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ABSTRACT The collection and analysis of data are continuously growing due to the pervasiveness of
computing devices. The analysis of such information is fostering businesses and contributing beneficially
to the society in many different fields. However, this storage and flow of possibly sensitive data poses
serious privacy concerns. Methods that allow the knowledge extraction from data, while preserving privacy,
are known as privacy-preserving data mining (PPDM) techniques. This paper surveys the most relevant
PPDM techniques from the literature and the metrics used to evaluate such techniques and presents typical
applications of PPDM methods in relevant fields. Furthermore, the current challenges and open issues
in PPDM are discussed.

INDEX TERMS Survey, privacy, data mining, privacy-preserving data mining, metrics, knowledge
extraction.

I. INTRODUCTION
In the current information age, ubiquitous and pervasive com-
puting is continually generating large amounts of informa-
tion. The analysis of this data has shown to be beneficial
to a myriad of services such as health care, banking, cyber
security, commerce, transportation, and many others [1].
However, much of the collected information may be sensitive
private data, which raises privacy concerns.

Although everyone has a concept of privacy, there is no
universally accepted standard definition [2]. Privacy has been
recognized as a right in the Universal Declaration of Human
Rights [3] in 1948, however to a limited scope: the right to
privacy at home, with family, and in correspondence. The
difficulty in defining privacy comes as a consequence of the
broadness of areas towhich privacy applies [4], [5]. The scope
of privacy can be divided into four categories [6]: informa-
tion, which concerns the handling and collection of personal
data; bodily, which relates to physical harms from invasive
procedures; communications, which refers to any form of
communication; territorial, which concerns the invasion of
physical boundaries. This work will focus on the information
category, which encompasses systems that collect, analyse
and publish data.

In the information scope, Westin [7] defined privacy as
‘‘the claim of individuals, groups, or institutions to determine

for themselves when, how, and to what extent information
about them is communicated to others’’, or in other words,
as the right to control the handling of one’s information.
Bertino et al. [8] gave a similar definition, in terms of the
control of the data, but explicitly incorporate the risks of
privacy violation. These authors define privacy as ‘‘the right
of an individual to be secure from unauthorised disclosure of
information about oneself that is contained in an electronic
repository’’. Other definitions were proposed based on simi-
lar ideas of control and security [2]. Thus, one can conclude
that the main idea of information privacy is to have control
over the collection and handling of one’s personal data.

Some benefits of the information technologies are only
possible through the collection and analysis of (sometimes
sensitive) data. However, this may result in unwanted pri-
vacy violations. To protect from information leakage, pri-
vacy preservation methods have been developed to protect
owner’s exposure, by modifying the original data [9], [10].
However, transforming the data may also reduce its utility,
resulting in inaccurate or even infeasible extraction of knowl-
edge through data mining. This is the paradigm known as
Privacy-Preserving Data Mining (PPDM). PPDM method-
ologies are designed to guarantee a certain level of privacy,
while maximising the utility of the data, such that data mining
can still be performed on the transformed data efficiently.
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PPDM encompasses all techniques that can be used to extract
knowledge from data while preserving privacy. This may
consist on using data transformation techniques, such as the
ones in Table 1, as primitives for adjusting the privacy-utility
tradeoff of more evolved data mining techniques, such as the
privacy models of Table 2 and the more classical data mining
techniques of Table 3. PPDM also accounts for the distributed
privacy techniques of Table 4 that are employed for mining
global insights from distributed data without disclosure of
local information. Due to the variety of proposed techniques,
several metrics to evaluate the privacy level and the data qual-
ity/utility of the different techniques have been proposed [8],
[11]–[13].

PPDM has drawn extensive attention amongst researchers
in recent years, resulting in numerous techniques for pri-
vacy under different assumptions and conditions. Several
works have focused on metrics to evaluate and compare
such techniques in terms of the achieved privacy level,
data utility and complexity. Consequently, PPDM has been
effectively applied in numerous fields of scientific interest.
The vast majority of PPDM surveys focus on the tech-
niques [10], [14], [15], and others on the metrics to evaluate
such techniques [8], [12], [13]. Some only briefly discuss the
evaluation parameters and the trade off between privacy and
utility [16], [17], whereas others summarily describe some of
the existing metrics [4], [11]. The survey in [11] does com-
bine techniques, metrics and applications, but focuses on data
mining, thus lacking many PPDM techniques, metrics, and
other application fields, and [9] has applications in various
areas but lacks metrics. This paper covers a literature gap
by presenting an up-to-date and thorough review on existing
PPDM techniques and metrics, followed by applications in
fields of relevance.

The remainder of this survey is organised as follows.
Section II introduces the problem of data mining and presents
some of the most common approaches to extract knowledge
from data. Readers already familiarised with the basic con-
cepts of data mining can skip to section III, where several
PPDM methods are described according to the data lifecycle
phase at which they are applied. Section IV presents metrics
to evaluate such algorithms. Some applications of the PPDM
algorithms in areas of interest are presented in section V,
with emphasis on the assumptions and context (identified by
a scenario description) at which privacy can be breached.
Section VI discusses some learned lessons about PPDM
and presents open issues for further research on PPDM.
Section VII concludes this paper.

II. CLASSICAL DATA MINING TECHNIQUES
Information systems are continuously collecting great
amounts of data. Services can greatly benefit from the knowl-
edge extraction of this available information [1]. The terms
knowledge discovery from data (KDD) and data mining are
often ambiguous [18]. KDD typically refers to the process
composed of the following sequence of steps: data cleaning;
data integration; data selection; data transformation; data

mining; pattern evaluation; and knowledge presentation. In
this section, a brief review on the classical paradigms of the
data mining step will be presented, to provide the reader
enough understanding for the remainder of this paper.
Data mining is the process of extracting patterns (knowl-

edge) from big data sets, that can then be represented and
interpreted. In [19], pattern is defined as an expression to
describe a subset of data (itemset), or a model applicable to
a subset. Since data mining methods involve pattern discov-
ery and extraction, pattern recognition techniques are often
used.1 Moreover, pattern recognition and machine learning
may be seen as ‘‘two facets of the same field’’ [20], that had
origins in different areas. Therefore, throughout this work,
data mining will refer to the process of extracting patterns,
and pattern recognition and machine learning will be used
interchangeably to denote data mining paradigms.

The main objective of data mining is to form descrip-
tive or predictive models from data [19]. Descriptive models
attempt to turn patterns into human-readable descriptions
of the data, whereas predictive models are used to predict
unknown/future data. The models are formed using machine
learning techniques, that can be categorised as supervised
and unsupervised [18]. Supervised learning techniques are
methods in which the training set (the dataset used to form the
model) is already labelled. That is, the training set has both
the input data and the respective desired output, leading the
machine to learn how to distinguish data, and thus, forming
the model. In contrast, unsupervised techniques attempt to
find relations in the data from unlabelled sets, or simply,
no training set is used.

Association rule mining, classification and clustering
are three of the most common approaches in machine
learning, where the first two are supervised learning tech-
niques, and the latter is an unsupervised learning mechanism.
The following subsections will briefly detail each of these
approaches. Readers can refer to [21], [22], and [18] for a
comprehensive study on these subjects.

A. ASSOCIATION RULE MINING
Association rule mining algorithms are designed to find rel-
evant relationships between the variables of a dataset. These
associations are then expressed by rules in the form: if (con-
dition); then (result). Association rules have a probability
of occurrence, that is, if condition is met, then there is a
certain probability of occurring result. Using the notation
from [18], association rules can be formalized as follows. Let
I = I1, I2, . . . , Im be a set of binary attributes called items,
and D a database of transactions, where each transaction T is
a nonempty itemset such that T ⊆ I. Let A ⊂ I and B ⊂ I
be subsets of I. Then, an association rule is an implication
A⇒ B, with A 6= ∅, B 6= ∅.

Not all rules are interesting tomine, in fact, association rule
mining algorithms onlymine strong rules. Strong rules satisfy

1In fact, most data mining techniques rely on machine learning, pattern
recognition, and statistics [19].
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a minimum support threshold and a minimum confidence
threshold. The support of a rule is the probability (percentage)
of transactions in D that contain A ∪ B, or mathematically:

support(A⇒ B) = P(A ∪ B)

Intuitively, this metric reflects the usefulness of the rule
A⇒ B. Confidence measures how often the rule is true in D.
It is measured by the following equation:

confidence(A⇒ B) = P(B|A)

Using the support and confidence metrics, two-steps are
required to mine association rules [18]:

1) Find all itemsets in D with a support greater or equal to
a minimum support threshold (frequent itemsets);

2) Generate the strong association rules from the frequent
itemset.

B. CLASSIFICATION
Classification is a supervised learning problem whose objec-
tive is to create a model, in this specific case, called a clas-
sifier, that can identify the class label of unknown data [18].
In other words, a classifier is created from a training set – a set
whose output (the class label) is known –, and it is then used to
classify unknown data, into one of the existing classes. Thus,
classification is a two-step approach problem: the training
phase (or learning step) and the classification phase. More
formally, one seeks to define a function f (·) that outputs a
class label y for a given attribute vector X = (x1, x2, . . . , xn)
as input, where xi,∀i ∈ 1, 2, . . . , n represents a value for
attribute Ai. That is:

y = f (X )

In this situation, f (X ) maps a tuple of attribute values
to the respective class label. This mapping function can
be represented by mathematical formulae, classification
rules, or decision trees [18].

Having the mapping function f (X ), one can classify any
attribute vector X in the classification phase. To evaluate the
classifier, an already classified input is considered and its
accuracy is calculated as the percentage of correct classifi-
cations obtained. However, the training set cannot be used,
since it would result in an optimistic estimation of the accu-
racy [18], and therefore, test sets are used instead. In practice,
the training set is randomly divided into a smaller (than the
original) training set and a test set.

C. CLUSTERING
Clustering, or cluster analysis, is a process of grouping sets
of objects (observations) in groups (clusters), in a way that
objects from a cluster have more similarities than objects
from different clusters [18]. Each cluster may be considered
as a class with no label, and thus, clustering is sometimes
referred to as automatic classification, i.e. classification that
does not require a training set, but learns from observations.
Since cluster analysis is an unsupervised learning paradigm,
it may reveal interesting unknown relations in the data.

Algorithms for clustering differ significantly due to unstan-
dardised notion of cluster and the similarity metric [23].
A categorisation that encompasses the most important clus-
tering methods is given in [18], based on the following
properties:

• Partitioning criteria: conceptually, clusters may be
formed either hierarchically (more general clusters con-
tain other more specific clusters), or all clusters are in
the same level;

• Separation: clusters may be overlapping or non-
overlapping. In the overlapping case, objectsmay belong
to multiple clusters, whereas in the non-overlapping,
clusters are mutually exclusive;

• Similarity measure: the metric for the similarity between
objects may be distance-based or connectivity-based;

• Clustering space: clusters may be searched within the
entire data space, which can be computationally ineffi-
cient for large data, or within data subspaces (subspace
clustering), where dimensionality may be reduced by
suppressing irrelevant attributes.

Due to these (and other) properties, numerous algorithms
have been proposed for a myriad of applications [18], [22].

Being a fast-expanding field, data mining presents some
challenges such as scalability, efficiency, effectiveness and
social impacts. The concern in collecting and using sensible
data that may compromise privacy is one of those impacts and
one that is being extensively researched [1]. The following
section will describe how privacy and data mining are related,
and review some of themost importantmethods to protect and
preserve privacy.

III. PRIVACY AND DATA MINING
Data collection and data mining techniques are applied to
several application domains. Some of these domains require
handling, and often publishing sensitive personal data (e.g.
medical records in health care services), which raises the
concern about the disclosure of private information [1].

Privacy-Preserving Data Mining (PPDM) techniques have
been developed to allow for the extraction of knowledge
from large datasets while preventing the disclosure of sensi-
tive information. The vast majority of the PPDM techniques
modify or even remove some of the original data in order to
preserve privacy [9]. This data quality degradation is known
as the natural trade-off between the privacy level and the data
quality, which is formally known as utility. PPDM methods
are designed to guarantee a certain level of privacy while
maximising the utility of the data to allow for effective data
mining. Throughout this work, sanitised or transformed data
will refer to the data that resulted from a privacy-preserving
technique.

Several different taxonomies for PPDMmethods have been
proposed [9]–[11], [14], [17], [24]. In this survey a classifi-
cation based on the data lifecycle phase at which the privacy-
preservation is ensured will be considered [10], namely at:
data collection, data publishing, data distribution and at the
output of the data mining.
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TABLE 1. Summary of the privacy-preserving techniques at data collection (Section III-A).

The following subsections will describe each of the phases
at which privacy is ensured by attesting how privacy may
be lost and by describing some of the most applied privacy-
preserving techniques. Tables 1, 2, 3 and 4 summarise the
privacy preserving methods presented at each corresponding
subsection, and enumerate some of the advantages, disad-
vantages and applications and domains of such techniques.
A description of the scenario is also given to contextualise
the adversarial assumptions and the nature of the privacy-
preserving methods. Note that Table 1 does not present
application domains, since these randomisation techniques
are mainly used as primitives for more complex privacy
preservation techniques, such as the ones presented in the
remaining tables. In fact, Tables 2 and 3 correspond to more
evolved privacy-preserving data mining techniques that usu-
ally rely on data transformation techniques to adjust the
privacy-utility tradeoff, without requiring modification to the
data mining algorithms. On the other hand, the distributed
privacy techniques of Table 4 are usually building blocks
for distributed computations that preserve privacy and must,
therefore, be integrated into the data mining techniques (as
seen in [25]), therefore requiring modifications.

A. DATA COLLECTION PRIVACY
To ensure privacy at data collection time, the sensory device
transforms the raw data by randomising the captured values,
before sending to the collector. The assumption is that the
entity collecting the data is not to be trusted. Therefore, and
to prevent privacy disclosure, the original values are never
stored, and used only in the transformation process. Conse-
quently, randomisation must be performed individually for
each captured value.

Most common randomisation methods modify the data by
adding noise with a known statistical distribution, so that
when data mining algorithms are used, the original data dis-
tribution may be reconstructed, but not the original (individ-
ual) values. Thus, the randomisation process in data mining

encompasses the following steps: randomisation at data col-
lection, distribution reconstruction (subtracting the noise dis-
tribution from the first step) and data mining on the recon-
structed data [10].

The simplest randomisation approach may be formally
described as follows. Let X be the original data distribu-
tion, Y , a publicly known noise distribution independent ofX ,
and Z the result of the randomisation of X with Y . That is:

Z = X + Y (1)

The collector estimates the distribution Z from the received
samples z1, z2, . . . , zn, with n the number of samples. Then,
with the noise distribution Y (Y has to be provided with the
data), X may be reconstructed using:

X = Z − Y (2)

Equation 1 corresponds to the randomisation process at data
collection, while equation 2 corresponds to the reconstruction
of the original distribution by the collector entity. Note, how-
ever, that the reconstruction of X using equation 2 depends on
the estimation of the distribution Z . If Y has a large variance
and the number of samples (n) of Z is small, then Z (and
consequently X ) cannot be estimated precisely [10]. A better
reconstruction approach using the Bayes formula may be
implemented.

Additive noise is not the only type of randomisation that
can be used at collection time. In fact, the authors of [31]
show experimentally how ineffective this technique may be
at preserving privacy. More effective (against privacy disclo-
sure) techniques, that apply multiplicative noise to randomise
the data also exist [29], [30].

Since the original data is modified into perturbed data,
these methods require specific data mining algorithms that
can leverage knowledge discovery from distributions of data,
and not from individual entries. This may lead to a greater
loss of utility than other privacy-preserving methods. Nev-
ertheless, some data mining methods such as clustering and
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classification may require only access to the data distribution
and will thus, work well with the randomisation [10].

Data modification may be applied at other phases than
at data collection, and other methods besides additive
and multiplicative noise do exist. In fact, randomisation
is considered to be a subset of the perturbation opera-
tions2 (see Section III-B). However, at collection time the
assumption is that the collector is not trusted. Therefore,
the original data must not be store, nor buffered, after
the transformation. Thus, each value has to be randomised
individually, that is, without considering other past collected
values.

B. DATA PUBLISHING PRIVACY
Entities may wish to release data collections either pub-
licly or to third parties for data analysis without disclosing the
ownership of the sensitive data. In this situation, preservation
of privacy may be achieved by anonymizing the records
before publishing. PPDM at data publishing is also known
as Privacy Preserving Data Publishing (PPDP).

It has been shown that exclusively removing attributes that
explicitly identify users (known as explicit identifiers) is not
an effective measure [32]. Users may still be identified by
pseudo or quasi-identifiers (QIDs) and by sensitive attributes.
A QID is a non-sensitive attribute (or a set of attributes) that
do not explicitly identify a user, but can be combined with
data from other public sources to de-anonymize the owner
of a record,what is known as linkage attacks [33]. Sensitive
attributes are person-specific private attributes that should not
be publicly disclosed, and that may be also linked to identify
individuals (e.g. diseases in medical records).

Sweeney in 2000 presented a report [34] on an analysis
done over the 1990 U.S. Census to identify different com-
binations of attributes (QIDs) that would uniquely identify
a person in the U.S. He found out that 87% of the popu-
lation was identifiable by using the QID set {5-digit ZIP,
gender, date of birth}. This study was then repeated with the
2000 U.S. Census by Golle [35], where the percentage of de-
anonymized records using the same QID dropped to 63% of
the population. In 2002, Sweeney identified the governor of
Massachusetts from an anonymous voter list with the same
QID set [36]. By linking these values to an accessible medi-
cal anonymized dataset from the Group Insurance Commis-
sion (GIC), the author was also able to obtain the governors’
medical records. This simple example shows how QIDs are a
potential thread to de-anonymize identities on datasets where
only explicit identifiers are removed.

Aggarwal [10] states that the majority of anonymization
algorithms focus on QIDs, disregarding sensitive attributes
as it is wrongly assumed that without these, there is no risk
of linkage attack with public information. In fact, the author
claims that is fair to assume that an adversary has back-
ground information about its target [10] and thus concludes,

2Some literature use the terms randomisation and perturbation inter-
changeably.

that algorithms that do take into account sensitive attributes
provide better privacy protection.

The anonymization of records in a database may be
achieved by implementing different privacy models. Privacy
models attempt to preserve records’ owner identity by apply-
ing one, or a combination of the following data sanitising
operations:

• Generalization: replacement of a value for a more
general one (parent). Numerical data may specified by
intervals (e.g. an age of 53 may be specified as an
interval in the form of [50,55]), whereas categorical
attributes require the definition of a hierarchy. A good
example of a hierarchy could be the generalisation of the
values engineer and artist from a occupation attribute to
professional. Another possibility would be to have the
parent value of student to represent all types of student
in the same occupation attribute;

• Suppression: removal of some attribute values to prevent
information disclosure. This operation can also be per-
formed column wise in a data-set (removes all values of
an attribute) or row wise (removes an entry).

• Anatomization [37]: de-associates QIDs and sensitive
attributes in two separate tables making it more difficult
to link QIDs to sensitive attributes. In this case, values
remain unchanged;

• Perturbation: replacement of the original data for syn-
thetic values with identical statistical information. The
randomisation methods described in subsection III-A
(additive and multiplicative noise) are examples of data
perturbation. Data swapping and synthetic data genera-
tion are also perturbation techniques. In data swapping,
sensitive attributes exchange between different entries of
the dataset in order to prevent the linkage of records to
identities, whereas in synthetic data generation, a statis-
tical model is formed with the original data, and then
synthetic values are obtained from the model.

This list is not an extensive enumeration of the existing
operations. These are however, the most commonly used, and
are sufficient to allow the comprehension of the remainder of
this work. Readers can refer to [33] for a more thorough list.

Based on these operations, a set of privacy models has
been proposed as follows. One of the most known privacy
models is the k-anonymity model, proposed by Samarati
and Sweeny [38], [39]. This model’s key concept is that of
k-anonymity: if the identifiable attributes of any database
record are undistinguishable from at least other k−1 records,
then the dataset is said to be k-anonymous. In other words,
with a k-anonymized dataset, an attacker could not identify
the identity of a single record since other k−1 similar records
exist. The set of k records is known as equivalence class [10].
Note that ‘‘identifiable attributes’’ in the aforementioned def-
inition refers to QIDs.

In the k-anonymity model, the value k may be used as
a measure of privacy: the higher the value of k , the harder
it is to de-anonymize records. In theory, in an equivalence
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TABLE 2. Summary of privacy-preserving techniques at data publishing (Section III-B) in terms of the employed sanitisation methods.

class, the probability of de-anonymizing a record is 1/k .
However, raising k will also reduce the utility of the data since
higher generalisation will have to occur.

Different algorithms have been proposed to achieve
k-anonymity, where the vast majority applies generalisation
and suppression operations [10]. This privacy model was one
of the first applied for group based anonymization and served
as a development base for more complex models. Some of
the advantages of the k-anonymity privacy model include the
simplicity of definition and the great amount of existing algo-
rithms. Nevertheless, this privacy model has two major prob-
lems. The first problem has to due with the consideration that
each record represents a unique individual, or in other words,
that each represented individual has one, and only one record.
If this is not the case, an equivalence class with k records does
not necessarily link to k different individuals. The second
problem relates to the fact that sensitive attributes are not
taken into consideration when forming the k-anonymized
dataset. This may lead to equivalent classes where the values
of some sensitive attributes are equal for all the k records
and consequently, disclosure of private information of any
individual belonging to such groups. Other consequence of
not taking into account sensitive attributes when forming the

classes is the possibility of de-anonymizing an entry (or at
least narrow down the possibilities) by associating QIDs with
some background knowledge over a sensitive attribute.

The aforementioned attribute disclosure problem may be
solved by increasing the diversity of sensitive values within
the equivalence classes, an approach taken in the l-diversity
model [45]. This model expands the k-anonymity model by
requiring every equivalence class to abide by the l-diversity
principle. An l-diverse equivalence class is a set of entries
such that at least l ‘‘well-represented’’ values exist for the sen-
sitive attributes. A table is l-diverse if all existing equivalence
classes are l-diverse.

The meaning of ‘‘well-represented’’ values is not a
concrete definition. Instead, different instantiations of the
l-principle exist, differing on this particular definition [33],
[45]. One of the simplest instantiations considers that the
sensitive attributes are ‘‘well-represented’’ if there are at least
l distinct values in an equivalence class, what is known as dis-
tinct l-diversity. In these conditions, a l-diverse equivalence
class has at least l records (since l distinct values are required),
and satisfies k-anonymity with k = l. A stronger notion
of l-diversity is the definition of entropy l-diverse, defined
as follows. An equivalence class is entropy l-diverse if the
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entropy of its sensitive attribute value distribution is at least
log(l). That is:

−

∑
s∈S

P(QID, s) log(P(QID, s)) ≥ log(l)

where s is a possible value for the sensitive attribute S, and
P(QID, s) is the fraction of records in a QID equivalence
group, that have the s value for the S attribute. Note that
entropy l-diversity can also be extended to multiple sensitive
attributes by anatomizing the data [44].

Similarly to the k-anonymity model, in both entropy and
distinct l-diversity instantiations, l (or in the former case,
log(l)) acts as a measure of privacy. Increasing this value,
increases the variability of the existing values of the sensitive
attribute in each equivalence class, decreasing the possibility
of sensitive attribute disclosure. However, stronger generali-
sations and higher number of suppressions have to occur on
the raw data, thus leading to higher loss of utility.

Although the l-diversity model increases the diversity of
sensitive values within equivalence classes, it does not take
into consideration the distribution of such values. This may
present privacy breaches when the sensitive values are dis-
tributed in a skewed away, which is generally true. To better
understand this breach, consider the example given in [33]:
a patient table with skewed attribute distribution, where 95%
of the entries have FLU and the remaining 5% have HIV in
the sensitive attribute column. An adversary seeks to find a
record or groups of records havingHIV, and has knowledge of
the original sensitive attribute distribution. When forming the
l-diverse groups, the maximum entropy would be achieved
with groups having 50% of FLU entries and 50% of HIV
entries. However, such groups would disclose that any entry
within the group has a 50% of probability of having the value
HIV in the sensitive attribute. This attribute disclosuremay be
worsened (infer with higher probability of having HIV), if the
adversary has some background knowledge over the target(s).

In order to prevent attribute disclosure from the distribution
skewness (skewness attacks), Li et al. [49] presented the
t-closeness privacy model. This model requires the distribu-
tion of the sensitive values in each equivalence class to be
‘‘close’’ to the corresponding distribution in the original table,
where close is upper bounded by the threshold t. That is,
the distance between the distribution of a sensitive attribute
in the original table and the distribution of the same attribute
in any equivalence class is less or equal to t (t-closeness
principle). Formally, and using the notation found in [49], this
principle may be written as follows. LetQ = (q1, q2, . . . , qm)
be the distribution of the values for the sensitive attribute in
the original table and P = (p1, p2, . . . , pm) be the distribution
of the same attribute in an equivalence class. This class
satisfies t-closeness if the following inequation is true:

Dist(P,Q) ≤ t

The t-closeness principle also has various instantiations
depending on the distance function that is used to measure the
closeness [10], [49]. The three most common functions are

the variational distance, the Kullback-Leibler (KL) distance
and the Earth Mover’s distance (EMD).

The three aforementioned privacy models preserve
privacy by applying global/equitable measures to all
records/identities. Xiao and Tao [51] presented the concept
of personalized privacy, where the privacy level is defined
by record owners. The purpose of this method is to preserve
the maximum utility while respecting personal privacy pref-
erences. Personalized privacy is achieved by creating a tax-
onomy tree using generalisation, and by allowing the record
owners to define a guarding node. Owners’ privacy is breach
if an attacker is allowed to infer any sensitive value from
the subtree of the guarding node with a probability (breach
probability) greater than a certain threshold.

As an example of a personalised privacy model, consider a
case where there is a sensitive attribute DISEASE. A record
owner may be willing to disclose that he is ILL (and not
NOT ILL), but protect which type, or which ill he contracts,
i.e. ILL is his guarding node in the taxonomy tree. Other
user may not mind to share that besides being ILL, it has
a TERMINAL DISEASE, without specifying which specific
disease. Finally, other record owner could allow to share the
specific disease (e.g. LUNG CANCER). In this example,
the LUNG CANCER value belongs to the taxonomy subtree
of TERMINAL DISEASE, which is the guardian node of
the second described owner, and TERMINAL DISEASE is
in the subtree of ILL.

Personalized privacy has the advantage of letting record
owner’s define their privacy measure. However, this may
be hard to implement in practice for two main rea-
sons [33]: approaching record owners may not always be
a viable/practical option; and, since record owners have no
access to the distribution of sensible values, the tendency will
be to over protect the data, by selectingmore general guarding
nodes.

All previous privacy models try to either protect record
owners’ identity, or to protect the inference of sensitive values
from anonymized records (or groups of records). Neverthe-
less, they do not measure how the presence (or absence) of
a record impacts owner’s privacy. Consider this hypothetical
example: a statistical analysis over an anonymized database
revealed that female smokers over 60 years old and weighting
over 85kg, have a 50% chance of having cancer. A per-
son belonging to this specific population will suffer from
attribute disclosure, even if the dataset does not contain its
record. From another point of view, if this person were on
the database and the same conclusion would be reached, then
there would be no further disclosure from the participation of
this individual on such database, that is, no informationwould
be leaked.

Dwork [27] presented the notion of differential privacy
to measure the difference on individual privacy disclosure
between the presence and the absence of the individual’s
record. In his work, the author proposed the ε-differential
privacy model that ensures that a single record does not
considerably affect the outcome of the analysis over the
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TABLE 3. Summary of privacy-preserving techniques at data mining output privacy (Section III-C).

dataset. In this sense, a person’s privacy will not be affected
by participating in the data collection since it will not make
much difference in the final outcome.

The ε-differential privacy model may be formalised as
follows. Let K (·) be a randomised function, and D1 and D2
two databases differing at most on one record, then:

ln
(
Pr [K (D1) ∈ S]
Pr [K (D2) ∈ S]

)
≤ ε ∀S ⊆ Range(K ) (3)

where ε is set a priori by the publishing entity, and S is a
subset of Range(K ), with Range(K ) the set of all possible
outputs of K . Note that equation 3 may be extended to group
privacy, by having on the right side of the equation c.ε, with
c a small integer that corresponds to the number of records in
the group [27].

Despite being a strong and formal privacy concept, differ-
ential privacy has some limitations [55], such as setting the
appropriate value of ε. However, differential privacy is fairly
recent and thus, more research is currently on-going [60].

Group anonymization privacy models (e.g. k-anonymity)
and differential privacy are considered to be two of the major
research branches in privacy [4]. In fact, several variants were
proposed in the literature as to tackle some of the handicaps
of the base models. Since these variants are considered exten-
sions to the privacy models described through this section,
a simple enumeration of these techniques is given belowwith-
out any particular order. Interested readers can refer to [33]
and [61] for detailed descriptions on some of the referred
group anonymization privacy models.

• k-anonymity variants: km-anonymization [62],
(α,k)-anonymity [63], p-sensitive k-anonymity [64],
(k, e)-anonymity [65], MultiR (MultiRelational)
k-anonymity [66] and (X ,Y )-anonymity [67];

• l-diversity variants: (τ ,l)-diversity [68] and (c, l)-
diversity [45];

• t-closeness variants: closeness [69];
• ε-differential privacy variants: differential identifiabil-
ity [70] and membership privacy [71].

In summary, the preservation of privacy at data publishing
is achieved by applying privacy models that alter the original
table in order to prevent information disclosure. Each model
has advantages and disadvantages in protecting from differ-
ent types of inferences (e.g. identity, attribute). In contrast
with privacy-preserving methods at collection time, privacy
models can achieve a better control over the privacy level
due to the publisher’s access to the full data (recall the trade-
off between privacy and utility). Other privacy models have
been proposed in the literature [33], however, their underly-
ing principles are the same as in the seminal contributions
presented in this section.

C. DATA MINING OUTPUT PRIVACY
The outputs of the data mining algorithms may be extremely
revealing, even without explicit access to the original dataset.
An adversary may query such applications and infer sensitive
information about the underlying data. Below, a description
of the most common techniques to preserve privacy to the
output of the data mining is presented.

• Association Rule Hiding - In association rule data min-
ing, some rules may explicitly disclose private informa-
tion about an individual or a set of individuals. Asso-
ciation rule hiding is a privacy-preserving technique
whose objective is to mine all non-sensitive rules, while
no sensitive rule is discovered. Non-optimal solutions
perturb data entries in a way that sensitive rules are
hidden (e.g. suppression of the rule’s generating item-
sets), but may incorrectly hide a significant number of
non-sensitive rules in the process. Nevertheless, differ-
ent approaches, including exact solutions (all sensitive
rules are hidden and no non-sensitive is hidden), have
been proposed [10], [72]. The concept of association rule
hiding was first introduced by Atallah et al. in [73].

• Downgrading Classifier Effectiveness - Classifier
applications may also leak information to adversary
users. A good example are the membership inference
attacks, in which an adversary determines if a record is in
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the training dataset (original data) [83], [84]. To preserve
privacy in classifier applications, techniques for down-
grading the accuracy of the classifier are often used [9],
[76]. Since some rule based classifiers use association
rule mining methods as subroutines, association rule
hiding methods are also applied to downgrade the effec-
tiveness of a classifier [9].

• Query Auditing and Inference Control - Sometimes
entitiesmay provide access to the original dataset, allow-
ing exclusively statistical queries to the data. More
specifically, users can only query aggregate data from
the dataset, and not individual or group records. Nev-
ertheless, some queries (or sequences of queries) may
still reveal private information [9], [10]. Query audit-
ing has two main approaches: Query Inference Control,
where either the original data, or the output of the query
are perturbed; and Query Auditing, where one or more
queries are denied from a sequence of queries. Query
auditing problems may be further classified into offline
and online versions. In the former version, queries are
known a priori, and the answers to such inquiry were
already given to the user. The objective in this case is to
evaluate if the query response(s) breached privacy. In the
online version, queries arrive in an unknown sequence,
and the privacy measures take action at the time of the
queries. Query auditing and inference control techniques
have been studied extensively in the context statistical
database security. Classical approaches may be found
in [79] and [80].

Note that in all four methods described above, the devel-
oped application is affected, since either the utility of the data
used to build the application is lower than the original value,
the application itself is downgraded, or the access to the data
is restricted. Thus, the trade-off between privacy and utility is
present.

D. DISTRIBUTED PRIVACY
There are situations where multiple entities seek to mine
global insights in the form of aggregate statistics, over the
conjunction of all partitioned data, without revealing local
information to the other entities (possibly adversaries).

A generalisation of this problem is the well studied secure
multiparty computation (SMC) problem from the cryptog-
raphy field [85]. In SMC, the objective is to jointly com-
pute a function from the private input of each party, without
revealing such input to the other parties. That is, at the end
of the computation, all parties learn exclusively the output.
This problem is solved using secure data transfer protocols
that also apply to the privacy-preserving distributed compu-
tation [86].

In SMC, the assumption that adversaries respect the pro-
tocol at all times, is not often true [86]. The level of security
of a protocol depends on the type of adversarial behaviour
considered. Two main types of adversaries are defined in the
literature: semi-honest adversaries andmalicious adversaries.

In the semi-honest behaviour, also called honest-but-curious
model, adversaries abide by the protocol specifications, but
may attempt to learn more from the received information.
In the malicious behaviour model, adversaries deviate from
the protocol and may even collude with other corrupted par-
ties. Semi-honest scenarios are considered to be a goodmodel
of the real entities behaviour [86].

In a distributed scenario, a dataset may be partitioned either
horizontally or vertically. In the horizontal case, each entity
contains different records with the same set of attributes,
and the objective is to mine global insights about the data.
In vertically partitioned datasets, entities contain records with
different attributes pertaining to the same identity. The junc-
tion of the dataset in this latter partition type allows to infer
knowledge that could not be obtained from the individual
datasets. An example of an horizontally partitioned datasets
is a clinic chain, where each site has different costumers,
and the attributes associated with each costumer are com-
mon to all sites (such as type of disease and client’s QID).
For vertical partitioned datasets, stores with complementary
items may be sequentially visited by the same clients, thus
creating patterns that would not exist in each store’s database.
Distributed privacy-preserving algorithms exist for both types
of partitioning.

In the remainder of this section, a description of two types
of distributed privacy-preserving data mining protocols is
presented. The first type, is a set of secure protocols that pre-
vent information disclosure from the communication and/or
computation between entities. For this set, the oblivious
transfer protocol and the homomorphic encryption are
described. The second type, considers a set of primitive oper-
ations that are often used inmany datamining algorithms, and
are thus suitable for distributed privacy. The described oper-
ations are the secure sum, the secure set union, the secure
size of intersection, the scalar product and the set intersec-
tion. This second type of protocols may also use encryption
techniques, such as the oblivious transfer protocol, to prevent
information disclosure between entities.

The oblivious transfer protocol is a basic building block
of most SMC techniques, and is by definition, a two-party
protocol (between two entities). In PPDM, the 1 out of 2
oblivious-transfer protocol [87] is often implemented. In this
approach, a sender inputs a pair (x0, x1) and learns noth-
ing (has no output), while the receiver inputs a single bit
σ ∈ {0, 1} and learns xσ . That is, the receiver learns one out
of the possible two inputs/messages given by the sender, and
the sender learns nothing.

The 1 out of 2 oblivious-transfer protocol procedure starts
with the creation of two public encrypted keys by the receiver:
Pσ with private key3 Kσ and P1−σ with an unknown private
key. The receiver proceeds to send Pσ and P1−σ to the sender.
The sender encrypts x0 with P0 and x1 with P1, and sends
these encrypted messages back to the receiver. The receiver,

3Private keys are used to decrypt data that is encrypted with the corre-
sponding public keys.
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TABLE 4. Summary of distributed privacy techniques (Section III-D).

knowing only how to decrypt Pσ (using Kσ ), obtains only
xσ , σ ∈ {0, 1}.

The aforementioned description of the 1 out of 2 oblivious-
transfer protocol works only for the semi-honest adversar-
ial behaviour, since it is assumed that the receiver only
knows how to decrypt one of the messages (only knows Kσ ).
However, oblivious transfer protocols exist for the malicious
behaviour model [86], [88]. Furthermore, this protocol can be
used over horizontal and vertical partitioned datasets.

Other technique from the SMCfield that is raising attention
amongst researchers is the homomorphic encryption. The
concept of homomorphic encryptionwas firstly introduced by
Rivest et al. [89], under de term privacy homomorphism. The
objective was to be able to perform algebraic operations on
encrypted text (ciphertext), in a way that the deciphered result
would match the result of the operation with the plaintext that
originated the ciphertext.

Earlier homomorphic cryptosystems were only able to per-
form specific algebraic operations and were thus considered
partially homomorphic systems [90]. In contrast, fully homo-
morphic encryption supports any arbitrary function over the
ciphertext. The first fully homomorphic systemwas proposed
by Gentry [90], in 2009. Since then, there has been a devel-
opment of other and sometimes more efficient solutions [91].
However, the efficiency of fully homomorphic systems is still
insufficient for real-time applications [92].

Fully homomorphic encryption sees applications in most
privacy-preserving cloud applications. For instance, queries
can be made in an encrypted way, and the result is only
decrypted when reaching the inquirer. This process not only
protects the data in transmission, since it is encrypted but also

protects from disclosure of information from the inquirer to
the entity providing access to the search application through
an encrypted query. Searching through encrypted files that are
stored in the cloud is another possibility in full homomorphic
systems. More examples of applications may be found in [90]
and [91].

Clifton et al. [101] presented a set of secure multiparty
computations to preserve privacy in distributed scenarios.
Such techniques are often used as primitives to the data min-
ingmethods, and therefore, provide a useful approach to build
distributed privacy-preserving data mining algorithms. These
techniques include: secure sum, secure set union, secure size
of set intersection and scalar product, and are referred in the
literature as protocols. Below, the general idea of eachmethod
is described.

The secure sum protocol allows to obtain the sum of
the inputs from each site, without revealing such inputs to
the other entities. The implementation starts by designating
one of the sites as the master site, where the computation
starts and ends. The master site generates a random value R
uniformly distributed in [0, n], with n the upper bound of the
final value, and then passes (R+ v1) mod n, with v1 the local
input, to the next site. Each participating site then adds their
local value to the received value and send the result of the
mod n operation to the next site. Since the received values
are uniformly distributed in the interval of [0, n], sites learn
nothing about other local values. In the end, the master site
receives the last result and retrieves the true result (sum of
the vi values) by subtracting R. This value is then passed onto
the other parties. The secure sum protocol requires a trusted
master site, and to prevent disclosure, sites must not collude.
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Nevertheless, some adaptations have been proposed to protect
disclosure from such limitations [101], [102].

The secure set union is an important protocol for pattern
mining [10]. The idea is to share rules, itemsets and other
structures between sites, in order to create unions of sets,
without revealing the owners of each set. One possible imple-
mentation of this protocol [101] uses commutative encryp-
tion,4 where each site encrypts both its sets and received
encrypted sets from other parties. Then, as the information
is passed, the decryption takes place at each of the sites,
by a different (scrambled) order than the encryption order.
Since the decryption order is arbitrary, ownership anonymity
is preserved.

Another protocol that uses commutative encryption to
anonymize ownership of the items is the secure size of set
intersection. The objective of this protocol is to compute the
size of the intersection of the local datasets. The general idea
is as follows. Each entity uses commutative encryption to
encrypt local items and then passes them to another entity.
When a set of items is received by one of the parties, encryp-
tion takes place for each of the received items, followed by an
arbitrary order permutation, and finally passed onto another
entity. When all items have been encrypted by every entity,
the number of values that are equal across all the encrypted
itemsets is the size of the intersection. Note that this technique
does not require decryption and due to the use of commutative
encryption,4 the order of encryption is not important.

The last secure protocol presented in [101] is the scalar
product between two parties. Formally, the problem can be
defined as follows. Given two partiesP1 andP2, whereP1 has
a vector EX = x1, . . . , xn and P2 has a vector EY = y1, . . . , yn
of the same size of EX , the objective is to compute the scalar
product EX · EY =

∑n
i=1 xi ∗ yi, such that neither P1 learns

EY , nor P2 learns EX . Similarly to the secure sum, the secure
scalar product may be achieved by adding randomness to an
input vector, and the final output is retrieved by cancelling
out the randomness [101], [112]. Some approaches also use
homomorphic encryption, or the oblivious transfer protocol,
to prevent data disclosure [112], [113]. .

Another important secure protocol to ensure distributed
privacy and security is the set intersection, or private match-
ing [109]. In this protocol, the intersection of two sets, each
provided by one of the two participating parties P1 and
P2, is computed without revealing any other information.
Formally, let X = {x1, . . . , xn} be the set of P1 and Y =
{y1, . . . , yk} be the set of P2, the objective is to compute
I = X ∩Y , while revealing only I to each party. One efficient
solution proposed in [109] uses a partially homomorphic
encryption scheme, and is implemented as follows.P1 defines
a polynomial P whose roots are the elements in X , that is,
P(y) = (x1 − y)(x2 − y) . . . (xn − y) =

∑n
u=0 αuy

u. This
party then sends homomorphic encryptions of the coefficients

4Commutative encryption allows data to be encrypted and decrypted in
any order. That is, E1(E2(E3(r))) = E2(E1(E3(r))), where Ei, i ∈ {1, 2, 3}
are commutative encryption/decryption schemes.

to P2. With the encrypted coefficients, P2 can compute for
each yi ∈ Y , E(ri · P(yi) + yi) by multiplying P(yi) by a
random number ri (different for each i) and adding its input
yi, where E(·) represents the homomorphic encryption. P2
then sends these k results to P1. For each yi ∈ X ∩ Y ,
E(ri · P(yi) + yi) = E(yi), since P(yi) = 0 and thus, P2
will know that yi is in the intersection. P1 can decrypt the
received results and check if the results are either on their set,
and consequently in the intersection, or are simply random
values (recall the addition of ri).
While the aforementioned implementation of the set inter-

section protocol involves only two parties, the multiparty case
has also been studied [114]. Furthermore, the semi-honest
behaviour model was assumed, however, a modification to
provide security against malicious parties was also proposed
in the original paper [109].

IV. PPDM AND PRIVACY METRICS
Since privacy has no single standard definition, quantifying
privacy is quite challenging. Nevertheless, in the context of
PPDMs, some metrics have been proposed. Unfortunately,
no single metric is enough, since multiple parameters may be
evaluated [8], [11], [86]. The existing metrics may be clas-
sified into three main categories, differing on what aspect of
the PPDM is being measured: privacy level metrics measure
how secure is the data from a disclosure point of view, data
quality metrics quantify the loss of information/utility and
complexitymetrics, whichmeasure efficiency and scalability
of the different techniques.
Privacy level and data quality metrics can be further cat-

egorised into two subsets [8]: data metrics and result met-
rics. Data metrics evaluate the privacy level/data quality by
appraising the transformed data that resulted from applying a
privacy-preserving method (e.g. randomisation or a privacy
model). Result metrics make a similar evaluation, but the
assessment is done to the results of the data mining (e.g. clas-
sifiers) that were developed with the transformed data.
The following subsections present a survey on PPDMmet-

rics concerning privacy level, data quality and complexity.
Table 5 summarises the privacy level and data quality metrics
described in this section, sub-categorised as data or result
metrics.

A. PRIVACY LEVEL
As previously mentioned, the primal objective of PPDM
methods is to preserve a certain level of privacy, while max-
imizing the utility of the data. The level of privacy metrics
give a sense of how secure is the data from possible privacy
breaches. Recall from the aforementioned discussion that
privacy level metrics can be categorised into data privacy
metrics and result privacy metrics. In this context, data pri-
vacy metrics measure how the original sensitive information
may be inferred from the transformed data that resulted from
applying a privacy-preserving method, while result privacy
metrics measure how the results of the data mining can dis-
close information about the original data.
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TABLE 5. Privacy level and data quality metrics, further categorised as data metrics, if the evaluation is made based on the transformed data, or as result
metrics, if the evaluation is made based on the results of the data mining technique (e.g. the produced classifiers) on the transformed data.

One of the first proposed metrics to measure data privacy
is the confidence level [26]. This metric is used in additive-
noise-based randomisation techniques, and measures how
well the original values may be estimated from the ran-
domised data. If an original value may be estimated to lie
in an interval [x1, x2] with c% confidence, then the interval
(x2 − x1) is the amount of privacy at c% confidence. The
problem with this metric is that it does not take into account
the distribution of the original data, therefore making it pos-
sible to localise the original distribution in a smaller interval
than [x1, x2], with the same c% confidence.
To address the issue of not taking into account the distri-

bution of the original data, the average conditional entropy
metric [117] is proposed based on the concept of information
entropy. Given two random variables X and Z ,5 the average
conditional privacy of X , given Z isH (X |Z ) = 2h(X |Z ), where
h(X |Z ) is the conditional differential entropy ofX , defined as:

h(X |Z ) = −
∫
�X ,Z

fX ,Z (x, z) log2 fX |Z=z(x) dxdz

where fX (·) and fZ (·) are the density functions of X and Z ,
respectively.

In multiplicative noise randomisation, privacy may be
measured using the variance between the original and the
perturbed data [28]. Let x be a single original attribute
value, and z the respective distorted value, Var(x−z)Var(x) expresses
how closely one can estimate the original values, using the
perturbed data.

In the data publishing privacy subsection (subsection III-
B), the k-anonymity, the l-diversity, the t-closeness, and the
ε-differential privacy models were presented. Each of these
models has a certain control over the privacy level, since
variables k , l, t and ε are defined a priori and thus, act as
privacy metrics, for a prescribed level of security. However,
these metrics are specific to such techniques.

Result privacy metrics, as opposed to data privacy metrics,
are metrics that measure if sensitive data values may be
inferred from the produced data mining outputs (a classifier,
for example). These metrics are more application specific
than the previously described. In fact, Fung et al. [33] defined
these metrics as ‘‘special purpose metrics’’.

One important result privacy metric is the hidden fail-
ure (HF), used to measure the balance between privacy and

5Consider for example that X is the original data distribution and Z the
noisy distribution from subsection III-A.

knowledge discovery [8]. The hidden failure may be defined
as the ratio between the sensitive patterns that were hidden
with the privacy-preservingmethod, and the sensitive patterns
found in the original data [115]. More formally:

HF =
#RP(D′)
#RP(D)

where HF is the hidden failure, D′ and D are the sanitised
dataset and the original dataset, respectively, and #RP(·) is the
number of sensitive patterns. IfHF = 0, all sensitive patterns
are successfully hidden, however, it is possible that more non-
sensitive information will be lost in the way. This metric may
be used in any pattern recognition data mining technique (e.g.
classifier or an association rule algorithm). Note that this met-
ric does not measure the amount of information lost. For that,
data quality metrics (presented in the following subsection)
are used instead.

B. DATA QUALITY
Privacy-preserving techniques often degrade the quality of
the data. Data quality metrics (also called functionality loss
metrics [11]) attempt to quantify this loss of utility. Gener-
ally, the measurements are made by comparing the results
of a function over the original data, and over the privacy-
preserved transformed data.

When evaluating data quality, three important parameters
are often measured [12]: the accuracy, which measures how
close is the transformed data from the original data, the com-
pleteness, which evaluates the loss of individual data in the
sanitised dataset, and consistency, which quantifies the loss
of correlation in the sanitised data. Furthermore, and similarly
to the privacy level metrics, data quality measurements may
be made from a data quality point of view, or from the quality
of the results of a data mining application. Several metrics
have been defined for both points of view, and for each of the
parameters described above. In this subsection, a description
of some of the most commonly used metrics will be given.

Fletcher and Islam [13] surveyed a series of metrics used
tomeasure information loss from the data quality perspective,
for generalisation and suppression operations, and for equiv-
alence classes algorithms (such as the k-anonymity). For
the generalisation and suppression techniques, the authors
described the Minimal Distortion (MD) (first proposed as
generalisation height [116]), theLossMetric (LM) [118] and
the Information Loss (ILoss) metric [51]. The MD metric is
a simple counter that increments every time a value is gener-
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alised to the parent value. The higher the MD value, the more
generalised is the data, and consequently, more information
was lost. The LM and ILoss metrics measures the average
information loss over all records, by taking into account the
total number of original leaf nodes in the taxonomy tree.
The ILoss differs from the LM metric by applying different
weights to different attributes, for the average. The weight
may be used to differentiate higher discriminating generali-
sations [45]. For the equivalence class algorithms, the Dis-
cernibility Metric (DM) [120] was described. This metric
measures how many records are identical to a given record,
due to the generalisations. The higher the value, the more
information that is lost. For example, in the k-anonymity,
at least k − 1 other records are identical to any given record,
thus the discernibility value would be at least k − 1 for any
record. Increasing k , will increase generalisation and sup-
pression, and consequently the discernibility value. For this
reason, this metric is considered to be the opposite concept
of the k-anonymity.
In [117], a metric to measure the accuracy of any recon-

struction algorithm (such as in randomisation) is defined. The
authorsmeasure the information loss by comparing the recon-
structed distribution and the original distribution. Let fX (x)
be the original density function and ˆfX (x) the reconstructed
density function. Then, the information loss is defined as:

I (fX (x), ˆfX (x)) =
1
2
E
[∫

�X

∣∣∣fX (x)− ˆfX (x))∣∣∣ dx]
where the expected value corresponds to the L1 distance
between the original distribution fX (x) and the reconstructed
estimation ˆfX (x). Ideally, the information loss should be
I (fX (x), ˆfX (x)) = 0, which states that fX (x) = ˆfX (x), that is,
the reconstruction was perfect, and therefore, no information
was lost.

The metrics for evaluating the quality of the results are spe-
cific to the data mining technique that is used. These metrics
are often based on the comparison between the results of the
dataminingwith the perturbed data andwith the original data.

Two interesting metrics to measure data quality loss from
the results of pattern recognition algorithms are the Misses
Cost (MC) and the Artifactual Patterns (AP), presented
in [115]. The MC measures the number of patterns that
were incorrectly hidden. That is non-sensitive patterns that
were lost in the process of privacy preservation (recall the
aforementioned discussion on association rule hiding). This
metric is defined as follows. Let D be the original database
and D′ the sanitised database. The misses cost is given by:

MC =
# ∼ RP(D)− # ∼ RP(D′)

# ∼ RP(D)

where # ∼ RP(X ) denotes the number of non-restrictive
patterns discovered from database X . Ideally, an MC = 0%
is desired, which means that all non-sensitive patterns are
present in the transformed database. The AP metric measures
artifact patterns, i.e. the number of patterns that did not
exist in D, but were created in the process that led to D′.

The following equation defines the AP metric.

AP =
|P′| − |P ∩ P′|
|P′|

where P and P′ are the set of all patterns in D and D′,
respectively, and |·| represents the cardinality. In the best case
scenario, AP should be equal to 0, indicating that no artificial
pattern was introduced in the sanitisation process.

For clustering techniques, the Misclassification Error
(ME ) metric proposed in [119] measures the percentage of
data points that ‘‘are not well classified in the distorted
database’’. That is, the number of points that were not
grouped within the same cluster with the original data and
with the sanitised data. The misclassification is defined by
the following equation:

ME =
1
N
×

k∑
i=1

(
|Clusteri(D)| − |Clusteri(D′)|

)
with N the number of total points in the database, k the num-
ber of clusters, and |Clusteri(X )| the number of legitimate
data points of the ith cluster in database X .
Additional metrics to evaluate the quality of results for

classification and clustering are described in [13]. These
metrics include commonly used quantitative approaches to
measure the quality of data mining results, such as the Rand
index [121] and the F-measure [122]. Finally note that cryp-
tographic techniques implemented in distributed privacy pre-
serve data quality since no sanitisation is applied to the data.

C. COMPLEXITY
The complexity of PPDM techniques mostly concern the effi-
ciency and the scalability of the implemented algorithm [8].
These metrics are common to all algorithms, and therefore,
only a brief discussion will be presented in this subsection.

To measure the efficiency, one can use metrics for the
usage of certain resources, such as time and space. Time
may be measured by the CPU time or by the computational
cost. Space metrics quantify the amount of memory required
to execute the algorithm. In distributed computation, it may
also be interesting to measure the communication cost, based
either on the time, or the number of exchanged messages, and
the bandwidth consumption. Both time and space are usually
measured as a function of the input.

Scalability refers to how well will a technique perform
under increasing data. This is an extremely important aspect
of any data mining technique since databases are ever increas-
ing. In distributed computation, increasing the inputs may
severely increase the amount of communications. Therefore,
PPDM algorithms must be designed in a scalable way. Scala-
bility may be evaluated empirically by subjecting the system
to different loads [123]. For example, to test if a PPDM
algorithm is scalable, one can make several experiments with
increasing input data, and measure the loss of efficiency.
The loss of efficiency over experiments can then be used to
measure scalability, since a more scalable system will present
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lower efficiency losses when under the same ‘‘pressure’’ as a
less scalable system.

V. PPDM APPLICATIONS
In the previous two sections, a description of different
privacy-preserving techniques, as well as a set of metrics to
measure the privacy level, data quality and complexity was
given. This section describes some existing PPDM appli-
cations, focusing on the employed privacy-preserving tech-
niques and on the metrics used to measure the preservation
of privacy.

The following subsections group the PPDM applications
in the following fields: cloud computing, e-health, wireless
sensor networks (WSN), and location-based services (LBS).
Furthermore, in the e-health subsection, an emphasis on
genome sequencing will be given due to the rising privacy
research interest in the area, and in the LBS subsection,
typical applications such as vehicular communications and
mobile device location privacy will be described. Note that
this section does not extensively surveys existing PPDM
applications. Nonetheless, it is sufficient to illustrate some of
the described privacy-preserving methods described in this
work, and relate the applicability with the assumptions and
privacy requirements of the applications. For comprehensive
reviews on privacy in genome sequencing, WSN and location
privacy readers can refer to [124]–[126], respectively.

A. CLOUD PPDM
The U.S. National Institute of Standards and Technol-
ogy (NIST) defined cloud computing [127] as ‘‘a model for
enabling ubiquitous, convenient, on-demand network access
to a shared pool of configurable computing resources (e.g.,
networks, servers, storage, applications, and services) that
can be rapidly provisioned and released with minimal man-
agement effort or service provider interaction.’’ In other
words, cloud is a distributed infrastructure with great storage
and computation capabilities that is accessible through the
network, anytime and anywhere. Therefore, applications (or
services) that collect, store and analyse large data quantities
often require the cloud. However, entities need to either trust
cloud providers with data,6 or to apply techniques that protect
data while stored and/or during distributed computation. The
cloud may be also used to publish data, and in this case,
query auditing and inference control may be required. Con-
sequently, cloud-based services are one of the primary focus
of privacy-preserving techniques [128].

In [25], a scheme for classification over horizontally parti-
tioned data under a semi-honest behaviour is proposed. This
scheme allows owners to store encrypted data in the cloud,
thus preserving privacy of data in communications and while
stored. Furthermore, queries to the cloud are allowed to obtain
the classes of a given set of inputs over encrypted data without
the need for intermediate decryption. Using homomorphic

6Entities often seek to distribute the service through multiple providers to
increase security and availability.

encryption, the data, the query and the result are encrypted,
and only the ‘‘querist’’ can decrypt the result, thus protecting
the user from information leakage even against the cloud
provider. The authors formally prove the security of the
scheme and evaluate the computational and communicational
complexity through simulations. Another approach that uses
homomorphic encryption for cloud computing is presented
in [99], for storing and mining association rules in a vertically
distributed environment with multiple servers. This approach
achieves privacy if at least one out of n servers is honest, and
similarly to [97], security is proven mathematically, based on
cryptography. Additionally, the authors of the paper [99] also
present a series of efficient secure building blocks, which are
required for their solution.

Privacy in the cloud is not limited to the use of secure
protocols. For instance. in [43], a technique to publish data to
the cloud based on the concept of k-anonymity is presented.
The authors describe a novel approach where equivalence
classes have less than k records, but still ensure the k-
anonymity principle by exploring overlaps in the definitions
of the equivalence classes. That is, by creating classes with
less than k records (a divisor of k records) such that each
record could belong to multiple classes and, thus, provide
k-anonymity. By having a lower number of records in each
class, the number of required generalisations is lower, and
thus, more utility is preserved. The authors show this result
by measuring the information loss, and also show the good
performance of the implementation.

B. E-HEALTH PPDM
Health records are considered to be extremely private,
as much of this data is considered sensitive. However,
the increase in the amount of data, combined with the
favourable properties of the cloud has led health services
to store and exchange medical records through this infras-
tructure [129]. Thus, to protect from unwanted disclosures
privacy-preserving approaches are considered.

In [129], a survey on the state-of-the-art privacy-preserving
approaches employed in the e-Health clouds is given, where
the authors divide PPDM techniques in either cryptographic
and non-cryptographic. The cryptographic techniques are
usually based on encryption, whereas non-cryptographic
approaches are based on policies and/or some sort of
restricted access. An example of a cryptographic technique is
found in [97], where the authors propose a privacy-preserving
medical text mining and image feature extraction scheme
based on fully homomorphic data aggregation under semi-
honest behaviour is presented. The authors formally prove
that their encryption is secure from the data point of view
and from the results point of view. They also evaluate the
performance of the PPDM by measuring computation and
communication costs over the amount of input data.

An emerging field in e-health that is raising a growing
privacy interest is genome sequencing. Genome sequencing is
the process of studying genetic information about an individ-
ual through the study of sequences of DNA (Deoxyribonu-
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cleic acid). Genomic data sees applications in [124] health
care, forensics and even direct-to-consumer services. Due
to the advances in genome sequencing technologies and the
capabilities of the cloud for computation and communication
of data, this area has experienced a recent boom in research,
including in the privacy field.

Genetic data is highly identifiable and can be extremely
sensitive and personal, revealing health conditions and indi-
vidual traits [124]. Furthermore, this type of data also reveals
information about blood relatives, thus involving not only
a single individual [124]. It is, therefore, critical to prevent
unwanted disclosure of this type of data, while preserving
maximum utility.

For genome data publishing, Uhlerop et al. [56] pro-
posed a solution for releasing aggregate data based on the
ε-differential privacy. This approach was motivated by the
work in [130], where an attack to accurately identify the
presence of an individual from a DNA mixture of numer-
ous individuals was introduced. Thus, in [56], additive noise
is added to the statistical data to be released, in order to
achieve ε-differential privacy. Simulations have shown that
ε-differential privacy is achievable and good statistical utility
was preserved. However, for big and sparse data, the release
of simple summary statistics is problematic from both privacy
and utility perspectives.

Recently, McLaren et al. [98] proposed a framework for
privacy-preserving genetic storing and testing. The depicted
scenario involved the patients (P), a certified institution (CI),
which has access to unprotected raw genetic data and there-
fore must be a trusted entity, a storage and processing
unit (SPU) and medical units (MU). Both the SPU and the
MU follow a semi-honest adversarial behaviour, i.e. they will
follow the protocol, but may attempt to infer sensitive data
about the patients. Essentially, the patient supplies the data
to the CI, which stores such data encrypted in the SPU using
a partially homomorphic encryption scheme. MUs can then
use secure two-party protocols with the SPU to operate the
data in encrypted form, to be decrypted only when the result
is returned from the SPU to the MU. Their framework has
proven to be efficient, although it was limited to some genetic
tests. Fully homomorphic encryption is suggested has a future
solution to this limitation, however, the computational cost is
currently prohibitive.

C. WIRELESS SENSOR NETWORKS PPDM
Wireless Sensor Networks (WSN), sometimes called Wire-
less Sensor and Actuator Networks (WSAN), are networks of
sparsely distributed autonomous sensors (and actuators), that
monitor (act upon changes in) the physical environment [131]
(e.g. light, temperature). Each sensor/actuator is referred to as
node in the WSN and data is exchanged wirelessly between
these devices. Since nodes have low battery capacity, one
of the most important challenges in WSN networks is the
efficiency in communication and processing of data at each
node [131]. Thus, techniques to aggregate data from mul-
tiple sensors are often used to reduce network traffic and

hence, improve battery life and consequently the sensor’s
lifetime. Data generated in WSNs may be considered sen-
sitive in many different applications. For instance, sensed
humidity of a room may determine room occupancy and
house electrical usage over time may be used to track house-
hold behaviour [100]. Due to the aggregation of data and
the WSNs’ topology, attackers may try to control one or a
few nodes to obtain access to all information. In this case,
even if the communications are encrypted, the compromised
nodes have the ability to decrypt the information, giving the
adversary full access [132]. Therefore, privacy-preservation
techniques may be required.

In [100], an approach to leverage the advantage of data
aggregation for efficiency and to preserve privacy on the
collected data is proposed. In this work, users can only query
aggregator nodes to obtain aggregated data. Aggregator nodes
query a set of nodes for the sensed values and proceed to
compute the aggregation results over the received data, which
is then forwarded to the inquirer. However, users must be able
to verify the integrity of the aggregated data, since malicious
users may try to control aggregation nodes and send false
data. The WSN owners, on the other hand, want to prevent
disclosure of individual sensor data, thus restricting query
results to aggregated data. The challenge here is how to verify
the integrity of aggregated data, without access to the original
sensed data. To address this issue, a framework where the
user has full access to encrypted sensor data, in addition to
the access to the aggregated data is proposed. The user can
verify the integrity of the aggregated data by making use of
the encrypted sensed values, without decrypting such data.
Four solutions were described, each providing a different
privacy-functionality trade-off, where one of the solutions
uses (partially) homomorphic encryption to achieve perfect
privacy, that is, no individual sensed value is disclosed. The
authors compare the four solutions in terms of the number
of messages exchanged and the supported aggregation func-
tions.

Another approach that makes use of the aggregation of
data to preserve privacy is proposed in [40]. This approach
is non-cryptographic and implements a similar concept
to k-anonymity, referred to as k-indistinguishable, where
instead of generalisations, synthetic data is added to cam-
ouflage the real values (obfuscation). Aside from using k to
control the number of indistinguishable values, a discussion
to decrease the probability of privacy breach under colluding
nodes (combining information from multiple nodes) is given.
The authors also compare the performance of their implemen-
tation against encryption approaches, where the results show
that this method is more time and power efficient than such
approaches.

The above examples concern information leakage from
within the WSN. However, large WSN may be queried by
multiple entities (clients) that may not trust the network own-
ers [133]. The network owners may infer clients’ intentions
through the respective queries and profiles. These queries
may be specific to a given area, or a given event thus revealing
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the intention. As stated in [133], one solution would be to
query all sensors in the network and save only the readings of
interest. However, this would result in a significant load on
the network, specially in large networks.

To address this issue, Carbunar et al. [133] proposed two
approaches differing on the type of networkmodels: querying
server(s) that belong to a single owner (organization) and
querying servers (at least two) belonging to different organi-
zations. In both scenarios, servers are considered to be semi-
honest, i.e. they abide by the protocols, but attempt to learn
more than allowed. In the single owner model, the idea is to
create a trade-off between the area of sensors that is queried
and the privacy that is achieved. If the client queries only the
region of interest, then no privacy is achieved, but the cost is
minimal, whereas if the query targets all the network, the cost
is maximum, but the achieved privacy is also maximized. The
solution is thus a function that transforms an original query
sequence into a transformed sequence, in order to conceal the
region(s) of interest. Two metrics were used to measure pri-
vacy: the spatial privacy level and the temporal privacy level.
The spatial metric is the inverse of the probability of the server
guessing the regions of interest from the transformed query.
The temporal privacy level measures the distance between the
distributions of frequency of access of the regions obtained
with the transformed and original query. A higher distance
value translates into a better obfuscation of the frequency
of access to the regions of interest. In the multiple owners
situation, cryptography is used to assign a virtual region to
each sensor, that is only recognized by both the client and
the sensor. A queried server then broadcasts the encrypted
query, which is dropped by sensors that do not belong to the
target virtual region. Sensors from the queried region encrypt
the sensed values and return the results, which can only be
decrypted by the client. This solution is fully private, as long
as the servers used to create the virtual regions do not collude.

D. LOCATION-BASED SERVICES PPDM
Pervasive technologies such as the global positioning sys-
tem (GPS) allow to obtain highly accurate location infor-
mation. LBSs use this spatiotemporal data to provide users
with useful contextualized services [134]. However, this same
information can be used to track users and consequently dis-
cover for example, their workplace, their houses’ location and
the places that they visit [126]. Furthermore, this information
can also be used to identify users, since routes and behaviours
often have characteristic patterns [135]. Therefore, the pos-
sibility of location information leakage is a serious concern
and a threat to one’s privacy. This type of leakage occurs
when attackers have access to the LBS data, or when LBS
providers are not trustworthy. In computational location, pri-
vacy is achieved with anonymity, data obfuscation (perturba-
tion), or through application-specific queries [126]. Below,
some examples are described.

For location anonymity, users can be assigned IDs
(pseudonyms) to prevent identity disclosure. However, these
pseudonyms must be changed periodically so that users can-

not be tracked over time and space, and consequently dis-
close identity. To prevent this type of disclosure, Beresford
and Stajano [41] presented the concept of ‘‘mix zone’’. In
this approach, IDs are changed every-time users enter in a
mix zone. In this type of zone, at least k − 1 other users
are present, such that changing all pseudonyms prevents the
linkage between the old and new pseudonyms. With this
approach, and similarly to the k-anonymity privacy model,
k may be used as a privacy metric.
In data obfuscation, the idea is to generate synthetic

data or to add noise in order to degrade the quality of the
spatial, and sometimes temporal, data. The assumption is that
the LBS provider is untrustworthy. Simple examples include
giving multiple locations and/or imprecise locations [126].
In [136] a solution to ‘‘cloak’’ users’ locations using an inter-
mediary anonymiser server (between the user and the LBS)
is proposed. The user queries the intermediary server (named
CacheCloak) and if this server has the correct data for the
location in cache, the data is sent to the user without querying
the LBS. If the location data is not cached, the CacheCloak
server creates a prediction path from the queried point until
reaching a point in another cached path, and then queries the
LBS for all these points. The received data is then cached
and the correct data is forwarded to the user. As the user
moves through the predicted path, the CacheCloak will return
the cached information. When the user changes from the
predicted path, and if the new position is not yet cached,
then the same process is repeated. Since the predicted path
is queried at the same time to the LBS, the service provider
has no way to know the exact user location nor the movement
direction. The authors present a metric based on the concept
of (location) entropy to measure the achieved privacy level
and how their solution to location privacy can work in real-
time LBS services. Furthermore, an implementation to work
under the assumption of an untrusted CacheCloak server is
also discussed.

Another type of technique to achieve location privacy is
to implement private queries, that is, location queries that do
not disclose user location to the LBS provider. In [137] an
approach using a secure protocol is presented, that allows
users to query the LBS server through an encrypted query
that does not reveal user’s location. The protocol used is the
private information retrieval (PIR), that has many similari-
ties with the oblivious transfer protocol. With the encrypted
query, the server computes the nearest neighbour, to retrieve
the closest point of interest from the user location. The
authors implement data mining techniques to optimise the
performance of their solution, to identify redundant partial
products, and show through simulation that the final cost in
server time and the cost of communications is reasonable
for location-based applications. This solution achieves full
privacy in the sense that it is computationally infeasible for
the server to decipher the encrypted query.

Vehicular communication privacy may be seen as a partic-
ular case of location privacy. These location-based systems
are essentially networks, where cars and roadside units are
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nodes that communicate wirelessly to exchange spatiotempo-
ral information [138]. Location-based services (LBS) make
use of this data to provide drivers with useful content, such
as traffic conditions, targeted advertising, and others. In this
scenario, the highly accurate spatiotemporal information pro-
vided by the GPS is transferred to a third party server, that
accumulates routes information that can be used to track
drivers [138]. Privacy preservation is thus required, to protect
drivers from being tracked. In [138], a privacy preserva-
tion approach under the assumption of untrusted collector is
presented. This technique uses synthetic data generation to
obfuscate the real trajectory of the car, by providing con-
sistent fake locations. The authors present three measures
of privacy: the tracking process, which is measured by the
attacker’s belief (probability) that a given location-time sam-
ple corresponds to the real location of the car; the location
entropy, to measure the location uncertainty of an attacker;
and the tracking success ratio, which measures the chance
that the attacker’s belief is correct when targeting a driver over
some time t .
In this section we provide an overview of a set of relevant

applications of PPDMmethods, yet several other applications
for the aforementioned domains and others exist, as listed
in Tables 2, 3 and 4.

VI. LESSONS LEARNED AND OPEN ISSUES
While PPDM is a fairly recent concept, extensive research
has been ongoing by different scientific communities, such
as cryptography, database management and data mining.
This results in a variety of techniques, metrics, and specific
applications. Nevertheless, it is essential to understand the
underlying assumptions of each problem.

In this survey, PPDM techniques were partitioned accord-
ing to the phase of the data lifecycle at which the privacy pre-
serving technique is applied. This natural separation comes
as a consequence of the different assumptions at each phase.
These assumptions, which have been highlighted as a sce-
nario description throughout Tables 1, 2, 3 and 4, condition
the design of the PPDM techniques to address disclosure of
data at different phases of the data lifecycle. These different
phases are tied to distinct user roles and corresponding pri-
vacy concerns/assumptions on the adversary [24].

Even at a given data phase, there is no single optimal
PPDM technique. The appropriate choice is often a matter of
weighting the different trade-offs between the desired privacy
level, the information loss, which is measured by data utility
metrics, the complexity and even the practical feasibility of
the techniques. Another aspect to take into consideration is
the type of adversarial behaviour and corresponding privacy
breaches that can be explored. The evolution in the research
of the group anonymization techniques from k-anonymity
to l-diversity and t-closeness presented in subsection III-B
witnesses how different types of attacks can compromise pri-
vacy (in this case, anonymity) and how different techniques
can be applied to protect from these invasions.

The evolution of PPDM is motivated by the privacy
requirements of applications and fields/domains that handle
data. Different application domains have different assump-
tions, requirements and concerns related to privacy. While
this heterogeneity leads to a vast diversity of algorithms and
techniques, the underlying concepts are often transversal.
However, PPDM is far from being a closed subject [1]. Aside
from the classical information technology requirements, such
as scalability and efficiency, PPDM still presents several
challenges with respect to data privacy.

A. OPEN ISSUES
Due to the broadness of the term, defining privacy is quite
challenging. Even in the limited scope of information pri-
vacy, several definitions have been presented. In fact, there
is always a fair amount of subjectiveness due to individu-
als’ own privacy concept, beliefs and risk assertions. It is,
therefore, necessary to develop systems that implement the
concept of personalised privacy. This notion allows users
to have a level of control over the specificity of their data.
However, personalised privacy is challenging to implement.
One one hand, it has been shown that users’ concerns
about privacy do not mirror users’ actions [5], [139], that
is, users’ tend to trade their privacy for utility. Therefore,
a personalised privacy solution could give users control over
the data, but that control can become harmful, specially
when users are unaware of the privacy risks of data disclo-
sure [139]. On the other hand, the fact that users have no
access to the overall distribution of sensitive values can lead
to more protective decisions over their data, thus negatively
affecting the utility of data [33]. Seeking novel solutions
to this well-known trade-off between privacy and utility is
therefore required in the context of personalised privacy
solutions.

The oblivious transfer protocol and homomorphic encryp-
tion are two techniques for preserving privacy and security
that are able to achieve full privacy without incurring in a loss
of utility. However, these techniques are often not efficient for
real-time applications [92]. Moreover, homomorphic encryp-
tion often requires a trade-off between functionality (sup-
ported functions) and efficiency. The development of more
efficient secure protocols with better functionality trade-offs
could increase the appliance of such techniques.

One important term that is raising interest in ubiquitous
computing is that of context-aware privacy. In the envi-
sioned world of the Internet of Things, sensors shall con-
stantly monitor and sense the environment, allowing easier
inference of a user’s context [140]. Context-aware privacy
is achieved when a system can change its privacy policy
depending on the user context [141]. Such systems may
grant users added control over the collection of data by
adapting privacy preferences to the context without being
intrusive for the user. Nevertheless, while defining policies
in an automated way according to context seems a promis-
ing direction, this may be difficult to achieve when faced
with new and unknown contexts due to the complexity and
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incompleteness of context information [141], combined with
users’ uncertainty about what, when, by whom and how
their information is collected [5]. Thus, further research on
how to build/model efficient context-aware privacy systems is
required.

Another consequence that arises from the absence of a
standard definition is the hurdle in measuring privacy. Pro-
posed metrics are often application specific, which renders a
difficult comparison between the existing privacy preserving
techniques. More generally applicable metrics, such as based
on information entropy, are required for an effective com-
parison of different privacy-enhancing methodologies, thus
leading to conscious choices of the adequate method for a
given application.

Data publishing privacy is achieved with privacy models
that sanitise data. However, due to the access to other publicly
available sources, adversaries can try to de-anonymize or to
infer sensitive information [36], [142]. As the amount of pub-
lished data continues to grow in both quantity and complex-
ity, modelling background knowledge of adversaries presents
several difficulties [143], such as the identification of what
data can be used to de-anonymize and the amount of pub-
lic data sources that can be linked together. This calls for
the development of more evolved and realistic models of
background knowledge available to adversaries, that can urge
research on privacy mechanisms effective against these over-
hauled adversaries.

VII. CONCLUSION
Businesses and institutions constantly collect data to
offer or improve their existing services. However many of
these services require the collection, analysis and sometimes
publishing/sharing of private sensitive data. Information pri-
vacy is particularly critical with ubiquitous information sys-
tems capable of gathering data from several sources, therefore
raising privacy concerns with respect to the disclosure of such
data.

Privacy-Preserving Data Mining (PPDM) methods have
been proposed to allow the extraction of knowledge from data
while preserving the privacy of individuals. In this survey,
an overview of data mining methods that are applicable to
PPDM of large quantities of information is provided. This
serves as preliminary background for the subsequent detailed
description of the most common PPDM approaches. These
PPDM methods are described according to the data lifecy-
cle phase at which they can occur, namely collection, pub-
lishing, distribution and output of data. The evaluation of
these techniques is then addressed by analysing metrics to
assess the privacy and quality levels of data as well as the
complexity of the proposed PPDM approaches. Thereafter,
the aforementioned PPDM techniques are considered from
the point-of-view of their application to several practical
domains and the rationale of their choice for those specific
domains. Finally, some open issues and directions for future
work are described.
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