
UNIVERSIDADE DE LISBOA

FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE INFORMÁTICA

POSITION-BASED DISTRIBUTED
HASH TABLES

Filipe João Boavida de Mendonça Machado de Araújo

DOUTORAMENTO EM INFORMÁTICA

2006

UNIVERSIDADE DE LISBOA

FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE INFORMÁTICA

POSITION-BASED DISTRIBUTED
HASH TABLES

Filipe João Boavida de Mendonça Machado de Araújo

DOUTORAMENTO EM INFORMÁTICA

2006

Tese orientada pelo Prof. Doutor Luís Eduardo Teixeira Rodrigues

This work was partially supported by the Fundação para a Ciência e a Tecnolo-

gia through the projects INDIQoS POSI/CHS/41473/2001 and P-SON POSC/-

EIA/60941/2 via POSI and FEDER funds and by the European Science Founda-

tion MiNEMA Research Network.

Abstract

In this thesis we want to create scalable, fault-tolerant and self-configuring dictio-

naries that can be deployed in a wide range of networks, including highly dynamic

networks with frequent membership changes, like peer-to-peer overlay networks

or wireless ad hoc networks.

In recent years, distributed hash tables (DHTs) have emerged as a solution to

implement large-scale dictionaries. However, given the existing bandwidth limita-

tions, updating routing information in DHTs remains a challenge. Position-based

routing schemes arise as an attractive solution to this problem, due to inexpensive

and ubiquitous localization mechanisms. Positional information enables the cre-

ation of oblivious (or memoryless) routing schemes, where the coordinates of the

current forwarding node, of its neighbors and of the destination, suffice to deter-

mine the next hop. Such routing schemes are very suitable to rapidly changing

networks, because they require very little control information.

We argue in this thesis that we can use positional information to efficiently

support routing and DHT operation in wireless ad hoc and in wired networks,

whenever position of nodes reflects network topology. To support this claim, we

create and evaluate a number of algorithms that simultaneously support routing

and DHT operation in both types of networks.

KEY WORDS: Distributed Hash Table, Overlay Network, Position-Based

Routing Scheme, Delaunay Triangulation, Long Range Contact.

Resumo Estendido

Um dicionário armazena valores que podem ser acedidos através de chaves asso-

ciadas. Nos sistemas distribuídos actuais, os dicionários desempenham um papel

central. Por exemplo, na Internet, quase todas as aplicações dependem de um

dicionário chamado “Domain Name Service” (DNS). Esta tese aborda o prob-

lema da criação de dicionários escaláveis, tolerantes a faltas e auto-configuráveis,

que possam ser aplicados numa vasta gama de redes, incluindo redes extrema-

mente dinâmicas com mudanças frequentes de participantes. Dentro destas redes,

destacam-se, apesar das suas diferenças, as redes lógicas (de overlay) entre-pares

(com fios) e as rede ad hoc sem fios, por serem capazes de se auto-organizarem

de forma fortemente descentralizada, mesmo em ambientes onde a participação é

altamente dinâmica.

Uma concretização de uma tabela de dispersão distribuída (distributed hash

table, DHT) sobre redes entre-pares emerge naturalmente como uma solução para

concretizar um dicionário de grande escala. Actualmente há muitas concretiza-

ções de DHTs baseadas em redes lógicas entre-pares, especialmente em redes com

fios, tais como o Pastry, Tapestry, Chord e CAN, para mencionar apenas algumas.

No entanto, as limitações de largura de banda fazem com que a actualização de in-

formação de encaminhamento permaneça muito difícil, não só em redes com fios,

mas especialmente em rede ad hoc sem fios, onde a construção de uma rede lógica

levanta problemas ainda mais complexos de eficiência. É neste contexto que o en-

caminhamento com tabelas de dispersão distribuídas baseadas em informação de

localização surge como uma solução atractiva para o problema, devido, em muito,

à vulgarização de mecanismos de localização baseados, por exemplo, no “Sis-

tema de Posicionamento Global” (Global Positioning System, GPS). Para reduzir

a informação de controlo e a memória necessária, o encaminhamento baseado em

informação de localização, ou posicional, utiliza a posição geográfica dos nós para

encaminhar as mensagens. Um esquema de encaminhamento posicional assume

que i) os nós conhecem a sua própria posição geográfica, ii) os nós conseguem de-

terminar a posição dos seus vizinhos, iii) os nós conseguem determinar a posição

do destino e iv) a proximidade geográfica reflecte a proximidade topológica, de

forma a garantir que o endereço dos nós codifica automaticamente parte da estru-

tura da rede. Em geral, um esquema de encaminhamento geográfico requer que

cada nó construa a sua visão parcial do grafo, recorrendo apenas a informação de

vizinhos próximos. Por uma questão de economia de recursos, é comum os nós

só poderem recolher informação de vizinhos que estejam a um pequeno número

de saltos de distância, sendo este número tipicamente de um ou dois saltos. Con-

struído este grafo, que requer uma quantidade muito limitada de memória em cada

nó (O(1) em média), os nós podem utilizar um algoritmo de encaminhamento,

onde as coordenadas do nó que faz o encaminhamento e do destino chegam para

determinar o próximo salto. Este tipo de esquemas de encaminhamento requer

muito pouca informação de controlo, sendo, por isso, perfeitamente adequado

para redes em rápida mutação.

A tese que este trabalho defende é que, sempre que a proximidade geográfica

entre nós reflicta a topologia da rede, é possível utilizar informação de localiza-

ção na construção de DHTs eficientes, quer em redes com fios, quer em redes

sem fios. A utilização de informação de localização permite resolver simultanea-

mente o problema do encaminhamento e o suporte da DHT. Por outras palavras,

não é sequer necessário que exista qualquer esquema de encaminhamento de su-

porte à DHT, podendo esta funcionar sem todos os protocolos associados ao IP. É

de realçar, no entanto, que quando existe um esquema de encaminhamento subja-

cente, uma DHT com noção de localização pode enriquecer aplicações entre-pares

com serviços como difusões ou interrogações limitadas geograficamente. Além

disto, em redes com fios onde o encaminhamento IP esteja disponível, é possível

enriquecer uma DHT baseada em informação de localização com contactos de

longa distância, para reduzir o comprimento dos percursos. Por estas razões, o

encaminhamento baseado em informação de localização pode ser usado como um

componente fundamental para uma DHT eficiente, tanto em redes ad hoc sem

fios, como em redes com fios. Para validar esta tese, foram criados e avaliados

um conjunto de algoritmos, que são descritos brevemente de seguida, capazes de

suportar simultaneamente o encaminhamento e a DHT em ambos os tipos de rede:

• uma triangulação de nome “Fast Localized Delaunay triangulation” (FLDT),

que cria e mantém um grafo bem conhecido de nome “Planar Localized De-

launay Triangulation”, PLDel(V), em redes ad hoc sem fios dinâmicas. O

grafo PLDel(V) apresenta um número de características favoráveis: pode

ser construído de forma localizada, o seu custo de construção é baixo e su-

porta algoritmos de encaminhamento que garantem a entrega de mensagens.

Embora apresente um custo de comunicação semelhante ao de trabalhos

anteriores (O(n logn) no total, sendo n o número de nós existentes), a con-

stante escondida no algoritmo FLDT é muito mais baixa, além de necessitar

apenas de uma única mensagem por nó, em vez de quatro ou mais. O baixo

custo do nosso algoritmo torna a utilização deste grafo viável em sistemas

reais, em substituição de outros grafos como o grafo de Gabriel (GG) ou o

grafo de vizinhanças relativas (RNG), que não permitem um bom desem-

penho do algoritmo de encaminhamento;

• uma DHT que utiliza um mecanismo de agrupamento baseado em posição,

para redes ad hoc sem fios, chamado “Cell Hash Routing” (CHR). A maior

inovação do CHR está no facto de utilizar um grafo virtual extremamente

regular para fazer o encaminhamento, com base em grupos de nós. Este

agrupamento resolve automaticamente muitos dos problemas associados

a esquemas de encaminhamento posicionais, por exemplo, eliminação de

arestas que se intersectam. A concretização da DHT CHR utiliza um es-

quema de encaminhamento localizado e permite equilibrar a distribuição de

de carga pelos nós. Isto torna o CHR altamente escalável relativamente não

só ao tamanho da rede, mas também à densidade dos nós (versus alcance da

comunicação). Estas razões fazem-nos pensar que o CHR é uma adaptação

promissora do conceito de DHT às rede ad hoc sem fios;

• GeoPeer, um sistema entre-pares com noção de localização, que permite

concretizar uma DHT baseada em informação de localização para redes

com fios. Esta DHT constrói uma triangulação de Delaunay completa.

Por esta razão, pode ser vista como a arquitectura complementar para redes

com fios da triangulação criada pelo algoritmo FLDT. Esta DHT pode ser

utilizada para suportar aplicações com exigências de QoS, além de outros

serviços baseados em posição, tais como difusões ou interrogações limi-

tadas geograficamente;

• o mecanismo “Hop Level”, que cria e mantém contactos de longa distân-

cia numa rede com fios. Este mecanismo procura reduzir o número de

saltos que é necessário percorrer numa rede lógica. O mecanismo “Hop

Level” melhora consideravelmente o desempenho da rede GeoPeer em re-

des lógicas com mudanças frequentes dos seus elementos, desde que estas

funcionem em cima duma rede IP. Um dos aspectos mais interessantes do

mecanismo “Hop Level” é que pode ser utilizado em sistemas de armazena-

mento distribuídos (Distributed Storage Systems, DSSs) para suportar de

forma eficiente interrogações em gamas multi-dimensionais de atributos.

Por esta razão a sua utilidade vai um pouco além da funcionalidade típica

duma DHT;

O trabalho realizado nesta tese levanta perspectivas interessantes, que poderão

ser abordadas como temas de trabalho futuro. Por exemplo, um dos aspectos

a considerar é a utilização de modelos de comunicação mais realistas para re-

des ad hoc sem fios. Em particular, os mecanismos que servem de base à DHT

CHR poderão ser facilmente estendidos com vista a esse fim. A utilização de

posição poderá servir também de base a arquitecturas com suporte de parâmetros

de qualidade de serviço, tais como latência e largura de banda ou para selec-

cionar melhores localizações para outros recursos partilhados por muitos nós da

rede (por exemplo, “núcleos” de árvores de difusão ou nós de “contacto” para

sistemas editor/assinante). Finalmente, outra possibilidade interessante criada por

este trabalho consiste na possibilidade de construir uma arquitectura integrada que

combine DHTs para redes com e sem fios. Como elo de ligação entre os dois tipos

de redes poderão ser utilizadas as soluções baseadas em triangulações de Delau-

nay para ambos os tipos de redes. A utilização da posição numa arquitectura

como esta simplificaria consideravelmente a integração e utilização transparentes

da DHT, independentemente do tipo de rede de acesso dos nós.

PALAVRAS-CHAVE: Tabela de Dispersão Distribuída, Rede Lógica, Es-

quema de Encaminhamento Baseado em Informação de Localização, Triangu-

lação de Delaunay, Contacto Distante.

Acknowledgments

My first words of gratitude are to my advisor, Professor Luís Eduardo

Teixeira Rodrigues of the Departamento de Informática da Faculdade de

Ciências da Universidade de Lisboa (DI-FCUL). He has always been able

to encourage me with his high standards of quality and his endless moti-

vation. I owe him everything that I learned about scientific creation during

my PhD. More than an advisor, he has also been a friend that allowed me

to do my PhD and still keep on with my familiar obligations.

I am grateful to the DIstributed ALgorithms and Network Protocols

(DIALNP) research group, to the Laboratório de Sistemas Informáticos de

Grande Escala (LaSIGE) and to the DI-FCUL for the outstanding condi-

tions that I enjoyed during this work. I am also grateful to the people of

DIALNP, LaSIGE and DI-FCUL, in particular, to Nuno Carvalho and to

my office mates, António Ferreira, Carlos Duarte and Hugo Miranda, for

the opinions and valuable discussions that we had.

Devo também uma palavra especial de agradecimento ao meu tio Luís

Alberto e à Teresa. Sem a sua ajuda e generosidade nunca poderia ter

conjugado este trabalho de doutoramento com a minha vida familiar da

forma que o fiz.

À Carlinha, ao João e ao Zé, agradeço e peço desculpa por tantas e

tantas ausências. Pelas dificuldades que passaram a eles dedico esta tese.

Agradeço também a ajuda dos meus pais, dos meus sogros, da avó, da

Alcina, do Camilo, do Luís e do Rui pelas tantas vezes que nos ajudaram

a cuidar dos meninos.

Finalmente, não posso deixar de agradecer aos meus pais tudo aquilo

que sempre fizeram por mim.

Lisboa, Setembro de 2005

Filipe João Boavida de Mendonça Machado de Araújo

À Carlinha, ao João e ao Zé.

Contents

Contents i

List of Figures vii

List of Tables xi

1 Introduction 1

1.1 Problem Statement and Objectives 3

1.2 Results . 5

1.3 Contributions . 6

1.4 Outline of the Thesis . 7

1.5 Related Publications . 8

1.6 Additional Publications . 9

2 Survey on Position-Based Routing 11

2.1 Overview . 11

2.1.1 Advantages of Position-Based Routing 12

2.2 Assumptions . 13

2.3 Definitions . 14

2.3.1 Notation . 14

2.3.2 Unit Disk Graph . 15

i

2.3.3 Localized Routing Scheme 16

2.3.4 Spanning-ratio . 16

2.3.5 Competitive-ratio . 17

2.3.6 Delaunay Triangulation 18

2.4 Routing Algorithms . 20

2.4.1 Basic Position-Based Routing Algorithms 20

2.4.2 Right-Hand Routing Algorithms 24

2.4.3 Hybrid Position-Based Routing Algorithms 27

2.5 Pre-processing Algorithms for Wireless Ad Hoc Networks . . 28

2.5.1 Gabriel Graph . 30

2.5.2 Relative Neighborhood Graph 30

2.5.3 Delaunay Triangulations for Wireless Networks . . . 31

2.6 Pre-processing Algorithms for Wired Networks 36

2.7 Comparison of Routing Schemes 38

2.7.1 Comparison of Pre-processing Algorithms 38

2.7.2 Comparison of Routing Algorithms 39

2.8 Cluster-Based Algorithms . 41

2.9 Summary . 44

3 Survey on Distributed Hash Tables 45

3.1 DHTs in Overlay Networks 46

3.1.1 The Routing Scheme of a Generic DHT 47

3.1.2 Chord . 49

3.1.3 Content-Addressable Network (CAN) 51

3.1.4 Expressways Content-Addressable Network 53

3.1.5 Pastry . 55

3.1.6 Tapestry . 58

3.1.7 Viceroy . 58

ii

3.1.8 D2B . 61

3.1.9 Koorde . 64

3.1.10 TOPLUS . 66

3.1.11 Comparison of the DHTs 68

3.2 Position-Based DHTs . 76

3.2.1 The Case of Wireless Ad Hoc Networks 76

3.3 Summary . 79

4 A Wireless DHT Based on a Delaunay Triangulation 81

4.1 Overview of the Fast Localized Delaunay Triangulation . . . 81

4.2 Description of the FLDT Algorithm 83

4.3 FLDT Creates PLDel(V) in a Single Communication Step . . 85

4.4 Evaluation . 91

4.5 Application in Dynamic Settings 94

4.6 Discussion . 95

4.7 Changes to GHT . 96

4.8 Summary . 98

5 A Wireless Clustered DHT 99

5.1 Overview of Cell Hash Routing 99

5.2 Architecture of CHR . 101

5.3 Division into cells . 102

5.4 Routing scheme . 105

5.5 DHT implementation . 107

5.5.1 Basic Mechanism . 107

5.5.2 Addressing of the Cells 107

5.5.3 Division of the Keys in a Cell 108

5.5.4 Resolving Empty Cells 109

iii

5.6 Implementation Issues . 111

5.7 Evaluation . 112

5.8 Energy Conservation Issues 114

5.8.1 The P and F Metrics 115

5.8.2 The Monitoring Algorithm 117

5.8.3 Determination of the Monitoring Period 118

5.8.4 Discussion . 126

5.9 Summary . 127

6 Position-Based DHTs for Wired Overlay Networks 129

6.1 GeoPeer . 130

6.1.1 Overview of GeoPeer 131

6.1.2 Main Components . 132

6.1.3 Creation and Maintenance of Del. Triangulations . . 132

6.1.4 Division of Space . 136

6.1.5 Basic Routing . 137

6.1.6 Applications of GeoPeer 138

6.2 The Hop Level Mechanism 139

6.2.1 Overview of the Hop Level Mechanism 139

6.2.2 Comparison of Hop Level with Previous Work 141

6.2.3 Problem Statement . 143

6.2.4 Description of Hop Level 145

6.2.5 Algorithm . 147

6.2.6 Signaling Cost . 148

6.2.7 Hop Level in a Ring 150

6.2.8 Evaluation . 150

6.3 Summary . 163

iv

7 Conclusions and Future Work 165

7.1 Conclusions . 165

7.2 Future Work . 167

Bibliography 173

v

vi

List of Figures

1.1 Overview of the proposed architecture 5

2.1 Variation of the lower bound graph 19

2.2 Delaunay Triangulation, Voronoi tessellation and the empty

circumcircle . 19

2.3 Compass routing can create a loop between nodes E, F , G

and H . 21

2.4 Next hops of several routing algorithms 23

2.5 Next hop of GEDIR . 24

2.6 Packet from S will never reach D 26

2.7 In a GG, the gray area must be clear 31

2.8 In a RNG, the gray area must be clear 31

2.9 Relation between some well-known graphs 37

2.10 Division of the space into cells of fixed size 43

3.1 Chord ring . 50

3.2 Content-Addressable Network (CAN) 52

3.3 eCAN-like LRCs . 54

3.4 State of node 23002 . 57

3.5 Pastry tree rooted at node 23002 58

3.6 The butterfly network . 59

vii

3.7 Example of a de Bruijn graph, B(2,3) 62

3.8 Multiple parent may correspond to a single child 63

3.9 One parent may have several children 63

3.10 A Koorde network . 65

3.11 Request for key 21 = 101012 starting at node 18 = 100102 . . 66

4.1 A, B and C disagree on4ABC 87

4.2 A and B do not agree on4ABC 87

4.3 Possible intersection . 88

4.4 Triangle4XYY ′ may not exist 88

4.5 Example of graphs . 91

4.6 Average number of hops . 92

4.7 Failure rate in the UDG when using the Greedy algorithm . 93

4.8 Average number of neighbors announced by each node . . . 94

4.9 A and B must be aware of the home node H 96

5.1 Fixed size of the cells . 103

5.2 Network of cells . 104

5.3 Average percentage of empty cells in CHR 113

5.4 Performance of CHR vs. GHT 114

5.5 SQA algorithm . 117

5.6 Cell Based Methodology vs Network Simulation 120

5.7 Probability of a cell being awake 122

5.8 Relative network lifetime . 122

5.9 Impact of P and F . 125

6.1 a) Voronoi cells (dashed lines) cross triangle boundaries, b)

Circumcircle, c) Outside areas 137

6.2 Mapping a 2-D space into a ring 144

viii

6.3 Hop Level LRCs . 146

6.4 Average path lengths for Hop Level 152

6.5 Average LRCs per node for Hop Level 153

6.6 Distribution of LRCs per level (50,000 node balanced net-

work) . 154

6.7 Average path lengths (Hop Level vs. eCAN-like) 154

6.8 Average path lengths (Hop Level vs. Ring) 156

6.9 Average number of LRCs per node (Hop Level vs. Ring) . . 156

6.10 Average path lengths and number of LRCs for a network

with 100 nodes . 157

6.11 Average path lengths and number of LRCs for a network

with 10000 nodes . 158

6.12 Number of LRCs created under churn 160

6.13 Path lengths and active number of LRCs under churn 161

7.1 Global wired and wireless network based on Delaunay tri-

angulations . 170

ix

x

List of Tables

2.1 Comparison of pre-processing algorithms for wireless and

wired networks . 39

2.2 Comparison of routing algorithms 41

3.1 Comparison between expected performance of several peer-

to-peer systems . 71

3.2 Flexibilities of the different DHTs architectures 71

5.1 Consumption of energy for the nodes tested 120

5.2 Dominating parameter (and peak shape) for variations of P

and F . 126

xi

xii

List of Algorithms

2.1 Algorithm FACE-1 . 25

2.2 Algorithm FACE-2 . 26

2.3 Algorithm that creates RDG 33

2.4 Algorithm that creates LDel (1)(V) 35

2.5 Algorithm that planarizes LDel (1)(V) 36

3.1 Lookup algorithm at node N 65

6.1 Hop Level algorithm . 149

xiii

xiv

1
Introduction

A dictionary stores values that can be accessed by associated keys. Dic-

tionaries play a role of paramount importance in modern distributed sys-

tems. For instance, in the Internet, most applications depend on a dic-

tionary called “Domain Name Service” (DNS). Implementation of a dic-

tionary should be scalable, fault-tolerant and self-configuring. The peer-

to-peer interaction model naturally emerges as a response to these de-

manding requirements. A dictionary implemented as a peer-to-peer dis-

tributed hash table (DHT) can be made scalable, self-configuring and can

have low congestion. Furthermore, fault-tolerance and availability are al-

most inherent to this model. Currently, there are many implementations

of DHTs, like Pastry (Rowstron & Druschel, 2001), Tapestry (Zhao et al.,

2001), Chord (Stoica et al., 2001) and CAN (Ratnasamy et al., 2001), just

to name a few. As a consequence of their nearly optimal or even optimal

path length/node degree trade-off, these DHTs are effectively able to de-

liver most of the promises held by the peer-to-peer interaction model. As a

consequence, we can expect DHTs to have an increasingly important role

in the construction of distributed applications, like naming services, file

sharing applications or publish/subscribe systems.

Unfortunately, while there are many DHTs targeted for wired networks,

there are only a few targeted for wireless ad hoc networks. This results from

1

2 CHAPTER 1. INTRODUCTION

the difficulty of routing in wireless ad hoc networks. Without efficient rout-

ing it is impossible to support a DHT. Moreover, DHTs for wired networks

use overlay logical networks. These overlays work under an independent

logic of the physical network, thus being unsuitable for wireless ad hoc

networks. Interestingly, there are some similarities between peer-to-peer

overlay networks and wireless ad hoc networks, because they both are de-

centralized and self-organizing. Additionally, both of them have rapidly

changing topologies. Hence, despite their differences, solutions for both

types of networks may share some principles.

The faster the topology changes, the worse it is to make routing work,

given the same computing power, communication latency and available

bandwidth. In this scenario, cheap localization mechanisms, based, for in-

stance on Global Positioning System (GPS) receivers (Kaplan, 1996), turned

position-based routing schemes into an attractive solution to the routing

problem. Position-based routing schemes assume that i) nodes are aware

of their own geographical position, ii) nodes can determine the position of

their neighbors and iii) nodes can determine the position of the destina-

tion. Position-based routing also stands on the additional assumption that

geographical proximity reflects topological proximity. Given these condi-

tions, nodes forward messages by comparing the position of the destina-

tion with their own position and with the positions of the neighbors. In

these routing schemes, the coordinates of the current forwarding node, of

its (few) neighbors and of the destination, suffice to determine the next

hop. This makes such schemes very suitable to rapidly changing net-

works, because they require little control information.

Positional information allows us to simultaneously route messages and

support the DHT operation. Additionally, position-based schemes scale

1.1. PROBLEM STATEMENT AND OBJECTIVES 3

very well, because the scope of the control information does not need to

grow with the size of the system. Hence, following from the work of Rat-

nasamy et al. (2002) and Bose & Morin (1999), we argue that we can use po-

sitional information to implement efficient DHTs. Although this solution

is particularly well suited for wireless ad hoc networks, from a theoretical

point of view, it can also benefit wired networks, in networks where posi-

tion of nodes strongly matches topology. A position-based DHT does not

strictly require the heavy weight routing protocols associated with the IP

network, because knowledge of distant nodes is not necessary. Neverthe-

less, even when using IP, the notion of location can enrich peer-to-peer ap-

plications with services like geographically-scoped multicasts or queries.

Also, to reduce the distances in terms of hops in a wired network, we can

augment a position-based DHT with a set of long range contacts. This

takes advantage of the underlying infrastructure to reduce path lengths

between distant neighbors. Therefore, we can use position-based routing

as a fundamental component of an efficient DHT, not only in wireless but

also in wired networks.

1.1 Problem Statement and Objectives

The goal of this thesis is to create DHTs for rapidly changing networks

(wired or wireless), where routing between distant nodes is not available

and network as well as node resources are scarce, given the pace of change

of the network. Such DHTs should own the following properties: i) high

scalability of memory requirements, path lengths and congestion up to

millions of nodes for wired networks, but possibly two or more fewer or-

ders of magnitude in the wireless case; ii) high fault-tolerance and avail-

4 CHAPTER 1. INTRODUCTION

ability; and finally iii) self-configurability, as human intervention should

be unnecessary. In this thesis we shall focus our work on networks where

the following properties hold:

• nodes are able to determine their own geographical position. Fur-

thermore, nodes can obtain positional information of neighbors and

of the destination. To know their own location, nodes may either

use a GPS-like system (Kaplan, 1996)1 if they are outdoors, or they

can use a triangulation or trilateration scheme (Hu & Evans, 2004;

Niculescu & Nath, 2004; Haeberlen et al., 2004). Alternatively, Rao

et al. (2003) and Wattenhofer et al. (2005) follow approaches where

nodes use logical instead of geographical positions, thus precluding

the need for external positioning devices. In any case, to determine

the position of the neighbors, nodes must exchange positional infor-

mation among them. Determination of the position of the destina-

tion is orthogonal to our problem. In the context of a DHT, destina-

tion is determined by the hash function;

• the geographical position of the nodes reflects the topology of the

network. Although this assumption is controversial in wired net-

works, Padmanabhan & Subramanian (2001) show that in the Inter-

net there is a strong correlation between physical and topological

distances. Furthermore, authors believe that this correlation will in-

crease as the Internet is expected to become more richly connected.

1See also the web page of U.S. Naval Observatory (USNO) GPS Operations:
http://tycho.usno.navy.mil/gps.html.

1.2. RESULTS 5

GPSR

Del.Triang.

Application

Wired

Network

Wireless

Network

Transport

1

2

3

4

5

6

FLDT

CHR

Cluster

GeoPeer

Greedy R.

Hop Level

Transport

Global GeoPeer

Chapter 6

Chapter 6

Chapter 5

Chapter 4

Energy

Conserv.
Chapter 5

Figure 1.1: Overview of the proposed architecture

1.2 Results

In this thesis, we present a complete multi-platform architecture for both

wireless and wired networks. The global view of this architecture is de-

picted in Figure 1.1, which is divided in six levels. In this thesis we focus

on the routing layer (levels 2 and 3 of the figure) and on the application

layers (levels 5 and 6 of the figure). In the figure, we include the chapter

where we present each of the contributions.

For wireless ad hoc networks, we developed two different DHTs: a

triangulation algorithm, called “Fast Localized Delaunay Triangulation”

(FLDT), and an algorithm that clusters nodes in a regular grid, which is

part of a DHT called “Cell Hash Routing” (CHR). In both cases, we use ei-

ther the Greedy Perimeter Stateless Routing (Karp & Kung, 2000) (GPSR)

or a variation as the routing algorithm. In wired networks, we developed

a DHT called GeoPeer. This is also a position-based DHT, which uses a

6 CHAPTER 1. INTRODUCTION

Delaunay triangulation underneath and the simple greedy routing algo-

rithm (Finn, 1987). This DHT can also make use of a mechanism called

“Hop Level” that works on top of IP and that creates and maintains long

range contacts in overlay networks. An interesting open possibility that

results from the work of this thesis is the integration of wired and wire-

less DHTs based on Delaunay triangulations into a single DHT. We call

“Global GeoPeer” to this DHT and we include it in the figure to complete

the global view of our architecture. We depict in gray color the aforemen-

tioned results of this thesis. Contributions, to be described in the next

section, are written in bold.

1.3 Contributions

The main contributions of this thesis are:

• a triangulation algorithm called “Fast Localized Delaunay triangu-

lation” (FLDT) that, unlike previous work, requires a single control

message in dynamic wireless ad hoc networks, to create and maintain

a well-known graph called “Planar Localized Delaunay Triangula-

tion”, PLDel;

• a position-based clustering mechanism for wireless ad hoc networks,

called “Cell Hash Routing” (CHR). The main novelty of CHR is the

use of a logical graph of clusters, where routing takes place. This

automatically solves many problems associated with position-based

routing algorithms, like elimination of edges that intersect;

• a technique to conserve energy of nodes under the presence of fail-

ures in networks clustered like CHR;

1.4. OUTLINE OF THE THESIS 7

• GeoPeer, a position-based DHT for wired networks, which can be

used to support QoS applications as well as other position-based ser-

vices, like geographically-scoped multicasts and queries;

• the “Hop Level” mechanism that creates and maintains long range

contacts in wired networks. Hop Level aims to reduces the number

of hops jumped in an overlay network. We can use Hop Level to

improve performance of GeoPeer in overlay networks with highly

dynamic membership that already have operational routing under-

neath. Furthermore, it can efficiently support multidimensional range

queries in Distributed Storage Systems (e.g. Harvey et al., 2003; Asp-

nes et al., 2004; Bharambe et al., 2004; Karger & Ruhl, 2004).

1.4 Outline of the Thesis

Chapters 2 and 3 motivate the work by introducing the two central issues

of this thesis and by pointing out the limitations of current work. In Chap-

ter 2, we overview position-based routing and, in Chapter 3, we overview

current work on DHTs.

In Chapter 4, we present the “Fast Localized Delaunay Triangulation”

algorithm, for wireless ad hoc networks. FLDT is a position-based pre-

processing algorithm that creates a graph that lies underneath the routing

algorithm. We include the formal proof of correctness and experimental

results that show the validity of our approach.

In Chapter 5, we present the “Cell Hash Routing” (CHR) DHT. CHR is

a position-based DHT for wireless ad hoc networks. It uses clustering and a

virtual graph to greatly simplify the routing scheme. In addition, we study

techniques to increase battery lifetime in similarly clustered networks.

8 CHAPTER 1. INTRODUCTION

In Chapter 6, we present a complete position-based DHT for wired net-

works. This chapter contains two main parts. A peer-to-peer network

based on a complete Delaunay triangulation, called “GeoPeer” and a com-

plementary mechanism called “Hop Level” to create and maintain long

range contacts (LRCs). Although the utilization of Hop Level is not lim-

ited to GeoPeer, we use GeoPeer to do the experimental evaluation.

Finally, Chapter 7 outlines conclusions and points directions for future

work.

1.5 Related Publications

We have previously published parts of this work in the following confer-

ences and workshops:

• Filipe Araújo and Luís Rodrigues. GeoPeer: A location-aware peer-

to-peer system. In The 3rd IEEE International Conference on Network

Computing and Applications (NCA ’04), pages 39–46, Cambridge, MA,

USA, August 2004.

This paper first presented GeoPeer.

• Filipe Araújo and Luís Rodrigues. Fast localized Delaunay trian-

gulation. In The 8th International Conference On Principles Of Dis-

tributed Systems (OPODIS ’04), pages 81–93, Grenoble, France, De-

cember 2004. Springer-Verlag, LNCS 3544.

This paper first presented the FLDT algorithm.

• Filipe Araújo, Luís Rodrigues, Jörg Kaiser, Changling Liu, and Car-

los Mitidieri. CHR: a distributed hash table for wireless ad hoc net-

1.6. ADDITIONAL PUBLICATIONS 9

works. In The 25th IEEE International Conference on Distributed Com-

puting Systems Workshops (DEBS ’05), Columbus, Ohio, USA, June

2005.

This paper first presented CHR.

• Filipe Araújo and Luís Rodrigues. Long range contacts in overlay

networks. In Euro-par 2005, pages 1153–1162, Lisbon, Portugal, Au-

gust 2005. Springer-Verlag, LNCS 3648.

This paper presents the Hop Level mechanism.

• Filipe Araújo and Luís Rodrigues. On the monitoring period for

fault-tolerant sensor networks. In Second Latin-American Symposium

on Dependable Computing (LADC ’05), October 2005. (to appear).

This paper studies the problem of increasing the tolerance to faults

in schemes that aim to maximize lifetime of a sensor network, given

that energy consumption is significant and nodes can also fail for

a number of other reasons. We do this analysis in a context of a

clustering similar to CHR.

1.6 Additional Publications

Besides the work that is central to this thesis, we also explored the pos-

sibility of using DHTs to create publish/subscribe systems with quality

of service (QoS) parameters, such as latency and bandwidth. To support

these publish/subscribe systems, the DHTs must have a notion of QoS.

For lack of space we do not detail the work related to this idea, but the

interested reader is referred to the following publications:

10 CHAPTER 1. INTRODUCTION

• Filipe Araújo and Luís Rodrigues. On QoS-aware publish-subscribe.

In The 22nd IEEE International Conference on Distributed Computing

Systems Workshops (DEBS ’02), pages 511–515, Vienna, Austria, July

2002.

This position paper addresses the issue of supporting QoS parame-

ters in distributed publish/subscribe systems. It advocates that QoS

parameters should be handled using the same constructs as other

event information, such as their type or content.

• Nuno Carvalho, Filipe Araújo, and Luís Rodrigues. IndiQoS: um

sistema publicação-subscrição com Qualidade de Serviço. In 6a Con-

ferência sobre Redes de Computadores (CRC ’03), Bragança, Portugal,

Setembro 2003.

This paper describes an approach to create a publish/subscribe sys-

tem with QoS, called IndiQoS.

• Nuno Carvalho, Filipe Araújo, and Luís Rodrigues. Scalable QoS-

based event routing in Publish-Subscribe Systems. In The 4th IEEE

International Conference on Network Computing and Applications (NCA

’05), Cambridge, MA, USA, July 2005.

This paper describes an implementation of the IndiQoS system using

multiple rendezvous nodes on top of a DHT.

2
Survey on Position-Based

Routing

2.1 Overview

The goal of routing is to deliver a packet from a source node S to destina-

tion node D in a network of nodes (which we can represent as a graph).

To solve the routing problem, nodes of the network execute a distributed

“routing scheme”. A routing scheme is comprised of two parts (see, for

instance, Fraigniaud & Gavoille, 2002): i) a distributed algorithm, here

known as the routing algorithm, running at every node, which is respon-

sible for determining the output port (i.e., the next hop) of a packet; and

ii) a pre-processing algorithm that, given the initial connection graph G,

must create whatever information is necessary to the routing algorithm

(e.g., routing tables or a subgraph of G). In the worst case, optimal rout-

ing schemes may require as much as O(n logn) memory space at each node

in an n-node network. For this reason, there are many “compact rout-

ing schemes”, which try to reduce these requirements, for instance, by re-

arranging the identification of nodes (van Leeuwen & Tan, 1995). Position-

based routing can be seen as a form of compact routing in which nodes

receive identifications that depend on their geographical positions. Usu-

ally, in literature, authors assume that the identification of a node is pre-

11

12 CHAPTER 2. SURVEY ON POSITION-BASED ROUTING

cisely the position that it occupies in the R2 plane. Since a packet includes

the geographical position of the destination, nodes will know in which

direction to forward it. On the contrary, in IP networks, nodes perform

routing using protocols that derive from Dijkstra (1959) or Bellman-Ford

algorithms (Bellman, 1957; Jr. & Fulkerson, 1962).

2.1.1 Advantages of Position-Based Routing

For the sake of scalability, we will focus on single-path position-based

routing schemes, i.e., we do not allow nodes to create additional instances

of the packet they are forwarding. Additionally, we assume that posi-

tion of nodes encodes topological information, i.e., in general, nodes that

are geographically close are also topologically close. This assumption al-

lows nodes to avoid extensive topology updates, thus saving precious re-

sources. This is especially important in fast changing networks, like wire-

less ad hoc networks or peer-to-peer networks. For instance, in wireless ad

hoc networks, it is difficult to determine the underlying topology for two

basic reasons: i) it may change too fast, thus generating too many global

update messages that will consume available battery power and band-

width; and ii) nodes have limited memory and usually they will not be

able to store all the topology even if they could collect it. According to sev-

eral experimental work (e.g. Jain et al., 1999; Li et al., 2000), routing schemes

that do not use positional information and that are based on the exchange

of routing tables, like DSDV (Perkins & Bhagwat, 1994), AODV (Perkins

et al., 2003) and DSR (Johnson & Maltz, 1996), do not scale. Additionally,

Jain et al. (1999) showed that routing table size grows linearly for the DSDV

algorithm, while it grows logarithmically for a comparable position-based

routing scheme (see also Stojmenovic, 2002). These limitations may also

2.2. ASSUMPTIONS 13

affect wired nodes, namely in peer-to-peer networks, where topology also

tends to change very fast.

2.2 Assumptions

Position-based routing stands on top of a number of assumptions, includ-

ing the following. The most important one is that nodes can determine

their own position. To get positional information, nodes can use a Global

Positioning System (GPS) receiver, if they are outdoors1. In alternative,

wireless nodes can use techniques based on signal strength information,

available in the standard IEEE 802.11 technology (Niculescu & Nath, 2004;

Haeberlen et al., 2004). For wired nodes there are also some attempts to

provide a mapping service capable of returning a position given the IP ad-

dress of a node (Padmanabhan & Subramanian, 2001). A second assump-

tion is that nodes can determine location of their neighbors. This usually

implies the exchange of a small number of packets between neighboring

nodes to make their own positions available to others. Final assumption

states that nodes can determine the position of the destination. Reason-

ability of this assumption depends on the concrete network. Usually, the

problem of determining the network address of the destination is sepa-

rated from the routing problem (take the Domain Name Service, DNS, for

example). However, in practice, it may be difficult to use a different layer

to provide a location service atop of, for instance, a wireless network. For

this reason, there are solutions that integrate the routing with the location

problem, e.g., the Grid Location Service (Li et al., 2000). Interestingly, in the

case of distributed hash tables (DHTs), this service can be provided by the

1A completely different approach is followed by Rao et al. (2003) and Wattenhofer et al. (2005)
that use logical instead of geographical positions.

14 CHAPTER 2. SURVEY ON POSITION-BASED ROUTING

DHT itself and therefore, the assumption is perfectly reasonable. Hence-

forth, we focus on the problem of sending a packet from source node S to

destination node D, considering that both of them have known locations.

2.3 Definitions

2.3.1 Notation

We will use the following conventions for notation:

• nodes (also designated as vertices) will be represented with capital

letters, for instance, node A;

• the set of all nodes of the graph is designated as V ;

• edges are represented by the two nodes that define them, for in-

stance, node A and node B may define edge AB;

• distance between two nodes A and B will be represented by ‖AB‖;

• a triangle defined by nodes A, B and C is represented by4ABC;

• the circumcircle of4ABC is represented as©ABC;

• the circle whose diameter is defined by two nodes A and B is repre-

sented by d(A,B);

• the circle centered at A with ray r is represented as b(A,r) (ball cen-

tered at A with ray r);

• an angle between line segments AB and AC defined at A is inter-

changeably represented by ∠BAC or ∠CAB — the vertex where the

2.3. DEFINITIONS 15

angle is measured stays in the middle, while the position of remain-

ing vertices is arbitrary. Unless stated otherwise, this angle is always

< π.

Additionally, we will introduce in the following sections a number of

models and definitions which are necessary to understand existing position-

based pre-processing and routing algorithms.

2.3.2 Unit Disk Graph

Given the set of wireless nodes V , the Unit Disk Graph model (UDG) as-

sumes that i) communication range of nodes is a perfect circle in R2; and

ii) all nodes have the same communication range. Hence, the Unit Disk

Graph of V , UDG(V), is comprised of all edges not longer than maximum

communication range between all pairs of nodes. Assuming that com-

munication range is 1, graph UDG(V) includes all possible edges whose

length is at most 1 (also known as short edges as opposed to long edges

which are longer than 1).

Given this definition, every node Q that is inside b(P,1) is a neighbor

of P, i.e., Q ∈ N(P). Alternatively, Q is a 1-hop neighbor of P. If Q ∈ N(P)∨

∃C ∈ V : C ∈ N(P)∧C ∈ N(Q), Q is said to be a 2-hop neighbor of P, or

simply 2-neighbor of P, and vice-versa. This definition can be extended

to define neighborhoods between nodes that are separated by an arbitrary

number of hops. Hence, two nodes that can reach each other in k or fewer

hops are considered to be k-neighbors.

Henceforth, we will usually assume that we are using the UDG model.

This model is more adequate to describe wireless ad hoc networks than

to describe wired networks. Hence, the algorithms that depend on this

16 CHAPTER 2. SURVEY ON POSITION-BASED ROUTING

model can only be used in wireless environments. This is especially im-

portant in the case of the pre-processing algorithms, which we present

in Sections 2.5 and 2.6. The reader can find a related connectivity model

of Barrière et al. (2002).

2.3.3 Localized Routing Scheme

To conserve resources, one often requires routing schemes to be localized.

A routing scheme is localized if there is a constant n such that a node

only uses i) its own information, ii) information of neighbors that can be

reached in up to n hops and iii) information of a constant k number of

additional nodes (see Kranakis et al., 1999). A routing scheme is said to

be n-localized if n is the smallest constant that satisfies the above condi-

tion. Occasionally, to simplify, we refer to “localized routing algorithms”,

but what we really mean is that the pre-processing algorithm and the dis-

tributed routing algorithm are both localized.

2.3.4 Spanning-ratio

Although creating economical routing schemes is very important, ensur-

ing good performance is not less important. Hence, one criterion used to

evaluate the pre-processing step of a routing scheme is the quality of the

subgraph created. We will call G to some initial graph, which we will often

assume to be UDG in a wireless network, and H to the subgraph created

by the pre-processing algorithm. As we will show ahead, this subgraph H

allows the routing algorithm to converge. H is said to be a “t-spanner of

G” if and only if:

2.3. DEFINITIONS 17

max
∀S,D∈V

{
‖ΠH (S,D)‖
‖ΠG (S,D)‖

}
≤ t

This means that for all nodes S and D, shortest path between S and D

in H, ΠH (S,D), is at most t times longer than in G, ΠG (S,D). t is known

as the “length stretch factor”. In a sense this factor indicates the quality of

the subgraph. The smaller it is, the better the subgraph is.

When the graph G is the complete Euclidean graph determined by V ,

the above expression defines an “Euclidean t-spanner”.

2.3.5 Competitive-ratio

The reader should notice that the spanning-ratio of a subgraph is only a

bound to the performance of a routing scheme. We still need to develop

routing schemes that select paths which are close to the shortest path. The

“competitive-ratio” is used as an accurate measure of the quality of the

routing scheme (RS) and is defined as follows:

competitive-ratio(RS) = max
∀S,D∈V

{
‖AG (S,D)‖
‖ΠG (S,D)‖

}
‖AG (S,D)‖ is the length of the shortest path between S and D, found by

the routing scheme A in graph G; ‖ΠG (S,D)‖ is the length of the shortest

path, between the same pair of nodes, existing in G. A routing scheme

is said to be “t-competitive” if its competitive-ratio is t. Again, this is a

worst-case definition, because the competitive-ratio is determined by the

pair of nodes for which results are worst. Often, the name “stretch factor”

is also used instead of “competitive-ratio”.

One interesting known fact is that no localized routing scheme can be

t-competitive for any constant t. Kuhn et al. (2002) showed that if c is the

18 CHAPTER 2. SURVEY ON POSITION-BASED ROUTING

cost of the best path for a given pair of nodes, the cost for any localized

position-based routing scheme can grow to Ω(c2). More precisely, there

are graphs where any deterministic (randomized) position-based routing

scheme has a (expected) cost of Ω(c2). Furthermore, this applies to the

number of links traversed, to Euclidean distance or to energy spent trans-

mitting the packet. To understand the reason for this, the reader should

refer to Figure 2.1, which shows a variation of the “lower bound graph”.

The dots represent the nodes, while the lines represent the links between

the nodes. In a wireless network, the distance between nodes of the inner

circumference is precisely 1. Therefore, these nodes are connected. How-

ever, the other nodes of the radial lines can only communicate with the

immediate neighbors in their own radial, because the distance to nodes

of other radials is greater than 1. Another key aspect of this graph is that

there is only one radial that gives access to the outer circumference. Hav-

ing access to local information only, a node cannot know the topology and,

as a consequence, it cannot know which of the radials connects to this cir-

cumference. This means that in the average a packet needs to try half the

radials before it gets to the right one. Hence, if the shortest path (e.g., in

number of links) to some node in the outer circumference is c, a localized

routing scheme may end up using Ω(c2) links to reach the only node that

gives way to that outer circumference.

2.3.6 Delaunay Triangulation

The Delaunay triangulation (DT) of a node set V , also represented as Del(V),

is the set of edges satisfying the “empty circle” property: edge AB belongs

to the triangulation if and only if there is a circle containing A and B, but

not containing any other node. An important property of Del(V) that we

2.3. DEFINITIONS 19

Figure 2.1: Variation of the lower bound graph

Figure 2.2: Delaunay Triangulation, Voronoi tessellation and the empty circum-
circle

exploit in the thesis states that the circumcircle of a triangle does not con-

tain any node of V . To this property we call the “empty circumcircle”

property. The DT has an associated dual concept called the “Voronoi tes-

sellation”. The Voronoi tessellation partitions the space into convex poly-

topes in the following way. Given a node set V , the polytope of node N is

comprised of the points that are closer to N than to any other node of V .

In this thesis we will restrict ourselves to two-dimensional spaces. There-

fore, we call simply “cell” to the Voronoi polygon of node N. Figure 2.2

20 CHAPTER 2. SURVEY ON POSITION-BASED ROUTING

shows the relation between the Voronoi tessellation (dashed lines) and the

Delaunay triangulation (solid lines): two nodes share a Delaunay edge if

and only if their Voronoi cells have a common border. We can also see the

empty circumcircle property for two triangles, as no fourth node is inside

the depicted circumcircles.

Although Delaunay triangulations have many other applications (e.g.

Computer Graphics), we are interested in their advantages for routing

purposes (Bose & Morin, 1999; Li et al., 2002; Gao et al., 2001; Wang & Li,

2002; Lan & Wen-Jing, 2002).

2.4 Routing Algorithms

In this Section we briefly overview some of the most important position-

based routing algorithms. All of these algorithms assume that nodes have

only a partial view of the graph, such that they must relay packets to the

neighbors, to reach a distant and unseen destination. At this moment we

do not care about the pre-processing algorithm that nodes use. We post-

pone this issue to the following sections, as the pre-processing algorithms

are strongly dependent of the kind of network that nodes use, either wired

or wireless.

2.4.1 Basic Position-Based Routing Algorithms

In the following descriptions we assume that the algorithms are executed

at node S, packets are destined to node D and there is a graph that de-

termines the neighbors of node S. This graph must be created by a pre-

processing algorithm, before the node starts forwarding packets. In the

case of wireless networks, this resulting graph is typically a subgraph of

2.4. ROUTING ALGORITHMS 21

G

D

E

H

F

Figure 2.3: Compass routing can create a loop between nodes E, F , G and H

UDG.

Greedy

Greedy routing algorithm (Finn, 1987) is a memoryless algorithm (only

requires information about destination). When using greedy forwarding,

a node selects for the next hop, the neighbor closest to destination. It is

easy to come up with examples where this algorithm does not converge,

due to local minima that occur in regions void of neighbors.

Compass

Consider the angle formed by line segments SN and SD, where S is the

forwarding node, N is a potential next hop and D is the destination. The

compass routing algorithm (Kranakis et al., 1999), forwards packets to the

neighbor N that forms the smallest angle ∠NSD with the destination. Com-

pass routing algorithm is also memoryless.

In the work of Stojmenovic & Lin (2001), we can find Figure 2.3, which

shows an example where the compass routing algorithm may fall in a loop,

between nodes E, F , G and H. D is not aware of any of the other nodes

(and vice-versa); E and G are also not aware of each other. Hence, the

neighbors of E are F and H. Consider that the packet is at node E. F is the

22 CHAPTER 2. SURVEY ON POSITION-BASED ROUTING

node that minimizes the angle with D at E, i.e., ∠FED. Then, F forwards

the packet to G, which, in turn, forwards the packet to H, which sends it

back to E, thus forming a loop. Hence, the compass routing algorithm is

not loop-free.

Randomized Compass

Randomized Compass routing algorithm (Bose & Morin, 1999) is a varia-

tion of the compass algorithm that avoids local minima with random deci-

sions. It is also a memoryless algorithm. Consider as in the compass rout-

ing the line defined by forwarding node and destination. At each node,

two options are considered to route a packet: the neighbor with smallest

angle above that line and the neighbor with smallest angle below that line.

One of those neighbors is randomly chosen to be the next hop.

Most Forwarding within Radius

Consider that line SD is the x-axis, where S is the forwarding node and

D is the destination node. In the Most Forwarding within Radius (Takagi

& Kleinrock, 1984) (MFR) node S forwards the packet to the node A that

maximizes progress along x-axis. A is therefore the node that minimizes

the dot product
−→
DS ·−→DA, assuming that it is positive (if it is negative ∠SDA >

π/2, which means that S and D must be neighbors). This algorithm is loop-

free and memoryless.

Geographical Distance Routing

GEographical DIstance Routing (Stojmenovic & Lin, 2001) (GEDIR) resem-

bles greedy algorithm, with a subtle difference. Packets are sent to the

2.4. ROUTING ALGORITHMS 23

Figure 2.4: Next hops of several routing algorithms

neighbor A that is closest to destination D, despite the distance of the cur-

rent node, S, to the destination. This means that a packet can be sent to

some node A that is actually more distant from D than the sending node S.

The rationale for this is that A may have some neighbor that is closer to D

than S is. The only kind of loop that may occur in this algorithm is between

two consecutive nodes and, therefore, one can make it loop-free (Stojmen-

ovic & Lin, 2001).

Figures 2.4 and 2.5 try to illustrate the routing algorithms described

before. Forwarding node S is aware of all the nodes depicted except of

destination D. Greedy algorithm will choose node A, as this node is clos-

est to destination. Compass will choose E as this has the smallest angle,

while randomized compass also allows the selection of F , as F defines the

smallest angle in the opposite side. MFR will select B. Finally, GEDIR (Fig-

ure 2.5) attempts to deliver the packet even when S is a local minimum. In

this case, the next hop is node I, no matter if ||ID||< ||SD|| or not.

24 CHAPTER 2. SURVEY ON POSITION-BASED ROUTING

S D

I

Figure 2.5: Next hop of GEDIR

2.4.2 Right-Hand Routing Algorithms

None of the deterministic algorithms presented in Section 2.4.1 can ensure

routing convergence. For each one of these algorithms, there is always

a graph where they will fail to find a path to destination, even when that

path exists. However, it is unacceptable to successively fail to find a path if

such path exists. Therefore, they are not adequate to environments where

the shape of the graphs is not controlled and is pretty much arbitrary. For-

tunately, there are algorithms that can overcome this problem. These al-

gorithms are based on the right-hand rule (Bondy & Murty, 1976). This

rule states that all the walls of a maze can be visited if the visitor never

lifts his/her right-hand of the wall. If instead of a maze we have faces of

a connected planar graph, such rule allows a packet to visit all the edges

of a face. This means that a packet routed under the right-hand rule al-

ways returns to the source node. Algorithms based on the right-hand rule

require O(1) memory, because packets need the sender information, S, to

determine which edges intersect line segment SD. Next, we present two

algorithms that are based on the right-hand rule. The key point here is

that these algorithms must be executed on planar graphs, otherwise they

may fail to converge. Ahead in the text, we will focus on the problem of

making a graph planar.

2.4. ROUTING ALGORITHMS 25

Algorithm 2.1: Algorithm FACE-1
constant S← source
constant D← destination
constant r← line segment SD
P← S
while P 6= D do

f ← first face that intersects line segment PD from P to D
for all edges e of f do

if e intersects r at point X and X is closer to D than P then
P← X

end if
end for
traverse f again until reaching edge where P was found

end while

FACE-1

A very simple routing algorithm based on the right-hand rule is Compass

II (Kranakis et al., 1999), later renamed as FACE-1 by Bose et al. (1999). In

this algorithm, nodes forward the packet from face to face, always get-

ting closer to destination. The packet goes through faces that intersect line

segment SD (known as r in the Algorithm 2.1). Assume that the packet

is inside face f . We set the variable P to the initial source node S. Then,

packet goes from edge to edge (either clockwise or counterclockwise) un-

til it reaches some edge e that intersects r. The packet must keep track of

which edge of face f intersects r closest to destination D. Then, when the

packet returns to that edge it is certain that there is no other intersecting

point P closer to D. At this point the packet may switch from face f to the

next face, closer to D. Algorithm 2.1 describes FACE-1.

To see why FACE-1 needs a planar graph, Figure 2.6 shows a case

where FACE-1 fails to converge in the presence of intersecting edges. Here,

the packet would make a cycle like S−A−B−C−A−S without ever find-

ing an edge intersecting SD closer to D than S is. Most algorithms based

26 CHAPTER 2. SURVEY ON POSITION-BASED ROUTING

Figure 2.6: Packet from S will never reach D

Algorithm 2.2: Algorithm FACE-2
constant S← source
constant D← destination
P← S
while P 6= D do

f ← face of G with P on its boundary that intersects PD
traverse f until reaching an edge UV that intersects PD at some point P′ 6= P
P← P′

end while

on the right hand rule will also fail to converge in this case.

FACE-2

A slightly different version of this algorithm, FACE-2, was proposed by

Bose et al. (1999) (see Algorithm 2.2 executed at graph G). FACE-2 tries to

avoid the multiple traversals of the same face that may severely affect per-

formance of FACE-1. FACE-2 switches face whenever the packet reaches

a new intersection between r and a different edge, which is closer to desti-

nation. Then, the process is repeated for the new face f . Note that f may

actually be the same face, if f is not convex. While FACE-1 reaches des-

tination node D in at most 3|E| hops, where |E| is the number of edges of

graph, FACE-2 has a worse theoretical upper bound, but works better in

2.4. ROUTING ALGORITHMS 27

practice. The experimental results of Bose et al. (1999) show that, in spite

behaving really badly for some input graphs, FACE-2 generally outper-

forms FACE-1. Nevertheless, neither one of these algorithms may be used

as a standalone routing method, due to their bad performance. As we dis-

cuss next, we use these algorithms in complement with better performer,

but unreliable algorithms, like greedy or compass, for instance.

2.4.3 Hybrid Position-Based Routing Algorithms

Greedy Perimeter Stateless Routing

One algorithm that explores the duality between efficient and reliable ap-

proaches is the Greedy Perimeter Stateless Routing, GPSR (Karp & Kung,

2000). GPSR is based on the original idea of Bose et al. (1999). GPSR

is a well-known and fairly simple routing protocol for planar graphs. It

uses the greedy routing algorithm and the right-hand rule, which is called

perimeter routing in this context. More precisely, GPSR is similar to the

FACE-2 algorithm when in perimeter mode. The main idea is to use greedy

algorithm whenever possible and switch to perimeter routing whenever

greedy gets stuck at a local minimum. Then, routing proceeds using perime-

ter routing and switches back to greedy as soon as it finds some node

closer to destination than the previous minimum. The intuition is that

greedy algorithm performs better, but it is unreliable, while perimeter al-

gorithm always works if the underlying graph is planar.

AFR and GOAFR+

Kuhn et al. (2002) have taken the idea of GPSR a step further and pre-

sented an algorithm called “Adaptive Face Routing” (AFR). AFR is guar-

28 CHAPTER 2. SURVEY ON POSITION-BASED ROUTING

anteed to achieve a worst case cost of O(c2), if c is the cost of the best path.

Like GPSR, AFR combines greedy routing with face routing to ensure

routing convergence without compromising performance. As we have

seen in Section 2.3.5, since the worst-case cost for any localized position-

based routing algorithm is Ω(c2), AFR is asymptotically optimal. Fol-

lowing this work, authors presented another algorithm, GOAFR+ (pro-

nounced as “gopher-plus”) that improved performance in random graphs,

while maintaining the asymptotically optimal properties of AFR (Kuhn

et al., 2003).

2.5 Pre-processing Algorithms for Wireless Ad Hoc

Networks

Before nodes can run any routing algorithm, they need to apply a pre-

processing algorithm to create some kind of underlying graph. Usually,

nodes start by exchanging beacon messages to create an initial connectiv-

ity graph (e.g., UDG). However, the properties of this initial graph may

not be adequate for all routing algorithms. For instance, right-hand and

hybrid routing algorithms, like FACE-1 or GPSR, need to use an under-

lying planar graph. This requires the pre-processing algorithm to remove

some of the existing edges in a process known as “topology control”. Since

the details of the pre-processing algorithms widely differ between wireless

and wired networks, we separate the presentation of the two cases. In this

section we focus on the wireless case, while we defer the wired case to the

next section.

A wireless ad hoc network is comprised of nodes that run on batteries

and communicate with each other directly via radio using wireless links.

2.5. PRE-PROCESSING ALGS. FOR WIRELESS AD HOC NETS. 29

A distinctive feature of wireless ad hoc networks is the lack of a fixed in-

frastructure of support. As a consequence, nodes must self-organize in a

decentralized way. These characteristics turn these networks eligible for

use in a number of circumstances, including the following:

• casual meetings, like conferences or sports events;

• catastrophic situations, where fixed infrastructures are no longer run-

ning;

• for rescue or military teams in inaccessible or hostile regions;

• self-managed networks of sensors, where new sensors can be added

or sensors can go down due to battery exhaustion, at any moment.

These networks may be used to monitor the environment (e.g., to

detect fire or flooding), for health, home or commercial applications.

Wireless ad hoc networks can be further characterized by having few

resources, both at the node and at the network level. Nodes have limited

memory, processing power and possibly worst of all, short batteries. On

the other hand, the existing network bandwidth must be divided by all

the nodes within reach. Additionally, topology tends to change very fast

and radio communication is typically very expensive in terms of energy.

Therefore, there is a strong motivation to use simple and economical pre-

processing algorithms.

We assume that nodes have already exchanged beacon messages to

know of each other and as a result they have already formed an initial

graph according to the UDG model. The goal of the following pre-process-

ing algorithms is to create a final planar graph. All these algorithms are re-

stricted to the UDG model. In fact, eliminating intersecting edges in more

30 CHAPTER 2. SURVEY ON POSITION-BASED ROUTING

general models is a quite difficult problem that we do not try to solve in

this thesis. Nevertheless, in Chapter 5, where we present “Cell Hash Rout-

ing” (CHR), we can easily use a model that is more general than UDG.

2.5.1 Gabriel Graph

Consider nodes A and B from the initial node set V . If circle whose di-

ameter is AB, i.e., d(A,B), is empty of other nodes from V , then edge AB

belongs to the Gabriel graph. This is depicted in Figure 2.7, where the

gray color shows the area that must be empty of nodes. The set of all

Gabriel edges defines the Gabriel graph (GG). The GG is a subgraph of the

DT . This property directly results from the empty circle property of the

DT . In our context we are more interested in the constrained GG, which

only has edges with length at most 1. In general, we will always mean

constrained Gabriel graph even when we do not use the word constrained.

The constrained GG is a subgraph of UDG.

2.5.2 Relative Neighborhood Graph

In the relative neighborhood graph (RNG), an edge AB exists when there

is no third node C ∈ V such that edges AC and BC are both shorter than

AB. Again, in our context, we are interested in the constrained RNG graph,

which only has edges with length at most 1. Both GG and RNG are planar.

Both are connected as long as initial graph is also connected. Figure 2.8

shows the gray area that must be free of nodes. The “exclusion zone” of

the RNG contains the corresponding zone of the GG, which means that the

restricted RNG is a subgraph of the restricted GG and of the UDG. The

(unconstrained) RNG is also a subgraph of the DT .

2.5. PRE-PROCESSING ALGS. FOR WIRELESS AD HOC NETS. 31

A B

C

Figure 2.7: In a GG, the gray area
must be clear

A B

C

Figure 2.8: In a RNG, the gray area
must be clear

2.5.3 Delaunay Triangulations for Wireless Networks

The problem with both GG and RNG is that neither one of them is a good

spanner of the initial connection graph (Eppstein, 2000), which means that,

in particular, they are not good spanners of UDG. One way to create bet-

ter spanner graphs is to use a triangulation. However, under the UDG

model, a complete Delaunay triangulation may not exist, because some

edges may be longer than 1. Furthermore, even if all the Delaunay edges

were shorter than 1, creating a Delaunay triangulation would make a rout-

ing scheme fail the criterion of being localized. This happens because en-

suring the empty circumcircle property may require information of nodes

that may be close in terms of Euclidean distance, but that may be very far

away in terms of number of hops. Even though, this triangulation still

owns some attractive properties. For instance, if nodes have similar views

of their neighborhood, they can deterministically compute the same trian-

gulation. This may save many steps to reach a form of agreement among

the nodes. Additionally, it is possible to create variants of the Delaunay

triangulation that are good spanners of UDG. Next, we review some of

these graphs.

32 CHAPTER 2. SURVEY ON POSITION-BASED ROUTING

Localized Delaunay Triangulations

The most obvious variation of the Delaunay triangulation is probably the

Unit Delaunay triangulation (UDel). UDel results from the intersection

of the Delaunay triangulation with the UDG graph. UDel(V) = Del(V)∩

UDG(V), which means that UDel is the Delaunay triangulation with edges

that have length at most 1 2. UDel is still impossible to build in a local-

ized fashion and therefore, we will use another definition proposed by Li

et al. (2002) of “k-localized Delaunay graph over a node set V ”, LDel (k)(V).

LDel (k)(V) is comprised of two types of edges (not longer than 1):

• all edges from the GG;

• edges of all triangles ABC for which there are no nodes inside©ABC

reachable by A, B or C in k or fewer hops.

Li et al. (2002) proved that LDel (k)(V) is planar for k≥ 2, but edges may

intersect for k = 1.

PLDel(V) (Li et al., 2002; Lan & Wen-Jing, 2002), which stands for “Pla-

nar Localized Delaunay Triangulation”, is defined as a planar graph com-

prised of all triangles of LDel (1)(V), except intersecting triangles that do not

belong to LDel (2)(V). Li et al. (2002) proved that UDel(V) is a (4
√

3π)/9-

spanner of UDG(V) and that LDel (k)(V) ⊇UDel(V). Hence PLDel(V) and

LDel (k)(V), for all k, are also (4
√

3π)/9-spanners of UDG(V).

Restricted Delaunay Graph (RDG)

Gao et al. (2001) presented an algorithm that creates a graph called the Re-

stricted Delaunay Graph (RDG). RDG is simply any planar super-graph

2Other possible name for this would be the “constrained Delaunay triangulation”.

2.5. PRE-PROCESSING ALGS. FOR WIRELESS AD HOC NETS. 33

Algorithm 2.3: Algorithm that creates RDG
E(A)←{AB|AB ∈UDel(A)}
for all edge AB ∈ E(A) do

for all C ∈ N(A) do
if A,B ∈ N(C) and AB /∈UDel(C) then

Delete edge AB from E(A)
end if

end for
end for

of UDel. Hence, RDG(V) ⊇ UDel(V), which means that RDG is also a

(4
√

3π)/9-spanner of UDG(V). Their RDG graph is relatively simple, al-

though possibly expensive in terms of communication. After exchanging

information of its own position with its neighbors, each node uses an ad-

ditional communication step to broadcast its own view of the Delaunay

triangulation. This serves to make the triangulation between the nodes

converge and to eliminate possible intersections. Let UDel(A) be the Unit

Delaunay triangulation computed by node A. Algorithm 2.3 shows the

pseudo-code that nodes must execute after this final communication step.

Consider that node A executes this algorithm. Basically, A deletes edge AB

if there is some node C that simultaneously knows A and B and that does

not include AB in its triangulation. This means that AB is not a Delaunay

edge.

Algorithms that create PLDel(V)

While the RDG is a good spanner of UDG (it is also a (4
√

3π)/9-spanner),

its communication cost is O(n2 logn), because each of the n nodes may see

O(n) nodes and O(n) edges in the Delaunay triangulation. To overcome

this problem Li et al. (2002) proposed an algorithm where nodes only an-

nounce some of their own edges. Especially in dense networks, this is con-

34 CHAPTER 2. SURVEY ON POSITION-BASED ROUTING

siderably more economical. This algorithm builds PLDel(V), which is, in

fact, just a concrete case of an RDG. To simplify the presentation, we will

follow the approach of the authors and maintain two separate parts, ran

at node A. The first part, Algorithm 2.4, builds LDel (1)(V). We do not in-

clude a first step necessary to broadcast the identification and position of

a given node. We assume that nodes already know the location of their

neighbors. Although LDel (1)(V) is already a (4
√

3π)/9-spanner of UDG,

it is not planar and, therefore, authors need Algorithm 2.5 to planarize

LDel (1)(V). This algorithm removes all triangles that are intersected and

that do not belong to LDel (2)(V).

First thing to notice is that as soon as nodes know the position of their

neighbors, marking the Gabriel edges is costless in terms of communi-

cation. Hence, communication cost comes from announcing the trian-

gulation. When node A computes Del(N(A)) it can have an arbitrarily

large number of wrong triangles, i.e., triangles like 4ABC that B and/or

C known not to exist. If A were to announce all these triangles, communi-

cation cost could grow to O(n2 logn). To avoid this, node A only announces

the triangles for which ∠BAC ≥ π/3. As a result, nodes can only announce

up to 6 triangles in a first step, thus limiting the communication cost to

O(n logn). Hence, there are some triangles that are not announced by A.

However, this is not a problem, because at least in one of the vertexes,

the angle must be greater or equal than π/3. As a result, the other two

nodes are forced to agree or disagree on the triangle (all without compro-

mising the theoretical communication cost). In the end of this algorithm,

a triangle 4ABC can only exist if the three nodes have included it in their

localized Delaunay triangulations (Del(N(A)) in the case of A). Hence, Al-

gorithm 2.4 creates LDel (1)(V). Now, node A needs to ensure that it gets a

2.5. PRE-PROCESSING ALGS. FOR WIRELESS AD HOC NETS. 35

Algorithm 2.4: Algorithm that creates LDel (1)(V)
Node A computes its Delaunay triangulation, Del(N(A)) with the neighbors that it is aware of,
including itself
for all Edge AB ∈ Del(N(A)) do

if AB is a Gabriel edge then
Mark AB as final
{AB will never be deleted}

end if
end for
for all Triangles4ABC ∈ Del(N(A)) | ||AB|| ≤ 1∧||AC|| ≤ 1∧||BC|| ≤ 1 do

{Ignore any triangle that has one or more long edges}
if ∠BAC ≥ π/3 then

Broadcast a message proposal(A,B,C) to form a 1-localized Delaunay triangle 4ABC ∈
LDel (1)(V)

end if
end for
Receive messages from the other nodes
for all Message proposal(A,B,C) received do

if4ABC ∈ Del(N(A)) then
{Accept the triangle}
Broadcast accept(A,B,C)

else
{This triangle does not exist. Reject it}
Broadcast reject(A,B,C)

end if
end for
for all Triangles4ABC ∈ Del(N(A)) do

if B and C sent accept(A,B,C) or proposal(A,B,C) then
Add edges AB and AC to the triangulation

end if
end for

planar graph, so it executes Algorithm 2.5. This algorithm uses two steps

of communication first to remove possible intersections and then to check

the edges that remain in the graph.

Besides the work of Li et al. (2002), there is the work of Lan & Wen-Jing

(2002) that also builds PLDel(V). However, although not precisely stated,

the communication cost of their algorithm should raise to O(n2 logn) if no

optimizations are used. Figure 2.9 summarizes the relations between well-

known graphs, including these triangulations. Being on top of another

36 CHAPTER 2. SURVEY ON POSITION-BASED ROUTING

Algorithm 2.5: Algorithm that planarizes LDel (1)(V)
Broadcast Gabriel edges incident on A and the triangles4ABC ∈ LDel (1)(V)
Receive the messages from other nodes
{Assume that A gathered information of triangles and Gabriel edges from all its neighbors}
for all Intersecting triangles4ABC and4XY Z known by A do

if X ,Y or Z ∈©ABC then
Remove triangle4ABC

end if
end for
Broadcast Gabriel edges and triangles4ABC incident on A that were not removed in the previ-
ous step
Listen to the messages from other nodes
for all Edge AB do

if AB is a Gabriel edge or ∃4ABC|A,B,C announced4ABC in the previous step then
Keep edge AB

end if
end for

graph means to contain such graph.

2.6 Pre-processing Algorithms for Wired Networks

Position-based routing can also be used in wired networks to enrich wired

applications with geographically limited broadcasts or queries. Some au-

thors, like Liebeherr et al. (2001) use position to support multicast. Recent

work shows that even in wired networks, the geographical position of the

nodes reflects the topology of the network. Padmanabhan & Subrama-

nian (2001) show that in the Internet there is a strong correlation between

physical and topological distances. Furthermore, authors believe that this

correlation will increase as the Internet is expected to become more richly

connected. Hence, the use of position may become increasingly important

as a mean to route messages even in wired networks.

However, when applied to wired networks, position-based routing uses

different assumptions. To start with, wired nodes and networks have

2.6. POS.-BASED ROUTING ALGS. FOR WIRED NETS. 37

UDG
LDel (1)(V)

Non-planar good

spanner graphs

PLDel(V)
LDel (k)(V), k ≥ 2

UDel(V)

R
D

G Planar good span-

ner graphs

GG
RNG

Minimum Spanning Tree

Planar bad span-

ner graphs

Figure 2.9: Relation between some well-known graphs

typically much more resources than their wireless counterparts. Another

important difference is that more often than not, wired networks do not

have a communication range that looks like a circle, nor do they have

easy access to a broadcast communication channel. As a consequence, the

UDG model makes little sense and so does the notion of localized routing

scheme. This implies a shift in the concerns. In a wired network, nodes can

do more than using the pre-processing algorithms presented in Section 2.5.

In fact, nodes can use more elaborate, non-localized pre-processing algo-

rithms. For example Liebeherr et al. (2001) create a complete Delaunay

triangulation to support multicast at the application layer. Dobkin et al.

(1990) showed that the Delaunay triangulation is a (1+
√

5)π/2-spanner of

the complete Euclidean graph. This bound was later improved by Li et al.

(2002) to (4
√

3π)/9, which is a smaller number (u 2.42).

Moreover, a non-localized pre-processing algorithm offers some im-

portant advantages to the routing algorithm. In the case of a complete

Delaunay triangulation, it is no longer necessary to use an algorithm like

GPSR (Karp & Kung, 2000), because Bose & Morin (1999, 2001) showed

38 CHAPTER 2. SURVEY ON POSITION-BASED ROUTING

that both the Greedy and Compass converge in a Delaunay triangulation

(however, they can be defeated by random triangulations). Another ad-

vantage is that, in wired networks, it is reasonable to build a c-competitive

(non-localized) routing scheme. Bose & Morin (1999) presented an O(1)

routing algorithm called “Parallel Voronoi Routing” that is c-competitive

in Delaunay triangulations. Later, they extended this result for a broader

class of triangulations (Bose & Morin, 2001). Unfortunately, the same au-

thors have also shown that, in practice, performance of Parallel Voronoi

Routing is worse than that of greedy or compass routing (Bose & Morin,

1999). Therefore, although these latter algorithms can achieve poor results

in some pathological cases, in the normal random case their performance

is satisfactory. For this reason, in wired networks, we advocate the use of

a simpler algorithm, such as the greedy routing algorithm.

2.7 Comparison of Routing Schemes

2.7.1 Comparison of Pre-processing Algorithms

As a result of the differences between wired and wireless networks, the

kind of graph that is more appropriate to each environment varies. For

instance, in wireless environments it is crucial to use few messages and

to use localized pre-processing algorithms. Unlike this, in wired environ-

ments there is no broadcasting facility and a higher communication over-

head is admissible. In Table 2.1, we evaluate the difficulty of creating each

of the graphs presented in the previous sections, for wired and wireless

environments. We use the following abbreviations: “S” — possible and

simple; “P” — possible but may take several rounds of messages or have

a high communication cost; “I” — impossible; “N” — makes little sense.

2.7. COMPARISON OF ROUTING SCHEMES 39

Table 2.1: Comparison of pre-processing algorithms for wireless and wired net-
works

RNG GG Gao et al. (2001) PLDel(V) LDel (k)(V), k ≥ 2 DT

Wireless S S S S P I
Wired P P N N N P

Some of the entries of the table are to some extent subjective. Hence, ac-

cording to this logic, all algorithms take several rounds in wired networks

(when compared to wireless networks). We also classify the LDel (k)(V),

k≥ 2 algorithm for wireless networks with a “P”, because good algorithms

to do this graph tend to be more complex than other triangulations (Cali-

nescu, 2003; Wang & Li, 2003). Naturally, new, simpler algorithms could

make this classification change. Finally, it is to some extent pointless to

create most of the triangulations in a wired environment, because it is not

obvious whether those would be simpler than creating the complete DT .

2.7.2 Comparison of Routing Algorithms

Since the main goal of any routing algorithm is to deliver packets, the

most important evaluation criterion is unquestionably the delivery success

rate. However, guaranteed delivery cannot be achieved at any price, for

instance, by flooding each packet throughout the entire network. Hence,

another relevant criterion is the communication effort of the algorithm. In

particular, one important distinction is whether the algorithm uses flood-

ing to deliver packets or not. Memory requirement of the algorithm is

also important, because some algorithms require information about past

packets or require nodes to store large routing tables. It is also important

to know if the algorithm is localized, according to the definition of Sec-

40 CHAPTER 2. SURVEY ON POSITION-BASED ROUTING

tion 2.3.3.

Table 2.2 resumes a comparison between routing algorithms. We in-

clude “Shortest Path Algorithms” (SP algorithms), i.e., algorithms that are

not based on position. These algorithms inherit from the techniques of the

wired IP networks. The values of the table are valid for the Destination-

Sequenced Distance-Vector (DSDV) of Perkins & Bhagwat (1994); Ad hoc

On-Demand Distance Vector Routing (AODV) of Perkins et al. (2003) and

Dynamic Source Routing (DSR) of Johnson & Maltz (1996). We assumed

a worst-case scenario where all nodes have routing entries to all other

nodes, thus requiring O(n logn) memory, per node, where n is the number

of nodes. In general, this upper bound is unreachable. The memory entry

of the table for SP algorithms includes this value, followed by the space

required by the algorithm in each packet. Position-based algorithms only

include the latter, because space needed to store the graph strongly de-

pends on the pre-processing algorithm used (but this is typically O(logn)).

Regarding the space used in each packet, all the algorithms need at least

O(logn) bits to identify the destination. However, to make a clearer dis-

tinction between them, in Table 2.2, we refer to the number of other nodes

in the packet, besides the destination (O(1) means that the algorithm needs

the source, while memoryless means that the source is not needed). Of the

routing algorithms included in the table, Greedy, MFR, GEDIR, Random-

ized Compass, Voronoi as well as shortest path algorithms are loop-free.

The face and hybrid algorithms are also loop free in the sense that partial

loops occur in a controlled way, in planar graphs.

Of the localized algorithms included, only randomized compass guar-

antees delivery in arbitrary graphs. Some algorithms guarantee delivery

if the graph is a Delaunay triangulation, while face algorithms guaran-

2.8. CLUSTER-BASED ALGORITHMS 41

Table 2.2: Comparison of routing algorithms

Algorithm
Guarant.

del.
Local. Memory

Flood
based

c-
comp.

Greedy, Compass No/DT Yes/No Memoryless No No
MFR No Yes Memoryless No No
Rand. compass Yes Yes Memoryless No No
GEDIR No/DT Yes/No O(1) No No
Voronoi DT No O(1) No No
Parallel Voronoi DT No O(1) No Yes
FACE-1, FACE-2,
GPSR, AFR, GOAFR+

Planar
G.

Yes O(1) No No

SP Algorithms Yes No
O(n logn),

O(1)

Routing
Tables or

Route
Requests

Yes

tee delivery if the underlying graph is planar. Remaining localized algo-

rithms do not guarantee delivery. Of the position-based algorithms, only

parallel Voronoi is c-competitive (see section 2.3.5). We assume that SP

algorithms can find the optimal path, under favorable circumstances. Al-

gorithms may use hop count, energy or distance as their metric. Finally, of

the algorithms that we include in the comparison, only shortest path algo-

rithms use flooding. Depending on the particular case, these algorithms

use flooding to propagate route requests or to propagate routing tables.

2.8 Cluster-Based Algorithms

Clustering a network consists of dividing that network into groups of

nodes. Usually, each cluster will have a “cluster-head” that will act as

the representative of that group of nodes. In a sense, a cluster (often

by means of its cluster-head) will act as a kind of super-node that rep-

42 CHAPTER 2. SURVEY ON POSITION-BASED ROUTING

resents all the nodes of the group. This allows to create a network that

is much sparser. As a consequence, the management of position and non-

position-based routing algorithms becomes much simpler and most nodes

send fewer control packets, thus reducing collisions and battery consump-

tion. The drawback of clustering is that, often, some unlucky nodes will

have more service than others. Additionally, a sparser network with fewer

nodes, may reduce the routing options for most algorithms. In the case of

position-based routing algorithms, Greedy, MFR, GEDIR, Compass, Ran-

dom compass, among many others, should have worse behavior on sparser

networks, because they have fewer options there. On the contrary, face

and hybrid routing algorithms benefit from clustering. Since they operate

in planar graphs, the sparser the graph is (only in terms of nodes, not in

terms of edges), the longer are the edges. Longer edges will result in fewer

hops to reach destination. The algorithm GOAFR+ (Kuhn et al., 2003) ex-

plores this idea. This result is also clearly shown in Chapter 5.

Division into cells

There is a very large body of work that focus on clustering (e.g. Ni et al.,

1999; Das & Bharghavan, 1997; C.R.Lin & Gerla, 1997; Gao et al., 2001;

Wang & Li, 2002; Chen & Stojmenovic, 1999; ITSIRadioEquipment, 1996;

Calinescu et al., 2001; Qayyum et al., 2000; Wu & Li, 1999; Stojmenovic

et al., 2002; Ni et al., 2001). However, in this thesis we only make use of

a very simple clustering technique that is based on positional informa-

tion. Xu et al. (2001) use this technique in the “Geographical Adaptive Fi-

delity” (GAF) algorithm to conserve energy. Similar techniques that could

be used to create DHTs exist in the work of Gupta et al. (2001) and of Li

et al. (2004b). The goal of GAF is to put as many nodes as possible to

2.8. CLUSTER-BASED ALGORITHMS 43

Figure 2.10: Division of the space into cells of fixed size

sleep and maintain only one node active in each cluster. After a predeter-

mined period of time, sleeping nodes must wake up to substitute active

nodes. GAF divides the space into equally-sized cells that have the shape

of squares (assuming that the entire space is a square), as the grid depicted

in Figure 2.10. Division of the space into cells allows a simple definition of

the network of clusters: all nodes inside the same cell belong to the same

cluster. The size of the cells is limited by the communication range of the

nodes, because nodes in a cell must always listen to any other node either

in its own cell or in any adjacent cell. This restriction ensures that in most

circumstances, the clustered network stays connected, as long as the initial

network is also connected. If we assume that nodes have a communication

range of R, the resulting square side is at most R/
√

5 or R/
√

8, if 4 or 8 cells

surrounding the node are considered to be adjacent, respectively (this can

be seen in Figure 5.1 for 8 adjacent cells).

This division into cells is, in fact, very convenient to create a position-

44 CHAPTER 2. SURVEY ON POSITION-BASED ROUTING

based DHT. Not only it allows to improve solutions for routing, but it also

simplifies the division of keys among the nodes. Therefore, this cell struc-

ture will be the starting point for the DHT that we present in Chapter 5,

called “Cell Hash Routing”.

2.9 Summary

In this chapter, we surveyed position-based routing schemes. A routing

scheme is comprised of a pre-processing algorithm plus a routing algo-

rithm. In wireless networks, a popular routing scheme consists of com-

bining the greedy perimeter stateless routing algorithm (GPSR) with a pla-

nar graph, like the Gabriel graph. Triangulations can replace the Gabriel

graph to achieve better performance, but they are much more difficult to

create. In wired networks, position-based routing is a simpler problem,

because nodes can usually afford to create a complete Delaunay triangula-

tion. This enables the use of routing algorithms even simpler than GPSR,

such as greedy. We address some of the greatest challenges of position-

based routing in the wireless distributed hash tables that we create in

Chapters 4 and 5: efficient creation of a triangulation and clustering of

nodes to improve performance in densely populated networks.

3
Survey on Distributed

Hash Tables

A dictionary stores values which can be accessed by associated keys. A

hash table is a dictionary in which keys are mapped to array positions by

a hash function. Informally, a hash table stores (key, value) pairs1. A user

of the dictionary must use a key to store or to retrieve the corresponding

value. A centralized solution, where a single node holds the entire dic-

tionary, is prone to a number of problems, like lack of tolerance to faults,

high congestion and low scalability. The natural answer to these problems

lies in the decentralization of data provided by a distributed hash table

(DHT). In a DHT, nodes must cooperate to maintain the coherence of the

data. Nodes use a consistent hash function (Karger et al., 1997) to deter-

mine the peer that holds a given value (often, some sort of file, a music,

or a pointer to the location of those items). Usually, nodes self-organize

to form a communication graph which has optimal or near-optimal path

length/node degree trade-off (in wired networks, both are typically loga-

rithmic with respect to the number of nodes). In this way, although nodes

have a small number of neighbors (logarithmic or better) the DHT needs

only a small number of hops (logarithmic or better) to satisfy requests from

1See for example the web page of National Institute of Standards and Technology — Dictionary
of Algorithms and Data Structures: http://www.nist.gov/dads.

45

46 CHAPTER 3. SURVEY ON DISTRIBUTED HASH TABLES

clients. When compared to a centralized solution this is a fair price to pay,

because distribution offers some considerable advantages, like improved

fault-tolerance. In fact, a carefully designed DHT may resist to single or

even multiple node failures, loosing only the data that was in the depart-

ing nodes. Another advantage of a distributed solution is the reduced

congestion. While a centralized server needs to reply to all requests, most

DHTs need to reply only to a small fraction of the requests, like O(logn/n),

where n is the number of nodes. Furthermore, DHTs scale better than a

centralized solution, both in terms of communication and storage require-

ments.

3.1 DHTs in Overlay Networks

An overlay network is a network operated on top of another underlying

network, but organized under an independent logic. For this reason over-

lay networks are also deemed as “logical” or “virtual” networks. The

growing interest of users in peer-to-peer applications, like Napster2 and

Gnutella3 ignited the creation of many peer-to-peer overlay networks that

implement DHTs, like Pastry (Rowstron & Druschel, 2001), Tapestry (Zhao

et al., 2001), Chord (Stoica et al., 2001) and CAN (Ratnasamy et al., 2001).

Although different in their details, most of these DHTs share a number

of common features. According to Gummadi et al. (2003a), in a DHT,

one can often distinguish between the “routing scheme”4 and the “rout-

ing geometry” of the overlay network. The routing scheme is the set of

mechanisms that determines the neighbors and the next hops (this basi-

2See http://www.napster.com.
3See http://www.gnutella.com.
4In the work of Gummadi et al. (2003a), this is called the “routing algorithm”.

3.1. DHTS IN OVERLAY NETWORKS 47

cally corresponds to the formal definition of routing scheme). Often, the

routing scheme compels the nodes to create an underlying graph with a

predetermined organization, which is called the “routing geometry”. The

notion of routing geometry is quite useful, because it allows us to pinpoint

some of the most relevant differences among existing DHTs. Depending

on the particular geometry, nodes may have some flexibility to choose

their neighbors and to choose paths for the messages, given their actual

neighbors. As we shall see, some routing geometries give their nodes de-

grees of freedom in both aspects (neighbors and paths), others only in one,

while the remaining give none. Flexibility to choose neighbors allows the

DHT to select closer peers, thus improving routing latency, while flexibil-

ity to choose paths also impacts latency (less) and increases tolerance to

faults caused by nodes that have departed. To shorten presentation of the

DHTs, we will use a “generic DHT” with no specific routing geometry. We

use this generic model to present the components of the routing scheme

that are common to most DHTs. Then, we briefly overview and compare

some of the most well-known DHTs that exist.

3.1.1 The Routing Scheme of a Generic DHT

A DHT stores (key, value) pairs, e.g., (“Bob”, 32), where “Bob” is the key,

while 32 is the value we want to store, e.g., Bob’s age. The DHT must have

a globally known hash function capable of converting the key to a pseudo-

random value, e.g., an integer or a position in a virtual space. One of the

crucial aspects is that the hash function should balance the distribution of

keys throughout the space. We first consider that the DHT creates an un-

derlying graph H , which is a function of the set of existing nodes. Nodes

of the DHT receive a (pseudo) random identifier that evenly spreads the

48 CHAPTER 3. SURVEY ON DISTRIBUTED HASH TABLES

nodes in the space of identifiers. The space of identifiers of the nodes must

coincide with the output space of the hash function (to ensure this, some

DHTs, e.g., Bamboo (Rhea et al., 2003), hash the identifier of the node plus

port of the application). If nodes and keys are evenly distributed in space,

each node will store a comparable share of the keys.

The routing scheme must create graph H in a way that a path between

two arbitrary nodes always exists (at least in steady state conditions). To

retrieve (or to store) the value corresponding to a key, the DHT must find

the node that stores that key. Take again the example above and assume

that the key “Bob” hashed to 81. In general, node 81 will not exist (because

nodes are sparse in the identifier space) and some other node will become

responsible for that key. Assume that it is node 90. Any node, say node 13

looking for the age of Bob will use the key “Bob”, which hashes to 81. In

general, nodes only have a partial view of the network and node 13 will

not know whether node 81 exists or not. Nevertheless, the DHT will try

to route the message to node 81 and will always end up in node 90. One

of the problems in most DHTs is that their overlay network bears only

a limited (if any) relation with the underlying network. Consequently,

each hop in the DHT may represent a very long distance in the Internet

and successive hops may make the message travel back and forth several

times.

Entrance and departure of nodes from the DHT is often very similar

from one DHT to the next. To illustrate the process, we will take as exam-

ple Pastry (Rowstron & Druschel, 2001):

• to enter the network, a node with identifier N must ask some node

P0 already in the network to send a special JOIN message to node

N (which hopefully does not exist in the network). This JOIN mes-

3.1. DHTS IN OVERLAY NETWORKS 49

sage will be routed to the node responsible for the identifier N in the

network, say Pf . At this moment, Pf will know that there is a new

neighbor coming in and it divides its own space and its keys with

the newcomer. The remaining actions to take strongly depend on

the concrete DHT;

• ideally, departure of nodes involves redistribution of the keys of the

leaving node. However, in practice, nodes may leave abruptly, ren-

dering this option impossible.

Next, we review some of the most important DHTs.

3.1.2 Chord

Overview

In Chord (Stoica et al., 2001), nodes organize into a logical ring ordered by

increasing order of identifier. To close the ring, the smallest node follows

the largest one. To maintain the ring, each node keeps a pointer to the

node that follows it. The ring allows to define the notion of successor node

of a key. For some key k, successor(k), is the node of the ring with smallest

identifier, not smaller than k or, if all nodes have identifiers smaller than k,

successor(k) is the node with smallest identifier (0 is successor of 2m− 1).

To improve routing performance, Chord nodes use “finger tables” with

m entries, where 2m is the number of possible identifiers. This scheme

requires O(logn) memory at each node, but ensures delivery of messages

in O(logn) hops with high probability 5. The i-th entry of the finger table

at node P keeps a pointer to the first node S that succeeds P by at least

5With high probability, this means that an event will occur with a probability of at least 1−
O(1/n).

50 CHAPTER 3. SURVEY ON DISTRIBUTED HASH TABLES

0 1
2

5

9

11

13

16

8

18

20

24

25

27

K0, K28

K6, K7, K8

K12

K4

K20

K23, K24

Finger Table

14
15
17
21
29

P16
P16
P18
P24
P0

Figure 3.1: Chord ring

2i−1, i.e., S = successor(P + 2i−1 modulo 2m). These pointers correspond

to long range contacts (LRCs) carefully selected along the ring. If Chord

reaches a steady state, where nodes have updated finger tables, each hop

successively eliminates half of the possible remaining identifiers.

Figure 3.1 depicts an example of a Chord ring with m = 5. Nodes hold

the keys represented as Kx. We also show the finger table of node 13 (the

rows of the first column result from the computation 13 + 2i−1 modulo 32,

while the second column is the successor of this identifier). As an example

consider that destination node is D = 27 and forwarding node is P = 13. In

this case, the first hop of the message will go through node successor(21) =

24.

Stoica et al. (2001) claim that simplicity, provable correctness and prov-

able performance are the main features of Chord. This is further explored

by Lynch et al. (2002).

3.1. DHTS IN OVERLAY NETWORKS 51

Routing Geometry

The routing geometry of Chord is a ring. This ring is augmented with

LRCs that nodes store in their finger tables. When populating their rout-

ing table, Chord nodes have many options. Except for their immediate

neighbors, Chord nodes can select their LRCs in a rather flexible way. The

more distant the LRC is the more options there are (however the origi-

nal specification of Chord does not allow this flexibility). Routing also

has a large flexibility, because there are many possible routes with O(logn)

lengths. Ideally, there are O((logn)!) different ways of arranging the paths

with length O(logn). To see this, consider an average path with a sequence

of hops like n/4,n/8,n/16, . . . ,4,2,1. We can rearrange this sequence in an

arbitrary way and still get the same length. In fact, for k terms, we can

have k! different orderings.

3.1.3 Content-Addressable Network (CAN)

Overview

Content-Addressable Network (CAN) divides a virtual (imaginary) d-di-

mensional torus into d-dimensional zones. There is a one-to-one corre-

spondence between CAN nodes and the d-dimensional zones. The hash

function deterministically maps the keys to coordinates of the virtual torus

and each process manages all the keys that hash inside its own zone. A vi-

sual representation of CAN for anything above two dimensions is not very

intuitive and therefore, Figure 3.2 represents a CAN square, for only two

dimensions. In fact, this is not a square, but a torus, because coordinates

wrap and the virtual space has no borders. Also, note that physical coor-

dinates bear no relation to virtual space.

52 CHAPTER 3. SURVEY ON DISTRIBUTED HASH TABLES

X

Y

Figure 3.2: Content-Addressable Network (CAN)

To route messages, CAN uses a greedy algorithm, where each node

sends the message to the neighbor that is closest to destination. In CAN,

nodes are only aware of neighbors with which they share a common bor-

der of the space. Figure 3.2 depicts an example that illustrates the routing

process between X and Y .

Ratnasamy et al. (2001) claim that average path length in a d-dimensional

CAN with n nodes is (d/4)n1/d , i.e., O(dn1/d), and that individual nodes

maintain only 2d neighbors. However, we notice that it suffices to look at

Figure 3.2 to see that the number of neighbors may be higher than 2d. Ad-

ditional methods are required to avoid very unfavorable space partitions

where some node might need to store information of an arbitrary number

of neighbors. Authors also state that CAN can achieve O(logn) hops by

setting d = (log2 n)/2. However, for typical configurations of CAN, where

the number of nodes in the system is not known beforehand, the path

length/node degree trade-off of CAN is very unfavorable, as paths tend

to be very long. CAN can significantly benefit from some enhancements

to its basic design (Ratnasamy et al., 2001).

3.1. DHTS IN OVERLAY NETWORKS 53

Routing Geometry

The routing geometry of CAN becomes a hyper-cube instead of a torus

if we consider that d = logn and that all possible identifiers are taken by

existing nodes. In this case, each node will have precisely logn neighbors

each one differing in a single bit. Therefore, routing will take logn hops,

as each one of the hops will correct one of the bits. However, a practical

implementation of CAN can hardly correspond to this idealized hyper-

cube. Not only the number of nodes of the system is unknown when it

boots, but it is likely to vary. Consequently, either the dimensionality is

too large or too small. If it is too large, the number of neighbors per node

will be above O(logn). If it is too small, most of the nodes will not lie in the

vertices of the hyper-cube and crossing each dimension needs more than

a single hop, more than a logarithmic number of hops and in fact O(n1/d).

From the two flexibility criteria, CAN only owns one, which is the rout-

ing flexibility. Since there is only one way of arranging the hyper-cube,

there is no flexibility at all to select the neighbors. On the other hand,

nodes can route messages using several of their neighbors. If the forward-

ing node and the destination have b different bits, the forwarding node

can select any of the b neighbors that are closer to destination. This means

that there are O((logn)!) possible paths from source to destination.

3.1.4 Expressways Content-Addressable Network (eCAN)

Overview

The CAN DHT is not very efficient in practice, because path lengths tend

to be very long. To overcome this problem Xu & Zhang (2002) proposed an

extension to CAN, called “expressways CAN” (eCAN). Refer to Figure 3.3.

54 CHAPTER 3. SURVEY ON DISTRIBUTED HASH TABLES

Figure 3.3: eCAN-like LRCs

To simplify presentation we will consider a two-dimensional space, but

this mechanism works for an arbitrary number of dimensions. The idea

in eCAN is to make a first level division of the entire space into four

big squares6. Each node keeps LRCs to the two neighboring squares.

Then, the four big squares are further divided into other four smaller

squares. This time, nodes inside squares have a total number of four LRC

(above, below, right and left). This process is repeated for as many levels

as wanted. Figure 3.3 illustrates the eCAN-like LRC scheme, for a node in

a corner. Wrapping pointers are not shown.

Routing Geometry

If the routing geometry of CAN were truly a hyper-cube with O(logn) di-

mensions, eCAN would be pointless. However, in practice, CAN works

like a torus and eCAN reduces path lengths in that torus. The LRC mech-

6Division in 3×3, 4×4 or any other number of squares is also possible.

3.1. DHTS IN OVERLAY NETWORKS 55

anism of eCAN gives a lot of flexibility to nodes in what concerns selec-

tion of neighbors. Each LRC has to fall within a hyper-cube with possibly

many nodes. However, eCAN is not flexible in route selection, because,

in general, there is little gain in progressing until the message crosses the

border of its current largest hyper-cube. This means that a node has only

one good option to reach destination. Although eCAN has some similari-

ties with the finger table of Chord, the division of the space in hyper-cubes

makes it less worthwhile to do small steps forward.

3.1.5 Pastry

Overview

Pastry and Tapestry are two descendants from the work of Plaxton et al.

(1997). Pastry routes messages as follows. Consider that some node S =

1454310 sends a message to node D = 8494410. To succeed, S must know

some node that starts with an 8. Consider it to be R1 = 83135. Now, R1

must know about some node that starts with an 8 and has 4 in the second

position, say R2 = 84899. This reasoning goes on for nodes R3 = 84996,

R4 = 84945 and finally D. Implementations of Pastry use a numeration base

of 2b for some b. b is a parameter of the system, typically set to 4, which

means that the numeration base is 16. Rowstron & Druschel (2001) show

that under accurate routing tables and in the absence of recent node fail-

ures, O(logn) hops suffice for a lookup operation, w.h.p., while the number

of entries in the routing information of each node is O(logn). n is the num-

ber of nodes in the system.

Each node divides its routing information in three parts. The first part

is the “routing table”, which includes information of peers needed to route

56 CHAPTER 3. SURVEY ON DISTRIBUTED HASH TABLES

messages according to the description made before. The “leaf set”, L of

node P includes a set of nodes with identifiers close to P. Nodes use this

set to know exactly which keys belong to them and which keys belong to

their neighbors. Nodes also use the leaf set to route to nodes with close

identifiers. Additionally, nodes store a list of nodes that are physically

close called “neighborhood set”. The purpose of this list is to improve

locality properties of routing. By forwarding messages to nodes that are

topologically closer, routing becomes more efficient. Figure 3.4 (see Row-

stron & Druschel, 2001) shows the information stored in some example

Pastry node, for b = 2 and |L|= 8 in a system that uses 5 digits for the node

identifier. Node identifiers are split in three parts: equal prefix, current

digit and different suffix. First row keeps addresses of nodes that have no

common prefix with current node. Second row keeps addresses of nodes

that share the first digit with the current node and so on. At each row,

the cell whose digit matches the node’s digit has a gray background. The

routing table of each node has an average of dlog2b ne rows (see Rowstron

& Druschel, 2001).

Rowstron & Druschel (2001) claim that Pastry has good locality prop-

erties, in the sense that more often than not, nodes will select to neighbors

nodes that are close to them. This property is ensured by the way that

Pastry nodes build the network.

Routing Geometry

The routing geometry of Pastry is hybrid (Gummadi et al., 2003a). The

routing tables of the nodes are organized as a tree, while the leaf set of the

nodes forms a ring (with some redundancy). The ring part of the graph is

easy to understand and, therefore, we shall focus on the tree. Each node

3.1. DHTS IN OVERLAY NETWORKS 57

23001 23000 23012 23021
22321 22312 23100 23101

-0-1023 -1-2131 2 -3-0231
2-0-021 2-2-032 3

0 23-2-33
0 230-2-2

2

02132 32100 00213 10023
31102 22311 02310 01213

Routing Table

Neighborhood Set

NodeId 23002
Leaf Set

Smaller Greater

Figure 3.4: State of node 23002

is the root of its own tree. Any node that shares all but the last digit of

that identifier is a candidate to be a child node. Exactly which nodes exist

on that level of the tree depends on things like the nodes that the “root”

node used to join the network. The grandchildren nodes share all but

the two last digits of the root’s identifier and so on, until only the first

digit coincides in the lowest level of the tree. Figure 3.5 depicts a possible

such tree for node 23002. Routing for node 23002 is straightforward. The

path length between two nodes is determined by the subtree that connects

them. Transient network states can cause the tree to be incomplete and

force the ring to come into play.

Selection of neighbors in Pastry is quite flexible, especially for entries

of the routing table that correspond to nodes which only share a few bits in

their identifier. For instance, in Figure 3.5, node 21330 could choose many

different nodes starting by 23xxx, while node 23021 only has a few choices

for nodes starting by 2300x (possibly only one). On the other hand, there

is no routing flexibility in a tree, because there is only one neighbor that

58 CHAPTER 3. SURVEY ON DISTRIBUTED HASH TABLES

Figure 3.5: Pastry tree rooted at node 23002

yields good routing results.

3.1.6 Tapestry

Routing Geometry

Pastry and Tapestry’s main mechanisms are very similar and therefore, to

conserve space, we omit the details of Tapestry. The main difference be-

tween the routing geometry of these DHTs is that the routing geometry of

Tapestry is a pure tree, because Tapestry does not have any ring. Figure 3.5

also represents this structure, despite the fact that Tapestry resolves digits

in the opposite order. Similarly to Pastry, Tapestry is very flexible in the

construction of the routing table, while the same is not true for the route

selection.

3.1.7 Viceroy

Overview

Viceroy (Malkhi et al., 2002) implements a DHT with constant out-degree

and logarithmic diameter. Insertion or removal of a node requires a num-

3.1. DHTS IN OVERLAY NETWORKS 59

Figure 3.6: The butterfly network

ber of link changes that is constant in expectation and logarithmic with

high probability. The Viceroy network is based on the butterfly network.

Figure 3.6 illustrates a butterfly network comprised of thirty two nodes

distributed by four different levels. Note that, despite having only a con-

stant number of connections, nodes can reach each other in a logarithmic

number of steps.

The principle of the Viceroy network is to enhance the Chord basic ring

with LRCs inspired on the butterfly configuration. Viceroy nodes try to di-

vide themselves into logn different levels, n being the number of nodes. A

Viceroy network comprises three different types of structures: i) a ring like

Chord; ii) the butterfly, that connects nodes from the general ring using an

emulation of the butterfly network; and iii) level rings that connect nodes

from the same butterfly level in a ring structure. To organize the Viceroy

network, nodes randomly select identifiers in the range [0,1), to determine

their positions along the 2π radians of the general Chord ring. A node has

the following constant number of connections: two connections with pre-

decessor and successor nodes in the general ring; right and left connec-

60 CHAPTER 3. SURVEY ON DISTRIBUTED HASH TABLES

tions to the next level of the butterfly, a connection to the upper level of

the butterfly; and two connections to the predecessor and successor nodes

in the level ring. The left and right connections of the butterfly to the next

level intend to divide ring space, according to the following rule: for the

left connection of node N of level l is selected the neighbor in level l + 1

that is closest to N in the clockwise direction (i.e., the “clockwise-closest”

neighbor) around the general ring; for the right connection is selected the

neighbor of level l+1 clockwise-closest to N +1/2l . Connections from level

l to level l +1 are expected to be about 1/2l far apart in the ring. The reader

may confront this with the perfect butterfly graph depicted in Figure 3.6,

considering that the distance from the leftmost to the rightmost lines is 1.

For the up-link, the clockwise-closest neighbor of level l−1 is chosen. All

the butterfly connections are used for routing purposes.

The level of a node in the butterfly is randomly selected from the set

{1, . . . ,blognc}, where n is the number of nodes. Being impossible to deter-

mine the exact number of nodes, node N estimates this to be n0 = 1/d(N, suc-

cessor(N)), where d(N, successor(N)) is the distance from N to N’s succes-

sor in the general ring. For instance, if N = 0.44 and successor(N) = 0.64, N

will assume that the network has 5 nodes and will select its level between

1 and 2. If successor of N changes, N must re-select its level.

Routing is performed in three sequential steps, called “proceed to root”,

“traverse tree” and “traverse ring”. In the first step, nodes send the mes-

sage to the first level of the butterfly through their up-links. In the second

step, nodes traverse the tree from the first level to the destination. At node

N, level l, distance to destination D, d(N,D), is at most 1/2l−1. Hence, if

d(N,D) < 1/2l , left link is chosen, otherwise, right link is chosen. This pro-

cess will either reach some node without further down links or a node

3.1. DHTS IN OVERLAY NETWORKS 61

beyond destination D. Assume that X 6= D is the node reached in the end

of the second step. The last step will make use of the level ring to achieve

destination in O(logn) steps w.h.p. 7. In the last step of the routing algo-

rithm, if X < D, nodes select either the successor in the level ring, Y , if

Y ≤ D, or the successor in the general ring if Y > D. If X > D, the reason-

ing is similar. For further details on Viceroy see the work of Malkhi et al.

(2002).

Routing Geometry

The routing geometry of Viceroy is a variation of the butterfly graph repre-

sented in Figure 3.6. The Viceroy DHT offers no flexibility in the selection

of neighbors or in the selection of paths.

3.1.8 D2B

Overview

One of the most interesting features of D2B (Fraigniaud & Gauron, 2003a,b)

is that nodes have constant node degree and, still, path lengths are loga-

rithmic. D2B network is based on the de Bruijn graph. A de Bruijn graph,

B(2,k), for k ≥ 1, has 2k nodes with k-bit identifiers. In-degree and out-

degree of nodes is 2 and diameter of the graph is k. Node with identifier

x1x2 . . .xk has an arc directed to nodes x2 . . .xkα, for α ∈ {0,1} and has in-

coming arcs from βx1 . . .xk−1, for β ∈ {0,1}. Figure 3.7 depicts an example

of B(2,3). Routing from x1x2 . . .xk to y1y2 . . .yk is done by selecting inter-

mediate nodes x2 . . .xky1, x3 . . .xky1y2, etc., until destination is reached. For

7Malkhi et al. (2002) present two versions of the routing algorithm. The simplest version uses
the general Chord ring instead of the level rings, but may require O(log2 n) steps (more precisely,
the expected number of steps is O(logn) and it is O(log2 n) w.h.p.).

62 CHAPTER 3. SURVEY ON DISTRIBUTED HASH TABLES

Figure 3.7: Example of a de Bruijn graph, B(2,3)

instance, routing from 101 to 000 is done through 010 and 100.

D2B must incorporate some additional features to i) support the DHT

functionality, ii) support sparsity of nodes and iii) cope with the dynamic

behavior of a network made of nodes that vary in number. The key space

of D2B is K = {0, . . . ,2m−1}, for a binary string length of m. The key

k1k2 . . .km is managed by existing node x1x2 . . .xk if and only if x1x2 . . .xk

is a prefix of k1k2 . . .km. This raises the notion of “universal prefix set”, S,

which is a set where for any possible integer with infinite length w there is

one and only one prefix of w in S. For example, {0,100,1010,1011,11} is a

universal prefix set. The empty set is also a universal prefix set. D2B must

ensure that at any given time, for any identifier, there is one and only one

node with a corresponding prefix in the network. In other words, identi-

fiers of nodes of D2B must form a universal prefix set.

The sparsity of the identifier space implies that, unlike the static de

Bruijn graph, node x1x2 . . .xk may have either a single child x2 . . .x j, j ≤ k

or several children with identities x2 . . .xky1 . . .yl , 1 ≤ l ≤ m− k + 1. If sev-

eral children exist, the set of sequences y1 . . .yl forms a universal prefix

set. For instance, node 110 may have more than one children with the

following identifiers, 100, 10100, 101010, 101011, 1011, or may, otherwise,

have a single child with identifier of 1 or 10. Given the childhood rela-

3.1. DHTS IN OVERLAY NETWORKS 63

Figure 3.8: Multiple parent may correspond to a single child

Figure 3.9: One parent may have several children

tion, the parenthood relation is symmetrical. If node A has a single child

B with identifier w1w2 . . .wk, then, B may have several parents with identi-

fiers αw1 . . .wky1 . . .yl , where α ∈ {0,1} and y1 . . .yl forms a universal prefix

set. On the other hand, if node A has several children including B, with

identifier w1w2 . . .wk, then B’s single parent is A and the identifier of A is

βw1 . . .w j, where β ∈ {0,1}. Figures 3.8 and 3.9 illustrate childhood and

parenthood relations. To keep coherency with the text we used two differ-

ent identifiers for nodes in the figures.

Routing Geometry

The routing geometry of D2B is a variation of the de Bruijn graph repre-

sented in Figure 3.7. D2B is an inflexible architecture, both from the point

of view of the neighbor selection and from the point of view of the route

selection. This is quite evident for neighbor selection, due to the highly

structured de Bruijn graph. Additionally, there is also only one optimal

64 CHAPTER 3. SURVEY ON DISTRIBUTED HASH TABLES

option to route the message and therefore this does also not meet the rout-

ing flexibility criterion.

3.1.9 Koorde

Overview

Koorde (Kaashoek & Karger, 2003) is a DHT that augments the basic Chord

ring with a de Bruijn graph. Koorde network achieves the following op-

timal results: i) for O(1) node degree, Koorde diameter is O(logn) w.h.p.;

ii) for O(logn) node degree (which enhances fault tolerance), Koorde di-

ameter is O((logn)/ log logn). Koorde node m requires information about

2 nodes: its successor in the ring and the predecessor of 2m modulo 2,

known as D (unlike a pure de Bruijn graph, there is no pointer to node

(2m+1) modulo 2, as this would probably be redundant).

The Koorde DHT uses the notions of “virtual node” I and “real node”

N. I corresponds to the current routing node in the de Bruijn graph. Since

it may happen for identifier I not to exist in the Chord ring, node N is a real

node that represents I in the ring, such that I ∈ [N,successor(N)). To route

toward key k, node X invokes the function lookup() in Algorithm 3.1 with

arguments X .lookup(k,k,X). We used the original notation of Kaashoek

& Karger (2003): kshi f t is used to extract successive bits, starting from the

most significant, from key k; function topBit(x) returns the most significant

bit of x; finally, x ◦ b, left-shifts x and introduces the bit b at the right of x.

The algorithm first checks if key belongs to the successor. If it does not,

but node N represents I, request is forwarded to node D and operator ◦

is used on I. Otherwise, request for key is forwarded to the successor in

order to search for node I. In Figure 3.10, we depict the Koorde network

3.1. DHTS IN OVERLAY NETWORKS 65

Algorithm 3.1: Lookup algorithm at node N
Function lookup(k,kshi f t, I)

if k ∈ (N,successor(N)) then
return successor(N)

else
if I ∈ [N,successor(N)) then

return call function D.lookup(k,kshi f t << 1, I ◦ topBit(kshi f t))
else

return call function successor(N).lookup(k,kshi f t, I)
end if

end if

Figure 3.10: A Koorde network

corresponding to Figure 3.1. The pointer D at each node is shown inside

a box. Figure 3.11 exemplifies the lookup() function of a request for key

k = 21 = 101012, starting at node N = 18 = 100102.

The number of hops can be reduced if instead of using N as initial I,

the most significant bits of the key k are inserted from the beginning in I,

such that I does not overflow the range of N that stops at (not including)

successor(N). For instance, in the previous example, we could immedi-

ately do I = 18 = 100102 and kshi f t = 101. Although there is no improve-

ment in this particular case, Kaashoek & Karger (2003) prove that this en-

66 CHAPTER 3. SURVEY ON DISTRIBUTED HASH TABLES

kshi f t 10101 0101 0101 101 01 01 01
I2 100112 001012 001012 010102 101012 101012 101012
I10 19 5 5 10 21 21 21
N 18 2 5 9 16 18 20

Figure 3.11: Request for key 21 = 101012 starting at node 18 = 100102

ables Koorde to achieve O(logn) path lengths with high probability.

Koorde has a second variant where it can use a base-O(logn) (say base-

k) de Bruijn graph. In this variant, node m uses pointers to k predecessors

of km. This represents a node degree of O(logn), but, on the other hand, it

improves the path lengths to O((logn)/ log logn), which is still optimal.

Routing Geometry

The routing geometry of Koorde comprises two parts: a basic Chord ring

(without the finger tables) plus a variation of the de Bruijn graph repre-

sented in Figure 3.7. Neither of the variants of Koorde has any flexibil-

ity concerning either the selection of paths or the selection of neighbors.

However, comparison might not be entirely fair. In the second variant of

Koorde, with O(logn) neighbors, the effect of choosing alternative neigh-

bors or alternative routes is not very clear. Although this would affect the

optimality of Koorde, fact is that most remaining DHTs are already sub-

optimal.

3.1.10 TOPLUS

Overview

In most peer-to-peer systems there is a mismatch between the logical and

the physical networks. As a consequence, paths selected by routing schemes

3.1. DHTS IN OVERLAY NETWORKS 67

in peer-to-peer networks may be considerably longer than the correspond-

ing paths in the physical network. The TOPLUS DHT (Garcés-Erice et al.,

2003) addresses this problem. TOPLUS organizes peers in groups accord-

ing to their IP addresses. Groups are then organized into a new higher-

order group, which is then organized into a new even higher-order group,

and so on until, at the highest level, there is only one group, which in-

cludes all possible nodes. To increase correlation between group and net-

work structure, TOPLUS gets topological information from Border Gate-

way Protocol (BGP) tables.

Let HN(X) be the lowest-order group including node X ; let HN−1(X)

be the second lowest-order group including HN(X), until H0(X), which

includes all groups and all nodes. Node X must know all the nodes of

group HN(X); at level N − 1, node X must know at least one node from

each group that is sibling of HN(X) (i.e., some node Y such that HN−1(X) =

HN−1(Y)∧HN(X) 6= HN(Y)); the same applies for all other levels until level

0. The collection of all IP addresses known to X is the routing table of X .

To route, nodes use a metric derived from a simple longest-prefix match-

ing known as the “XOR metric”, which is also used in Kademlia (May-

mounkov & Maziéres, 2002). A distance between two identifiers j and k

under the XOR metric is defined as d(j,k) = ∑
31
v=0 | jv−kv| ·2v, where jv is the

v-th bit of j. The difference of the XOR metric to the longest-prefix match

is that the former always breaks ties when prefixes have the same length

(see Garcés-Erice et al., 2003, for details). Given the routing table structure

of node X , it is trivial to prove that routing will always converge. In fact,

node X always knows some node that is closer to destination D under the

XOR metric (e.g., some node F belonging to some sibling group H1(F)).

While capable of achieving a stretch as low as 1.17 compared to the IP

68 CHAPTER 3. SURVEY ON DISTRIBUTED HASH TABLES

routing, TOPLUS has a number of drawbacks (Garcés-Erice et al., 2003).

The most obvious one is that consistent hashing is no longer able to bal-

ance load among the nodes, because nodes may not be evenly spread in

the identifier space. As a consequence, some nodes may receive an unfair

share of the load. Another practice that might be used in other peer-to-

peer systems would be to assign several virtual nodes to the same power-

ful peer. This is also difficult in TOPLUS. Another issue is the possibility

of correlated node failures that may bring down an entire set of related IP

addresses, thus reducing the effectiveness of using peers with neighboring

addresses to increase availability.

Routing Geometry

The routing geometry of TOPLUS is hybrid in the sense that TOPLUS cre-

ates a tree of groups of nodes. Nodes have pointers to groups at higher lev-

els of the tree as well as pointers to sibling groups at each level. TOPLUS

only requires nodes to have complete knowledge of the lowest level group

of the node. Selection of neighbors in TOPLUS is very flexible. The same

does not happen with route selection. The tree structure of TOPLUS al-

lows only a single option for the optimal route.

3.1.11 Comparison of the DHTs

To compare the DHTs, we evaluate their most significant features:

performance and scalability as the network size increases up to thousands

or millions of nodes, scalability depends heavily on the behavior of

the following factors: ability of nodes to share the load, growth of

path lengths versus degree of nodes and congestion at the nodes.

3.1. DHTS IN OVERLAY NETWORKS 69

While most DHTs assume that load sharing is ensured by hashing

(and possibly randomization), figures for path lengths and node con-

gestion may vary. To evaluate performance and scalability, we will

use the theoretical bounds as they are presented by their authors;

tolerance to faults to evaluate tolerance to faults, we base our evaluation

on the interesting work of Gummadi et al. (2003a) that defines the

concept of “static resilience” of a DHT. Although tolerance to faults

depends on many different mechanisms, static resilience measures

the ability of the DHT to resist to node failures prior to any attempt

of reconstruction. Static resilience strongly depends on the particular

DHT and on the routing geometry. We evaluate the static resilience

of the different DHTs in Section 3.1.11. Other recovery mechanisms

may be applicable to more than one DHT and consequently they are

less prone to comparisons;

self-configurability to evaluate the self-configurability of the DHTs, we fo-

cus on the ability of the network to choose better paths and on churn8.

However in the case of churn, there is little data available to com-

pare the DHTs and additionally, many techniques are applicable to

all the DHTs. Therefore, we will focus on generic measures to im-

prove resistance to churn and, as a consequence, self-configurability.

To evaluate the ability of the network to choose better paths, we out-

line conclusions of Gummadi et al. (2003a), while to infer behavior

under churn and to mitigate this problem, we outline conclusions of

the following authors: Rhea et al. (2004); Liben-Nowell et al. (2002);

8The site http://searchcrm.techtarget.com defines the “churn rate” as the number of costumers
who discontinue a service during a specified time period divided by the average total number of
costumers over the same time period.

70 CHAPTER 3. SURVEY ON DISTRIBUTED HASH TABLES

Li et al. (2004a).

Performance and Scalability

Path lengths are measured in terms of hops traveled by a message in the

overlay network, while the degree of a node is the number of its overlay

neighbors. These parameters are tightly connected and cannot be simul-

taneously reduced, as any n-node network meets its fundamental limits in

the inequality dh+1/(d−1)≥ n−1. dh+1/(d−1) is an upper bound for the

number of nodes within h hops for a given maximum node degree d. In

fact, for O(1) node degree, expected path lengths can be, at best, O(logn),

while for O(logn) node degree, expected path lengths cannot be shorter

than O(logn/ log logn) (Kaashoek & Karger, 2003). The path length/node

degree trade-off is one of the central criterion used to evaluate a DHT.

Besides path lengths and node degree, it is also common to find a the-

oretical derivation of congestion at nodes in the papers where authors

present their DHTs. Table 3.1 summarizes these figures for the DHTs

presented before, when available (see also Fraigniaud & Gauron, 2003a;

Malkhi et al., 2002). For comparative purposes, we have also included

networks with small-world characteristics. A small-world has a constant

node degree and poly-logarithmic diameter. Some notable works that

study the creation of small-worlds are those of Kleinberg (2000); Duchon

et al. (2005); Barrièrere et al. (2001). One important aspect that we must be

aware of is that there may be no correspondence between these theoreti-

cal bounds and the results observed in practice, because the O() notation

hides a constant factor that may vary widely. For instance, experimental

results of Gummadi et al. (2003a) tend to demonstrate that, for instance,

the butterfly network is very inefficient when compared to networks with

3.1. DHTS IN OVERLAY NETWORKS 71

Table 3.1: Comparison between expected performance of several peer-to-peer sys-
tems

P2P system Node degree Network diameter Node congestion

small-worlds O(1) O(log2 n) O
(
(log2 n)/n

)
Chord O(logn) O(logn) O((logn)/n)
CAN O(d) O(dn1/d) O(dn1/d−1)
Pastry O(logn) O(logn) O((logn)/n)

Tapestry O(logn) O(logn) O((logn)/n)
D2B O(1) O(logn) O((logn)/n)

Viceroy O(1) O(logn) O((logn)/n)
Koorde cfg. 1 O(1) O(logn) O((logn)/n)
Koorde cfg. 2 O(logn) O((logn)/ log logn) O((logn)/(n log logn))

Table 3.2: Flexibilities of the different DHTs architectures

Property Optimal paths Neighbor selection

Ring (Chord) O(logn) nlogn/2

Hyper-cube (CAN) O(logn) 1
Torus (eCAN) 1 nlogn/2

Hybrid (Pastry) 1 nlogn/2

Tree (Tapestry, TOPLUS) 1 nlogn/2

de Bruijn (D2B, Koorde) 1 1
Butterfly (Viceroy) 1 1

O(logn) node degree.

Tolerance to Faults

With respect to tolerance to faults, we make an analysis of the static re-

silience of a DHT, which depends on the routing geometry. If a given

routing geometry offers more alternative paths to a destination, one may

expect that a DHT based on this geometry will resist to a larger number of

broken links. Note that this is largely independent of two mechanisms that

can be included by virtually all DHTs: i) data replication to prevent data

loss and ii) active recovery mechanisms to repopulate the routing tables.

72 CHAPTER 3. SURVEY ON DISTRIBUTED HASH TABLES

As noted by Gummadi et al. (2003a), if DHT A has better static resilience

than DHT B, then DHT B needs to use quicker, more expensive, active

recovery schemes, to offer a comparable resilience.

Table 3.2 summarizes the flexibility considerations that we made in the

previous sections (Gummadi et al., 2003a). Experimental results of Gum-

madi et al. (2003a) tend to confirm the hypothesis that more paths provide

better resilience. This result is consistent with the “optimal paths” column

of Table 3.2. In particular, authors have observed that the tree and the but-

terfly have a low resilience, while the ring and the hyper-cube have the

highest resilience of the analyzed DHTs9.

Self-Configurability

Path Latency As we referred before, there is often a mismatch between

the theoretical bounds for the trade-off between path lengths and node

degrees and the observed performance. This difference may result from

two facts. First, the constant hidden in the O() notation may vary widely.

Second, this trade-off does not convey any information about latency. In

a DHT where nodes pick their identifiers in a random way, there are two

main techniques to reduce latency (Gummadi et al., 2003a): i) Proximity

Neighbor Selection (PNS): pick nearby neighbors when creating the rout-

ing tables (if possible) or ii) Proximity Route Selection (PRS): when more

than a single path is available to a destination, try to select paths through

neighbors with a small latency. In general, PNS consistently yields better

results than PRS. According to Gummadi et al. (2003a), this is a conse-

quence of the fact that PNS has more alternatives than PRS. Many DHTs

9 Gummadi et al. (2003a) have analyzed the following geometries: tree (Tapestry), hyper-cube
(CAN), ring (Chord), butterfly (Viceroy), xor (Kademlia (Maymounkov & Maziéres, 2002)) and
hybrid (Pastry).

3.1. DHTS IN OVERLAY NETWORKS 73

allow a large number of candidates for a single routing entry10, while,

at routing time, the candidates for the next hop are restricted to the few

options available in the routing table of the node. Interestingly, a combi-

nation of the two methods is also possible and yields good results.

Now, the question that we want to answer is which DHTs allow PNS

and which do not. This is obviously related to the “neighbor selection”

column of Table 3.2. Whenever more than one choice for the routing ta-

ble is available a node may try to pick a neighbor with a small latency.

Therefore, Chord, eCAN, Pastry, Tapestry and TOPLUS can select among

multiple different neighbors, while the remaining cannot. One of the con-

clusions of Gummadi et al. (2003a) is that the routing geometry (i.e., tree,

ring, etc.) does not seem to have any influence in the gains of PNS. The

only thing that matters is whether or not it is possible to implement it.

Concerning PRS, the DHTs that allow multiple paths, e.g., Chord or CAN,

are also more prone to support “runtime” selection of neighbors.

Resistance to Churn Churn is one of the most crucial problems of peer-to-

peer systems. Informally, churn refers to the rapid membership changes

that may occur. This was first observed in the context of peer-to-peer ap-

plications like Napster, Gnutella or FastTrack11. However, given the lack

of widespread large-scale applications based on DHT (Rhea et al., 2003),

there is little or no consistent and thorough analysis of churn in DHTs. For

this reason, we restrict ourselves to outline the conclusions of previous

work of Rhea et al. (2004); Liben-Nowell et al. (2002); Li et al. (2004a). Some

of this work points to conclusions that we consider in the mechanism to

10However, it is not possible to measure the latency to each one of the nodes and therefore,
nodes must pick a neighbor from a small sampling subset.

11See http://en.wikipedia.org/wiki/Fasttrack.

74 CHAPTER 3. SURVEY ON DISTRIBUTED HASH TABLES

create long range contacts, which we present in chapter 6.

The basic problem with churn is that there is a communication cost as-

sociated with the maintenance of the DHT. On the other hand, it has been

observed that nodes can have very small up times (also known as “ses-

sion times”) in a DHT (Saroiu et al., 2002; J. Chu, 2002; Sen & Wang, 2002;

Bhagwan et al., 2003; Gummadi et al., 2003b). Some of these figures point

to session times as low as a single minute for 50% of the nodes. This may

occur if nodes that join a DHT supporting a file sharing system leave im-

mediately after they find or give up finding a file the user was trying to

retrieve. Hence, the basic trade-off is: either spending bandwidth updat-

ing outdated routing table entries or accepting a large latency resulting

from not updating those entries. Li et al. (2004a) experimentally compared

four DHTs (Chord, Pastry, Kademlia (Maymounkov & Maziéres, 2002) and

Kelips (Gupta et al., 2003)) to find the feasibility limits of this trade-off

between “average live bandwidth” and “average lookup latency”. They

concluded that given the right parameter settings this trade-off is identical

for all the analyzed DHTs. Qualitatively, this trade-off curve looks like the

function y = 1/x+ k, where x is the live bandwidth, y is the lookup latency

and k is the minimum achievable latency. This means that it is useless

to spend more bandwidth beyond a certain point as this will not reduce

latency below k. On the other hand latency will sharply increase if the

system tries to save bandwidth below a critical point of the function.

Although interesting from a theoretical perspective, the basic problem

is to make the system converge to the intended pace of substitution of

stalled routing table entries. Rhea et al. (2004) clearly show that some

systems start failing most lookup requests when the churn rate increases.

Additionally, they show that this results from an inadequate policy of re-

3.1. DHTS IN OVERLAY NETWORKS 75

placing stalled entries. These systems replace entries in a reactive way, i.e.,

whenever a node detects that a given neighbor failed it tries to replace

that neighbor. This may create a positive feedback cycle where the node

congests its own access link trying to refresh its routing table and consec-

utively declaring more and more neighbors as dead as it cannot commu-

nicate with them. Hence the authors identify the three most important

factors that may improve the response of a DHT to churn:

• periodic instead of reactive recovery from failures;

• calculation of message timeouts during lookups;

• choice of nearby over distant neighbors.

The first of these ideas is to recover at previously scheduled moments,

instead of immediately reacting to failures. On the other hand, correctly

estimating the timeouts is also a central aspect of resistance to churn. If a

timeout is too short, a new request might be issued before the first one is

able to reach the requester, thus congesting the network even more. On

the other hand, an unnecessarily longer timeout will have a negative im-

pact on latency. Finally, the third issue is nothing more than PNS. As we

have seen, choosing nearby, instead of distant neighbors, is only possi-

ble with certain routing geometries. Although Rhea et al. (2004) use the

Bamboo (Rhea et al., 2003) DHT12 to support their claims, the use of mech-

anisms based on these conclusions may also increase the resistance of most

other DHTs to churn. In this thesis we will focus on the first of the three

factors. In chapter 6 we will develop a mechanism that uses a lazy recov-

ery of lost neighbors. Instead of reacting immediately to failures or mak-

12The routing scheme and the routing geometry of Bamboo are identical to Pastry. Most of the
differences lie in the maintenance mechanisms.

76 CHAPTER 3. SURVEY ON DISTRIBUTED HASH TABLES

ing periodic recoveries, our scheme will postpone substitution of neigh-

bors to the moment when they need to be used, thus trading latency for

bandwidth utilization. Additionally, we do not create new links (LRCs) for

nodes when they enter, but only when messages go through their nodes.

Again, this trades latency for bandwidth. The advantage of doing this is

that even for sharp increases of the churn rate, maintenance traffic is kept

under control (including the creation of links).

3.2 Position-Based DHTs

All the DHTs presented before assume that there is a network with op-

erational routing underneath. Then, most of these DHTs create a logical

overlay network where nodes perform routing in a way that is strongly de-

coupled from the data network. This creates an overhead for every lookup

operation of the DHT. Given this problem, we can use position to eliminate

the mismatch between the data network and the logical network. There-

fore, inheriting from the work of Bose & Morin (1999) and Ratnasamy et al.

(2002), we can simultaneously solve the routing and the DHT problem

with a single network. Hence, like in the routing problem, construction of

a DHT can strongly benefit from the use of positional information, when-

ever there is a strong relation between position and topology. While the

most obvious application of this idea is to wireless ad hoc networks, wired

networks can also benefit from this (Padmanabhan & Subramanian, 2001).

3.2.1 The Case of Wireless Ad Hoc Networks

None of the DHTs described before is suitable for wireless ad hoc networks.

The main reason for this is that they need an underlying data network

3.2. POSITION-BASED DHTS 77

with operational routing to work. However, routing is probably the most

important issue to solve in wireless ad hoc networks. Therefore, the prob-

lem of creating a DHT for wireless environments has deserved fewer ef-

forts (there are, nevertheless, some examples, e.g., Ratnasamy et al., 2002;

Eriksson et al., 2004; Pucha et al., 2004). As a result, if routing per se is such a

complicated task, there is little sense in coming up with overlay networks

that need an independent routing facility. As a consequence, DHTs for

wireless ad hoc networks tend to solve the routing and the DHT problem

in an integrated fashion. This is the case of Geographical Hash Table (Rat-

nasamy et al., 2002) (GHT). Despite not being localized (according to the

definition given in Section 2.3.3), in most circumstances GHT will only

need information of nearby nodes to operate correctly.

In GHT there is a space of identifiers for nodes and keys. Unlike other

DHTs, this space is not virtual, but physical. GHT relies on the GPSR

protocol with little modifications to operate. GHT uses two additional

related concepts: the “home node” and the “home perimeter”. The home

node of a point is the node which is geographically closest to that point in

space. The home perimeter of a point is the set of edges that encloses that

point13. Assume that the network supporting the DHT is routing to some

destination D. In general, D will not correspond to any node. However,

standard behavior of GPSR ensures that a packet always reaches the home

node, say H. Since this home node is not the intended destination, the

packet passes from greedy to perimeter mode and starts circulating in the

face of H that encloses D (home perimeter). Since there is no other node

closer to D than H is, the packet will, once again, reach H. Now, unlike

standard GPSR, H will not drop the packet but will receive it, because it

13The reader should keep in mind that GPSR needs a planar graph.

78 CHAPTER 3. SURVEY ON DISTRIBUTED HASH TABLES

may be certain that it is the home node of D. Details on the maintenance

of the DHT can be found in the work of Ratnasamy et al. (2002).

One of the shortcomings of this DHT is that path lengths tend to in-

crease as network density increases (since the underlying graph is planar,

edges become shorter when node density increases). This problem is in-

herent to GPSR and as we referred in Section 2.8, one can use clustering

to solve it. Perhaps the simplest way of clustering nodes in a position-

based algorithm is to divide the space into cells of predictable size (see

Figure 2.10). This clustering can then be used to create a DHT. As a re-

sult, the cell becomes the addressing unit of the DHT and the nodes inside

each cell must cooperate to manage the keys. Gupta et al. (2001) suggest

this form of clustering. Li et al. (2004b), take this idea a step further. They

create a DHT on top of a logical structure of cells, which is part of a more

general peer-to-peer information sharing architecture. A similar idea ex-

ists in the work of Ye et al. (2002), which presents a Two-tier Data Dissemi-

nation (TTDD). TTDD creates a grid of dissemination for each type of data.

This grid also follows a geometrical arrangement. Then, TTDD uses flood-

ing within the local area, while global dissemination is achieved through

the grid, for the sake of efficiency. In Chapter 5 we present “Cell Hash

Routing” (CHR), which is a DHT for wireless ad hoc networks, based in

cell clusters. When compared to these previous approaches, uniqueness

of CHR comes from the simplicity of some of its solutions. In the Unit

Disk Graph (UDG) model, CHR is capable of routing with a very minimal

pre-processing algorithm. As a result, we ensure routing convergence at a

small cost. Unlike CHR, in the previous approaches, routing from one cell

to the next requires the normal node-to-node routing. As a consequence,

voids in the network are much more difficult to handle.

3.3. SUMMARY 79

3.3 Summary

In this chapter we surveyed and compared some of the most well-known

DHTs in the following aspects: performance and scalability (ability to

share the load, path length vs. node degree trade-off and node conges-

tion), tolerance to faults (static resilience) and self-configurability (improv-

ing path latency and resistance to churn). With exception of position-based

DHTs, all other DHTs presented are implemented as a peer-to-peer over-

lay network and require operational routing underneath. The position-

based DHTs have the advantage of not using a logical overlay network

and, therefore, are much lighter and can be used in wireless ad hoc net-

works. In wired networks, the main challenge for this type of DHTs is

to achieve a good path length vs. node degree trade-off, specially in net-

works with an uneven distribution of nodes. In Chapter 6 we propose a

mechanism called “Hop Level” to tackle this problem. We also explore

position-based DHTs for wireless ad hoc networks in Chapters 4 and 5.

80 CHAPTER 3. SURVEY ON DISTRIBUTED HASH TABLES

4
A Wireless DHT Based on
a Delaunay Triangulation

The distributed hash tables (DHTs) that we present in this thesis are in-

spired on the Geographical Hash Table of Ratnasamy et al. (2002) (GHT).

As we described in Section 3.2.1, to increase the scalability of the DHT, this

solution integrates the routing scheme with the lookup operations of the

DHT. Our first approach is a direct evolution of GHT that uses a denser

underlying network of nodes. More precisely, we use the PLDel(V) tri-

angulation (Section 2.5.3) instead of a Gabriel Graph (GG) (Section 2.5.1),

which is used in GHT. To create this PLDel(V) triangulation, we present

the “Fast Localized Delaunay Triangulation” (FLDT).

4.1 Overview of the Fast Localized Delaunay Trian-

gulation

GHT uses the GPSR algorithm atop of a Gabriel Graph (Section 2.5.1).

However, it is a well-known fact that the Gabriel Graph is a bad span-

ner of the Unit Disk Graph (UDG). This can be confirmed in previous

work (Eppstein, 2000; Bose et al., 2002) and we also give further evidence of

this fact in Section 4.4. Therefore, by using a good spanner we can consid-

81

82 CHAPTER 4. A WIRELESS DHT BASED ON A DT

erably improve routing performance of the DHT, which directly translates

to shorter paths. Since the logic of the GHT relies on a planar graph, a tri-

angulation is a good candidate to create a good spanner. For these reasons,

the PLDel(V) graph of Li et al. (2002) is perhaps the best option, because it

is a (4
√

3π)/9-spanner of UDG (Section 2.5.3). Unfortunately, despite hav-

ing a communication cost within a constant of the optimal (O(n logn)), the

algorithm of Li et al., has a considerable overhead, because nodes need 4

communication steps to create the triangulation (we define a communica-

tion step as the period required for sending and then receiving one or more

messages which are not causally related). To reduce the number of com-

munication steps, we present the “Fast Localized Delaunay Triangulation”

(FLDT). Unlike previous work, our algorithm builds PLDel(V) in a single

communication step, maintaining a communication cost of O(n logn). This

represents a significant practical improvement over previous algorithms

with similar theoretical bounds. The small cost of our algorithm makes

feasible to use PLDel(V) in real systems, instead of the Gabriel or the Rel-

ative Neighborhood graphs.

Therefore, our algorithm is well suited to wireless environments for the

following reasons: i) it is very efficient as it requires just one communica-

tion step; ii) it is applicable to dynamic and asynchronous settings (see

Section 4.5); iii) it is localized, only requiring nodes to receive informa-

tion broadcast by direct neighbors, thus requiring a communication cost

within a small constant of the optimum (assuming that a beacon message

of O(logn) bits in an n-node network is necessary per node); iv) it requires

nodes to keep track of only a constant number of neighbors in the average;

v) under the constraint of preserving planarity, it builds a graph with good

density (see Section 4.4).

4.2. DESCRIPTION OF THE FLDT ALGORITHM 83

4.2 Description of the FLDT Algorithm

In this section we present the FLDT algorithm that builds a PLDel(V) graph.

The FLDT algorithm is decentralized, as it does not rely on any centralized

component, and localized, since nodes are only required to gather knowl-

edge about some nodes in their 2-hop neighborhood. The algorithm builds

a triangulation that ensures routing between any pair of nodes as long

as UDG(V) is connected. The algorithm consists of the following logical

steps:

1. The neighbor discovery step. The purpose of this step is to allow

nodes to discover their neighbors. For the sake of clarity, we first describe

and analyze the algorithm in the context of a fixed setting, where all nodes

know their neighbors a priori. The discussion of the use of our algorithm in

the context of dynamic settings (that may require the exchange of BEACON

messages) is postponed to Section 4.5.

2. The triangulation step. The purpose of this step is to let each node

compute and advertise to its neighbors the relevant Delaunay triangula-

tions. Based on the information collected during the neighbor discovery

step, each node P locally computes a Delaunay triangulation. For con-

venience of exposition, we introduce the predicate Delaunay4P(Q,R) that

holds true at P if, according to the triangulation computed by node P, tri-

angle4PQR should exist. Delaunay4PQR will also be used when referring

to the predicate at no particular node. When Delaunay4P(Q,R) holds at P,

if ∠QPR ≥ π/3, then P broadcasts a TRIANGULATE 4PQR message to all

nodes within range.

The purpose of the π/3 condition is to ensure that no node will issue

more than 6 TRIANGULATE messages by its own initiative (as in Li et al.,

2002). Since no additional messages are sent in the following steps, total

84 CHAPTER 4. A WIRELESS DHT BASED ON A DT

communication cost of FLDT is O(n logn). In practice, the constant in-

volved in this bound is small, because, as we show in Section 4.4, each

node announces less than 6 other nodes in average.

3. The sanity step. The purpose of this step is to let neighbor nodes

eliminate inconsistent Delaunay triangulations. They do so by compar-

ing triangulations computed locally with the triangulations computed by

their neighbors in Step 2, as advertised by TRIANGULATE messages. Note

that by processing TRIANGULATE messages, nodes may learn about new

nodes that are not their direct neighbors. This addititional information

will never create new Delaunay triangulations, as triangulations must be

formed with direct neighbors. However, TRIANGULATE messages may in-

validate some of the triangulations computed in Step 2. This may happen

at P if: i) Q or R broadcast a TRIANGULATE message with some node T

that invalidates4PQR, i.e., T ∈©PQR, or ii) some node W sends a TRIAN-

GULATE message with an intersecting triangle WXZ, where either X or Z

invalidate4PQR, i.e., X ∈©PQR or Z ∈©PQR. Case i) ensures that a node

only maintains a predicate if its neighbors are not aware of some node that

invalidates it, while case ii) avoids the existence of intersections1.

4. The Gabriel edges step. The purpose of this step is to add to the

graph all missing Gabriel edges. Otherwise, despite always being correct,

a Gabriel edge PQ for which no predicate Delaunay4P(Q,R) holds at P

(e.g., after switching to false in Step 3) would not be included by P. This

will increase the density of the graph, while keeping O(n) edges (note that

a Gabriel edge always belongs to the Delaunay triangulation and can be

determined locally without additional exchange of information).

Optimization. To simplify our algorithm, all TRIANGULATE messages

1Note that case i) can also prevent some intersections.

4.3. FLDT CREATES PLDEL(V) IN A SINGLE STEP 85

should be sent in a single control message. �

When comparing FLDT with previous solutions (Li et al., 2002; Lan &

Wen-Jing, 2002) one must notice that the simplicity of our algorithm comes

from two insights, that we prove to be correct in Section 4.3. First, propos-

als sent in TRIANGULATE messages, alone, suffice to confirm or reject tri-

angulations proposed by neighbors in their own TRIANGULATE messages

(and vice-versa), i.e., there is no need to dedicated replies. This insight

builds on the observation that two Delaunay neighbors do not need to

agree on some predicate Delaunay4PQR. It can hold at P but not at Q

and R if these two latter nodes are out of range of each other. The fun-

damental issue is, in fact, to ensure that two nodes P and Q always agree

on whether edge PQ should exist (Lemma 4.3). Second, if three nodes P, Q

and R wrongly assume the existence of4PQR, intersected by4WXZ, such

that one of the nodes of4WXZ is inside©PQR, then P, Q and R will listen

to the same TRIANGULATE message on4WXZ, thus commuting the pred-

icate Delaunay4PQR to false simultaneously at P, Q, and R (Lemma 4.5).

4.3 FLDT Creates PLDel(V) in a Single Communi-

cation Step

From analysis of the algorithm, we know that nodes running FLDT use

a single communication step. Hence, in this section we need to prove

that FLDT builds, in fact, the graph PLDel(V), under the UDG model. To

prove this, we show in Lemma 4.6 that this algorithm builds a subgraph of

LDel (1)(V) from which we remove all the intersections. However, we still

need to prove that we do not delete some triangles unnecessarily. This

86 CHAPTER 4. A WIRELESS DHT BASED ON A DT

is the main result of Theorem 4.1, which shows that some predicate De-

launay 4(A,B,C) is switched to false only if 4ABC /∈ LDel(2)(V) is in fact

intersected by some Gabriel edge or by some triangle XYW ∈ LDel(1)(V).

In other words, there are no illegitimate edges or triangles deleting trian-

gles that despite not belonging to LDel (2)(V) could otherwise participate

in the triangulation and belong to PLDel(V). Theorem 4.1 stands not only

on Lemma 4.6, but also on the other Lemmas that we present next. In all

the proofs, we assume that there are no four co-circular nodes. Simple

tie-breaking mechanisms can remove co-circularities, if they ever occur in

practice.

Lemma 4.1 In the UDG model, if two edges AB and XY intersect, then at least

one of the nodes is within communication range of the other three.

Proof 4.1 Assume, without loss of generality that X and Y are outside of d(A,B)

(otherwise the Lemma would immediately follow). In this case it is not possible

for both A and B to be outside d(X ,Y), because circumferences can intersect at

two points at most.

Lemma 4.2 If, at the end of the algorithm, non-Gabriel edge AB exists at A and B,

there must be some node C, such that C ∈ d(A,B) maximizes ∠ACB and Delaunay

4(A,B,C) holds at A and B.

Proof 4.2 Refer to Figure 4.1. Consider the circle d(A,B) (not shown), which is

divided in two halves by AB. One and only one of the halves has nodes inside,

otherwise either AB would be a Gabriel edge or both A and B would know that

AB would not belong to the Delaunay triangulation. Assume that C is the node

that maximizes ∠ACB. Therefore, ∀C′ ∈ d(A,B),C′ /∈©ABC, while C ∈©ABC′.

Additionally, if A or B were aware of some node D such that D /∈ d(A,B) and

4.3. FLDT CREATES PLDEL(V) IN A SINGLE STEP 87

A B

D

C

Figure 4.1: A, B and C disagree on
4ABC

A B
C

D

X

D’

Figure 4.2: A and B do not agree on
4ABC

D ∈ ©ABC, we would have a contradiction, because edge AB could not exist at

both nodes A and B. The Lemma follows.

Lemma 4.3 If after the Delaunay triangulation computed at step 2 of the algo-

rithm, Delaunay 4A(B,C) holds, but edge AB cannot exist at B, B will send a

TRIANGULATE message with at least one node D ∈©ABC.

Proof 4.3 Refer to Figure 4.2. Since non-Gabriel edge AB exists at A, C must be

inside d(A,B) (Lemma 4.2). In this case, AB cannot exist at B if Delaunay4B(X ,D)

holds at B for some nodes X and D and XD intersects AB (assume without loss

of generality that X and C are on the same side of AB, possibly with X = C).

D ∈©ABC, because otherwise©BXD, would contain A which would be a con-

tradiction (any such D′ in the figure would have to be outside d(A,B) and closer to

B than to A: ©D′BC would intersect©ABC at B and C, thus for X = C it would

contain A; if X 6= C,©D′BX would intersect©D′BC at B and D′, thus contain-

ing the part of©D′BC that would contain A). Since, ∠XBD > ∠ABD > π/3, B

will send information of D in its TRIANGULATE messages.

88 CHAPTER 4. A WIRELESS DHT BASED ON A DT

A B C
X

Y

W

Figure 4.3: Possible intersection

X

Y

Y'

W

Figure 4.4: Triangle 4XYY ′

may not exist

Corollary 4.1 If, at the end of the algorithm, non-Gabriel edge AB exists at A,

there must be some third node C, such that C ∈ d(A,B) maximizes ∠ACB and

Delaunay4(A,B,C) holds at A, B and C.

Proof 4.4 If Delaunay 4A(B,C) holds at A, by Lemma 4.3 it must also hold

at B at the end of the algorithm. Assume that C maximizes ∠ACB. Since C ∈

d(A,B), ∠ACB > π/2 > π/3. Now assume that Delaunay 4C(A,B) does not

hold, because C is aware of at least one node inside ©ABC. If such node, say

D, was announced by another node, say X , such that XD intersects 4ABC, by

Lemma 4.1, A and B would also have listened to X . Hence, we are left with two

possibilities: either C includes AC in its triangulation or it does not. If it does not,

by Lemma 4.3, Delaunay 4A(B,C) could not hold at the end of the algorithm.

Therefore, assume that AC exists. In this case, there is some node D 6= B, such

that Delaunay 4C(A,D) holds and CD intersects AB. D ∈©ABC, or otherwise,

©ACD would contain B, which would be a contradiction. Since A is not aware

of D, we have that ∠ACD > π/3. Hence, C would announce this triangle which

would make A switch Delaunay 4A(B,C) to false. The same reasoning could be

made to B and the Lemma follows.

4.3. FLDT CREATES PLDEL(V) IN A SINGLE STEP 89

Lemma 4.4 If X is aware of a node Y ∈©ABC, X may only participate in edges,

XY1,XY2, . . . ,XYn intersecting AB if Yi ∈©ABC,∀i ∈ {1, . . .n}.

Proof 4.5 Refer to Figure 4.3. The first thing that this Lemma assumes is that

there is already an intersection between AB and XY , such that Y ∈©ABC. Note

that by Lemma 4.1, A and B are aware of X , which implies that X /∈ ©ABC.

Now assume that a second intersection exists between AB and XY1, such that

Y1 /∈ ©ABC. In this case, XY1 could not be a Gabriel edge and there could be

no node Z such that Delaunay 4X(Y1,Z) would hold, because any circle going

through X and Y1 would have to contain either A or B. This contradiction proves

the Lemma, because we first assumed that XY1 existed.

Lemma 4.5 Assume that after computation of the Delaunay triangulation, edge

AB exists at A as part of Delaunay 4A(B,C). Assume that there is some edge

XY intersecting AB and some node W at the same side of XY as A is (possibly

W = A), such that Delaunay4X(Y,W) holds and Y ∈©ABC. If at the end of the

algorithm edge XY still exists, A must have switched Delaunay4A(B,C) to false.

Proof 4.6 Refer to Figure 4.3. Assume that Y minimizes the angle ∠AXY (by

Lemma 4.4 such node Y must exist). If W = A, the Lemma follows, because

∠AXY > π/3, which makes X announce the triangle with node Y . Assume now

that Delaunay 4X(Y,A) does not hold. By hypothesis, there must be some other

node, say W , at the same side of the line going through XY as A is, such that

Delaunay 4X(W,Y) holds. If ∠WXY > π/3 the Lemma follows. Otherwise, if

Delaunay 4W (X ,Y) also holds, ∠XYW < ∠AY B < π/3 implies that ∠XWY >

π/3 and the Lemma also follows. Hence, we focus on the case where Delaunay

4W (X ,Y) does not hold. W is aware of Y , because ∠WXY < π/3 and ∠XYW <

π/3.

90 CHAPTER 4. A WIRELESS DHT BASED ON A DT

Also, if WX does not exist at W this Lemma follows from Lemma 4.3. For

this reason, let us consider the case where there is some node Y ′ ∈ ©XYW such

that Delaunay 4W (X ,Y ′) holds. Assume that WY ′ intersects XY . In this case,

Y ′ /∈ d(X ,Y) or otherwise X and Y would be aware of Y ′. This means that W ∈

d(X ,Y) and by Corollary 4.1 XY could not exist at the end of the algorithm, thus

contradicting the initial hypothesis. Hence, we assume that XY ′ does not intersect

XY . We now that ∠XWY ′ > π/3. If WY ′ intersects AB the Lemma follows from

Lemma 4.1. Hence, consider that WY ′ does not intersect AB. Refer to Figure 4.4.

This means that YY ′ intersects AB. In this case, from Lemma 4.1, Y and Y ′ are

within reach of each other. This is a contradiction, because we would need to have

∠XYY ′ < ∠AY B < π/3 opposing to the longest side of the triangle4XYY ′. This

proves the Lemma.

Lemma 4.6 FLDT creates a subgraph of LDel (1)(V) without intersections.

Proof 4.7 The first thing we show is that FLDT creates, in fact, a subgraph of

LDel (1)(V). An edge AB that exists in the final graph must be either a Gabriel

edge or an edge for which Delaunay4(A,B,C) holds at A, B and C (Corollary 4.1).

This means that the final graph is a subgraph of LDel (1)(V). Since, by Lem-

mas 4.5, there can be no intersections, the Lemma follows.

Theorem 4.1 FLDT builds PLDel(V).

Proof 4.8 PLDel(V) is comprised of all triangles of LDel (1)(V), except inter-

secting triangles that do not belong to LDel (2)(V). From Lemma 4.6, the fi-

nal graph is a subgraph of LDel (1)(V). However, some triangles belonging to

LDel (1)(V) may be deleted if they have intersections. What we need to prove is

that we only remove triangles not belonging to LDel (2)(V) that intersect with

other triangles that belong to LDel (1)(V).

4.4. EVALUATION 91

(a) RNG (b) GG (c) PLDel (d) UDG (e) DT

Figure 4.5: Example of graphs

Hence, it must not happen that some 4ABC is deleted by non-Gabriel edge

XY and nor edge XY nor any other edge intersecting 4ABC exist in the final

graph. Assume without loss of generality that Y ∈©ABC and that XY intersects

AB. Since XY is not a Gabriel edge and ∃W1 ∈ d(X ,Y), such that W1X or W1Y

intersects AB (note that ||W1X ||< ||XY || and ||W1Y ||< ||XY ||). Given that A,B /∈

d(X ,Y) and A,B /∈ d(W1,X) if intersection is with W1X (d(W1,Y) if intersection

is with W1Y), it follows that even if the intersecting edge /∈ LDel(1)(V), we can

inductively repeat the reasoning until we find one intersecting edge ∈ LDel(1)(V).

Hence, even if AB is deleted due to some edge XY /∈ LDel(1)(V), there must be

some other edge ∈ LDel(1)(V) that will legitimately delete AB. Theorem follows.

4.4 Evaluation

In this section, we compare i) routing performance in each of the follow-

ing graphs: RNG, GG, PLDel, UDG and DT and ii) signaling cost of FLDT

versus the algorithm of Li et al. (2002). Figure 4.5 illustrates the graphs in

a network of 100 nodes. We have used the GPSR routing algorithm (Karp

& Kung, 2000) in all graphs, except UDG, which is not planar. In UDG

we have used the greedy routing algorithm. Results for the DT are de-

picted only to serve as a reference, because, as we have discussed before,

92 CHAPTER 4. A WIRELESS DHT BASED ON A DT

 0

 5

 10

 15

 20

 25

 30

 5 10 15 20 25 30 35

Av
er

ag
e

nu
m

be
r o

f h
op

s

Average number of neighbors

UDG
DT

PLDel
GG

RNG

Figure 4.6: Average number of hops

such triangulation is not possible in a wireless environment. Since node

density has a crucial impact on the performance of routing algorithms,

in our experiments, we have distributed a variable number of nodes (be-

tween 140 and 600) inside a square of fixed side (7.5 times the communi-

cation range). The reader should notice that density cannot be arbitrarily

reduced, because disconnected topologies would result with high proba-

bility. On the other hand, increasing node density will benefit UDG, be-

cause greedy routing will converge with increasingly higher probability

and, unlike the remaining graphs, paths will become shorter.

Figure 4.6 shows the average path length in number of hops (for paths

where greedy did not fail), while Figure 4.7 depicts the percentage of fail-

ures for the greedy routing algorithm in the UDG graph. Both curves are

functions of the average number of neighbors of a node2. From the fig-

ures, it is quite evident that when node density is high, no subgraph can

do better than UDG, unless memory usage is an issue and a node does

not want to maintain all its neighbors. In this case, PLDel may be a good

2For a node whose communication (unit) disk is entirely inside the simulation square.

4.4. EVALUATION 93

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 5 10 15 20 25 30 35

Fa
ilu

re
 ra

te
 (%

)

Average number of neighbors

UDG failure rate

Figure 4.7: Failure rate in the UDG when using the Greedy algorithm

option, because nodes need to maintain only a constant number of neigh-

bors in average. On the other hand, when node density decreases, PLDel is

definitely the preferable choice, because it achieves the best performance

among the algorithms that ensure routing convergence. Since the possi-

bility of a greedy routing failure always exists, no matter how large node

density is, it may also be a good idea to maintain two graphs in memory:

UDG and PLDel. The point is to use greedy in UDG whenever possible for

performance reasons and switch back to a right-hand rule algorithm and

to PLDel in case greedy fails. Such solution has the advantage of being

oblivious to node density. It is also interesting to observe that the number

of hops obtained in PLDel is typically quite close to that number in a DT ,

for high densities, where all edges are short, but the same is not true when

node densities are small, because in these cases, DT uses long edges, thus

saving many hops.

To complete our evaluation, we depict in Figure 4.8 the average num-

ber of neighbors announced by each node, in the algorithm of Li et al. and

in our own algorithm. Note that whenever a triangle is announced, two

94 CHAPTER 4. A WIRELESS DHT BASED ON A DT

 0

 5

 10

 15

 20

 25

 30

 35

 40

 5 10 15 20 25 30 35

Av
er

ag
e

nu
m

be
r o

f n
ei

gh
bo

rs
 a

nn
ou

nc
ed

Average number of neighbors

FLDT
Li et al.

Figure 4.8: Average number of neighbors announced by each node

nodes are counted (the sending node is not counted). The algorithm of Li

et al. also needs to announce Gabriel edges, which are counted as only one

node (again, sending node is not counted). We can see that the number

of nodes announced stabilizes in both algorithms as the density increases,

and that our algorithm announces approximately between 5.2 and 7 times

fewer nodes for the densities of interest. Furthermore, while our algorithm

needs a single communication step, the algorithm of Li et al. needs 4 steps.

Therefore, we believe that these results show that our algorithm builds

PLDel very efficiently.

4.5 Application in Dynamic Settings

So far, we have described the execution of our algorithm in a static set-

ting, where a node knows a priori all its neighbors. We now discuss the

application of our algorithm in dynamic settings.

The application of any graph building algorithm in a dynamic setting

requires a complementary mechanism to discover new nodes and to detect

4.6. DISCUSSION 95

the departure/failure of existing nodes. In an optimized implementation,

the concrete mechanisms to be used may depend on the physical and data

link layer technology. However, in the literature (for instance, Li et al.,

2002; Lan & Wen-Jing, 2002) it is usually assumed that nodes periodically

exchange BEACON messages. We would like to emphasize that our algo-

rithm is particularly well suited for such setting, as TRIANGULATE mes-

sages can be easily piggybacked to (or even replace) BEACON messages.

Therefore, when BEACON messages are required, our algorithm can be im-

plemented with no additional messages, becoming extremely competitive

with regard to the Gabriel or the relative neighborhood graphs, which are

not good spanners of UDG.

Also, for the sake of simplicity, we have assumed perfect channels in

our exposition (i.e., no message losses). However, in a dynamic setting,

BEACON messages have to be exchanged periodically. This means that, at

no additional cost in terms of number of messages exchanged, our algo-

rithm may retransmit periodically TRIANGULATE and recalculate PLDel at

the end of each period. Therefore, even if links are lossy, it can be shown

that, as long as links are fair (i.e., if a message is sent infinitely often by

a process p then it can be received infinitely often by its receiver (Lynch,

1996)), any new node will eventually participate in the triangulation.

4.6 Discussion

Routing protocols for wireless ad hoc networks may benefit from using a

planar and localized Delaunay triangulation to achieve good routing per-

formance, while, at the same time, guaranteeing convergence. Our pro-

posal is the FLDT algorithm, to build a well-known graph called PLDel.

96 CHAPTER 4. A WIRELESS DHT BASED ON A DT

H

D
A

B

Figure 4.9: A and B must be aware of the home node H

Our experimental results show that PLDel can be used either to substitute

the UDG, when node density is small, or as a complementary graph that

ensures routing convergence for all node densities.

FLDT has a communication cost of O(n logn), which is within a con-

stant of the optimal and requires a single communication step (unlike pre-

vious work, that requires 4 communication steps). We have also shown

that the signaling cost of FLDT is much smaller than that of previous ap-

proaches, due to the small number of control messages. Furthermore, in

dynamic settings that require the exchange of beacon messages, our algo-

rithm requires no more messages than the algorithms used to build the

very simple but inefficient GG or RNG. Therefore, due to its efficiency, our

algorithm is of practical relevance in location-based wireless ad hoc net-

works.

4.7 Changes to GHT

GHT was designed for use with the GG. As is, one may question whether

it cannot operate on top of PLDel(V) in situations like the one depicted

in Figure 4.9. Node H is the closest node to target D (which does not

correspond to any node), but, at the same time, it can be in a different

4.7. CHANGES TO GHT 97

face, something that could never happen with a GG as we shall see in

Lemma 4.7. Fortunately, this does not prevent GHT from working as we

prove in Theorem 4.2.

Lemma 4.7 In PLDel(V), if the node H closest to destination D, is not in the

home perimeter, then, H is always within reach of at least two nodes A and B of

the home perimeter.

Proof 4.9 Refer to Figure 4.9. A and B must be outside the circle with ray DH.

Since AB crosses this circle below D, ∠AHB > π/2. This means that H ∈ d(A,B),

which proves the Lemma. Also note that AB is not a Gabriel edge.

Theorem 4.2 Message delivery of GHT works on PLDel(V) (i.e., message will

reach node H, which is the home node of destination D).

Proof 4.10 If the home node is in the home perimeter, the proof of this Theorem

depends on the correctness of GHT. Assume that the home node is not in the home

perimeter. By Lemma 4.7, the home node must be a node of the home perimeter,

or some other local minimum node H ′ within reach of at least two nodes of the

home perimeter, say A′ and B′. If there is only one such local minimum, GHT

works, because the message must circulate at least once around the perimeter,

thus reaching A′ or B′ and then H ′. Now, assume that some local minimum H ′ is

not the home node. When the message reaches H ′ it switches to greedy mode and

it will never return to H ′ in greedy mode again. We have two possible cases: either

H ′ forwards the message in greedy mode again (because it knows a neighbor closer

to D) or it must use perimeter mode. If it delivers in perimeter mode, message will

reenter the home perimeter (except edge A′B′) and will eventually reach some other

nodes A′′ or B′′ or even H ′′ (possibly H = H ′′) closer to D than H ′ is. Either in

this case or if H ′ delivers the message in greedy mode, message will become closer

98 CHAPTER 4. A WIRELESS DHT BASED ON A DT

to destination D. This means that there is no other local minimum with exception

of the home node H that can receive the message for a second time and still be the

closest known local minimum.

4.8 Summary

In this chapter we presented the algorithm FLDT to create and maintain a

localized Delaunay triangulation (PLDel(V)) with a single periodical con-

trol message and optimal communication cost of O(n logn). FLDT makes

it viable to replace the Gabriel graph in GHT by PLDel(V) to achieve con-

siderably shorter path lengths.

Notes

The algorithm FLDT results from the work of the author to create a Delaunay triangulation for

wireless networks. It improves the previous work of Li et al. (2002). Part of this work has been

previously published in the following conference:

• Filipe Araújo and Luís Rodrigues. Fast localized Delaunay triangulation. In The

8th International Conference On Principles Of Distributed Systems (OPODIS ’04), pages

81–93, Grenoble, France, December 2004. Springer-Verlag, LNCS 3544.

5
A Wireless Clustered

DHT

Performance of Geographical Hash Table (GHT) tends to degrade when

node density (versus communication range) increases, because as edges

become shorter, paths tend to become longer. To overcome this problem,

we use a clustered distributed hash table (DHT) called “Cell Hash Rout-

ing” (CHR). A clustered approach resists better to higher node densities

as paths do not need to become longer. Furthermore, it can make a more

rational use of the available bandwidth. One interesting outcome of this

clustering is that the DHT can take advantage of positional information,

but it does not need to be strictly positional, because the hash function

may use other output spaces instead. For instance, it can use a determinis-

tic numbering of the clusters. Nevertheless, since position plays a central

role, we can still consider CHR to be a position-based DHT.

5.1 Overview of Cell Hash Routing

As we mentioned before, scarceness of resources (notably, bandwidth and

energy) and node mobility turn routing into a challenging problem in

wireless ad hoc networks. Therefore, when compared to a wired network,

creating a DHT in a wireless network is more complicated. Like in previ-

99

100 CHAPTER 5. A WIRELESS CLUSTERED DHT

ous work and similarly to Chapter 4, this motivates us to propose a single

solution to the routing problem and to support the DHT. CHR copes with

problems like limited available energy, communication range or node mo-

bility. CHR uses positional information to organize a DHT of clusters in-

stead of individual nodes. The purpose of this clustering mechanism is

to solve the routing problem, because routing on top of clusters is more

efficient than on top of individual nodes. CHR groups nodes into cells,

according to their location. This method is inexpensive, because nodes

do not need to exchange any dedicated message to determine their own

cluster, which is a cell of predefined and globally known shape. Addi-

tionally, messages are not addressed to an individual node destination,

because routing works at the cell level. Such an approach is well-suited

to the world of small and simple wireless devices or embedded systems,

where nodes may look for specific contents and not for peers. Consider the

case of sensor networks. In these networks, it is often irrelevant to know

the output of the individual sensors; it may suffice to compute some func-

tion like an average or a maximum temperature at some particular zone.

Hence, globally known individual addresses are not necessary as sensor

nodes are not individually queried.

The advantage of clustering is twofold. First, it creates a very struc-

tured and sparsely populated network of clusters, where we can apply a

lightweight routing scheme. Second, the efficiency of the routing scheme

is almost not affected by increasing node density. Furthermore, our rout-

ing scheme also scales with increasing network sizes, because it is local-

ized. By using a location-based clustered approach, routing in CHR is

scalable with respect to both, network size and node density. We believe

that this scheme is powerful because it enables us to implement a DHT in

5.2. ARCHITECTURE OF CHR 101

a straightforward and efficient way. CHR can be used as a component of

more complex architectures, like a publish/subscribe system. When com-

pared to other solutions, uniqueness of CHR comes from the use of routing

on top of a very regular clustered network, which is simultaneously the ba-

sis for the DHT. For these reasons, we believe that CHR is a simple and yet

powerful adaptation of the DHT concept for wireless ad hoc environments.

5.2 Architecture of CHR

In CHR we divide the space into equally-sized cells that have the shape of

squares, as the grid depicted in Figure 2.10. Division of the space into cells

allows a simple definition of the network of clusters: all nodes inside the

same cell belong to the same cluster. In a sense we will use the notion of

cluster as a kind of “supernode”, where interactions occur at the level of

clusters. The result is a much sparser network, where the routing scheme

consumes fewer network and node resources. Since cells are immutable,

clusters can receive an identifier that does not change with time. Hence,

nodes can always determine the identifier of their cluster, as well as iden-

tify other nodes in the same cluster, even in dynamic scenarios, where they

move around and change from cell to cell1. A crucial aspect of this division

is that there must be a mapping between the identifier of a cluster and its

physical location, to enable the use of a geographical routing scheme. We

adopt the GPSR algorithm because it is simple and can achieve good rout-

ing performance in sparse networks. Interestingly, in Section 5.4, we show

how to create a non-planar graph for CHR, where GPSR is still able to

1Usually, we use the term “cell” to mean the geographical square and the term “cluster” to
mean a group of nodes. However, in some contexts, both concepts apply and therefore, we use the
terms interchangeably.

102 CHAPTER 5. A WIRELESS CLUSTERED DHT

converge. This simplifies the pre-processing algorithm and allows GPSR

to perform better.

The node that stores a given pair (keyA, valueA) of the DHT depends

deterministically on the result of applying the hash function on keyA. One

of the fundamental aspects of our architecture is that we use clusters in-

stead of nodes to hold the keys. This means that the relevant network

entity is the cluster. Compared with a network of nodes, the simplicity of

the network of clusters brings benefits to both, the routing scheme and the

DHT operation. For this idea to work, the space of outputs of our hash

function is the address space of the clusters. Hence, operation of the DHT

becomes simple, when the key hashes to a cluster that really exists, i.e.,

that is populated by at least one node. Unfortunately, it is impossible to

prevent that, in some cases, the key hashes to an empty cluster. In this

case, CHR resorts to a variation of GHT. We detail this, as well as other

aspects of our architecture, in the following sections.

5.3 Division into cells

The size of the cells is limited by the communication range of the nodes,

because we require that a node in a cell can always listen to any other

node either in its own cell or in any adjacent cell. This restriction ensures

that in most circumstances, the clustered network stays connected, as long

as the initial network is also connected. If we assume that nodes have a

communication range of R, the resulting square side is at most R/
√

8. This

can be seen in Figure 5.1. By adjacent cell, we are always referring to one

of the 8 cells that surround the cell of a node. Note that we do not strictly

require a Unit Disk Graph (UDG) model. We only require that nodes can

5.3. DIVISION INTO CELLS 103

rR

Figure 5.1: Fixed size of the cells

communicate with all the other nodes in their own cell and in the adjacent

cells. We leave the issue of extending CHR to more generic models as

future work, as we briefly discuss in Section 5.6.

Nodes need to be aware of other nodes in the neighboring cells, mainly

for two reasons: i) the routing scheme requires nodes to know whether or

not the adjacent cells are populated and ii) we do not require nodes to per-

form some kind of leader election algorithm; on the contrary by making

nodes know all (or at least part of) their neighbors, we can use randomiza-

tion to share the routing load among all the nodes. For instance, when a

node is routing a message that needs to go through some neighboring cell,

it can arbitrarily select any node of that cell as the next hop. Otherwise,

the nodes of a given cell would still need to decide which of them would

forward the message. More formally, we state in Assumptions 5.1 and 5.2,

the conditions that we need to build our architecture.

104 CHAPTER 5. A WIRELESS CLUSTERED DHT

(a) Definition of the graph
of clusters

S

F

D

(b) Routing may fail

H

T

Home Perimeter

(c) Home cell and home
perimeter

Figure 5.2: Network of cells

Assumption 5.1 All the nodes know and can reach all the other nodes in their

own and in any of the adjacent cells.

Assumption 5.2 A broadcast message inside a cell is received by all nodes of that

cell.

The purpose of Assumption 5.1 is to ensure that a node has sufficient

knowledge to route messages and to support the DHT in the clustered

hierarchy. However, as we describe in Sections 5.4 and 5.5 this assumption

can be relaxed, for the sake of scalability. For routing to work, a node only

needs to know a single neighbor in each of the adjacent cells (nevertheless

knowing more than one neighbor will increase robustness). The purpose

of Assumption 5.2 is to ensure a simple means of communication among

nodes of the same cell, to enable operation of the DHT. But again, partial

knowledge of the own cell will be enough in most circumstances. For

instance, in the UDG model, these assumptions are easy to ensure, because

all nodes of the same and adjacent cells are within range of each other.

They only need to adjust their beacons to the density of the network, to

reduce collisions of packets to a minimum.

5.4. ROUTING SCHEME 105

Finally, Definition 5.1 defines a graph comprised of our cell-based clus-

ters. This is represented in Figure 5.2a).

Definition 5.1 Consider the graph where nodes represent clusters and edges ex-

ist between adjacent clusters if and only if their corresponding cells are both pop-

ulated. To the embedding of the graph where nodes are placed in the center of the

cells they represent, we call Geographically Clustered Graph (represented as G).

5.4 Routing scheme

CHR uses a routing scheme based on GPSR combined with a pre-processing

algorithm that creates G . This combination allows to address scenarios

such as the one depicted in Figure 5.2b), where empty cells create voids

in the cluster network. In this case, node F could be a local minimum in

the path from S to D. It is intuitive and there is plenty of evidence (see,

for instance, Kuhn et al., 2003, or Chapter 4) that i) routing performance of

GPSR in planar graphs is better if node density (vs. communication range)

is sparse (because longer edges imply fewer hops) and furthermore, ii) for

a given density of nodes, denser graphs, i.e., with more edges, also allow

better performance. The reader should notice that there is no contradic-

tion between i and ii: i states that network should have few nodes, while

ii states that network should have many edges. Condition i is already ful-

filled by our clustering approach. Condition ii is met because we do not

need to planarize our graph, i.e., we do not remove intersections. The ra-

tionale for this is that the only intersections that may occur in G are in the

diagonals (e.g., in the right lower corner of Figure 5.2a)). However, as we

prove in Theorem 5.1, GPSR always converges in G , despite the existence

of these intersections. As a consequence, the pre-processing algorithm of

106 CHAPTER 5. A WIRELESS CLUSTERED DHT

CHR only requires nodes to beacon the number of their cells (to fulfill As-

sumption 5.1). Besides this, nodes do not need further communication to

define their local view of G .

Theorem 5.1 GPSR converges in G .

Proof 5.1 GPSR converges in planar graphs. The only intersections that exist

in G are in the diagonals of 4 nodes defining a square, say H, I, J and K, with

edges HI, IJ, JK and KH, where HJ and KI intersect. Consider that the packet

targeted to D is already in perimeter mode and that it entered perimeter mode at

node X . Additionally, without loss of generality, consider that XD intersects the

square HIJK at edge HK (we are not concerned with the remaining intersections

with the square) and that the packet reached H. Consider that this intersection

does not take place at H or K. Given the very predictable position of the nodes

of G , the angle ∠DHX measured at H is greater than π/2. As a consequence,

|HD|< |XD|, the packet will reenter greedy mode and GPSR will converge. This

reasoning can be easily extended to the case where intersection occurs at H or K.

If XD does not intersect HIJK, then the packet will never enter a face inside the

square, while in perimeter mode. Finally, consider that the packet at forwarding

node H is in greedy mode. H would only send the packet in perimeter mode in

a face inside the square for a destination in the direction of the π/2 angle ∠IHK

defined at H. But this is a contradiction, because, in this case H would not use

perimeter, but greedy mode. Hence, in this case, GPSR also converges, because it

never uses intersecting edges while in perimeter mode.

5.5. DHT IMPLEMENTATION 107

5.5 DHT implementation

5.5.1 Basic Mechanism

In the most basic setting, the hash function determines the single cluster

that will hold the (key, value) pair. In the case of a given pair (keyA, val-

ueA), the cluster whose identifier equals hash(keyA) will be responsible

for storing valueA. For instance, consider the (“Bob”, 32) pair, where the

key “Bob” hashes to 144. In this case, the value 32 should be stored at the

cell 144. Therefore, if we could ensure that at least one node is kept active

in each cell, implementing the DHT would be straightforward. However,

some cells may be empty and therefore, we need some mechanism that

can also deal with this case.

5.5.2 Addressing of the Cells

Although the routing scheme does not require cells to have specific ad-

dresses (position of the destination node would be enough), the DHT re-

quires that cells have globally-known logical addresses. The restriction

here is that the space of outputs of the hash function must have a di-

rect correspondence with the address space of the cells. To do this, we

can follow a CAN-like approach, where the hash function outputs two-

dimensional positions in space. Then, we would have to know the limits

of each cell to determine the cell responsible for a given key.

However, in our implementation, we used the following one-dimen-

sional addressing 2. This assumes a bounded geographical space whose

bounds are known by all the nodes. This scheme is equivalent to address-

ing the elements of a matrix in row-major order. Equation 5.1 shows how
2Note that the hash function does not have any impact on the routing performance.

108 CHAPTER 5. A WIRELESS CLUSTERED DHT

to determine the address of a cell in this scheme. Dx and Dy are the size of

the space in the two dimensions, dx and dy are the sizes of each cell and Lx

and Ly are the coordinates of the center point of the cell (it can also be any

other point inside the cell). This equation is useful to let a node determine

the number of its own cell.

A = dDx/dxe×bLy/dyc+ bLx/dxc (5.1)

The reverse correspondence allows nodes to perform geographical rout-

ing in G . Equations 5.2 and 5.3 determine the center point (Lx,Ly) of the

cell. c represents the number of columns and is computed as c = bLx/dxc,

while % is the remainder of the division. To route to a given cell A, nodes

need to determine the center point (Lx,Ly) of the destination cell, before

they apply the GPSR routing algorithm. We need these equations, because

geographical routing takes place using the center points of the cells (graph

G), while the DHT addresses of the cells are only logical. Consider again

the (“Bob”, 32) pair, where the key hashes to 144. To compute the center

(Lx,Ly) of the target cell, a given node would have to replace A by 144 in

the Equations 5.2 and 5.3.

Ly = dy (bA/cc+0.5) (5.2)

Lx = dx (A%c+0.5) (5.3)

5.5.3 Division of the Keys in a Cell

The best way of dividing the keys among the nodes inside each cell may

depend on the global number of keys to store and on the number of nodes

5.5. DHT IMPLEMENTATION 109

inside a given cell. If the total number of keys to store is fairly small, the

best policy may be to store all the keys in all the nodes of the cell. This

is simple and tolerant to individual node failures. We believe that, de-

spite simple, this scenario may have wide application. Consider that the

average number of nodes per cell is nc and that each node stores an aver-

age of sn bits in the DHT. If the distribution of the nodes and the keys by

the cells is even, the total size of items of the DHT to store in each node

is approximately sn× nc. This number is reasonable, for moderate node

density and if memory of nodes is not too small. It is easy to derive alter-

native schemes, where the load is balanced among all nodes of a cell. Since

communication inside a cell is easy and relatively inexpensive, nodes and

items can use a second logical address, internal to the cell, to divide the

load. Alternatively, the cluster can be further subdivided into groups such

that each group of nodes takes a given group of keys. This second scheme

may not require full knowledge of the neighbors that populate a given

node’s cell. This may be important in densely populated cells, if we want

to relax Assumption 5.1.

5.5.4 Resolving Empty Cells

One of the difficulties with our DHT architecture is that it is impossible to

ensure that there are no empty cells. The problem with empty cells is that

some keys may be left without nodes to store them. Since we use GPSR

to route messages, we can follow an approach similar to GHT (Ratnasamy

et al., 2002) to tackle this problem. Similarly, we define the concepts of

home cell and home perimeter. Home cell is either the destination cell of a

packet, if destination cell is populated, or the cell closest to the destination,

in the other case (this requires a tie breaking rule, because many cells may

110 CHAPTER 5. A WIRELESS CLUSTERED DHT

be at the same distance). The home perimeter is the set of edges defining

a face that encloses an empty destination cell (more precisely, the desti-

nation may be inside a face or outside the exterior face). These concepts

are depicted in Figure 5.2c), where T represents the empty destination cell

and H the home cell.

Like in GHT, CHR can take advantage of the standard behavior of the

GPSR routing algorithm to ensure that a packet always reaches the home

cell. This is easy to do if the home cell is the intended destination cell. If, on

the contrary, the destination cell is empty, GPSR will also route the packet

to the home cell. In the first time the packet reaches the home cell, any

node in this cell will recognize that i) this cell is not the destination cell

and ii) there is no edge connecting to the destination cell. Furthermore,

the home cell is a local minimum in the path to destination. This forces

the packet to enter perimeter mode (it might be circulating a perimeter al-

ready). Standard behavior of GPSR forces the packet to loop in the home

perimeter if destination does not exist. However, GPSR drops the packet

as soon as it discovers a cycle in the path. Like in GHT, we need to change

this behavior to ensure that the packet is not discarded at the end of the cy-

cle. At this point, the nodes in the home cell know that the destination cell

is empty and assume that their cell will be the destination instead (refer to

Figure 5.2c)). In fact, situation in our architecture is even simpler in some

cases, because the home cell may already know that the destination cell is

empty and that itself is the home cell due to a tie breaking rule. Hence,

it can avoid the loop around it (this may happen if the empty destination

cell is adjacent).

5.6. IMPLEMENTATION ISSUES 111

5.6 Implementation Issues

To implement CHR, there are a number of issues that we need to tackle.

For instance, cells do not remain immutable along the lifetime of the net-

work. A cell that is loosing population must get ready to release its keys.

Additionally its also convenient to ensure that keys are replicated else-

where in case the cell becomes unreachable. To overcome these problems,

we propose the following solutions:

Dynamic Cell Structure when the number of nodes in a cell drops below l,

the cell is considered empty (unless neighboring cells also have few

nodes). On the contrary, the cell needs to acquire h nodes before it is

considered populated (h > l). Note that the value h should be fairly

small. As a consequence, knowing h does not require much memory,

because, in general, a node will not need to know all the neighbors

in its own cell (i.e., Assumption 5.1 can be relaxed). A cell leaving

the network delivers its keys to its home cell. An entering cell needs

to query its home perimeter to receive its keys. Additionally, it will

also receive keys of empty cells for which it becomes the home cell;

Fault-tolerance requirements one of the occurrences that CHR should try

to prevent as much as possible is the loss of stored (key,value) pairs.

We already suggested the use of thresholds to ensure that keys are

sufficiently spread among nodes of the same cell. This mechanism

can be complemented with a technique already used in wired DHTs

(e.g., Rowstron & Druschel, 2001), that consists of using k hash keys

to replicate contents in different cells.

There are also a couple of additional issues to solve that we leave as

open problems for future work. We believe that the most interesting of all

112 CHAPTER 5. A WIRELESS CLUSTERED DHT

these issues is the possibility of using CHR to support non-UDG models.

Closely related to this is the problem of tolerating wrong determination

of position by the nodes. Finally, in scenarios where utilization of CHR is

more unfavorable, due to a low density of nodes, clustering these nodes

may create a partition in an otherwise connected network. This can occur

if nodes that are two cells away, and separated by empty adjacent cells, can

see each other but are not allowed to create a link. We call this “cluster-

induced disconnection”. As we point out in Chapter 7, we leave these

issues for future work.

5.7 Evaluation

To compare CHR with GHT, we tested the average path lengths in store/-

lookup operations. To do this, we routed messages from arbitrary existing

nodes to arbitrary points in space. Hence, in general, these points did not

correspond to any node and both, CHR and GHT had to route to the home

cell/home node. We used a square of size 300×300 and a communication

range of approximately 106 to have an 8× 8 grid. Distribution of nodes

in the square was uniform in all our experiments. Since node density is

a key aspect to performance, we varied the number of nodes between 80

and 600.

The first thing we evaluate is the probability of having empty cells in

CHR for each one of these node densities. This is depicted in Figure 5.3.

In our settings, this probability is quite high when node density is low

and rapidly decreases, to become nearly 0 as node density approaches an

average of 7 nodes per cell. To see the impact of node density on routing

performance we evaluate the average path lengths for each node density.

5.7. EVALUATION 113

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8 9 10

Av
er

ag
e

em
pt

y
ce

lls
 (%

)

Average number of nodes per cell

Avg. empty cells

Figure 5.3: Average percentage of empty cells in CHR

In Figure 5.4 we show the average path lengths. The first observation that

we can do from inspection of the figure is that, as expected, clustering

really benefits CHR. Furthermore as node density increases, path lengths

stabilize in CHR, while they grow in a non-clustered approach like GHT.

This has to do with the length of the edges of the planar graph needed by

GHT. As node density increases, the average edge length decreases and

therefore, packets need more hops to reach destination. Finally, we can

also observe that the impact of even a large number of empty cells is very

small in the path lengths achieved by CHR.

Another advantage of CHR is that a moving node only needs to rebuild

its database of keys, when it crosses a cell boundary. Finally, CHR is more

robust, because a single key may be stored at many nodes, allowing the

DHT to resist better to abrupt departure of nodes. In fact, this is a trade-

off, where the down sides are that nodes have to know more neighbors (as

required in Assumption 5.1) and need to store more keys (all the keys in

their cell). However, as we stated before, both of these problems can be

mitigated at the cost of decreasing the robustness of the DHT (because a

114 CHAPTER 5. A WIRELESS CLUSTERED DHT

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8 9 10

Av
er

ag
e

nu
m

be
r o

f h
op

s

Average number of nodes per cell

CHR
GHT

Figure 5.4: Performance of CHR vs. GHT

node can know fewer neighbors and store only a subset of keys in its cell).

Nevertheless routing performance is not impaired by these techniques.

We believe that the simplicity of CHR and its favorable performance

turn CHR into a valid approach to create a wireless DHT.

5.8 Energy Conservation Issues

Clustering nodes inside equally-sized cells allows us to use simple but effi-

cient mechanisms that reduce consumption of energy without compromis-

ing tolerance to faults. We can take advantage of the clustering mechanism

that divides nodes according to their cell, to put most nodes to sleep3. Such

idea was originally proposed in the Geographic Adaptive Fidelity (GAF)

scheme (Xu et al., 2001). Besides energy exhaustion, nodes may fail due to

several other reasons, including material fatigue, environmental hazards

or deliberate attacks. To ensure proper operation of the wireless ad hoc net-

work, sleeping nodes should monitor active nodes of their cell frequently.

3In the following, we always assume that only one node is awake in each cell.

5.8. ENERGY CONSERVATION ISSUES 115

If crashed nodes are not replaced, messages follow sub-optimal routes,

DHTs may loose keys and, furthermore, the network may eventually be-

come partitioned. On the other hand, energy consumption of idle and

transmitting or receiving nodes is very high and therefore, nodes should

remain sleeping as much as possible. In fact, if the energy consumed with

the monitoring process is too high, non-active nodes may exhaust their

batteries (and the batteries of active nodes) before they are needed. In

this section, we overview the optimal monitoring period in fault-tolerant

wireless ad hoc networks to ensure that: i) the network remains connected

(i.e., crashed nodes are detected and substituted fast enough to avoid the

network partition) and, ii) the lifetime of the network is maximized (i.e.,

inactive nodes save as much battery as possible).

5.8.1 The P and F Metrics

Nodes that are sleeping must wake up periodically to check availability

of the active node of their cells. We call “monitoring period” to this pe-

riodical verification. We present a more precise definition of this concept

in Section 5.8.2. We would like to select a value for the monitoring pe-

riod that maximizes the system availability. This task can be prohibitively

complex due to the multiple combinations of factors that affect the system

lifetime such as the initial energy available to nodes, power consumption,

network topology, etc. To address this complexity, we propose two new

metrics that capture the importance of the relative values of different sys-

tem parameters. Our metrics are motivated by the insight that, in the con-

text of assessing the network availability, time intervals — in particular the

monitoring period — should be analyzed in a relative sense: a monitoring

period of 1 second has a different impact on a network whose lifetime is

116 CHAPTER 5. A WIRELESS CLUSTERED DHT

just 10 seconds than on a network whose lifetime is 1000 seconds. In a

similar manner, the magnitude of values like power needed to transmit or

to receive should also be measured in a relative way. Using simulations,

we show that our metrics are useful to reason about the impact of faults in

the network lifetime.

We start by defining the notions of “lifetime” and “ideal lifetime”. Life-

time is the time to first network partition (about this issue, see Blough

& Santi, 2002). Ideal lifetime, LTI , is the network lifetime in a scenario

where i) there are no faults, ii) switching nodes on and off has no cost and

iii) nodes in the cells are omnisciently replaced at once (if replacement is

available). LTI is determined by simulation. Using LTI we propose the

following two metrics to assess the network behavior:

• the “power on-off consumption factor”, P , measures the impact of

the energy spent powering nodes on and off. We define it as the ratio

between the energy needed for one power on-off operation versus

remaining energy spent in 1 time unit. This is determined as P =

POE/(T E0/LTI), where POE is the power on-off energy and T E0 is

the total energy available in the beginning of the network life (if we

assume that all N nodes have the same energy, E0, in the beginning,

T E0 = N ×E0). This makes P a function of all remaining energies

(mainly idle, transmission and reception) of the system but not of

node failure rate;

• the “failure weight factor”, F , measures the impact of faults in the

network. We define it as the lifetime of the ideal network, LTI , rel-

ative to mean time between failures (MT BF), i.e., F = LTI/MT BF .

This makes F a function of failures of nodes and of all energies ex-

cept power on-off energy. Large F means many node failures (pos-

5.8. ENERGY CONSERVATION ISSUES 117

Wait

Sleeping

Active

After Tw

Recive discovery message
from node with higher rank

After Ts

Figure 5.5: SQA algorithm

sibly due to a long network lifetime), while large P means a lot of

energy needed to power a node on and off (at least compared with

remaining energies, like idle and traffic energies).

5.8.2 The Monitoring Algorithm

To the algorithm that controls the monitoring process of nodes inside each

cell we call “Sleep-Query-Active” algorithm (SQA). SQA is designed mainly

to networks with low or no mobility, like sensor networks. The states of

SQA are depicted in Figure 5.5. In steady state, nodes can only be in one of

two states: either sleeping or active. Sleeping nodes periodically wake to

monitor active nodes. Decision of which nodes go to sleep or stay active

is based on the “rank” of nodes. The rank reflects the available energy of

the node and it is larger for nodes with more energy. Active nodes only go

to sleep when they listen about other nodes in the same cell with a higher

rank. The purpose of the wait state is to desynchronize nodes that start at

the same time. In our experiments, Tw was randomly set between 0 and 1

seconds with uniform probability.

118 CHAPTER 5. A WIRELESS CLUSTERED DHT

Nodes running SQA synchronize with each other sending “discovery”

messages in the following situations: i) when they enter active state, ii)

periodically when they are in the active state (to overcome the loss of mes-

sages) and iii) in the active state when they receive a discovery message

from a node with lower rank. Despite not providing any additional pro-

tection against node failures, nodes with larger supplies of energy (i.e.,

higher rank) will give an additional degree of protection against unex-

pected energy consumption caused by some peak of traffic. The single pa-

rameter to tune in SQA is the sleeping timeout, Ts, which we deem as the

“monitoring period”. Ts is randomly chosen from an interval that is fixed

beforehand. When we say that Ts = c, we really mean that Ts is selected

from the interval [0.5× c,1.5× c]. Then, each time a node goes to sleep, it

picks the value for Ts from that interval with uniform probability. Our ex-

perimental evaluation shows that this choice is appropriate, because more

often that not, the wireless ad hoc network will tend to behave in a very

predictable way and fixing an optimal value for Ts will yield longer life-

times than a dynamic approach like GAF. Selecting the most appropriate

Ts is a challenging task that we resume in the next sections.

5.8.3 Determination of the Monitoring Period

Methodology of Analysis

Following a theoretical approach to determine Ts is a task of great difficulty

(e.g., see Blough & Santi, 2002). Hence, we have opted to use simulations

to evaluate the effect of different parameters on Ts. Unfortunately, with-

out a correct methodology, the process of determining the effect of Ts us-

ing simulations is also a daunting task. As we have referred before, there

5.8. ENERGY CONSERVATION ISSUES 119

are many factors that can influence network lifetime and consequently, Ts.

Furthermore, these factors can be combined in multiple ways and often

cannot be completely isolated in order to analyze their impact on network

lifetime. Finally, but not the least, a single ns-24 simulation of a given con-

figuration (i.e., for a single monitoring period), even when in executed on

a Pentium IV 2.8 GHz with 2Gb of RAM, takes more than 100 seconds to

complete.

To handle this complexity, we propose a methodology of analysis that

allows to reason about the impact of these metrics before assessing the

impact of network topology in the final system availability. Instead of al-

ways running simulation on a complete network, we first perform a care-

ful study of the behavior of each network cell. Then, by estimating how

many cells are required to maintain the connectivity of a given topology,

we extrapolate the impact of the parameters in the entire network. We il-

lustrate this methodology in Figure 5.6. The approach has both conceptual

and practical advantages. From the conceptual point of view, it allows to

separate the analysis of the influence of topology from other factors. From

the practical point of view, cell level simulations i) allow to isolate factors

that influence network lifetime and ii) run much faster. Therefore, cell sim-

ulation allows a much richer analysis of different combinations of factors

in practical time. An additional advantage of the cell simulations is that

its results can be used to assess other system properties, like the coverage

of a sensor network in the presence of faults, for instance.

4“The ns Manual”, http://www.isi.edu/nsnam/ns/ns-documentation.

120 CHAPTER 5. A WIRELESS CLUSTERED DHT

...

Ce
ll

sim
ul

ati
on

Inputs Outputs
Idle energy

Power on-off en.
Faults

Topology

Topology-
independent

Topology-
dependent

Idle energy
Power on-off en.

Faults
...

Topology

Ns
-2

 si
m

ul
ati

on

Inputs Outputs

Topology-
dependent

Figure 5.6: Cell Based Methodology vs Network Simulation

Table 5.1: Consumption of energy for the nodes tested

Node Rx (W) Tx (W) Idle (W) Sleep (W) Initial Energy (J)
IEEE 802.11 0.974 1.341 0.843 0.066 15
MEDUSA-II 0.01248 0.01565 0.01234 0.00002 1
Rockwell’s WINS 0.751 1.081 0.728 0.064 20

Simulation Settings

In our experiments we have used three different types of nodes: a node

equipped with a Lucent IEEE 802.11 2 Mbps WaveLAN PC Card, a Rock-

well WINS node and a MEDUSA-II node. Table 5.1 resumes the consump-

tion of the three different nodes in the situations considered in our sim-

ulations. Figures for the first node were taken from the work of Feeney

& Nilsson (2001), while values for the other two types of nodes were in-

ferred from the work of Raghunathan et al. (2002). We assume that failures

of nodes follow an exponential distribution. For simulation purposes, we

have modeled this as a geometric distribution. After constant time inter-

vals P, all nodes may fail with a given random probability p (we set P = 0.5

seconds in our simulator). Hence parameter r of the exponential distribu-

tion is r u− 1
P ln(1− p), while MT BF = 1/r.

To plot a graphic that represents lifetime relative to LTI against the

monitoring period relative to LTI (e.g., Figure 5.9), we select a number of

5.8. ENERGY CONSERVATION ISSUES 121

monitoring periods, Ts, not exceeding the ideal lifetime. Then, we fix all

the parameters, like power on-off consumption, idle power, initial energy,

etc. and we experimentally analyze the lifetime achieved for each Ts. We

used a square size of 800×800 meters with 256 nodes, which we divided

into 8× 8 cells (giving an average of 4 nodes per cell). Communication

range was 250 meters. We performed simulations at the cell level and us-

ing the ns-2 simulator, using the settings that we describe next.

Cell Level Simulation Settings To determine the lifetime for a given mon-

itoring period, we fix this monitoring period and use time as the indepen-

dent variable. Then, as time goes by we assume a constant consumption

of energy and observe whether the cell is awake or sleeping (it is awake if

there is any node awake, otherwise it is sleeping). We used an average of

100 of these trials to approximate a continuous random variable, function

of time t, that represents the probability that the cell is awake. An example

of a random variable like this is depicted in Figure 5.7, for a specific value

of Ts. To infer network behavior from this, we need to know the topology

of the network. If disconnection occurs when an average number of D out

of N cells are sleeping, we use a rough approximation and assume that

when the awake probability of a cell drops below (N−D)/N, the network

gets disconnected. Taking our grid for example, we used a simple simu-

lation to derive the probability density function of the number of sleeping

cells that cause network disconnection. This looks like a Gaussian curve

centered at 40 and truncated at the 64 cells. Therefore, in such a topology,

the threshold (64−40)/64 = 0.375 corresponds to a point where, more of-

ten that not, network will be disconnected 5. Figure 5.8 shows the relative

5In this case, disconnection occurs when a significant proportion of the network is, in fact,
unusable. We also observed this for other grid configurations.

122 CHAPTER 5. A WIRELESS CLUSTERED DHT

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350

A
w

a
k
e

p
ro

b
a
b
il
it
y

Time (s)

Ts = 8

Figure 5.7: Probability of a cell being awake

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0 0.2 0.4 0.6 0.8 1

R
el

a
ti
v
e

li
fe

ti
m

e

Relative monitoring period

P=0, F=0

Figure 5.8: Relative network lifetime

lifetime graph as a function of the monitoring period for these settings.

Lifetime and monitoring periods represented in this plot are relative to

the ideal lifetime LTI , to abstract away the absolute magnitudes that gov-

ern the network behavior.

Note that an entire data series needed to create a graphic like the one

represented in Figure 5.7 produces a single point in Figure 5.8. In this case,

this point should occur around t = 327 seconds (where the line y = 0.375

intersects the probability curve). In the cell simulations LTI is estimated

as the number of nodes of the cell × the time it takes to consume all

5.8. ENERGY CONSERVATION ISSUES 123

the energy of a node. For the settings of these figures, this is around

324. Since Ts = 8 and LT = 327, this gives a relative monitoring period

of 8/324 u 0.025 and a relative lifetime of 327/324 u 1.009. It is not really

counterintuitive to have a lifetime greater than the ideal, due to the large

idle power. In fact, this makes it advantageous to let some cells sleeping

from time to time, to prolong their lives. On the contrary the ideal lifetime

assumes that all the cells should be constantly awake, which is not always

the best strategy.

Network Level Simulation Settings We used the ns-2 simulator, version

2.27, to perform the network level simulations presented here. This re-

quired us to implement the SQA algorithm as well as port the GPRS rout-

ing algorithm to the same version of ns-2. We used a simulation environ-

ment similar to the one described by Xu et al. (2001). Nodes were divided

in traffic and transit nodes. Traffic nodes serve as sources and sinks of traf-

fic, while transit nodes are only used as intermediate hops for that traffic.

Only transit nodes run the SQA algorithm with GPSR working as the un-

derlying routing scheme. Traffic was generated by constant bit rate (CBR)

traffic sources. In all our experiments we fixed the number of traffic nodes

to 10. To prevent traffic nodes from stop generating traffic, their supply of

energy was infinite.

Evaluation of Results

Figure 5.9 shows extreme as well as typical values for P and F for the

cell level simulations. We can see that large values of F tend to require

smaller monitoring periods to respond faster to faults (thus shrinking the

curve at the right and making the peak start slightly earlier). On the other

124 CHAPTER 5. A WIRELESS CLUSTERED DHT

hand, larger values of P will penalize small monitoring periods, due to

the cost of powering the nodes on and off (thus shrinking the curve at the

left). Hence, as these two metrics grow, the curve tends to become thin-

ner. Moreover, the growth of these metrics also makes the curve shorter as

they impact network lifetime. By observing these and other simulations

that we have done, we are able to conclude that very different operational

conditions have similar behaviors, as long as the metrics P and F are sim-

ilar.

In our simulations, longest lifetimes are almost always achieved when

monitoring period is in the range of 10 to 20% of the ideal lifetime, for

most values of P and F . This stability has to do with the fact that a per-

fect monitoring algorithm should ensure that network has as few active

nodes as possible (fewer than the number of cells, in practice), but pre-

serving the minimum required to prevent disconnection from occurring.

Hence, substitution of nodes depends on the death rate of nodes, which,

on its turn, will determine lifetime. This explains why better strategies for

(potentially) longer lifetimes, should use longer monitoring periods. Nev-

ertheless, if this period goes over some threshold (30 to 50%), the relative

lifetime sharply decreases, because nodes that die are not replaced and

many cells become empty. This reveals a thin line between optimal and

disastrous configuration.

Table 5.2, which summarizes the results obtained, offers a qualitative

analysis of P and F . Outside the parenthesis we describe the system pa-

rameter that dominates network lifetime (other energies refers to idle and

traffic energies), while inside we describe the shape of the peak that exists

in the monitoring period (earlier, normal or later, respectively means that

peak starts closer, in the normal place or farther away from the y-axis).

5.8. ENERGY CONSERVATION ISSUES 125

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 0.2 0.4 0.6 0.8 1

R
el

a
ti

v
e

li
fe

ti
m

e

Relative monitoring period

P=0, F=0

(a) Small P / Small F

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.2 0.4 0.6 0.8 1

R
el

a
ti

v
e

li
fe

ti
m

e

Relative monitoring period

P=0, F=43

(b) Small P / Intermedi-
ate F

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0.2 0.4 0.6 0.8 1

R
el

a
ti

v
e

li
fe

ti
m

e

Relative monitoring period

P=0, F=434

(c) Small P / Large F

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 0.2 0.4 0.6 0.8 1

R
el

a
ti

v
e

li
fe

ti
m

e

Relative monitoring period

P=37, F=0

(d) Intermediate P /
Small F

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

R
el

a
ti

v
e

li
fe

ti
m

e

Relative monitoring period

P=37, F=43

(e) Intermediate P and
F

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0 0.2 0.4 0.6 0.8 1

R
el

a
ti

v
e

li
fe

ti
m

e

Relative monitoring period

P=37, F=434

(f) Intermediate P /
Large F

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0 0.2 0.4 0.6 0.8 1

R
el

a
ti

v
e

li
fe

ti
m

e

Relative monitoring period

P=366, F=0

(g) Large P / Small F

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0 0.2 0.4 0.6 0.8 1

R
el

a
ti

v
e

li
fe

ti
m

e

Relative monitoring period

P=366, F=43

(h) Large P / Intermedi-
ate F

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0 0.2 0.4 0.6 0.8 1

R
el

a
ti

v
e

li
fe

ti
m

e

Relative monitoring period

P=366, F=434

(i) Large P / Large F

Figure 5.9: Impact of P and F

126 CHAPTER 5. A WIRELESS CLUSTERED DHT

Table 5.2: Dominating parameter (and peak shape) for variations of P and F

Small F Intermediate F Large F

Small P Other en.
(earlier)

Other en. &
Failures (earlier)

Failures (earlier)

Intermediate P All en. (normal) None (normal)
Failures (slightly

earlier)

Large P On-off (later) On-off (later)
Depends rel.

magnitude (later)

With today’s technology, awake nodes in idle mode spend a lot of power.

Hence, we expect that they will operate in the first line of the table (“Small

P ”). If with technological improvements idle energy decreases, P will de-

pend mainly on data traffic generated in the network. In this case, the

network will operate in a zone captured by the bottom line of the table

(“Large P ”), whenever average traffic becomes low. In such scenarios, the

appropriate choice of Ts will make an even more significant impact on the

network lifetime.

5.8.4 Discussion

These experimental results demonstrate the appropriateness of using P

and F to assess network behavior, by showing that, often, these metrics

strongly determine network operation. Furthermore, results show that it

is possible to achieve a lifetime close to the ideal (LTI) by selecting the

monitoring period adequately and according to P and F . To conclude,

we can say that the use of an algorithm like GAF (Xu et al., 2001) or some

variation of it, together with the experimental analysis of the P and F

metrics can considerably extend the lifetime of a wireless DHT like CHR.

5.9. SUMMARY 127

5.9 Summary

This chapter takes our previous work on wireless DHTs one step further,

for densely populated networks. CHR divides the space into equally-sized

cells to create a clustered architecture. This clustered architecture defines a

virtual graph (G) that works with a modified version of GPSR even with-

out making the graph G planar. Our experimental results show that CHR

achieves much better results than standard GHT, specially for higher node

densities. Furthermore, since battery exhaustion critically determines the

lifetime of an ad hoc network, we have also focused on techniques to con-

serve energy. To this matter we have considered a networks with clusters

similar to CHR and we have created two metrics, “power on-off consump-

tion factor”, P , and “failure weight factor”, F , that can help us to create

wireless ad hoc networks more resistant to failures.

Notes

CHR is a joint work of the University of Lisbon and the University of Ulm in Germany supported

by the European Science Foundation program MiNEMA (Middleware for Network Eccentric and

Mobile Applications). Besides the author and Professor Luís Rodrigues, from the University of

Lisbon, this collaboration involved Professor Jörg Kaiser, Changling Liu, and Carlos Mitidieri.

The section on energy conservation is based on work developed by the author and by Professor

Luís Rodrigues. Parts of the work of this chapter have been published as follows:

• Filipe Araújo, Luís Rodrigues, Jörg Kaiser, Changling Liu, and Carlos Mitidieri.

CHR: a distributed hash table for wireless ad hoc networks. In The 25th IEEE Inter-

national Conference on Distributed Computing Systems Workshops (DEBS ’05), Colum-

bus, Ohio, USA, June 2005.

• Filipe Araújo and Luís Rodrigues. On the monitoring period for fault-tolerant

sensor networks. In Second Latin-American Symposium on Dependable Computing

(LADC ’05), October 2005 (to appear).

128 CHAPTER 5. A WIRELESS CLUSTERED DHT

6
Position-Based DHTs for
Wired Overlay Networks

In this chapter, we present a position-based distributed hash table (DHT),

called “GeoPeer”. We can look at GeoPeer as the wired counterpart of

the wireless DHT created by the Fast Localized Delaunay Triangulation

(FLDT), presented in Chapter 4, because GeoPeer is also based on a Delau-

nay triangulation. Unlike FLDT, in GeoPeer we can use non-localized al-

gorithms to create a complete Delaunay triangulation. Unfortunately, such

a simple Delaunay triangulation suffers from long path lengths, which

grow to O(
√

n), where n is the number of nodes. While this figure would

not be a problem in a wireless network, there are many (non-position-

based) overlay networks (Chapter 3) that can perform much better than

this. Therefore, we created a complementary mechanism, called “Hop

Level”, that augments the Delaunay triangulation and allows the com-

plete overlay network to achieve a nearly optimal path length/node de-

gree trade-off. Hence, in this chapter, we present the two halves that make

GeoPeer. We start in Section 6.1 with the GeoPeer architecture and in Sec-

tion 6.2 we present the Hop Level mechanism. Although we can use this

mechanism to complement GeoPeer, it is independent of the specific un-

derlying network which does not need to be a a Delaunay triangulation.

129

130 CHAPTER 6. POS.-BASED DHTS FOR WIRED NETS.

6.1 GeoPeer

In this section, we present a position-based DHT called “GeoPeer”. This

DHT is based on a Delaunay triangulation that can be augmented with

the long range contacts (LRCs) that we will present in Section 6.2. Un-

like the DHT of Chapter 4, GeoPeer can take advantage of an underlying

network with routing capabilities, like IP, to create a complete Delaunay

triangulation.

We can use GeoPeer as an ordinary DHT enhanced with positional in-

formation to support position-aware services on top of IP. Other peer-to-

peer systems that we presented in Chapter 3, such as Pastry (Rowstron

& Druschel, 2001), Tapestry (Zhao et al., 2001), Chord (Stoica et al., 2001),

D2B (Fraigniaud & Gauron, 2003a), Koorde (Kaashoek & Karger, 2003) or

Viceroy (Malkhi et al., 2002), do not own the characteristics required to

support position-aware services. Systems such as CAN (Ratnasamy et al.,

2001), TOPLUS (Garcés-Erice et al., 2003), eCAN (Xu & Zhang, 2002), and

the Delaunay triangulation proposed by Liebeherr et al. (2001), are closer

in spirit to GeoPeer but they also lack features which are essential to sup-

port position-aware services efficiently.

Unlike most other systems, the use of geographical position is inherent

to GeoPeer. Therefore, GeoPeer owns a number of interesting properties:

it is capable of providing position-awareness in fundamental operations

performed by applications, such as reads, writes or queries. In this sec-

tion, we focus on the scalability of the network of stationary nodes that

provides support to very large-scale position-aware services (possibly, in

cooperation with mobile nodes and wireless sensors). To the best of our

knowledge, the scalability, decentralization, and dynamic aspects of the

stationary infrastructure supporting position-aware computing have been

6.1. GEOPEER 131

overlooked in the literature.

6.1.1 Overview of GeoPeer

In GeoPeer, the identifier of nodes corresponds to their geographical lo-

cation. Using their identifier, nodes self-organize into a planar Delaunay

triangulation augmented with carefully selected LRCs to significantly re-

duce path lengths. A graph based on a Delaunay triangulation has the

following desirable characteristics:

1. expected O(1) node degree;

2. good nearby routing performance; and

3. simple distributed construction.

The combination of these features results in a peer-to-peer system with

the following unique advantages:

• by creating a mesh of nodes identified by their physical location, sup-

port for applications that execute position-aware operations, such as

queries or broadcasts, can be provided by very simple mechanisms;

• when compared to a two-dimensional CAN-like network, the node

degree in a Delaunay triangulation should be greater, but still O(1)

in expectation (near 6 instead of 4 in perfectly balanced cases) and,

therefore, nearby routing should be improved;

• due to the LRCs that augment the Delaunay triangulation, GeoPeer

has logarithmic path lengths for the network sizes we tested (Sec-

tion 6.2.8).

132 CHAPTER 6. POS.-BASED DHTS FOR WIRED NETS.

In the GeoPeer DHT, keys correspond to positions in space. Hashing

some value representing an object yields the GeoPeer identifier of that ob-

ject. Since identifier and position are equivalent, the hash function returns

a pseudo-arbitrary position in space. Therefore, positional information at-

tributes may be used to carefully position resources in some application

dependent way, e.g., by enforcing the use of a hash function that returns

some node inside a restricted zone, near the clients of a service.

6.1.2 Main Components

In the following, the main components of the GeoPeer architecture are

described in detail. These components are:

1. an algorithm that creates and maintains the Delaunay triangulations;

2. an algorithm that ensures that any possible key is held by exactly

one existing node;

3. an algorithm that performs routing of messages in the overlay net-

work; and

4. a mechanism to establish LRCs.

We describe the first three mechanimsms, while the LRC mechanism is

postponed to Section 6.2.

6.1.3 Creation and Maintenance of Delaunay Triangulations

To create and maintain the Delaunay triangulation, GeoPeer uses a scheme

similar to the one of Liebeherr et al. (2001) (however, unlike GeoPeer,

Liebeherr et al. do not use LRCs). Note that many constructions proposed

6.1. GEOPEER 133

for wireless ad hoc networks, such as the ones of Li et al. (2002); Gao et al.

(2001), are not applicable in this context, because these algorithms assume

static settings for triangulation and, more importantly, they assume that

nodes are provided with broadcast-capable radios.

Messages

To create and maintain the Delaunay triangulations, nodes periodically ex-

change messages with their neighbors. The five message types exchanged

by the algorithm are:

• the BEACON message, used by a node to inform its neighbors that it

is still actively participating in the overlay network;

• the JOIN message, used to add new nodes to the network;

• the FAILURE message, used to disseminate information about the

failure or departure of a node;

• the TRIANGULATE message, used by a node to propose the setup of

a Delaunay triangle with its neighbors;

• the BREAKLINKS message, used to reconfigure the network in re-

sponse to new joins and leaves.

The purpose and function of each of these message types will be de-

tailed in the following.

Steps

The algorithm is decentralized, as it does not rely on any single point of

control. It consists of three logical steps:

134 CHAPTER 6. POS.-BASED DHTS FOR WIRED NETS.

1. the neighbor discovery step. Node N initiates this step to enter the

network. To join, node N must use some out-of-band mean to discover

one node already participating in the network, say P. P will then forward

a special JOIN message on behalf of N destined to N. Since N does not yet

belong to the network, the JOIN message will be received by some node X .

This node X will forward the JOIN message to all the Delaunay neighbors

of N that X knows about (to inform them of the existence of N) and will

also reply with another JOIN message to N with the list of those Delaunay

neighbors (note that this step does not establish the triangulations);

2. the neighbor maintenance step. In this step, nodes that belong to the

same triangle periodically exchange BEACON messages to inform their

neighbors that they are alive and actively participating in the network;

3. the Delaunay triangulation step. This is naturally, the most complex

step of the algorithm.

Based on the information collected in the previous steps, each node P

computes a Delaunay triangulation using its own local knowledge. As a

result, P may find out that there should exist a Delaunay triangle4PN1N2,

between P, N1 and N2. In this case, for convenience of exposition, we say

that the predicate Delaunay4P(N1,N2) is true at P.

When Delaunay4P(N1,N2) holds at P, P sends a TRIANGULATE4PN1N2

message to both N1 and N2. When P receives a TRIANGULATE 4PN1N2

from N1, if Delaunay4P(N1,N2) holds then P replies to N1 with another

TRIANGULATE message, otherwise, P replies with a BREAKLINKS message

including all nodes that it believes should triangulate with N1.

Therefore, if all neighbors agree on the triangulation, they will ex-

change a consistent set of TRIANGULATE messages and the corresponding

Delaunay triangles are set-up. Otherwise, they update their local informa-

6.1. GEOPEER 135

tion using the contents of the BREAKLINKS message and re-execute the lo-

cal computation. Note that if there is some node inside©PN1N2, the pred-

icate Delaunay4P(N1,N2) is immediately switched to false. A very simple

way of checking this condition was presented by Sibson (1977). Again,

as we did in Chapter 4, we assume that no four nodes are co-circular (co-

circularities can be easily addressed by slightly perturbing the position of

involved nodes).

Dynamic Aspects of the Algorithm

As noted before, to cope with a dynamic topology, the algorithm must take

into account the following aspects:

1. the failure of nodes;

2. the emergence of new nodes and, as a consequence, the possibility

of nodes having a different view of the network topology.

Node failures and departures are detected through the absence of BEA-

CON messages from that node (to simplify, we do not distinguish these

two events, however departures allow a more gracious way to redistribute

the keys). When some neighbor of F detects that node F failed, it recom-

putes the Delaunay triangulation and sends a FAILURE message to all its

Delaunay neighbors. All nodes that are neighbors of F should resend the

FAILURE messages of F . This ensures that all Delaunay neighbors of F

become aware of its failure. Since network is asynchronous, nodes must

store information about the failure of F . Therefore, FAILURE and BREAK-

LINKS messages include a list of nodes that are known to be failed (possi-

bly empty in the case of a BREAKLINKS message). If after a TRIANGULATE

message from P, N replies with a BREAKLINKS message, with indication of

136 CHAPTER 6. POS.-BASED DHTS FOR WIRED NETS.

some node F that P knows to be failed, P sends a FAILURE message and

later retries the triangulation.

It is also possible for nodes to enter the graph at any instant. Assume

that P becomes aware of the presence of some new node Q and, as a re-

sult of recalculating the Delaunay triangulation, some triangles, Delau-

nay4P(N1,N2) commute from true to false. In such case P sends a BREAK-

LINKS message to the vertices of those triangles. If Delaunay4P(Q,N1) is

true for some node N1, P will again send TRIANGULATE messages as de-

scribed before.

Optimizations

For clarity of exposition, we deferred discussion of the following issue:

BREAKLINKS and FAILURE messages should not carry indefinitely infor-

mation about all nodes that failed in the past, as this could become a con-

siderable overhead. Therefore, N only resends information that F failed

to some peer node A until A acknowledges. Furthermore, to avoid storing

information of some failed node F forever, nodes discard information of F

after the expiration of a timeout.

6.1.4 Division of Space

For each point in space there is one and only one responsible GeoPeer

node. The node responsible for a point P inside triangle 4ABC is always

the node of 4ABC closest to P. This definition accounts for the case de-

picted in Figure 6.1a), where the Voronoi cells may cross triangle borders.

In “well behaved” triangles where the center of the circumcircle, O, lies

inside the triangle, such as the one depicted in Figure 6.1b), division of

the space is straightforward and is done according to the figure. Areas AA,

6.1. GEOPEER 137

O

A

B

C
AA

AB

AC

A

B

C

D

Outside areas

a) b) c)

Figure 6.1: a) Voronoi cells (dashed lines) cross triangle boundaries, b) Circum-
circle, c) Outside areas

AB and AC cover the entire triangle and define the set of points that are,

respectively, closer to A, B and C. If the point O lies outside the triangle,

some of the points of the Voronoi cell of some node A may end up in the

region of responsibility of other node (say node B or C in Figure 6.1a)).

In the borders of the plane, where no further triangulations are possible,

proximity criterion is used to determine the areas of responsibility of the

nodes, as depicted in Figure 6.1c).

6.1.5 Basic Routing

To route messages we use the greedy routing algorithm for the follow-

ing reasons: i) it ensures convergence in a Delaunay triangulation (Bose

& Morin, 1999), ii) it is efficient in most circumstances (Li et al., 2002) (al-

though Bose & Morin showed some cases where performance is arbitrar-

ily bad, these examples should be pathological); and iii) greedy routing

algorithm copes with LRCs without any modification. Still, nodes need to

resource to a different algorithm when they find a situation like the one

depicted in Figure 6.1a). In this case, message may progress from triangle

138 CHAPTER 6. POS.-BASED DHTS FOR WIRED NETS.

to triangle until it reaches the node responsible for the destination point.

In general, this will involve a very small number of hops. For instance,

in the case depicted, A could immediately send the message to either B or

C (whichever is closest to destination) and this node would be the final

destination of the message.

6.1.6 Applications of GeoPeer

GeoPeer may, as any other decentralized peer-to-peer system, be used to

support any sort of application that benefits from a scalable implementa-

tion of a DHT, such as, for instance, decentralized storage services (Douceur

& Wattenhofer, 2001; Druschel & Rowstron, 2001; Rhea et al., 2001). How-

ever, some of the characteristics of GeoPeer, like location-awareness and

uneven distribution of nodes, make it specially fit for the support of location-

aware services. We now illustrate the benefits of the architecture by giv-

ing some examples of context-aware services that can be trivially imple-

mented on top of GeoPeer and that can benefit from the reduced diameter

of a GeoPeer network.

Geographically-scoped multicast this service consists of disseminating a no-

tification to all nodes located inside a given geographic region (e.g.,

an alarm about some natural disaster). The service can be easily im-

plemented by routing a notification to the GeoPeer nodes responsi-

ble for the center of that area which will, in turn, initiate a scoped-

broadcast of the notification, using the technique proposed by Liebeherr

et al. (2001). It should be noted that, with the exception of a two-

dimensional CAN (and variations like eCAN) no other peer-to-peer

system referred before would directly support this service. Further-

6.2. THE HOP LEVEL MECHANISM 139

more, the use of Delaunay triangulations makes GeoPeer more effi-

cient than CAN or eCAN;

Geographically-scoped queries this service is used to collect information

from nodes located inside a given geographic region (e.g., environ-

mental or security monitoring of geographical areas by connection

of the relevant sensors to the GeoPeer nodes). It can also be used to

collect more mundane information, such as the location of cinemas

or bars around a given location. The service works by having the

node responsible for the center of the region of interest acting as an

ambassador of the client. This node can query all nodes in a given di-

ameter, collect all the replies, and send the consolidated information

back to the client in a single message (this may involve computation

of averages, selection of the lowest or highest values, etc.);

Other location-aware services GeoPeer also opens new less obvious pos-

sibilities for applications that need to determine location of critical

resources, like a rendezvous point in a core-based multicast tree (Bal-

lardie, 1997) or in publish-subscribe applications (Pietzuch & Bacon,

2002; Castro et al., 2002). Exploration of this possibility is outside the

scope of this thesis and we leave this as an open possibility for future

work (see Chapter 7).

6.2 The Hop Level Mechanism

6.2.1 Overview of the Hop Level Mechanism

In this section, we present and evaluate a mechanism called “Hop Level”

that creates and maintains LRCs in (wired) overlay networks. The Hop

140 CHAPTER 6. POS.-BASED DHTS FOR WIRED NETS.

Level mechanism owns the following characteristics:

i) support for unbalanced node distribution;

ii) support for multidimensional spaces;

iii) near-optimal path lenght/node degree trade-off; and

iv) lazy creation of the LRCs.

Although Hop Level can considerably reduce the path lengths of pla-

nar position-based overlay networks, it reaches farther than that. Hop

Level is also well suited for overlay networks that support range data

queries (as opposed to distributed hash tables that only support exact

queries) with one or more dimensions.

It is a well-known fact that one of the major problems of DHTs is their

lack of support for range data queries (Chawathe et al., 2003). Unlike DHTs

that only perform exact queries, Distributed Storage systems (Aspnes et al.,

2004; Bharambe et al., 2004; Karger & Ruhl, 2004) (DSSs) allow efficient

range queries. This makes the design of a DSS more complex, because we

can no longer assume that data is uniformly distributed in space1. Addi-

tionally, we cannot assume that entrance and departure patterns of data

items will also favor balancing. On the contrary, DHTs are based on the

assumption that consistent hashing results in a good balance of node iden-

tifiers and data items.

Often, in overlay networks, including DHTs and DSSs, it is possible

to distinguish between two different types of contacts: “nearby” contacts,

forming a kind of connected lattice between nodes that have close vir-

tual identifiers, and “long range contacts” (LRCs) between nodes that have

“distant” virtual node identifiers. While the former type of contacts may

1This assumption does also not hold in a position-based DHT.

6.2. THE HOP LEVEL MECHANISM 141

be important in certain overlays to ensure connectedness and routing con-

vergence, short path lengths actually depend on the latter type of contacts.

In fact, it is the capability to “jump” over many closer nodes in a single hop

that makes it possible to achieve short path lengths. Therefore, the goal of

the Hop Level mechanism is to create and maintains long range contacts

in overlay networks, including position-based DHTs and DSSs. It is partic-

ularly well suited to these two types of networks, because it can cope with

unbalanced distribution of nodes and it supports single as well as multi-

dimensional range queries on the data. We believe that this is one of the

most innovative aspects of Hop Level, because most overlay networks are

tied to one-dimensional address spaces, where nodes must be numerically

or alphabetically ordered (e.g., SkipNets of Harvey et al., 2003).

An additional characteristic of Hop Level is the nearly optimal path

length/node degree trade-off that it can achieve. Furthermore, unlike ex-

isting overlay networks that we are aware of, in the Hop Level mechanism,

when a node enters the network, it postpones creation of the LRCs. Later,

it progressively creates the LRCs as they are needed to route real messages.

In fact, lazy creation of the LRCs is one of the most significant aspects of

Hop Level, as this reduces control traffic with only a minor effect on rout-

ing performance. In this way, behavior of Hop Level under churn is very

good.

6.2.2 Comparison of Hop Level with Previous Work

To achieve short path lengths, most DHTs assume a homogeneous dis-

tribution of nodes. Some, like Chord, might resist to a disadvantageous

distribution, but at the cost of trying to populate the entire node identi-

fier space with LRCs. Unlike most other DHTs, LAND (Abraham et al.,

142 CHAPTER 6. POS.-BASED DHTS FOR WIRED NETS.

2004) copes with an unbalanced distribution of nodes, but it hashes iden-

tifiers of objects, thus making it unsuitable to support range queries. Skip-

Net (Harvey et al., 2003) was also designed from scratch to cope with the

unbalanced use of identifier space. In fact, SkipNet is more appropriate to

support a DSS, because it supports queries. However, the identifier space

of a SkipNet is one-dimensional and generalization to higher-dimensional

spaces does not seem trivial. Unlike SkipNet, works proposed by Aspnes

et al. (2004); Bharambe et al. (2004); Karger & Ruhl (2004) have explicit

support for complex load balancing mechanisms without impairing effi-

cient range queries. Of these, only Mercury (Bharambe et al., 2004) sup-

ports multidimensional range queries. However, in Mercury this requires

a different data structure (a ring of nodes) for each queriable attribute (in-

cluding a copy of the data). When compared to these systems, support of

multidimensional range queries is inherent to the Hop Level mechanism

and does not need to be mapped to multiple one-dimensional queries.

Perhaps the works that are closer in spirit to Hop Level are those that

try to add LRCs to a previously existing lattice to create a “small-world”.

This the case of the work of Kleinberg (2000), Barrièrere et al. (2001) and

of Symphony (Manku et al., 2003). A small-world is characterized by a

constant node degree and poly-logarithmic diameter. The work of Klein-

berg (2000) models the small-world phenomenon as a lattice of squares

with O(1) contacts, where nodes select their single LRC according to a

random process based on the distance to their peers raised to the power

−r. The interesting conclusion of this work is that power r = 2 represents

the correct balance between the geographical information implicit in the

LRCs and their ability to forward messages to long distances. Other over-

lay networks, with O(logn) contacts, implicitly follow a similar principle

6.2. THE HOP LEVEL MECHANISM 143

and keep a nearly constant number of LRCs for exponentially larger dis-

joint areas of the virtual space around the identifier of each node. Perhaps

the most evident case where there is a distinction between short and long

range contacts is in the “expressways CAN” of Xu & Zhang (2002) (Sec-

tion 3.1.4). Hop Level inherits the idea of distributing a nearly constant

number of LRCs between disjoint groups of nodes of exponentially in-

creasing sizes. Crucially, the fundamental difference we introduce, is the

decoupling between the number of surrounding nodes and the size of the

surrounding area, as these may not coincide. In the next section, we pre-

cisely state the problem that we are addressing.

6.2.3 Problem Statement

In this section, we will consider that routing convergence is ensured by

nearby contacts already existing in the overlay network (e.g., as in Liebe-

herr et al., 2001; Kleinberg, 2000). Although these are examples of two-

dimensional networks (of which we tested a Delaunay triangulation like

the one we presented in Section 6.1 or the one of Liebeherr et al.), there is

however no restriction on the number of dimensions of the overlay net-

work. A crucial point here is that the distribution of nodes does not need

to follow any specific pattern.

Hence, we will consider the following conditions:

i) nodes are organized into a multidimensional underlying overlay net-

work having only nearby contacts;

ii) identifier of nodes is arbitrary (as a consequence distribution of nodes

in space may be unbalanced).

The goal of condition ii is to maintain locality, by preventing arbitrary

144 CHAPTER 6. POS.-BASED DHTS FOR WIRED NETS.

Figure 6.2: Mapping a 2-D space into a ring

conversion of node addresses from one space of identifiers to another, e.g.,

by a hash function. There are many practical examples where this restric-

tion holds. In some DSSs (Aspnes et al., 2004), the overlay structure di-

rectly reflects the contents of the data, which is organized in a sequential

order. In this way, it is possible to make range queries efficiently. On

the contrary, hashing data to obtain some balance in a different identifier

space would defeat this goal. Another example where condition ii holds

occurs in systems where the identifier of a node bears some relation with

its physical location, like in the GeoPeer DHT (see Section 6.1) or when us-

ing landmark ordering (Ratnasamy et al., 2001). The reader should notice

that, without condition ii, there is a trivial solution to the problem we are

addressing, since any n-dimensional discrete space can be mapped into a

ring, as depicted in Figure 6.2 for a two-dimensional case.

Furthermore, we will consider the use of a routing scheme where i)

the pre-processing algorithm can only collect information of O(1) nearby

peers and O(logn) distant peers per node and ii) the routing algorithm will

select, among the forwarding node’s contacts (either short or long range),

6.2. THE HOP LEVEL MECHANISM 145

the one which is closest to destination in terms of Euclidean distances2.

Given these conditions, our goal is to design a mechanism that creates

and maintains a set of LRCs at each node such that routing convergence is

guaranteed with O(logn) expected path lengths despite non-uniform node

distribution. Moreover, the number of LRCs stored by each node (O(logn),

where n is the number of nodes in the system) must not depend on the size

of the virtual identifier space, but only on the number of nodes effectively

existing in the system. Balancing the workload among the peers in the

DSS is an issue orthogonal to our work and it has been already tackled in

previous work (e.g. Aspnes et al., 2004).

6.2.4 Description of Hop Level

We now describe our proposal to create and maintain LRCs in unbalanced

and sparse overlays. The goal of the Hop Level mechanism is to prevent

messages from doing more than a predefined number of hops of the same

length, say b hops. To achieve this goal, LRCs are established automat-

ically whenever a message makes b consecutive hops. Consider, for in-

stance, that some node F is forwarding to node N1 a message m originated

at node S and destined to node D. Assume that F realizes that this will be

the b-th hop of the message. In this case, F triggers the creation of a LRC

from S to N1, denoted S 1→ N1, by sending a control message to S. The pro-

cess is repeated from N1 onwards: if after b hops, message m reaches N2, N1

will create a LRC to N2, N1
1→N2, and so on. Let us call these LRCs, “level-1

LRCs”. If the message path is long enough, it may happen that a sequence

of b level-1 LRCs occurs, for instance: S 1→ N1, N1
1→ N2, . . ., Nb−1

1→ Nb. In

2There is no loss of generality in assuming Euclidean distances, as other metrics could also be
used if more appropriate to the structure of the lattice, e.g., Manhattan distance or one-dimensional
virtual identifier distance.

146 CHAPTER 6. POS.-BASED DHTS FOR WIRED NETS.

Level 1

Level 2

Level 3

S D

Figure 6.3: Hop Level LRCs

this case, a new LRC from S directly to Nb should be created. This new

LRC, S 2→ Nb, is one level above of the previous ones. This mechanism

should be applied recursively for all levels. Hence, a LRC of level-l jumps

over bl hops. Figure 6.3 illustrates our mechanism.

Note that only b consecutive hops of the same level should trigger a LRC

of the next level. We illustrate this restriction with some concrete examples

in a network where b is set to 2. Consider the following message path (→

represents a hop where no LRC is used): N0 → N1 → N2 → N3 → N4 →

N5 → N6 → N7 → N8. In this case, the following LRCs would be created:

N0
1→ N2, N2

1→ N4, N4
1→ N6, N6

1→ N8, N0
2→ N4, N4

2→ N8, and N0
3→ N8, for

a grand total of seven LRCs. Consider now the following message path:

N0
3→ N8

1→ N10
1→ N12

2→ N16. In this case, the following additional LRCs

would be created: N8
2→ N12, N8

3→ N16, and N0
4→ N16. On the other hand, a

message path such as N0
1→ N2

4→ N18
1→ N20 would not trigger the creation

of any additional LRC.

Although Hop Level does not need any a priori limit to the number of

LRCs, such limit may be imposed to ensure different trade-offs between

path lengths and node degrees. The limit should not impair the ability of

Hop Level to adapt to network conditions without needing human assis-

6.2. THE HOP LEVEL MECHANISM 147

tance (self-configurability). Therefore, we do not impose any limit to the

total number of LRCs per node or to the number of levels of each node,

but only to the number of LRCs that exist in each level. As network size

increases, the number of levels will also increase accordingly and thus will

fix the number of LRCs existing in the node. The shape of this growth is

evaluated in Section 6.2.8.

6.2.5 Algorithm

Description

Our implementation of the Hop Level mechanism requires a minimum of

three variables per level l to be carried in each message m: the number of

hops, nhm[l], the node that may receive a new LRC of that level, sm[l], and

whether this node has space for an additional LRC, am[l]. Whenever level

counter nhm[l− 1] reaches the limit b, a new LRC, starting at sm[l] should

be created.

When a forwarding node uses a LRC of level-l to send a message, it

must check the LRC used by the previous hop node, say level-p. If l > p,

neither one of the LRCs that preceded this hop can be used to create new

LRCs (e.g., if a level-3 LRC is being taken after a previous level-2 LRC).

Now, consider that message m is going to be sent along its b-th consecutive

hop of level-l to node N. In this case, forwarding node F sends a control

message to the node that initiated the sequence of level-l, prompting it to

create a LRC of level-(l + 1) to node N. Then, node F sets the number of

hops of level-l to 0 and increments the number of hops of level-(l +1) by 1.

Should this substituting hop become the b-th hop of level-(l +1), the same

process is repeated for level-(l +1), and so on, until a level with fewer than

148 CHAPTER 6. POS.-BASED DHTS FOR WIRED NETS.

b hops is reached.

To implement this algorithm, messages must carry the level pm of the

LRC used by the previous hop to reach F , and an indication of the high-

est level of the array that contains valid information, maxm. Each node F ,

when forwarding the message m to N, executes Algorithm 6.1. The vari-

able l captures the level of the LRC used by F to reach the next hop N.

aF [k] is a boolean variable that indicates whether F has slots available at

level k to store additional LRCs. If F is the source of the message, F = S, it

is necessary to set previous level pm←⊥. In this case, the execution of the

algorithm will initialize maxm← l + 1, sm[maxm]← S, am[maxm]← aS[maxm]

and nhm[maxm−1]← 0.

Maintenance of Routing Tables

As the membership of the overlay changes, some LRCs become obsolete

and new LRCs need to be created. To maintain the LRCs evenly dis-

tributed in face of membership changes, we periodically delete the least

recently used LRC of some randomly selected levels. In our experiments,

path lengths did exhibit low sensitivity to variations of the deletion pe-

riod. Nodes should also purge hanging LRCs that point to neighbors that

left. To do this, nodes can send periodic beacons to their neighbors. Alter-

natively, we can trade this beacon traffic by latency, by using, again, a lazy

approach. In this latter solution, nodes only detect that a LRC is hanging

when they try to use it. We evaluate this lazy approach in Section 6.2.8.

6.2.6 Signaling Cost

The Hop Level mechanism presented in Algorithm 6.1 requires O(logn×

(logb + logN)) bits in each message to store the arrays nh[k] and s[k] (if no

6.2. THE HOP LEVEL MECHANISM 149

Algorithm 6.1: Hop Level algorithm
{Executed at node F when forwarding m to node N}
{Control information carried in message m:}

{maxm — highest valid level; pm — level of LRC used to reach F ;}
{∀k ∈ [0,maxm] : nhm[k],sm[k],am[k] — resp., number of hops, first node and whether there

are available slots in the first node for level-k;}

1: l← level of LRC from F to N (F l→ N)
2: if pm =⊥ or pm < l then
3: maxm← l +1; lim← maxm
4: else
5: lim← pm
6: end if
7: for all k ∈ {l, . . . , lim−1} do
8: sm[k +1]← F ; am[k +1]← aF [k +1]; nhm[k]← 0
9: end for

10: nhm[l]← nhm[l]+1
11: while nhm[l]≥ b do
12: nhm[l] = 0
13: if am[l +1] > 0 then
14: instruct sm[l +1] to create LRC sm[l +1] l+1→ N
15: end if
16: l← l +1;
17: if maxm == l then
18: maxm← maxm +1; nhm[maxm−1]← 0
19: sm[maxm]← sm[maxm−1]; am[maxm]← am[maxm−1]
20: end if
21: nhm[l]← nhm[l]+1
22: end while

slot is available s[k] may be left empty), where n is the effective number of

nodes and N is the size of the virtual identifier space. This can be reduced

by making nodes store back pointers to previous hops, instead of using the

array sm[k]. Back pointers will only require a limited amount of memory

at nodes, as they can be cleaned periodically. This reduces the size needed

to store the arrays to O(logn× logb) by message. Since addresses carried

in the messages need O(logN) bits, this is an acceptable cost for practical

uses. In this way, total cost of messages to create LRCs may be reduced to

O(logN) by LRC by hop, which is similar to other overlay networks.

150 CHAPTER 6. POS.-BASED DHTS FOR WIRED NETS.

6.2.7 Hop Level in a Ring

In rings, the behavior of Hop Level is particularly favorable. In fact, in a

steady state ring, we expect nodes to eventually end up with levels corre-

sponding perfectly to the number of hops of the LRC. Even if many mem-

bership changes had occurred in the past, the deletion mechanism that we

use, will allow the Hop Level mechanism to rebuild the LRCs. Hence,

starting from the lower levels, LRCs will eventually perfectly reflect dis-

tances (in hops) according to their levels. Then, each hop will reduce the

distance by at least a factor of b. For instance, with b = 2 each hop reduces

the distance to destination by a factor of, at least, 2. We believe that Hop

Level can be used with only a few modifications to determinstically ensure

logarithmic path lengths in steady state rings.

6.2.8 Evaluation

Experiment Settings

In this section we experimentally evaluate Hop Level with b = 2. Most ex-

periments, including the comparison with eCAN-like mechanism (Chap-

ter 3) use a Delaunay triangulation as the underlying lattice. However, for

benchmarking purposes, we have also used a mapping of a two-dimensional

space into a one-dimensional ring. In our experiments we evaluate the fol-

lowing aspects:

i) the behavior of Hop Level, when different limits for LRCs by level are

used; this includes knowing the distribution of the LRCs by the levels;

ii) the behavior of Hop Level, when compared with a mechanism de-

rived from the “expressway CAN” (Xu & Zhang, 2002), which we call the

6.2. THE HOP LEVEL MECHANISM 151

”eCAN-like” mechanism, both in balanced and extremely unbalanced sce-

narios;

iii) the behavior of Hop Level in a ring;

iv) the cost of the bootstrap mechanism of Hop Level; and, finally,

v) the behavior of Hop Level in dynamic settings, including settings with

strong membership variation, i.e., under churn.

In the tests, arbitrary pairs of nodes exchange a large number of mes-

sages in networks with sizes ranging from 100 to 50,000 nodes. To route

the messages we have used the greedy routing algorithm, because it has

good performance and it works both in the underlying lattice and with

LRCs, without requiring any extensions. Furthermore, it agrees to the con-

ditions of Section 6.2.3. Hence, next hop is always the neighbor (connected

by a short or long range contact) closest to destination. To let Hop Level

LRC scheme converge, and depending on the network size, we routed up

to 1,000,000,000 different messages and only used the final 3000 paths in

the evaluation of path lengths. Nevertheless, we also show that our mech-

anism achieves good routing performance much earlier than that. To test

unbalanced distributions of nodes we used a truncated Gaussian bivariate

distribution with standard deviations of 0.01 in a [0,1]× [0,1] square.

Number of LRCs per Level

The first aspect that we evaluate is the performance achieved by different

configurations of the Hop Level mechanism. The goal is to determine the

limit for the number of LRCs per level that ensures the most reasonable

compromise between path lengths and node degrees. Figures 6.4 and 6.5

respectively show the average path lengths (in number of hops) and the

152 CHAPTER 6. POS.-BASED DHTS FOR WIRED NETS.

 0

 2

 4

 6

 8

 10

 12

 14

 100 1000 10000 100000

Av
g.

 p
at

h
le

ng
th

Number of nodes

1 LRC p/ level
2 LRCs p/ level
4 LRCs p/ level
6 LRCs p/ level
8 LRCs p/ level

Figure 6.4: Average path lengths for Hop Level

average number of LRCs used by each node for different network sizes

and for different configurations of the Hop Level mechanism: with 1, 2, 4,

6 and 8 LRCs per level.

We can see that all configurations achieve an approximately logarith-

mic/logarithmic trade-off (a logarithmic growth is represented by a straight

line). We believe that this is quite an interesting aspect, because it mini-

mizes the need for manual configuration of parameters. Naturally, the

largest the number of LRCs per node, the more Hop Level trades node de-

gree for path lengths (to be more precise, in our experiments we observed

that 8 is near the limit worthwhile using in a Delaunay triangulation).

Knowing the trade-offs achieved by each configuration of the mechanism

has the obvious advantage of letting the user choose the configuration that

best fits his/her needs. In the case of a Delaunay triangulation, we can

observe that 4 or 6 LRCs per level seem to be very reasonable choices,

because path lengths are close to those achieved with 8 LRCs, but at the

smaller cost of using fewer LRCs. Hence, in the rest of our experiments,

we have fixed the limit of LRCs per level to 6.

Figure 6.6 shows how many LRCs exist on the entire network and the

6.2. THE HOP LEVEL MECHANISM 153

 0

 10

 20

 30

 40

 50

 60

 70

 100 1000 10000 100000

Nu
m

be
r o

f L
RC

s

Number of nodes

1 LRC p/ level
2 LRCs p/ level
4 LRCs p/ level
6 LRCs p/ level
8 LRCs p/ level

Figure 6.5: Average LRCs per node for Hop Level

average length of those LRCs for each hop level. To do this evaluation, we

have used a 50,000 node network with a balanced distribution of nodes,

because a balanced distribution allows to reason in terms of distance. The

effect of truncating the number of LRCs per level to 6 is quite evident in

the figure. Therefore, knowing the growth of the number of levels suf-

fices to determine the growth of the number of LRCs per node. To do

this analysis, we will look at the distances of the LRCs. As the level in-

creases, LRCs become farther away and eventually borders of the square

will start to limit their distance. This effect totally dominates the growth

of the distance in the last levels. Before this becomes evident, growth ratio

of the distances is nearly constant from level to level, experiencing only a

small decay in the higher levels (from 1.75 to 1.58, for the levels with all

the LRCs). Hence, this reasoning points to the conclusion that the number

of levels is approximately logarithmic, because distance growth from one

level to the next is approximately exponential.

154 CHAPTER 6. POS.-BASED DHTS FOR WIRED NETS.

 0

 1

 2

 3

 4

 5

 6

 0 2 4 6 8 10 12
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

Av
g.

 n
um

be
r o

f L
RC

s
pe

r n
od

e

Av
g.

 d
ist

an
ce

 o
f L

RC
s

Level of the LRC

Distribution and distance of LRCs per level

Hop Level (nbr. LRCs)
Hop Level (distance)

Figure 6.6: Distribution of LRCs per level (50,000 node balanced network)

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 100 1000 10000 100000

Av
g.

 p
at

h
le

ng
th

Number of nodes

Hop Level
eCAN-like

Figure 6.7: Average path lengths (Hop Level vs. eCAN-like)

Comparison with “eCAN-like”

To offer some comparative measurement, we ran our scheme against a

benchmark mechanism called “eCAN-like” (Section 3.1.4). This bench-

mark results from an adaptation of the eCAN (Xu & Zhang, 2002) loga-

rithmic/logarithmic node degree/path length mechanism (whose appli-

cations most closely resemble those of our own algorithm). We must em-

phasize that the resulting mechanism, “eCAN-like”, is a simplified version

of the complete eCAN solution, that only captures the fundamental im-

6.2. THE HOP LEVEL MECHANISM 155

pact of the expressways in routing. It does not attempt to reproduce other

features of eCAN (such as the mechanisms that provide support for com-

plex interaction schemes like publish/subscribe). In spite of these simpli-

fications, we believe that our implementation of expressways mimics the

eCAN LRC mechanism with enough accuracy to allow a fair comparison.

Results for the most unbalanced network are depicted in Figure 6.7.

The number of LRCs is not depicted because it is constant in eCAN-like.

When the network is balanced (cases not shown here), eCAN-like network

behaves perfectly well and achieves logarithmic path lengths, given that

enough LRCs are provided. The problem in fact is to know how many

LRCs should be used and from the figures it is clear that eCAN-like is no

longer logarithmic when distribution of nodes is very unbalanced. The

reason for the bad behavior of the eCAN-like mechanism is easily explain-

able: density of LRCs is no longer enough near the center and routing to

nearby nodes will tend to become linear with the number of hops in the

lattice, instead of logarithmic.

Evaluation of Hop Level in a Ring

Increasing the levels of the LRCs would solve the problem, unless, of

course, density in some places were also increased. A solution to this lim-

itation could be to use a brute-force approach with a number of LRCs log-

arithmic to the space granularity (i.e., to the size of the virtual identifier

space). On the contrary, Hop Level is strongly decoupled from the iden-

tifier space and, not only node distribution has little impact on its perfor-

mance, but no configuration is needed for different distributions of nodes

in the space of identifiers.

Now, we determine the behavior of Hop Level in the scenario described

156 CHAPTER 6. POS.-BASED DHTS FOR WIRED NETS.

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 100 1000 10000 100000

Av
g.

 p
at

h
le

ng
th

Number of nodes

Hop Level
Hop Level (ring)

Figure 6.8: Average path lengths (Hop Level vs. Ring)

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 100 1000 10000 100000

Nu
m

be
r o

f L
RC

s

Number of nodes

Hop Level
Hop Level (ring)

Figure 6.9: Average number of LRCs per node (Hop Level vs. Ring)

in Section 6.2.3, where the two-dimensional space is mapped into a ring.

Experimental results for the most unbalanced network are depicted in Fig-

ure 6.8 and 6.9. As expected, behavior of Hop Level in a ring is nearly

perfect with the additional advantage of not requiring some previously

established limit for the number of LRCs per level, because this number is

at most two in the ring. On the other hand, the smaller connectivity of a

ring, when compared to a Delaunay triangulation with the corresponding

fewer LRCs created, has some cost in terms of achievable performance, as

6.2. THE HOP LEVEL MECHANISM 157

 0

 2

 4

 6

 8

 10

 12

 14

 16

 100 1000 10000 100000
 1.5

 2

 2.5

 3

 3.5

 4

 4.5

Av
g.

 n
um

be
r o

f L
RC

s
pe

r n
od

e

Av
g.

 p
at

h
le

ng
th

Number of messages

Number of LRCs
Path lengths

Figure 6.10: Average path lengths and number of LRCs for a network with 100
nodes

paths are typically longer.

Network Convergence

Perhaps one of the central aspects in the evaluation of Hop Level is to

know how fast do the path lengths converge to their optimal value and,

reciprocally, how fast do the nodes create their LRCs. In both cases, we

can observe that for all network sizes under test, a short number of mes-

sages suffices to let the network reach a state similar to a steady state. Fig-

ures 6.10 and 6.11 show for networks with, respectively, 100 and 10,000

nodes, the growth in the number of LRCs of the entire network and the

reduction in the path lengths (note that the x-axis is logarithmic). As we

can see, the slope of the curves is very high when network is recent (re-

member that until this point we are considering a static setting) and, as

network grows older, it suddenly becomes very low. For all network sizes

we tested, path lengths within 3 times the optimal can be achieved well

before 5 messages have been generated by each node.

Although these results show that network converges to a steady state

158 CHAPTER 6. POS.-BASED DHTS FOR WIRED NETS.

 10

 15

 20

 25

 30

 35

 40

 100000 1e+06 1e+07 1e+08 1e+09
 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

Av
g.

 n
um

be
r o

f L
RC

s
pe

r n
od

e

Av
g.

 p
at

h
le

ng
th

Number of messages

Number of LRCs
Path lengths

Figure 6.11: Average path lengths and number of LRCs for a network with 10000
nodes

very fast, such fact would not be of much relevance in a static setting

where nodes enter the network at once and never leave, because sooner

or later a final state would be reached. Hence, what we still need to de-

termine is the behavior of our mechanism in more realistic environments

where nodes can enter and leave the network. In a dynamic environment

there is an inevitable trade-off between the amount of routing information

given to a node (to allow the node to take good routing decisions) and the

capacity of the network to cope with membership changes. The larger the

former the smaller the latter and vice-versa. Therefore, in the next section

we analyze the behavior of Hop Level in dynamic environments.

Dynamic Settings

In this section we will use settings similar to the ones described in Ara-

neola (Melamed & Keidar, 2004), which are based in real measurements

(Almeroth & Ammar, 1996; Saroiu et al., 2002). Hence, we assume that

around 7% of the nodes are permanent, i.e., they boot up with the network

and never go away for the rest of the life of the network. The remaining

6.2. THE HOP LEVEL MECHANISM 159

93% of the nodes are non-permanent and can enter or leave network at

any instant and repeatedly do so. When a node enters the network it be-

comes active, when it leaves it goes to sleep state. When network starts,

non-permanent nodes are neither active nor sleeping, but in a fourth state

that we can call as out. This means that the network starts with 7% of

the permanent nodes. Then, the bootstrap process brings 50 new nodes

from out to active or sleep states with equal probabilities at each time

step3. After each time step, any non-permanent node that is either ac-

tive or sleeping can switch from one state to the other with a given fixed

probability — this simulates the churn (note that nodes reenter the net-

work in a fresh state, i.e., without any LRCs originating or pointing to it).

A node can never return to the out state. Therefore, joins and leaves are

modeled by an exponential distribution. In summary, network starts with

few participants, then the number of participants starts to grow steadily

until some limit. Furthermore, during all over the network life, there are

some (non-permanent) nodes that are constantly entering and departing.

The reader should notice that, since a node can be in active or sleep state

with equal probabilities, in a test with 2,000 nodes, average network size

will be slightly above 1,000 (due to the permanent nodes), after the boot-

strap process. The main parameter to vary in this experiment is the rate at

which nodes enter and leave the network or, in other words, the average

lifetime of non-persistent nodes. The probability of switching state after a

time step is varied from 0.00005 to 0.0025. In the Hop Level mechanism,

churn is associated with two types of costs: the signaling cost of chang-

ing network topology and the cost of worse routing performance. In fact,

since Hop Level uses a kind of lazy reconstruction of the network of LRCs,

3A time step is counted after 50 messages.

160 CHAPTER 6. POS.-BASED DHTS FOR WIRED NETS.

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140 160 180
 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

Av
g.

 L
RC

s
cr

ea
te

d
pe

r n
od

e

Av
g.

 L
RC

s
cr

ea
te

d
pe

r a
ct

ive
 n

od
e

Expected lifetime of a non-persistent node (% of experiment uptime)

LRCs p/ node
LRCs p/ active node

Figure 6.12: Number of LRCs created under churn

routing performance necessarily degrades if fewer LRCs are available as a

consequence of young nodes.

Figure 6.12 shows the number of LRCs created in the network under

churn. This corresponds to the signaling cost of the Hop Level mecha-

nism. Analysis of this cost may be done according to two perspectives.

From the perspective of active non-persistent nodes, there is no problem

with their short existence in the network. On the contrary, the shorter

the lifetime, the fewer LRCs such a node will create (as opposed to most

DHTs, where this number is independent of the churn rate). This corre-

sponds to the line deemed “LRCs p/ node”. On the other hand, the load

for the network and for the persistent nodes increases with churn. This

is represented in the line deemed “LRCs p/ active node”, which shows

the total number of LRCs created in the network, divided by the average

number of active nodes. We can see that even with very small lifetimes

(in the order of 20,000 generated messages in a 1,000 node network, i.e.,

around 20 messages per node), the growth in the number of LRCs created

6.2. THE HOP LEVEL MECHANISM 161

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 100 1000 10000 100000 1e+06
 3.5

 4

 4.5

 5

 5.5

 6

Av
g.

 n
um

be
r o

f L
RC

s
pe

r n
od

e

Av
g.

 p
at

h
le

ng
th

Number of messages

Number of LRCs
Path lengths

Figure 6.13: Path lengths and active number of LRCs under churn

per active node is moderate, when compared to scenarios where average

lifetime is 50 times longer.

The second cost to be paid by churn is in the routing performance

degradation. This is illustrated in Figure 6.13 for a non-persistent node’s

lifetime of 6.7% of experiment up time (66,642 messages, i.e, a node sends

around 66 messages before it leaves). Pattern seen in this graphic is simi-

lar for other average lifetimes, with the following difference: shorter life-

times (more churn) converge faster to a smaller stabilized number of ac-

tive LRCs, which means that smaller lifetimes will result in longer paths

(slightly above 4.5 in the case shown, around 5 hops for the shortest life-

time tested). The graphics of this figure show an overshoot that is due to

the bootstrap process. As network density keeps growing, the LRCs of a

node get more distributed around the network (even without changing).

Hence, this leaves space for the creation of more LRCs. Some time after

the number of nodes stabilizes, this process ends and the number of LRCs

per (new entering) node starts to decay until it stabilizes to a value that

162 CHAPTER 6. POS.-BASED DHTS FOR WIRED NETS.

depends on the churn rate.

We have also checked the cost imposed by hanging LRCs that point

to nodes that are gone. If no action is taken to remove these LRCs, nodes

may try to use them to route. We have observed that, in this case, the num-

ber of messages that follow hanging LRCs, ranges from 1.2% to 13.3%, for

the two extreme churn rates. Pro-actively looking for hanging LRCs, to

trade-off message latency for network bandwidth utilization, is also pos-

sible, but this should follow the conclusions of Rhea et al. (2004). For in-

stance, this search should be made periodically and never in reaction to

some event that may lead to a positive feedback capable of congesting the

network. Another aspect of interest is to know the fraction of LRCs that

are kept by the permanent nodes. As the churn grows, this fraction grows

somewhat moderately between approximately 17% and 23%. In fact, the

limitation imposed on the number of LRCs per level, together with the

limited diameter of the network, ensures that nodes do not get a dispro-

portionately large number of LRCs.

These results show that performance of Hop Level is nearly optimal

and independent of node distribution in space. Furthermore, its lazy way

of creating LRCs enables Hop Level to resist churn very well without com-

promising performance in fresh networks (i.e., with respect to churn, Hop

Level is highly self-configurable). For these reasons, we believe that the

Hop Level mechanism is very well suited to support efficient multidimen-

sional range queries in Distributed Storage Systems as well as position-

based DHTs.

6.3. SUMMARY 163

6.3 Summary

In this chapter we presented a position-based DHT for wired networks,

called “GeoPeer” and a complementary mechanism called “Hop Level”.

GeoPeer uses a Delaunay triangulation to route and to distribute the keys.

It can take advantage of position to support a number of services like

geographically-scoped multicasts or queries. Since GeoPeer suffers from

long path lengths, Hop Level creates and maintains LRCs that augment

the Delaunay triangulation. The positive aspects of Hop Level are the re-

sistance to churn and the possibility of using this mechanism to support

more complex distributed storage systems.

Notes

The work that we described in this chapter is part of an architecture that intends to bring quality of

service (QoS) to publish/subscribe systems, using a DHT. The work on such system has followed

two main threads: one focused on the DHTs and the other on the publish/subscribe system itself.

GeoPeer and Hop Level are part of the DHT thread and result mainly from the work of the author

and of Professor Luís Rodrigues. Part of this work has been previously published in the following

conferences:

• Filipe Araújo and Luís Rodrigues. GeoPeer: A location-aware peer-to-peer sys-

tem. In The 3rd IEEE International Conference on Network Computing and Applications

(NCA ’04), pages 39–46, Cambridge, MA, USA, August 2004.

• Filipe Araújo and Luís Rodrigues. Long range contacts in overlay networks. In

Euro-par 2005, pages 1153–1162, Lisbon, Portugal, August 2005. Springer-Verlag,

LNCS 3648.

164 CHAPTER 6. POS.-BASED DHTS FOR WIRED NETS.

7
Conclusions and Future

Work

7.1 Conclusions

In this thesis we have addressed the problem of deploying scalable, fault-

tolerant and self-configuring dictionaries in highly dynamic networks, like

peer-to-peer overlays and wireless ad hoc networks. Our approach to this

problem consisted of combining two existing methods: distributed hash

tables (DHTs) and position-based routing. While modern DHTs already

own a number of attractive features to support large-scale dictionaries,

they are not suitable for all kinds of networks. For instance, it could be

difficult to implement such an overlay on top of a wireless ad hoc network.

Also, in wired networks, churn raises a very difficult problem, as state

information often changes too fast for the available bandwidth. To over-

come these problems, we argued that we can use positional information

to create efficient DHTs. Positional information allows to simultaneously

solve the routing problem and to support operation of the DHT. The sim-

plicity of position-based routing, allows us to strongly reduce the amount

of control information, thus enabling implementation of scalable DHTs in

several environments.

To demonstrate the efficiency of position-based DHTs, we developed

165

166 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

and evaluated the following mechanisms and algorithms: the Fast Local-

ized Delaunay Triangulation, which is an algorithm for wireless ad hoc

networks that creates a triangulation in a single communication step with

the optimal cost of O(n logn); the cluster-based Cell Hash Routing (CHR)

DHT; the GeoPeer peer-to-peer network, which we can regard as the wired

counterpart of FLDT, because it creates and maintains a complete Delau-

nay triangulation for wired networks; and the Hop Level mechanism,

to augment the Delaunay triangulation with a set of long range contacts

(LRCs).

As a result of this work, we can outline the following conclusions:

• utilization of the Unit Disk Graph (UDG) model raises some impor-

tant questions. On one side we can take advantage of it, to cre-

ate simple and provably correct algorithms like FLDT. On the other

hand, this proves do not hold in real-life models. Additionally, inac-

curacies in position may also cause inconsistencies in the final graph

that may ultimately lead to the loss of some packets;

• in arbitrary non-UDG connectivity models, there is no way to pre-

vent intersections using a localized algorithm. This is a serious draw-

back for position-based routing schemes, not to mention the difficul-

ties in determining position of nodes and the irregularities in the con-

nectivity model. While evidence seems to demonstrate that shortest

path algorithms like AODV (Perkins et al., 2003) or DSR (Johnson

& Maltz, 1996) are not suitable to large scale wireless ad hoc net-

works, it is unclear whether the position-based routing can hold to

its promises;

• in this thesis, we have shown that it is possible to use clustering as

7.2. FUTURE WORK 167

a very effective way to create and maintain routing and DHT opera-

tion, especially when the density of nodes increases;

• position-based clustering may bring two additional advantages: high-

er tolerance for more inexact localization schemes and lower depen-

dency of the UDG model. The clustered scheme of CHR could use

local exchange of routing information to overcome the inaccuracies

of the connectivity model and still take advantage of the localized

approach of position-based routing;

• one of the problems of using real positions, instead of virtual identi-

fiers to create the DHTs, is that distribution of the items of the DHT

among the nodes may become uneven. At the present we are not

aware of any simple and elegant way of tackling this issue;

• churn raises some of the most difficult problems to the self-configur-

ability in wired DHTs. Earlier work showed that there is a trade-off

between bandwidth wasted by the routing scheme and the observed

latency. Our contribution to this problem was to show that, using a

lazy creation of LRCs, we can resist to very high churn rates and still

have only limited increases in bandwidth utilization, with a small

impact on latency.

7.2 Future Work

The work of this thesis leaves some open problems that we consider of

interest for future research, including the following:

Relaxing the UDG model we believe that it is possible to rely on some con-

nectivity models more relaxed than UDG. We believe that either

168 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

FLDT, or variations of FLDT can easily cope with more relaxed and,

hence, more realistic models. We conjecture that these algorithms

can work even if nodes only have a partial view of their unit disk

graph, possibly in a way that is related to the position of their neigh-

bors;

Eliminating the UDG model constraint unlike the previous case, where the

idea is to relax the UDG model, here we try to remove any assump-

tion about the connectivity. We believe that the characteristics of

CHR turn it into a promising platform to create a routing scheme

(without necessarily supporting the DHT) that goes beyond the UDG

model. As we referred before, the idea is to use position-based rout-

ing in the large scale and topology information exchange in the small

scale. Such solution could use routing information to reach only the

invisible nodes inside the cell or adjacent cells. This would combine

the scalability of topology control algorithms with the resistance of

shortest path algorithms to connectivity models that are more gen-

eral than UDG. Additionally, this technique could easily tolerate

an incorrect determination of position. Also, we believe that this

approach will also be the best way to solve the problem of cluster-

induced disconnection that we mentioned in Chapter 5;

Adaptability of Hop Level to churn we also believe that it would be inter-

esting to have LRCs schemes capable of achieving different trade-

offs between latency and bandwidth. For instance, instead of fol-

lowing a purely lazy approach, it could be interesting to create some

LRCs when a node entered the network, but still following a lazy ap-

proach to replace the LRCs. Or, one could periodically check avail-

7.2. FUTURE WORK 169

ability of LRCs and use a lazy creation. This could be extended to a

scenario where a DHT could adapt its routing scheme to the churn

rate and to the available bandwidth.

Support of Quality of Service

A very interesting aspect that we left outside the scope of this thesis was

to introduce quality of service (QoS) information in a DHT. We took early

steps to create a publish/subscribe system with support for the QoS pa-

rameters bandwidth and latency (see Araújo & Rodrigues, 2002; Carvalho

et al., 2003), but to conserve space we did not include description of this

work in the thesis. Such publish/subscribe system works on top of a “clas-

sic” (non-position-based) DHT. The nodes of the DHT do not propagate

the QoS information, which stays local to their links. Each reservation of

resources must go through a small number of predetermined paths (using

different rendezvous nodes, like the rendezvous nodes of Scribe (Row-

stron et al., 2001) or Hermes (Pietzuch & Bacon, 2002)) to find the best

alternative. We describe this idea in the work of Carvalho et al. (2005).

A promising future step to support QoS publish/subscribe systems

would be to place the resources, namely the rendezvous nodes, nearer

the clients. If clients share a geographical relation (for instance they could

all belong to the same university, city or country) it makes sense to use

position to place the rendezvous node(s) in the zone of the clients.

Towards Global GeoPeer

One of the concerns of this thesis was to reduce the gap between the rout-

ing scheme and the DHT, to increase the scalability of the DHT in highly

170 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

Figure 7.1: Global wired and wireless network based on Delaunay triangulations

dynamic networks with stringent bandwidth limitations. We have shown

that using positional information was a viable approach for wireless as

well as wired networks, as long as the topology matched the position of

nodes. The use of position enables the creation of a global architecture that

integrates both types of networks in a seamless way. We outline the pos-

sibility of using a position-based DHT that spans across the wired and the

wireless. Wired as well as wireless nodes would participate in the DHT

and share the storage of keys, according to their geographical position. In

Figure 7.1, we depict a possible global DHT like this, based on Delaunay

triangulations. In the gray area, at the right side of the figure, nodes are

purely wireless, while in the white area, at the left, nodes are wired. In this

figure we assumed that some of the wired nodes also have wireless inter-

faces, to ensure the connectedness of the network. The implementation of

such a Global GeoPeer is a very interesting follow up of our work.

7.2. FUTURE WORK 171

As a final remark to this work, we can say that the use of position

is a promising approach to create efficient DHTs. Positional information

makes it possible to use localized routing schemes, which is specially use-

ful in wireless ad hoc networks and other settings where bandwidth is very

scarce to the pace of topological change. Despite these promises, work on

position-based DHTs (and position-based routing schemes) is still ongo-

ing, due to some open problems that persist. Most notably, future work

should focus on making position-based routing more robust in real life

settings where the UDG model does not hold.

172 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

Bibliography

ABRAHAM, ITTAI, MALKHI, DAHLIA, & DOBZINSKI, OREN. 2004. LAND:

stretch (1 + ε) locality-aware networks for DHTs. Pages 550–559 of: Pro-

ceedings of the fifteenth annual ACM-SIAM symposium on Discrete algo-

rithms. Society for Industrial and Applied Mathematics.

ALMEROTH, KEVIN C., & AMMAR, MOSTAFA H. 1996 (August). Collecting

and Modeling the Join/Leave Behavior of Multicast Group Members in

the MBone. Pages 209–216 of: High Performance Distributed Computing

(HPDC ’96).

ARAÚJO, FILIPE, & RODRIGUES, LUÍS. 2002 (July). On QoS-Aware Publish-

Subscribe. Pages 511–515 of: The 22nd IEEE International Conference on

Distributed Computing Systems Workshops (DEBS ’02).

ASPNES, JAMES, KIRSCH, JONATHAN, & KRISHNAMURTHY, ARVIND. 2004

(July). Load Balancing and Locality in Range-Queriable Data Structures.

In: Twenty-Third Annual ACM SIGACT-SIGOPS Symposium on Principles

of Distributed Computing (PODC 2004).

BALLARDIE, A. 1997 (September). Core Based Trees (CBT version 2) Multicast

Routing. Request for Comments 2189.

173

174 BIBLIOGRAPHY

BARRIÈRERE, LALI, FRAIGNIAUD, PIERRE, KRANAKIS, EVANGELOS, &

KRIZANC, DANNY. 2001. Efficient Routing in Networks with Long Range

Contacts (Extended Abstract). In: WELCH, JENNIFER (ed), 15th Interna-

tion Conference on Distributed Computing. Lecture Notes in Computer

Science, no. LNCS 2180. Lisbon, Portugal: Springer.

BARRIÈRE, LALI, FRAIGNIAUD, PIERRE, NARAYANAN, LATA, & OPATRNY,

JAROSLAV. 2002. Robust Position-Based Routing in Wireless Ad Hoc

Networks with Irregular Transmission Ranges. Wireless Communications

And Mobile Computing journal.

BELLMAN, R.E. 1957. Dynamic Programming. Princeton, N.J.: Princeton

University Press.

BHAGWAN, RANJITA, SAVAGE, STEFAN, & VOELKER, GEOFFREY M. 2003.

Understanding Availability. In: (Kaashoek & Stoica, 2003).

BHARAMBE, ASHWIN R., AGRAWAL, MUKESH, & SESHAN, SRINIVASAN.

2004. Mercury: supporting scalable multi-attribute range queries. SIG-

COMM Comput. Commun. Rev., 34(4), 353–366.

BLOUGH, D., & SANTI, P. 2002. Investigating Upper Bounds on Network

Lifetime Extension for Cell-Based Energy Conservation Techniques in

Stationary Ad Hoc Networks. In: ACM Mobicom.

BONDY, J. A., & MURTY, U. S. R. 1976. Graph Teory with Applications. Else-

vier North-Holland.

BOSE, PROSENJIT, & MORIN, PAT. 1999. Online Routing in Triangulations.

In: 10th Annual Internation Symposium on Algorithms and Computation

(ISAAC).

BIBLIOGRAPHY 175

BOSE, PROSENJIT, & MORIN, PAT. 2001. Competitive online routing in ge-

ometric graphs. Pages 35–44 of: 8th Colloquium on Structural Information

& Communication Complexity. Carleton University Press.

BOSE, PROSENJIT, MORIN, PAT, STOJMENOVIC, IVAN, & URRUTIA, JORGE.

1999. Routing with Guaranteed Delivery in ad hoc Wireless Networks.

Pages 48–55 of: International Workshop on Discrete Algorithms and Methods

for Mobile Computing and Communications (DIALM).

BOSE, PROSENJIT K., DEVROYE, LUC, EVANS, W., & KIRKPATRICK, DAVID.

2002. On the spanning ratio of Gabriel graphs and beta-skeletons. Pages

479–493 of: RAJSBAUM, SERGIO (ed), Proc. 5th Latin American Symp. Theo-

retical Informatics (LATIN 2002). Lecture Notes in Computer Science, no.

2286. Springer-Verlag.

CALINESCU, G. 2003. Computing 2-Hop Neighborhoods in Ad Hoc Wireless

Networks. Adhoc-Now ’03.

CALINESCU, G., MANDOIU, I., WAN, P.J., & ZELIKOVSKY, A. 2001. Se-

lecting Forwarding Neighbors in Wireless Ad Hoc Networks. In: Fifth

International Workshop on Discrete Algorithms and Methods for Mobile Com-

puting and Communication (DIALM).

CARVALHO, NUNO, ARAÚJO, FILIPE, & RODRIGUES, LUÍS. 2003 (Setembro).

IndiQoS: um Sistema Publicação-Subscrição com Qualidade de Serviço.

In: 6a Conferência sobre Redes de Computadores (CRC 2003).

CARVALHO, NUNO, ARAÚJO, FILIPE, & RODRIGUES, LUÍS. 2005 (July). Scal-

able QoS-Based Event Routing in Publish-Subscribe Systems. In: The

4th IEEE International Conference on Network Computing and Applications

(NCA ’05).

176 BIBLIOGRAPHY

CASTRO, MIGUEL, DRUSCHEL, PETER, KERMARREC, ANNE-MARIE, &

ROWSTRON, ANTONY. 2002. SCRIBE: A large-scale and decentralized

application-level multicast infrastructure. IEEE Journal on Selected Areas

in communications (JSAC).

CHAWATHE, YATIN, RATNASAMY, SYLVIA, BRESLAU, LEE, LANHAM, NICK,

& SHENKER, SCOTT. 2003. Making gnutella-like P2P systems scalable.

Pages 407–418 of: Proceedings of the 2003 conference on Applications, tech-

nologies, architectures, and protocols for computer communications. ACM

Press.

CHEN, G., & STOJMENOVIC, I. 1999 (June). Clustering and Routing in Wire-

less Ad Hoc Networks. Tech. rept. TR-99-05. Department of Computer Sci-

ence, SITE, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.

C.R.LIN, & GERLA, M. 1997. Adaptive Clustering for Mobile Wireless

Networks. IEEE Journal Selected Areas in Communication, 15(7), 1265–

1275.

DAS, BEVAN, & BHARGHAVAN, VADUVUR. 1997. Routing in Ad-Hoc Net-

works Using Minimum Connected Dominating Sets. Pages 376–380 of:

ICC (1).

DIJKSTRA. 1959. A note on two problems in connexion with graphs. Nu-

merische Mathematik, 269–271.

DOBKIN, D., FRIEDMAN, S. J., & SUPOWIT, K. J. 1990. Delaunay Graphs

are Almost as Good as Complete Graphs. Discrete Computational Geome-

try, July.

BIBLIOGRAPHY 177

DOUCEUR, J., & WATTENHOFER, R. 2001. Optimizing File Availability in a

Secure Serverless Distributed File System. Pages 4–13 of: Proceedings of

20th IEEE SRDS.

DRUSCHEL, P., & ROWSTRON, A. 2001 (May). PAST: A large-scale, persis-

tent peer-to-peer storage utility. In: HotOS VIII.

DUCHON, PHILIPPE, HANUSSE, NICOLAS, LEBHAR, EMMANUELLE, & SCH-

ABANEL, NICOLAS. 2005. Could any graph be turned into a small-world?

Special issue of the international journal Theoretical Computer Science on

Complex Networks.

EPPSTEIN, D. 2000. Spanning Trees and Spanners. Pages 425–461 of: Hand-

book of Computational Geometry. Amsterdam: Elsevier North-Holland.

ERIKSSON, JAKOB, FALOUTSOS, MICHALIS, & KRISHNAMURTHY,

SRIKANTH. 2004 (February). Scalable Ad Hoc Routing: The Case

for Dynamic Addressing. In: IEEE Infocom 2004.

FEENEY, LAURA MARIE, & NILSSON, MARTIN. 2001. Investigating the En-

ergy Consumption of a Wireless Network Interface in an Ad Hoc Net-

working Environment. In: IEEE INFOCOM.

FINN, GREOGRY G. 1987 (March). Routing and Addressing Problems in Large

Metropolitan-Scale Internetworks. Tech. rept. ISU/RR-87-180. Institute for

Scientific Information.

FRAIGNIAUD, P., & GAURON, P. 2003a (January). The Content-Addressable

Network D2B. Tech. rept. 1349. LRI, Univ. Paris-Sud, France.

178 BIBLIOGRAPHY

FRAIGNIAUD, P., & GAURON, P. 2003b (July). An Overview of the Content-

Addressable Network D2B. Brief Announcement at 22nd ACM Symp. on

Principles of Distributed Computing (PODC).

FRAIGNIAUD, PIERRE, & GAVOILLE, CYRIL. 2002. A Space Lower Bound

for Routing in Trees. In: 19th Annual Symposium on Theoretical Aspects

of Computer Science (STACS), vol. Lecture Notes in Computer Science.

Springer.

GAO, JIE, GUIBAS, LEONIDAS J., HERSHBERGER, JOHN, ZHANG, LI, & ZHU,

AN. 2001. Geometric Spanners for Routing in Mobile Networks. In: 2nd

ACM Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc

01).

GARCÉS-ERICE, L., ROSS, K.W., BIERSACK, E.W., FELBER, P.A., &

URVOY-KELLER, G. 2003. Topology-Centric Look-Up Service. In:

COST264/ACM Fifth International Workshop on Networked Group Commu-

nications (NGC).

GUMMADI, K., GUMMADI, R., GRIBBLE, S., RATNASAMY, S., SHENKER, S.,

& STOICA, I. 2003a. The impact of DHT routing geometry on resilience

and proximity. Pages 381–394 of: SIGCOMM ’03: Proceedings of the 2003

conference on Applications, technologies, architectures, and protocols for com-

puter communications. New York, NY, USA: ACM Press.

GUMMADI, KRISHNA P., DUNN, RICHARD J., SAROIU, STEFAN, GRIBBLE,

STEVEN D., LEVY, HENRY M., & ZAHORJAN, JOHN. 2003b. Measurement,

modeling, and analysis of a peer-to-peer file-sharing workload. Pages

314–329 of: SOSP ’03: Proceedings of the nineteenth ACM symposium on

Operating systems principles. New York, NY, USA: ACM Press.

BIBLIOGRAPHY 179

GUPTA, INDRANIL, VAN RENESSE, ROBBERT, & BIRMAN, KENNETH P. 2001.

Scalable Fault-Tolerant Aggregation in Large Process Groups. Pages

433–442 of: DSN ’01: Proceedings of the 2001 International Conference on

Dependable Systems and Networks (formerly: FTCS). IEEE Computer Soci-

ety.

GUPTA, INDRANIL, BIRMAN, KENNETH P., LINGA, PRAKASH, DEMERS,

ALAN J., & VAN RENESSE, ROBBERT. 2003. Kelips: Building an Effi-

cient and Stable P2P DHT through Increased Memory and Background

Overhead. In: (Kaashoek & Stoica, 2003).

HAEBERLEN, ANDREAS, FLANNERY, ELIOT, LADD, ANDREW M., RUDYS,

ALGIS, WALLACH, DAN S., & KAVRAKI, LYDIA E. 2004. Practical ro-

bust localization over large-scale 802.11 wireless networks. Pages 70–84

of: MobiCom ’04: Proceedings of the 10th annual international conference on

Mobile computing and networking. ACM Press.

HARVEY, NICHOLAS J. A., JONES, MICHAEL B., SAROIU, STEFAN,

THEIMER, MARVIN, & WOLMAN, ALEC. 2003 (March). SkipNet: A Scal-

able Overlay Network with Practical Locality Properties. In: Fourth

USENIX Symposium on Internet Technologies and Systems (USITS ’03).

HU, LINGXUAN, & EVANS, DAVID. 2004. Localization for mobile sensor

networks. Pages 45–57 of: MobiCom ’04: Proceedings of the 10th annual

international conference on Mobile computing and networking. New York,

NY, USA: ACM Press.

ITSIRADIOEQUIPMENT. 1996 (June). Radio Equipment and Systems: High

Performance Radio Local Area Network Type 1, Functional Specifications. ITSI

STC-RES10 Committee.

180 BIBLIOGRAPHY

J. CHU, K. LABONTE, B. N. LEVINE. 2002 (July). Availability and local-

ity measurements of peer-to-peer file systems. In: Scalability and Traffic

Control in IP Networks II. Proceedings of SPIE, vol. 4868.

JAIN, R., PURI, A., & SENGUPTA, R. 1999. Geographical routing using partial

information for wireless ad hoc networks.

JOHNSON, DAVID B, & MALTZ, DAVID A. 1996. Dynamic Source Routing

in Ad Hoc Wireless Networks. In: IMIELINSKI, & KORTH (eds), Mobile

Computing, vol. 353. Kluwer Academic Publishers.

JR., L.R. FORD, & FULKERSON, D.R. 1962. Flows in Networks. Princeton,

N.J.: Princeton University Press.

KAASHOEK, M. FRANS, & KARGER, DAVID R. 2003. Koorde: A Simple

Degree-Optimal Distributed Hash Table. In: (Kaashoek & Stoica, 2003).

KAASHOEK, M. FRANS, & STOICA, ION (eds). 2003. Peer-to-Peer Systems II,

Second International Workshop, IPTPS 2003, Berkeley, CA, USA, February

21-22,2003, Revised Papers. Lecture Notes in Computer Science, vol. 2735.

Springer.

KAPLAN, ELLIOTT D. (ed). 1996. Understanding GPS: Principles and Appli-

cations. Artech House.

KARGER, DAVID, LEHMAN, ERIC, LEIGHTON, TOM, PANIGRAHY, RINA,

LEVINE, MATTHEW, & LEWIN, DANIEL. 1997. Consistent hashing and

random trees: distributed caching protocols for relieving hot spots on

the World Wide Web. Pages 654–663 of: STOC ’97: Proceedings of the

twenty-ninth annual ACM symposium on Theory of computing. New York,

NY, USA: ACM Press.

BIBLIOGRAPHY 181

KARGER, DAVID R., & RUHL, MATTHIAS. 2004. Simple efficient load bal-

ancing algorithms for peer-to-peer systems. Pages 36–43 of: SPAA ’04:

Proceedings of the sixteenth annual ACM symposium on Parallelism in algo-

rithms and architectures. ACM Press.

KARP, BRAD, & KUNG, H. T. 2000. GPRS: Greedy Perimeter Stateless Rout-

ing for Wireless Networks. In: ACM/IEEE International Conference on

Mobile Computing and Networking.

KLEINBERG, JON. 2000. The Small-World Phenomenon: An Algorithmic

Perspective. In: Proceedings of the 32nd ACM Symposium on Theory of

Computing.

KRANAKIS, E., SINGH, H., & URRUTIA, J. 1999. Compass Routing on Geo-

metric Networks. In: 11th Canadian Conference on Computation Geometry

(CCCG 99).

KUHN, FABIAN, WATTENHOFER, ROGER, & ZOLLINGER, AARON. 2002.

Asymptotically optimal geometric mobile ad-hoc routing. In: 6th In-

ternational Workshop on Discrete Algorithms and Methods for Mobile Com-

puting and Communications (DIALM’02).

KUHN, FABIAN, WATTENHOFER, ROGER, ZHANG, YAN, & ZOLLINGER,

AARON. 2003 (July). Geometric Ad-Hoc Routing: Of Theory and Prac-

tice. In: 22nd ACM Symposium on the Principles of Distributed Computing

(PODC 2003).

LAN, LUAN, & WEN-JING, HSU. 2002. Localized Delaunay Triangulation

for Topological Construction and Routing on MANETs. In: 2nd ACM

Workshop on Principles of Mobile Computing (POMC’02).

182 BIBLIOGRAPHY

LI, J., JANNOTTI, J., DE COUTO, D., KARGER, D., & MORRIS, R. 2000 (Au-

gust). A scalable location service for geographic ad-hoc routing. Pages

120–130 of: Proceedings of the 6th ACM International Conference on Mobile

Computing and Networking (MobiCom ’00).

LI, JINYANG, STRIBLING, JEREMY, GIL, THOMER M., MORRIS, ROBERT, &

KAASHOEK, M. FRANS. 2004a (February). Comparing the performance

of distributed hash tables under churn. In: Proceedings of the 3rd Interna-

tional Workshop on Peer-to-Peer Systems (IPTPS04).

LI, MEI, LEE, WANG-CHIEN, & SIVASUBRAMANIAM, ANAND. 2004b (May).

Efficient Peer-to-Peer Information Sharing over Mobile Ad Hoc Net-

works. In: Second Workshop on Emerging Applications for Wireless and Mo-

bile Access (MobEA II), in conjunction with the World Wide Web Conference

(WWW).

LI, XIANG-YANG, CALINESCU, GRUIA, & WAN, PENG-JUN. 2002. Dis-

tributed Construction of a Planar Spanner and Routing for Ad Hoc

Wireless Networks. In: The 21st Annual Joint Conference of the IEEE Com-

puter and Communications Societies (INFOCOM).

LIBEN-NOWELL, DAVID, BALAKRISHNAN, HARI, & KARGER, DAVID. 2002.

Analysis of the evolution of peer-to-peer systems. Pages 233–242 of:

PODC ’02: Proceedings of the twenty-first annual symposium on Principles of

distributed computing. New York, NY, USA: ACM Press.

LIEBEHERR, J., NAHAS, M., & SI, W. 2001 (May). Application-Layer Multi-

casting with Delaunay Triangulation Overlays. Tech. rept. CS-2001-26. Uni-

versity of Virginia, Department of Computer Science, Charlottesville,

VA 22904.

BIBLIOGRAPHY 183

LYNCH, N. 1996. Distributed Algorithms. Chap. 16, pages 691–732 of: Data

Link Protocols. Morgan-Kaufmann.

LYNCH, N., MALKHI, D., & RATAJCZAK, D. 2002. Atomic Data Access in

Content Addressable Networks: A Position Paper. In: 1st. International

Workshop on Peer-to-Peer Systems (IPTPS’02).

MALKHI, DAHLIA, NAOR, MONI, & RATAJCZAK, DAVID. 2002 (July).

Viceroy: A Scalable and Dynamic Emulation of the Butterfly. In: Twenty-

First ACM Symposium on Principles of Distributed Computing (PODC

2002).

MANKU, GURMEET SINGH, BAWA, MAYANK, & RAGHAVAN, PRAB-

HAKAR. 2003. Symphony: Distributed Hashing in a Small World.

In: 4th Usenix Symposium on Internet Technologies and Systems.

http://www.usenix.org/events/usits03/.

MAYMOUNKOV, P., & MAZIÉRES, D. 2002 (March). Kademlia:

A peer-to-peer information system based on the XOR metric.

In: 1st International Workshop on Peer-to-Peer Systems (IPTPS ’02).

http://www.cs.rice.edu/Conferences/IPTPS02/.

MELAMED, ROIE, & KEIDAR, IDIT. 2004 (August). Araneola: A Scal-

able Multicast System for Dynamic Environments. Pages 5–14 of: The

3rd IEEE International Conference on Network Computing and Applications

(NCA ’04).

NI, S.Y., TSENG, Y.C., CHEN, Y.S., & SHEU, J.P. 1999 (August). The Broad-

cast Storm Problem in a Mobile Ad Hoc Network. Pages 151–162 of:

Conference on Mobile Computing, MOBICOM.

184 BIBLIOGRAPHY

NI, S.Y., TSENG, Y.C., & SHEU, J.P. 2001 (April). Efficient Broadcasting

in a Mobile Ad Hoc Network. Pages 16–19 of: International Conference on

Distributed Computing and Systems (ICDCS’01).

NICULESCU, DRAGOŞ, & NATH, BADRI. 2004. VOR base stations for indoor

802.11 positioning. Pages 58–69 of: MobiCom ’04: Proceedings of the 10th

annual international conference on Mobile computing and networking. ACM

Press.

PADMANABHAN, VENKATA N., & SUBRAMANIAN, LAKSHMINARAYANAN.

2001. An investigation of geographic mapping techniques for internet

hosts. SIGCOMM Comput. Commun. Rev., 31(4), 173–185.

PERKINS, C., BELDING-ROYER, E., & DAS, S. 2003 (July). Ad hoc On-

Demand Distance Vector (AODV) Routing. Request for Comments 3561.

PERKINS, CHARLES, & BHAGWAT, PRAVIN. 1994. Highly Dynamic

Destination-Sequenced Distance-Vector Routing (DSDV) for Mobile

Computers. Pages 234–244 of: ACM SIGCOMM’94 Conference on Com-

munications Architectures, Protocols and Applications.

PIETZUCH, P., & BACON, J. 2002. Hermes: A Distributed Event-Based

Middleware Architecture. In: 22nd IEEE International Conference on Dis-

tributed Computing Systems Workshops (DEBS ’02).

PLAXTON, C. GREG, RAJARAMAN, RAJMOHAN, & RICHA, ANDREA W. 1997.

Accessing Nearby Copies of Replicated Objects in a Distributed Envi-

ronment. Pages 311–320 of: ACM Symposium on Parallel Algorithms and

Architectures.

PUCHA, HIMABINDU, DAS, SAUMITRA M., & HU, Y. CHARLIE. 2004

(September-October). How to Implement DHT in Mobile Ad Hoc Networks?

BIBLIOGRAPHY 185

Student poster, the 10th ACM International Conference on Mobile Com-

puting and Network (MobiCom 2004).

QAYYUM, A., VIENNOT, L., & LAOUITI, A. 2000 (March). Multipoint Relay-

ing: An Efficient Technique for Flooding in Mobile Wireless Networks. Tech.

rept. Research Report RR-3898. INRIA.

RAGHUNATHAN, VIJAY, SCHURGERS, CURT, PARK, SUNG, & SRIVASTAVA,

MANI B. 2002. Energy-Aware Wireless Microsensor Networks. IEEE

Signal Processing Magazine, March, 40–50.

RAO, ANANTH, PAPADIMITRIOU, CHRISTOS, SHENKER, SCOTT, & STOICA,

ION. 2003. Geographic routing without location information. Pages 96–

108 of: MobiCom ’03: Proceedings of the 9th annual international conference

on Mobile computing and networking. New York, NY, USA: ACM Press.

RATNASAMY, S., KARP, B., YIN, L., YU, F., ESTRIN, D., GOVINDAN, R.,

& SHENKER, S. 2002 (September). GHT: A Geographic Hash Table for

Data-Centric Storage in SensorNets. In: First ACM International Work-

shop on Wireless Sensor Networks and Applications (WSNA).

RATNASAMY, SYLVIA, FRANCIS, PAUL, HANDLEY, MARK, KARP, RICHARD,

& SCHENKER, SCOTT. 2001. A scalable content-addressable network.

Pages 161–172 of: Proceedings of the 2001 conference on applications, tech-

nologies, architectures, and protocols for computer communications. ACM

Press.

RHEA, S., WELLS, C., EATON, P., GEELS, D., ZHAO, B., WEATHERSPOON,

H., & KUBIATOWICZ, J. 2001. Maintenance-Free Global Data Storage.

IEEE Internet Computing, 5(5), 40–49.

186 BIBLIOGRAPHY

RHEA, S., GEELS, D., ROSCOE, T., & KUBIATOWICZ, J. 2003 (December).

Handling Churn in a DHT. Tech. rept. University of California at Berke-

ley.

RHEA, SEAN, GEELS, DENNIS, ROSCOE, TIMOTHY, & KUBIA-

TOWICZ, JOHN. 2004 (June). Handling Churn in a DHT.

Pages 127–140 of: USENIX 2004 Annual Technical Conference.

http://www.usenix.org/events/usenix04/.

ROWSTRON, ANTONY, & DRUSCHEL, PETER. 2001. Pastry: Scalable, De-

centralized Object Location, and Routing for Large-Scale Peer-to-Peer

Systems. Lecture Notes in Computer Science, 2218, 329–350.

ROWSTRON, ANTONY I. T., KERMARREC, ANNE-MARIE, CASTRO, MIGUEL,

& DRUSCHEL, PETER. 2001. SCRIBE: The Design of a Large-Scale Event

Notification Infrastructure. Pages 30–43 of: Networked Group Communica-

tion.

SAROIU, STEFAN, GUMMADI, P. KRISHNA, & GRIBBLE, STEVEN D. 2002

(January). A Measurement Study of Peer-to-Peer File Sharing Systems.

In: Multimedia Computing and Networking (MMCN).

SEN, SUBHABRATA, & WANG, JIA. 2002. Analyzing peer-to-peer traffic

across large networks. Pages 137–150 of: IMW ’02: Proceedings of the 2nd

ACM SIGCOMM Workshop on Internet measurment. New York, NY, USA:

ACM Press.

SIBSON, R. 1977. Locally equiangular triangulations. The Computer Journal,

21(3), 243–245.

BIBLIOGRAPHY 187

STOICA, ION, MORRIS, ROBERT, KARGER, DAVID, KAASHOEK, FRANS, &

BALAKRISHNAN, HARI. 2001 (August). Chord: A Scalable Peer-To-Peer

Lookup Service for Internet Applications. In: ACM SIGCOMM.

STOJMENOVIC, IVAN. 2002. Position-Based Routing in Ad Hoc Networks.

IEEE Communications Magazine, July.

STOJMENOVIC, IVAN, & LIN, XU. 2001. Loop-Free Hybrid Single-

Path/Flooding Routing Algorithms with Guaranteed Delivery for Wire-

less Networks. IEEE Transactions on Parallel and Distributed Systems,

12(10).

STOJMENOVIC, IVAN, SEDDIGH, MAHTAB, & ZUNIC, JOVISA. 2002. Dom-

inating Sets and Neighbor Elimination-Based Broadcasting Algorithms

in Wireless Networks. IEEE Transactions on Parallel and Distributed Sys-

tems, 13(1), 14–25.

TAKAGI, H., & KLEINROCK, L. 1984. Optimal Transmission Ranges for

Randomly Distributed Packet Radio Terminals. IEEE Transactions on

Communications, 32(3), 246–257.

VAN LEEUWEN, J., & TAN, R.B. 1995. Compact Routing Methods: A Survey.

Tech. rept. UU-CS-1995-05. Universiteit Utrecht.

WANG, YU, & LI, XIANG-YANG. 2002. Geometric Spanners for Wireless Ad

Hoc Networks. In: The 22nd IEEE International Conference on Distributed

Computing Systems.

WANG, YU, & LI, XIANG-YANG. 2003. Localized construction of bounded

degree and planar spanner for wireless ad hoc networks. Pages 59–68 of:

DIALM-POMC ’03: Proceedings of the 2003 joint workshop on Foundations

of mobile computing. New York, NY, USA: ACM Press.

188 BIBLIOGRAPHY

WATTENHOFER, MIRJAM, WATTENHOFER, ROGER, & WIDMAYER, PETER.

2005. Geometric Routing without Geometry. In: 12th Colloquium on

Structural Information and Communication Complexity. Mont-St-Michel,

France: Springer-Verlag, LNCS 3499.

WU, J., & LI, H. 1999 (August). A Dominating Set Based Routing Scheme

in Ad Hoc Wireless Networks. Pages 7–14 of: Third International Workshop

Discrete Algorithms and Methods for Mobile Computing and Communication

(DIALM).

XU, YA, HEIDEMANN, JOHN S., & ESTRIN, DEBORAH. 2001. Geography-

informed energy conservation for Ad Hoc routing. Pages 70–84 of: Mobile

Computing and Networking.

XU, ZHICHEN, & ZHANG, ZHENG. 2002. Building Low-maintenance Express-

ways for P2P Systems. Tech. rept. HPL-2002-41. HP.

YE, FAN, LUO, HAIYUN, CHENG, JERRY, LU, SONGWU, & ZHANG, LIXIA.

2002. A Two-tier Data Dissemination Model for Large-scale Wireless

Sensor Networks. In: Proceedings of ACM MOBICOM.

ZHAO, B. Y., KUBIATOWICZ, J. D., & JOSEPH, A. D. 2001 (April). Tapestry:

An Infrastructure for Fault-tolerant Wide-area Location and Routing. Tech.

rept. UCB/CSD-01-1141. UC Berkeley.

	Contents
	List of Figures
	List of Tables
	Introduction
	Problem Statement and Objectives
	Results
	Contributions
	Outline of the Thesis
	Related Publications
	Additional Publications

	Survey on Position-Based Routing
	Overview
	Advantages of Position-Based Routing

	Assumptions
	Definitions
	Notation
	Unit Disk Graph
	Localized Routing Scheme
	Spanning-ratio
	Competitive-ratio
	Delaunay Triangulation

	Routing Algorithms
	Basic Position-Based Routing Algorithms
	Right-Hand Routing Algorithms
	Hybrid Position-Based Routing Algorithms

	Pre-processing Algorithms for Wireless Ad Hoc Networks
	Gabriel Graph
	Relative Neighborhood Graph
	Delaunay Triangulations for Wireless Networks

	Pre-processing Algorithms for Wired Networks
	Comparison of Routing Schemes
	Comparison of Pre-processing Algorithms
	Comparison of Routing Algorithms

	Cluster-Based Algorithms
	Summary

	Survey on Distributed Hash Tables
	DHTs in Overlay Networks
	The Routing Scheme of a Generic DHT
	Chord
	Content-Addressable Network (CAN)
	Expressways Content-Addressable Network
	Pastry
	Tapestry
	Viceroy
	D2B
	Koorde
	TOPLUS
	Comparison of the DHTs

	Position-Based DHTs
	The Case of Wireless Ad Hoc Networks

	Summary

	A Wireless DHT Based on a Delaunay Triangulation
	Overview of the Fast Localized Delaunay Triangulation
	Description of the FLDT Algorithm
	FLDT Creates PLDel(V) in a Single Communication Step
	Evaluation
	Application in Dynamic Settings
	Discussion
	Changes to GHT
	Summary

	A Wireless Clustered DHT
	Overview of Cell Hash Routing
	Architecture of CHR
	Division into cells
	Routing scheme
	DHT implementation
	Basic Mechanism
	Addressing of the Cells
	Division of the Keys in a Cell
	Resolving Empty Cells

	Implementation Issues
	Evaluation
	Energy Conservation Issues
	The P and F Metrics
	The Monitoring Algorithm
	Determination of the Monitoring Period
	Discussion

	Summary

	Position-Based DHTs for Wired Overlay Networks
	GeoPeer
	Overview of GeoPeer
	Main Components
	Creation and Maintenance of Del. Triangulations
	Division of Space
	Basic Routing
	Applications of GeoPeer

	The Hop Level Mechanism
	Overview of the Hop Level Mechanism
	Comparison of Hop Level with Previous Work
	Problem Statement
	Description of Hop Level
	Algorithm
	Signaling Cost
	Hop Level in a Ring
	Evaluation

	Summary

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

