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Resumo 
 

 

Psicadélicos, anteriormente vistos como um problema central na “Guerra às Drogas”, são 

atualmente muito referenciados entre as comunidades científica e médica. A mudança de 

perspetiva inerente à classificação, ao uso e à regulamentação destes compostos requer dados 

recentes e mais quantitativos, por forma a tratar estas drogas com uma fundação baseada no 

conhecimento científico. Com isto, ao longo dos últimos anos, tem-se vindo a implementar novas 

técnicas, desde estudos farmacodinâmicos a estudos de imagiologia exploratórios, na investigação 

dos mecanismos e efeitos destes compostos. Avançando o nível de sensibilidade, métodos 

computacionais revolucionaram tanto o entendimento de fármacos existentes, como o 

desenvolvimento de novos sintéticos. Com isto, ao aplicar metodologia in silico ao estudo de 

enteogéneos, uma nova e importante perspetiva é adicionada a esta discussão. 

Nesta tese é salientado o possível uso de psicadélicos como novos vetores terapêuticos no 

tratamento de doenças neurológicas, ou na mitigação dos seus sintomas. Primeiro, ao rever a 

química destes compostos é notória a sua semelhança com a molécula de serotonina (5-HT). Isto 

leva à revisão dos recetores serotonérgicos (5-HTR), considerados como o principal tradutor na 

resposta psicadélica. Para além disso, desequilíbrios no sistema humano de serotonina serão 

relacionados com problemas neuropsiquiátricos, por forma a obter um sentido prático no possível 

efeito destas drogas, ou seus análogos, na terapia supramencionada. Paralelamente, alguns 

métodos computacionais, como Modelação por Homologia ou “Docking” Molecular, serão 

revistas, mostrando a sua importância no auxílio do desenvolvimento de novos fármacos. 

Por último são apresentadas as fundações para a criação de um modelo baseado em “Machine- 

Learning”, com o objetivo de prever o estado de ativação do recetor 5-HT2A, sustentado pela 

previsão de valores de RMSD. Esta previsão é baseada em características físicas que podem 

auxiliar na caracterização físico-química dos bolsos hidrofóbicos em estudo. Este novo modelo 

poderá ajudar no desenvolvimento de novos compostos baseados na estrutura psicadélica, com 

menores custos e maior segurança, bem como um melhor entendimento do agonismo apresentado 

por estas substâncias na ligação com o recetor 5-HT2A. 

 

 

 

 

 

 
Keywords: Psicadélicos, recetores de serotonina (5-HTR), Doenças Serotonérgicas, Bioquímica 

Computacional 
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Abstract 
 

 

Psychedelics, once seen as a drug enforcement issue, are now receiving a lot of attention by the 

scientific and medical community. The mind shift regarding the classification, use and 

regulamentation of these compounds requires more quantitative and recent data, to deal with 

these drugs with a knowledge-based foundation. With this, in the last years, novel research has 

used a variety of techniques, ranging from in vitro pharmacodynamic assays to exploratory 

imaging studies in clinical trials, to study the mechanism and action of these intricate compounds. 

Further advancing the level of sensitivity, computational methods have revolutionized both the 

understanding of existing pharmaceuticals as the design and development of new ones. With this, 

applying in silico methodology to the study of entheogens would add a different and important 

perspective to this discussion. 

In this thesis it is highlighted the hypothesized use of psychedelics as therapeutic vectors for the 

treatment of some neurological disorders, or the mitigation of their symptoms. First, by reviewing 

the basic chemistry of these compounds it is possible to notice their resemblance with serotonin. 

This leads to the review of serotonin family receptors (5-HTR), thought to be the main “gates” in 

the psychedelic response. Next, malfunctions in the serotonergic human system will be associated 

with neurological disorders, to get a practical sense on how these drugs, or their analogues, might 

build the next line of therapeutics. Parallelly, some computational methods, such as Homology 

Modelling and Molecular Docking, will be reviewed, showing how they might aid in the drug 

development pipeline. 

Lastly it presents the foundations of a novel Machine Learning-based model, used to predict the 

activeness state of 5-HT2A receptor, based on the predicted RMSD value. The prediction is based 

on physical features that can help on physical characterization of the studied binding pockets. 

This new model would assist in the development of novel compounds based on the psychedelic 

structure, with diminished costs and highest safety, and a better understanding on the agonism of 

these substances with 5-HT2A receptor. 

 

 

 

 

 

 

 

Keywords: Psychedelics, 5-HT receptors (5-HTR), Serotonergic Disorders, Computational 

Biochemistry 
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1. Introduction  

 

 

1.a. A long, lasting trip 

 
Psychoactive drugs have gained a crescent interest inside the scientific community 

(Castelhano et al, 2021). Their recognition is due to their potential therapeutic effect. This 

is particularly true for tryptamine psychedelics, which are structurally very similar to 

serotonin, a major neuromodulator, associated with mood, memory, cognition, 

perception, and consciousness (Bryan L, Roth 2011). During the last three decades there 

was an opinion shift about psychedelics (Nichols 2016). These were first referenced as 

psychotomimetic, a term coined with mental states like psychosis (Hoffer and Osmond 

1967). However, this term was later abandoned when it was realized that the states that 

these compounds produced were not that similar to psychotic episodes, then becoming 

known as hallucinogens, due to their capacity in producing hallucinations (Nichols 2016). 

Though this term is still very little descriptive, it continues to be preferred by the 

scientific community. This asks for a more precise definition of these compounds, due to 

the variety of compounds that this classification includes and the diversity in the effects 

that they produce. Accordingly, it has been tried to better classify them according to cell 

signaling pathways that they activate, and by the selective action of specific receptors. 

One example is the effect of classic serotonergic hallucinogens (psychedelics), whose 

main effect was firstly reported as agonists (or partial agonists) of 5-hydroxytryptamine 

(5-HT) 2A receptors (Nichols 2016), although there is now evidence that this is not the 

only type of receptor being activated by these molecules. 

 

For a long time, the notion that psychedelics may have a therapeutic effect had little 

acceptance by the scientific circle, a fact that arose due to the lack of legal support or the 

appreciation of these drugs as being illegal with no useful properties. The dispute over 

psychedelics has its days started since the 60s with the American counterculture against 

the Vietnam War, which helped to criminalize these substances due to political and 

social pressures. However, it is often forgotten that “between the 1950 and the mid-

1960s there were more than a thousand clinical papers discussing 40,000 patients, several 

dozen books, and six international conferences on psychedelic drug therapy. It aroused 

the interest of many psychiatrists who were in no sense cultural 

https://paperpile.com/c/2mXtKn/GakGL
https://paperpile.com/c/2mXtKn/JwIHr
https://paperpile.com/c/2mXtKn/zDkP8
https://paperpile.com/c/2mXtKn/gE9rO
https://paperpile.com/c/2mXtKn/gE9rO
https://paperpile.com/c/2mXtKn/zDkP8
https://paperpile.com/c/2mXtKn/zDkP8
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rebels or especially radical in their attitudes” (Vattano 1981). This highlights the nonsensical 

way in which these drugs were seen in society and how it slowed down the progress of 

innovative research that may have helped to advance both psychiatry and neuroscience. 

 

The research of psychedelics opened some doors that lead to major discoveries, helping to 

tackle the brain’s functional pharmacology. A main example was the discovery of Lysergic 

acid diethylamide (LSD) by Albert Hofmann in 1943. Due to its structural resemblance with 

serotonin, in 1953 when this last was discovered in the mammalian brain (Twarog and Page 

1953), LSD helped to better understand how serotonin works on the brain, as inferred by their 

tryptamine moiety (Figure 1). 

 

 

 

 

 
Figure 1. Serotonin (left) and LSD (right). 

 

This discovery led to a serotonergic hypothesis of mental disturbances, when Woolley and 

Shaw in 1954 stated that the effects of LSD occurred due to its interference on the normal 

function of the serotonergic system (Nichols 2016). In other words, the whole field of serotonin 

neuroscience was accelerated by the discovery of LSD. Some even claimed that these classes of 

compounds contributed to neuroscientific advances in the same way that the microscope 

contributed to cell biology (Grof 2008).  

Psychedelics are a class of compounds that need to be discussed from a multidisciplinary 

perspective, from anthropology to ethnopharmacology, psychiatry and psychology. They stand 

as one of the most intricate and older substances used by mankind. There is registry of 

numerous religious and spiritual practices that evoke the use of substances capable to induce 

mind altering experiences, such as the Soma in Rigveda (Wasson and Gordon Wasson 1971) 

and the use of Psilocybin mushrooms by the Aztec shamans, known as teonanacatl or “god’s 

flesh” (A, H, Smith, Ott, and Bigwood 1979), (Schultes, Hofmann, and Rätsch 2001). 

Moreover, in the Native American practices, the Peyote (Lophophora 

https://paperpile.com/c/2mXtKn/5nvMH
https://paperpile.com/c/2mXtKn/VmbUT
https://paperpile.com/c/2mXtKn/VmbUT
https://paperpile.com/c/2mXtKn/zDkP8
https://paperpile.com/c/2mXtKn/YgpYq
https://paperpile.com/c/2mXtKn/cMTDH
https://paperpile.com/c/2mXtKn/cMTDH
https://paperpile.com/c/2mXtKn/eJALF
https://paperpile.com/c/2mXtKn/1meYl
https://paperpile.com/c/2mXtKn/1meYl
https://paperpile.com/c/2mXtKn/1meYl
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williamsii) cactus has been a sacrament in the Native American Church for almost 5700 

years (Schultes, Hofmann, and Rätsch 2001; Bruhn et al, 2002), With this, in the 

classification of classic psychedelics we include LSD, mescaline, psilocybin and N,N- 

dimethyltryptamine (DMT) (Figure 2). 

 

One main characteristic of these compounds, highlighted by Daniel X, Freedman, is their 

ability to reveal a state of ‘portentousness’- meaning the capacity of the mind to see more 

and experience more that it can tell (D, E, Smith and Rose 1968; Freedman 1968). These 

compounds had such a tremendous and notorious effect on religious practices, that Ruck et 

al, in 1979 proposed the term entheogen, instead of hallucinogen or psychedelic, that had 

more negative connotations (entheos: “God (theos) within” + genesthe: “to generate”) 

(Ruck et al, 1979). This novel term refers essentially to a substance capable of generating 

God or the divine within someone. It is because of these profound psyche alterations that it 

becomes mandatory to understand the biochemistry inherent to these changes and how they 

can benefit or not brain function. Moreover, they can help to answer questions that remain 

unanswered for ages, such as the neural basis for consciousness, and its neurobiological 

correlates. 

 

 

 

 

 

Figure 2. Psychedelics (general structures): Phenethylamines (left), tryptamines (center) 

and ergolines (right). 

https://paperpile.com/c/2mXtKn/1meYl%2BSUDlY
https://paperpile.com/c/2mXtKn/0tvqx%2BD83tm
https://paperpile.com/c/2mXtKn/Q6b6I
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1.b. The trip building blocks 

 
We can classify the classic serotonergic hallucinogens according to the relation between 

their structure and activity (Structure-Activity Relationship, SAR) as tryptamines, 

ergolines and phenethylamines (Nichols 2018). Serotonin 5-hydroxytryptamine 2A 

receptors (5-HT2AR) were seen as the main target for the effect of psychedelic drugs, 

with a key role in the regulation of cortical function and cognition. There are other types 

of molecules, better called psychotomimetic, that also activate the serotonin 5-HT2A 

receptors, among others, such as 3,4-methylenedioxymethamphetamine (MDMA), 

ketamine analogues (that are NMDA receptor antagonists) or cannabinoids, but they will 

not be addressed in this thesis. 

 

 
 

1.b.1. Tryptamines 

 
Tryptamines present themselves as the most similar chemotype to serotonin (5-HT, 5- 

Hydroxytryptamine). They are very similar to ergolines, the last ones considered as 

rigidified tryptamines. Although they are precursors for a variety of molecules, 

tryptamines can’t be modified to retain their activity. Shulgin dedicated a major part of 

his career to study these compounds, but only a small number of N,N-substituent 

variations were analyzed in humans (Shulgin and Shulgin 1997). Some of these occur 

naturally like dimethyltryptamine (DMT), psilocybin and psilocin (present in magic 

mushrooms). Serotonin and melatonin are tryptamines that occur naturally on animals, 

including Humans. All the compounds mentioned derive from tryptamine, that is a 

monoamine alkaloid, related to the amino acid tryptophan. Generally, tryptamines 

consist in an indole ring structure, comprising a fused double ring of a pyrrole and a 

benzene ring, adding to a two-carbon side chain. The addition to both the chemical 

moieties leads to the formation of a multitude of both natural and synthetic compounds 

(Figure 3.). 

https://paperpile.com/c/2mXtKn/nYyHp
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Figure 3. Structure of Tryptamines, a) DMT, b) Psilocybin, c) Psilocin, d) serotonin and 

e) melatonin. 

 

 

 
Focusing on DMT, it is known that it is first metabolized by the monoamine oxidase 

(MAO), making it not active when taken orally (Dargan and Wood 2021; Sitaram et al, 

1987). As such, traditional cultural rituals, e.g. Ayahuasca usage in Amazonian 

indigenous tribes, needs to contain both the DMT as the psychoactive component and 

MAO inhibitors, such as harmaline, also an indole alkaloid. It’s the presence of these 

inhibitors that turns DMT orally active, inactivating the first step on its metabolism. It 

can also be administered via insufflation, inhalation and intramuscular (IM) or 

intravenous (IV) injection. Mechanistically, DMT is degraded by MAO via oxidative 

deamination of the side chain. Novel investigation states that there are other non-MAO 

metabolic pathways, including N-oxidation and N-methylation. The last step consists of 

the conversion to 3-indoleacetic acid (Riba et al. 2012) (Figure 4.). Another example of a 

tryptamine is psilocybin. This compound, present in some species of mushrooms, is 

metabolized to psilocin, via dephosphorylation, a molecule with hallucinogenic properties 

in animals. This follows a different metabolic pathway, when compared to DMT, being 

degraded via hepatic glucuronidation (Kamata, Katagi, and Tsuchihashi 2010). This one 

differs from other 5-substituted simple tryptamines, such as 5-methoxy-alpha- 

methyltryptamine (5-MeO-AMT), 5-methoxy-diisopropyltryptamine (5-MeO-DiPT) and 

N,N-diallyl-5-methoxytryptamine (5-MeO-DALT) that are processed through 6- 

hydroxylation, O-methylation or N-dealkylation by hepatic cytochrome P450 enzymes. 

The final metabolites are conjugated with glucuronide or sulphide, preparing them for 

https://paperpile.com/c/2mXtKn/g2jMn%2BYazxx
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waste (Shulgin and Shulgin 1997). Concerning their mechanism of action, the 

predominant clinical effect produced by these compounds are hallucinations, mediated 

mainly by agonism at 5-HT1A and 5-HT2A receptors. However, they also interact with 

other receptors in the central nervous system, including vesicular monoamine transporter 

2 (VMAT2), sigma-1 receptor, trace-amine-associated receptors (TAAR) and serotonin 

transporters (SERT) (Ray 2010). 

 

 
 

 
Figure 4. Biosynthesis, and metabolism of DMT, Tryptophan (a) is first converted to tryptamine 

(b) by the aromatic amino acid decarboxylase (AADC), Tryptamine is then dimethylated to yield 

N-methyltryptamine (c) and then DMT (d) by the indole-N-methyltranferase.

https://paperpile.com/c/2mXtKn/V9CPe
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1.b.2. Ergolines 

 
They are tetracyclic molecules derived from ergot alkaloids (ergot fungus, genus 

Claviceps) (Hylin and Watson 1965). Like tryptamines, they are 5-HT2A agonists and 

the most important one is lysergic acid diethylamide (LSD) or LSD-25, Though LSD is a 

very potent hallucinogen, its affinity with the 5-HT2A receptor is not high, when 

compared to simpler molecules such as 2,5-dimethoxy-4-iodoamphetamine (DOI) 

(Nichols 2018). They are similar to tryptamines in their indole system; however, they 

have a tetracyclic ring, giving them a more rigid structure (Dargan and Wood 2021). 

Another example of ergoline is the psychoactive alkaloid Ergoline found in seeds of the 

morning glory family (Convolvulaceae). It has a similar structure to LSD (lysergamide). 

Because of their similarity to tryptamine’s molecular structure, they show similar 

pharmacodynamics. 

 

 
 

1.b.3. Phenethylamines 

 
Phenethylamines are the most explored class of psychedelics, due to their facile synthesis 

(Nichols 2018). This is a very broad class of compounds, including mescaline and 

MDMA, as psychedelics, but also other compounds such as derivatives from 

amphetamines, e,g, benzo difuran derivatives (Figure 5). Some substituted amphetamines 

were developed by Alexander Shulgin, being the most potent ones with its substituent in 

positions 2,4,5 of the ring, like TMA-2 (Trimethoxyamphetamine-2) (Shulgin and 

Shulgin 1991). This classification is used to describe any structure derived from an 

aromatic group adjoined to a terminal amine by an ethyl group. 

 

 
 

 

 
Figure 5. Structure of some phenethylamines: a) mescaline, b) MDMA and c) TMA-2. 
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1.c. The Entrance Door: 5-HT receptors 

 
Neurotransmitters (NT), such as serotonin, evolved to better regulate the ion channels 

necessary to maintain a stable membrane potential (Handbook of the Behavioral 

Neurobiology of Serotonin 2020; Muller and Jacobs 2009) and to regulate neural 

communication. In an evolutionary perspective, basic serotonin receptor subtypes 

evolved very early in geological periods and records point to the early development of 

serotonin receptors in the development of an organism (early ontogeny). This gave time 

for the development of a diverse set of genes, leading to a variable class of receptors 

(Handbook of the Behavioral Neurobiology of Serotonin 2020; Muller and Jacobs 2009). 

In 2006, Moroz et al, reported at least 20 separate neuronal transcripts of 5-HT receptors 

(Moroz et al, 2006). The specificity of serotonin is very diverse, being able to bind to at 

least 16 specific receptors, increasing the variety of signaling cascades that it can activate. 

This makes serotonin a powerful regulator of ion channels, c-AMP levels, and kinase 

activity in neurons. The presented data obliges the thinking of why the necessity of such a 

diverse set of translators is needed for serotonin. This might be due to the lack of 

tryptophan available in animals, resulting in a low net concentration of serotonin 

(Handbook of the Behavioral Neurobiology of Serotonin 2020). The quantity of 

expressed receptors in each cell will define and assure that the chemical signal starts a 

cell response. If the ligand necessary to produce this effect is present in a low 

concentration, this leads to an increase in the number of receptors needed to restore the 

cell communication. In addition, a fine-tuned transport system to carry both tryptophan 

and serotonin also evolved in animals, enabling the necessary transport of these 

molecules through the blood to their specific targets, such as the brain (Bachmann 2002). 

In sum, loss of tryptophan has promoted a highly branched, diffuse neural network and a 

huge variety of specific receptors to maximize serotonin’s actions. 

 

There are seven classes of 5-HT receptors, 5-HT1 to 5-HT7, coded by 17 different genes. 

These are part of a major family of membrane receptors, activated by a range of chemical 

ligands, which integrate critical cell responses (Azam et al. 2020), called G protein- 

coupled receptors (GPCR) with the exception of 5-HT3R, that is an ionic channel. 

GPCRs are one of the oldest molecular devices concerned with signal transduction, 

presented even before plants, fungi and animals evolved. GPCRs were divided into 

families based on their structure due to their considerable diversity (i.e. amino acid 

sequence: rhodopsin, adhesion, secretin, glutamate and frizzled) (Shahbazi et al, 2020). 

An extracellular N-terminus, seven transmembrane helices with intracellular and 

extracellular loops, and an intracellular C-terminus are the three parts of GPCRs. 
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Moreover, GPCRs play important roles in regulating mood, appetite, pain, vision, 

immune responses, cognition, and synaptic transmission. The GPCR superfamily does 

not share any sequence homology. Nonetheless, these receptors share enough short 

sequences and even individual amino acid residues to allow for a common three- 

dimensional structure and signal transduction mechanism. Some of these structural motifs 

(Lagerström and Schiöth 2008), or sequence similarities, are dedicated to sustaining 

receptor inflection and others mediate the agonist-dependent activity. 

 

The genetic code concerned with the expression of 5-HT receptors has suffered some 

edits to generate a more diverse group of molecules, necessary for a fine control of the 

molecular pathways and consequently their cellular functions. There were two periods on 

the classification of 5-HT receptors. The first one being the pharmacological period, 

where the synthesis of different ligands helped in the classification of the different 

receptors. The second one was a molecular biology period, where the cloning of the 

different receptors helped integrate the classification chart of this family of receptors 

(Kroeze and Roth, 2002). In a physiological and evolutionary perspective, these receptors 

have different cell expression and control differently, via different signaling events, the 

cell physiological response. Each receptor subclass has a different signaling repertoire. 

 

5-HT contracting effect, reported by Gaddum and colleagues, blocked by dibenzyline 

(became the D receptor, finally characterized as a postsynaptic 5-HT2 receptor) and other 

part by morphine (giving the name to the M receptor, finally characterized as a 

presynaptic 5-HT3 receptor) (Hannon and Hoyer, 2008.; Gaddum and Picarelli 1997). 

Later with the studies from Bradley and co-workers (Bradley et al, 1986), they were split 

into three 5-HT receptor classes: 5-HT1, 5-HT2 and 5-HT3 (being this last one the 

correspondent to the M receptor). Other tools started being used such as the measurement 

of the production of second messengers, following 5-HT stimulation, aiding on the study 

of structure- response relationship. This enabled the discovery of the 5-HT4 receptor, able 

to stimulate cAMP (cyclic adenosine monophosphate) production in colliculus neurons 

(Bockaert et al, 2006). 

 

The receptor 5-HT1A presents substantial homology similarity with the rhodopsin 

receptor, being included in its family (Nowak et al, 2006). From a genetic perspective the 

5-HT1A receptor is estimated to have evolved 750 million to 1 billion years ago, before 

muscarinic, dopaminergic, and adrenergic receptor systems (Peroutka and Howell 1994), 
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indicating that the receptor existed before the evolution of the most primitive animal 

form, sponges, that evolved some 600 million years ago. 

 

Binding studies with a variety of radioligands and second messenger studies were used to 

define the subtypes of 5-HT1 receptors, 5-HT1A, in neurons, is negatively coupled to 

adenylyl-cyclase (De Vivo and Maayani 1986), 5-HT1B, a presynaptic receptor, is 

negatively coupled to adenylyl cyclase in substantia nigra (Bouhelal, Smounya, and 

Bockaert 1988), 5-HT1C has a very transient classification and is found at high density in 

the choroid plexus. They are coupled to inositol phosphate production and Ca2+ signaling 

(like 5-HT2 receptors), making it join the 5-HT2 family, 5-HT1D has a more complicated 

history, being separated concerning its genes (there’s an alpha and a beta) (Hannon and 

Hoyer, 2008). The 5-HT1E was found in the human frontal cortex, but missing in 

rodents’ brains, and no specific drugs targeting this receptor are available. On the other 

hand, 5- HT2 receptors were first divided in 5-HT2A and 5-HT2C. The first one 

corresponds to the D receptor of Gaddum as well as the ones found by Peroutka and 

Snyder. Ketanserin became the reference ligand for 5-HT2A. Both the receptors are 

coupled to phospholipase C. During the “pharmacological period” the study of 5-HT2A 

receptor was very subliminal, giving it its name 5-HT2F (“present in the fundus”). This 

was reported as capable of inducing contraction but lacking trustful tools for evaluation 

(Hannon and Hoyer, 2008). 

 

The second research period, the cloning one, started with the cloning of the 5-HT1A 

receptor (Fargin et al, 1988). The possibility of cloning newly discovered genes brought 

the possibility to characterize new receptors, missing in the pharmacological research, 

such as 5-HT1F, 5-HT5A, 5-HT6 and 5-HT7, 5-HT1F, cloned based on 5-HT1B/1D 

receptors, is found in many brain areas, and has an elevated affinity for triptans and LSD. 

Concerning the signaling pathway, it is negatively coupled to adenylyl-cyclase (Adham et 

al, 1993). The cloned 5-HT5a and 5-HT5b still need to have their signal transduction and 

physiological function defined, to become recognized as functional receptors (Handbook 

of the Behavioral Neurobiology of Serotonin 2020). The 5-HT6 is an essential receptor in 

the brain, positively coupled to adenylyl cyclase in neurons from the striatum and 

reported to be sensitive to antipsychotic drugs. A last 5-HT receptor was reported to be 

positively coupled to adenylyl cyclase, 5-HT7 (Ruat et al. 1993). 

 

Lastly, the only serotonergic receptor that is a ligand-gated ion channel, 5-HT3, enabled a 

second type of transmission, being an ionotropic receptor, it manages a rapid 

(milliseconds) response to the binding of ligands, opposed to the slow response given by 
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5-HT4,6,7R 

the other metabotropic 5-HT receptors. The 5-HT3 receptors form pentameric structures, 

co-assembling with each other (5-HT3B and 5-HT3A), to form a functional receptor 

(Boess, Beroukhim, and Martin 1995). The role of 5-HT3C-E receptors is yet to be 

elucidated, but it is known to modulate the function of 5-HT3A (Jensen et al, 2008). 

 

The diverse function of 5-HT appears because of the concerted actions of several receptor 

subtypes, splicing and editing of the same and by the coupling of the multiple subtypes of 

this family of receptors (Millan et al. 2008). It is important to provide a comprehensive 

overview of what is known about the signaling mechanisms comported by the different 

families of receptors (Figure 6.). 

 
 

 
Figure 6. Review of proposed signaling pathways activated by 5-HT family receptors (based in 

(Pourhamzeh et al, 2021)). 

 

 

 
The 5-HT1A receptor inhibits adenylyl-cyclase by the coupling with Gi/Go, but it is also 

reported to open G-protein-gated inwardly rectifying gK+ (GIRK) and inhibit gCa2+ 

(conductance of the voltage-gated Ca2+ channel) (Muller and Jacobs 2009) subtype of 

receptors and presents different distributions in the human brain, some being auto- 

receptors, while others are postsynaptic heterologous neurons, adjusting the drug action. 

One differential aspect is the much greater ability to desensitize the auto-receptor type. 

More research will be needed to clarify this difference, but it is thought that lies on 

the coupling of different G-proteins (auto receptors activating Gi3 and the postsynaptic 
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receptors, Go) (Cour et al, 2006). Regarding the signaling of 5-HT2A, summing its 

mechanical aspects, 5-HT2A receptors turn on PLC (phospholipase C), PLA2 

(phospholipase A2) and the ERK pathway (downstream of PLC) in neurons (Bockaert et 

al, 2006). Moreover, the activation of this receptor is coined with the activation of small 

G proteins such as RhoA, Rab4 and Rac1 (Dai et al, 2008). An interesting aspect was 

reported by Yuen et al, who showed that 5- HT2A receptors block the action mediated by 

5-HT1A receptors, when modulating NMDA currents is pyramidal neurons via an 

arrestin/Src/ERK pathway, highlighting the biased signaling in these family of receptors 

(Yuen and Yan 2007). Moreover, the action of these subtype of receptors is associated 

with the activation of matrix metalloproteinases (MMPs) via Src pathway, the release of 

FGF (fibroblast growth factor) receptor 2 ligands, the activation of FGFR2 receptor, the 

activation of downstream ERK and transcription of GDNF (Tsuchioka et al, 2008). 

Belonging to the same subfamily as 5-HT2A, the receptor 5-HT2B also activates 

Gq/G11 proteins, inducing PLC action. They are also reported to stimulate the Ca2+ 

mobilization in astrocytes in the rat brain. Moreover, their stimulation may lead to 

increase in cyclic GMP (guanosine monophosphate) through the dual activation of 

constitutive and inducible NOS (Nitric oxide synthase). Lastly, the activation of Gq/11 by 

5-HT2B receptors can activate PI3K/Akt and ERK1/2 signaling cascades (Bockaert et al, 

2006). The last in the subtype of 5-HT2 receptors, the 5-HT2C subfamily also stimulates 

the activity of PLC by Gq/11 in many brain regions, such as the choroid plexus (Conn, 

Janowsky, and Sanders-Bush 1987). There’s a variety of signals initiated by these 

receptors, because of the RNA editing, originating different isoforms (McGrew, Chang, 

and Sanders-Bush 2002).  

 

The best characterized signaling pathway activated through 5-HT4Rs is Gs/cAMP/PKA. 

The activation of PKA leads to the modulation of ionic currents, through long-lasting 

inhibition of K+ currents, enhancing neuronal excitability and a decrease in spike 

accommodation (Ansanay et al, 1995). Still a lot of research is needed with 5-HT5 

receptors both in vivo and in vitro (Hannon and Hoyer, 2008). The 5-HT6 receptors also 

stimulate positively to adenylyl-cyclase in neurons (Sebben et al, 1994). On the other 

hand, the 5-HT7 receptors also positively couple to adenylyl cyclase, showing high 

affinity for 5-CT (5-carboxamidotryptamine) (Shenker et al. 1987). This subfamily also 

activates ERK1/2 pathway, via Epac (exchange protein activated by cAMP) or PKA, 

reported in hippocampal neurons (S, L, Lin et al, 2003). Moreover, it was also reported 

that these receptors can potentiate neurite length by Galfa/RhoA/Cdc42 pathway. 
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The 5-HT receptors present different characteristics, but generally they are 

heteroreceptors and expressed postsynaptically in non-serotonergic neurons. Some of 

them are auto receptors located in the presynaptic soma (like 5-HT1ARs) or in axon 

terminal (such as 5-HT1B and 5-HT1D receptors) (S, L, Lin et al, 2003; Pourhamzeh et 

al, 2021) of serotonergic neurons, controlling the release of serotonin, in a negative 

feedback mechanism, with the aid of serotonin transporters, adjusting the neuronal firing 

rate. Each neuron can express a variety of 5-HTRs, creating a complex crosstalk system, 

which tunes in a very sensible fashion brain function (Sahu et al, 2018). Some studies 

relate the possible regulative role of 5-HT3Rs in the production of acetylcholine (Ach) 

and its possible use in disorders such as Alzheimer’s Disease (Iidaka et al, 2005). Some 

recent research is also trying to relate the 5-HT7Rs with dopamine, GABA, and glutamate 

transmission (Blattner et al, 2019). 

 

As it was previously said, 5-HT receptors, being from the GPCR class, can communicate 

their chemical signal through other pathways different from the ones coupled to G-

proteins. One classic non-G signaling pathway uses beta-arrestin and is coined with ERK 

pathway, in a long-lasting activation (>5 minutes up to several hours). It contrasts with 

the short-lasting activation of ERK by GPCRs, in a G-protein-dependent way (Preto et al, 

2020). The internalization of GPCR-beta-arrestin normally occurs in the cytosol and is 

normally coupled to the Src-Raf-MEK-ERK module. Other differences in the recruitment 

of signaling pathways are reported when comparing different subfamilies of 5-HT 

receptors. For instance, 5-HT2C mediate their action in a process independent of G 

proteins (Gq, Gi/o), requiring physical interaction of calmodulin with the C-terminal 

domain of the receptor, recruiting beta-arrestin1 and 2 (Labasque et al, 2008). These last 

findings came to highlight the diversity of signals mediated by the activation of 5-HT 

receptors, both including the participation of beta-arrestin and other molecular partners, 

culminating in the activation of ERK pathway by these family of receptors. Moreover, it 

is important to highlight the constitutive activity of 5-HT receptors. In some cases, such 

for 5-HT2C receptors, this type of activity is dependent on the mRNA processing and 

editing steps, deciding the fate and functional role of these receptors (Chanrion et al, 

2008). A physiological example of the constitutive effect might relate 5-HT2A receptors 

with impairment of associative learning by inverse agonists (Berg et al, 2008). 
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1.d. The psychedelic role of the 5-HT2A receptor 

 
As stated above, the 5-HT2A receptor is the major psychedelic effector in the nervous 

system. This receptor is coupled with Gq/11 protein, which is then linked to the 

phosphoinositide hydrolysis signaling cascade (Nichols and Nichols 2008). Both 

tryptamines and phenethylamines, such as 2,5-Dimethoxy-4-methylamphetamine (DOM), 

2,5-Dimethoxy-4-iodoamphetamine (DOI) or Dimethoxybromoamphetamine (DOB), 

classes of hallucinogens bind to 5-HT2AR with high affinity (Pierce and Peroutka 1989). 

A frequent administration of psychedelics can lead to a very rapid development of 

tolerance known as tachyphylaxis; a phenomenon believed to result from 5-HT2A 

receptor downregulation (Nichols 2016). Contrary to the majority of GPCRs, 5-HT2A 

suffers downregulation in response either to agonist or antagonist treatment (J, A, Gray 

and Roth 2001). Moreover, studies revealed the importance of two non-conserved 

residues in the 5-HT2A receptor, S421 in the C terminus and S188 in the intracellular 

loop2, in the desensitization induced by agonism on these receptors (John A, Gray, 

Compton-Toth, and Roth 2003). Reports show that desensitization of 5-HT2A receptor 

signaling is not due to reduced ability of Galfaq/11 proteins to stimulate PLC but rather to 

changes in 5-HT2A receptors or their coupling to G proteins. Relating this desensitization 

to post-translational modifications in the receptor (e,g, phosphorylation) and Galfaq or 

Galfa11 proteins, altering the receptor interface. There is some evidence that the shaking 

behavior, characterized by small tremors or involuntary movements, caused by some of 

these compounds might be related to metabotropic glutamate mGlu2/3-sensitive 

glutamate release downstream of frontocortical 5-HT2A activation (Nichols 2016). 

Similarities found between schizophrenia and model-psychosis induced by 

hallucinogenic drugs lead to the hypothesis that dopamine receptors might also modulate 

the cell response to hallucinogens (Nichols 2016). In 2015, Buchborn et al, stated that 

the difference in adaptation of different receptors, when administered LSD or DOI, 

pointed out that tolerance to serotonergic hallucinogens might come at two levels 

(Buchborn et al. 2015).  As such, if a psychedelic, such as LSD, fails in downregulating 

5-HT2AR, glutamate receptors might adapt instead and thus prevent cortical 

overstimulation. 

 

The data brought by Moreno et al. (2013) supports the hypothesis that a constant 

blockage of the signaling lead by mGlu2 receptor, downregulates the binding to 5-HT2A 

receptors in the somatosensory cortex, measured in mice (Moreno et al, 2013). 

Consequently, it influences both cells signaling and ultimately behavior. In addition, 

since mGlu2 are presynaptic receptors, their blockage leads to an excessive release of
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glutamate, which might result in a feedback mechanism of downregulating 5-HT2A gene 

expression on the pyramidal apical dendrites. 

 

During the past 20 years there was a shift in the way we think about GPCRs. Now it is 

known that they can couple to more than one signaling pathway, with different molecules 

involved. The canonical pathway for 5-HT2A is coupled to Galfaq, which activates PLC. 

This differential activation is ligand dependent (Zhou and Bohn 2014). The final 

assembly between the receptor and the ligand is very much dependent on the rigidity of 

the ligand. This means that the flexible ethylamine chain of serotonin allows for an 

adaptive conformation of the complex, where the receptor can adapt to the small ligand. 

This adaptation is steric, electronic, and conformational in both parts. In the case of LSD, 

due to its rigid structure, the adaptation to a final complex is very different, resulting in a 

much different final assembly. Due to this, different ligands can lead to completely 

different cell responses, due to the diverse complexes formed between the receptor and 

the small ligand. Because of this it is important to get a deeper sense when we talk about 

5-HT2A agonism, meaning that it is necessary to understand which signaling pathways 

are being activated when giving different sets of ligands and how these differences 

influence the psychedelic response. 

 

As it was stated previously, the most well understood signaling pathway activated by 5- 

HT2A is the one coupled to Gαq, that induces the stimulation of PI-specific PLC (B, L, 

Roth et al, 1984). This enzyme breaks phosphatidylinositol membrane lipids, generating 

inositol-1,4,5-trisphosphate, and diacylglycerol (DAG) (Williams 1999). The inositol 

phosphates lead to release of Ca2+ from intracellular stores and diacylglycerol remains 

bound to the membrane and activates protein kinase C (PKC). Although, some studies 

such as the one from Rabin et al, came to highlight the lack of correlation between the 

activation of this signaling pathway and the discriminative stimulus effects of 

hallucinogens. This indicates the possible effects of additional transition states of the 

receptor-ligand complex and their contribution to the agonist efficacy (Rabin et al, 2002). 

 

When 5-HT2A is activated, it can also stimulate phospholipase A2 (PLA2), which 

preferentially hydrolyzes arachidonic acid (AA)-containing phospholipids, producing free 

AA and lysophospholipid. This pathway is independent of PLC-mediated signaling. The 

PLA2 signaling pathway is more complex than the PI turnover cascade, apparently 

involving multiple G proteins and the extracellular signal-regulated kinase (ERK) 1/2 and 

p38 mitogen activated protein kinases (MAPKs), at least in NIH3T3 cells (Kurrasch- 

Orbaugh, Parrish, et al, 2003). Different ligands exhibit different affinities (EC50, half 
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maximal effective concentration) with 5-HT2A, reflected also in different activation 

ratios of both AA and PI pathways (Kurrasch-Orbaugh, Watts, et al, 2003). 

 

Some of the kinases participating in 5-HT2A phosphorylation are known, such as RSK2 

(one of the p90 ribosomal S6 kinases, RSKs, member of the ERK/MAPK cascade) 

(Sheffler et al, 2006). RSK was associated with a “tonic brake” on the production of a 

second messenger, serving as a regulator to the GPCR function. In addition, the group 

also reported an important interaction between RSK2 and the loop3 (ICL3) of 5-HT2AR. 

Other kinases were identified that also affect 5-HT2A phosphorylation, such as the PKC 

phosphorylation of serine residue S291. 

 

Beta-arrestins are scaffolding proteins that also mediate the GPCR signaling, being 

determinant to the effects of specific ligands, Schmid et al. did research to evaluate if the 

recruitment of beta-arrestin was necessary for the in vivo behavior as an effect to some 

psychedelics (Schmid, Raehal, and Bohn 2008). They concluded that the effect of some 

of these molecules, e.g., DOI, are beta-arrestin2 independent, contrary to the effect of 

5HTP. They performed other experiments using MEFs, concluding that different stimuli 

(DOI and 5-HT), by different molecules, stimulate the production of ERK1/2, by 

different pathways (PLC-dependent and beta-arrestin, respectively) (Figure 7). 

 

 

 

Figure 7. Example of biased signaling present in 5-HT2A receptor signaling.
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As confirmed from the reports presented, a lot of research is still needed to get a better 

sense on how 5-HT2A receptors are activated by the chemical diverse class of 

psychedelics. Ranging from structural studies of how the binding of a specific ligand 

prefers a determined conformation of the receptor to systemic studies on how this choice 

leads to the activation of specific signaling pathways. This is a major step to design novel 

therapeutics, based on entheogens, if trying to develop a more specific and problem- 

oriented pharmaceutical. The objective is to dissect the pharmacophores present in these 

compounds and try to establish connections with specific signaling pathways. This might 

pave the way for effective modulation of brain disorders. 

 

 
 

1.e. 5-HT system and Neurological Disorders 

 
1.e.1. Anatomical distribution of 5-HT neurons 

 
It is important to know the anatomical distribution of serotonergic neurons to better 

understand how serotonergic neurotransmission influences brain function and how its 

dysfunction might lead to neurological disorders. We know that cell bodies that contain 

serotonin are organized in clusters located in the midline of the brainstem (Brady and 

Siegel 2012). These groups of cell bodies have been previously identified as the raphe 

nuclei. Later, Dahlstrom and Fuxe identified and characterized nine groups, based on 

their structural characteristics and organization, from B1 to B9, with the most part 

belonging to the raphe nuclei area (Brady and Siegel 2012; Törk 1990). Controversially, 

most neurons in the raphe nuclei are non-serotonergic. Serotonergic neurons having their 

cell bodies outside this area have projections entering the raphe nuclei. 

 

The serotonergic ascending pathway, from the midbrain raphe nuclei to the forebrain, is 

divided in two main axes, the dorsal periventricular path, and the ventral tegmental 

radiations (Brady and Siegel 2012). In the caudal hypothalamus, both pathways join with 

the medial forebrain bundle. This region is also enervated with dopaminergic and 

noradrenergic axons (Molliver 1987). The raphe nuclei can be divided in two sub- 

regions, the dorsal raphe nuclei innervate the ventral hippocampus, amygdala, and 

striatum, whereas the median raphe nuclei projects to the dorsal hippocampus, septum, 

and hypothalamus. They form dissimilar yet partially overlapping patterns of innervation. 

On the other hand, both areas send overlapping neuronal projections to the neocortex, 
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exhibiting a topographical organization, affecting different cortical neurons. Moreover, 

they present different morphology (type M and type D) and consequently they are 

affected differently by compounds such as amphetamine derivatives, like MDMA (Brady 

and Siegel 2012). Yet, the raphe nuclei receive projections from other clusters in the 

brainstem like substantia nigra and ventral tegmental area (dopaminergic neurons), 

superior vestibular nucleus (containing acetylcholine), locus coeruleus (with 

norepinephrine) and nucleus prepositus hypoglossi and nucleus of the solitary tract 

(epinephrine) (Hensler 2006). 

 

 
 

1.e.2. The Serotonergic Dance 

 
Some brain disorders are not only dependent on the low concentrations of serotonin but 

also from its precursors. Serotonin is made from the amino acid tryptophan in two 

following reactions. The first being the addition of a hydroxyl group to the indole ring of 

tryptophan by the enzyme tryptophan hydroxylase. The second one is the removal of the 

carboxylic group from the end of the lateral chain, by the aromatic amino acid 

decarboxylase. Moreover, the tryptophan used for the synthesis of serotonin is only 

obtained by diet (Figure 8.). If the concentration of this is lowered, and not enough 

precursor material is reaching the brain, the lowered levels of 5-HT in the brain might 

lead to changes in behavior. The mechanism of action of novel psychotherapeutic drugs 

can be studied using the same strategy, by lowering the levels of 5-HT in the brain. 

Theoretically, raising the intake of dietary tryptophan leads to an increase in the brain’s 

5-HT concentration. It is interesting to point out that there are two isoforms of the 

tryptophan hydroxylase, one being expressed in peripheral systems (Tph1) and other in 

the brain (Tph2). This gives the opportunity to have a more selective way of action when 

designing novel drugs. Moreover, it is reported that the production of serotonin is 

dependent on the frequency of the electrical stimulus in serotonergic soma. This might be 

an explanation for the plasticity of neurons to adapt after short or long-term activation of 

function (Boadle-Biber 1993). 
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Figure 8, Synthesis, and metabolism of serotonin (5-HT) (base in (Pourhamzeh et al, 2021)). 

 

 

 

The serotonergic system has a very diverse action, ranging from the central nervous 

system (CNS) to the gastrointestinal tract (GI) (Pourhamzeh et al, 2021). It modulates a 

variety of behaviors, such as mood, cognition, anxiety, learning, memory, reward 

processing and sleep. With this, any deficit in the serotonergic concentration or 

metabolism in the brain can lead to a broad range of pathological conditions, such as 

depression, schizophrenia, mood disorders and autism. Recent review also points to the 

role of serotonin in sexuality, respiratory stability, circadian rhythms, and embryonic 

development (Abela et al, 2020), (Paulus and Mintz 2016).  As it was stated previously, 

there is a different concentration of serotonin between the peripheral system 

(approximately 95%), and the central nervous system (5%) (Pourhamzeh et al, 2021). It is 

important to notice that the blood-brain barrier is not permeable to 5-HT, making these 

two systems independent from each other (Sahu et al, 2018), 5-HT has a role in neuronal 

development, by stimulating the synapse formation and connectivity, to build a complex 

network. Yet, it regulates cell adhesion molecules, influencing neuronal plasticity in 

developing brains and adult brains (Dalva, McClelland, and Kayser 2007), mediated by 

interactions with brain-derived neurotrophic factor (BDNF). Moreover, serotonin is 

capable of modulating other neurotransmitters and hormones, such as dopamine, 

epinephrine, gamma-aminobutyric acid (GABA), cortisol, prolactin, acetylcholine (ACh), 

oxytocin, substance P and vasopressin. 
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Concerning the transport system of free serotonin, this is carried by serotonin reuptake 

transporters, or SERTs, in an active transportation and recycling process (Figure 8). This 

controls the duration and extent of 5-HT activation. Variations on the expression of 

SERTs, such as edits during the processing of their correspondent mRNA, were coined 

with depression, anxiety disorder, suicidality, and autism (White, Walline, and Barker 

2005). These disorders are also related with low levels of 5-HT in the synaptic cleft, due 

to a decrease in the production of the NT or by an increase in the functioning of SERTs. 

Because of this, SSRIs, or selective serotonin reuptake inhibitors, were developed to 

block the 5-HT reuptake by SERTs, having a very high specificity to these systems. 

Some examples include fluoxetine, citalopram, paroxetine, fluvoxamine, sertraline, and 

escitalopram. These drugs are globally used in the treatment of psychiatric disorders like 

major depressive disorder (MDD), obsessive-compulsive disorder (OCD), bulimia 

nervosa, anxiety disorders and some non-psychiatric disorders, such as migraines and 

pain syndromes (Lorman 2018). Nonetheless about one-third of clinical patients do not 

respond to SSRIs (Zugliani et al, 2019), calling for the design and development of better 

drugs for the treatment of these disorders. Moreover, several side effects have been 

reported because of the excessive use of these pharmaceuticals, mainly in the CNS by 

activation of 5-HT1A autoreceptors and 5-HT2C heteroreceptors (Burghardt et al, 2007). 

 

One deregulation on this system is serotonin syndrome, which surges because of the 

increase in activity in both peripheral and central 5-HTRs, being a response to high levels 

of serotonin. The raise in 5-HT content is normally caused by interaction between drugs. 

These include monoamine oxidase inhibitors (MAOIs), SSRIs, SNRIs (serotonin- 

norepinephrine reuptake inhibitors), TCAs (tricyclic antidepressants), 5-HT releasers, 

precursors, and agonists of 5-HTRs, and some opiates (Baldo and Rose 2020). Some of 

the symptoms of 5-HT syndrome involve autonomic hyperactivity, changes in the mental 

status (like disorientation, anxiety, restlessness) and neuromuscular abnormalities (Baldo 

and Rose 2020; Simon and Keenaghan 2022). 

 

 
 

1.e.3. The Serotonin Manifestation 

 
As stated previously, serotonin has a key role in the functioning of the healthy brain. To 

better relate neuropsychiatric disorders with serotonergic imbalances, it is important to 

highlight how serotonin modulates behavior and other neurological processes. 
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1.f.3.a. Serotonin and Memory 

 
Firstly, serotonin modulates learning and memory processing, in memory consolidation 

processes (Bostancıklıoğlu 2020) and in the formation of both associative and non- 

associative memories. Moreover, 5-HT is also associated with the  formation of short- and 

long-term, verbal episodic, spatial working memories and long- term stimulation of 5-HT 

has been coined with memory impairment, by destroying axon terminals (He et al, 2020; 

Volle et al, 2018), (Hritcu, Clicinschi, and Nabeshima 2007),(van Goethem et al, 2015).  

A lot of research is still needed to properly correlate memory and serotonin, however it is 

thought that it might be related to various subtypes of 5-HTR (Cowen and Sherwood 

2013). Some of the subtypes of receptors were already associated with some impairments, 

such in emotional memory that occurs when the neuronal activity decreases, due to the 

activation of 5-HT1ARs, located postsynaptically. On the other hand, the use of 5-HT1A, 

5-HT1B and 5-HT3 receptor antagonists or 5- HT2A, 5-HT2C and 5-HT4 receptor 

agonists have been related to prevention of memory impairments and facilitators in 

learning (Stiedl et al, 2015). This last sub-group might normalize NMDA receptor 

function, and consequently improve cognitive abilities. As an example, pimavanserin is 

described as a 5-HT2ARs antagonist, able to alleviate Parkinson’s disease psychosis 

(Sahli and Tarazi 2018). In a recent study, 5-HT4 receptors            were associated with the non-

amyloidogenic pathway of amyloid precursor protein (APP), giving an opportunity for 

action in Alzheimer’s disease (Mdawar, Ghossoub, and Khoury 2020). Serotonin was 

also reported to be able to bind to intermediate aggregates of alpha-synuclein, having a 

potential role in alpha-syn pathology, such as in the development of Parkinson’s disease 

(Falsone et al, 2011). 

 

On the other hand, a decrease in the content of 5-HT4 receptors have been observed in 

cortical regions, mainly in the hippocampus, of patients with Alzheimer disease. At the 

same time, this subtype of receptors is linked to adult neurogenesis. Their agonists can 

increase proliferation of new cells in the dentate gyrus (DG) (Mendez-David et al, 2014). 

Recently, it was proposed that 5-HT4 and 5-HT1A can promote neuronal maturation, 

which could contribute to eventual remission of AD, activating neurogenesis in a B  D  N  F 

dependent manner. BDNF interacts with the MEK-ERK pathway, implicated in an 

enhanced activity of alpha-secretase, with inhibition of gamma-secretase, reducing the 

production of toxic amyloid-beta (Liu et al, 2019). 
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1.f.3.b. Serotonin and Motivation 

 
Serotonin, in combination with dopamine, is well acknowledged as an important player in 

the function of reward systems, accommodating motivational and reinforcement 

behaviors (Cohen, Amoroso, and Uchida 2015). The flood of 5-HT in the limbic- 

corticostriatal circuit is coined with the value of natural rewards. A pivotal area is the 

raphe nuclei, which takes part in the activation of self-stimulation, associated with the 

induction of the medial brain forebrain bundle or the VTA (ventral tegmental area) 

(Pollak Dorocic et al, 2014). Yet about these systems, inputs, mediating excitability, or 

inhibition effects, originate from the prefrontal cortex (PFC) and the lateral habenula 

(Hb) to serotonergic dorsal raphe nucleus (DRN) and dopaminergic VTA neurons 

(Geddes et al, 2016). Finally, RN (raphe nucleus) also receives GABA inputs from the 

lateral Hb, through the rostromedial tegmental nucleus. This aids in the hypothesis that 

reinforcement learning, occurring during habit formation, is a consequence of 

serotonergic stimulation (Iigaya et al, 2018). 

 

 
 

1.f.3.c. Serotonin and Pain 

 
Serotonin has also been reported to modulate pain and nociceptive inputs, in the dorsal 

horn of the spinal cord, where these signals are then sent to the thalamus, reaching the 

cortex. The accepted gate control theory of pain states that the interneurons from the 

dorsal horn release GABA and glycine to diminish the nociceptive signal. At the same 

time, the periaqueductal gray (PAG) receives information from higher brain centers, 

mediating an analgesic effect (Provenzi et al, 2020). On the other hand, the rostral 

ventromedial medulla (RVM), that contain serotonergic neurons from Raphe Magnus, 

can modulate nociceptive inputs, through the descending inhibitory system (Heinricher et 

al, 2009). Generally, mal function in serotonergic systems might lead to analgesia or 

hyperalgesia, though the respective intrinsic mechanisms are still difficult to differentiate 

(Tao et al, 2019). A wide variety of receptors are associated with analgesic effects, such 

as 5-HT1A, 5-HT1B, 5-HT1D, 5-HT4, 5-HT5A and 5-HT7. On the contrary, the 

combined action of 5-HT2B and 5-HT3 receptors promote nociception. Also, the 

subfamily of 5-HT1 receptors have been coined with inhibition by GABAergic and 

glutamatergic transmission in the rat midbrain PAG (Cortes-Altamirano et al, 2018). 
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1.f.3.d. Serotonin and Sleep 

 
Lastly, the circadian system, which regulates sleep-wake cycles, is a biological clock, 

controlling behavior, physiology, and mood. It involves the action of the hypothalamic 

suprachiasmatic nuclei (SCN), and it has been reported that there is a crosstalk between 

the circadian and serotonergic systems. Both systems influence a similar set of mood 

disorders, such as seasonal affective disorder (SAD), depression, bipolar disorder, and 

autism (Ciarleglio, Resuehr, and McMahon 2011). 5-HT affects the circadian system in 

the non-photic phase of the circadian cycle, acting in opposition to the activation in SCN 

by light. In the other way, the content in serotonin is under influence of the circadian 

rhythm, where the synthesis of this NT depends on the release within SCN and other 

limbic projections (Duet and Fonken 2019). Manipulation of the circadian cycle might 

come as an effective treatment for mood disorders, when interacting with 5-HT receptors, 

by the design of novel pharmaceuticals. 

 

 
 

1.e.4. Serotonin Imbalance and neuropsychiatric disturbances 

 
After reviewing some of the serotonin roles in the healthy brain, it is mandatory to review 

the imbalances in its metabolism, distribution or signaling that can lead to 

neuropsychiatric disorders. 

 

 
 

1.e.4.a. Serotonin and Anxiety 

 
During the last years anxiety disorders gained a principal role in neuroscience research, 

relating them to 5-HT disturbances (Ohmura et al, 2020). Based on the developmental 

role of serotonin, dysregulation of its transmission in critical stages on the development 

of an organism can have long-lasting effects and/or alterations, leading to anxiety in 

adulthood (Teissier, Soiza-Reilly, and Gaspar 2017). 5-HT1A receptors have been used 

as a target for the treatment of anxiety, since there is data pointing to a smaller number of 

5-HT1A receptors in the forebrain of patients with panic disorder (Nash et al, 2008) and 

in the amygdala of patients with social anxiety disorder (SAD) (Lanzenberger et al, 

2007). Nowadays, novel 5-HT1ARs agonists, such as buspirone, are being prescribed as 

effective anxiolytics, though not substituting benzodiazepines (Yamashita et al, 2018). 

Other receptors like 5-HT2, 5-HT3 and 5-HT7 receptors are also possible targets for the 

treatment of anxiety disorders (Griebel and Holmes 2013). 5-HT6 receptors have been 
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linked to a therapeutic role in depression, because of its high affinity for antidepressant 

drugs, like amitriptyline and amoxapine, and some antipsychotics such as olanzapine and 

clozapine, This difference in their role depends on the brain region where the receptor is 

being expressed (Żmudzka et al, 2018). The content in SERTs has also been linked to 

GAD (generalized anxiety disorder). Blocking the action of these transporters has been 

one major strategy in the chronic treatment of these disorders. Both SSRIs and SNRIs are 

considered standard treatments for anxiety disorders, like GAD, PD, SAD and PTSD 

(post-traumatic stress disorder) (Bandelow, Michaelis, and Wedekind 2017). The 

underlying mechanism of these therapies is linked to a decrease in the amygdala 

response, after negative stimulus. Because of the long time needed for these 

pharmaceuticals to influence humans, more research is needed in the design of more 

effective and fast-acting medication. 

 

 
 

1.e.4.b. Serotonin and Depression 

 
Another major neuropsychiatric disorder that has puzzled neuroscientists is depression. 

The neurobiological implications of this imbalance in the brain are still not completely 

understood and consequently the design for therapeutic drugs is an extremely demanding 

work. Though a serotonergic hypothesis has been thought for depression, concerning the 

hypofunction of 5-HT neurons. Alteration in both SERTs and 5-HTRs and enhanced 

activity of presynaptic receptors are linked with major depressive disorder (MDD) (S,-H, 

Lin, Lee, and Yang 2014). The blockade of several subtypes of serotonin receptors have 

been coined with antidepressant effects: 5-HT2ARs (Aznar and Hervig 2016), 5-HT2CR 

(McCorvy et al, 2011) and 5-HT3Rs (Gupta, Prabhakar, and Radhakrishnan 2016). On 

the other hand, 5-HT2BRs (Hamati, El Mansari, and Blier 2020) and 5-HT4Rs are 

associated with depressive behaviors when stimulated. Recent research points to a 

detrimental interaction between serotonin and noradrenaline, where the lack of efficacy 

of SSRIs in resistant depressive cases might lie in this crosstalk communication 

(Dremencov, El Mansari, and Blier 2007). The blockade of 5-HT3Rs in the 

hypothalamic-pituitary-adrenal (HPA) axis has been a target for antidepressant effects 

(Gupta, Prabhakar, and Radhakrishnan 2016). Research relating 5-HT6Rs and 5-HT7Rs 

is being conducted, where their blockage might offer a faster therapeutic approach (Mnie- 

Filali et al, 2011). The availability and distribution of SERTs across the brain may also be 

a signature of depression (Hsieh et al, 2014). Nowadays, the main pharmaceuticals for 

treatment of depression include TCAs, SSRIs and SNRIs, that act by increasing the level 
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of monoamines, such as 5-HT and noradrenaline, enhancing the activity of postsynaptic 

serotonergic and noradrenergic receptors. Of these groups of compounds, the most 

prescribed are MAOIs and SSRIs, such as amitriptyline and imipramine. This last group 

of drugs is the most effective one in treating depression, nowadays, associated with 

possible long-term treatment (Naber and Bullinger 2018). 

 

 
 

1.e.4.c. Serotonin and OCD 

 
Another neuropsychiatric disorder that has been central in recent pharmacological 

advances is OCD or obsessive-compulsive disorder. It is characterized by intrusive 

thoughts (obsessions) and repetitive behaviors (compulsions). Recent advances coined 

this disorder with the cortico-striato-thalamocortical pathway (Lissemore et al, 2018). 

Several genetic studies have been conducted, highlighting the connection between gene 

expression of serotonergic, dopaminergic, and glutamatergic systems with the 

pathophysiology of this disease. Moreover, abnormal levels in expression of 5-HT2ARs 

or SERTs were reported in OCD patients, as well as alterations in the brain volumes 

(Nazeer et al, 2020). During the last years, some drugs were developed, such as 

granisetron and ondansetron, that act as antagonists of 5-HT3 receptors, described as a 

treatment for OCD patients (Askari et al, 2012). SSRIs are again one of the major lines of 

treatment for this disease since most OCD patients respond to their action. Recent 

advances coin the summed action between dopamine antagonists and SSRIs as a more 

sophisticated form of treatment. 

 

 
 

1.e.4.d. Serotonin and ADHD 

 
ADHD or Attention-Deficit/Hyperactivity Disorder is one of the most diagnosed 

neurological disorders in children, described by hyperactivity, lack of attention and 

impulsivity. It was postulated that most patients exhibiting ADHD, also tend to display 

other disorders such as oppositional defiant disorder, conduct disorder, depression, 

anxiety disorders and learning disabilities (Bélanger et al, 2018). The phenotype of 

ADHD disorder has been related with a chronic reduction in the bioavailability of 

serotonin, reported by the low concentration of 5-HT in the blood of patients with this 

condition. 5-HT is linked to behaviors such (Bolaños et al, 2008) as impulsivity, 

inhibition, and attention, by coupling its action with the dopaminergic system (Hou et al, 
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2018). In addition, the orbitofrontal cortex was reported to have its content in 5-HT 

altered in ADHD patients, resulting in emotional imbalances, inhibition, and reversal 

learning (Curatolo, D’Agati, and Moavero 2010). Besides, the participation of 5-HT 

receptors, like 5-HT1B, 5-HT2A and 5-HT2C was also reported (Hou et al, 2018). On the 

other hand, there was no difference noted in the expression of SERTs between healthy 

and ADHD patients. However, it was noted a reduced affinity of SERT in individuals 

with ADHD (Oades 2007). Due to their interaction with 5-HT, SSRIs and TCAs are the 

main line for drug treatment of ADHD, such as fluoxetine, methylphenidate (MPH) or 

buspirone, that was reported to normalize ADHD-like behavior in preadolescent rats 

(Oades 2007; Bolaños et al, 2008). 

 

 
 

1.e.4.e. Serotonin and Autism 

 
Other neuropsychiatric diseases related to the serotonergic system are disorders in the 

autism spectrum (ASDs). They are characterized by difficulties in communication, social 

interaction and repetitive or obsessive behaviors. Contrary to the other disorders 

described in here, ASDs are characterized by hyperserotonemia, or an increased level of 

5-HT in the blood in one third of autistic male adults. This contrasts to the low levels of 

the same neurotransmitter in the brain of children with ASDs (Marler et al, 2016). 

Though it is not completely understood how the serotonergic system influences the ASD 

neurobiology, it was reported that abnormalities in 5-HT neurons in the brainstem might 

lead to synaptic and network modifications in projection areas controlling social 

behavior, like the frontal cortex (Takumi et al, 2020). Studies point to the involvement of 

SERTs and some 5-HTRs, in the pathophysiology of ASDs, like 5-HT1A and 5-HT2A, 

that were reported to have a reduced binding potential in the thalamus, in the posterior 

cingulate cortex and in the fusiform gyrus (Oblak, Gibbs, and Blatt 2013). Moreover, 

SERTs were also described with lower affinity in ASDs phenotypes, postulating that any 

alteration in the normal activity of these transporters, increases the odds to develop 

ASDs-like neurobiology (X, Chen et al, 2015). Early exposure of infants to SSRIs is 

coined with an increased incidence of ASDs, due to the development of larger areas in 

the amygdala and insula regions, influencing the control of anxiety, mood states and 

social behaviors (Andalib et al, 2017). Because of this, more studies are needed to better 

understand the neurobiology of ASD to find suited pharmaceuticals for their treatment. 
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1.e.4.f. Serotonin and Schizophrenia 

 
One of the most related neuropsychiatric disorders with the administration of 

psychedelics is schizophrenia-like psychosis. This disorder is characterized by periods of 

chronic psychosis, and it distinguishes two types of symptoms. Positive symptoms relate 

to active imbalances, such as hallucinations, while negative symptoms describe lack of 

normal capacities, such as inappropriate emotional responses. Adding to these, 

schizophrenia includes impairments in cognition, attention, memory, and executive 

functions. Neurodevelopmental abnormalities of the brain and dysregulation of NTs, such 

as dopamine, in several pathways have been linked with this disorder. Recent imaging 

techniques support the idea that high 5-HT activity can disrupt brain areas such as the 

cerebral cortex, anterior cingulate cortex, and dorsolateral frontal lobe. Moreover, altered 

5-HTR, such as 5-HT1A and 5-HT2A, and SERT expression are found in schizophrenic 

patients. However, the results about the expression of 5-HT1AR are dubious (Andalib et 

al, 2017; Selvaraj et al, 2014). On the other hand, the story for 5-HT2A is a little bit more 

clear, and it has been reported that the binding potential of these receptors in the frontal 

cortex of schizophrenic patients is a lot smaller when compared to healthy brains (Aznar 

and Hervig 2016). However, Selvaraj et al, (2014) also reports a downregulation of 5- 

HT2AR in schizophrenia (Andalib et al, 2017; Selvaraj et al, 2014). Antagonists of these 

receptors, such as olanzapine and risperidone, can act in the nigrostriatal pathway, 

enhancing the release of dopamine in the striatal area, inhibiting the serotonin effect 

(Stępnicki, Kondej, and Kaczor 2018). Stahl et al. (2018) also related the hyperactivity of 

5-HT2ARs with the release of glutamate in VTA and with activity in the mesolimbic 

pathway, resulting in a load of dopamine in the ventral striatum (Stahl 2018). This points 

to a better therapeutic response when using multi-target antagonists of 5-HT2ARs and D2 

receptors, with a bigger affinity for the first class of receptors (Stępnicki, Kondej, and 

Kaczor 2018). It was also reported a possible therapeutic window with 5-HT3 and 5-HT6 

receptors, in alleviating the cognitive symptoms associated with this disorder, 5-HT5A 

and 5-HT7 receptors were also mentioned in the disruption of cognitive impairments and 

negative symptoms (Nikiforuk et al, 2016). The expression of SERT has not been linked 

to schizophrenia symptoms. Additional work is mandatory to better relate the 

neurobiology of schizophrenia with the serotonergic system to facilitate the process of 

design of more efficient anti-psychotic drugs. 
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1.e.4.g. Serotonin and Addiction 

 
Lastly, the serotonergic system is of major importance in the mediation of addictive 

behavior. Addiction is a major downfall of nowadays society, given rise to several 

neuropsychiatric disorders both during adulthood and in younger ages, due to genetic 

implications that might influence child and adolescent development. The abuse of drugs 

such as cocaine, amphetamines (AMPH), methamphetamine (METH), MDMA, morphine 

and alcohol increase the activity of extracellular serotonin (Trigo et al, 2007). This raise 

in serotonin levels, after a continuous intake of these drugs, was reported in several brain 

areas, like subcortical structures, such as Nucleus Accumbens, dorsal striatum, ventral 

pallidum, hippocampus, thalamus, VTA, amygdala and in neocortical regions, including 

frontal, prefrontal, temporal, occipital, entorhinal and perirhinal cortices. Yet the use of 

these drugs can lead to peaks of 5-HT, that in the long-term lead to a reduction of 

serotonergic activity due to an enhanced stimulation of inhibitory auto receptors (Kirby, 

Zeeb, and Winstanley 2011). Serotonergic receptors have been coined with possible 

therapeutic roles, such as the action of 5-HT1AR’s agonists, like buspirone, in the 

reduction of cocaine intake (Collins and France 2018). The blockade of other receptors 

such as 5-HT1B, 5-HT2A, 5-HT2C and 5-HT6 were reported to control drug-seeking 

behavior (Dhonnchadha et al, 2009). With this said, drugs that would interact with 

serotonergic receptors might lead to the reshape of addiction therapy. 
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2. Motivation  
 

 

It is now evident how essential it is to explore the structural changes in the serotonergic 

receptors when bound to different ligands that activate a variety of signaling pathways, 

ending in a diverse group of effects. In vitro and in vivo assessments are being developed 

on the characteristics of the binding between these psychotropics and receptors from the 

serotonin family, including the kinetics of bindings, signaling pathways that may be 

activated and the integration of this activity with certain behavioral responses, such as 

anti-addictive effects in both humans and animals. However, the structural perspective of 

this story remains poorly elusive. The release of the first crystallographic structure 

between LSD and the receptor 5-HT2B in 2017 (Wacker et al, 2017) led to a growing 

interest in the way these ligands modulate the structure of the receptors and how these 

different conformations lead to different cellular responses. In silico techniques have 

become the first choice to explore these changes, which due to their atomic scale cannot 

be assessed with wet-lab techniques. A lot has been said about psychedelics and their 

potential therapeutic effects. In the last years, the number of articles about the action of 

these compounds on the brain suffered an enormous crescendo due to the rising interest 

in the usage of these drugs as therapeutic agents in brain disorders such as depression, 

anxiety, or PTSD. At the end of 2020, a paper came out presenting a non- hallucinogenic 

analog of ibogaine (Cameron et al, 2021). Ibogaine is a naturally occurring alkaloid that 

has anti-addictive properties in both humans and animals, having the potential to treat 

addiction to various substances, including opiates, alcohol, and psychostimulants. 

However, it presents a very long hallucinogenic component and other complications, such 

as nausea and cardiac complications, which can be seen as a step-back when considering 

it as a therapeutic agent. On the other hand, tabernanthalog (TBG), the non-

hallucinogenic produced by the authors of the paper, was shown to maintain ibogaine´s 

therapeutic effects in mice without the associated risks. Comparing the effects of both 

compounds, TBG and ibogaine, may allow the answer to a hot question on psychedelic 

research: can therapeutic benefits occur without the subjective effects? If classical 

psychedelics increase neuroplasticity and decrease inflammation leading to an 

antidepressant effect, is the trip necessary? 
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Computational methods enable the study of atomistic changes, occurring in receptor- 

ligand binding, that should be taken into consideration when assessing these systems. 

This novel in silico methodology enables the design and development of better-tuned 

pharmaceuticals for the treatment of a variety of brain disorders. Besides, they reveal a 

previously unknown territory that enables the correlation between specific 

pharmacophores and cell responses. 
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3. Methods  

3.a. Homology Modelling 

 
During the past years the number of known protein structures increased a lot, However, 

only a fraction of these structures was studied at atomic resolution (Y, W, Chen 2014).  

Computational techniques can help close the existent gap between sequence and structure 

in protein modelling. Protein structure models derived from these in silico techniques 

provide valuable working sets to generate testable hypotheses. These models can be 

produced with the aid of comparative modelling methods, which rely on structural 

information from related proteins to guide the modelling procedure, or free modelling 

techniques (also known as ab initio or de novo modelling), which do not rely on related 

proteins, but instead uses a variety of methods to combine physics with the known 

behaviors of protein structures (however extremely computationally expensive) (Fiser 

2010). Comparative modelling consists of four main steps: 1) fold assignment that 

identifies overall similarity between the target sequence and at least one known structure 

(template); 2) alignment of the target sequence and the template, 3) building a model 

based on the alignment with the chosen template and 4) predicting the accuracy of the 

model. An example of a homology modelling program is the software MODELLER 

(Webb and Sali 2016). In the simplest case, the input is an alignment of a sequence to be 

modelled with the template structure, the atomic coordinates of the template, and a simple 

script file. With this, MODELLER automatically calculates a model containing all non- 

hydrogen atoms. MODELLER can also be used to perform other auxiliary functions such 

as fold assignment, alignment of two protein sequences, multiple alignment of protein 

sequences and/or structures, clustering of sequences and/or structures, and ab initio 

modelling of loops in protein structures (Eswar et al, 2003). MODELLER implements 

comparative protein structure modelling by satisfaction of spatial restraints that include: 

i) homology derived restraints on the distances and dihedral angles in the target sequence, 

extracted from its alignment with the template structures; ii) stereochemical restraints 

such as bond length and bond angle and bond angle preferences, obtained from the 

CHARMM-22 molecular mechanics' forcefield; iii) statistical preferences for dihedral 

angles and nonbonded interatomic distances, obtained from a representative set of known 

protein structures and, finally; iv) optional manually curated restraints, such as those from 

nuclear magnetic resonance (NMR) spectroscopy (M,A, Marti-Renom, et al, 2000). At 

the end of the modelling procedure, the models obtained must be evaluated to choose the 
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best ones. Several scoring systems were developed, such as: i) DOPE score (Discrete 

optimized protein energy), which is a statistical potential calculated based on atomic 

distances from a sample of native protein structures (M,-Y, Shen and Sali 2006); ii) the 

Z-Score, presented as a quality measure of the difference between the energy of a specific 

protein structure with the energy distribution calculated from random conformations of 

the protein (Wiederstein and Sippl 2007); iii) the LGscore, that is calculated based on P-

values of the protein (Cristobal et al, 2001); and iv) MaxSub, that is also a quality measure 

and is based on the identification of the maximal subset of alpha Carbons which are most 

similar to the structure obtained experimentally (Siew et al, 2000).  

 

 
 

3.b. Docking 

 
Docking can offer theoretical calculations for target-ligand binding conformation as well as 

scores of binding affinity, making it useful for both initial hit compound screening and 

computational analysis of lead compound binding patterns (Zhu et al, 2021). Rigid docking 

refers to the classic drug-ligand "lock-and-key" model, while flexible docking stems from the 

later development of "induced-fit" and "conformational selection" models.     Molecular docking 

is central in computer-aided drug design (CADD). In a general way, computational docking 

consists in the prediction of the best orientation and conformation of a small molecule (drug) 

when interacting with the target (larger macromolecule) (Khamis, Gomaa, and Ahmed 2015), 

forming a stable complex molecule. The stability of the formed complex can be inferred by 

the binding free energy, which is normally calculated by a molecular mechanics (MM) force 

field. Obtained binding free energy, other important descriptive values can be inferred, such as 

IC50 (half-maximal inhibitory concentration), Ki (inhibitor constant) or Kd (dissociation 

constant). After this, these binding descriptors are verified using experimental techniques 

(Cuccioloni et al, 2020). As a result, the computational docking offers many possible solutions, 

differing in their poses (both the ligand and the amino acids present in the receptor). With this, 

scoring functions (SF) are employed to better choose which output is the best. 

 

Every docking algorithm shares two main inputs: the tertiary structure of the target receptor, 

determined by biophysical or prediction techniques and secondly a database of potential ligands 

(small drugs). Similarly, two outputs are generated after the docking experiments: the first is 

the description of the novel ligand and the description of the most stable complex, or optimal 

binding pose (Torres et al, 2019). This last description consists of the relative orientation of 

the ligand, compared with the receptor, and the conformation of both ligand and receptor when 

bound together. Every docking protocol shares the same rationale. Starting with the input of 

the protein and ligand files (both in .pdb file format) into the docking program and followed 
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by a thorough cleaning of these files. These .pdb files format include the atom features, 

position, connectivity, among others. This step consists in assessing missing atoms, chain 

breaks, the removal of crystallographic waters and the protonation of both molecules. This 

protocol can be performed in any docking software, like AutoDock4, MOE (Molecular 

operator environment), among others (Pagadala, Syed, and Tuszynski 2017). The main 

objectives here is to correctly identify the best geometry of the ligand when inserted in the 

protein, by available methods such as Monte Carlo, Molecular Dynamics, Simulated Annealing 

or Genetic Algorithms, and to calculate the correspondent energy score and energy terms, 

functioning as descriptors for each binding pose, with scoring functions. The final step consists 

of the analyses of the docking results, through any graphical user interface (GUI), such as 

AutoDock4, AutoDock Vina or MOE. 

 

 
 

3.c. Scoring Functions 

 
Scoring functions are characterized as mathematical predictive models that score the 

binding free energy of each complex, evaluating them in a relational fashion. They 

exhibit three major functions: the first one being the determination of the best site for the 

binding and the correspondent binding poses. On the other hand, scoring functions are 

also necessary for the prediction of the absolute binding affinity between the ligand and 

the protein for lead optimizations. This search will lead to the build of the best lead for 

the design of novel pharmaceuticals, helping in the virtual screening step, identifying 

potentially novel drug leads for a given target, searching in a large ligand database 

(Schneider 2010). It is important to note that scoring functions aren’t motivated for a 

high-level theory of the physics of the system. Instead, they make a compromise between 

speed and accuracy, doing various approximations. In a general perspective, scoring 

functions should satisfy three main capabilities: scoring power, ranking power, and 

docking power (Khamis, Gomaa, and Ahmed 2015). 

 

The scoring functions are divided in three main classes: force field, empirical and 

knowledge-based SFs (Huang, Grinter, and Zou 2010). With the recent advances in 

computer science, this field has evolved a great deal, including a four class of scoring 
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functions, based in machine learning (ML). The first difference between these 

classifications is that the first three are based on the features evaluated and normally 

follow a linear regression model. While the fourth one deals with nonlinear regression 

ML methods. 

 

The physics-based scoring functions include the ones based on the force-field, solvation 

models and quantum mechanics methods. The first scoring functions were mainly based 

on the binding energy, considering the enthalpic contribution, assessing both the van der 

Waals (Evdw) and the electrostatic interaction (Eelec) shared in the complex, by the ligand 

and protein (J. Li, Fu, and Zhang 2019) (Equation 1). 

 

𝐸𝑏𝑖𝑛𝑑   =  𝐸𝑣𝑑𝑤  + 𝐸𝑒𝑙𝑒𝑐 (1) 
 

However, lacking the contribution of entropy, the scoring functions generated lacked 

accuracy. As such, it was added as a factor to Equation 1 (ΔGsolv), describing the torsion 

entropy of ligands and the solvation/desolvation effect, induced by explicit and implicit 

solvent models (Equation 2)  (Ross, Morris, and Biggin 2012). 

 

𝐸𝑏𝑖𝑛𝑑   = 𝐸𝑣𝑑𝑤 + 𝐸𝑒𝑙𝑒𝑐 +  𝛥𝐺𝑠𝑜𝑙𝑣 (2) 
 

Scoring functions continued to lack accuracy, due to the lack of information on covalent 

interactions, polarization and charged transfer in docking, which led to the development 

of quantum-mechanical based scoring functions. This new method was more accurate 

than the previous ones but with greater computational cost. Due to this last reason, hybrid 

quantum mechanical/molecular mechanics (QM/MM) approaches were developed 

(Steinmann, Olsson, and Ryde 2018) (Equation 3). 

 

𝐸𝑏𝑖𝑛𝑑   = 𝐸𝑄𝑀/𝑀𝑀   + 𝛥𝐺𝑠𝑜𝑙𝑣 (3) 

 
The second type of scoring functions consist of empirical SFs, where the binding affinity 

of a given complex is given by the sum of energetic factors, such as hydrogen bonds, 

hydrophobic effects, steric clashes, and others. Normally it is used as a training set to 

optimize the importance of the energetic factors considered, by comparing to known 

binding affinities, with the aid of linear regression analysis. An example of an empirical 

scoring function is X-score (Guedes, Pereira, and Dardenne 2018) and can be expressed 

as Equation 4. 
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𝜌∗ 

𝑖=1 

𝐸𝑏𝑖𝑛𝑑 = 𝑤0 + 𝑤1 𝛥𝐺𝑣𝑑𝑤 + 𝑤2 𝛥𝐺𝐻𝑏𝑜𝑛𝑑 + 𝑤3 𝛥𝐺𝑟𝑜𝑡  + 𝑤4 𝛥𝐺ℎ𝑦𝑑𝑟𝑜 

(4) 

 
Two main problems arise when using these types of scoring functions. The first one deals 

with the quantity and quality of the training data to optimize the complexes built. The 

other sets with the choosing of the most important energetic terms regarding the in-study 

complex. Normally this is performed by docking programs, such as AutoDock Vina 

(Trott and Olson 2010). This second type of scoring functions arises as a good option, 

due to its low computational power, a result of the simpler energy terms employed. They 

perform well binding affinities, ligand poses and virtual screening. Though they aren’t 

suited in describing how binding affinities relate to the crystal structures (Y. Li et al, 

2014). 

 

The third type of scoring function consists of knowledge-based scoring functions. They 

derive the potential pairs between the protein and ligand, present in the complexes, from 

the three-dimensional structures. This is done based on the inverse Boltzmann statistical 

principle (Gohlke, Hendlich, and Klebe 2000). This method tries to infer the distance and 

interaction (distance-dependent potential of mean force) between two atoms, by the 

frequency of each atom pair. The computational flow of this technique starts with the 

classification of atoms in both the receptor and the ligand. After forming the atom 

pairwise, it is computed the density of each pair (ρij(r)), which are then compared with 

the previously computed reference density of each atom pair ( ρ*ij ). With this it is 

possible to compute the relative density (Equation 5), leading to the atom pairwise 

potential (Equation 6) and finally obtaining the sum of all atoms pairwise potentials 

(Equation 7). 

 

𝑔(𝑟) =  
𝜌𝑖𝑗(𝑟)

 
𝑖𝑗 

(5) 

 

𝑤𝑖𝑗(𝑟) = −𝑘𝑏𝑇𝑙𝑛[𝑔(𝑟)] (6) 
 

𝐸𝑏𝑖𝑛𝑑 = ∑𝐿
 

𝑅 
𝑗=1 𝑤𝑖𝑗(𝑟) (7) 

 

with ij respective to a determined atom pair, 𝑟 the distance present between the atoms 

considered, 𝑘𝑏 is the Boltzmann constant and 𝑇 the absolute temperature. 

∑ 
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This class of scoring functions are less computationally demanding, and the predictive 

accuracy is also compromised, having these advantages when compared to the previous 

two. However, their main disadvantage centers on the localization of the reference state, 

Because of this step back, some methods were developed to overcome it, like the volume 

factor correction method (Huang and Zou 2006) and the physics-based iterative method 

(Huang and Zou 2014). They all intend to infer the reference state based on the 

distribution of the atomic pairs. This strategy is better employed to know binding 

positions, rather than binding affinities. 

 

The last from the scoring functions presented in this thesis are ML-based scoring 

functions (ML-SF). The main difference between these novel strategies and the classical 

ones, is that the first ones employ well-known mathematical functions, while ML-SF 

apply a variety of machine-learning algorithms, like support vector machine, random 

forest, neural network, or deep-learning, among others. On the other hand, the use of this 

kind of scoring improves the accuracy of the prediction of the binding poses, since they 

are used as a method of rescoring, after the use of more classical docking software 

(Khamis, Gomaa, and Ahmed 2015). 

 

The computational protocol typically is constituted by three major moments: the Data 

selection, the Data representation, and the Feature selection. Based on the Data selection, 

a training set is built that will lead the model training (where it can be applied to any ML 

model). The Data representation helps build the validation set, creating a model selection, 

with the output from the training moment. Finally, the feature selection aids on the test 

set, where the binding is predicted, giving the information of the model selection. All of 

this leads to the final step of performance evaluation (J, Li, Fu, and Zhang 2019). With 

this, ML-SFs stand as the most promising scoring functions in predicting the best drug 

candidates to be synthesized for a given molecular target. 

 

 
 

3.d. Machine Learning in drug discovery 

 
As it was stated previously, with the advances in ML techniques, scoring functions based 

on these procedures have occupied a central role in the drug discovery pipeline (C, Shen 

et al, 2020). The use of this novel scoring function came with the need of processing 

bigger amounts of data, without losing the accuracy of the predictions made. On the other 

hand, the traditional development of novel therapeutics is very time consuming, very 

expensive and with low yield. Because of this, computer-aided drug design (CADD) 

https://paperpile.com/c/2mXtKn/Qg1v4
https://paperpile.com/c/2mXtKn/WCMW3
https://paperpile.com/c/2mXtKn/F3szY
https://paperpile.com/c/2mXtKn/evJqt
https://paperpile.com/c/2mXtKn/QIeek
https://paperpile.com/c/2mXtKn/QIeek
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surged as one of the best techniques for the development of new drugs. CADD is target 

specific, automatic, structure-based, fast and presents low cost with a higher success rate. 

With this, ML methods have evolved mainly because of the need to improve the 

prediction ability of the binding affinities, when compared to traditional ones (Khamis, 

Gomaa, and Ahmed 2015).  Moreover, ML techniques are advantageous because they can 

predict the binding affinity based on some features of the in-study complex, like 

geometric features, physical force field energy terms and pharmacophore features. The 

main goal with this type of experiment is to learn the relationship between these features 

and the corresponding experimentally measured binding affinities, after the training set of 

complex molecules. We can then use this learned function to predict binding affinities of 

novel complexes, between a known protein and other drugs (Mao et al, 2021). ML 

techniques also improve the learning of non-linear dependency, giving more accurate 

predictions of the binding affinity. In a general way, ML approaches use pattern 

recognition algorithms to infer mathematical relations between empirical values. Because 

these novel models use nonlinear methods, the resulting scoring function shows a better 

performance (C, Shen et al, 2020). In a general perspective, to develop a machine 

learning based scoring function first it is necessary to design a training and a test set, 

However, it is still unclear the best way to develop them. After this, it is generated a set 

of features that describe the interactions between the protein and ligand for the complexes 

presented in the training and test sets. 

 

 
 

3.d.1. Supervised and unsupervised machine learning 

 
The first distinction made when working with ML is between supervised learning and 

unsupervised learning (“Supervised vs, Unsupervised Learning: What’s the Difference?” 

2021). The main difference between these two families of algorithms is that in supervised 

ML, the training dataset is labelled, while in unsupervised learning it is not (Alloghani et 

al, 2020). The fact that the initial data is labelled enables the use of these datasets in 

training of predictive models, used to classify predicted outcomes. This type of ML can 

be used for both Classification and Regression problems. Because of these, this type of 

ML learning is normally more accurate. The difference between these two types of 

problems will be reviewed in the next topic. On the other hand, unsupervised learning 

takes advantage of the ML algorithms to analyze and cluster data sets that are not 

labelled. These operate by looking for hidden patterns in the studied data, without the 

need of prior human intervention or labelling. Nevertheless, human intervention is still 

https://paperpile.com/c/2mXtKn/F3szY
https://paperpile.com/c/2mXtKn/F3szY
https://paperpile.com/c/2mXtKn/WlfsA
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https://paperpile.com/c/2mXtKn/85fPl
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https://paperpile.com/c/2mXtKn/H6fCm
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needed to validate the output results. These models can be used in clustering, association, 

or dimensionality reduction. Another major difference between these two types of 

algorithms is that in supervised learning, the researcher normally knows the type of 

output to expect, while in unsupervised, it is the machine itself that highlights what part 

of the data is different or interesting. Concerning the complexity, supervised methods are 

normally simpler and can be applied with Python or R programming. While, on the other 

hand, unsupervised learning asks for more complex tools due to the necessary size of the 

initial working datasets, to produce valuable results. Moreover, the main drawback of 

supervised learning is the time-consuming step of training the model and the necessity of 

a level of expertise in the labelling of the dataset and its interpretation. Moreover, 

considering unsupervised learning, these can give inaccurate results, obligating the 

human validation of the output (Alloghani et al, 2020). 

 

 
 

3.d.2. Classification vs Regression 

 
As mentioned previously, in supervised machine learning there are two subtypes of 

problems: Classification and Regression. When considering a classification problem, the 

ML algorithm tries to attribute each entry of the testset into a specific class or category. 

Because of this, it is applied to discrete data. On the other hand, in a Regression problem 

it is predicted a continuous value, based on given inputs, or descriptors, where the 

prediction is based. Machine learning methods include random forest (RF), support 

vector machine (SVM), and gaussian processes, among others. However, in this work, 

these are the methods that will be treated. 

 

The Random Forest (RF) method employs a bagging and subset strategy to multiple 

decision trees (DTs). A decision tree is a decision support tool that implements a tree-like 

model of decisions, and they can answer sequential questions leading to a certain route of 

the tree and consequently to a specific answer (Breiman 2001). They have the advantages 

of being easy to interpret, perform well on large datasets and can handle both numerical 

and categorical data. On the other hand, RF consists of a collection of decision trees 

whose results are joined into one result. The novel approach here is that each tree is fed 

with a randomly sampled subset instead of the original dataset, resulting in a consensus 

score, when integrating the multiple outputs from DTs. Some examples of scoring 

functions including RFs are RF-Score, B2BScore and SFCscore. Moreover, this RF 

methodology was applied in already existing classical scoring functions, such with Vina, 

AffiScore and X-Score (C, Shen et al, 2020). Also, most RF-based SFs are thought of as 

https://paperpile.com/c/2mXtKn/H6fCm
https://paperpile.com/c/2mXtKn/KGWVc
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the binding affinities between ligands and proteins, not being so suitable for virtual 

screening. 

 

A second machine learning set of algorithms are support vector machines (SVM) (Figure 

9). They are a group of supervised learning methods, including linear, polynomial, 

sigmoid and radial basis function (RBF), that stand out because of their capacity to treat 

high-dimensional variables in small datasets (Cortes and Vapnik 1995). They can be used 

both for classification and regression, due to its derivative support vector regression 

(SVR). The biggest advantage of this method is the implementation of kernel nonlinear 

functions that can classify data that does not have a linear representation. Kernel 

functions are defined as a method to map originally nonlinear observations into a higher- 

dimensional space, where they can be separated and assessed (Afonja 2017). This aids a 

lot in computational processing, since it facilitates calculus. Because of these 

improvements, there are a variety of different implementations of these kinds of 

functions. 

 

A third ML method applies gaussian processes to large datasets. These are described as a 

model capable of distributing the probability over a given group of functions. They are a 

collection of stochastic processes, characterized as being random variables with time and 

space indexed, that follow a multivariate normal distribution (Rasmussen and Williams 

2005). This last concept is defined as a generalization of the one-dimensionality of a 

normal distribution to higher dimensions. This kind of method enables a good data 

treatment when the sampling is uneven or if the variables present a non-linear distribution 

(C, Shen et al, 2020). 
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Figure 9. Simple representation of SVM, an optimal hyperplane separating two input groups, 

(based in (Badillo et al, 2020)). 

 

 

 
3.d.3. Performance evaluation 

 
Concerning the evaluation of these models, a variety of statistical tools are available. 

Here I will review the main statistical operators used in this project. For the assessment of 

the predictions made with a regression rationale, MAE (Mean Absolute Error) , MSE 

(Mean Square Error), R2 (Coefficient of Determination), Pearson’s Correlation 

Coefficient and Spearman’s Correlation Coefficient can be used (Kumar and Dogra 

2022). First, MAE (Equation 8) is one of the most used measures of accuracy when 

fitting ML models and measures the error between paired observations that explain the 

same phenomenon. In a prediction scenario is the error between the real value and the 

one predicted by the model. 

 

∑𝑛 |𝑦𝑜𝑏− 𝑦𝑝𝑑| ∑𝑛 |𝑒𝑖| 

𝑀𝐴𝐸 =    𝑖=1  

𝑛 =    𝑖=1  
𝑛 

(8) 

 

Next, the MSE or Mean Square Error (Equation 9) is a measure based on MAE, with the 

difference between the real value and the predicted squared. This makes MSE more 

sensitive to outliers than MAE (Trevisan 2022) and turn bigger distances heavier when 

assessing the predictive power of the model. This presents a step back since the unit of 

MSE is also squared, losing its “real-life” meaning. 

https://paperpile.com/c/2mXtKn/nGTB6
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𝑖=1 

∑𝑛    (𝑦𝑜𝑏 − 𝑦𝑝𝑑)2 

𝑀𝑆𝐸 = 𝑖=1  

𝑛 
(9) 

 

One of the most known and used measures in the determination of goodness of a specific 

predictive model is the Coefficient of Determination or R2. This is computed as shown in 

Equation 10   and can vary between 0 and 1. The bigger the value of R2 the better is the 

predictive model (Kumar and Dogra 2022).  

 

𝑅2 = 1 − 
𝑅𝑀𝑆𝐸2 

𝑉𝑎𝑟(𝑦𝑜𝑏) 
(10) 

 

with, 𝑉𝑎𝑟(𝑦𝑜𝑏)  =  ∑𝑛  (𝑦𝑜𝑏 − 𝑦𝑜𝑏)2 
𝑖=1 

 
 

and 𝑦𝑜𝑏 stands for the mean of observable values. 

 
Because it surges in Equation 10, it is important to define RMSE also. This stands for 

Root Mean Square Error and corresponds to the square root of MSE (Equation 11). It is 

also known as the standard deviation of the prediction errors; it is scale dependent and it 

is a good measure of accuracy (Kumar and Dogra 2022). 

 
∑𝑛    (𝑦𝑜𝑏 − 𝑦𝑝𝑑)2 

𝑅𝑀𝑆𝐸 = √ 𝑖=1 
 

𝑛 
(11) 

 

Another metric used is the Pearson’s Correlation Coefficient (CCp) (Equation 12.) and 

evaluates the variability between the observed and predicted values, or the consistency of 

the fitted model (Kumar and Dogra 2022). 

 

 

𝐶𝐶𝑝 = 
𝑛 
𝑖=1 (𝑦𝑜𝑏− 𝑦𝑜𝑏)(𝑦𝑝𝑑− 𝑦𝑝𝑑) 

 
(12) 

𝑛 
𝑖=1 (𝑦𝑜𝑏− 𝑦𝑜𝑏)2  √∑𝑛

 (𝑦𝑝𝑑− 𝑦𝑝𝑑)2 

 
 
 
 

Lastly, it is also normally applied the Spearman’s Correlation Coefficient (CCs) 

(Equation 13,), that stands as a non-parametric computation of CCp, meaning that the 

statistical operation doesn’t take into consideration the characteristics of the sample, such 

as its parameters or if it is a qualitative or quantitative type of data (Hayes 2008). This 

measure indicates the strength and direction of the relationship between the observed and 

predicted values. 

 

𝐶𝐶𝑠 = 𝐶𝐶𝑝 (𝑅(𝑦𝑜𝑏), 𝑅(𝑦𝑝𝑑)) (13) 

∑ 

√∑ 
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with 𝑅(𝑦𝑜𝑏), as the rank value of observed values, and the 𝑅(𝑦𝑝𝑑) as the rank of the 

predicted scores. 

On the other hand, when facing a classification problem, the statistical tools used to 

evaluate the build models are different, Here are included measures of Precision, 

Sensitivity (or Recall), Specificity, Accuracy and Cohen’s Kappa, Precision (PR) is 

defined as the mathematical measure of the positive predictive value, given by Equation 

14. It considers the number of false positives (FP), computing the negative tuples or the 

values incorrectly predicted by the model, and true positives (TP), which corresponds to 

the positive tuples, or the values correctly predicted by the model, This measure can vary 

between 0 and 1 (Kumar and Dogra 2022). Yet, tuples are defined as a finite ordered 

sequence of elements (“Tuple” 2002). 

 

𝑃𝑅 = 
𝑇𝑃

 
𝑇𝑃 + 𝐹𝑃 

(14) 

 

Secondly, Sensitivity (Sen) or recognition rate rationalizes the quantity of positive tuples 

per total predictions and is given by Equation 15. Instead of computing the false 

positives, it uses the number of false negatives, which are described as the positive tuples 

that were incorrectly predicted by the model (Kumar and Dogra 2022). 

 

𝑆𝑒𝑛 = 
𝑇𝑃

 
𝑇𝑃 + 𝐹𝑁 

(15) 

 

A third measure used in classification problems is Specificity (Spf) or true negative rate. 

Here it is the proportion of negative tuples that are rightly predicted by the model that is 

evaluated as is mathematically represented as Equation 16. 

 

𝑆𝑝𝑓 = 
𝑇𝑁

 
𝑇𝑁 + 𝐹𝑃 

(16) 

 

where TN is the number of true negatives. 

 
A different type of evaluator is Accuracy (Acc), or how much the predicted values fall 

apart from the observed ones, in percentage, taking into consideration the acceptable 

error (ε) when in the problem assumptions. This is defined as Equation 17. 

 

𝐴𝑐𝑐 = 
𝑛 
𝑖=1 𝐷𝑓𝑖 × 100 (17) 

𝑛 

 

where 𝐷𝑓𝑖 = {1, 𝑖𝑓 |𝑦𝑜𝑏 − 𝑦𝑝𝑑| ≤ 𝜀 ∨ 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒} 

∑ 
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Lastly, the Cohen’s Kappa (𝜅) is very similar to the Accuracy with the exception that is 

normalized with the baseline of random events of the dataset in study. This is a better 

accuracy measure when in the presence of imbalanced classified datasets. This can be 

defined as in Equation 18. 
 

𝜅 = 
𝑝0 − 𝑝𝑒 

1− 𝑝𝑒 
(18) 

 

with, 𝑝0 as the overall accuracy of the mode and 𝑝𝑒 is the measure of the agreement 

between the values predicted by the model and the observed values, if happening by 

chance. 

 

 
 

3.d.4. Applying Machine Learning 

 
Besides, with the crescent inclusion of informatics in life sciences, a variety of on-line 

servers were made available by investigation groups all over the world (Kern, Fehlmann, 

and Keller 2020). One of these servers is Artificial Intelligence based Scoring Function 

Platform (ASFP) (http://cadd,zju,edu,cn/asfp/), developed by Zhang et al, (2021), 

including AffiScore , AutoDock, DPOCKET, DSX, NNscore and SMoG2016 (Zhang et 

al, 2021). It is important to explain what type of features each tool gives, Affiscore 

(Equation 19) is an energetic term type descriptor, based on empirical scoring functions 

(Jain 1996). It includes a total of thirteen descriptors. These are built based on a 

hydrophobic complementarity term, a polar term, and an unsatisfied polar term. The 

firstly mentioned polar term can be described as the weighted sum of the different types 

of bonds, including protein-ligand H-Bonds, protein-ligand salt-bridges and metal-ligand 

bonds. On the other hand, the unsatisfied polar term is respected to the weighted sum of 

the number of polar atoms that are not bound to any other atom, both related to their 

identification or charge. 

 

𝛥𝐺𝑏𝑖𝑛𝑑   =  𝐸ℎ𝑦𝑑𝑟𝑜𝑝ℎ𝑜𝑏𝑖𝑐    + 𝐸𝑝𝑜𝑙𝑎𝑟   + 𝐸𝑢𝑛𝑠𝑎𝑡 (19) 

 
= 𝑤1𝑁𝑝𝑟𝑜𝑡𝑒𝑖𝑛−𝑙𝑖𝑔𝑎𝑛𝑑 ℎ𝑦𝑑𝑟𝑜𝑝ℎ𝑜𝑏𝑖𝑐 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠 + 𝑤2𝑁𝑝𝑟𝑜𝑡𝑒𝑖𝑛−𝑙𝑖𝑔𝑎𝑛𝑑 𝐻−𝑏𝑜𝑛𝑑𝑠 

 
+ 𝑤1𝑁𝑝𝑟𝑜𝑡𝑒𝑖𝑛−𝑙𝑖𝑔𝑎𝑛𝑑 𝑠𝑎𝑙𝑡−𝑏𝑟𝑖𝑑𝑔𝑒𝑠 + 𝑤4𝑁𝑚𝑒𝑡𝑎𝑙−𝑙𝑖𝑔𝑎𝑛𝑑 𝑏𝑜𝑛𝑑𝑠 

 
+ 𝑤5𝑁𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑖𝑎𝑙 𝑢𝑛𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 𝑝𝑜𝑙𝑎𝑟 𝑎𝑡𝑜𝑚𝑠 + 

𝑤6𝑁𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑖𝑎𝑙 𝑢𝑛𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 𝑐ℎ𝑎𝑟𝑔𝑒𝑑 𝑎𝑡𝑜𝑚𝑠 
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with, 𝑉  =  𝑊 ∑ ∑+ 𝑊  (𝑆 
𝑉  + 𝑆 𝑉 )𝑒 

𝑖𝑗 

𝑝𝑎𝑖𝑟 

𝑡𝑜𝑟𝑠 ∑   ∑𝑡𝑜𝑟𝑠
𝑏 𝑇𝗀𝑏 

 

The second tool analyzed was Autodock (Equation 20.) (Morris et al, 2009). This is a 

force field-based scoring function that includes six pairwise evaluations (V) and a term 

that estimates the conformational entropy, after binding (ΔSconf). These pairwise terms 

are built with contributions from dispersion/repulsion, hydrogen bonding, electrostatics 

and desolvation. 

𝛥𝐺 = (𝑉𝐿−𝐿      − 𝑉𝐿−𝐿          
) + (𝑉𝑃−𝑃     − 𝑉𝑃−𝑃         

) + (𝑉𝑃−𝐿     − 𝑉𝑃−𝐿 + ∆𝑆 
𝑏𝑜𝑢𝑛𝑑 𝑢𝑛𝑏𝑜𝑢𝑛𝑑 𝑏𝑜𝑢𝑛𝑑 𝑢𝑛𝑏𝑜𝑢𝑛𝑑 𝑏𝑜𝑢𝑛𝑑 𝑢𝑛𝑏𝑜𝑢𝑛𝑑 𝑐𝑜𝑛𝑓 

 

𝑞𝑖𝑞𝑗 

𝑒𝑙𝑒𝑐 𝑖,𝑗 𝑒(𝑟𝑖𝑗)𝑟𝑖𝑗 
𝑠𝑜𝑙 𝑖,𝑗 𝑖  𝑗 𝑗   𝑖 

(−𝑟2 /2𝜎2) 

 

+ 𝑊 ∑   (
𝐴𝑖𝑗  − 

𝐵𝑖𝑗) + 𝑊 ∑ 𝐸(𝑡)(
𝐶𝑖𝑗   − 

𝐷𝑖𝑗) (20) 
𝑣𝑑𝑤 𝑖,𝑗 12 

𝑖𝑗 
6 
𝑖𝑗 

ℎ𝑏𝑜𝑛𝑑 𝑖,𝑗 12 
𝑖𝑗 

10 
𝑖𝑗 

 

Next it also used the features obtained with DSX (Neudert and Klebe 2011). This is a 

knowledge-based scoring function that includes pair potential distance dependent, 

potential of novel torsion angles and potentials based in the solvent accessible surface. 

This score is calculated for the whole complex (protein-ligand) with Equation 21. 

 

𝑠𝑐𝑜𝑟𝑒𝑡𝑜𝑡𝑎𝑙 = 𝑊𝑝𝑠𝑐𝑜𝑟𝑒𝑝𝑎𝑖𝑟 + 𝑤𝑡𝑠𝑐𝑜𝑟𝑒𝑡𝑜𝑟𝑠 + 𝑤𝑠𝑠𝑐𝑜𝑟𝑒𝑆𝑅 (21) 

with, 𝑠𝑐𝑜𝑟𝑒𝑝𝑎𝑖𝑟 = ∑𝑎𝑖𝗀𝑃 ∑𝑎𝑗𝗀𝐿 𝑠𝑐𝑜𝑟𝑒𝐷𝑆𝑋 (𝑐(𝑎𝑖, 𝑎𝑗), 𝑟(𝑎𝑖, 𝑎𝑗)) 

 𝑠𝑐𝑜𝑟𝑒𝐷𝑆𝑋(𝑡(𝑇),𝜙(𝑡)) 
𝑠𝑐𝑜𝑟𝑒 = 

𝑛𝑇 

 

𝑠𝑐𝑜𝑟𝑒𝑆𝑅 = ∑𝑎𝗀𝑃 𝑠𝑐𝑜𝑟𝑒𝐷𝑆𝑋(𝑐(𝑎), 𝑆𝑅(𝑎)) + ∑𝑎𝗀𝐿 𝑠𝑐𝑜𝑟𝑒𝐷𝑆𝑋(𝑐(𝑎), 𝑆𝑅(𝑎)) 
𝑆𝑅 𝑆𝑅 

 

The fourth type of tool utilized was NNScore (Durrant and Andrew McCammon 2010), 

which is a knowledge-based ML-based scoring function, This method uses the same atom 

types as Autodock. The tool used in this project corresponds to the latest version, 

NNscore2.0 (Durrant and McCammon 2011b), which includes 348 features. These 

descriptors include identifiers of close contacts between protein and ligand (with a 

maximum distance of 2,5Å apart), characterization of the electrostatic interaction 

between atom types, the frequency of each atom type in the ligand and the number of 

rotatable bonds present in the small molecule. This recent version of NNscore also 

includes terms prevenient from AutoDock Vina and from BINANA (Durrant and 

McCammon 2011a). Another computational metric used was SMoG2016 (Debroise, 

Shakhnovich, and Chéron 2017). This is also a hybrid scoring function, both knowledge- 

𝑟 𝑟 𝑟 𝑟 
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https://paperpile.com/c/2mXtKn/28NFy
https://paperpile.com/c/2mXtKn/AGxAI
https://paperpile.com/c/2mXtKn/S9JZd
https://paperpile.com/c/2mXtKn/S9JZd
https://paperpile.com/c/2mXtKn/FsubO
https://paperpile.com/c/2mXtKn/FsubO


58 
 

based and empirical for protein-ligand interaction. It is composed by KBP2016 which is a 

knowledge-based potential and three additional terms representing repulsion effects, the 

number of rotatable bonds and ligand mass (Equation 22). 

 

𝐾𝐵𝑃 =  ∑ ∑ ∆𝐹(𝜎𝑝, 𝜎𝑙)𝑙𝑝 =  ∑ ∑ −𝑅𝑇𝑙𝑛
𝑓(𝜎𝑝,𝜎𝑙)

𝑓𝑟𝑒𝑓
𝑙𝑝                                                                                                    

𝑆𝑀𝑜𝐺2016 =  𝐾𝐵𝑃2016 +  0.535 ∑
𝐴𝑖𝑗

𝑟𝑖𝑗
12𝑖,𝑗  +  1.913 ×  𝑅𝑜𝑡𝑜𝑟 − 21.974𝑙𝑛(𝑚𝐿)            (22) 

 

 

Concerning the terms in the KBP equation, the p and l index stands for the atom types of 

protein and ligand, respectively. While, 𝑓(𝜎𝑝, 𝜎𝑙) stands for the frequency of contacts 

between the atoms in the pair considered, and this is compared with 𝑓𝑟𝑒𝑓 that stands for the 

same frequency in a reference state. Where 𝐴𝑖𝑗 stands por the potential term derived from 

the Lennard-Jones potential equation, computed with Amber van der Waals parameters. Yet 

R stands for the Boltzmann constant, T for absolute temperature and 𝑚𝐿 for ligand mass 

(Debroise, Shakhnovich, and Chéron 2017). 

The last descriptors used among the available by ASFP were the ones assessed by Dpocket 

(Schmidtke et al, 2010). These are presented as descriptors of the binding site, including 

measures of the ligand and binding pocket such as their respective volumes and flexibility, 

polarity score, measures of density concerning the content of alpha spheres and their 

respective characteristics, hydrophobicity, and charge scores, druggability among others. 

 

Besides reviewing the features assessed in this study is also important to describe the R 

package caret, used to train, predict, and build ML based models, with the objective of 

study, interpret and design a possible novel scoring function, specific for the evaluation and 

characterization of the specific biological system inspected in this thesis, the receptor 5-

HT2A when bound to ligands with different reported agonism. The caret (Classification and 

regression training) package is described as a set of functions for training and plotting 

classification and regression models (Kuhn 2008). It has in total 233 available models, that 

deeply facilitates the job of modelling for researchers. There are a variety of models for 

both classification and regression, but in this project, we only used models suited for both 

types of modelling. The ones applied include Bagged MARS (bagEarth), Gaussian Process 

with Polynomial Kernel (gaussprPoly), k-Nearest Neighbors (kknn), Random Forest 

(ranger, rf), Regularized Random Forest (RRF, RRFglobal), Subtractive Clustering and 

Fuzzy c-Means Rules (SBC), Support Vector Machines with Polynomial Kernel (svmPoly) 

and Support Vector Machines with Radial Basis Function Kernel (svmRadial, 

https://paperpile.com/c/2mXtKn/FsubO
https://paperpile.com/c/2mXtKn/3CXXT
https://paperpile.com/c/2mXtKn/OXHmO
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svmRadialCost). All these models have different tuning parameters that enable a different 

train and consequently different predictions. 
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4. Materials  

4.a. Homology Modelling Protocol 

 
For the modelling experiments we used the software MODELLER. Firstly, the sequence 

of 5-HT2AR was screened with PSIPRED (Buchan et al, 2013) that enables the 

prediction of secondary structures, based on the sequence of the protein. First it was 

chosen the best template for each state of activation of the receptor. This was done with 

the inspection of each structure available in the PDB (Protein Data Bank) server 

(https://www,rcsb,org/). After this the structure 6WHA (Kim et al, 2020) was used as 

template for the modelling of the 5-HT2AR in its active form and its inactive form was 

modelled using the structure 6A93 (Kimura et al, 2019) as template. Additionally in the 

active model a restriction was added in the part of the sequence corresponding to the 

extracellular loop 2 (ECL2), for the MODELLER to build it as a helix, For both states 

1000 models were built. These were evaluated with DOPE, Z-score, LGscore, MaxSub 

and the RMSD (root-mean-square deviation of atomic positions) between the models 

created and the structure that served as template. The representations of the structures 

were prepared with PyMol. 

 

 
 

4.b. Docking Protocol 

 
For the docking procedure we used the AutoDock4.0 software (Morris et al, 2009) and it 

followed a methodology like the one reported by Moreira et al. (2021) (Rosário-Ferreira 

et al. 2021). In total five different trials of docking were performed. The methodology 

was the same for every DOCK trial, For the active structures we selected the residues 

W151(3.28), I152(3.29), D155(3.32), V156(3.33), S159(3.36), L229(ECL2), V235(5.39), 

G238(5.42), S242(5.46), F332(6.44), W336(6.48), F339(6.51), F340(6.52), N343(6.55), 

V366(7.39) and G369(7.42). While for the inactive structures the flexible residues were 

W83, I84, D87, V88, S91, L161, V167, G170, S174, F221, W225, F228, F229, N232, 

V255, G258 (corresponding to the same Ballesteros Weinstein numbering) (Isberg et al, 

2015), as flexible residues. The grid box used in all trials had 70 as dimension in all 

directions of the axis (x,y,z). The center of the box was located so that all the flexible 

residues would stay inside the same. For the docking computation it was applied a 

https://paperpile.com/c/2mXtKn/stg0d
https://www.rcsb.org/
https://paperpile.com/c/2mXtKn/kqfn
https://paperpile.com/c/2mXtKn/cBp7M
https://paperpile.com/c/2mXtKn/v5bZK
https://paperpile.com/c/2mXtKn/DtBjt
https://paperpile.com/c/2mXtKn/DtBjt
https://paperpile.com/c/2mXtKn/Dd9dG
https://paperpile.com/c/2mXtKn/Dd9dG
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Genetic Algorithm (Bursulaya et al, 2003) with 200 runs, with a population size of 200, 

evaluated with a maximum of 10000000 and with 27000 as the maximum number of 

generations. After the docking experiments ended, the 200 obtained conformations were 

first visualized with the AutoDock Tools visualizer. The resulting complexes were treated 

with python scripts, developed by the group. The assessment and evaluation of the 

resulting complexes were performed with the ASFP (http://cadd.zju.edu.cn/asfp/). 

 

 
 

4.c. ML Protocol 

 
After obtaining the respective table for each complex, grouped by DOCK, the results 

were summed in a single table (sum_dockings_features_final,xlsx). This table included 

all the features available from the following tools: AffiScore, AutoDock, DPOCKET, 

DSX, NNscore, SMoG2016, in addition to two more columns. One corresponds to the 

values of RMSD, measured by a self-made python script (Euclidian_distances.py, C2 in 

Additional information). These RMSD values were calculated compared with the 

crystallographic structure of 5-HT2AR in its active state (6WHA, PDB:ID), when bound 

with the agonist 25CN-NBOH. The second was a novel column created afterwards 

including a factorial classifier with four levels: 1, for complexes with RMSD lower or 

equal than five; 2, if the RMSD was between five and six; 3, for RMSD between six and 

eight; and 4 if RMSD was bigger than eight. In Rstudio, the variables with near zero 

variance were removed, which led to the complete elimination of columns containing 

NAs. Also, variables that exhibited very low variance were removed: 

number_of_interfacial_unsatisfied_charged_atoms, polar_componet_term, lat_OA and 

rot_bonds. With this the final working table was left with 61 features. The working 

dataset was partitioned with a p = 0,8, making the trainData with 800 rows and the 

testData with 199 rows. The X and Y data were saved, where the column referent to 

RMSD and RMSD2 were assigned as the y_data and y1_data, respectively, for both train 

and testData. Moreover, both datasets were preprocessed, being centered (by the mean 

subtraction) and scaled (divided by the standard deviation), transforming the variables. 

Finally, the previously stored Y columns were added to the tables. Before the modelling 

trials it was created a control dataset, with the repeatedcv method, three repeats with five 

numbers each. The models tested in this thesis were: avNNET, bagEarth, bayesglm, brnn, 

BstLm, cforest, ctree, ctree2, cubist, earth, enet, gaussprLinear, gaussprPoly, 

gaussprRadial, gcvEarth, glm, glmboost, glmnet, icr, kernelpls, kknn, knn, krlsRadial, 

lars, lasso, leapForward, leapSeq, lm, mlpWeightDecay, partDSA, pcaNNet, pcr, 

https://paperpile.com/c/2mXtKn/m1KC2
http://cadd.zju.edu.cn/asfp/
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plsRglm, ppr, qrf, ranger, rbfDDA, rf, ridge, rqlasso, rqnc, RRF, RRFlobal, rvmRadial, 

SBC, simples, spls, svmLinear2, svmPoly, svmRadial, svmRadialCost. The results were 

compared based on available performance evaluation metrics, different for the regression 

and for classification. Next, the best models were applied for both regression and 

classification. The regression problem was divided in two trials, the first considering 61 

features, while the second trial also assessed dummy variables. On the other hand, for the 

classification problem, it was only considered the sixty-one features available. With this 

the complexes were classified with a first class (RMSD2), that aided on the second 

classification, between active and non-active structure. Yet, the results of both the 

classification problem and the most important features in the predictive model were 

plotted together to better visualize their co-dependence. 
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5. Results and Discussion  

5.a. Modelling results 

 
As stated in the protocol, the GPCRdb server (https://gpcrdb,org/) was inspected to gather 

the available models of 5-HT2A receptor. By the time it was assessed, there were five 

available crystallographic structures, with the following PDB-IDs: 6WGT (Kim et al, 

2020) , 6WH4 (Kim et al, 2020), 6A94 (Kimura et al, 2019) , 6A93 (Kimura et al, 2019) 

and 6WHA (Kim et al, 2020) (Figure 10.). The first four being inactive structures and the 

fifth the only active structure of the in-study receptor, available in the entire database. 

This represents one of the main motivations to develop the presented predictive model. 

 

 

Figure 10. Structures obtained through crystallography of the receptor 5-HT2A, bound to 

different ligands (in red): 6WGT (with LSD), 6WHA (with 25CN-NBOH) and 6WH4 (with 

methiothepin) (in order). 

 

Although being extremely helpful in understanding the receptor structure, due to the 

process of crystallization, some of this structural information was missing. For this 

reason, it was necessary to model both activation states of the 5-HT2AR. To build the 

most reliable model it was considered the most recent advances in the knowledge about 

the structure of this receptor. With that in mind, both models included the H8, an 

intracellular amphipathic helix (Zięba et al, 2021). After inspecting the results obtained 

with PSIPRED it was possible to point sequence areas that should be modelled as helix 

(Figure 11.). According to the Uniprot information three regions have been identified, 

comprising the 155-160 positions, here denominated as Region 1 with affinity for agonist 

binding, the Region 2 comprising the residues between 336-340, also reported as a 

possible intermediate for agonist binding and the Region 3 with a disordered presentation, 

https://gpcrdb.org/
https://paperpile.com/c/2mXtKn/kqfn
https://paperpile.com/c/2mXtKn/kqfn
https://paperpile.com/c/2mXtKn/kqfn
https://paperpile.com/c/2mXtKn/cBp7M
https://paperpile.com/c/2mXtKn/cBp7M
https://paperpile.com/c/2mXtKn/kqfn
https://paperpile.com/c/2mXtKn/TMqzq
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between the residues 450 and 471. Moreover, three domains are identified: Motif 1, 

between the residues 172-174 and described as a DRY motif, important in ligand induced 

conformational changes; the Motif 2 , which is a NPxxY motif also involved in 

conformational changes induced by the ligand and possibly in signaling associated 

alterations, defined from the residue 376 to the residue 380; and the Motif 3 between the 

residue 469 and 471, characterized as a PDZ domain, important in binding. Comparing 

these reports, it highlights the importance of the secondary structure for the receptor to 

interact or induce a certain response. During the Homology Modelling protocol, it was 

assured that all these secondary structures were modelled to obtain more trustworthy 

results. The built models were assessed with more than one score to assure an optimal 

structure to follow with, For the data treatment, all scores were summed in tables, as 

shown in Table 1. and 2. The first ten chosen models were selected based on the value of 

DOPE score, present in a crescent manner. For this score, the lower the value, the lower 

the energy value from the model created (M,-Y, Shen and Sali 2006), corresponding to a 

more stable theoretical model. The same rationale is adopted when evaluating the values 

in Z-score (Wiederstein and Sippl 2007). Concerning both LGscore and MaxSub, both 

are quality measures based on statistics, and so we looked for the biggest values 

(Cristobal et al, 2001), (Siew et al, 2000). Considered all these the model #811 was 

chosen as active model and the model #697 as the inactive model, marked in yellow on 

the tables below. 

 

 

 

 

Figure 11, PSIPRED results, and prediction of secondary structures present in the 5-HT2A 

receptor 

https://paperpile.com/c/2mXtKn/L0Ete
https://paperpile.com/c/2mXtKn/Ha7IR
https://paperpile.com/c/2mXtKn/V62Tw
https://paperpile.com/c/2mXtKn/V62Tw
https://paperpile.com/c/2mXtKn/pDtu3
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#model 

 
molpdf 

 
DOPE 

 
RMSD 

w/6wha 

 
Z-score 

 
Lgscore 

 
MaxSub 

 
#811 

 
1687,53 

 
-46434,27 

 
0,17 

 
-2,57 

 
9,34 

 
-0,38 

 
#423 

 
1712,94 

 
-46429,50 

 
0,13 

 
-2,55 

 
9,22 

 
-0,37 

 
#109 

 
1537,62 

 
-46379,99 

 
0,11 

 
-2,66 

 
9,21 

 
-0,38 

 
#929 

 
1660,29 

 
-46333,35 

 
0,19 

 
-2,72 

 
9,27 

 
-0,36 

 
#78 

 
162846 

 
-46287,25 

 
0,13 

 
-2,66 

 
9,12 

 
-0,37 

 
#794 

 
1609,40 

 
-46258,04 

 
0,13 

 
-2,75 

 
9,28 

 
-0,36 

 
#467 

 
1740,53 

 
-46168,50 

 
0,14 

 
-2,77 

 
9,34 

 
-0,37 

 
#822 

 
1772,48 

 
-46141,45 

 
0,11 

 
-2,35 

 
9,25 

 
-0,37 

 
#542 

 
1662,86 

 
-46127,05 

 
0,17 

 
-2,76 

 
9,21 

 
-0,39 

 
#813 

 
1706,77 

 
-46052,36 

 
0,16 

 
-2,62 

 
9,20 

 
-0,37 

 

Table 1, Table with ten best active models for 5-HT2A assessed with the scores 

displayed, 

 

 
 

 
model# 

 
molpdf 

 
DOPE 

 
RMSD 

w/6a93 

 
Zscore 

 
Lgscore 

 
MaxSub 

 
#388 

 
834,64 

 
-40765,69 

 
1,47 

 
0,12 

 
-4,08 

 
9,11 

 
#46 

 
849,10 

 
-40731,52 

 
1,47 

 
0,10 

 
-4,14 

 
9,13 
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#697 

 
849,41 

 
-40705,43 

 
1,50 

 
0,09 

 
-4,19 

 
9,21 

 
#715 

 
827,52 

 
-40687,52 

 
1,47 

 
0,12 

 
-4,07 

 
9,11 

 
#291 

 
832,69 

 
-40684,30 

 
1,58 

 
0,09 

 
-4,18 

 
9,07 

 
#294 

 
882,53 

 
-40672,17 

 
1,49 

 
0,10 

 
-4,16 

 
9,24 

 
#189 

 
850,84 

 
-40651,59 

 
1,51 

 
0,11 

 
-4,06 

 
9,29 

 
#671 

 
826,38 

 
-40639,30 

 
1,50 

 
0,08 

 
-4,07 

 
9,18 

 
#576 

 
868,10 

 
-40637,94 

 
1,52 

 
0,11 

 
-4,12 

 
9,15 

 
#763 

 
860,81 

 
-40635,65 

 
1,48 

 
0,11 

 
-4,03 

 
9,25 

 

Table 2, Table with ten best inactive models for 5-HT2A assessed with the scores 

displayed, 

 

 

 

 

 
5.b. Docking results 

 
The first dock (DOCK1) corresponds to the binding of 25CN-NBOH, which is an agonist 

of 5-HT2AR, and therefore docked against the model previously built of the active state 

of the receptor. The DOCK2 corresponds to the docking between LSD, which is a partial 

agonist of the in-study receptor and was bound to the inactive state of the built model. 

Moreover, the third dock (DOCK3) binds again LSD but, for a proof-of-concept 

rationale, to the structure with the PDB-ID 6WGT. The DOCK4 bound methiothepin, an 

inverse agonist of 5-HT2AR, to the PDB structure 6WH4, with the receptor in its inactive 

state. Finally, the DOCK5 also docks methiothepin but with the inactive built model. The 

protocol started with the upload of both the ligand and protein file, both in .pdb file 

format (Figure 12, 13 and 14). 
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Figure 12. Representation of the binding pocket present in the crystallized structure 6WH4 

(PDB,ID), with 5-HT2A in its inactive site, bound with methiothepin (pink). It also represented 

the residues (also in Pink) present within 5 Å from methiothepin, establishing polar contacts with 

the ligand, (in PyMOL). 

 

 

 

 

 
 

 

 

Figure 13. Representation of the binding pocket present in the crystallized structure 6WHA 

(PDB,ID), with 5-HT2A in its active site, bound with 25CN-NBOH (white). It also represented 
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the residues (green) present within 5Å from 25-CN-NBOH, establishing polar contacts (in 

PyMOL). 

 

 

 

 
 

 

 

 
Figure 14. Representation of the binding pocket present in the crystallized structure 6WGT 

(PDB,ID), with 5-HT2A in its active site, bound with LSD (white). It also represented the 

residues (blue) present within 5 Å from LSD, establishing polar contacts (in yellow) with 

PyMOL. 

 

After the upload of the ligand, it was necessary to determine the number of rotatable 

bonds present in the molecule. This is an important step to obtain results nearer to reality, 

concerning the ligand pose after the binding. A novel step in up-coming protocols would 

be to select individual bonds as routable and assess the different poses of both the ligand 

and protein, and how they influence the final complex conformation. These would give 

important data for a more sensitive drug design. For all the ligands present in this study, 

all the rotatable bonds were kept on the compounds (Figure 15.). Afterwards, it was 

necessary to prepare the uploaded macromolecule. First, all the residues of the protein 

were selected for the addition of hydrogens to the available spots. This step is important 

for the correct attribution of Gasteiger partial charges (Morris and Lim-Wilby 2008). Then 

it was necessary to select the residues that were thought to be flexible. These residues 

were chosen based on the structural information provided by Kimura et al (2019) and 

Kim et al (2020) (Kimura et al, 2019), (Kim et al, 2020). The complexes, containing the 

docking information were prepared by adding the rigid struture of the receptor with the 

docking conformation file, containing the positional information of the flexible residues 

https://paperpile.com/c/2mXtKn/lnM2L
https://paperpile.com/c/2mXtKn/cBp7M
https://paperpile.com/c/2mXtKn/kqfn
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and the pose of the docked ligand, with a self-designed python script (cut_66.py, C.S.1 in 

additional information). With the complexes built, it was necessary to rank them by 

similarity with experimentally reported structures. For this it was calculated the RMSD of 

each complex, in comparison with the PDB structure 6WHA, the receptor in its active 

state. This step was carried out with a self-made python script (euclidian_distance.py, 

C.S.2 in additional information), which facilitated the process of attributing this value to 

the 200 complexes created, per DOCK. Because it was intended to gather the biggest 

number of descriptors about the interaction in this study, each complex was edited to 

obtain two files, one with the receptor (with its bound conformation) and the other with 

the positional information of the ligand. This again was facilitated by the development of 

a python script (scissors.py, C.S.3 in additional information). This was an essential step 

because we needed to load the complexes in the server provided by Zhang et al. (2021) 

available at http://cadd,zju,edu,cn/asfp/ (Zhang et al. 2021). The complexes were then 

evaluated by some tools present on the online server: AffiScore, AutoDock, DPOCKET, 

DSX, NNscore, and SMoG2016 (Zhang et al. 2021). These correspond to the tools 

available without license restriction. 

 

 

 

 

 

 
Figure 15. Ligand structures: LSD, 25CN-NBOH and methiothepin (in order) (in PyMOL). 

 

 

 

 
5.c. ML results 

 
Before the modelling trial per se, it was necessary to visualize which features were 

discrete or continuous. This was an important step to choose the features that should be 

transformed into dummy variables. With this it was decided to make two trials, one 

without these categorical variables and the other with these features as dummy variables. 

For that, all the features were plotted in a Scatterplot (SI.2.). By visual inspection of 

the mentioned graph, the features “number_of_interfacial_unsatisfied_charged_atoms”, 

http://cadd.zju.edu.cn/asfp/
https://paperpile.com/c/2mXtKn/vAtny
https://paperpile.com/c/2mXtKn/vAtny
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“Polar_component_Term”, “lat_OA'' and “rot_bonds'' were eliminated, for the first trial. 

To choose the best model for prediction, a first evaluation with the models described in 

ML Protocol was conducted. The results from these first trials, for both the train and 

testData are represented in Table 3. For this exploratory first trial it was employed the 

“boot632” method of resampling, which is an improved cross-validation method (Efron 

1983).  When analyzing the following table, we first inspected the values of R2. Moreover 

R2> 0,90 was selected as the criteria to choose the best models to continue the modeling 

trials. The models selected are marked as yellow in Table 3, being bagEarth, gaussprPoly, 

kknn, qrf, ranger, rf, RRF, RRFglobal, SBC, svmPoly, svmRadial and svmRadialCost 

This first selection of the models to use, was the first step in tuning the predictive model, 

 

 

 

 
TRAIN    TEST   

 
Caret_model 

 
RMSE 

 
R2 

 
MAE 

 
RMSE 

 
R2 

 
MAE 

 
bagEarth 

 
1,44 

 
0,94 

 
1,00 

 
1,74 

 
0,92 

 
1,10 

 
gaussprPoly 

 
1,63 

 
0,92 

 
1,16 

 
1,76 

 
0,91 

 
1,20 

 
gaussprRadial 

 
2,00 

 
0,89 

 
1,23 

 
2,39 

 
0,86 

 
1,54 

 
kknn 

 
1,72 

 
0,91 

 
0,97 

 
1,52 

 
0,93 

 
0,98 

 
qrf 

 
1,18 

 
0,96 

 
0,79 

 
1,34 

 
0,95 

 
0,89 

 
ranger 

 
1,07 

 
0,97 

 
0,76 

 
1,39 

 
0,94 

 
0,97 

 
rf 

 
1,22 

 
0,96 

 
0,83 

 
1,40 

 
0,94 

 
0,94 

https://paperpile.com/c/2mXtKn/x5yQ
https://paperpile.com/c/2mXtKn/x5yQ
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Table 3. Statistical metrics on the first trials of training and prediction data on the enunciated 

models. 

 

 

The chosen models were then used to train and test the same dataset. However, for the results 

presented in Table 4., the method used for resampling the control data was       “repeatedcv”, which 

stands for repeated random sub-sampling validation, meaning that the division between train 

and test is done in a random fashion (Efron 1983; “Cross- Validation (statistics)” 2003). In 

order to best choose a possible model for prediction, the values were statistical assessed with 

mean absolute error (MAE), mean square error (MSE), coefficient of determination (R2), root 

mean square error (RMSE), Pearson’s correlation coefficient (CCp) and Spearman’s correlation 

coefficient (CCs). The results are presented in Table 4, for the computation without dummy 

variables and the data in Table 5, counts with this type of variable. 

 
RRF 

 
1,24 

 
0,95 

 
0,84 

 
1,87 

 
0,94 

 
0,96 

 
RRFglobal 

 
1,23 

 
0,96 

 
0,83 

 
1,34 

 
0,95 

 
0,92 

 
SBC 

 
1,53 

 
0,93 

 
0,89 

 
1,66 

 
0,92 

 
1,03 

 
svmPoly 

 
2,30 

 
0,85 

 
1,55 

 
1,80 

 
0,91 

 
1,24 

 
svmRadial 

 
1,59 

 
0,93 

 
1,04 

 
1,88 

 
0,90 

 
1,30 

 
svmRadialCost 

 
1,55 

 
0,93 

 
1,03 

 
1,90 

 
0,90 

 
1,32 

https://paperpile.com/c/2mXtKn/x5yQ%2BBVhu
https://paperpile.com/c/2mXtKn/x5yQ%2BBVhu
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Model 

 
MA

E 

 
MSE 

 
RMSE 

 
R2 

 
CCp 

 
CCs 

 
bagEarth 

 
0,83 

 
0,86 

 
1,40 

 
0,94 

 
0,97 

 
0,94 

 
gaussprPoly 

 
0,67 

 
0,86 

 
0,93 

 
0,97 

 
0,99 

 
0,92 

 
kknn 

 
0,78 

 
1,94 

 
1,39 

 
0,94 

 
0,97 

 
0,94 

 
qrf 

 
0,57 

 
1,04 

 
1,02 

 
0,97 

 
0,98 

 
0,96 

 
ranger 

 
0,57 

 
1,04 

 
1,02 

 
0,97 

 
0,99 

 
0,96 

 
rf 

 
0,60 

 
1,10 

 
1,05 

 
0,97 

 
0,98 

 
0,96 

 
RRF 

 
0,65 

 
1,33 

 
1,15 

 
0,96 

 
0,98 

 
0,96 

 
RRFglobal 

 
0,60 

 
1,10 

 
1,05 

 
0,97 

 
0,98 

 
0,96 

 
svmPoly 

 
0,81 

 
1,46 

 
1,21 

 
0,95 

 
0,98 

 
0,91 

 
svmRadial 

 
0,81 

 
1,44 

 
1,20 

 
0,96 

 
0,98 

 
0,89 

 
svmRadialCost 

 
0,81 

 
1,44 

 
1,20 

 
0,96 

 
0,98 

 
0,87 

 

Table 4. Statistical assessment on the predictions made by the predictive regression 

models, in the first trial. 

 

 

Firstly, inspecting the R2 value for each model, the RF based models were the ones 

presenting the best correlation between predicted and real values.  Secondly, when 

looking at the lowest value of MAE, qrf surges as the most accurate model. To better 

understand which were the features with biggest importance in the modelling processing, 

it was plotted the varImp information, a function available in the caret package, as in 

Figure 16. Yet, it was only plotted the importance of the features with more that 50 of 

importance in the model building, to better visualize the data. The most important feature 
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reported was vina_guass_2, computed by the NNScore2.0 algorithm. According to the 

authors, Trott et al, (Trott and Olson 2010), this is computed as presented in Equation 23, 

and it represents the second steric term available in the Autodock Vina algorithm. 

 

gauss1(d) =e(-d/0,5A)2 (23) 

 
with, repulsion(d) = d2, if d < 0 ∨ 0, if d ≥ 0 , where d defines the distance between the 

atoms of the pair being assessed, 

 

Secondly, SMoG2016_KBP2016 was evaluated as the second most important feature on 

the prediction procedure. This function computes the interaction between protein and 

ligand atom types, calculating the binding energy characteristic of the binding. This can 

be used to infer enthalpic and entropic factors, by relation with repulsion effects, the 

number of rotatable bonds and ligand mass. 

 

 

 

Figure 16. Features with more than sixty of importance, when computing the prediction model 

with qrf. 

 

The next two features considered valuable in the prediction were two variables given by 

AutoDock, estat and dsolv. This represents the electrostatic and desolvation contribution 

respectively, as shown in Equation 9. Moreover, characteristics from the binding pocket 

Vina_gauss_2 

SMoG_2016 

dsolv 

estat 

Hydrophobicity_score 

Prop_polar_atom 

https://paperpile.com/c/2mXtKn/UyQbL
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were also important in the prediction of the RMSD presented by the complexes. These 

include the proportion of polar atoms (prop_polar_atm), the hydrophobicity score, that 

takes into consideration the mean hydrophobicity score for all residues presented in the 

binding pocket and the number of serine residues present in the binding site, was also 

considered important for the RMSD prediction. Lastly, with a smaller importance, the 

orientation_score, the siteflex_sidechain_alpha and vina_gauss_1 were also taken into 

consideration. Considering the other best predictive model, ranger, it exhibits a bigger 

Pearson’s correlation coefficient. When inspecting the variables deemed as most 

important (Figure 17.), in this case the model only considered the number of serine 

residues present in the binding pocket, as influential in the RMSD prediction. 

 

 

 
 

Figure 17, Features with more than sixty of importance, when computing the prediction model 

with ranger. 

 

Although showing a bigger Pearson’s correlation coefficient, the fact that ranger only 

took into consideration the number of Serines present in the active site diminishes the 

predictive power of the model. Though, it indicates that the ratio of certain residues 

present in active sites is, probably, the most decisive feature when trying to classify 

protein-ligand interaction. Meaning that these can become good measures in predicting a 

possible interaction between the receptor in study and small molecules. 

 

 

SER 
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To obtain a visual inspection on the predictive power of the model, the predicted values 

were plotted against the real, observed values, for both models (Figure 18 and 19). 

 

 

 

 
 

Figure 18. Predicted values plotted against real values, in the first trial for the regression 

problem, with the ranger model. 

 

Figure 19. Predicted values plotted against real values, in the first trial for the regression problem, 

with the qrf model. 
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When analyzing the results from the second trial, with the computed dummies, the model 

ranger presents the biggest R2 value. When assessing the other predictive evaluators, such 

as MAE, MSE and RMSE, ranger also exhibits a lesser error rate when compared to other 

good models, such as qrf (Table 5.). 

 

 
 

 
Model 

 
MAE 

 
MSE 

 
RMSE 

 
R2 

 
CCp 

 
CCs 

 
bagEarth 

 
0,79 

 
1,71 

 
1,31 

 
0,95 

 
0,97 

 
0,92 

 
gaussprPoly 

 
0,68 

 
1,18 

 
1,09 

 
0,97 

 
0,98 

 
0,92 

 
kknn 

 
0,78 

 
1,63 

 
1,27 

 
0,95 

 
0,98 

 
0,88 

 
qrf 

 
0,53 

 
0,99 

 
0,99 

 
0,97 

 
0,99 

 
0,96 

 
ranger 

 
0,50 

 
0,72 

 
0,85 

 
0,98 

 
0,99 

 
0,96 

 
rf 

 
0,56 

 
1,00 

 
1,00 

 
0,97 

 
0,99 

 
0,96 

 
RRF 

 
0,57 

 
0,99 

 
0,99 

 
0,97 

 
0,99 

 
0,96 

 
RRFglobal 

 
0,58 

 
1,03 

 
1,02 

 
0,97 

 
0,98 

 
0,96 

 
svmPoly 

 
0,72 

 
1,26 

 
1,12 

 
0,96 

 
0,98 

 
0,90 

 
svmRadial 

 
0,78 

 
1,42 

 
1,19 

 
0,96 

 
0,98 

 
0,89 

 
svmRadialC 

 
0,78 

 
1,40 

 
1,18 

 
0,96 

 
0,98 

 
0,89 

 

Table 5. Statistical assessment on the predictions made by the predictive regression 

models, in the second trial with dummies. 
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Similarly, to the first trial, without the dummy variables, we plotted the most important 

variables in the construction of the predictive model. Assessing the qrf model first, it is 

notorious that mostly the same features, as in the first trial, were selected. Because the 

dummy variables transform discrete values into the probability of assuming the same 

value, when compared to the other assessments relative to the same variable, the TYR.0 

was also plotted in this graph. Meaning that the model used the build dummy variable, 

relative to the presence of tyrosines, to predict RMSD With this said, vina_gauss_2, 

SMoG2016_KBP2016, estat, dsolv, hydrophobicity_score and prop_polar_atm continue 

to be the most important features in the prediction of the complexes’ RMSD (Figure 20). 

 

 

Figure 20. Features with more than sixty of importance, when computing the prediction model 

with qrf, during the second trial, with dummy variables. 

Vina_gauss_2 

SMoG2016 

estat 

dsolv 

Hydrophobicity_score 

Prop_polar_atom 
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Figure 21. Features assessed with bigger importance, when computing the prediction model with 

ranger, during the second trial, with dummy variables. 

 
The same happens for the ranger model. Though this last model attributes more 

importance to the number of tyrosines and serines present in the binding pocket (Figure 

21.). This supports the previous stated hypothesis, stating that the number of specific 

residues in the active site is a good predictor on where the receptor might bind, and how 

it can influence the activation state of the receptor, after the binding with a family of 

ligands. This can give some leads on possible ligands’ pharmacophores, that would 

potentiate or induce a conformational shift on areas of the receptor with a bigger ratio of 

specific residues, such as serine or tyrosine. 

 

On the other hand, from a classification perspective, five models arise with an accuracy 

of 1: bagEarth, ranger, rf, RRF and RRFglobal. For the first trial on the class prediction, it 

was considered four classes: 1, 2, 3, 4. Since the RMSD was calculated with the structure 

6WHA as reference, the values obtained can be considered as a measure of the 

“activeness” of the receptor, where complexes with a RMSD lower that 5 Å are included 

in class 1, complexes reported with a RMSD lower than 6 Å are stored as class 2, if the 

RMSD is between 6 Å and 8 Å it belongs to class 3 and, lastly, if it shows a RMSD 

bigger than 8 Å it is considered a class 4 complex. With this said, complexes classified 
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with class 1 are considered active, and the more they fall into class 4, the more inactive 

the structure should be (Figure 22.). 

 

 
 

~active ~inactive 

 
|  | 

RMSD < 5 RMSD >> 5 

RMSD2 =1 — 2 — 3 — 4 

 

 

 
Figure 22. Scheme of the classification assessment. 

 

 

 
On the other hand, the second trial of classification takes advantage from the previously created 

classes, and inserts a new class: 1, if it is an Active structure, only considered if the complex is 

located within class 1, and 0, if it is a Non-active structure, considered if the complex is 

evaluated with a class different than 1. 

 

To get a better sense on how the different variables influence the class attribution to each 

complex, the features defined as most important in the modelling procedure were plotted 

against the classes available. To get a better visualization, values were normalized. In Figure 

22, the comparison is made against the four classes created, while in Figure 23, the features 

are presented against the predicted state. By visual inspection of Figure 23, it is possible to 

conclude that complexes classified as “Active” are more concentrated near Y (value) = 0. The 

same happens for complexes inserted in class 1 and class 2. From this, it is notorious the 

sensitivity of the predictive model presented in assessing the activation state from the studied 

complexes. Although this can also mean that the model needs better tuning, since it can be 

biased toward the Active class. Moreover, this can help building thresholds for the features 

assessed in future predictive models, setting boundaries for the same, to choose best possible 

complexes, when studying a big starting set of structures. 
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Figure 22. Parallel coordinates chart between the features with bigger importance in the 

predictive model and the class RMSD2. 

 

 

 
 

 

Figure 23. Parallel coordinates chart between the features with bigger importance in the 

predictive model and the class State. 

 

 

To validate the predictive RMSD values by the best model, qrf, it was visually inspected the 

complex labelled with the lowest value of RMSD, with a value of 4.42. This complex 

corresponded to the one produced during DOCK2, indexed as complex #41. This second 

trial in the docking experiment was made between LSD, reported as a partial agonist of 5- 
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HT2A (Kim et al, 2020), and the self-made model of the inactive state of the in-study 

receptor. With the aid of PyMOL software it was inspected the residues that had their 

flexible chain within 5 Å from the ligand. After this the polar contacts between these 

sidechains and the small molecule were represented, shown in yellow in Figure 20. The 

same protocol was followed with the 6WHA structure, being this the reference structure for 

the RMSD’s observable values computation. Both binding pockets (BP) are represented in 

Figure 24, where the BP from complex #41 is colored in green, while 6WHA is painted in 

blue. By labelling the interacting residues it is concluded that in both structures the residue 

ASP155(3.32) (in the inactive structure corresponding to ASP87) interacts with both 

ligands, by its acidic carboxylic group. This highlights the conservative action of this 

specific residue on the binding between 5-HT2A and small ligands. Moreover, in the 

complex #41 BP the residue TYR259 was reported as an interacting residue, although not 

included in the flexible residues list while in the Docking experiments, indicating a possible 

role for this residue in the interaction of 5- HT2A with LSD. Though, when binding 25CN-

NBOH, it is the residue SER159 that pulls the ligand into the binding pocket, already 

reported as a flexible residue. On the other hand, this result validates the predictive capacity 

of qrf-based model in computing a trustable RMSD value. Because, although in DOCK2 it 

was docked an inactive structure of the receptor, after the binding (docking) with a partial 

agonist, the model correctly labelled the complex #41 as active (RMSD2 = 1, RMSD = 

4.42). Moreover, it is important to highlight that this classification was based on physical 

features used as predictors. 

 

 

 

https://paperpile.com/c/2mXtKn/kqfn
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Figure 24. Comparison between the binding pocket of complex #41 (in green), calculated in 

DOCK2, with the binding pocket of the 6WHA structure (in blue), used as reference in the 

calculus of the observable RMSD, (in PyMOL). 
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6. Conclusions and Future Perspectives  
 

With this project it was possible the solidification of some knowledge and the initial 

setting for the development of a predictive classification model on the state of activeness 

of the 5-HT2A receptor, when bound to small ligands, such as the psychedelics reviewed 

in this work. Firstly, with the performance evaluation of the used models, the ones based 

in RF, such as ranger and qrf, exhibited the most accurate results, when comparing the 

predictive values with the observed ones. Moreover, and the most valuable information 

produced in this work, it was possible to highlight the most important features used by 

the ML algorithms when predicting the RMSD values of the tested complexes. These 

include vina_gauss_2, a repulsion/steric term; SMoG2016, that represents the binding 

energy between protein and ligand and considers the interaction between the protein and 

ligand atoms, by computing enthalpic and entropic factors, related with repulsion effects, 

rotatable bonds and ligand mass; estat and dsolv, defined as measures of electrostatic and 

desolvation contributions, respectively; prop_polar_atm, presented as a value of the 

proportion of polar atoms in the binding pocket; hydrophobicity_score, resulting from the 

mean assessed hydrophobicity score of each residue present in the active site of the 

protein, and considered as a global measure of the pocket; and finally the number of 

certain types of residues, like serine (SER) and tyrosine (TYR), present in the interaction 

site. All these points to the importance of hindrance interactions between ligand and 

receptor in the binding decision. Moreover, these results enable the design of predictive 

ML models, computing these features, delimited by defined thresholds. This asks for a 

better characterization of these features and how they are influenced by other molecular 

characteristics, such as type of atoms/residues, kinetics, and types of intervenient bonds. 

Yet, more refined computational and mathematical tools are necessary, such as the 

exploration of other ML algorithms, such as Deep Neural Networks (DNN) and Artificial 

Neural Networks (ANN), or the computation of quantum mechanical factors. This line of 

methodology presents itself as a valuable endeavor, since a novel predictive model on the 

activeness state of the 5HT2A receptor can help design novel drugs, based on their 

physical characteristics, without the necessity of synthesizing them and test them in living 

systems, lowering both the cost and time duration of future projects. Yet, this rationale in 

drug design and development enables a new categorization of novel ligands, based on 
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their agonism with the studied receptor. This would be an approach to apply in other 

family receptors. 

On the other hand, as it was highlighted in this thesis, a lot of novel work has been 

developed concerning the therapeutic effect of psychedelics. It is mandatory a functional 

reassessment of these substances, taking into consideration these recent findings 

(McCartney, McGovern, and De Foe 2022). 

At the same time, the advances in computational techniques enabled a better 

understanding of structural modulations in the receptors with affinity for these 

compounds. This brings more unbiased and quantitative data on how these drugs might 

function in the human brain, opening the opportunity for a restructuralization on their 

usability, and consequently, how they can be used by our society (Ballentine, Friedman, 

and Bzdok 2022). Moreover, in silico techniques enable an atomistic level of study, 

highlighting the conformational shifts that occur after the ligand binding, on specific 

motifs present in the receptor. Yet, it is intended to relate this receptor conformation 

alterations with well-known pharmacophores included in the structure of classical 

psychedelics or novel compounds, designed with the aid of these atomistic information. 

This level of sensitivity aids in the construction of a novel classification system of these 

drugs, being more specific on how they act and influence certain cell and/or system 

responses. 

In order to relate the reported mechanical alterations, present in the receptors with the 

activation of certain cell signaling pathways, it is necessary to couple the referenced in 

silico techniques with both in vitro and in vivo methodology. To validate the results 

brought by computational tools, the use of cell and rodent systems is mandatory when 

assessing the activity of novel drugs. One of the future goals is the development of 5- 

HT2AR mutants, based on the brought structural information and their expression in 

living systems. This would allow the correlation between specific motifs movements in 

the receptor, activated by a ligand interaction, with the activation of signaling pathways, 

propelled by the recruitment of a molecular intermediate that has affinity for the complex 

formed (biased signaling). This can lead to the dissection of the effects reported by 

psychedelics. Yet, it is necessary a better understanding on how the activity of these 

receptors lead to changes in the connectivity and communication between neurons, 

leading to mood and cognitive alterations. The bigger picture of how psychedelics 

function as                    a neuromodulator is still very shady. Studies on receptor desensitization by 

the action of agonists or antagonists with 5-HT receptor family are mandatory to relate 

the action of these receptors when interacting with hallucinogens. Moreover, studies 

concerning neuron-to-neuron communication are necessary to understand the role of 

psychedelics in the brain and how they can open a door for therapy. Other experiments 

https://paperpile.com/c/2mXtKn/3sJ5Z
https://paperpile.com/c/2mXtKn/6iz8Z
https://paperpile.com/c/2mXtKn/6iz8Z
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should evolve the understanding about the modulation of the serotonergic system by these 

compounds, relating their effects with specific neurological disorders phenotypes. With 

all of these said, the path in the renaissance of psychedelics still has many missing blocks, 

asking for better tuned protocols and implementation of novel techniques, in order to 

make sense of a yet black box to neuroscience. Moreover, it is clear the necessity of 

diverse methods necessary to study these compounds, ranging from the atomistic size, 

with the synthesis of novel analogs, passing through molecular and cell communication, 

on how these drugs bind to receptors and activate specific cell responses, to a systemic 

perspective, trying to understand the holistic effects of entheogens. 
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8. Supplementary Information  
 

 
Generic Number 

(Ballesteros Weinstein 

Numbering) 

Index in active structure Index in inactive 

structure 

3.28 W151 W83 

3.29 I152 I84 

3.32 D155 D87 

3.33 V156 V88 

3.36 S159 S91 

ECL2 L229 L161 

5.39 V235 V167 

5.42 G238 G170 

5.46 S242 S174 

6.44 F332 F221 
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6.48 W336 W225 

6.51 F339 F228 

6.52 F340 F229 

6.55 N343 N232 

7.39 V366 V255 

7.42 G369 G258 

 

SI.1. Table relating the indexation present in the models build by Homology Modeling. 

both for the active and inactive structure. with the Ballesteros Weinstein numbering 

(Isberg et al. 2015). 
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SI.2: dim() and part of str(). in Rstudio. of the initial working table : 

“sum_dockings_features_final” 
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SI.2. ScatterPlots made with Rstudio. plotting the distribution of the features considered 

in the characterization of the complexes in study. 
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import os 

 

end_file = ".pdbqt" 

start_file = "dock_conf" 

for current_file in os.listdir(os.getcwd()): 

if current_file.endswith(end_file) and \ 

current_file.startswith(start_file): 

pdb_number = current_file.split(start_file)[1].split(".")[0] 

pdb_name = current_file.split(".")[0] + ".pdb" 

full_command = "cat protein_rigid.pdb " + \ 

pdb_name + " | grep -v '^END$' > complex" + \ 

str(pdb_number) + ".pdb" 

os.system(full_command) 

 

C.S. 1: cut_66.py 

 

# -*- coding: utf-8 -*- 

""" 

Created on Wed Apr 6 23:53:50 2022 

 

@author: guilh 

""" 

 

import os 

import pandas as pd 

import numpy as np 

path = 

"C:/Users/guilh/Downloads/DOCKINGS/DOCK13_active_proof8_ligand1_mymodel" 

os.chdir(path) 

 

def process_pdb(input_pdb): 

###open pdb file for crystal 

opened_file = pd.read_fwf(input_pdb. \ 

widths = [6. 6. 4. 1. 4. 1. 4. 4. 8. 8. 8. 6. 6. 10. 2. 2]. 

header = None) 

###change column names for crystal 

crystal_edited = opened_file.rename(columns = {0:'ATOM'. 2:'TYPE'. 

8:'X'. 9:'Y'. 10:'Z'}) 

###make subset ATOM from crystal 

atom_crystal = crystal_edited.loc[crystal_edited["ATOM"] == "ATOM"] 

###make subset HETATM from crystal 

hetatm_crystal = crystal_edited.loc[crystal_edited["ATOM"] == 

"HETATM"] 

###remove hydrogens from complex arrays 

hetatm_crystal_lessH = hetatm_crystal.drop( \ 

hetatm_crystal.index[(hetatm_crystal["TYPE"] == "H")] \. axis=0) 

x_hetatm_crystal = hetatm_crystal_lessH[['X']].to_numpy() 

y_hetatm_crystal = hetatm_crystal_lessH[['Y']].to_numpy() 

z_hetatm_crystal = hetatm_crystal_lessH[['Z']].to_numpy() 

##convert arrays object to float 

x_hetatm_crystal_float = x_hetatm_crystal.astype(dtype = float . \ 

order='K'. casting='unsafe'. subok=True. copy=True) 

y_hetatm_crystal_float = y_hetatm_crystal.astype(dtype = float . \ 

order='K'. casting='unsafe'. subok=True. copy=True) 

z_hetatm_crystal_float = z_hetatm_crystal.astype(dtype = float . \ 

order='K'. casting='unsafe'. subok=True. copy=True) 

return x_hetatm_crystal_float. y_hetatm_crystal_float. 

z_hetatm_crystal_float 

 

 

C.S. 2.1.: Euclidean_distance.py part 1 
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x_hetatm_crystal_float. y_hetatm_crystal_float. z_hetatm_crystal_float = 

process_pdb("6wha_edited.pdb") 

end_file = ".pdb" 

start_file = "complex" 

source_dir = os.getcwd() 

output_list = [] 

for current_file in os.listdir(os.getcwd()): 

if current_file.endswith(end_file) and 

current_file.startswith(start_file): 

x_hetatm_complex_float. y_hetatm_complex_float. 

z_hetatm_complex_float = \ 

process_pdb(current_file) 

###make difference array 

x_difference_array = np.subtract(x_hetatm_crystal_float. 

x_hetatm_complex_float) 

y_difference_array = np.subtract(y_hetatm_crystal_float. 

y_hetatm_complex_float) 

z_difference_array = np.subtract(z_hetatm_crystal_float. 

z_hetatm_complex_float) 

###square difference arrays 

x_square = np.square(x_difference_array) 

y_square = np.square(y_difference_array) 

z_square = np.square(z_difference_array) 

###sum squares 

sum_array = np.array([x_square . y_square . z_square]) 

###sum inside array.division per entries on sum_array 

division_array = np.divide(sum_array.sum(). 23) 

#####root-square on division = RMSD value 

root_square_array = np.sqrt(division_array 

########create new variable for each complexe's RMSD 

file_name = current_file.split(start_file)[1].split(".")[0] 

output_list.append([file_name. root_square_array]) 

 

output_dataframe = pd.DataFrame(output_list. columns = ["Complex". "RMSD"]) 

output_dataframe.to_csv("rmsd.csv". index = False) 

C.S. 2.2.: Euclidean_distance.py part 2 

 

import os 

import shutil 

from pymol import cmd 

import pymol 

 

end_file = ".pdb" 

start_file = "complex" 

source_dir = os.getcwd() 

pymol.finish_launching(['pymol'. '-qi']) 

for current_file in os.listdir(source_dir): 

if current_file.endswith(end_file) and 

current_file.startswith(start_file): 

cmd.load(current_file) 

cmd.select("resi_1". "resi 1") 

cmd.select("protein" . "!(resi_1)") 

dir_name = current_file.split(start_file)[1].split(".")[0] 

os.mkdir(dir_name) 

cmd.save(str(source_dir + "/" + dir_name + "/protein.pdb"). "protein") 

cmd.save(str(source_dir + "/" + dir_name + "/ligand.mol2"). "resi_1") 

cmd.delete("complex" + dir_name) 

cmd.quit() 

 

C.S. 3.: Scissors.py 
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Model RMSE R2 MAE 

rbfDDA 10.76 0.01 9.11 

10.76 0.01 9.11 

10.76 0.02 9.11 

 

SI3. Table showing the worst evaluated model. for both classification and regression. and 

its performance evaluation. 
 

 

 

 
 

#complex 241 

Orientation_Score 0.735281 

Affinity_Score(Heavy_Ligand_Atoms) -0.20228 

Affinity_Score -0.2306 

Buried_Protein_Hydrophobic_Term -0.07083 

Hydrophobic_Complementarity_Term 0.447936 

Number_of_Protein-Ligand_Hydrophobic_Contacts -0.73689 

Number_of_Interfacial_Unsatisfied_Polar_Atoms -0.0392 

Buried_Carbons 0.056242 

AutoDock4.1Score -0.27662 

estat -0.69209 

hb -0.04825 

vdw -0.26606 

dsolv -0.24693 

tors -0.25139 

lig_vol -1.16584 

pock_vol -0.09813 

mean_as_ray -0.02466 
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mean_as_solv_acc 0.495172 

hydrophobicity_score -0.44712 

volume_score 0.35452 

prop_polar_atm 0.079772 

ALA -0.75685 

ARG 1.178982 

CYS 0.855925 

ILE -0.15693 

LEU -0.58343 

LYS 1.52607 

SER 0.062017 

THR 1.850503 

TRP 0.074597 

TYR 0.816394 

VAL 1.87965 

vina_affinity -0.70804 

vina_gauss_1 -0.75336 

vina_gauss_2 0.151617 

vina_repulsion -0.70347 

vina_hydrophobic -0.37802 

atp2_A_C -0.38845 

atp2_A_HD -0.50868 

atp4_A_C -1.2498 

atp4_A_A 0.206916 
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atp4_N_SA -0.46681 

atp4_N_OA 0.544409 

lat_A -1.26309 

lat_HD 0.284903 

ele_A_C 0.552381 

ele_A_A -0.34344 

ele_N_SA -0.44596 

ele_N_OA 0.009155 

siteflex_SIDECHAIN_OTHER 1.402693 

siteflex_SIDECHAIN_ALPHA -0.6934 

hbond_HDONOR-LIGAND_BACKBONE_ALPHA -0.25072 

hydrophobic_SIDECHAIN_OTHER 0.736381 

hydrophobic_SIDECHAIN_ALPHA -0.76698 

total -0.25894 

SMoG2016_KBP2016 0.042885 

SMoG2016_LJP -0.26063 

SMoG2016_Rotor 0.138565 

SMoG2016_lnMass -0.55857 

RMSD2 1 

RMSD 4.499917 

Predicted_by_qrf 4.422436 

 

SI.4. Table exhibiting the physical characteristics (features) of the binding pocket present in the 

complex with the lowest value of RMSD. complex #241. by the predictive model build with qrf. 


