.11 Example visualization of a Decision Tree with the last node of the

3rd level collapsed. The "+2" indicates there are 2 descendants to
that node. 74

5.12 Example visualization of a Decision Tree with the last 2 levels hid-
den. The length and width of the gray lines are indicative of the
amount of hidden nodes on that level. 75

5.13 Example visualization of a Decision Tree rotated to the horizontal. . 75
5.14 Example visualization of a Decision Tree with the tooltip showing

the rest of the node’s shortened text. 76
5.15 Example visualization of a Decision Tree after classification where

a patient was classified as not having hearing loss by the high-
lighted yellow "No Hearing Loss - 0" branch. 76

xvi

List of Tables

2.1 Example Gradient Boost ensemble building with 3 DTs in a binary
problem assuming a learning rate of 1. 11

2.2 8 samples of a given feature with 3 missing values. Missing val-
ues were solved using the mean, median and mode that have the
values of 5.6, 6 and 7 respectively for the non missing values. 17

2.3 Example scaling of features A and B with Min-Max Scaling, Maxi-
mum Absolute Scaling and Standardization. 18

2.4 Extracting the phenotype of a SGE individual based on the geno-
type and on the grammar present in Figure 2.9. 26

2.5 Example SGE crossover based on the individuals for the grammar
in Figure 2.9. In this case the genes corresponding to non-terminals
< start > and < op > were swapped to generate 2 distinct children. 26

2.6 Example SGE mutation based on the individuals for the grammar
in Figure 2.9. In this case the first individual was mutated so that
production 1 will be used instead of production 0 for the < start >
non-terminal while the second individual was mutated so that the
second time the non-terminal < value > shows up production 1
will be used instead of production 0. 26

4.1 Summary of available data during the development of the work at
hand. 48

4.2 Enumeration of available patient data followed by a specification
of format and/or possible values. 50

4.3 Demographic, health and economic indicators for each county, the
calculated metrics for this indicator and the frequency with which
measurements were made. 51

4.4 Average Importance of the 10 most important features according to
a default Sklearn Random Forest Classifier after 30 splits of cross-
validation. 54

4.5 Mean and Standard deviation of accuracy, F1, precision and recall
for each Sklearn model after 30 splits of cross-validation with test
size equal to 30% of the dataset using Standard Scaling. 55

4.6 95% confidence interval of accuracy, F1, precision and recall for
each Sklearn model after 30 splits of cross-validation with test size
equal to 30% of the dataset using Standard Scaling. 55

4.7 Parameters used in the experimental study for each method. 56
4.8 95% confidence interval of fitness, accuracy, F1, precision and recall

for the 30 runs of the canonical HyTEA experiment. 57

xvii

Chapter 0

A.1 Mean and Standard Deviation of each feature for each class and re-
sult of Independent t-test verification of significant difference be-
tween classes. 95

xviii

Chapter 1

Introduction

According to the World Health Organization hearing loss affects around 466 mil-
lion people. By 2050 it is expected for this number to double to around 900 mil-
lion people. Of the people aged over 65, 30% are estimated to have hearing loss
greater than 40dB. Developing and bringing mechanisms to lower the impact of
hearing loss to the lives of the general population is therefore of ever growing
importance.

The presented work, developed in the context of a scholarship in the research
project "A4A - Audiology for All", aims to mitigate the impact of hearing loss in
society by using Machine Learning to predict an hearing loss diagnosis ahead of
a screening. This will allow health professionals to more accurately select poten-
tial patients to call for an official diagnosis reducing the negative effects that the
hearing impediment might bring.

Given that understanding why the model is making a certain prediction is key
for the medical professionals, our framework relies on models that can be under-
standable, namely Decision Trees (DTs). Usually, to build DTs, we rely on greedy
induction algorithms which might be sub-optimal, resulting in models that might
become overfitted to the training data. To overcome this issue we propose the us-
age of a hybrid Evolutionary Computation (EC) approach based on Structured
Grammatical Evolution (SGE) [Lourenço et al., 2018] and Differential Evolution
(DE) [Storn and Price, 1997]. The SGE algorithm will use a grammar to specify
the syntactic restrictions of the DTs, and it will be responsible for evolving their
macro structure. Then, the DE algorithm will optimize the numeric parameters
of each model according to the real data.

Over the years, several approaches have been proposed aiming at using EC to
build Decision Trees [Barros et al., 2012; Saremi and Yaghmaee, 2014], most of
them using Genetic Programming (GP). However, the results show that, during
the evolutionary process, the population tends to be plagued with invalid indi-
viduals, which slows down the evolutionary process, compromising the overall
results. To tackle this, and eliminate the occurrence of invalid individuals, we
rely on a Context-Free Grammar to limit the search space to a valid solution by
specifying the syntax restrictions that should be followed to create DTs.

1

Chapter 1

Besides proposing a method for evolving simple Decision Trees using Structured
Grammatical Evolution and Differential Evolution, we also propose methodolog-
ical variants to evolve both Random Forest and Gradient Boosted ensembles and
present visualization tools to facilitate the interpretability of generated models.
Finally we do a complete analysis on performance obtained with the different
methods in the hearing loss prediction problem that we set out to solve.

Using traditional Decision Tree models we obtained on average an accuracy of
71.1% and an F1 of 55.7%, with HyTEA we improved these values to 71.9% and
72.1% respectively. Then our Evolutionary Gradient Boosting approach allowed
us to further significantly improve our Recall metric from 65.0% to 72.2% with
a slight cost for precision (-2.0%) and interpretability. Finally, our Evolutionary
Random Forest approach got an accuracy of 70.4%, F1 of 72.9%, precision of 67.9%
and recall of 79.4%, making it the best performing model when considering the
F1 and recall metrics.

1.1 Objectives

The objectives of this work are:

1. To develop Decision Trees using an Hybrid Evolutionary Computation al-
gorithm with Structured Grammatical Evolution and Differential Evolution.

2. To optimize the predictive performance of developed Decision Trees so that
they can be considered powerful tools that health professionals can trust
and rely on.

3. To obtain the simplest possible Decision Trees without undermining perfor-
mance given that interpretability is key for health professionals to under-
stand decisions.

4. To evolve other tree based classification models and evaluate the tradeoff
between performance and interpretability.

5. To analyze the ability of the evolved classifiers to model the problem space.

6. To develop concepts of visual tools to assist the interpretation of the models
by health professionals.

1.2 Contributions

According to the established objectives, this work has given multiple contribu-
tions, namely:

1. Problem agnostic Evolutionary Decision Tree and Random Forest induction
techniques.

2

Introduction

2. Model agnostic Evolutionary Gradient Boosting techniques to improve any
probabilistic classification model with a Decision Tree ensemble.

3. Interpretable models to predict a hearing loss diagnosis based on demo-
graphic indicators and an health questionnaire.

4. Tools to utilize, visualize, interpret and evaluate the reliability of Decision
Tree models.

1.3 Document Structure

In Chapter 2 we will give an introduction to all Machine Learning and Evolu-
tionary Computation concepts required to understand the work at hand and will
showcase relevant works on the fields of Medicine and Audiology in particu-
lar. In Chapter 3 we will detail the architecture and implementation of our gen-
eral approach to evolve Decision Trees Random Forests and Gradient Boosting
ensembles as well as discuss the preliminary experiments that lead to our final
models. In Chapter 4 we detail the experiments ran with our solutions and com-
pare the results to those obtained while experimenting with Sklearn. Finally in
chapter 5 we visually analyze the problem space and how our best evolved clas-
sifiers model it and showcase tools that help health professionals understand the
decisions made by our models.

3

Chapter 2

Background

In this Chapter the background knowledge on Machine Learning and Evolu-
tionary Computation required to understand the developed work is discrimi-
nated. Besides the general literature knowledge, the final section of this Chapter
presents relevant Machine Learning work in Audiology and Evolutionary Com-
putation work in Medicine, showing both that Machine Learning is useful for
Audiology problems and that Evolutionary Computation has been used before
to solve general Medicine problems although no previous work was found of
Evolutionary Computation in Audiology.

2.1 Machine Learning Background

In this section we’ll discuss basic Machine Learning (ML) concepts with particu-
lar interest in Supervised Learning and Decision Trees. We’ll cover basic models,
evaluation metrics and pre-processing techniques, that is, all knowledge required
to prepare data, build and evaluate models and choose optimal techniques.

Machine Learning is the usage of statistics and algorithms to program computers
capable of optimizing a performance criterion based on observed data [Ayodele,
2010]. In Supervised Learning the result is a model with predictive capabilities,
that is, the model learns what the expected value for a variable is based on a set
of features observed in training data and is capable to predict what that value
should be in new unseen data.

2.1.1 Types of Machine Learning

ML algorithms can be categorized according to their training data and goals into
supervised, unsupervised, reinforcement and semi-supervised learning.

Image recognition tasks like predicting who is present in an image, or value pre-
diction tasks like predicting the value of a house based on it’s characteristics are
examples of Supervised Learning since training data includes both features (the
image in the first problem and the house characteristics in the second) and a tar-

5

Chapter 2

get prediction value (the person depicted in the first problem and the real price
in the second one). The former is an example of a classification problem since
the output is a person, out of a finite set of possible people, which are known as
classes, while the latter is an example of a regression problem since the output is
a value in a continuous spectrum. [Bishop, 2006]

Unsupervised Learning consists of tasks on which training data does not have
a target prediction value. These tasks can be clustering where similar groups of
patterns are grouped, density estimation where we determine the distribution of
data or projection of data into lower dimensions for visualization. [Bishop, 2006]

Reinforcement Learning happens when actions must be mapped to situations
with the goal to maximize a reward function with the actions influencing not only
the immediate reward but the reward in subsequent situations as well therefore
these algorithms must learn by trial and error and consider delayed rewards. An
example application of these type of learning is the development of a cleaning
robot that must find the most trash before he needs to recharge while making
sure he has enough battery to make it back to his charging station, and must
make decisions based on his current battery level and previous experiences in
finding his way back to the station. [Sutton and Barto, 1998]

Finally, Semi-supervised Learning is a a mix between Supervised and Unsuper-
vised Learning as it deals with both labelled and unlabelled data. It’s goals are
the same as Supervised Learning however it tries to make the most out of the
unlabelled data to improve predictions by application of techniques that either
assume labels for the unlabelled data or request the labelling of key data. It is
particularly helpful to deal with Supervised Learning situations where obtaining
labelled data is expensive for example due to the requirement of human annota-
tors. [Chapelle et al., 2006]

2.1.2 Common techniques

Some of the most common ML techniques are Logistic Regression (LR), Support
Vector Machines (SVM), K-Nearest Neighbors (KNN), Artificial Neural Network
(ANN), Decision Tree (DT), Random Forest (RF) and Gradient Boost (GB).

Logistic Regression

LR is a binary classification model that fits a logistic function to data and out-
puts the probability of an instance belonging to a certain class given a feature.
The probability of a feature vector ϕ corresponding to class c1 or c2 is defined
in Equation 2.1 where w is the vector of weights correspondent to each feature.
Training of the LR is therefore the optimization problem of finding the vector w
that maximizes the probability that the output of the model, given any known
feature vector ϕ, corresponds to the correct known classes. [Bishop, 2006]

6

Background

p(c1|ϕ) = 1− p(c2|ϕ) = σ(wTϕ)

σ(x) =
1

1 + e−x

(2.1)

Support Vector Machines

SVMs are Maximum Margin Classifiers and work in binary classification prob-
lems. The model obtained with a SVM is a linear model in the form of Equation
2.2 where w and b are parameters to be determined, x is the input vector and ϕ(x)
is a chosen transformation of the input vector. SVMs assume the 2 classes to be
either -1 or 1, and therefore if y(x) < 0 we assume class 1 and if y(x) > 0 we assume
class 1. [Bishop, 2006]

y(x) = wTϕ(x) + b (2.2)

Assuming a linearly separable problem, the SVM will find the decision boundary
(the values of w and b), that maximizes the margin, which is defined as the small-
est distance between the decision boundary and any of the samples. [Bishop,
2006]

The transformation ϕ(x) allows to mold the feature space into a linearly separable
problem, however this is not possible to all problems or may lead to generaliza-
tion problems. To solve this situation a slack penalty is given to every sample in
the wrong side of the margin and therefore the optimization problem becomes to
find w and b that minimize the penalties while maximizing the margin. [Bishop,
2006]

It becomes important to control a parameter C, which is a slack penalty multi-
plier, and therefore controls the relative importance of minimizing the penalties
and maximizing the margin. This parameter must be experimentally tuned and
sets a trade-off between minimizing training errors and controlling model com-
plexity, since giving too much importance to slack errors will lead to overfitting
and ignoring them will lead to underfitting. [Bishop, 2006]

K-Nearest Neighbors

KNN is multiclass lazy learning algorithm. The method is called lazy since, in-
stead of learning a distribution function, it utilizes training instances to directly
predict the class of new unseen instances by considering the K instances most
similar to the prediction target and counting the number of occurrences of each
class followed by a majority voting prediction.

For example, given a classification problem with a single feature and 4 training
instances, 2 of each class, where instances of class c1 have a feature value of 2
and 4 while instances of class c2 have a feature value of 8 and 9. An instance
of an unknown class with feature value 7 would be at distances of 5 and 3 from

7

Chapter 2

x0

x1

x2

x3

Input
layer

h(1)1

h(1)2

h(1)3

h(1)4

Hidden
layer 1

h(2)1

h(2)2

h(2)3

Hidden
layer 2

ŷ1

Output
layer

Figure 2.1: Example representation of a neural network with 4 inputs, 2 hidden
layers and 1 output. xi is ith input, h(k)j is the jth neuron of the kth hidden layer
and ŷ1 is the output value.

instances of class c1 and distances of 1 and 2 from class c2. If we set K = 3 then
we would consider the 3 closest instances to be the ones with feature values 4, 8
and 9. Since the first one is of class c1 and the other 2 belong to class c2 then, by
majority voting, the outputted prediction would be class c2.

The KNN algorithm also supports probabilistic predictions by dividing the num-
ber of instances of a given class Kci among the K nearest neighbors by the total K
according to Equation 2.3. [Bishop, 2006]

p(ci) =
Kci

K
(2.3)

In the example above we would say that p(c1) =
Kc1
K = 1

3 and p(c2) =
Kc2
K = 2

3 .

Artificial Neural Network

ANNs are assembles of connected neurons where each neuron receives an input,
performs some arithmetic operation and outputs a value. Typical ANN topolo-
gies have 3 or more layers. The input layer, that receives the feature values for an
instance, the hidden layers that perform some calculations and the output layer
that outputs a prediction based on the values outputted by the last hidden layer.

Figure 2.1 shows an example representation of a neural network with 4 inputs, 2
hidden layers and 1 output. xi is ith input, h(k)j is the jth neuron of the kth hidden
layer and ŷ1 is the output value. Furthermore, each connection between 2 neurons
has an associated weight wh.

The output of a neuron is given by Equation 2.4, that is a function of the weighed
sum of the inputs. [Bishop, 2006] This function is known as an activation function
and can be any function that outputs a single value although common activation
functions are the linear, relu and sigmoidal functions which are defined according

8

Background

to Equations 2.5, 2.6 and 2.7 respectively.

o(x, w) = f (
n

∑
i=1

wjxj) (2.4)

f (x) = x (2.5)

f (x) = max(0, x) (2.6)

f (x) =
1

1 + e−x (2.7)

Building an ANN model requires therefore to first define the topology of the net-
work and activation functions for each node and then follow a training procedure
to find the optimal weights, that is, the weights that minimize an error function.
Any optimization method works such as Evolutionary Computation techniques
[M.B et al., 1997], however the most common and effective method is to take ad-
vantage of the error gradient by using the backpropagation algorithm [Bishop,
2006].

2.1.3 Tree Based Classifiers

Decision Tree is a ML technique that is of particular interest for the work at hand
due to its explainability which allows human users to understand why the al-
gorithm chooses to predict a certain class by following a series of “if then else”
decisions.

DTs are composed of nodes in which decisions are made by doing a test over
some feature in the format Xj < x where Xj is a feature and x is the test value.
If the value of Xj is lower than x then we proceed to the left child of that node,
otherwise we proceed to the right child of that node. In the children 2 options are
possible, either a new test over another parameter is done or a class prediction
happens.

Figure 2.2 shows an example DT where ti are nodes, Xj are features and ck are
classes. In this example an instance where X1 is larger than 0.7 would be classified
as class c2 according to node t2. However, if X1 is smaller or equal to 0.7, then
we would test if X2 is smaller or equal than 0.5 according to node t1 which if
true would lead to a classification as class c2 according to node t3 and otherwise
would lead to a classification as class c1 according to node t4.

Using DTs implies deciding on which parameters to test, in which order and
what test values should be used. An usual approach to deciding on this is using
the C4.5 algorithm [Quinlan, 1993], a greedy method in which at each level of the
tree the best possible split is calculated from the attributes not previously used.
The split is decided by first determining the best test value for each attribute and

9

Chapter 2

Figure 2.2: Example DT adapted from [Louppe, 2014]. ti are nodes, Xj are features
and ck are classes.

then deciding on the best attribute. This decision is usually done by selecting
the option that maximizes Information Gain or Gini Index. [Raileanu and Stoffel,
2004]

Random Forest

RF is an ensemble method to build more complex DT models without loss of
generalization accuracy since building more complex DT models usually leads
to overfitting. The method randomly selects subspaces of the feature space and
builds a DT for each subspace using well known methods, then classification is
done by allowing each DT to make a prediction and choosing the most common
prediction as the final prediction of the RF ensemble. [Ho, 1995]

Gradient Boost

In theory, if we can predict by how much a model fails to predict the correct class,
we can compensate for that error and obtain the correct classification. Gradient
Boost (GB) is another tree based ensemble method which builds on that idea.

While in RF each tree has an equal contribution to the final prediction of the
ensemble, in GB tree are built sequentially and each tree is based on the error
of the previous ones. Trees are inducted with techniques such as those described
in section 2.1.3, however from the second tree onward, the trees are inducted with
the goal of predicting the residuals of the ensemble rather than directly predicting
the classification.

For this to work however it is required that the output of the models is continu-
ous, therefore in classification problems we allow the output to be a probability.
In a binary problem, we predict the class 0 if the probability is lower than 0.5

10

Background

Known Class 0 0 1 1
Tree 1 0.2 0.6 0.8 0.1

Ensemble Output 0.2 0.6 0.8 0.1
Ensemble Classification 0 1 1 0

Ensemble Residuals -0.2 -0.6 0.2 0.9
Tree 2 -0.1 -0.2 0.2 0.3

Ensemble Output 0.1 0.4 1 0.4
Ensemble Classification 0 0 1 0

Ensemble Residuals -0.1 -0.4 0 0.6
Tree 3 -0.05 -0.1 0 0.15

Ensemble Output 0.05 0.3 1 0.55
Ensemble Classification 0 0 1 1

Ensemble Residuals -0.05 -0.3 0 0.45

Table 2.1: Example Gradient Boost ensemble building with 3 DTs in a binary
problem assuming a learning rate of 1.

and class 1 otherwise. The prediction of the ensemble is therefore the rounded
sum of the outputs of each individual Decision Tree. It is also common to apply
a learning rate to the output of trees after the first one. [Hastie, 2009]

In Table 2.1 we show an example of the building of a Gradient Boost ensemble
with 3 DTs assuming a learning rate of 1 for a binary problem with 4 instances.
The known classes for each instance are 0, 0, 1 and 1. The first inducted DT
outputs the values 0.2, 0.6, 0.8 and 0.1, leading to a classification of 0, 1, 1 and
0. The residuals of the ensemble are therefore the difference between the known
class and the output of the ensemble, in this case -0.2, -0.6, 0.2 and 0.9.

The second DT will now be built to predict these residuals and outputs the values
-0.1, -0.2, 0.2 and 0.3. Since the learning rate is 1, the output of the ensemble is
now the sum of the outputs of the first 2 trees which is 0.1, 0.4, 1 and 0.4 and
leads to the classifications 0, 0, 1 and 0. Following the same logic as before the
ensemble residuals now are -0.1, -0.4, 0 and 0.6. Again the third DT will predict
these residuals. The output of this third tree summed with the output of the
previous 2 trees gives the final ensemble output of 0.05, 0.3, 1 and 0.55 which in
turn leads to a perfect classification of 0, 0, 1 and 1 although the residuals are not
yet 0.

2.1.4 Evaluation Metrics

Evaluating the performance of ML algorithms is of critical importance to appro-
priately select models and as such, choosing appropriate metrics is an essential
part of ML. [Tharwat, 2018] Classification and regression problems use different
metrics.

11

Chapter 2

Figure 2.3: Example Confusion Matrix layout for a binary problem adapted from
[Bhandari, 2020].

Confusion Matrix

A tool useful for diagnosing an algorithm is the confusion matrix which shows
the predictions and the correct class so that we can get an overview of what is
getting misclassified and what class is being selected instead of the correct one.
In Figure 2.3 an example confusion matrix for a binary problem is shown where
TP, FP, FN and TN correspond to True Positive, False Positive, False Negative
and True Negative which can be shown as an absolute count or normalized by
row or columns therefore showing a percentage of predictions or a percentage of
real values respectively. The shown example can easily be extended to multiclass
problems by simply adding a row and a column for each extra class.

Single Value Metrics in Classification

Classification uses mostly metrics based on how many instances are correctly
classified such as precision, recall, specificity, accuracy and F1. In binary classifi-
cation problems these metrics consider one class to be the positive class while the
other one is the negative class and count the number of correct and incorrect pre-
dictions of each class, labelling instances as True Positive (TP) or True Negative
(TN) when a correct prediction occurs and False Negative (FN) or False Positive
(FP) when an incorrect prediction occurs. Each of these metrics is then calculated
according to [Tharwat, 2018]:

Precision =
TP

TP + FP
(2.8)

Recall =
TP

TP + FN
(2.9)

12

Background

Speci f icity =
TN

TN + FP
(2.10)

Accuracy =
TP + TN

TP + TN + FP + FN
(2.11)

F1 = 2 ∗ Precision ∗ Recall
Precision + Recall

= 2 ∗
TP

TP+FP ∗
TP

TP+FN
TP

TP+FP + TP
TP+FN

(2.12)

As can be observed from the formulas, Precision answers the question "What per-
centage of positive predictions correspond to actually positive instances?" while
Recall answers the question "What percentage of positive instances were pre-
dicted correctly?". Specificity works analogously to Recall, answering the ques-
tion "What percentage of negative instances were predicted correctly?".

Accuracy measures how many predictions were correct overall. This metric how-
ever is problematic in unbalanced datasets where one of the classes has a much
higher number of instances than the other. Let’s say a given dataset has 990 in-
stances of the positive class and only 10 instances of the negative class, then an
algorithm that outputs a positive prediction regardless of input would obtain an
accuracy of 99% which is not at all indicative of the algorithm’s capacity to dis-
criminate between classes.

Due to the problem described in the previous paragraph, it is common to use a
combination of precision and recall or specificity to correctly evaluate an algo-
rithm’s performance. The goal of the F1 scoring metric is to get precision and
recall values into one single metric so that interpretability is facilitated.

ROC Curve

Receiver Operating Characteristics (ROC) Curve is a graphical performance indi-
cator. This method defines a set of thresholds above which the algorithm should
decide on the positive class and for each threshold checks what the predictions
would be and calculates the True Positive Rate (TPR) and False Positive Rate
(FPR) which are then plotted as exemplified in Figure 2.4 where the yellow line
is the ROC curve and the blue line is the reference ROC curve for a random clas-
sifier.

A perfect classifier would have TPR of 1 and FPR of 0 at all thresholds. Having
high TPR and low FPR values leads to bigger areas under the ROC curve and
therefore we can assume, the larger the area under the ROC curve, the better the
classifier’s performance. This is why we can use the Area Under ROC Curve
(AUC) metric, which can vary between 0 and 1 and summarizes the information
visible on the ROC plot. [Tharwat, 2018]

13

Chapter 2

Figure 2.4: Receiver Operating Characteristics curve example adapted from
[Sklearn documentation].

Regression Metrics

As mentioned before, regression problems utilize different evaluation metrics.
Common examples of these metrics are the Mean Squared Error (MSE), Root
Mean Squared Error (RMSE), Mean Absolute Error (MAE), and the Coefficient
of Determination (R2), which are given by Equations 2.13, 2.14, 2.15 and 2.16 re-
spectively where n is the number of samples, pi is a predicted value, ai is the
actual value, p̄ is the mean predictions and ā is the mean of actual values. [Witten
et al., 2011]

MSE =
∑n

i=1(pi − ai)
2

n
(2.13)

RMSE =

√
∑n

i=1(pi − ai)2

n
(2.14)

MAE =
∑n

i=1 |pi − ai|
n

(2.15)

R2 =

(
SPA√
SpSa

)2

SPA =
∑n

i=1(pi − p̄)(ai − ā)
n− 1

SP =
∑n

i=1(pi − p̄)2

n− 1

SA =
∑n

i=1(ai − ā)2

n− 1

(2.16)

MSE is the most commonly used metric while RMSE is is often used so the error
takes the same dimensions as the predicted values. MAE is an alternative to

14

Background

RMSE since error will have the same dimensions as the predicted values. MSE
tends to exaggerate the error due to outliers while MAE mitigates this problem.
[Witten et al., 2011]

R2 is a metric of the correlation between the prediction and the real values which
can be 1 if all changes in the prediction are explained by changes in the real val-
ues, 0 if predictions are constant or anything below 0 if the regressor is arbitrarily
worse than a constant prediction.

2.1.5 Pre-processing

Pre-processing data is a common requirement in ML due to most algorithms re-
quiring numerical data, not tolerating missing values and being very sensible to
scaling differences between variables. Major tasks in pre-processing are therefore
engineering features, encoding categorical data, reducing dimensionality, solving
missing values and scaling data.

Encoding Categorical Data

Categorical features are any feature whose values belong to a prespecified set of
possibilities. [Witten et al., 2011] Encoding is the process of mapping the original
categorical data into numeric data that can be used in ML. Two common tech-
niques are used for this: Ordinal Encoding and One Hot Encoding. [Potdar et al.,
2017]

In Ordinal Encoding, each possible categorical value is assigned an integer value.
This technique can be a valuable choice if the categorical value can be ordered
somehow, for example a difficulty feature can have the values "Low", "Medium"
and "High" that can be mapped to 1, 2 and 3, enabling the logical order to be used
by the ML solution.

In One-Hot Encoding a categorical feature with N possible values is transformed
into N boolean features where each of these features is simply a boolean value
indicating if a particular possible value was the value in that instance. Using
the previous example, the difficulty feature would be mapped into three fea-
tures: isDifficultyLow, isDifficultyMedium and isDifficultyHigh and a sample with
the "Medium" value would have the feature isDifficultyMedium set to 1 while the
two other features would be set to 0. This technique is valuable when values of
a categorical feature have no logical order and therefore using Ordinal Encoding
may induce ML algorithms in error.

Dimensionality Reduction

Irrelevant attributes have a negative effect on most machine learning models, fur-
thermore redundant features are unnecessary and may lead to reinforcement of
bias, therefore deciding on a optimal reduced subset of features is often an impor-
tant step of the ML pipeline. Furthermore, models using less variables are more

15

Chapter 2

compact and easier to interpret. Having domain knowledge on what attributes
are and what they mean or imply in a specific problem allows manually selecting
relevant attributes, however, that is not always possible and may lead to ignoring
powerful previously unknown predictors. [Witten et al., 2011]

There are 2 main methods of pre-selecting features, filter and wrapped meth-
ods. Filter methods make an assessment on the general characteristics of the data,
this assessment usually outputs an heuristic of the feature’s quality which allows
directly evaluating it’s quality and comparing to others. This heuristics can be
statistical inference tests like t-Student, ANOVA and Kruskal-Wallis which are
applied to a feature and the associated class, outputting a test statistic that shows
how likely the feature is to come from the same distribution as the target class.
[Marques de Sá, c2001.] Another option is using correlation metrics such as Pear-
son, Kendall or Spearman correlations. This metrics also help removing features
that are redundant by selecting features that are highly correlated to the class
variable but are not correlated among each other. [Witten et al., 2011]

Wrapper methods utilize a learning algorithm in the feature selection step. An
example would be to train a DT model, select the subset of most important fea-
tures according to that model (the one’s that are chosen in earlier splits) and then
proceed to train a KNN on that subset. Another option would be to train a linear
model such as an SVM and use the weights of each feature as an estimator of the
feature quality.

Missing Values

Missing values correspond to data that was not collected, either because collec-
tion failed or because it did not make sense to collect a specific value in a specific
case. Nevertheless, many ML algorithms are not tolerant to missing values and
require them to be solved.

Solutions to this problem include, disregarding instances where values are miss-
ing and replacing missing values by some constant like the mean, median or
mode of that value in other instances. Table 2.2 exemplifies the three mentioned
methods. In categorical data it is often a solution to make missing values a new
possible category.

A more complex solution is to use a strategy based on the KNN algorithm. In-
stead of considering all instances, the K most similar instances to the target (in-
stance with a missing value) are calculated based on non missing values. Once se-
lected, a weighed mean of those K instances is used to replace the missing value.
The contribution of each instance to the weighed mean is based on some measure
of similarity to the target instance. [Troyanskaya et al., 2001]

Scaling Data

Algorithms are very sensible to differences in scales between features, tending
to give more importance to features whose values have higher variability even

16

Background

Original Values Solved w/ Mean Solved w/ Median Solved w/ Mode
7 7 7 7

Missing 5.6 6 7
3 3 3 3
7 7 7 7

Missing 5.6 6 7
5 5 5 5
6 6 6 6

Missing 5.6 6 7

Table 2.2: 8 samples of a given feature with 3 missing values. Missing values
were solved using the mean, median and mode that have the values of 5.6, 6 and
7 respectively for the non missing values.

though they are not more discriminative. Pre-scaling features is therefore neces-
sary to ensure the performance of the ML solution.

Scaling is usually done feature by feature with the goal to move all features value
range into [-1; 1], [0; 1] or normalized spaces. Common techniques are Min-Max
Scaling which translates and scales data into a defined [min, max] range, Stan-
dardization which normalizes features by subtracting the mean and scaling to
unit variance and Maximum Absolute Scaling, which simply divides every value
by the maximum absolute value in the original value set, ensuring a final range of
values in [-1; 1]. Equations 2.17, 2.18 and 2.19 show how the calculations are done
for each of these scaling techniques, with X being a feature vector and min, max,
mean and std being the functions that calculate the minimum, maximum, average
and standard deviation of the vector respectively.

XMinMax =
X−min(X)

max(X)−min(X)
(2.17)

XMaxAbs =
X

|max(X)| (2.18)

XStandardization =
X−mean(X)

std(X)
(2.19)

Table 2.3 exemplifies what happens to a dataset of 2 features, A and B, when
applying each of the mentioned scaling techniques.

2.1.6 Visualization

Visualization of high dimensionality data is important to Machine Learning since
it allows finding relationships between similar points and understanding where
developed models may fail to get accurate predictions. Typically this visualiza-
tion is done by projecting and plotting the high dimensionality data into 2 dimen-
sions. There are many techniques capable of doing this projection such as Princi-

17

Chapter 2

Original Min-Max Max Abs Standard
A B A B A B A B

89.00 1.00 0.91 0.62 0.89 0.14 1.47 0.00
-20.00 3.00 0.00 0.77 -0.20 0.43 -1.18 0.53
15.00 -7.00 0.29 0.00 0.15 -1.00 -0.33 -2.14
3.00 4.00 0.19 0.85 0.03 0.57 -0.62 0.80
30.00 -2.00 0.42 0.38 0.30 -0.29 0.03 -0.80
-11.00 6.00 0.07 1.00 -0.11 0.86 -0.96 1.34
100.00 1.00 1.00 0.62 1.00 0.14 1.73 0.00
23.00 2.00 0.36 0.69 0.23 0.29 -0.14 0.27

Table 2.3: Example scaling of features A and B with Min-Max Scaling, Maximum
Absolute Scaling and Standardization.

pal Component Analysis (PCA) or Linear Discriminant Analysis (LDA), however
not all techniques are suitable for visualization.

Data projection techniques suitable for visualization focus on clustering similar
points together and keeping dissimilar points apart so that these relationships are
evident when data is plotted.

Stochastic Neighbor Embedding (SNE), Uniform Manifold Approximation and
Projection (UMAP) and t-Distributed Stochastic Neighbor Embedding (t-SNE)
are examples of dimensionality reduction techniques designed for visualization.
In this work we focus on SNE and it’s variant t-SNE which was first proposed in
[van der Maaten and Hinton, 2008].

Stochastic Neighbor Embedding

SNE is a technique that obtains an optimal projection by first creating a random
projection and then slightly adjusting each projected point over multiple itera-
tions.

Algorithm 2.1 Pseudocode for Stochastic Neighbor Embedding.
1: X ← HIGHDIMENSIONALDATA
2: n← SIZE(X)
3: p[n,n] ← GETSIMILARITIES(X)
4: Y ← RANDOMPROJECTION(X)
5: repeat
6: q[n,n] ← GETSIMILARITIESOFPROJECTION(Y)

7: C ← ∑i ∑j p[j,i] log
p[j,i]
q[j,i]

8: Y ← ADJUSTPROJECTION(Y, Cost)
9: until C can’t be further reduced

10: return Y

As seen in algorithm 2.1, SNE starts by calculating a similarity matrix for the
original data points. This similarity is calculated based on euclidean distances
and according to Equation 2.20 where σi is proportional to the density of points

18

Background

around point i. The goal of this parameter is to have points in sparse clusters be
equally similar between them as points in dense clusters.

p[j,i] =
exp(−∥xi − xj∥2/2σ2

i)

∑k ̸=i exp(−∥xi − xk∥2/2σ2
i)

(2.20)

The next step in SNE is to create a random projection of the data into a lower
dimensional space (typically 2D). Then, similarities are calculated between the
points in the projection according to Equation 2.20 however, here σi is set to the
constant 1√

2
. Other constants could be used, however using this value allows

simplification of the calculations since the Equation can be rewritten as Equation
2.21.

q[j,i] =
exp(−∥xi − xj∥2)

∑k ̸=i exp(−∥xi − xk∥2)
(2.21)

Finally SNE will iteratively adjust each point in the projection using a gradient
descent method that minimizes a cost function C which is defined as the sum
of Kullback-Leibler divergences over all data points as shown in Equation 2.22.
[van der Maaten and Hinton, 2008]

C = ∑
i

∑
j

p[j,i] log
p[j,i]
q[j,i]

(2.22)

t-Distributed Stochastic Neighbor Embedding

t-SNE is a variant of SNE that aims to solve 2 problems. First canonical SNE is
computationally intensive due to the complicated gradient calculation. To tackle
this t-SNE changes Equation 2.21 into Equation 2.23 and after calculating all sim-
ilarities in the higher dimensional space defines that p[j,i] and p[i,j] should be set

to
p[j,i]+p[i,j]

2n where n is the number of data points.

q[j,i] =
exp(−∥xi − xj∥2)

∑k ̸=l exp(−∥xk − xl∥2)
(2.23)

Finally, t-SNE aims to solve the problem of overcrowded visualizations where
points are on top of each other although they have no association. For this it
changes the normal distribution for a Student t-distribution with one degree of
freedom leading to Equation 2.23 being once again transformed into Equation
2.24. [van der Maaten and Hinton, 2008]

q[j,i] =
(1 + ∥xi − xj∥2)−1

∑k ̸=l (1 + ∥xk − xl∥2)−1 (2.24)

19

Chapter 2

2.2 Evolutionary Computation Background

In this section we’ll cover relevant aspects of Evolutionary Computation (EC)
starting with the basics of the Genetic Algorithm, covering Genetic Program-
ming, Grammatical Evolution, Structured Grammatical Evolution, Differential
Evolution and finally analyzing works on usage of Evolutionary Computation
for Decision Tree induction.

EC is a set of nature inspired stochastic optimization algorithms that try to emu-
late the process of evolution in nature. [Brabazon et al., 2015] While many differ-
ent techniques exist such as Genetic Programming (GP) [Langdon and Qureshi,
1995] and Grammatical Evolution (GE) [Ryan et al., 1998], most are derived from
the Genetic Algorithm that will be explained in the next section.

2.2.1 Evolutionary Algorithms

Evolutionary Algorithms iterate on a population of individuals. Each individual
has a genotype which represents a possible solution in the optimization problem
and is presented as an array. Algorithm 2.2 shows the pseudocode for the GA
with elitism and each component of the algorithm is further explained in the next
paragraphs.

The algorithm runs for multiple generations and stops when either a predefined
number of generations has been run or a stopping condition such as the optimum
solution being found occurs. At every generation each individual’s quality is
evaluated by running a problem specific fitness function.

Once all individuals have been evaluated there is a selection process where in-
dividuals are picked to generate children using a crossover method. Selection is
usually done by tournament, where N individuals are randomly picked to com-
pete in a tournament, being the best of those selected for crossover. An alternative
to tournament is fitness proportional selection where any individual can be se-
lected with a probability proportional to the individual’s quality, this method can
however lead to great loss of diversity in situations where the fitness difference
between the best individuals and the rest of the population is too drastic.

Crossover is the process of mixing individuals, typically 2, to generate new ones.
There are many ways to perform crossover, one of the most common one being
the two-point crossover where 2 indexes of the genotype’s array are randomly
selected and then the content of each individual’s genotype between those 2 in-
dexes is swapped. Figure 2.5 exemplifies the generation of 2 children using this
crossover method.

Once crossover is done new individuals are mutated, usually by randomly chang-
ing one or more of the elements on the genotype. Finally, Survival Selection oc-
curs, to choose the individuals that will represent the next generation where the
whole process will be repeated. Survival Selection can be the complete replace-
ment of the generation by the generated children and elite individuals, or can

20

Background

Algorithm 2.2 Pseudocode for the Genetic Algorithm with Elitism adapted from
[Luke, 2013].

1: popsize← desired population size
2: n← desired number of elite individuals
3:
4: P← {}
5: for popsize times do
6: P← P

⋃{new random individual}
7: end for
8: Best← NULL
9: repeat

10: for each individual Pi ∈ P do
11: ASSESSFITNESS(Pi)
12: if Best = NULL or Fitness(Pi) > Fitness(Best) then
13: Best← Pi
14: end if
15: end for
16: Q← {the n fittest individuals in P, breaking ties at random}
17: for (popsize− n)/2 times do
18: Parent Pa ← SELECTWITHREPLACEMENT(P)
19: Parent Pb ← SELECTWITHREPLACEMENT(P)
20: Children Ca, Cb ← CROSSOVER(Pa, Pb)
21: Q← Q

⋃{MUTATE(Ca),MUTATE(Cb)}
22: end for
23: P← SURVIVALSELECTION(P, Q)
24: until Best is the ideal solution or we have run out of time
25: return Best

Figure 2.5: Generation of 2 children with two-point crossover. Image adapted
from [Brabazon et al., 2015].

21

Chapter 2

Figure 2.6: Example Genetic Programming individual representing the program
(2 - x) + cos(y). Image taken from [Brabazon et al., 2015].

include a mix of the fittest individuals among the current generation and the
generated children.

It should be noted that the crossover and mutation processes are done proba-
bilistically, with crossover usually taking high probability values, above 0.5 and
mutation taking low probability values, usually under 0.1. When crossover does
not occur, the 2 parent individuals simply become children. Mutation may or
may not occur probabilistically for each element of the genotype. It is also possi-
ble to use elitism which is the process of sending a certain percentage of the best
individuals of the previous generation directly into the next one. Once the stop-
ping criterion is met, a final evaluation of the individuals is done and the best one
is returned by the algorithm as the optimal solution.

An alternative to the above presented generational approach is the steady state
approach in which generated individuals get immediately inserted into the pop-
ulation while selection decides which individuals should die. This alternative
allows for faster adaptation to environment changes since newly created children
will be available to generate children of their own earlier. [Brabazon et al., 2015]

2.2.2 Genetic Programming

Genetic Programming is a new technique where instead of evolving solutions we
evolve programs to calculate the solution. Here the typical array representation
of the genotype is replaced by a tree structure where each node is an operator
or function, and the leaves are constants or variables. Figure 2.6 exemplifies this
representation.

The algorithm is mostly the same as the GA, there are however some modifi-
cations regarding some components. Firstly, the usual mutation and crossover
operators no longer can be applied since the representation is a tree instead of an
array. Here the common crossover operator is to swap random subtrees between

22

Background

Figure 2.7: Example crossover in Genetic Programming. Image adapted from
[Brabazon et al., 2015].

2 individuals while the mutation operator can be to randomly replace a subtree
by a randomly generated one. Figure 2.7 exemplifies how crossover is done in
GP.

The initialization method also becomes a problem since the representation here
does not have a fixed size or structure. Two different methods are of common
usage, grow or full. In full, method trees are generated with a maximum prede-
fined size and making sure every possible node exists. For this, only non-terminal
symbols (operators and functions) are selected on internal nodes, and once maxi-
mum depth is reached only terminal symbols such as constants and variables are
selected. In the grow method there are no limitations to what symbols are selected
at each node, except when maximum depth is reached, and once again only ter-
minal symbols can be selected. Figure 2.8 exemplifies the trees generated by these
methods. It is also common to use the ramped-half-and-half method where half the
population is initialized with the grow method and the other half with the full
method, effectively generating the most diversity of both structure and content.
[Brabazon et al., 2015]

Another issue with this approach is bloat or overfitting which happens when
trees keep growing without providing better performance or overfitting the data
so that performance is improved in the training dataset while likely undermining
the generalization capability. Bloat is also capable of drastically slowing down
progress because memory is limited and parsing and testing the trees becomes
much more computationally expensive. [Luke and Panait, 2006]

There are many methods of bloat control, in this document we expose mostly ad-
hoc methods as in that they will only limit the propagation of bloated individu-
als rather than stopping individuals from bloating however other more advanced
techniques exist such as Operator Equalisation [Dignum and Poli, 2008] and Dy-
namic Limits [Silva and Costa, 2004]. [Luke and Panait, 2006] compares many of
these methods and concludes most of them to have effective problem indepen-
dent settings and that they should always be paired with a predefined tree size

23

Chapter 2

Figure 2.8: Example trees generated with full and grow methods for a maximum
depth of 3. Image adapted from [Brabazon et al., 2015].

limit.

One of those methods is the Tarpeian method where a probability is defined for
which trees having a size above population average are automatically evaluated
with the worst possible fitness and can therefore only be selected in case a tour-
nament happens to only have this type of individuals. [Luke and Panait, 2006]

Parametric parsimony pressure is a method that penalizes tree size in the fit-
ness function by subtracting the size times some constant parameter from the
raw fitness value. This method works as a multi-objective optimization prob-
lem with a predefined objective importance. It is also possible to implement a
multi-objective optimization based on Pareto dominance, where only solutions
that are non-dominated are kept, this however tends to lead to small size low
performance and big size high performance solutions which is far from the de-
sired outcome. [Luke and Panait, 2006]

Double Tournament and Proportional Tournament are techniques that use two
consecutive tournaments during selection. In Double Tournament the first tour-
nament selects by fitness, then the winners of the tournament are directed to a
second tournament that selects by size with only those winning both tournaments
getting selected. Proportional Tournament is similar however each tournament
can be a fitness or size selector with the choice being done at random each time.
[Luke and Panait, 2006]

2.2.3 Grammatical Evolution

Grammatical Evolution is a variant of GP that allows defining a set of rules which
the structure of programs must follow using a context-free grammar. Instead of
genotypes being represented as trees, there is a clear distinction between geno-
type and phenotype, with genotypes being a linear structure from which the phe-
notype tree structure is derived. This has the advantage of allowing the applica-

24

Background

N = {< start >,< expr >,< term >,< op >}
T = {+,−, /, ∗, (,), x1, 0.5}
S = {< start >}

Production set:

<start> ::= <expr><op><expr> (0)
| <expr> (1)

<expr> ::= <value><op><value> (0)
| (<value><op><value>) (1)

<op> ::= + (0)
| - (1)
| / (2)
| * (3)

<value> ::= x1 (0)
| 0.5 (1)

Figure 2.9: Example of a Context-Free-Grammar in the Backus-Naur form. N
is the set of non-terminal symbols, T is the set of terminal symbols and S is the
grammar’s axiom. Adapted from [Lourenço et al., 2019].

tion of generic search strategies and crossover operators to GP problems while
guaranteeing no nonviable individuals are generated. [Brabazon et al., 2015]

One of the main drawbacks of GE approaches is the high redundancy and low lo-
cality that hinders the effectiveness of the search process. With the goal of avoid-
ing these drawbacks while keeping GE’s advantages, Structured Grammatical
Evolution was created. [Lourenço et al., 2016]

2.2.4 Structured Grammatical Evolution

In Structured Grammatical Evolution (SGE) the genotype is composed by an ar-
ray of arrays where each subarray corresponds to a single non-terminal symbol
and is composed by integers that decide which grammatical production should
be used next. The length of each subarray is determined by the maximum num-
ber of expansions of each non-terminal, which means recursive productions in
the grammar must be rewritten in a non-recursive format. Figure 2.9 shows an
example grammar which is used to derive an expression based on an SGE in-
dividual in Table 2.4. The right side of the Table shows the unused genotype’s
integers, the subarrays correspond to the non terminals < start >, < expr >,
< op > and < value > respectively.

The crossover operator for SGE is to randomly choose and swap complete cor-
responding genes (subarrays) between the 2 individuals as exemplified in Table
2.5. The mutation operator is to randomly change the integer values inside the

25

Chapter 2

Table 2.4: Extracting the phenotype of a SGE individual based on the genotype
and on the grammar present in Figure 2.9.

Derivation step Integers left
<start> [[0], [1, 0], [2, 0, 3], [1, 1, 0, 0]]
<expr> <op> <expr> [[], [1, 0], [2, 0, 3], [1, 1, 0, 0]]
(<value> <op> <value>) <op> <expr> [[], [0], [2, 0, 3], [1, 1, 0, 0]]
(0.5 <op> <value>) <op> <expr> [[], [0], [2, 0, 3], [1, 0, 0]]
(0.5 / <value>) <op> <expr> [[], [0], [0, 3], [1, 0, 0]]
(0.5 / 0.5) <op> <expr> [[], [0], [0, 3], [0, 0]]
(0.5 / 0.5) + <expr> [[], [0], [3], [0, 0]]
(0.5 / 0.5) + <value> <op> <value> [[], [], [3], [0, 0]]
(0.5 / 0.5) + x1 <op> <value> [[], [], [3], [0]]
(0.5 / 0.5) + x1 ∗ <value> [[], [], [], [0]]
(0.5 / 0.5) + x1 ∗ x1 [[], [], [], []]

Parents Children
[[0], [1, 0], [2, 0, 3], [1, 1, 0, 0]] [[1], [1, 0], [0, 3, 1], [1, 1, 0, 0]]
[[1], [0, 0], [0, 3, 1], [1, 0, 0, 1]] [[0], [0, 0], [2, 0, 3], [1, 0, 0, 1]]

Table 2.5: Example SGE crossover based on the individuals for the grammar in
Figure 2.9. In this case the genes corresponding to non-terminals < start > and
< op > were swapped to generate 2 distinct children.

subarrays to another valid option as exemplified in Table 2.6.

This algorithm still has some drawbacks. Grammars must be pre-processed to re-
move recursion and does not allow limiting tree size directly which makes it hard
to transfer from work with other GP approaches. Dynamic Structured Gram-
matical Evolution (DSGE) is a new version of SGE which solves this problem.
[Lourenço et al., 2018]

In DSGE tree depth limit is predefined and tree size is controlled by ensuring only
terminal symbols are selected once maximum tree depth has been reached. Fur-
thermore, instead of each gene having a calculated maximum size, gene size be-
comes variable. When generating the phenotype, if a gene does not have enough
productions specified, new integers are randomly added to the gene until the
needs are satisfied. This allows recursive productions to be used unlimitedly un-
til maximum tree depth is reached.

Original Mutated
[[0], [1, 0], [2, 0, 3], [1, 1, 0, 0]] [[1], [1, 0], [2, 0, 3], [1, 1, 0, 0]]
[[1], [0, 0], [0, 3, 1], [1, 0, 0, 1]] [[1], [0, 0], [0, 3, 1], [1, 1, 0, 1]]

Table 2.6: Example SGE mutation based on the individuals for the grammar in
Figure 2.9. In this case the first individual was mutated so that production 1 will
be used instead of production 0 for the < start > non-terminal while the second
individual was mutated so that the second time the non-terminal < value >
shows up production 1 will be used instead of production 0.

26

Background

[?] showed SGE to be more effective than classic GE solutions, [Lourenço et al.,
2016] shows it to have better locality and less redundancy than GE and [Lourenço
et al., 2018] concludes DSGE to be never inferior to SGE while being superior in
many benchmark tests. These results have been validated in [Lourenço et al.,
2019] by creating robust models to predict glucose levels in diabetic patients,
[Lourenço et al., 2020] that evolves models of energy demand using SGE and Dif-
ferential Evolution and [Assunção et al., 2017] that evolves multi-layered neural
networks.

2.2.5 Differential Evolution

Differential Evolution (DE) is a steady state Evolutionary Algorithm with analo-
gous mutation and crossover mechanisms. [Storn and Price, 1997] Mutation and
crossover always happen for every individual and in a sequence. Mutation does
not directly affect an individual, it is done by randomly selecting 3 vectors xr1,
xr2, xr3 and calculating a mutant vector according to:

v = xr1 + F · (xr2 − xr3) (2.25)

where v is the mutant vector and F is a constant parameter which controls the am-
plification of the variation. This mutant vector is then crossed over using uniform
crossover to generate one single child. [Storn and Price, 1997] specifies that the
version of uniform crossover used should ensure at least one gene is swapped.
Once a child is generated the selection step ensues. Here the generated child will
compete directly with its parent, replacing him in the population if his fitness is
better.

2.2.6 Evolving Decision Trees

[Barros et al., 2012] does a survey on works using EC to create DTs and makes a
summary of choices taken for each phase of the evolutionary process. The vast
majority of surveyed works rely on Genetic Programming and the survey con-
cludes most works use a random initialization of trees with test values being
constrained to guarantee the logic validity of the tests. Most works use the full
or the ramped-half-and-half methods, while only 1 of the reviewed works uses the
grow method.

Some works use a parametric parsimony pressure approach to counter overfit-
ting. Works using this approach argue that the balance between parsimony and
accuracy is critical for efficient evolution and that not finding the correct balance
will make parsimony pressure a disadvantage. Works not using parsimony pres-
sure usually do not defend this choice either since the evolution is slowed down
due to larger trees and the bloat leads to overfitted DTs which do not perform
well on test data.

Since most works use GP, the classical GP crossover operator is the most com-
mon. Mutation usually happens by replacing a subtree by a randomly gener-
ated one or by changing the values associated with tests. Tuning crossover and

27

Chapter 2

mutation probabilities is usually done via trial and error in preliminary runs.
The study also suggests tournament sizes should be no higher than 5, since that
would lead to great loss of diversity.

Many of the reviewed works claim to get similar performance to classic DT in-
duction approaches while getting smaller tree sizes due to parsimony pressure,
although training takes longer. It is often suggested to parallelize the implemen-
tation to speed up the process however not many works actually do it and there
are no comparisons on time gain.

[Saremi and Yaghmaee, 2014] makes a point that many invalid trees are created
after applying the crossover and mutation operators and that one attribute may
be examined more than once along the same path from root to leaf and doing a
consistency check followed by a fix might facilitate exploration of the valid search
space. [Saremi and Yaghmaee, 2014] solves this problem by pruning subtrees
where a nominal attribute test is repeated or with invalid continuous tests for
example, if a node tests x < 10, no subnode should test if x < y where y >=
10 since passing the first test always ensures passing the second one in those
conditions.

2.3 Related Work

In this section we present some of the Machine Learning work that has been de-
veloped on the field of Audiology and Evolutionary Computation work devel-
oped in Medicine. The presented Machine Learning works in Audiology show
that the problem of identifying individuals with hearing loss is viable to solve
via ML. Furthermore, the works on applications of Evolutionary Computation
in Medicine showcase that EC, and specifically Structured Grammatical Evolu-
tion, is a viable approach to solve problems in the field as it has been successfully
applied to many other problems in the field before although to the best of our
knowledge no previous attempts have been made at predicting hearing loss with
EC techniques.

2.3.1 Machine Learning in Audiology

There are many successful predictive machine learning studies in the field of Au-
diology. Most of these studies are focused on predicting a specific type of hearing
loss such as noise induced [ElahiShirvan et al., 2020], sensorineural (deficiency of
neural signal transfer from the cochlea to the auditory cortex) [Chen et al., 2021]
and idiopathic sudden sensorineural [Park et al., 2020].

[Cao et al., 2021] does a review on the contributions and limitations of 8 papers
[Aliabadi et al., 2014; ElahiShirvan et al., 2020; Farhadian et al., 2015; Greenwell
et al., 2018; Zare et al., 2018, 2019; Zhao et al., 2018, 2019] using machine learning
to predict Noise-Induced Hearing Loss (NIHL). This paper identifies exposure to
noise above 85 dBA for over 8 hours and exposure to noises over 3 kHz as the
most important risk factors for NIHL. Other identified factors that affect individ-

28

Background

uals susceptibility to NIHL such as demography, hearing protection usage and
mutations to genes that alter the K+ concentration in endolymph. It should be
noted that the mentioned conclusions in this paragraph were not obtained using
ML.

Most of the referred studies use features such as age, gender, duration of noise
exposure, smoking habits, working experience in years and hearing thresholds
at multiple frequencies. These studies had unbalanced datasets, with only some-
thing between 1 third and 1 tenth of individuals in the datasets suffering from
NIHL which is usually defined by patients having an hearing threshold above
25 dB. 5 of these studies have low sample sizes, equal to or under 210, while the
remaining have sample sizes of 1113, 2110 and 10567.

[Zhao et al., 2018] with 1113 samples tried to predict noise induced hearing loss
diagnosis and reported AUC scores of 0.81 for an SVM, 0.71 for a Multilayer Per-
ceptron and 0.66 for both a RF and an AdaBoost classifier. [Zhao et al., 2019] with
2110 samples compares performance of an SVM to the ISO-1999 norm which de-
scribes a method of calculating the statistically expected Permanent Threshold
Shift due to noise according to [Michel and Liedtke, 2021] and manages to obtain
an F1 score of 0.715 compared to the 0.594 obtained using the norm described in
ISO-1999.

[Greenwell et al., 2018], a study with 10567 samples, tried to predict a Significant
Hearing Threshold Shift (STS) in hearing levels and if their hearing threshold is
above 25 dB. To predict a STS, the study requires individuals to have a baseline
audiogram obtained when ingressing in the air force and found both age and time
since obtaining the baseline audiogram as the most important factors according
to developed RF models, followed by gender and Air Force Specialty Tags that
indicate the specific nature of their jobs. 1 fifth of individuals had STS while 1
tenth of individuals had a hearing threshold above 25 dB, and the RF models
were cross validated obtaining accuracies of 0.801 and 0.793 respectively.

[ElahiShirvan et al., 2020] uses a SVM model for prediction of the the hearing
threshold of 150 factory workers, outputting one of the following categories:
"<25dB", "25-40dB", "41-60dB" or "61-80dB". The model obtains an accuracy of
94% however, this value may be misleading due to the highly unbalanced dataset
(106 of the workers belong to the category "<25dB"). The model predicted 25.71%
of the workers belonging to the category "25-40dB" to belong to the "<25dB" cat-
egory, although all other predictions were correct. The study finally weighed the
factors that can cause hearing loss by considered the SVM weights for each fea-
ture, concluding most important factors to be exposure to noise of frequencies of
higher frequencies (8KHz and 4 KHz).

[Chen et al., 2021] detects sensorineural hearing loss by applying deep convolu-
tional networks to magnetic resonance images achieving accuracy of 96% how-
ever, the small sample size of only 60 participants makes it difficult to make sig-
nificant conclusions.

[Park et al., 2020] predicts if Unilateral Idiopathic Sudden Sensorineural hearing
loss patients will recover based on their medical records with a total of 31 features.
They developed five models, KNN, SVM, RF, AdaBoost and MLP, obtaining F1

29

Chapter 2

scores of 0.64, 0.74, 0.74, 0.73 and 0.71 respectively. Best results were achieved
using only 15 variables scaled to a space [0; 1]. From the RF models the study ex-
tracted feature importance, concluding most important features to be the hearing
thresholds at the time of diagnostic, the blood urea nitrogen, the creatinine level,
the age on onset, and the time from onset to treatment.

[Bing et al., 2018] uses demographics, medical records, medications, pure tone au-
diometry and laboratory tests results for a total of 149 variables to predict a Sen-
sorineural Hearing Loss diagnosis. They trained a Deep Belief Network (DBN), a
LR, a SVM and a MLP with subsets of 3, 11, 18, 21, 47 and 149 variables with best
results obtaining F-scores of 0.79 with LR using 11 variables or SVM 3 variables,
0.71 with a MLP 1using 3 variables and 0.84 with a DBN using 149 variables.

The 11 variables subset included audiometric features, concurrent symptoms and
comorbidity, the 18 and 21 variables subsets added demographic features, the 47
variables subset included medications, serum and urine indicators related to car-
diovascular risk. The 3 variables subset consisted of the initial hearing threshold,
initial audiogram configuration and time duration before study entry.

2.3.2 Evolutionary Computation in Medicine

Evolutionary Computation has been used in the medical field for multiple pur-
poses. [Lourenço et al., 2019] and [Hidalgo et al., 2014] use Structured Grammat-
ical Evolution and Grammatical Evolution algorithms in a symbolic regression
problem to predict the glucose level in diabetic patients. [Bozcuk et al., 2004]
uses a Genetic Algorithm to predict the prognosis of non-terminal cancer pa-
tients obtaining competitive results when compared to classic Machine Learning
approaches on the same dataset. [Khalil et al., 2006] uses a GA for Vascular Soft
tissue Elasticity Estimation, [Hoh et al., 2012] uses it to estimate the parameters
on Friedman’s labor curve, [Latkowski and Osowski, 2014] uses GA to select rel-
evant genes for autism detection with an SVM classifier ensemble. [M.B et al.,
1997] trains a Artificial Neural Network (ANN) with a GA to predict the progno-
sis of patients after non-small cell lung carcinoma surgery, achieving better results
than a LR on the same dataset and [Lones et al., 2017] uses Genetic Programming
to predict Dyskinesia levels in Parkinson patients. The interested reader can find
a review of many more applications in [Ghaheri et al., 2015].

[Lones et al., 2017] uses a tri-axial accelerometer and gyroscope, 100Hz sampling
rate, fitted to legs, arms torso head and trunk with adjustable bands associated
with infrared video to allow 3 trained clinicians to label dyskinesia periods ac-
cording to the Unified Dyskinesia Rating Scale (UDysRS), which is in a integer
scale from 0 to 4 of intensity. Data was collect from 23 patients, 6 of which were
evaluated for 6 hours and 17 of which were evaluated for 2 hours, for a total of 70
hours of data or around 25 million measurements for each of the axis of each gad-
get. A moving average of each axis in windows of 0.32s was calculated as well
as several spectral characteristics. Individual classification models were then cre-
ated for the temporal features and the spectral features using Implicit Context
Representation Cartesian Genetic Programming. The best generated model has

30

Background

been integrated into a monitoring tool for clinical use.

Predictions were easier the highest the level of dyskinesia, with the model ob-
taining AUC scores of 0.93 for the highest level and 0.56 for the lowest level. The
study concludes more robust models to be built when not using classes 1 and 2
during training. It also compares performance between a sitting and a walking
patient, obtaining a AUC of 0.92 for the former and of 0.73 for the latter. Spectral
classifiers achieved best results on the walking patient, although achieving only
an AUC of 0.58.

[Latkowski and Osowski, 2014] proposes a classifier system to diagnose autism.
For this he had access to a database of gene expression of 54613 genes of 146
male individuals of which 82 have been diagnosed with autism and proposes an
ensemble of 8 SVMs with the Gaussian Kernel where the output of each SVM is
considered a feature for a RF classifier. The large number of genes makes feature
selection a challenge since both determining good predictive genes and amount
of genes to use is a difficult task. As such, the authors propose a two phased
feature selection method where each of the SVMs will obtain a set of 100 features
selected by one of the following methods:

• Fisher discriminant analysis

• ReliefF algorithm

• Two sample t-test

• Kolmogorov–Smirnov test

• Kruskal–Wallis test

• Stepwise regression method

• Feature correlation with a class

• SVM recursive feature elimination

and then proceeds to further narrow down the used features by usage of a GA
with binary representation. Here fitness was defined as the error of 10-fold cross-
validation of the SVM classifier. The whole process was repeated 10 times and ob-
tained an ensemble accuracy of 86.07± 2.79%, superior to the reference of 81.8%.
The best individual SVM obtained an accuracy of only 79.84± 5.66%. The ref-
erence obtained an accuracy of 81.8%, sensitivity of 91% and specificity of 61%,
while this solution obtained an accuracy of 86.1%, sensitivity of 96.3% and speci-
ficity of 83%.

[M.B et al., 1997] predicts the prognosis of 620 patients with non-small cell lung
carcinoma of which 372 (60%) were alive after 24 months of surgery using a
Genetic Algorithm Neural Network (GANN). The study used variables such as
UICC state, gender, TNM T score, TNM N score, Cell type, Differentiation Class,
age and 4 different approximate measures of tumor volume. The leave-one-out
method of cross-validation was employed, tests were performed with data col-
lected at 6, 12, 18 and 24 months after surgery and results were compared to a LR

31

Chapter 2

model. The GANN obtained accuracies of 0.94, 0.86, 0.87 and 0.82 respectively
while LR obtained accuracies of 0.90, 0.78, 0.74 and 0.72. (Accuracy was reported
only in a chart, and therefore mentioned accuracy results are approximations of
the observed chart values.)

[Hoh et al., 2012] obtained data from 594 nulliparous women at 38 to 42 weeks of
gestational labor, with spontaneous onset of labor, vertex presentation at admis-
sion, Cervical Dilation (CD) below 7 cm at admission and duration of labor from
admission to delivery above 3 hours. Cases involving cesarean delivery, labor
induction or epidural anesthesia were excluded. A CD measurement was taken
at least once per hour. The study uses a real value representation GA, with pop-
ulation size 100, a maximum of 20,000 iterations, roulette wheel selection (fitness
proportional), arithmetical crossover with weight 0.8 and probability 0.2 and mu-
tation probability of 0.01. GA was used to estimate parameters for the Friedmans
Labor curve and was compared against the Newton-Raphson (NR) method, ob-
taining on average a RMSE of 0.39 versus the 0.67 obtained by NR and average
Mean Absolute Errors of 0.50 versus 0.92.

[Lourenço et al., 2019] compares performance of Structured Grammatical Evo-
lution and standard Grammatical Evolution in the prediction of glucose levels,
which should ideally be between 70 and 180 mg/dl, in diabetic patients based
on past glucose levels, insulin injections, and amount of carbohydrate ingested
with fitness being calculated as the RMSE. The models were trained and tested
30 times for each of the 10 different patients with SGE always significantly outper-
forming GE, obtaining on the best patient average RMSEs of 36.85 and 38.12 re-
spectively. The study also does a Clarke Error Grid analysis which allows check-
ing on the severity of wrong predictions, concluding less than 2 percent of pre-
dictions being in the most dangerous zone of the grid and on average only 10%
of predictions presenting any risk.

2.4 Summary

Throughout this Chapter we have seen all the relevant background to the work
that we will now develop. We have presented key Machine Learning concepts
such as evaluation metrics and discussed common techniques. Then we focused
on Tree Based Classifiers such as Decision Trees, Random Forests and Gradient
Boost ensembles which will be crucial to the next stages of this work due to their
interpretability.

We also saw key concepts on Evolutionary Computation, with particular interest
in Structured Grammatical Evolution and Differential Evolution, explained the
key advantages of this set of techniques and the drawbacks of Genetic Program-
ming and Grammatical Evolution in particular. We then saw how we can use
Evolutionary Computation to induct Decision Trees, which led to our decision
of using SGE as a better alternative to GE that allows us to create such models
without having to deal with invalids. We also saw DE which is known to be very
effective in numerical optimization and will therefore also be of importance to
this work.

32

Background

Finally we did a review on Machine Learning works on the field of audiology
which gave us an overview of what has been done, what is there still to be done
and what kind of results we should expect at the end of this work. Since we found
no works in audiology using Evolutionary Computation we also present a brief
section on other works in the field of medicine that make use of it so the reader
can rest assured that applying EC to audiology is not unrealistic and show the
novelty behind this work.

33

Chapter 3

Approach

3.1 Hybrid Tree Evolutionary Algorithm

The goal of the proposed approach is to design Decision Trees (DT) to predict
if a person is likely to have hearing problems. While aiming at maximizing the
predictive power of the model, we also need to balance its complexity, keeping a
simple structure making them easier to interpret.

For this we propose Hybrid Tree Evolutionary Algorithm (HyTEA), an Evolution-
ary Algorithm that relies on Structured Grammatical Evolution (SGE) [Lourenço
et al., 2016, 2018] and Differential Evolution (DE) [Storn and Price, 1997]. The for-
mer is responsible for evolving the macro structure of each DT, such as deciding
the number of nodes and which features, or combination of features, should be
used at each node. Each model is then passed to the DE algorithm that parses
the tree and optimizes the numeric parameters that will be used at each node to
perform the splits. Figure 3.1 presents an overview of the proposed architecture.

In the first step, we prepare our dataset by performing several pre-processing op-
erations such addressing the problem of missing values and performing feature
normalization. Additionally, we split our dataset into 3 subsets: i) the Training set
which will be used by the Differential Evolution component; ii) the Validation set
which will be used by the SGE for fitness assignment; iii) the Test set which will
be used to validate the quality and generalization ability of the best individuals
found by our solution, in the end of the evolutionary search.

In the second step, we generate DTs using HyTEA. Firstly, SGE will search for
the macro structure of each model, using a grammar that defines the necessary
syntax restrictions using “if-then-else” constructs as shown in Figure 3.2. The
symbol “%f” is a placeholder for a real number that will later be searched and
optimized by the DE algorithm. Using this grammar we can create DTs where a
node is a leaf when the terminal symbol “is_positive(%f)” is selected to replace
the non-terminal symbol <node>. Otherwise, the node will correspond to a split.
In the split, a decision is done based on a condition of the form "<expr> <= %f"
where "%f" is the split value of the feature calculated in <expr>. <expr>can
be replaced by a numeric constant, a feature from the original dataset (represent

35

Chapter 3

Figure 3.1: Overview of the proposed hybrid architecture.

<start> ::= <node>
<node> ::= is_positive(%f) | (<node>) if (<condition>) else (<node>)
<condition> ::= <expr><signal>%f
<signal> ::= <=
<expr> ::= <op>(<expr>,<expr>) | <var>
<op> ::= _add_ | _sub_ | _mul_ | protdiv
<var> ::= x[0] | x[1] | ... | x[59] | 1.0

Figure 3.2: Grammar used by SGE in HyTEA

by the x array) or a combination of features through the application of an addi-
tion, subtraction, multiplication or protected division. After having the macro
structure of the DT, it is passed to the DE algorithm which will search for the
numeric values of the “%f” placeholders that maximize the prediction accuracy
of the model in the Training set. Lastly, the model is evaluated in the Validation
set, and it is the quality obtained in this set that will be used as fitness in SGE.

Finally, in the third and final step the best performing models found are used
in the Test set. This step is performed when the evolutionary run is finished, to
assess the generalization ability of the best DT found. This step is paramount
since it measures the extent to which the best DTs are robust and generalize for
situations beyond the training data.

3.1.1 Fitness Assignment

Initially, the dataset is divided into three parts: 60% of the samples are used for
Training, 20% are used for Validation, and the remainder 20% are used for Test-
ing. As described in section 3.1, the training data is used by the DE algorithm to

36

Approach

optimize the parameters of the model. To reduce the training time, we randomly
select a balanced subset of 1000 samples from the training set to be used by DE at
each generation. This allows us to use all the available data for training during
the evolutionary process, balancing the computational effort needed to train the
model without compromising its predictive performance.

Once the individual has been optimized by the DE, we use it to classify the sam-
ples in the validation set. After all the samples are classified, we measure the
accuracy of the model and use it as the fitness of the individual in the SGE algo-
rithm.

During the parent selection stage if individuals have a validation accuracy differ-
ence lower than 2% we consider that they have the same fitness, i.e., we consider
them to be tied. To resolve the ties, we take into account the individual’s size
measured as the number of internal nodes of the DT, i.e, individuals with less
nodes are considered better. With this mechanism we introduce pressure towards
parsimony, leading to simpler and easier to interpret models.

3.2 HyTEABoost - Evolutionary Gradient Boosting

Machine Learning algorithms often make classification mistakes, to be confident
on their decisions we tend to strive to get the best possible performance out of
our solutions. However, more complex models, which have the potential to be
more accurate, tend to also be less interpretable.

Gradient Boosting is an ensemble solution where one major prediction is per-
formed by an initial model, while subsequent models try to predict the previous
ones’ errors and compensate them. When used with Decision Trees, Gradient
Boosting allows an initial Decision Tree to make the biggest impact on the final
classification, keeping the interpretability, while subsequent Decision Trees com-
pensate for the error. Subsequent Decision Trees can also be interpreted, however
interpreting a error correction is not as easy as interpreting a classification, and
when the number of trees in the ensemble grows interpretability gets progres-
sively harder.

As an option to improve the accuracy of our model at a slight cost to interpretabil-
ity, we developed an extension to HyTEA where we propose a mechanism similar
to the traditional Gradient Boosting. The architecture of the solution is the same
as presented in Figure 3.1, with main differences being found on the internals of
SGE, the used grammar and the fitness function.

3.2.1 Updated Grammar

Gradient Boosting develops Decision Trees sequentially, where each DT tries to
correct the output of the ensemble that preceded it. This iterative and gradual
improvement requires that the output of the models is continuous, therefore we
change our grammar to apply the sigmoid function to the output of tree leaves

37

Chapter 3

<start> ::= (<node0>) if (<condition>) else (<node0>)
<node0> ::= sigmoid(%f)|(<node1>) if (<condition>) else (<node1>)
<node1> ::= sigmoid(%f)|(<node2>) if (<condition>) else (<node2>)
<node2> ::= sigmoid(%f)
<condition> ::= <expr><signal>%f
<signal> ::= <=
<expr> ::= <op>(<expr>,<expr>) | <var>
<op> ::= _add_ | _sub_ | _mul_ | protdiv
<var> ::= x[0] | x[1] | ... | x[59] | 1.0

Figure 3.3: Grammar used by SGE in HyTEABoost.

instead of using the is_positive function proposed in HyTEA, as can be seen in
Figure 3.3. This function, defined according to Equation 3.1, transforms the pa-
rameter, a real value, into a probability, which then leads to a classification of class
0 (No Hearing Loss) if the probability is lower than 0.5 and class 1 (Has Hearing
Loss) otherwise.

Furthermore, our initial experimentation with this technique showed great levels
of tree bloat, we therefore also limited tree size in the grammar to 4 levels by
replacing the <node> rule by 3 rules, <node0>, <node1> and <node2>.

sigmoid(x) =
1

1 + e−x (3.1)

3.2.2 Finding an Initial Tree

Gradient Boosting requires an initial Decision Tree that makes a prediction which
will be improved by subsequent trees with the only requirement being that this
Decision Tree outputs a probability instead of a simple binary value. Since we
have already built Decision Trees with HyTEA we can improve the HyTEABoost
execution time by providing a pre-built Decision Tree. The Decision Trees we
built with HyTEA however, output a single binary value.

To make use of the trees built by HyTEA, at the beginning of the HyTEABoost
run, we replace the predictions of the initial tree by a unique identifier, so that
each terminal node gets a different id. Then we apply this Decision Tree to the
joint Training and Validation sets. From there we can count how many sam-
ples were predicted by which branch, which we use to calculate the probability
of a patient classified by a specific branch of the tree to have hearing loss. If a
given branch did not classify any instances we consider it’s probability to be 0.5
so that subsequently evolved trees can make the decision on which category it
should fall. Now, given the probabilities of each branch, we once again replace
the unique identifiers by the corresponding probabilities so that our initial tree
outputs a probabilistic prediction instead of a binary decision.

This process allows us to reuse good pre-built Decision Trees, lowering the prob-

38

Approach

Figure 3.4: Example transformation of a Binary Classification Tree to a Probabilis-
tic Classification Tree.

ability of evolving a bad Gradient Boosting ensemble while also speeding up the
initial part of the evolutionary process since one less tree has to be evolved. An
example of this transformation is shown in Figure 3.4 where a Decision Tree has
3 leave nodes, which are tagged with 0, 1 and 2, creating an auxiliary tree. Based
on the known classes of 6 instances and the output of the auxiliary tree we deter-
mine the probability of each tag being associated with a positive class. We replace
the tags with these probabilities therefore obtaining a probabilistic Decision Tree.

3.2.3 Evolving Subsequent Trees

Evolving the first Decision Tree of the HyTEABoost ensemble works exactly as
on HyTEA. The subsequent trees however, should not predict the class of the
instance, but rather the error of the preceding DT’s prediction. Given this, the
internals of SGE were updated as to receive two new parameters, the learning
rate α, and the number of generations per tree N.

With these changes, every N generations the best tree in the population is chosen
to join the ensemble. The residuals of the ensemble are calculated and become
the new target output for the next N generations. The output of the ensemble is
calculated by summing the learning rate α times the outputs of each tree chosen
to join the ensemble with the exception of the initial tree whose full output is

39

Chapter 3

taken, as described in Equation 3.2.

HyTEABoost(X) = InitialDT(X) +
DT ̸=InitialDT

∑
DT∈HyTEABoost

(α× DT(X)) (3.2)

Evolving these subsequent trees requires a new fitness function. Since outputting
any value lower than 0.5 leads to a classification of 0 and any value higher than 0.5
leads to a classification of 1, using metrics such as F1 or accuracy as fitness func-
tions leads to there being no difference between any of these values and therefore
gradual improving is not possible. With this in mind, our new fitness becomes the
minimization of the sum of the absolute residuals of the classification, as given by
Equation 3.3 where yi and ŷi are the correct class and the probabilistic prediction
respectively, of a given instance i.

f itness =
length(y)

∑
i=0

|yi − ŷi| (3.3)

This fitness function should lead to an evolutionary behavior where every small
adjustment a tree makes to the ensemble’s output is considered, therefore leading
to gradual improving.

3.3 HyTEAForest

The last variant of HyTEA that we present, proposes to evolve complete Random
Forest ensembles. We propose to evolve three different types of Random Forests
according to the importance given to the outputs of each tree in the ensemble,
with the type being chosen stochastically.

In majority voting, the output of each tree has the same weight and therefore the
output of the ensemble is the class outputted by the majority of the trees in the
ensemble. In weighted, each tree has a different weight in the decision, and in
branch weighted each tree has a different weight depending on which branch of
the tree made the decision. In both weighted versions the weights are parameters
that will be determined by Differential Evolution.

HyTEAForest uses the concept of templates in the grammar to allow parameter-
izing the number of trees in the forest. The template used by the grammar can be
seen in Figure 3.5 where <mdtrees>, <wdtrees>, <bwdtrees> and <ndtrees> will
be replaced according to the number of trees chosen for the ensemble. In Figure
3.6 we can see a ready to use grammar for an ensemble with two trees.

Each of the referred types is encoded in the grammar according to the rules <ma-
jority>, <weighted> and <bweighted>. In majority voting, the output of the en-
semble is the rounded mean of the outputs of each tree. Since the individual out-
puts of each tree are either 0 or 1, the mean of these values will be the probability
that the ensemble output is 1 and therefore rounding it will obtain the ensemble
output.

40

Approach

<start> ::= <majority>|<weighted>|<bweighted>
<majority> ::= round(sum([ind(x) for ind in <mdtrees>]) / <ndtrees>)
<weighted> ::= is_positive(sum([ind(x) for ind in <wdtrees>]))
<bweighted> ::= is_positive(sum([ind(x) for ind in <bwdtrees>]))
<node> ::= is_positive(%f) | (<node>) if (<condition>) else (<node>)
<bwnode> ::= (-%f*(-1)**is_positive(%f))|(<bwnode>) if (<condition>) else
(<bwnode>)
<condition> ::= <expr><signal>%f
<signal> ::= <=
<expr> ::= <op>(<expr>,<expr>) | <var>
<op> ::= _add_ | _sub_ | _mul_ | protdiv
<var> ::= x[0] | x[1] | ... | x[59] | 1.0

Figure 3.5: Grammar template used by SGE in HyTEAForest.

<start> ::= <majority>|<weighted>|<bweighted>
<majority> ::= round(sum([ind(x) for ind in [lambda x: <node>, lambda x:
<node>]]) / 2)
<weighted> ::= is_positive(sum([ind(x) for ind in [lambda x: -%f*(-1)**(<node>),
lambda x: -%f*(-1)**(<node>)]]))
<bweighted> ::= is_positive(sum([ind(x) for ind in [lambda x: <bwnode>,
lambda x: <bwnode>]]))
<node> ::= is_positive(%f) | (<node>) if (<condition>) else (<node>)
<bwnode> ::= (-%f*(-1)**is_positive(%f))|(<bwnode>) if (<condition>) else
(<bwnode>)
<condition> ::= <expr><signal>%f
<signal> ::= <=
<expr> ::= <op>(<expr>,<expr>) | <var>
<op> ::= _add_ | _sub_ | _mul_ | protdiv
<var> ::= x[0] | x[1] | ... | x[59] | 1.0

Figure 3.6: Example grammar used by SGE for HyTEAForest ensemble with 2
Decision Trees.

41

Chapter 3

To obtain the output of the weighted solution a more complex mechanism was
required. First we transform the output of a tree according to Equation 3.4, which
leads to a value of -1 if the output was 0 and 1 if the output was 1. Then we
multiply each of these values by a parameter which will be found by DE and
obtain the sum of these values for each tree in the ensemble. Finally if this sum is
positive we output 1, outputting 0 otherwise.

ŷ′ = −(−1)ŷ (3.4)

Finally, in the branch weighted solution, each leaf node should have a different
weight. We therefore use the same mechanism as in the weighted solution how-
ever it is applied directly to the leaf nodes instead of to the global tree output.

3.4 How did we get here?

The main goal when the work at hand started was to evolve Decision Trees for
hearing loss prediction. Once this goal was attained we had 4 main issues to
tackle: how to extend the algorithm for multiclass classification problems, how to
improve the performance of generated models, how to speed up the evolutionary
process and how to help health professionals interpret the output of these models.
In this section we’ll discuss the experimentation we carried on to tackle the first
3 issues, however these were preliminary experiments that prelude the solutions
presented in the previous sections of this Chapter and we therefore do not have
results of systematized experiments to discuss. The interpretability issue will be
addressed in Chapter 5.

3.4.1 Multiclass Classification

Extending HyTEA to multiclass problems turned out to require only a few adjust-
ments. Our grammar stopped using the "is_positive" function to use "get_class"
since "is_positive" had a binary output. The new grammar can be found on Fig-
ure 3.7. This new function knows the values to which the output of Differential
Evolution is bound and maps regular intervals of the possible values into the
possible classes. For example, if the output of DE was bound to [-1.5; 1.5] and
there are 3 possible classes, the function would map the intervals [-1.5; -0.5], [-0.5;
0.5] and [0.5; 1.5] to the classes 0, 1 and 2 respectively. The used implementation
of DE however makes it unlikely for values to leave the defined bound, but not
impossible, therefore instead of defining the intervals [-1.5; -0.5], [-0.5; 0.5] and
[0.5; 1.5] we define the intervals [-∞; -0.5], [-0.5; 0.5] and [0.5; +∞] instead.

3.4.2 Improving Model Performance

To improve model performance we tried 3 different strategies: parameter opti-
mization, parsimony pressure and ensembling.

42

Approach

<start> ::= <node>
<node> ::= get_class(%f) | (<node>) if (<condition>) else (<node>)
<condition> ::= <expr><signal>%f
<signal> ::= <=
<expr> ::= <op>(<expr>,<expr>) | <var>
<op> ::= _add_ | _sub_ | _mul_ | protdiv
<var> ::= x[0] | x[1] | ... | x[59] | 1.0

Figure 3.7: Grammar used by SGE for multiclass problems.

Parameter Optimization and Parsimony Pressure

The initial tries with parameter optimization were mostly aimed at trying to re-
move the early convergence detected with the first version of HyTEA and took
place by increasing the values of mutation and decreasing the values of elitism.
This experimentation lead to the early convergence to indeed disappear however,
the apparent gain in performance was lost to overfitting as could be verified by
the performance on the test set.

Since we were now dealing with overfitting we moved on to the second strategy
of applying parsimony pressure accompanied by a soft limitation of the deriva-
tion tree size in SGE’s parameters. An initial attempt was made by applying
parametric parsimony pressure where the fitness function became that described
by Equation 3.5 where γ is a parameter that defines the strength of the parsi-
mony pressure and "n_nodes" is the number of internal nodes of the Decision
Tree, therefore estimating it’s complexity. Choosing the best value for γ proved
to be difficult however, and we therefore changed our parsimony pressure strat-
egy to the one previously presented in section 3.1.1.

f itness = accuracy− γ ∗ n_nodes (3.5)

Ensembling

Finally we tested the viability of improving performance via ensembling. As a
first attempt we created Random Forest models using the best trees generated by
HyTEA. We then supplemented the created Random Forests with trees created by
Sklearn, obtaining an ensemble with mixed evolutionary and greedily inducted
Decision Trees. We tried 2 different ensembling methods, majority voting and
weighted. In the weighted method the weight of each tree’s decision was pro-
portional to their accuracy in the training set. Here we thought that not all parts
of an evolutionary Decision Tree are equally good due to it’s stochastically built
nature, and therefore the weight of a decision differing depending on which part
of the tree made the decision could be beneficial for the ensemble. This lead to
the 3 possible schemes for Evolutionary Random Forests which we imbued into
our grammar in HyTEAForest as described in section 3.3.

43

Chapter 3

Another attempt at improving model performance by ensembling was made by
using Sklearn models such as Support Vector Machines, KNN, Multilayer Per-
ceptrons and Logistic Regression to predict which instances would be incorrectly
predicted by HyTEA Decision Trees, therefore correcting the classification. While
this experiment lead to no viable results, it was what lead to the idea of evolving
new models to improve the accuracy of the Decision Tree post hoc as described
in section 3.2.

3.4.3 Speeding up Evolution

One of the main concerns with Evolutionary Computation is the time spent by
the evolutionary process. With our approach this problem was evident as the
evolutionary process could take days to converge when evolving simple Decision
Trees, up to a month when evolving the Gradient Boosted ensemble or multiple
months when evolving Random Forest ensembles. This problem is particularly
accentuated when new data frequently arrives requiring retraining of models or
when machines crash during the lengthy evolutionary process.

Our approach to speeding up evolution was therefore focused on the initializa-
tion of the population. If we have good pre-evolved models for old data, they
can be used to fully or partially initialize the population therefore requiring less
time for good models to be evolved for the new data. However diversity is a
requirement for a well behaved evolutionary process so simply throwing in the
old models to constitute the initial population of the evolutionary process is not
the best solution as it will lead the algorithm to converge before any significant
improvements on the initial population are observed.

We therefore created methods to populate the initial population from 3 sources.
The first source was a pool of diversely selected Decision Trees from the pool of
every Decision Tree ever generated by HyTEA. The second source was a pool of
highly mutated Decision Trees based on the first source. And the final source was
Decision Trees generated by Sklearn, extracted from either the DecisionTreeClas-
sifier or the RandomForestClassifier models, which were translated into "if-then-
else" statements (in the format used by HyTEA) and from which the genotype
was algorithmically deduced.

Finally, during experimentation we often lost days or even weeks of progress due
to the machines crashing either by lack of storage or power outages. To avoid
further losses we created methods to recover the evolutionary process from the
logs created at the end of each generation.

3.5 Summary

In this Chapter we described the foundations of HyTEA, how we create Decision
Tree structures with Structured Grammatical Evolution and then populate the
numeric fields of these structures using Differential Evolution. We also described
the flow of our data, how we divide it into training, validation and testing sets

44

Approach

and use each to perform a different task, namely training data to find the best
parameters for a given DT structure with DE, validation data to assign a fitness
to each DT during SGE and test data to evaluate the performance of our models
at the end of the algorithm’s run.

Then we proposed HyTEABoost an extension to HyTEA that allows creating a
gradient boosted ensemble from Decision Trees Generated by canonic HyTEA.
As a final proposal we presented a variant to HyTEA that allows us to evolve
both Random Forest ensembles.

Finally, we presented the main issues we had to solve after accomplishing the
goal of evolving Decision Trees, described how we tried to tackle them and how
that process eventually led to the tie breaking mechanism in HyTEA and the 2
evolutionary ensemble methods we propose.

45

Chapter 4

Experimental Study

4.1 Dataset

While the classification methods we developed where generic and could be used
for any classification problem, the aim of this work has been to predict hearing
loss. In this chapter we will discuss the data we have available, how we turned
it into a dataset and how we subsequently validated our approach via an experi-
mental study.

4.1.1 Database

In order to develop models capable of predicting a hearing loss Diagnosis we
built a Database with records on 25,398 Portuguese patients, their counties of
origin, birth dates, results and setup of their audiometry tests, their hearing aid
usage and their responses to a Hearing Health questionnaire. 14,731 (58%) pa-
tients had a negative hearing loss diagnosis while 10,667 (42%) had a positive one.
Patient data, audiometry tests and setup and questionnaires were provided by
Evollu. Questionnaire answers were simplified to a range of 7 possible answers
since questions were open. Demographics, companies and schooling data came
from [PORDATA]. Health indicators were extracted from [Portal de Transparên-
cia do SNS].

Besides data on the patients we had data on demographic, health and economic
indicators for each county in the country. Those were, the population, ageing
index, number of companies, salary and turnover per type of economic activity
as well as per economic sector, the numbers of diabetes diagnosis, the number
of patients with Hemoglobin A1c lower than 8%, the number of hypertension
diagnosis, the number of otorhinolaryngology acts and requests, the number of
schools of each teaching level and the fatality rates for hemorrhagic and ischemic
strokes.

Table 4.1 provides a summary of this data. Figure 4.1 shows the Entity Relation-
ship Diagram for the Database. Table 4.2 shows all available patient data and

47

Chapter 4

Patients Total: 25,398
No Hearing Loss: 14,731 (58%)
Hearing Loss: 10,667 (42%)

Patient data County of Origin
Audiometry Tests and Setup
Hearing Aid Usage
Hearing Health Questionnaire

Demographics
(per county)

Population
Aging Index

Economic Indicators
(per county and per type of
economic activity)

Number of Companies
Salary
Turnover
Number of schools per teaching level

Health Indicators
(per county)

Hemoglobin A1c lower than 8%
Number of hypertension diagnosis
Number of Otorhinolaryngology acts and re-
quests
Fatality rates for Hemorrhagic and Ischemic
strokes

Table 4.1: Summary of available data during the development of the work at
hand.

specifies format and/or possible values and Table 4.3 shows all metrics for these
indicators and the periodicity with which measurements were taken.

4.1.2 Feature Engineering

Using all available information to perform a Machine Learning task required be-
ing able to associate all indicators to a single patient which was not immediately
available by performing simple joins since the data is only correlated to the pa-
tient through his location and there are many measurements for the same indica-
tors in the same location. Feature Engineering was therefore required to build a
dataset to plug into a ML solution.

Patient, lead, audiometry and questionnaire data were straightforward to extract
since there was only one lead and one answer to each question per patient. Since
audiometry data would immediately lead to a correct prediction only the hearing
loss diagnosis feature was considered which will be used later as a target predic-
tion and was calculated as a boolean value set to true if either left or right hearing
thresholds are equal to or larger than 40dB.

Hypertension, diabetes, stroke and otorhinolaryngology data was transformed
into features by aggregating all measurements done over time per location by
calculating the mean, standard deviation, minimum, maximum and quartiles for
each of the metrics presented in the database, resulting in 7 additional features
being created for variable. For otorhinolaryngology data, count was also used as

48

Experimental Study

Fi
gu

re
4.

1:
En

ti
ty

R
el

at
io

ns
hi

p
D

ia
gr

am
fo

r
ou

r
D

at
ab

as
e.

"F
re

gu
es

ia
",

"C
on

ce
lh

o"
an

d
"D

is
tr

it
o"

ca
n

be
tr

an
sl

at
ed

to
"P

ar
is

h"
,

"C
ou

nt
y"

an
d

"D
is

tr
ic

t"
.

49

Chapter 4

Table 4.2: Enumeration of available patient data followed by a specification of
format and/or possible values.

Data Specification
Birth Date yyyy-MM-dd
City of Origin String
Source of lead kiosk OR platform OR web-questionnaire OR Pro-

moter App - Android OR web-form OR Promoter App
- IOS OR web-test OR App Evollu - IOS OR App
Evollu - Android OR App Hearing Training - iOS OR
App Hearing Training - Android OR Web Generic OR
Facebook OR Google AdWords

Date of lead creation yyyy-MM-dd hh:mm:ss.ffffff
Latitude & Longi-
tude

Float value for each

Audiometry Setup Strings: app serial, app version, app name, head-
phones type and headphones name
Numeric: app id, calibration and volume

Audiometry Result In the format below, where the first row specifies
the tested frequencies and the question marks are
replaced by integer values specifying the hearing
threshold at each frequency. Second row show values
for the right hear, and third row for the left hear.
F 1000 2000 4000 6000
R ? ? ? ?
L ? ? ? ?

Hearing level Average of the hearing thresholds for each hear.
Hearing Aid Usage true OR false
Question:
Do you feel hearing
difficulties?

Never OR No OR Sometimes OR Not sure OR In noisy
places OR Yes OR Always

Question:
Do you use an hear-
ing aid?

Never OR No OR Sometimes OR Not sure OR In noisy
places OR Yes OR Always

Question:
Do you have behav-
iors that show hear-
ing loss?

Never OR No OR Sometimes OR Not sure OR In noisy
places OR Yes OR Always

Question:
Do third parties
denote your hearing
loss?

Never OR No OR Sometimes OR Not sure OR In noisy
places OR Yes OR Always

50

Experimental Study

Table 4.3: Demographic, health and economic indicators for each county, the cal-
culated metrics for this indicator and the frequency with which measurements
were made.

Indicator Calculated Metrics Frequency
of Measure-
ment

Population Total Population
Population under 15 years old
Population between 15 and 64 years
old
Population over 65 years old

1960 and
2011

Aging Index Number of residents over 65 years old
per 100 residents under 15 years old

2001 and
2019

Companies Number of companies
Turnover in thousands of Euro
Average Salary in Euro
(Measured per each kind of activity
and economic sector)

1985, 2009,
2018 and
2019

Schooling Number of schools at every educa-
tional stage from preschool to college

1985 and
2018

Diabetes Number of patients that did a feet
exam in the last year
Percentage of patients with a feet
exam in the last year
Number of patients with Hemoglobin
A1c level lower than 8%
Percentage of patients with
Hemoglobin A1c level lower than 8%

Monthly
since January
2014

Hypertension Number of patients with an hyperten-
sion diagnosis
Percentage of patients with an hyper-
tension diagnosis which are under the
age of 65

Monthly
since January
2014

Otorhinolaryngology Number of requested exams
Number of effectuated exams

Monthly
since January
2020

Strokes Percentage of hemorrhagic strokes
that lead to death
Percentage of ischemic strokes that
lead to death

Monthly
since January
2013

51

Chapter 4

an aggregator since it is a metric of the number of otorhinolaryngology institu-
tions in the area.

Since schooling, population, aging index and company data was only measured
a maximum of 4 times, a single value was extracted per metric and per measure-
ment. Company data was subdivided per type of activity and therefore a feature
was extracted for each date of measurement and for each type of activity, result-
ing in 20 features per measurement per variable or 80 features per variable since
there were 4 measurements.

Age was calculated from patient’s birth date and question features were encoded
with both One-Hot Encoding and Ordinal Encoding techniques. Finally missing
values were solved by replacing missing values by the mean of the corresponding
feature. In total 204 features were extracted or engineered, a few examples are
shown below, and the full list can be consulted in appendix A.

• lat - Latitude

• lng - Longitude

• question_1 - Label Encoded answer to Question 1

• question_2 - Label Encoded answer to Question 1

• question_3 - Label Encoded answer to Question 1

• question_4 - Label Encoded answer to Question 1

• hypertension_last_6_months_mean

• hypertension_last_6_months_std

4.1.3 Feature Selection

Mean and standard deviation of each feature for each class were calculated and
it was statistically verified if there was a significant difference in means between
classes. This verification was done via an Independent t-test at a significance level
α = 0.05 with normality being assumed due to the Central Limit Theorem given
the sample size bigger than 10,000. Results are shown in the appendix in Table
A.1.

Besides this, 3 absolute correlation metrics were calculated that evaluate the cor-
relation between a feature and the class: Pearson, Kendall and Spearman. The 50
best Pearson correlations varied between 0.302 and 0.046, the 50 best Kendall cor-
relations varied between 0.339 and 0.112 and the 50 best Spearman correlations
varied between 0.405 and 0.132. Features that always made top 50 included:

1. company_quantity_0_2009

2. company_quantity_0_2019

52

Experimental Study

3. company_quantity_2_2009

4. company_quantity_2_2019

5. company_turnover_10_2009

6. company_turnover_11_2009

7. company_turnover_11_2019

8. company_turnover_2_2009

9. company_turnover_4_2019

10. question_1

11. question_1_1

12. question_1_6

13. question_1_7

14. question_2

15. question_2_1

16. question_2_2

Furthermore, ANOVA F-values between class and feature were calculated for
each feature and features were sorted by this value, with higher values being
higher on the list. After removing features with no significant difference in means,
features were grouped according to their origin as no_group, age_group, question,
hypertension, diabetes, stroke, otorhinolaryngology, schooling, aging and company.

Finally, a maximum correlation threshold between features of the same group of
80% was set, and features violating this condition were discarded sequentially,
prioritizing low F-value features. Once this process was done, features belonging
to the set of 16 features that always made top 50 in correlation scores were added
back in case they had been removed. This resulted in a reduced set of 60 features
instead of the original 204 features.

As a selection validation step, a default Sklearn Random Forest Classifier was
trained with 30 splits of cross-validation with test size equal to 30% of the dataset.
At each fold feature importance was extracted and the averages were obtained for
the 10 most important features as shown in Table 4.4.

Since all the features in this top 10 made it into the reduced dataset, feature selec-
tion was considered successful.

Additionally we wanted to decide if generating new features as combinations of
existing ones could be relevant. For this we built a total of 2042 = 41616 polyno-
mial features of degree 2 and analyzed the correlation metrics for each of the new
features. Examples of features that had an higher correlation to the target variable
after combination are the multiplications of question_2 by age, question_2_2 by age,

53

Chapter 4

Feature Average Importance
age 0.291539
lng 0.180651
lat 0.162166

question_1 0.038634
question_3 0.019978
question_2 0.020277

question_2_1 0.018503
question_1_1 0.014186
question_2_2 0.014512
question_3_1 0.013429

Table 4.4: Average Importance of the 10 most important features according to a
default Sklearn Random Forest Classifier after 30 splits of cross-validation.

question_1 by age, question_1 by age, question_1_1 by question_2_1, question_3_1 by
question_2_1 and lng by question_2_1.

The best correlations obtained by combined features were of 0.385, 0.412 and
0.491 versus the correlations of 0.302, 0.339 and 0.405 obtained by simple features
in the Pearson, Kendall and Spearman correlation metrics respectively. Since
many of these combined features showed to have higher correlation with the
target variable than the isolated features it was decided that further feature engi-
neering could be beneficial.

4.2 Experimentation with traditional models

While the focus of this work is to obtain evolutionary classification models, it is
important to also experiment with traditional models so that we have a compari-
son baseline, can identify shortcomings of these models and can analyze how our
approach solves these shortcomings. With that in mind we started by studying
the performance of Sklearn models in our dataset.

4.2.1 Experimental Setup

Multiple Sklearn models were tried with the features in the reduced dataset as a
means to obtain a performance reference. Since we propose to develop Decision
Trees, Gradient Boosting and Random Forest models, these are the same models
we use here for comparison. Default Sklearn Decision Trees tended to overfit
data, we therefore decided to tune the maximum depth of the tree. Since most
our HyTEA generated Decision Trees ended up having a depth of 3, we created
Sklearn trees using a maximum depth equal to 3, but also tried the values of 5
and 10 so that different behaviors could emerge.

Mean and standard deviation of accuracy, F1, precision and recall were calculated
for each classifier after 30 splits of cross-validation with test size equal to 30% of

54

Experimental Study

Accuracy F1 Precision Recall
Model µ σ µ σ µ σ µ σ

DecisionTree(max_depth=3) 0.711 0.070 0.557 0.131 0.826 0.149 0.436 0.134
DecisionTree(max_depth=5) 0.721 0.080 0.654 0.104 0.707 0.102 0.621 0.135
DecisionTree(max_depth=10) 0.733 0.058 0.669 0.089 0.723 0.080 0.638 0.135

RandomForest(max_depth=3) 0.721 0.072 0.612 0.124 0.760 0.123 0.528 0.151
RandomForest(max_depth=5) 0.737 0.072 0.659 0.106 0.742 0.096 0.603 0.136
RandomForest(max_depth=10) 0.749 0.081 0.681 0.119 0.751 0.111 0.636 0.150

GradientBoosting(max_depth=3) 0.770 0.069 0.718 0.089 0.773 0.109 0.679 0.107
GradientBoosting(max_depth=5) 0.751 0.073 0.686 0.107 0.755 0.107 0.644 0.132
GradientBoosting(max_depth=10) 0.737 0.070 0.678 0.086 0.727 0.100 0.644 0.102

Table 4.5: Mean and Standard deviation of accuracy, F1, precision and recall for
each Sklearn model after 30 splits of cross-validation with test size equal to 30%
of the dataset using Standard Scaling.

Accuracy F1 Precision Recall

DecisionTree(max_depth=3) [0.685; 0.738] [0.508; 0.607] [0.769; 0.883] [0.385; 0.487]
DecisionTree(max_depth=5) [0.691; 0.752] [0.615; 0.694] [0.668; 0.745] [0.569; 0.672]
DecisionTree(max_depth=10) [0.711; 0.756] [0.635; 0.703] [0.693; 0.753] [0.587; 0.690]
RandomForest(max_depth=3) [0.694; 0.748] [0.565; 0.659] [0.713; 0.806] [0.471; 0.586]
RandomForest(max_depth=5) [0.709; 0.764] [0.619; 0.699] [0.706; 0.778] [0.551; 0.654]
RandomForest(max_depth=10) [0.718; 0.780] [0.635; 0.726] [0.709; 0.794] [0.579; 0.693]
GradientBoosting(max_depth=3) [0.744; 0.796] [0.684; 0.752] [0.731; 0.814] [0.639; 0.720]
GradientBoosting(max_depth=5) [0.723; 0.779] [0.646; 0.727] [0.714; 0.796] [0.593; 0.694]
GradientBoosting(max_depth=10) [0.710; 0.763] [0.646; 0.711] [0.689; 0.765] [0.605; 0.682]

Table 4.6: 95% confidence interval of accuracy, F1, precision and recall for each
Sklearn model after 30 splits of cross-validation with test size equal to 30% of the
dataset using Standard Scaling.

the dataset. The process was repeated for 3 different scaling techniques: Min-Max
Scaling, Maximum Absolute Scaling and Standardization.

4.2.2 Results

As mentioned in section 4.2.1 we tried 3 different scaling techniques. Since the
Standardization strategy undoubtedly led to the best results across all models, in
this section we present the results for this strategy and on the next sections where
experimentation is slower and we could not try all scaling strategies we proceed
using this strategy as well.

The mean and standard deviation of the accuracy, F1, precision and recall metrics
can be found in Table 4.5 and the 95% confidence intervals for the same metrics
can be found in Table 4.6.

As can be observed, Gradient Boosting obtained the best performances overall
across all metrics. Decision Tree and Random Forest models ended up having
similar performances accuracy wise, however Random Forest tended to obtain
better F1, precision and recall. The simplest Decision Trees, with a maximum
depth of 3, ended up having a recall always inferior to 0.5, meaning more than
half of the hearing loss patients were not detected.

55

Chapter 4

Parameter SGE DE
Population 200 15
Generations 100 20

Parent Selection Tournament with size 3 N/A
Elitism 10% N/A

Crossover Rate 0.9 0.7
Mutation Rate 0.1 Between 0.01 and 0.2

Minimum Tree Depth 3 N/A
Maximum Tree Depth 10 N/A

Table 4.7: Parameters used in the experimental study for each method.

4.3 Experimentation with Canonic HyTEA

Now that we have a baseline study using traditional models we can start ex-
perimenting with evolutionary models and be sure of how well behaved these
models are.

4.3.1 Experimental Setup

To obtain statistically reliable results we repeated each experiment 30 times us-
ing different seeds. HyTEA is an hybrid of 2 evolutionary algorithms, Structured
Grammatical Evolution and Differential Evolution. To define the experimental
setup for HyTEA we must then specify the parameters for both of these algo-
rithms as explained in the following paragraphs.

The parameters used to configure each algorithm are summarized in Table 4.7.
The settings used by the SGE were defined following the recommendations pro-
posed in [Lourenço et al., 2017, 2018]: {Number of Runs: 30; Population Size: 200;
Generations: 100; Crossover Rate: 0.9; Mutation Rate: 0.1; Elitism: 10%; Tourna-
ment Selection with size 3; Minimum Tree Depth:3, Maximum Tree Depth: 10}.
It should be noted that Maximum Tree Depth is the depth of the derivation tree,
not the DT, and that once this depth is reached only terminal derivations are pri-
oritized.

For the DE algorithm we use 15 individuals, and allow the algorithm to run for
20 generations. The mutation rate is variable between 0.01 and 0.2, and we use
the best/1/bin DE strategy.

Besides these standard parameters, other parameters can be tuned regarding how
data is split into Training, Validation and Test sets, how we subset the training
data used at each generation and the fitness difference threshold at which we
consider competing individuals to be tied. While we considered these parameters
to be fixed during conceptualization of HyTEA and therefore pointed them out
while explaining our approach in section 3.1.1, these values can indeed changed
so we point them out here again for the sake of completeness.

We split the data into 3 sets, 60% of the data represents the training set, 20% of

56

Experimental Study

Fitness Accuracy F1 Precision Recall Int. Nodes Depth Est.
µ 0.722 0.719 0.721 0.716 0.727 5.667 3.262
σ 0.005 0.007 0.012 0.014 0.030 5.384 0.702

min 0.714 0.708 0.690 0.698 0.638 2.000 2.000
25% 0.717 0.714 0.714 0.704 0.711 4.000 3.000
50% 0.721 0.716 0.720 0.716 0.732 5.000 3.322
75% 0.726 0.722 0.731 0.723 0.743 5.750 3.519
max 0.735 0.737 0.741 0.752 0.779 33.000 6.044

95% CI [0.720; 0.724] [0.716; 0.722] [0.717; 0.725] [0.711; 0.721] [0.716; 0.738] [3.66; 7.68] [3.00; 3.52]

Table 4.8: 95% confidence interval of fitness, accuracy, F1, precision and recall for
the 30 runs of the canonical HyTEA experiment.

the data is used for validation the remaining 20% are used for testing. At every
generation 1000 samples of the training set (approximately 6.67% of the training
set) are selected for usage with DE while the rest of the training set is ignored for
that generation. Finally if the fitness of competing individuals, which is measured
as accuracy in the validation set, differs in less than 2%, they are considered to be
tied and the winning individual is that with smaller size.

4.3.2 Results

As a result of these experiments we collected data on the performance metrics for
the best individuals, measured in validation set fitness, at each run. The valida-
tion set fitness, testing accuracy, F1, precision and recall, as well as the number of
internal nodes and estimates of tree depth calculated as log2(InternalNodes) + 1
are summarized in Table 4.8.

We can see that all performance metrics are very consistent across experiments,
leading to very small Confidence Intervals, and are around the 72% mark. The
evolved Decision Trees are also very small, with average depth being in the inter-
val [3.00; 3.52] with 95% confidence.

When comparing to traditional models we can see that accuracy on average is
very close, with the independent t-test indicating there to be no statistical differ-
ence. F1 tends to be much higher in HyTEA while Precision is somewhat lower
when compared to the simplest Sklearn Decision Tree. As the reader may re-
call when analyzing traditional Decision Trees we had a concern with a low re-
call metric which meant we were failing to find positive hearing loss diagnosis.
Here this recall metric is much improved, with traditional models obtaining val-
ues only as high as 0.690 with 95% confidence when using trees with maximum
depth of 10, while HyTEA obtains recall values in the range [0.716; 0.738] with
95% confidence using Decision Trees of an average depth of only 3.262.

57

Chapter 4

4.4 Experimentation with HyTEABoost

4.4.1 Experimental Setup

To obtain statistically reliable results with repeated each experiment 12 times us-
ing different seeds. The goal was to repeat the experiment 30 times, however
technical difficulties, the naturally longer processing time and the shortness of
time due to this particular setup being experimented late in the project, we only
managed to achieve 12 experiments by the time of writing. Never the less, the
results were consistent across experiments, which speaks for their reliability.

Just like HyTEA, HyTEABoost is an hybrid of 2 evolutionary algorithms, Struc-
tured Grammatical Evolution and Differential Evolution, with selected parame-
ters for both algorithms being the same as those described in section 4.3.1 with ex-
ception to the number of generations which was increased to 200. However, two
additional parameters were required for this solution. The first one is the num-
ber of generations each individual is allowed to run for before trying to evolve
the next one. We set this parameter to 20 generations, since there is a total of
200 generations, 10 individuals will be evolved as the final result of each experi-
ment, iterating on top of the best Decision Tree we generated during experimen-
tation with HyTEA. The second parameter is the learning rate which modifies
the impact each subsequent tree will have on the final prediction, and we set this
parameter to 0.1, following the default of Sklearn.

4.4.2 Results

To analyze the benefit of improving the initial Decision Tree with the HyTE-
ABoost method, we tracked the performance metrics for the initial Decision Tree
and the best performing corrective tree at each generation for each experiment.
Since the testing set is not the same across all experiments, the average of the
performance across experiments is considered.

The average accuracy of the individual initial Decision Tree was of 0.716 over the
12 experiments, while the average F1 was 0.696. The average achieved accuracy
was of 0.727 while the average achieved F1 was 0.725, making it an improvement
of 1.1% in accuracy and 2.9% in F1.

Meanwhile, precision was negatively impacted since we got a decrease of 0.02
from an initial value of 0.749 to 0.729. The Recall metric however, had the biggest
benefit from using additional trees to correct the initial prediction, starting at the
value of 0.650 and ending up with a value of 0.722, making it a 7.2% increase.

The evolution of these metrics over the generations can be visualized in Figure
4.2. It can also be seen that there is a peak at each of the metrics every 20 gen-
erations. This peak is due to the reset in the population which starts working
on a new individual. After 120 generations, that is, 6 added individuals to the
ensemble, the performance gain seems to stagnate.

58

Experimental Study

Figure 4.2: Progress of average performance metrics over the generations for the
best individuals at each experiment with HyTEABoost.

When compared to the traditional gradient boosting with tree depth limited to
3, our solution got worse accuracy with 0.727 against 0.770 and worse precision,
with 0.729 against 0.773. However it obtained better F1 with 0.725 against 0.718
and better recall, with 0.722 against 0.679. It seems each solution could be optimal
depending on which metrics matters most for each use case. While at first glance,
the results are not impressive, we did find significant improvements on the recall
metric which is critical for the work at hand since it shows the percentage of
patients with hearing loss we end up finding.

4.5 Experimentation with HyTEAForest

4.5.1 Experimental Setup

Following the same guidelines as the previously detailed experiments, we re-
peated each experiment 12 times using different seeds, not managing to achieve
the 30 runs due to the heavy processing load and lack of time.

The general parameters for both SGE and DE were the same as those described in
section 4.3.1, however this technique turned out to require a lot more computa-
tional power, and due to the lack of time we had to tune down some parameters
so that we could have timely results. Specifically we decreased population size
and the maximum number of generations to 100 and 50 down from 200 and 100
respectively.

Besides this, we had to select the number of Decision Trees to be considered on
the ensemble and again, due to lack of time and processing power, we limited the

59

Chapter 4

Figure 4.3: Progress of average performance metrics over the generations for the
best individuals at each experiment with HyTEAForest.

number of trees to just enough to validate the concept, which is 2.

4.5.2 Results

For this solution, we track the results of the best performing individuals at each
experiment and generation. Since the testing set is not the same across all experi-
ments, the average of the performance across experiments is considered.

By the end of the experiment, the best evolved individuals had an accuracy of
0.704, F1 of 0.729, precision of 0.679 and recall of 0.794.

The evolution of these metrics over the generations can be visualized in Figure
4.3. We can see in the evolution that it is converges very early in the first 5 gen-
erations and then stops improving. This is probably due to a lack of diversity
resulting from the low number of individuals used during this experiment.

When compared to the traditional Random Forest our solution had worse accu-
racy, with 0.704 against 0.749 and worse precision with 0.679 against 0.760. How-
ever, our solution did have better F1 with 0.729 against 0.681 and better recall
with 0.794 against 0.638. Given very few resources were allocated to run this ex-
periment, it has shown great potential as an alternative both when compared to
traditional models and our other evolutionary solutions. As we have previously
discussed, recall is an essential metric in this project as it ensures we’re not miss-
ing positive hearing loss diagnosis and this model provided the best recall of all
our alternatives although at a loss for accuracy and precision.

60

Experimental Study

4.6 Discussion

In our scenario failing to diagnose a patient with hearing loss is more harmful
than calling a patient for a screening which ends up not being diagnosed with
hearing loss, therefore a low recall metric is a big concern and would make it un-
viable to use a model. The simplest Decision Tree we evolved with Sklearn, with
a maximum depth of 3, had a recall value in the range [0.385; 0.487] with 95% con-
fidence. More complex Sklearn Decision Trees (with maximum depths of 5 and
10) offered better recall values however their complexity makes interpretability
harder. This early observation using traditional Decision Tree induction algo-
rithms shows a gap which HyTEA as the potential to fill by evolving Decision
Trees that have an increased performance, not only overall but specifically for the
critical recall metric, while keeping the simplicity of a low depth tree.

When analyzing the results obtained by canonical HyTEA we find very consistent
performance metrics, showcasing the robustness of the algorithm. We can find
accuracy values comparable to those obtained with traditional models although
much more consistent and we find significant improvements in both F1 and recall
without sacrificing interpretability since obtained tree depths were on average
lower than 4, making for very simple Decision Trees.

HyTEABoost was used to improve on the Decision Trees generated by canonical
HyTEA. While the improvements in accuracy were not significant and precision
did decrease, the F1, and most importantly, the recall metrics were significantly
improved. Has we have already mentioned, recall is the most important per-
formance metric in this particular use case and therefore the trade-off of inter-
pretability for better recall offered by this approach is well worth considering.

HyTEAForest was capable of outperforming traditional models in the F1 and re-
call metrics, although losing in accuracy and precision. The lack of time to al-
locate larger resources to the algorithm could be to blame for the lack of perfor-
mance in other areas and will require further experimentation to assess the full
potential of this approach. It did however already prove to be a viable alternative
especially if we want to favor a high recall model which ensures we avoid the
most false negatives possible.

4.7 Summary

In this Chapter we described the data we had available for a total 25,398 patients
of which 10,667 had a positive diagnosis for hearing loss. We showed to have data
on the patient’s county of origin and answers to a hearing health questionnaire
as well as a series of demographic, economic and health indicators from each
patient’s county of origin.

Still on the subject of data, we explained how we transformed our data to form
a coherent dataset, how we dealt with categorical data and with missing values
and how we selected which features to keep on the dataset. Finally, we did some

61

Chapter 4

experimentation with polynomial feature building and measured the discrimina-
tive power of these features in terms of correlation to the target class, conclud-
ing that combining features can be relevant to improve model performance and
therefore this capability should be imbued in the grammar of HyTEA.

Once we discussed our problem’s dataset we moved on to experimentation. We
first obtained a performance baseline with traditional Sklearn models and iden-
tified issues with these obtained models. Then we performed experimentation
with canonical HyTEA and found it to be more consistent than traditional meth-
ods, leading to similar or better performance depending on which performance
metrics we are analyzing while keeping Decision Trees compact therefore con-
serving interpretability.

Then we saw that HyTEABoost manages to significantly increase performance
on the recall and F1 metrics at a slight cost for precision and interpretability and
finally saw that HyTEAForest is a viable alternative that favors the recall met-
ric even more than HyTEABoost and given more resources has the potential to
outperform all other models.

62

Chapter 5

Visualization

Visualization has a key role in this work for multiple reasons. Firstly we, as Ma-
chine Learning developers, must know if our classifiers are modeling the problem
space correctly. Secondly, as we have often emphasized, interpretability is key
in our Machine Learning solutions since health professionals must understand
decisions. And lastly, these same health professionals must know how reliable
decisions are.

With this in mind we first generated and analyzed t-Distributed Stochastic Neigh-
bor Embedding visualizations to validate the modeling of the problem space and
then we created a visualization tool for health professionals to visualize Decision
Trees, perform classification and check the reliability of the generated decision.

5.1 Analyzing the Best Models using t-SNE

In order to verify if our models were correctly modeling the problem space we
created t-SNE visualizations for every instance in the dataset, drawing them with
different colors depending on their class.

In Figure 5.1 we can view a t-SNE visualization where the colors represent the
known class. In this visualization there are many visible clusters, most of which
have a mix of both classes, representing sets of instances which should be hard to
accurately predict. There is however a region that noticeably represents mostly
patients with no hearing loss, which starts at the central cluster and extends to-
wards the upper right diagonal of the plot.

A well behaved classification model should follow similar patterns to those iden-
tifiable in this visualization of the original data. When changing the colors of the
visualization to represent the output of our best HyTEA generated Decision Tree
we obtain Figure 5.2. When comparing this visualization to that of the known
classes we can see that our Decision Tree captures very well the pattern of the
central cluster extending towards the upper right diagonal. However, there are
many clusters that, while having only a few negative instances in the real data,
show here as approximately half of the instances being negative. This means that

63

Chapter 5

Figure 5.1: t-SNE visualization of the dataset with the colors representing the
known class for each instance.

64

Visualization

Figure 5.2: t-SNE visualization of the dataset with the colors representing the
outputted class by our best HyTEA generated Decision Tree for each instance.

there likely are often positive instances being classified as negative instances.

This visualization however, especially in the original data, does not allow view-
ing overlaid instances which may make us believe that a cluster with a balanced
amount of both positive and negative instances is made of mostly positive in-
stances simply because the blue dots were drawn over the green. To allow a
more reliable analysis we created a new visualization where green and blue dots
represent the known negative or positive classes on instances that were correctly
classified while a third red cross marker is used to indicate instances that were
not correctly classified by our Decision Tree.

This visualization can be seen in Figure 5.3 and it shows that clusters that ap-
parently were mostly made up of positive instances actually were a mix of both
classes and that the algorithm while incapable of fully separating instances in
these mixed clusters, was capable of dividing them, usually in 2 different sec-
tions, where the concentration of instances of each class tends to one class or the
other.

When comparing the visualization on Figure 5.2 with the similar visualizations

65

Chapter 5

Figure 5.3: t-SNE visualization of the dataset with red markers showing the in-
stances incorrectly classified by our best HyTEA generated Decision Tree.

66

Visualization

Figure 5.4: t-SNE visualization of the dataset with the colors representing the
outputted class by a Sklearn Decision Tree for each instance.

for Sklearn Decision Trees and Random Forests, as observed in Figures 5.4 and
5.5 respectively, we see that the modeling behavior is very similar, with the dif-
ferences being mostly on the thresholds at which the mixed clusters are split. It
should be noted that for a fair comparison and since most of our Decision Trees
ended up having depth equal to 3, we set the Sklearn trees to have a maximum
depth of 3 as well.

To further analyze the behavior of our Decision Tree when modeling the problem
space, we decided to create a visualization where we can see which branches
of the tree are responsible for modeling each cluster. To do this we first name
and color each of the terminal nodes as seen in Figure 5.6 and then use these
names and colors to fill the t-SNE visualization as seen in Figure 5.7 while also
calculating the accuracy of each branch in particular. Terminal nodes that did not
classify any instance on the dataset are colored black in the Decision Tree.

In this new visualization of Figure 5.7 we can see that the cluster we identified
earlier, starting in the center and extending towards the upper right, is classified
by one single branch of the Decision Tree which also is the most accurate one
with 95.5% accuracy. Meanwhile the blue, yellow and green branches divide the

67

Chapter 5

Figure 5.5: t-SNE visualization of the dataset with the colors representing the
outputted class by a Sklearn Random Forest for each instance.

68

Visualization

Figure 5.6: Best HyTEA generated Decision Tree with terminal nodes colored and
tagged to be distinguished in the t-SNE visualization.

clusters into regions depending on the concentrations of points in each of those
regions obtaining fairly accurate predictions with an accuracy between 68.7% and
77.1%. Finally, the red branch classifies regions of very high uncertainty, obtain-
ing only 51.1% accuracy.

This visualization can help a health professional to assess the reliability of a pre-
diction made by the Decision Tree. If the Decision Tree predicted the patient to
not have hearing loss with the orange branch, there is a 95.5% chance that it is
correct, while if the prediction was made with the red branch they could know
that they should rely on other methods to make the decision since the prediction
by the Decision Tree is a coin flip.

5.2 Visualization Tool

As previously mentioned, we developed a tool for health professionals to obtain
predictions and analyze the reliability of these predictions. In short the tool al-
lows selecting and visualizing from a set of pre-evolved Decision Trees, obtaining
predictions for patients with specific characteristics, viewing which branch of the
tree made the prediction and which points are modeled by that branch in a t-SNE
visualization. These features are further detailed in section 5.2.2.

An overview of the developed tool can be seen in Figure 5.8.

5.2.1 Architecture

The tool is composed of 2 components. A REST API backend built with python
and flask which provides data on Decision Trees and performs classification, and
a Vue.js web app as a frontend.

Backend

The REST API has access to a SQLite database which contains every Decision Tree
evolved with HyTEA and their metadata, such as genotype, size, used features
and performance metrics. When initialized the API gathers the 50 best Decision

69

Chapter 5

Figure 5.7: t-SNE visualization of the dataset with the colors representing the
terminal nodes of our best generated Decision Tree which made the prediction
for each instance of the dataset.

Trees in the database, disregarding any duplicates (same structure, possibly dif-
ferent parameters). Then it calculates a t-SNE projection for every known point
in our dataset and for each Decision Tree stores information on which branch of
the tree classifies that point which in turn will allow the t-SNE visualizations to
show which parts of the Decision Tree are modeling which parts of the problem.

Selecting the trees and obtaining the mapping of each point in the dataset to
branches of every tree is a lengthy task which makes initialization slow. As an
alternative we could use lazy loading with the mappings being calculated to each
tree only when necessary, however that would make usage slower when selecting
other trees. We opted to store the result of this initialization in a pickle (python
object file), therefore the initialization only has to occur when new data is added
and the remaining times we simply read it directly from the pickle.

This backend exposes 2 data retrieving endpoints which allow obtaining meta
data on every tree or obtaining detailed information of a single tree such as the
python code that represents the tree, it’s macro-structure in a Binary Tree like
object and the t-SNE point mappings to each branch of the tree. Besides that it
exposes 2 endpoints for classification which allow obtaining classification of a
single instance as well as the branch of the tree that made that prediction and
another endpoint which allows batch prediction so that many predictions can be
obtained quickly without dealing with the latency of many consecutive HTTP
requests.

70

Visualization

Fi
gu

re
5.

8:
O

ve
rv

ie
w

of
th

e
de

ve
lo

pe
d

V
is

ua
liz

at
io

n
an

d
C

la
ss

ifi
ca

ti
on

to
ol

.

71

Chapter 5

Frontend

The frontend was built as a Vue.js web app. We took a component based ap-
proach to build the interface and every control. The Decision Tree visualization
was built using Vue.js components and a SVG building library. Finally, the t-SNE
visualization made use of plotly.js. All presented data is retrieved from the back-
end.

Deployment

To ensure easy deployment and usage of this tool we made use of Docker. Each
component was made ready for deployment as a standalone container, by writing
a Dockerfile for each of them. While the frontend component does not have any
use without communication with the backend, this allows for the backend to also
be used standalone for example for integration with other systems. To also make
deployment of the tool easier we wrote a Docker Compose file which boots up
both containers and provides all required configurations such as environment
variables and port publishing.

Besides deploying the tool it is also important for the client company to be able
to evolve new Decision Trees from any new data they have. For that purpose we
also dockerized the HyTEA solution which evolves Decision Trees and appends
them to the SQLite database so that they are made available to the tool.

5.2.2 Features

While this tool consists of a single page, it has implemented many features to
make sure end users can take full advantage of the visualization potential. For a
starter, the tool displays a list of the available Decision Trees displaying their per-
formance metrics (accuracy, F1, precision and recall), their size and the features
it uses. The tool allows sorting this list by any of the performance metrics or by
size so that the user can find an appropriate tree faster.

When a tree is selected, it is displayed on the screen, with each terminal node
being colored differently. The colors of these terminal nodes are then used on
the t-SNE visualization so that we can see which branch of the selected Decision
Tree classifies which points, and what is the accuracy of each branch. When a
node does not lead to the classification of any of the points in the dataset we
color it black. For example, in Figure 5.10 we can see that the orange branch of
the Decision Tree represented in Figure 5.9 classifies most points in the central
cluster of the t-SNE projection and that it has an accuracy of 95.5%.

Visualizing large Decision Trees can be difficult, therefore we also implemented
features that allow compacting and visualizing only parts of the tree at a time.
Namely we allow collapsing nodes, hiding levels and changing the orientation
of the tree. We also shorten the text on long nodes which can be seen on mouse
hover in a tooltip. Collapsing nodes hides every descendant node starting at

72

Visualization

Figure 5.9: Example visualization of a Decision Tree with our tool.

Figure 5.10: Example t-SNE visualization with our tool.

73

Chapter 5

Figure 5.11: Example visualization of a Decision Tree with the last node of the 3rd
level collapsed. The "+2" indicates there are 2 descendants to that node.

a selected node. If trees are large enough every node at the 3rd level will be
collapsed by default. Hiding levels allows omitting every node in that level and
can be useful for example to view only the top most levels of very deep Decision
Trees. Examples of all these 4 features can be found in Figures 5.11 to 5.14.

Besides visualizing the trees and the respective t-SNE, the tool allows performing
classification and showing the branch of the Decision Tree which is responsible
for it. To do this, the user must insert the answer to 4 questions, the age of the
patient and the name of the patient’s county of origin. This data will be sent to the
backend to calculate every other required feature, scale the values and perform
the classification. It is important for the name of the county to be written correctly,
however searching a list of the 308 Portuguese counties can be cumbersome. To
solve this we allow the user to write the name of the county manually and give
him auto complete suggestions to avoid mistakes. When making a classification
we inform the user on the output and highlight the responsible tree branch as
exemplified in Figure 5.15.

5.3 Summary

In this chapter we described how we use visualization to both validate our mod-
els and assist health professionals’ decision making. We saw multiple t-SNE visu-
alizations of the feature space with coloring by known class and predicted class
and saw that our generated Decision Trees capture the patterns in original data.
Then we saw the built visualization tool, it’s components, architecture and fea-
tures, and how it can be used to assist health professionals on assessing the relia-
bility of a given prediction from our HyTEA generated Decision Trees.

74

Visualization

Figure 5.12: Example visualization of a Decision Tree with the last 2 levels hidden.
The length and width of the gray lines are indicative of the amount of hidden
nodes on that level.

Figure 5.13: Example visualization of a Decision Tree rotated to the horizontal.

75

Chapter 5

Figure 5.14: Example visualization of a Decision Tree with the tooltip showing
the rest of the node’s shortened text.

Figure 5.15: Example visualization of a Decision Tree after classification where a
patient was classified as not having hearing loss by the highlighted yellow "No
Hearing Loss - 0" branch.

76

Chapter 6

Conclusion

In this dissertation we tackle the problem of developing interpretable classifiers
for hearing loss diagnosis. We favor an evolutionary approach due to it’s global
optimization properties and propose HyTEA, an hybrid evolutionary algorithm
with Structured Grammatical Evolution to develop Decision Tree structures and
select features and Differential Evolution to select parameters for the SGE gen-
erated structures. We also propose HyTEABoost and HyTEAForest, variants of
HyTEA that allow evolving Gradient Boosting and Random Forest ensembles.

We experimented solving the hearing loss diagnosis problem with both our ap-
proaches and default Sklearn models. In the traditional Sklearn models we saw
that Recall performance was low, which is particularly problematic in our do-
main, since that means we’re failing to find patients with hearing loss. We saw
that HyTEA managed to significantly improve performance, consistently devel-
oping good Decision Trees and with better Recall than those generated by tradi-
tional models. We also saw that HyTEABoost is capable of further increasing this
Recall metric, although at a slight cost for precision and interpretability. Then we
saw that Random Forests can also be evolved, with a small experiment evolving
ensembles of just 2 Decision Trees, we achieved the best F1 and Recall metrics
across all alternatives, evolutionary or traditional.

A big part of this project was interpretability, since health professionals must un-
derstand why a given decision is made. With this in mind we developed a web
based tool to help visualize Decision Trees and the paths followed to reach a clas-
sification for any particular case. This same tool allows for visualization of the
t-SNE projection of every point in the dataset and which particular branches of
the Decision Tree classify each zone of this projection, allowing for health profes-
sionals to have a sense of the uncertainty associated to each classification.

Therefore the main achievements of this work were the development of prob-
lem agnostic algorithms to evolve Decision Trees, Gradient boosting ensembles
and Random Forest ensembles, the development of Decision Tree and Gradient
Boosting models for predicting hearing loss diagnoses, with emphasis on avoid-
ing false negatives and the development of a visualization tool that integrates
the developed Decision Tree models and facilitates usage and interpretation by
health professionals.

77

Chapter 6

As future work we intend to work on integrating Gradient Boosting and Random
Forest models on our visualization tool, creating mechanisms to accelerate the
process of retraining models as new data arrives and investigate possible sources
of erroneous data such as the model of the headset used for the audiometry ex-
ams. It could also be beneficial to increase the amount of data we collect during
questionnaires since for example, it was shown that economic factors were to
some point indicative of the propensity to have hearing loss.

78

References

Mohsen Aliabadi, Maryam Farhadian, and Ebrahim Darvishi. Prediction of hear-
ing loss among the noise exposed workers in a steel factory using artificial
intelligence approach. International Archives of Occupational and Environmental
Health, 88, 11 2014. doi: 10.1007/s00420-014-1004-z.

Filipe Assunção, Nuno Lourenço, Penousal Machado, and Bernardete Ribeiro.
Towards the evolution of multi-layered neural networks: A dynamic struc-
tured grammatical evolution approach. pages 393–400, 07 2017. doi: 10.1145/
3071178.3071286.

Taiwo Oladipupo Ayodele. Introduction to machine learning. In Yagang Zhang,
editor, New Advances in Machine Learning, chapter 1. IntechOpen, Rijeka, 2010.
doi: 10.5772/9394. URL https://doi.org/10.5772/9394.

Rodrigo Barros, Márcio Basgalupp, Andre de Carvalho, and Alex Freitas. A sur-
vey of evolutionary algorithms for decision-tree induction. IEEE Transactions
on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 42:291–312,
01 2012. doi: 10.1109/TSMCC.2011.2157494.

Aniruddha Bhandari. Everything you should know about confusion matrix
for machine learning. https://www.analyticsvidhya.com/blog/2020/04/
confusion-matrix-machine-learning, 2020. [Online; accessed 09-December-
2021].

Dan Bing, Jun Ying, Jun Miao, Lan Lan, Dayong Wang, Lidong Zhao, Zifang Yin,
Lan Yu, Jing Guan, and Wang Qiuju. Predicting the hearing outcome in sudden
sensorineural hearing loss via machine learning models. Clinical Otolaryngol-
ogy, 43, 01 2018. doi: 10.1111/coa.13068.

Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Sci-
ence and Statistics). Springer-Verlag, Berlin, Heidelberg, 2006. ISBN 0387310738.

Hakan Bozcuk, Uğur Bilge, Emine Koyuncu, and Kemal Gülkesen. An applica-
tion of a genetic algorithm in conjunction with other data mining methods for
estimating outcome after hospitalization in cancer patients. Medical science mon-
itor : international medical journal of experimental and clinical research, 10:CR246–
51, 06 2004.

Anthony Brabazon, Michael O’Neill, and Sen. McGarraghy. Essentials of Meta-
heuristics. Springer Publishing Company, Incorporated, 2015.

79

https://doi.org/10.5772/9394
https://www.analyticsvidhya.com/blog/2020/04/confusion-matrix-machine-learning
https://www.analyticsvidhya.com/blog/2020/04/confusion-matrix-machine-learning

Chapter 6

Zuwei Cao, Fei Zhao, Feifan Chen, and Emad Grais. Contributions and limi-
tations of using machine learning to predict noise-induced hearing loss. In-
ternational Archives of Occupational and Environmental Health, 07 2021. doi:
10.1007/s00420-020-01648-w.

Olivier Chapelle, Bernhard Schölkopf, and Alexander Zien, editors. Semi-
Supervised Learning. The MIT Press, 2006. ISBN 9780262033589. URL http:
//dblp.uni-trier.de/db/books/collections/CSZ2006.html.

Xi Chen, Qinghua Zhou, Rushi Lan, Shuihua Wang, Yu-Dong Zhang, and Xiao-
nan Luo. Sensorineural hearing loss classification via deep-hlnet and few-shot
learning. Multimedia Tools and Applications, 80:1–14, 01 2021. doi: 10.1007/
s11042-020-09702-y.

Stephen Dignum and Riccardo Poli. Operator equalisation and bloat free gp. In
Michael O’Neill, Leonardo Vanneschi, Steven Gustafson, Anna Isabel Espar-
cia Alcázar, Ivanoe De Falco, Antonio Della Cioppa, and Ernesto Tarantino,
editors, Genetic Programming, pages 110–121, Berlin, Heidelberg, 2008. Springer
Berlin Heidelberg. ISBN 978-3-540-78671-9.

Hossein ElahiShirvan, MohammadReza Ghotbi-Ravandi, Sajad Zare, and
Mostafa Ahsaee. Using audiometric data to weigh and prioritize factors that
affect workers’ hearing loss through support vector machine (svm) algorithm.
Sound&Vibration, 54:99–112, 01 2020. doi: 10.32604/sv.2020.08839.

Maryam Farhadian, Mohsen Aliabadi, and Ebrahim Darvishi. Empirical estima-
tion of the grades of hearing impairment among industrial workers based on
new artificial neural networks and classical regression methods. Indian journal
of occupational and environmental medicine, 19, 05 2015. doi: 10.4103/0019-5278.
165337.

Ali Ghaheri, Saeed Shoar, Mohammad Naderan, and Sayed shahabuddin Ho-
seini. The applications of genetic algorithms in medicine. Oman Medical Journal,
30:406–416, 11 2015. doi: 10.5001/omj.2015.82.

Brandon Greenwell, Anthony Tvaryanas, and Genny Maupin. Risk factors for
hearing decrement among u.s. air force aviation-related personnel. Aerospace
Medicine and Human Performance, 89:80–86, 02 2018. doi: 10.3357/AMHP.4988.
2018.

Trevor Hastie. The Elements of Statistical Learning: Data Mining, Inference, and Pre-
diction. 01 2009. ISBN 9780387848570. doi: 10.1007/978-0-387-84858-7.

Ignacio Hidalgo, J. Colmenar, José Risco-Martin, Alfredo Cuesta-Infante, Esther
Maqueda, Marta Botella, and José Rubio. Modeling glycemia in humans by
means of grammatical evolution. Applied Soft Computing, 20:40–53, 07 2014.
doi: 10.1016/j.asoc.2013.11.006.

Tin Kam Ho. Random decision forests. In Proceedings of 3rd International Confer-
ence on Document Analysis and Recognition, volume 1, pages 278–282 vol.1, 1995.
doi: 10.1109/ICDAR.1995.598994.

80

http://dblp.uni-trier.de/db/books/collections/CSZ2006.html
http://dblp.uni-trier.de/db/books/collections/CSZ2006.html

References

Jeong-Kyu Hoh, Kyung Cha, Moon-Il Park, Mei-Ling Lee, and Young-sun Park.
Estimating time to full uterine cervical dilation using genetic algorithm. The
Kaohsiung journal of medical sciences, 28:423–8, 08 2012. doi: 10.1016/j.kjms.2012.
02.012.

Ahmad Khalil, Brett Bouma, and Mohammad Mofrad. A combined fem/genetic
algorithm for vascular soft tissue elasticity estimation. Cardiovascular engineer-
ing (Dordrecht, Netherlands), 6:93–102, 10 2006. doi: 10.1007/s10558-006-9013-5.

William Langdon and Adil Qureshi. Genetic programming — computers us-
ing “natural selection” to generate programs. 11 1995. doi: 10.1007/
978-1-4615-5731-9_2.

Tomasz Latkowski and Stanisław Osowski. Computerized system for recognition
of autism on the basis of gene expression microarray data. Computers in Biology
and Medicine, 11 2014. doi: 10.1016/j.compbiomed.2014.11.004.

Michael Lones, Jane Alty, Jeremy Cosgrove, Philippa Duggan-Carter, Stuart
Jamieson, Rebecca Naylor, Andrew Turner, and Stephen Smith. A new evolu-
tionary algorithm-based home monitoring device for parkinson’s dyskinesia.
Journal of Medical Systems, 41, 09 2017. doi: 10.1007/s10916-017-0811-7.

Gilles Louppe. Understanding Random Forests: From Theory to Practice. PhD thesis,
10 2014.

Nuno Lourenço, Francisco Pereira, and Ernesto Costa. Unveiling the properties of
structured grammatical evolution. Genetic Programming and Evolvable Machines,
17, 09 2016. doi: 10.1007/s10710-015-9262-4.

Nuno Lourenço, Joaquim Ferrer, Francisco Pereira, and Ernesto Costa. A
comparative study of different grammar-based genetic programming ap-
proaches. pages 311–325, 03 2017. ISBN 978-3-319-55695-6. doi: 10.1007/
978-3-319-55696-3_20.

Nuno Lourenço, Filipe Assunção, Francisco Pereira, Ernesto Costa, and Penousal
Machado. Structured grammatical evolution: A dynamic approach, pages 137–161.
01 2018. doi: 10.1007/978-3-319-78717-6_6.

Nuno Lourenço, J. Colmenar, Ignacio Hidalgo, and Oscar Garnica. Structured
grammatical evolution for glucose prediction in diabetic patients. pages 1250–
1257, 07 2019. doi: 10.1145/3321707.3321782.

Nuno Lourenço, J. Colmenar, Ignacio Hidalgo, and Sancho Salcedo-Sanz. Evolv-
ing energy demand estimation models over macroeconomic indicators. pages
1143–1149, 06 2020. doi: 10.1145/3377930.3390153.

Sean Luke. Essentials of Metaheuristics. 2013.

Sean Luke and Liviu Panait. A comparison of bloat control methods for genetic
programming. Evolutionary computation, 14:309–44, 02 2006. doi: 10.1162/evco.
2006.14.3.309.

81

Chapter 6

J. P. Marques de Sá. Pattern recognition :. Springer-Verlag Berlin Heidelberg„ New
York :, c2001. Includes index.

Ch.B. M.B, Neil Pendleton, Sam Ph.D, and Michael Horan. Comparison of a
genetic algorithm neural network with logistic regression for predicting out-
come after surgery for patients with nonsmall cell lung carcinoma. Cancer,
79:1338 – 1342, 04 1997. doi: 10.1002/(SICI)1097-0142(19970401)79:7<1338::
AID-CNCR10>3.0.CO;2-0.

Olaf Michel and M. Liedtke. Iso 1999:2013 teil 1iso 1999:2013 part 1: Überarbeit-
etes wahrscheinlichkeitsmodell zur berechnung des lärmbedingten hörverlust-
srevised probability model for calculating noise-induced hearing loss. HNO,
69, 02 2021. doi: 10.1007/s00106-021-00999-1.

Keon Vin Park, Oh Kyoung Ho, Yong Jeong, Jihye Rhee, Mun Han, Sung Han,
and June Choi. Machine learning models for predicting hearing prognosis in
unilateral idiopathic sudden sensorineural hearing loss. Clinical and experimen-
tal otorhinolaryngology, 13, 03 2020. doi: 10.21053/ceo.2019.01858.

PORDATA. https://www.pordata.pt/. [Online; accessed 19-December-2021].

Portal de Transparência do SNS. https://www.sns.gov.pt/transparencia/.
[Online; accessed 19-December-2021].

Kedar Potdar, Taher Pardawala, and Chinmay Pai. A comparative study of
categorical variable encoding techniques for neural network classifiers. In-
ternational Journal of Computer Applications, 175:7–9, 10 2017. doi: 10.5120/
ijca2017915495.

Ross Quinlan. C4.5: Programs for Machine Learning, volume 1. 01 1993. ISBN
1-55860-238-0.

Laura Raileanu and Kilian Stoffel. Theoretical comparison between the gini index
and information gain criteria. Annals of Mathematics and Artificial Intelligence, 41:
77–93, 05 2004. doi: 10.1023/B:AMAI.0000018580.96245.c6.

Conor Ryan, J. J. Collins, and Michael O’Neill. Grammatical evolution: Evolv-
ing programs for an arbitrary language. In Wolfgang Banzhaf, Riccardo Poli,
Marc Schoenauer, and Terence C. Fogarty, editors, Proceedings of the First Eu-
ropean Workshop on Genetic Programming, volume 1391 of LNCS, pages 83–
96, Paris, 14-15 April 1998. Springer-Verlag. ISBN 3-540-64360-5. doi: doi:
10.1007/BFb0055930. URL http://www.lania.mx/~ccoello/eurogp98.ps.gz.

Mehrin Saremi and Farzin Yaghmaee. Evolutionary decision tree induction with
multi-interval discretization. pages 1–6, 02 2014. ISBN 978-1-4799-3351-8. doi:
10.1109/IranianCIS.2014.6802543.

Sara Silva and Ernesto Costa. Dynamic limits for bloat control. pages 666–677, 06
2004. ISBN 978-3-540-22343-6. doi: 10.1007/978-3-540-24855-2_74.

Sklearn documentation. Receiver operating characteristic (roc). https:
//scikit-learn.org/stable/auto_examples/model_selection/plot_roc.
html. [Online; accessed 09-December-2021].

82

https://www.pordata.pt/
https://www.sns.gov.pt/transparencia/
http://www.lania.mx/~ccoello/eurogp98.ps.gz
https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html

References

Rainer Storn and K. Price. De-a simple and efficient heuristic for global optimiza-
tion over continuous space. Joumal of Global Optimization, 114:341–359, 01 1997.

Richard S. Sutton and Andrew G. Barto. Reinforcement learning - an introduction.
Adaptive computation and machine learning. MIT Press, 1998. ISBN 978-0-262-
19398-6. URL https://www.worldcat.org/oclc/37293240.

Alaa Tharwat. Classification assessment methods: a detailed tutorial. 08 2018.
doi: 10.1016/j.aci.2018.08.003.

Olga Troyanskaya, Mike Cantor, Gavin Sherlock, Trevor Hastie, Rob Tibshirani,
David Botstein, and Russ Altman. Missing value estimation methods for dna
microarrays. Bioinformatics, 17:520–525, 07 2001. doi: 10.1093/bioinformatics/
17.6.520.

Laurens van der Maaten and Geoffrey Hinton. Viualizing data using t-sne. Journal
of Machine Learning Research, 9:2579–2605, 11 2008.

Ian H. Witten, Eibe Frank, and Mark A. Hall. Data Mining: Practical Machine Learn-
ing Tools and Techniques. Morgan Kaufmann Series in Data Management Sys-
tems. Morgan Kaufmann, Amsterdam, 3 edition, 2011. ISBN 978-0-12-374856-0.
URL http://www.sciencedirect.com/science/book/9780123748560.

Sajad Zare, N. Hasheminejad, H.E. Shirvan, Davoud Hasanvand, Rasoul Hem-
matjo, and Saeid Ahmadi. Assessing individual and environmental sound
pressure level and sound mapping in iranian safety shoes factory. Romanian
Journal of Acoustics and Vibration, 15:20–25, 01 2018.

Sajad Zare, Mohammad Reza Ghotbi Ravandi, Hossein ElahiShirvan, Mostafa
Ahsaee, and Mina Rostami. Predicting and weighting the factors affecting
workers’ hearing loss based on audiometric data using c5 algorithm. Annals
of Global Health, 85, 06 2019. doi: 10.5334/aogh.2522.

Yanxia Zhao, Jingsong Li, Meibian Zhang, Yao Lu, Hongwei Xie, Yu Tian, and
Wei Qiu. Machine learning models for the hearing impairment prediction in
workers exposed to complex industrial noise: A pilot study. Ear and Hearing,
40:1, 08 2018. doi: 10.1097/AUD.0000000000000649.

Yanxia Zhao, Yu Tian, Meibian Zhang, Jingsong Li, and Wei Qiu. Development of
an automatic classifier for the prediction of hearing impairment from industrial
noise exposure. The Journal of the Acoustical Society of America, 145:2388–2400,
04 2019. doi: 10.1121/1.5096643.

83

https://www.worldcat.org/oclc/37293240
http://www.sciencedirect.com/science/book/9780123748560

Appendices

85

Appendix A

Extracted and Engineered Features

Question features are the answers to the following:

1. Do you feel hearing difficulties?

2. Do you use an hearing aid?

3. Do you have behaviors that show hearing loss?

4. Do third parties denote your hearing loss?

Answers to questions are the following:

1. Never

2. No

3. Sometimes

4. Not sure

5. In noisy places

6. Yes

7. Always

The number between 1 and 20 on the company features represents the activity
type and corresponds to the following:

1. Information and Communication Activities

2. Administrative and Support Service Activities

3. Artistic, Entertainment, Sporting and Recreational Activities

4. Consulting, Scientific and Technical Activities

87

Appendix A

5. Human Health and Social Support Activities

6. Real Estate Activities

7. Agriculture, Animal Production, Hunting, Forestry and Fishing Activities

8. Agriculture, Animal Production, Hunting, Forestry and Fishing Activities

9. Lodging, Catering and similar

10. Capture, Treatment and Distribution of Water

11. Retail

12. Construction

13. Education

14. Electricity, Gas, Steam, Hot Water and Air Conditioning

15. Industry, Construction, Energy and Water

16. Extracting Industries

17. Transforming Industries

18. Other Activities and Services

19. Total

20. Transport and Storage

The complete list of extracted and engineered features is as follows (bold features
were kept after feature selection):

1. lat - Latitude

2. lng - Longitude

3. question_1 - Label Encoded answer to Question 1

4. question_2 - Label Encoded answer to Question 1

5. question_3 - Label Encoded answer to Question 1

6. question_4 - Label Encoded answer to Question 1

7. hypertension_last_6_months_mean

8. hypertension_last_6_months_std

9. hypertension_last_6_months_min

10. hypertension_last_6_months_25%

11. hypertension_last_6_months_50%

88

Extracted and Engineered Features

12. hypertension_last_6_months_75%

13. hypertension_last_6_months_max

14. hypertension_less_65_years_mean

15. hypertension_less_65_years_std

16. hypertension_less_65_years_min

17. hypertension_less_65_years_25%

18. hypertension_less_65_years_50%

19. hypertension_less_65_years_75%

20. hypertension_less_65_years_max

21. diabetes_last_year_mean

22. diabetes_last_year_std

23. diabetes_last_year_min

24. diabetes_last_year_25%

25. diabetes_last_year_50%

26. diabetes_last_year_75%

27. diabetes_last_year_max

28. diabetes_proportion_last_year_mean

29. diabetes_proportion_last_year_std

30. diabetes_proportion_last_year_min

31. diabetes_proportion_last_year_25%

32. diabetes_proportion_last_year_50%

33. diabetes_proportion_last_year_75%

34. diabetes_proportion_last_year_max

35. diabetes_hgba1c_less_8_mean

36. diabetes_hgba1c_less_8_std

37. diabetes_hgba1c_less_8_min

38. diabetes_hgba1c_less_8_25%

39. diabetes_hgba1c_less_8_50%

40. diabetes_hgba1c_less_8_75%

89

Appendix A

41. diabetes_hgba1c_less_8_max

42. diabetes_proportion_hgba1c_less_8_mean

43. diabetes_proportion_hgba1c_less_8_std

44. diabetes_proportion_hgba1c_less_8_min

45. diabetes_proportion_hgba1c_less_8_25%

46. diabetes_proportion_hgba1c_less_8_50%

47. diabetes_proportion_hgba1c_less_8_75%

48. diabetes_proportion_hgba1c_less_8_max

49. stroke_fatality_rate_haemorrhagic_mean

50. stroke_fatality_rate_haemorrhagic_std

51. stroke_fatality_rate_haemorrhagic_min

52. stroke_fatality_rate_haemorrhagic_25%

53. stroke_fatality_rate_haemorrhagic_50%

54. stroke_fatality_rate_haemorrhagic_75%

55. stroke_fatality_rate_haemorrhagic_max

56. stroke_fatality_rate_ischemic_mean

57. stroke_fatality_rate_ischemic_std

58. stroke_fatality_rate_ischemic_min

59. stroke_fatality_rate_ischemic_25%

60. stroke_fatality_rate_ischemic_50%

61. stroke_fatality_rate_ischemic_75%

62. stroke_fatality_rate_ischemic_max

63. otorrino_acts_count

64. otorrino_acts_mean

65. otorrino_acts_std

66. otorrino_acts_min

67. otorrino_acts_25%

68. otorrino_acts_50%

69. otorrino_acts_75%

90

Extracted and Engineered Features

70. otorrino_acts_max

71. otorrino_requests_count

72. otorrino_requests_mean

73. otorrino_requests_std

74. otorrino_requests_min

75. otorrino_requests_25%

76. otorrino_requests_50%

77. otorrino_requests_75%

78. otorrino_requests_max

79. schoooling_less_ciclo_1_1985

80. schoooling_ciclo_1_1985

81. schoooling_ciclo_2_1985

82. schoooling_ciclo_3_1985

83. schoooling_secundario_plus_1985

84. schoooling_superior_1985

85. schoooling_less_ciclo_1_2018

86. schoooling_ciclo_1_2018

87. schoooling_ciclo_2_2018

88. schoooling_ciclo_3_2018

89. schoooling_secundario_plus_2018

90. schoooling_superior_2018

91. age_group_total_1960

92. age_group_ages_0_14_1960

93. age_group_ages_15_64_1960

94. age_group_ages_65_plus_1960

95. age_group_total_2011

96. age_group_ages_0_14_2011

97. age_group_ages_15_64_2011

98. age_group_ages_65_plus_2011

91

Appendix A

99. aging_ratio_2001

100. aging_ratio_2019

101. company_salary_7_1985

102. company_salary_11_1985

103. company_salary_14_1985

104. company_salary_16_1985

105. company_salary_18_1985

106. company_salary_19_1985

107. company_quantity_0_2009

108. company_turnover_0_2009

109. company_quantity_1_2009

110. company_turnover_1_2009

111. company_quantity_2_2009

112. company_turnover_2_2009

113. company_quantity_3_2009

114. company_turnover_3_2009

115. company_quantity_4_2009

116. company_turnover_4_2009

117. company_quantity_5_2009

118. company_turnover_5_2009

119. company_quantity_6_2009

120. company_turnover_6_2009

121. company_quantity_8_2009

122. company_turnover_8_2009

123. company_quantity_9_2009

124. company_turnover_9_2009

125. company_quantity_10_2009

126. company_turnover_10_2009

127. company_quantity_11_2009

92

Extracted and Engineered Features

128. company_turnover_11_2009

129. company_quantity_12_2009

130. company_turnover_12_2009

131. company_quantity_13_2009

132. company_turnover_13_2009

133. company_quantity_15_2009

134. company_turnover_15_2009

135. company_quantity_16_2009

136. company_turnover_16_2009

137. company_quantity_17_2009

138. company_turnover_17_2009

139. company_quantity_19_2009

140. company_turnover_19_2009

141. company_quantity_20_2009

142. company_turnover_20_2009

143. company_salary_7_2018

144. company_salary_11_2018

145. company_salary_14_2018

146. company_salary_16_2018

147. company_salary_18_2018

148. company_salary_19_2018

149. company_quantity_0_2019

150. company_turnover_0_2019

151. company_quantity_1_2019

152. company_turnover_1_2019

153. company_quantity_2_2019

154. company_turnover_2_2019

155. company_quantity_3_2019

156. company_turnover_3_2019

93

Appendix A

157. company_quantity_4_2019

158. company_turnover_4_2019

159. company_quantity_5_2019

160. company_turnover_5_2019

161. company_quantity_6_2019

162. company_turnover_6_2019

163. company_quantity_8_2019

164. company_turnover_8_2019

165. company_quantity_9_2019

166. company_turnover_9_2019

167. company_quantity_10_2019

168. company_turnover_10_2019

169. company_quantity_11_2019

170. company_turnover_11_2019

171. company_quantity_12_2019

172. company_turnover_12_2019

173. company_quantity_13_2019

174. company_turnover_13_2019

175. company_quantity_15_2019

176. company_turnover_15_2019

177. company_quantity_16_2019

178. company_turnover_16_2019

179. company_quantity_17_2019

180. company_turnover_17_2019

181. company_quantity_19_2019

182. company_turnover_19_2019

183. company_quantity_20_2019

184. company_turnover_20_2019

185. age

94

Extracted and Engineered Features

186. question_1_1 - One-Hot Encoded answer 1 to Question 1

187. question_1_2 - One-Hot Encoded answer 2 to Question 1

188. question_1_3 - One-Hot Encoded answer 3 to Question 1

189. question_1_4 - One-Hot Encoded answer 4 to Question 1

190. question_1_5 - One-Hot Encoded answer 5 to Question 1

191. question_1_6 - One-Hot Encoded answer 6 to Question 1

192. question_1_7 - One-Hot Encoded answer 7 to Question 1

193. question_2_1 - One-Hot Encoded answer 1 to Question 2

194. question_2_2 - One-Hot Encoded answer 2 to Question 2

195. question_2_3 - One-Hot Encoded answer 3 to Question 2

196. question_3_1 - One-Hot Encoded answer 1 to Question 3

197. question_3_2 - One-Hot Encoded answer 2 to Question 3

198. question_3_3 - One-Hot Encoded answer 3 to Question 3

199. question_3_4 - One-Hot Encoded answer 4 to Question 3

200. question_3_5 - One-Hot Encoded answer 5 to Question 3

201. question_3_6 - One-Hot Encoded answer 6 to Question 3

202. question_4_1 - One-Hot Encoded answer 1 to Question 4

203. question_4_2 - One-Hot Encoded answer 2 to Question 4

204. question_4_3 - One-Hot Encoded answer 3 to Question 4

Table A.1: Mean and Standard Deviation of each feature for each class and result
of Independent t-test verification of significant difference between classes.

No Hearing Loss Hearing Loss
Feature Mean STD Mean STD Stat Diff
lat 3.98e+01 1.37e+00 4.00e+01 1.5e+00 True
lng -8.86e+00 1.22e+00 -8.74e+00 1.0e+00 True
question_1 2.28e+00 2.04e+00 3.50e+00 2.3e+00 True
question_2 1.58e+00 9.44e-01 2.12e+00 8.1e-01 True
question_3 1.32e+00 1.56e+00 1.62e+00 2.0e+00 True
question_4 2.43e-01 9.22e-01 2.31e-01 9.7e-01 False
hypertension_last
_6_months_mean

5.00e+03 1.28e+03 5.06e+03 1.4e+03 True

hypertension_last
_6_months_std

2.29e+03 5.61e+02 2.31e+03 6.0e+02 True

95

Appendix A

hypertension_last
_6_months_min

8.35e+02 3.13e+02 8.46e+02 3.4e+02 True

hypertension_last
_6_months_25%

3.19e+03 8.70e+02 3.23e+03 9.2e+02 True

hypertension_last
_6_months_50%

4.99e+03 1.28e+03 5.05e+03 1.4e+03 True

hypertension_last
_6_months_75%

6.94e+03 1.80e+03 7.02e+03 1.9e+03 True

hypertension_last
_6_months_max

9.28e+03 2.14e+03 9.37e+03 2.3e+03 True

hypertension_less
_65_years_mean

3.17e+01 5.54e+00 3.21e+01 5.9e+00 True

hypertension_less
_65_years_std

1.40e+01 2.32e+00 1.41e+01 2.5e+00 True

hypertension_less
_65_years_min

5.63e+00 1.78e+00 5.71e+00 1.9e+00 True

hypertension_less
_65_years_25%

2.08e+01 3.65e+00 2.10e+01 3.9e+00 True

hypertension_less
_65_years_50%

3.18e+01 5.52e+00 3.22e+01 5.9e+00 True

hypertension_less
_65_years_75%

4.42e+01 7.98e+00 4.47e+01 8.5e+00 True

hypertension_less
_65_years_max

5.58e+01 8.34e+00 5.63e+01 9.1e+00 True

diabetes_last
_year_mean

6.79e+03 1.96e+03 6.92e+03 2.2e+03 True

diabetes_last
_year_std

2.92e+03 7.90e+02 2.96e+03 8.9e+02 True

diabetes_last
_year_min

8.85e+02 3.96e+02 9.16e+02 4.5e+02 True

diabetes_last
_year_25%

4.80e+03 1.45e+03 4.91e+03 1.6e+03 True

diabetes_last
_year_50%

7.22e+03 2.14e+03 7.38e+03 2.3e+03 True

diabetes_last
_year_75%

9.02e+03 2.62e+03 9.19e+03 2.9e+03 True

diabetes_last
_year_max

1.21e+04 3.12e+03 1.23e+04 3.5e+03 True

diabetes_proportion
_last_year_mean

4.49e+01 8.46e+00 4.56e+01 8.9e+00 True

diabetes_proportion
_last_year_std

1.84e+01 2.59e+00 1.87e+01 2.8e+00 True

diabetes_proportion
_last_year_min

5.67e+00 1.88e+00 5.81e+00 2.0e+00 True

diabetes_proportion
_last_year_25%

3.20e+01 6.88e+00 3.27e+01 7.2e+00 True

96

Extracted and Engineered Features

diabetes_proportion
_last_year_50%

4.91e+01 1.03e+01 5.01e+01 1.1e+01 True

diabetes_proportion
_last_year_75%

5.94e+01 1.08e+01 6.04e+01 1.1e+01 True

diabetes_proportion
_last_year_max

7.36e+01 8.96e+00 7.44e+01 9.6e+00 True

diabetes_hgba1c_less_8_mean 5.20e+03 1.65e+03 5.29e+03 1.9e+03 True
diabetes_hgba1c_less_8_std 2.63e+03 7.15e+02 2.66e+03 8.1e+02 True
diabetes_hgba1c_less_8_min 1.03e+03 5.11e+02 1.06e+03 5.8e+02 True
diabetes_hgba1c_less_8_25% 2.85e+03 1.01e+03 2.92e+03 1.2e+03 True
diabetes_hgba1c_less_8_50% 5.25e+03 1.80e+03 5.35e+03 2.1e+03 True
diabetes_hgba1c_less_8_75% 7.42e+03 2.23e+03 7.55e+03 2.5e+03 True
diabetes_hgba1c_less_8_max 1.02e+04 2.77e+03 1.03e+04 3.2e+03 True
diabetes_proportion_hgba1c
_less_8_mean

3.35e+01 4.92e+00 3.40e+01 5.2e+00 True

diabetes_proportion_hgba1c
_less_8_std

1.69e+01 2.03e+00 1.71e+01 2.2e+00 True

diabetes_proportion_hgba1c
_less_8_min

6.13e+00 2.04e+00 6.26e+00 2.2e+00 True

diabetes_proportion_hgba1c
_less_8_25%

1.86e+01 3.20e+00 1.89e+01 3.4e+00 True

diabetes_proportion_hgba1c
_less_8_50%

3.36e+01 5.18e+00 3.41e+01 5.5e+00 True

diabetes_proportion_hgba1c
_less_8_75%

4.88e+01 7.24e+00 4.94e+01 7.7e+00 True

diabetes_proportion_hgba1c
_less_8_max

6.19e+01 6.53e+00 6.24e+01 7.1e+00 True

stroke_fatality_rate
_haemorrhagic_mean

2.61e+01 3.15e+00 2.63e+01 3.5e+00 True

stroke_fatality_rate
_haemorrhagic_std

1.24e+01 3.89e+00 1.23e+01 4.3e+00 False

stroke_fatality_rate
_haemorrhagic_min

2.58e+00 2.91e+00 2.67e+00 3.4e+00 True

stroke_fatality_rate
_haemorrhagic_25%

1.92e+01 2.82e+00 1.94e+01 3.1e+00 True

stroke_fatality_rate
_haemorrhagic_50%

2.53e+01 3.63e+00 2.55e+01 4.1e+00 True

stroke_fatality_rate
_haemorrhagic_75%

3.17e+01 4.41e+00 3.20e+01 5.0e+00 True

stroke_fatality_rate
_haemorrhagic_max

6.84e+01 1.64e+01 6.85e+01 1.8e+01 False

stroke_fatality_rate
_ischemic_mean

1.28e+01 1.63e+00 1.28e+01 1.7e+00 False

stroke_fatality_rate
_ischemic_std

6.98e+00 3.46e+00 6.86e+00 3.6e+00 True

97

Appendix A

stroke_fatality_rate
_ischemic_min

3.01e+00 2.16e+00 3.01e+00 2.3e+00 False

stroke_fatality_rate
_ischemic_25%

9.25e+00 1.68e+00 9.25e+00 1.7e+00 False

stroke_fatality_rate
_ischemic_50%

1.18e+01 1.48e+00 1.18e+01 1.5e+00 False

stroke_fatality_rate
_ischemic_75%

1.45e+01 1.69e+00 1.45e+01 1.8e+00 False

stroke_fatality_rate
_ischemic_max

4.27e+01 1.91e+01 4.19e+01 2.0e+01 True

otorrino_acts_count 1.52e+02 6.97e+01 1.49e+02 7.2e+01 True
otorrino_acts_mean 9.65e+01 4.24e+01 9.51e+01 4.3e+01 True
otorrino_acts_std 1.16e+02 5.91e+01 1.14e+02 6.1e+01 True
otorrino_acts_min 2.88e+00 1.92e+00 2.91e+00 2.4e+00 False
otorrino_acts_25% 1.43e+01 5.25e+00 1.42e+01 5.9e+00 False
otorrino_acts_50% 4.99e+01 2.32e+01 4.93e+01 2.4e+01 True
otorrino_acts_75% 1.17e+02 5.11e+01 1.16e+02 5.6e+01 False
otorrino_acts_max 5.72e+02 2.74e+02 5.66e+02 3.0e+02 False
otorrino_requests_count 1.52e+02 6.97e+01 1.49e+02 7.2e+01 True
otorrino_requests_mean 5.80e+01 2.33e+01 5.71e+01 2.3e+01 True
otorrino_requests_std 6.82e+01 3.33e+01 6.70e+01 3.4e+01 True
otorrino_requests_min 2.31e+00 1.57e+00 2.35e+00 2.0e+00 False
otorrino_requests_25% 1.03e+01 3.83e+00 1.02e+01 4.4e+00 False
otorrino_requests_50% 3.03e+01 1.31e+01 3.00e+01 1.3e+01 False
otorrino_requests_75% 7.03e+01 2.95e+01 7.01e+01 3.0e+01 False
otorrino_requests_max 3.27e+02 1.53e+02 3.23e+02 1.7e+02 False
schoooling_less_ciclo_1_1985 2.86e+01 4.21e+01 2.57e+01 4.2e+01 True
schoooling_ciclo_1_1985 1.11e+03 1.63e+03 9.96e+02 1.6e+03 True
schoooling_ciclo_2_1985 1.87e+02 2.87e+02 1.66e+02 2.9e+02 True
schoooling_ciclo_3_1985 4.05e+02 7.03e+02 3.55e+02 7.0e+02 True
schoooling_secundario
_plus_1985

1.63e+02 3.01e+02 1.42e+02 3.0e+02 True

schoooling_superior_1985 2.02e+02 3.96e+02 1.74e+02 3.9e+02 True
schoooling_less_ciclo_1_2018 2.30e-01 7.59e-01 1.91e-01 7.6e-01 True
schoooling_ciclo_1_2018 1.90e+02 1.60e+02 1.80e+02 1.7e+02 True
schoooling_ciclo_2_2018 2.36e+02 1.68e+02 2.28e+02 1.8e+02 True
schoooling_ciclo_3_2018 5.16e+02 3.72e+02 4.85e+02 4.0e+02 True
schoooling_secundario
_plus_2018

7.34e+02 6.69e+02 6.68e+02 6.9e+02 True

schoooling_superior_2018 9.70e+02 1.26e+03 8.58e+02 1.3e+03 True
age_group_total_1960 1.06e+05 1.41e+05 9.59e+04 1.4e+05 True
age_group_ages_0_14_1960 2.64e+04 2.65e+04 2.45e+04 2.7e+04 True
age_group_ages_15_64_1960 7.14e+04 1.02e+05 6.39e+04 1.0e+05 True
age_group_ages_65_plus_1960 8.39e+03 1.31e+04 7.55e+03 1.3e+04 True
age_group_total_2011 1.39e+05 9.89e+04 1.29e+05 1.1e+05 True
age_group_ages_0_14_2011 2.02e+04 1.36e+04 1.89e+04 1.5e+04 True

98

Extracted and Engineered Features

age_group_ages_15_64_2011 9.25e+04 6.38e+04 8.63e+04 6.9e+04 True
age_group_ages_65_plus_2011 2.65e+04 2.26e+04 2.43e+04 2.3e+04 True
aging_ratio_2001 1.06e+02 3.41e+01 1.06e+02 3.9e+01 False
aging_ratio_2019 1.69e+02 3.70e+01 1.74e+02 4.4e+01 True
company_salary_7_1985 1.01e+02 3.31e+01 1.01e+02 3.7e+01 False
company_salary_11_1985 1.19e+02 2.05e+01 1.17e+02 2.4e+01 True
company_salary_14_1985 1.36e+02 2.54e+01 1.34e+02 2.8e+01 True
company_salary_16_1985 1.33e+02 2.73e+01 1.31e+02 3.1e+01 True
company_salary_18_1985 1.43e+02 2.32e+01 1.43e+02 2.5e+01 True
company_salary_19_1985 1.38e+02 2.46e+01 1.37e+02 2.7e+01 True
company_quantity_0_2009 3.67e+02 5.37e+02 3.13e+02 5.3e+02 True
company_turnover_0_2009 5.61e+05 1.71e+06 4.47e+05 1.7e+06 True
company_quantity_1_2009 2.87e+03 2.95e+03 2.58e+03 3.1e+03 True
company_turnover_1_2009 3.29e+05 7.01e+05 2.68e+05 6.9e+05 True
company_quantity_2_2009 6.43e+02 8.71e+02 5.55e+02 8.7e+02 True
company_turnover_2_2009 5.17e+04 1.01e+05 4.18e+04 1.0e+05 True
company_quantity_3_2009 2.75e+03 3.62e+03 2.40e+03 3.6e+03 True
company_turnover_3_2009 3.89e+05 9.35e+05 3.17e+05 9.2e+05 True
company_quantity_4_2009 1.72e+03 1.84e+03 1.54e+03 1.9e+03 True
company_turnover_4_2009 1.61e+05 2.57e+05 1.39e+05 2.6e+05 True
company_quantity_5_2009 6.34e+02 9.59e+02 5.49e+02 9.6e+02 True
company_turnover_5_2009 1.59e+05 3.15e+05 1.35e+05 3.1e+05 True
company_quantity_6_2009 2.65e+02 2.04e+02 2.47e+02 2.1e+02 True
company_turnover_6_2009 1.41e+04 1.67e+04 1.46e+04 1.9e+04 True
company_quantity_8_2009 1.18e+03 1.10e+03 1.08e+03 1.1e+03 True
company_turnover_8_2009 2.09e+05 3.54e+05 1.77e+05 3.5e+05 True
company_quantity_9_2009 1.35e+01 1.04e+01 1.22e+01 1.1e+01 True
company_turnover_9_2009 4.51e+04 5.83e+04 3.90e+04 5.9e+04 True
company_quantity_10_2009 3.74e+03 3.15e+03 3.46e+03 3.3e+03 True
company_turnover_10_2009 2.85e+06 4.60e+06 2.40e+06 4.5e+06 True
company_quantity_11_2009 1.27e+03 8.49e+02 1.20e+03 9.3e+02 True
company_turnover_11_2009 7.55e+05 8.94e+05 6.55e+05 9.1e+05 True
company_quantity_12_2009 1.05e+03 8.30e+02 9.69e+02 8.8e+02 True
company_turnover_12_2009 4.46e+04 7.52e+04 3.82e+04 7.5e+04 True
company_quantity_13_2009 1.70e+01 3.29e+01 1.41e+01 3.3e+01 True
company_turnover_13_2009 6.11e+05 2.19e+06 4.92e+05 2.1e+06 True
company_quantity_15_2009 8.06e+00 8.55e+00 7.66e+00 9.2e+00 True
company_turnover_15_2009 2.48e+03 5.64e+03 2.46e+03 6.0e+03 False
company_quantity_16_2009 8.65e+02 5.73e+02 8.35e+02 6.4e+02 True
company_turnover_16_2009 1.08e+06 1.43e+06 9.82e+05 1.4e+06 True
company_quantity_17_2009 1.06e+03 1.09e+03 9.51e+02 1.1e+03 True
company_turnover_17_2009 3.47e+04 5.10e+04 3.04e+04 5.1e+04 True
company_quantity_19_2009 1.88e+04 1.84e+04 1.70e+04 1.9e+04 True
company_turnover_19_2009 7.76e+06 1.41e+07 6.56e+06 1.4e+07 True
company_quantity_20_2009 3.50e+02 4.36e+02 3.18e+02 4.4e+02 True
company_turnover_20_2009 4.31e+05 1.00e+06 3.52e+05 9.8e+05 True

99

Appendix A

company_salary_7_2018 7.46e+02 1.53e+02 7.49e+02 1.6e+02 False
company_salary_11_2018 8.50e+02 1.39e+02 8.34e+02 1.4e+02 True
company_salary_14_2018 9.87e+02 1.74e+02 9.70e+02 1.8e+02 True
company_salary_16_2018 1.01e+03 2.07e+02 9.91e+02 2.2e+02 True
company_salary_18_2018 9.36e+02 1.53e+02 9.17e+02 1.6e+02 True
company_salary_19_2018 9.51e+02 1.49e+02 9.34e+02 1.5e+02 True
company_quantity_0_2019 5.27e+02 7.78e+02 4.50e+02 7.8e+02 True
company_turnover_0_2019 5.50e+05 1.49e+06 4.45e+05 1.5e+06 True
company_quantity_1_2019 3.36e+03 3.47e+03 3.03e+03 3.6e+03 True
company_turnover_1_2019 4.34e+05 8.59e+05 3.59e+05 8.5e+05 True
company_quantity_2_2019 7.76e+02 1.03e+03 6.77e+02 1.0e+03 True
company_turnover_2_2019 9.38e+04 1.83e+05 7.80e+04 1.8e+05 True
company_quantity_3_2019 2.85e+03 3.81e+03 2.50e+03 3.8e+03 True
company_turnover_3_2019 4.62e+05 1.02e+06 3.81e+05 1.0e+06 True
company_quantity_4_2019 1.95e+03 1.99e+03 1.76e+03 2.1e+03 True
company_turnover_4_2019 2.28e+05 3.40e+05 1.93e+05 3.4e+05 True
company_quantity_5_2019 1.16e+03 1.84e+03 9.98e+02 1.8e+03 True
company_turnover_5_2019 2.63e+05 5.59e+05 2.19e+05 5.5e+05 True
company_quantity_6_2019 5.88e+02 3.80e+02 5.68e+02 4.0e+02 True
company_turnover_6_2019 2.31e+04 3.14e+04 2.35e+04 3.4e+04 False
company_quantity_8_2019 1.82e+03 2.45e+03 1.60e+03 2.5e+03 True
company_turnover_8_2019 3.69e+05 6.61e+05 3.11e+05 6.6e+05 True
company_quantity_9_2019 1.61e+01 1.41e+01 1.48e+01 1.5e+01 True
company_turnover_9_2019 6.21e+04 7.32e+04 5.47e+04 7.5e+04 True
company_quantity_10_2019 2.98e+03 2.46e+03 2.76e+03 2.6e+03 True
company_turnover_10_2019 3.30e+06 5.26e+06 2.82e+06 5.1e+06 True
company_quantity_11_2019 9.98e+02 6.83e+02 9.39e+02 7.4e+02 True
company_turnover_11_2019 4.44e+05 4.89e+05 3.87e+05 5.0e+05 True
company_quantity_12_2019 9.41e+02 7.72e+02 8.63e+02 8.1e+02 True
company_turnover_12_2019 4.85e+04 9.00e+04 4.07e+04 8.9e+04 True
company_quantity_13_2019 5.97e+01 6.10e+01 5.47e+01 6.1e+01 True
company_turnover_13_2019 8.85e+05 2.92e+06 7.06e+05 2.9e+06 True
company_quantity_15_2019 6.23e+00 6.49e+00 5.86e+00 7.0e+00 True
company_turnover_15_2019 1.94e+03 5.15e+03 1.89e+03 5.5e+03 False
company_quantity_16_2019 7.32e+02 4.92e+02 7.06e+02 5.5e+02 True
company_turnover_16_2019 1.44e+06 1.95e+06 1.29e+06 1.9e+06 True
company_quantity_17_2019 9.38e+02 7.34e+02 8.62e+02 7.8e+02 True
company_turnover_17_2019 3.65e+04 5.68e+04 3.22e+04 5.7e+04 True
company_quantity_19_2019 2.03e+04 2.09e+04 1.83e+04 2.1e+04 True
company_turnover_19_2019 9.27e+06 1.69e+07 7.86e+06 1.7e+07 True
company_quantity_20_2019 5.60e+02 6.49e+02 5.01e+02 6.6e+02 True
company_turnover_20_2019 6.09e+05 1.45e+06 4.99e+05 1.4e+06 True
age 4.89e+01 2.98e+02 6.99e+01 1.1e+01 True
question_1_1 2.41e-01 4.28e-01 7.08e-02 2.6e-01 True
question_1_2 1.92e-01 3.94e-01 2.14e-01 4.1e-01 True
question_1_3 2.47e-01 4.31e-01 1.69e-01 3.7e-01 True

100

Extracted and Engineered Features

question_1_4 1.03e-01 3.04e-01 1.28e-01 3.3e-01 True
question_1_5 1.31e-01 3.37e-01 1.51e-01 3.6e-01 True
question_1_6 7.23e-02 2.59e-01 1.92e-01 3.9e-01 True
question_1_7 1.35e-02 1.15e-01 7.52e-02 2.6e-01 True
question_2_1 2.30e-01 4.21e-01 1.75e-02 1.3e-01 True
question_2_2 7.60e-01 4.27e-01 9.45e-01 2.3e-01 True
question_2_3 9.37e-03 9.63e-02 3.79e-02 1.9e-01 True
question_3_1 4.10e-01 4.92e-01 4.20e-01 4.9e-01 False
question_3_2 1.63e-01 3.69e-01 1.55e-01 3.6e-01 False
question_3_3 3.40e-01 4.74e-01 2.66e-01 4.4e-01 True
question_3_4 4.38e-02 2.05e-01 3.66e-02 1.9e-01 True
question_3_5 4.27e-02 2.02e-01 1.12e-01 3.2e-01 True
question_3_6 6.11e-04 2.47e-02 1.10e-02 1.0e-01 True
question_4_1 9.13e-01 2.81e-01 9.28e-01 2.6e-01 True
question_4_2 6.90e-02 2.53e-01 4.98e-02 2.2e-01 True
question_4_3 1.76e-02 1.31e-01 2.19e-02 1.5e-01 True

101

	Introduction
	Objectives
	Contributions
	Document Structure

	Background
	ML Background
	EC Background
	Related Work
	Summary

	Approach
	hyt
	HyTEABoost - Evolutionary Gradient Boosting
	HyTEAForest
	How did we get here?
	Summary

	Experimental Study
	Dataset
	Experimentation with traditional models
	Experimentation with Canonic HyTEA
	Experimentation with HyTEABoost
	Experimentation with HyTEAForest
	Discussion
	Summary

	Visualization
	Analyzing the Best Models using t-SNE
	Visualization Tool
	Summary

	Conclusion
	Appendix Extracted and Engineered Features

