
Research Article
Adaptive Analysis of Acoustic-Elastodynamic
Interacting Models Considering Frequency Domain
MFS-FEM Coupled Formulations

D. Soares Jr. 1 and L. Godinho 2

1Structural Engineering Department, Federal University of Juiz de Fora, 36036-330 Juiz de Fora, MG, Brazil
2ISISE, Department of Civil Engineering, University of Coimbra, 3030-788 Coimbra, Portugal

Correspondence should be addressed to D. Soares Jr.; delfim.soares@ufjf.edu.br

Received 2 November 2018; Accepted 26 December 2018; Published 6 January 2019

Academic Editor: Mijia Yang

Copyright © 2019 D. Soares Jr. and L. Godinho.This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

This work discusses adaptive iterative coupling strategies for the frequency domain analysis of interacting acoustic-elastodynamic
models. The method of fundamental solutions (MFS) is used to analyze acoustic fluids, whereas the finite element method (FEM)
is employed to discretize elastodynamic solids. Flexible and optimized iterative MFS-FEM coupling procedures are considered,
allowing independent discretizations to be adopted for each subdomain. In this context, it is easy to implement adaptive refinements
and enable enhanced analyses. Two adaptive coupling approaches are discussed, based on multiple and single iterative algorithms.
Numerical results are presented to illustrate the performance of the proposed techniques.

1. Introduction

The analysis of coupled acoustic-elastodynamic systems is
a complex and demanding task, which involves different
physical phenomena and governing equations. It can bemore
efficiently handled by making use of different numerical
methods for each part of the problem. A number of the
research works that have been published on this topic have
looked at BEM-FEM coupling algorithms [1–8]. Indeed, the
BEM (boundary element method) is quite suitable to handle
infinite or semi-infinite media, while the FEM (finite element
method) has been widely studied and developed to handle
structural systems; a combination of both methods thus
seems like a natural choice.

Many of the above references account for the full-
coupling between theBEMand the FEMdirectly by establish-
ing a fully coupled system matrix [1–5]; however, this option
can be quite inefficient. This is because the symmetric and
sparse/banded character of the FEM matrix is significantly
affected by the presence of the BEM components, and opti-
mized solvers, usually used by the FEM, cannot be employed
anymore. Additionally, the different properties of fluid and

solid media may lead to badly conditioned matrices, which
affect the accuracy of the methodology. Finally, standard
direct coupling methodologies require compatible discretiza-
tions (with matching nodes along the interfaces) and this
greatly affects the flexibility and versatility of the technique.
Although alternatives can be used to allow incompatible
discretizations (such as interpolation along the interface),
this usually increases the complexities when setting up the
problem.

In order to overcome these difficulties, iterative cou-
pling procedures have been presented, considering both
time and frequency domain acoustic-elastodynamic inter-
action analyses, and taking into account not only BEM-
FEM coupling, but also considering other possibilities [6–
10]. Studies have shown that iterative coupling approaches
allow BEM and FEM subdomains to be analyzed separately,
leading to smaller and better-conditioned systems of equa-
tions (different solvers, suitable for each subdomain, may be
employed). Furthermore, a small number of iterations are
usually required for the algorithm to converge and the matri-
ces related to the smaller governing systems of equations do
not need to be treated (inverted, triangularized, etc.) at each
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iterative step, thus providing an efficientmethodology.Differ-
ent methods have been tested for frequency domain analysis.
For the elastodynamic subdomain, the FEM [8, 10] and the
newer meshless methods, including the Kansa’s method [9,
10] and the meshless local Petrov-Galerkin method [10], have
been employed with success, while for the acoustic fluid, both
the BEM [8, 10] and the method of fundamental solutions
(MFS) [9, 10] have been used in iterative coupling algorithms.
Previous works [9–12] have also shown that the MFS can
be particularly well suited for the analysis of the acoustic
subdomain, even surpassing the BEM in terms of efficiency
and accuracy. Thus, iteratively coupling the MFS with the
FEM can be a robust and efficient alternative strategy to
handle acoustic-elastodynamic problems in the frequency
domain. It is worth noting that although theMFS is quite well
suited for this type of analysis, it requires previously defining
the position of a set of virtual sources, located outside
the domain of analysis, which are used to construct the
approximation of the acoustic pressure field. The definition
of such positions is still an open problem, which has been
widely discussed in the literature, and some methods have
been proposed for their optimal determination, such as in
[13]; a number of alternative methods have also been pro-
posed to overcome this difficulty, such as those described in
[14–16].

Differently from earlier studies, the present paper reports
on the analysis of acoustic-elastodynamic systems using an
efficient adaptive iterative coupling between the MFS and
the FEM. In fact, adaptive remeshing can be employed in
association with the analyses of different physical problems.
For the case of elastoplasticity, remeshing has been applied
in the context of the BEM-FEM coupled analysis by Elleithy
et al. [17, 18], who updated the subdomains modelled by
the FEM and the BEM according to the evolution of the
plastic zones of the model. Regarding dynamic problems,
although contributions can be found in the literature on
elastodynamics (such as [19–21]) and acoustics (such as
[22, 23]), not many studies report on adaptive methods
for coupled acoustic-elastodynamic interaction problems. Of
the few there are, we would mention Garcı́a et al. [24],
who applied an adaptive FEM algorithm to solve solid-fluid
interaction problems governed by theNavier-Stokes equation
and Demkowicz and Oden [25, 26], who applied an hp-
adaptive coupled BEM-FEM model to study problems of
elastic scattering, assuming the fluid to be governed by the
Helmholtz equation.

In these works, the BEM-FEM coupling is performed in
a direct form, requiring the construction of a fully coupled
matrix. Here, a very different approach is developed: the
regions modelled by the MFS do not change during the
analysis, and thus the fully populated matrices of the MFS
are computed only once, which increases efficiency; as for the
FEM, a coarse discretization is used to start the algorithm,
and this is adaptively enriched as the solution evolves. In this
context, and since refining only takes place within the FEM
meshes, nonmatching nodes must be allowed at the MFS-
FEM interfaces; otherwise changing the MFS point distri-
butions would require the MFS matrices to be recomputed,
with a consequent loss of efficiency. The use of an iterative

coupling algorithm is thus highly desirable because of its
superior performance and because it is very flexible.

In this work, two different iterative coupling strategies
are proposed and discussed, both offering mesh adaptivity.
The first is a more standard approach in which the coupling
between the two domains is computed iteratively, with the
FEM mesh then being analyzed and refined according to
the final coupled solution. The problem is then reanalyzed
using the newmesh.The second approach, on the other hand,
incorporates themesh adaptivitywithin the coupling iterative
process, thus producing a much more efficient procedure
with significant computational savings while still providing
the same accuracy level. For both cases, the use of different
methods to address the acoustic and elastodynamic problems
(MFS and FEM, respectively), which are handled separately, is
a significant advantage of the iteratively coupled approaches.
Indeed, the MFS allows directly accounting for the infinite
character of the problem, while the FEM is quite adequate to
model a finite solid subdomain, which may contain complex
details and spatially variable properties. Thus, their joint use
in iterative coupling strategies, without the requirement of
matching discretizations in the contact interfaces, leads to
a powerful numerical tool, which incorporates what can be
called the “best of two worlds”.

The paper is organized as follows: first, we present
the governing equations of the acoustic and elastodynamic
models and briefly discuss the basic aspects of the MFS
and FEM. We then describe the proposed adaptive iterative
MFS-FEM coupling algorithms and look at some numerical
applications, illustrating the performance and potentialities
of the proposed techniques.

2. Numerical Modelling

This section sets out the basic governing equations of the
model and the main aspects of the numerical techniques
focused upon. Here, acoustic fluids are handled by the MFS
and elastodynamic solids by the FEM.

2.1. Acoustic Medium Discretization. The Helmholtz wave
equation can be written as

𝑝 (x, 𝜔),𝑖𝑖 + 𝜅2𝑝 (x, 𝜔) + 𝑠 (x, 𝜔) = 0 (1)

where 𝑝 stands for the acoustic pressure distribution, 𝑠
represents body source terms, 𝜅 = 𝜔/𝑐 stands for the
wavenumber, 𝑐 represents the wave propagation velocity, and
𝜔 and x represent the frequency and the spatial domain
of analysis, respectively. Subscript commas indicate partial
space derivatives (index notation is adopted). The boundary
conditions of the model are given by

𝑝 (x, 𝜔) = 𝑝 (x, 𝜔) for x ∈ Γ𝑝 (2a)

V (x, 𝜔) = V (x, 𝜔) for x ∈ ΓV (2b)

where the prescribed values are indicated by overbars and
V = −1/(i𝜔𝜌)(𝜕𝑝/𝜕n) represents the normal velocity of
the acoustic fluid along the boundary, whose unit outward
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normal vector is represented by n (𝜌 stands for the mass
density). The boundary of the model is denoted by Γ (Γ =
Γ𝑝 ∪ ΓV) and the domain by Ω. Equation (2a) stands for
essential (or Dirichlet) boundary conditions and (2b) stands
for natural (or Neumann) boundary conditions.

In the MFS, the solution 𝑝 is approximated by a linear
combination of fundamental solutions centred on 𝑛𝑠 virtual
sources (x𝑠), placed outside the domain of interest to avoid
singularities in the response:

𝑝 (x, 𝜔) =
𝑛
𝑠∑
𝑛=1

𝐺 (x, x𝑠𝑛, 𝜔) 𝛼𝑛 (𝜔) + 𝜍 (x, 𝜔) (3)

In (3), 𝐺 stands for the Green’s function of the model, 𝜍 is
related to domain source terms, and 𝛼 represents coefficients
to be determined. By applying approximation (3) to the
model, a system of algebraic equations can be obtained, as
indicated below:

H (𝜔)𝛼 (𝜔) = 𝛽 (𝜔) (4)

where the entries of matrix H and vector 𝛽 are given by

𝐻𝑚𝑛 (𝜔) = 𝐺𝑚𝑛 (𝜔) for x𝑚 ∈ Γ𝑝 (5a)

𝐻𝑚𝑛 (𝜔) = − 1
(i𝜔𝜌) (𝜕𝐺𝑚𝑛 (𝜔) /𝜕n𝑚) for x𝑚 ∈ ΓV (5b)

𝛽𝑚 (𝜔) = −𝜍𝑚 (𝜔) + 𝑝𝑚 (𝜔) for x𝑚 ∈ Γ𝑝 (6a)

𝛽𝑚 (𝜔) = 1
(i𝜔𝜌) (𝜕𝜍𝑚 (𝜔) /𝜕n𝑚) + V𝑚 (𝜔)

for x𝑚 ∈ ΓV
(6b)

and for 2D analysis the Green’s function expression can
be given for an infinite medium by 𝐺𝑚𝑛(𝜔) = 𝐺(x𝑚, x𝑠𝑛, 𝜔)
= −(i/4)H(2)0 (𝜅𝑟𝑚𝑛), where H(2)0 stands for the second type
Hankel’s function of order 0, and the term 𝑟𝑚𝑛 represents the
distance between the collocation (x𝑚) and the virtual source
(x𝑠𝑛) points.

Once the system of (4) is solved (i.e., vector 𝛼 is com-
puted), the approximate solution at any point of interest can
be obtained using definition (3). Formore details considering
the numerical modelling by the method of fundamental
solutions, see [11, 27].

2.2. Solid Medium Discretization. The elastic wave equation
is given by

(𝑐2𝑑 − 𝑐2𝑠 ) 𝑢𝑗 (x, 𝜔),𝑗𝑖 + 𝑐2𝑠 𝑢𝑖 (x, 𝜔),𝑗𝑗 + 𝜔2𝑢𝑖 (x, 𝜔)
+ 𝑏𝑖 (x, 𝜔) = 0

(7)

where 𝑢𝑖 and 𝑏𝑖 stand for displacement and body force
distribution components, respectively. The notation for space
derivatives employed in (1) is once again adopted. In (7), 𝑐𝑑 is
the dilatational wave velocity and 𝑐𝑠 is the shear wave velocity;
they are given by 𝑐2𝑑 = (𝛾 + 2𝜇)/𝜌 and 𝑐2𝑠 = 𝜇/𝜌, where 𝜌 is the
mass density and 𝛾 and 𝜇 are the Lamé constants. Equation

(7) can be obtained from the combination of the following
basic mechanical equations:

𝜎𝑖𝑗 (x, 𝜔),𝑗 + 𝜌𝜔2𝑢𝑖 (x, 𝜔) + 𝜌𝑏𝑖 (x, 𝜔) = 0 (8a)

𝜎𝑖𝑗 (x, 𝜔) = 𝛾𝛿𝑖𝑗𝜀𝑘𝑘 (x, 𝜔) + 2𝜇𝜀𝑖𝑗 (x, 𝜔) (8b)

𝜀𝑖𝑗 (x, 𝜔) = 1
2 (𝑢𝑖 (x, 𝜔),𝑗 + 𝑢𝑗 (x, 𝜔),𝑖) (8c)

where 𝜎𝑖𝑗 and 𝜀𝑖𝑗 are stress and strain tensor components,
respectively, and 𝛿𝑖𝑗 is the Kronecker delta (𝛿𝑖𝑗 = 1, for 𝑖 = 𝑗
and 𝛿𝑖𝑗 = 0, for 𝑖 ̸= 𝑗). Equation (8a) is the momentum
equilibrium equation; (8b) represents the constitutive law of
the elastic model; and (8c) stands for kinematic relations. The
boundary conditions of the model are given by

𝑢𝑖 (x, 𝜔) = 𝑢𝑖 (x, 𝜔) for x ∈ Γ𝑢 (9a)

𝜏𝑖 (x, 𝜔) = 𝜏𝑖 (x, 𝜔) for x ∈ Γ𝜏 (9b)

where, once again, the prescribed values are indicated by
overbars and 𝜏𝑖 = 𝜎𝑖𝑗𝑛𝑗 denotes the traction vector along the
boundary.

In the FEM, the solution 𝑢𝑖 is approximated by a local (i.e.,
at element level) interpolation:

𝑢𝑖 (x, 𝜔) =
𝑛
𝑒∑
𝑛=1

𝑁𝑛 (x) u𝑖𝑛 (𝜔) (10)

In (10), 𝑁 stands for local interpolating functions, 𝑛𝑒
describes the number of nodes in the element, and u𝑖
represents nodal values to be determined. Applying approxi-
mations (10), a system of algebraic equations is obtained once
the FEM is implemented, as indicated below:

(−𝜔2M + K) u (𝜔) = f (𝜔) (11)

where matrices M and K and vector f are given by

M = ⋃
𝑒

∫
Ω
𝑒

N𝑇𝜌N𝑑Ω (12a)

K = ⋃
𝑒

∫
Ω
𝑒

B𝑇DB𝑑Ω (12b)

f (𝜔) = ⋃
𝑒

(∫
Ω
𝑒

N𝑇b (x, 𝜔) 𝑑Ω + ∫
Γ
𝜏𝑒

N𝑇𝜏 (x, 𝜔) 𝑑Γ) (13)

and N, B, and D stand for the interpolation, the strain, and
the constitutive matrices of element 𝑒, respectively.

Once the system of (11) is solved (i.e., vector u is
computed), the approximate solution at any point of interest
can be obtained using definition (10). For more details
considering the numerical modelling by the finite element
method, see [28–30].
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3. Coupling Formulation

For the coupled analysis in question, the following conti-
nuity and equilibrium equations must hold at the interfaces
between the acoustic fluid and solid subdomains:

i𝜔𝑢𝑁 (x, 𝜔) + V (x, 𝜔) = 0 (14a)

𝜏𝑁 (x, 𝜔) + 𝑝 (x, 𝜔) = 0 (14b)

where 𝑢𝑁 and 𝜏𝑁 stand for normal (normal to the common
interface) displacements and tractions, respectively.

The coupling between the acoustic fluid (MFS) and the
elastic solid (FEM) subdomains of the model is enabled
by implementing an iterative procedure that performs a
successive renewal of the relevant variables at the acoustic-
elastodynamic interface. The proposed approach is based on
the imposition of prescribed velocities and tractions at the
fluid and solid common interfaces, respectively, following
relations (14a) and (14b). Since the subdomains are analyzed
separately, independent discretizations can easily be consid-
ered at each subdomain without requiring matching nodes
on common interfaces, thereby enhancing the flexibility of
the technique. This is especially important when remeshing
is considered and adaptive refinement is implemented, as it
is the case here. To ensure and/or to speed up convergence, a
relaxation parameter 𝜆 is introduced in the iterative coupling
algorithm. The effectiveness of the iterative process depends
to a great extent on the selection of this relaxation parameter,
since an inappropriate choice for 𝜆 can significantly increase
the number of iterations in the analysis or, even worse, make
convergence unfeasible.

In the subsections that follow, first, the basic steps of the
iterative coupling procedure are described. Afterwards, we
give an expression for an optimal relaxation parameter and
then discuss the introduction of the adaptive refinement.

3.1. Iterative Coupling. In the 𝑘th iterative step of the MFS-
FEM acoustic-elastodynamic coupling, the MFS subdomain
is analyzed and vector 𝛼𝑘 is computed, as described in
Section 2.1 (the superscript indicates the iterative step of the
analysis). In this case, the MFS analysis takes into account
prescribed velocities at the collocation points on the common
interfaces, which are given by the previous iterative step (in
the first iterative step, null prescribed velocities are assumed).
Once 𝛼𝑘 is computed, the fluid pressures p𝑘 at the FEM
nodes of the common interfaces are evaluated, using (3).
These pressures are then employed to compute the prescribed
tractions at the FEM interface, following (14b) (i.e., 𝜏𝑖 =
−𝑛𝑖𝑝):

𝜏𝑘𝑖 (x, 𝜔) = −𝑛𝑖 (x)
𝑛
𝜀∑
𝑛=1

𝑁𝑛 (x) 𝑝𝑘𝑛 (𝜔) (15)

Here, an interpolation approach, analogous to that described
by (10), is used to describe the pressure distribution along
the FEM interface, as indicated by the r.h.s. of (15), where 𝑛𝜀
describes the number of nodes at the interface of the element.

Once the prescribed values at the common interfaces of
the FEMare known, the FEM subdomains can be analyzed so

that the displacement vector u𝑘 can be computed as described
in Section 2.2. Once u𝑘 is computed, the velocities k𝑘+𝜆 at
the MFS collocation points of the common interface can be
evaluated, following approximation (10) and (14a) (i.e., V =
−i𝜔𝑢𝑗𝑛𝑗):

V𝑘+𝜆 (x, 𝜔) = −i𝜔
𝑛
𝜀∑
𝑛=1

𝑁𝑛 (x) [𝑢𝑘𝑗𝑛 (𝜔) 𝑛𝑗 (x)] (16)

As previously explained, we have used relaxation param-
eters to ensure and/or to speed up the convergence of the
iterative process. Thus, the prescribed velocities that are
employed by the MFS subdomains in the next iterative step
are computed as follows:

V𝑘+1𝑚 (𝜔) = (𝜆) V𝑘+𝜆𝑚 (𝜔) + (1 − 𝜆) V𝑘𝑚 (𝜔) (17)

where 𝜆 stands for the relaxation parameter. Once the
prescribed values at the common interfaces of the MFS are
known, the algorithm goes on to the next iterative step,
repeating all the procedures described above until conver-
gence is achieved.

3.2. Optimal Relaxation Parameter. In order to evaluate an
optimal relaxation parameter, the following square error
functional is minimized here:

𝑓 (𝜆) = 󵄩󵄩󵄩󵄩󵄩k𝑘+1 (𝜔) − k𝑘 (𝜔)󵄩󵄩󵄩󵄩󵄩
2 (18)

where k stands for theMFSprescribed values at the solid-fluid
interfaces.

Taking into account the relaxation of the prescribed
values for the (𝑘 + 1) and (𝑘) iterations, (19a) and (19b) may
be written, based on the definition in (17):

k𝑘+1 (𝜔) = (𝜆) k𝑘+𝜆 (𝜔) + (1 − 𝜆) k𝑘 (𝜔) (19a)

k𝑘 (𝜔) = (𝜆) k𝑘+𝜆−1 (𝜔) + (1 − 𝜆) k𝑘−1 (𝜔) (19b)

Substituting (19a) and (19b) into (18) yields

𝑓 (𝜆) = 󵄩󵄩󵄩󵄩󵄩(𝜆)W𝑘+𝜆 (𝜔) + (1 − 𝜆)W𝑘 (𝜔)󵄩󵄩󵄩󵄩󵄩
2

= (𝜆2) 󵄩󵄩󵄩󵄩󵄩W𝑘+𝜆 (𝜔)󵄩󵄩󵄩󵄩󵄩
2

+ 2𝜆 (1 − 𝜆) (W𝑘+𝜆 (𝜔) ,W𝑘 (𝜔))
+ (1 − 𝜆)2 󵄩󵄩󵄩󵄩󵄩W𝑘 (𝜔)󵄩󵄩󵄩󵄩󵄩

2

(20)

where the inner product definition is employed (e.g.,
(W,W) = ‖W‖2) and new variables, as defined in (21), are
considered.

W𝑘+𝜆 (𝜔) = k𝑘+𝜆 (𝜔) − k𝑘+𝜆−1 (𝜔) (21)

To find the optimal 𝜆 that minimizes the functional 𝑓(𝜆),
(20) is differentiated with respect to 𝜆 and the result is set to
zero, as described below:

(𝜆) 󵄩󵄩󵄩󵄩󵄩W𝑘+𝜆 (𝜔)󵄩󵄩󵄩󵄩󵄩
2 + (1 − 2𝜆) (W𝑘+𝜆 (𝜔) ,W𝑘 (𝜔))

+ (𝜆 − 1) 󵄩󵄩󵄩󵄩󵄩W𝑘 (𝜔)󵄩󵄩󵄩󵄩󵄩
2 = 0

(22)
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Table 1: Material properties of the solid subdomain.

Solid S1 Solid S2
Young Modulus (GPa) 30 200
Mass Density (kg/m3) 2400 7000
Poisson Ratio 0.2 0.3

Rearranging the terms in (22) yields

𝜆 = (W𝑘 (𝜔) ,W𝑘 (𝜔) − W𝑘+𝜆 (𝜔))
󵄩󵄩󵄩󵄩W𝑘 (𝜔) − W𝑘+𝜆 (𝜔)󵄩󵄩󵄩󵄩2

(23)

which is an easy to implement expression that provides
an optimal value for the relaxation parameter 𝜆, at each
iterative step. It should be noted that other alternatives for the
calculation of the relaxation parameter can be found in the
literature, such as in [31–33]; however, this expression leads
to lower computational costs than some of these alternatives
(see, for instance, [33]).

Additionally, one should keep in mind that the computed
relaxation parameter is a complex number since the problem
is formulated in the frequency domain.This complex number
computation could be ranged (e.g., by imposing |𝜆| ≤ 1), but
we have observed that faster convergence is usually achieved
in the iterative process if a nonrestricted relaxation parameter
selection, provided by (23), is considered.Moreover, although
we found that the iterative process is relatively insensitive to
the value of the relaxation parameter used for the first step,
a real value of 𝜆 = 0.5 is assumed in all the cases discussed
here.

3.3. Adaptive Discretization. This work uses triangular finite
elements since discretizations considering this type of ele-
ment are easier to adaptively refine. Adaptive discretizations
are widely used nowadays and a typical loop for an adaptive
FEM through local refinement basically involves 4 steps,
namely: (i) solve; (ii) estimate; (iii) mark; (iv) refine/coarsen.
Thus, the FEM subdomains are analyzed and the solution
in the current triangular mesh obtained (first step). The
error is then estimated using the computed solution (second
step) and it is used to mark (third step) a set of triangles
that are to be refined, which is done while keeping the
triangulation shape regularity and conformity (fourth step).
The adaptive procedure implemented here is based on the
package provided by Chen and Zhang [34].

We implemented two iterative approaches with respect to
the adaptive coupling formulation. The first approach used a
multiple iterative algorithm. In this case, the entire coupling
iterative loop is carried out within each iterative step of
the adaptive iterative loop. This approach is expected to be
very computationally demanding because engaged iterative
procedures are employed. To avoid this computational cost,
we propose a second approach, which is expected to be
more efficient. In this alternative formulation, a unified single
iterative loop is considered and the coupling and adaptive
analyses are carried out together in the same iterative step.
As illustrated in the next section, this seems to be a good
approach because the number of iterative steps required by

the iterative coupling procedure is not significantly increased
by handling the two iterating procedures together in the same
iterative loop.

Figure 1 shows sketches for the multiple and the single
iterative algorithms, taking into account the application being
studied.

4. Numerical Analyses

We assessed the behaviour of the proposed adaptive coupling
procedures by analyzing two test problems. The computed
responses are compared to reference solutions, evaluated
either analytically or numerically. The selected application
examples correspond to (i) a circular solid structure, embed-
dedwithin a fluidmedium, excited by a load positioned either
in the fluid or in the solid subdomain; and (ii) a concrete dam,
with internal galleries and localized cracking, coupled to a
fluid reservoir.

4.1. Circular Inclusion Embedded in a Fluid Medium. This
first test case consists of a circular inclusion defined by a
unit radius and made of one of the elastic materials listed in
Table 1. The fluid hosting the solid inclusion is assumed to
be water, with a density of 1000 kg/m3 and allowing acoustic
waves to travel at 1500 m/s. This system is illuminated by
either an acoustic source, located in the fluid at x=-2.0 m and
y=0 m, or by a vertical dynamic load, located in the solid at
x=-0.5m and y=0m.A schematic representation of themodel
is displayed in Figure 2.

We analyzed this model with the proposed MFS-FEM
strategy, making use of 40 sources and collocation points
for the MFS (Figure 3(a)), and an initial (coarse) mesh for
the FEM, with 102 nodes and 170 elements (Figure 3(b));
refinement is performed until themeshhas at least 500 nodes.
In addition, for comparison purposes a uniform fine FEM
mesh with 559 nodes and 1052 elements was also considered
(Figure 3(c)).

Figure 4 gives a first set of results for an excitation
frequency of 200 Hz and considering “source 1”, which is
located in the fluid. Figures 4(a) and 4(b) show that both
iterative adaptive approaches lead to very similar results
and in both cases the computed pressures along the line of
receivers LR (see Figure 2) perfectly match the analytical
solution (see Figure 4(a)). Given the final FEM meshes
obtained for each adaptive iterative strategy (Figure 4(b)), we
can see that they are quite similar, with refinement occurring
mostly in the same regions. Figure 4(c) describes the dynamic
behaviour of the optimal relaxation parameter, depicting its
computed values during the iterative analysis (single iterative
algorithm). In Figure 4(d), the evolution of the relative error
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Figure 1: Sketches for the iterative analysis: (a) multiple and (b) single iterative algorithms.

Line of receivers
LR

Source 1 (fluid)
x=-2 m and y=0 m

Receiver R
x=3 m and y=1 m

Source 2 (solid)
x=-0.5 m and y=0 m

Radius of 1 m

Figure 2: Geometry of the first application example, considering a solid circular inclusion embedded in an infinite acoustic fluid medium.

(calculated by ascertaining the continuity conditions at the
interface) is displayed, taking into account both iterative
adaptive approaches (a tight tolerance error of 10−7 is adopted
in this work). We can see that, in this specific case, the two
proposed iterative approaches are equally efficient requiring
quite similar numbers of iterations to achieve a solution.
Observing the convergence curve for the so-called multiple
iterative approach, it can be seen that the required tolerance of
10−7was reached after iteration 9; at this point, the refinement
process starts and a mesh refinement is performed whenever
the error is below the required tolerance. Thus, in the last
5 iterations, refinements are performed until the specified
number of nodes is achieved, and only after that the algorithm
stops. Figure 4(d) also presents results for the uniform mesh

depicted in Figure 3(c) and a nonadaptive analysis (fixed
mesh). As we can see, neither the single nor the multiple
iterative approaches increase significantly the number of
iterative steps in the analysis.

Figure 5 gives analogous results for a higher frequency
of 800 Hz. In this case, some differences are observed, with
the single iterative strategy reaching convergence faster, with
25 iterations, while 42 iterative steps are required for the
multiple iterative approach (Figure 5(d)). It is interesting to
notice that the so-called multiple iterative process starts to
converge quite well, but when the first refinement of the
mesh is performed, this fast convergence seems to be lost and
the process needs to find the convergence path again. Once
again and as expected,maintaining a constant fine FEMmesh
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Figure 3: Numerical setup for the analysis of the first application example: (a) sources and collocation points used for the MFS; (b) initial
FEMmesh used for the adaptive analysis; (c) uniform FEMmesh.

leads to a faster convergence (17 iterations); however, this is
achieved at the cost of using larger matrices right from the
beginning of the analysis, and of not refining the mesh at the
key regions of the problem. Comparing the results obtained
for the solid inclusion, in terms of absolute displacements
and final meshes (Figures 5(a) and 5(b)) very similar patterns
and amplitudes are observed, indicating that both iterative
approaches converge to the same solution.

Although the results obtained for the frequencies of 200
Hz and 800 Hz are presented in detail in Figures 4 and
5, illustrating the performance of the proposed techniques,
results have also been computed for a full range of fre-
quencies, varying from 10 Hz to 1000 Hz. In this context,
Figure 6(a) describes the acoustic pressure calculated at the
receiver R (see Figure 2), taking into account the single

iterative approach and analytical answers. Aswe can see, there
is an excellent match between the two responses for all the
analyzed frequencies. Figure 6(b) shows the absolute errors
of the computed pressures for both iterative approaches. The
error curves displayed in the figure reveal that comparable
error levels are registered, although with a visible advantage
for the single iterative procedure. The total number of
iterations for each frequency is given in Figure 6(c). It can be
seen that in most cases only a small number of iterative steps
are required by the iterative approaches (less than 20), with
higher numbers only registered at higher frequencies (a max-
imum number of 55 iterations are observed in Figure 6(c),
for the single iterative approach). In the case of the multiple
iterative approach, when higher frequencies are considered
this approach seems to require a somewhat higher number of
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Figure 4: Results for a source in the fluid and a frequency of 200 Hz (solid S1): (a) pressures along a line of receivers; (b) final refinedmeshes;
(c) evolution of the relaxation parameter (single iterative algorithm); (d) convergence of the iterative analyses.

iterative steps, revealing more difficulties to achieve conver-
gence.The results given in Figure 6 indicate that the proposed
single iterative strategy can be quite effective and amounts to
a very efficient and accurate technique.

Tests were also performed assuming different properties
for the solid material, and Figure 7 presents the computed
results for a frequency of 2000 Hz, for solid S2. Similar
features are observed for this second material and the good
performance of the single iterative approach is once again
highlighted. As observed before, when the multiple iterative
approach is used, the first mesh refinement is performed after
convergence of the solution is reached within the specified
tolerance for the initial mesh; it is clear that the refinement
of the mesh originates significant changes in the response,
deviating from the initially estimated response and leading
to an increase of the relative error before convergence is
once again achieved. In fact, in this case the advantage of
the single iterative strategy is even more noticeable since the

total number of iterations is closer to that of the nonadaptive
analysis and much lower than that of the multiple iterative
approach (almost 100). In this case, the total computational
time taken by the single iterative analysis is around 50% of
the nonadaptive analysis.

A supplementary set of simulations is also performed for
“source 2”, which is positioned within the solid inclusion
(see Figure 2). Figure 8 presents the results calculated for
an excitation frequency of 800 Hz (solid S1). As can be
seen, once again very similar responses are obtained at the
line of receivers LR, covering all the discussed procedures
(Figure 8(a)). As in previous cases, Figure 8(d) shows that the
single iterative procedure seems to allow a faster convergence
to the solution, with fewer iterations.

It is interesting to note that, as expected for this config-
uration, the adaptive analyses give final meshes with intense
refinement around the loaded point (Figure 8(b)). In fact, as
further illustrated in Figure 9 where absolute displacement
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Figure 5: Results for a source in the fluid and a frequency of 800 Hz (solid S1): absolute displacement map in the solid for the (a) single
iterative approach; and (b) multiple iterative approach; (c) evolution of the relaxation parameter (single iterative algorithm); (d) convergence
of the iterative analyses.

values are displayed, very sharp variations of the response
are obtained in this region, with a very steep gradient being
registered in the displacement field. From Figure 9 it can be
seen that both adaptive strategies can accurately capture the
sharp displacement peak generated at the loaded point, while
this peak is significantly smoothed when the nonadaptive
analysis is considered, thus highlighting the importance of
adaptive approaches.

Finally, the results computed for 800 Hz and 2000 Hz
are described in Figures 10 and 11, respectively, for solid S2.
Once again, as the figures show, the accuracy of both iterative
approaches is similar, but the single iterative strategy is con-
siderably more efficient than the multiple iterative approach.
It is interesting to note that for the higher frequency (see
Figure 11(b)), the use of the single iterative process leads to
a reduction of the number of iterations, even when compared
with the first stage of the multiple iterative algorithm (i.e.,
before the first refinement). Indeed, for that situation, the
initial coarse mesh makes it difficult for the multiple iterative
algorithm to reach a solution without refining the mesh,
thus delaying the whole process (analogous behaviour can be
observed in Figure 7(b)). This advantage is quite significant

and leads to additional saving when the single iterative
procedure is used.

4.2. Concrete Dam-Reservoir System. This second numerical
application concerns a more elaborate and realistic engineer-
ing scenario in which the acoustic-elastodynamic interaction
occurs between a water reservoir and a dam structure. In this
case, the geometry of the dam is based on the well-known
Fontana gravity dam, described in many engineering works
(see, for instance, Ingraffea [35], Newell and Wagner [36]),
which has challenging modelling features. This concrete dam
is depicted in Figure 12(a) and has two internal inspection
galleries, and cracking is reported in the scientific literature
at two opposite corners of the lower gallery, due to alkali-
aggregate reaction. The presence of such cracks introduces
highly localized tension concentrations (especially at the
crack tips), which need to be captured accurately when using
a numerical model.

To set up this coupled model, the concrete dam is
modelled using the FEM and the water reservoir, with a water
depth of 20 m, is modelled using the MFS with 10 collocation
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Figure 6: Results for a source in the fluid for a complete frequency range from 10 Hz to 1000 Hz (solid S1): (a) pressure at a receiver located
at x=3 m and y=1 m; (b) absolute errors; (c) total number of iterations for each frequency.

points and virtual sources. In the case of the MFS, Green’s
functions that account for the presence of a rigid floor and
a free surface based on the summation of normal modes
(see [37] for details of this function), are used. For the FEM,
an initial coarse mesh (108 nodes) is defined to initiate the
single iterative adaptive coupling analysis (Figure 12(b)). The
solid material of the dam (concrete) has a Young's modulus
of 22 GPa, a Poisson's ratio of 0.17, and a mass density of
2500 kg/m3; the material damping ratio is assumed to be
1.5%, and it is introduced in the form of a complex Young's
modulus given by 𝐸𝑐 = 𝐸(1 + 2i𝜉). For the adaptive process,
successive refinements in the mesh are performed (one at
each iterative step) until at least 800 nodes are obtained (given
this criterion, on average 9 refinement steps are performed
during the analyses in question).

First, a harmonic pressure load is taken to be located
in the fluid at x=-200 m and y=10 m, assuming different
excitation frequencies. Figure 13 illustrates the convergence
and the final mesh generated for the model, for excitation

frequencies of 25 Hz, 50 Hz and 100 Hz. Similar convergence
patterns are registered for all three frequencies, with a
more oscillatory behaviour being observed at the beginning
of the iterative process (when the adaptive refinement is
performed), followed by progressively decreasing error, until
convergence is achieved. As expected, a larger number of
iterations are required for higher frequencies since a more
complex displacement pattern is then generated. The final
refined meshes illustrated in Figure 13 exhibit slight dif-
ferences between the three frequencies. Indeed, since the
adaptive refinement deals with the specific displacement field
computed at each frequency and tries to refine the mesh at
critical locations, it is natural that differences occur between
frequencies. However, at certain specific places, such as the
crack tips and the corners of the galleries, the mesh is always
refined, indicating that sharper variations of the field occur.

To assess the accuracy of the obtained results, Figure 14
illustrates the (exaggerated) deformed shape (real and imag-
inary part) of the dam at a frequency of 50 Hz, computed
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Figure 7: Results for a source in the fluid for a frequency of 2000 Hz (solid S2): (a) pressures along a line of receivers; (b) convergence of the
iterative analyses; (c) final refined meshes.

using (i) the initial coarse mesh, without refinement; (ii)
the adaptive refinement procedure; (iii) a fine mesh with
3024 uniformly distributed nodes. As this figure shows,
results are related to configurations (ii) and (iii) match quite
closely, while significant deviations are seen for configu-
ration (i). Thus, the proposed strategy leads to accurate
results and properly reproduces the displacement field of the
dam.

Calculations are also performed when the load is applied
to the structure. In this case, a vertical load acting at x=3.25
m and y=37 m (middle of the crest) is considered. Figure 15
illustrates the convergence curves of the iterative analyses and
the final refined meshes that are obtained, for frequencies
of 25 Hz, 50 Hz and 100 Hz. Again, the convergence of
the single iterative approach is somewhat affected by the
adaptive refinement at the beginning of the analyses before
quickly converging to the solution, for the three frequencies.
As expected, for the present load configuration the obtained
refinement patterns are different from those depicted in
Figure 13, with intense refinement occurring around the
application point of the vertical load, particularly for the two
lower frequencies. As described in the previous subsection,
a very steep change in the displacement field occurs around
this point, requiring the concentration of a large amount

of reduced-size elements for proper reproduction. The algo-
rithm also leads to intense refinement around the crack tips,
where similar steep variations also occur.

Finally, Figure 16 shows the results computed at a receiver
placed at x=-20 m and y=5 m, for a range of frequencies
varying from 2 Hz to 100 Hz. In Figure 16(a), the pressures
computed using the single iterative adaptive refinement
and using a constant fine mesh are displayed. Very good
agreement is observed between these solutions, although a
visible difference is registered at 56 Hz. Since there is a
strong peak in the pressure response at this frequency, it is
possible that a specific dynamic behaviour is occurring, such
as a natural mode of the structure; in this case, the results
can become quite dependent on the mesh employed. In
Figure 16(b) it is possible to see that the number of iterations
necessary for the adaptive analyses is always higher than
that required for the nonadaptive analyses, since the adaptive
remeshing somewhat delays the initial convergence of the
iterative process. However, this difference is attenuated for
higher frequencies. The relative CPU times of the analyses
are displayed in Figure 16(c) (i.e., the CPU time of the single
iterative adaptive analysis divided by the CPU time of the
uniform fine mesh analysis is displayed, as a percentage),
clearly indicating the superior performance of the single
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Figure 8: Results for a source in the solid and a frequency of 800 Hz (solid S1): (a) pressures along a line of receivers; (b) final refinedmeshes;
(c) evolution of the relaxation parameter (single iterative algorithm); (d) convergence of the iterative analyses.

iterative adaptive procedure. There is a significant gain at
all frequencies for the proposed adaptive approach, with the
related CPU time even reaching just 30% of that provided by
the uniform mesh analysis. It can be seen that the proposed
single iterative adaptive coupling algorithm is quite efficient
and accurate and very useful in solving practical and complex
engineering problems.

5. Conclusions

This work has described a new strategy for addressing
acoustic-elastodynamic interaction problems in the fre-
quency domain, using optimized iterative coupling between
two distinct numerical methods and incorporating adaptive
refinement within the iterative process. The use of iterative
coupling procedures is known to be quite efficient in such
problems because it avoids complex direct coupling matrices
and makes it simpler to exploit the individual advantages of
each of the coupled numerical methods. The MFS (for the

acoustic fluid) and the FEM (for the solid) are used in the pro-
posed method, the first being a boundary meshless method,
and the latter being a traditional and well established domain
discretization method. The adaptive approach is applied to
the FEM to make it possible to refine its mesh based on the
progressive solutions that are computed during the iterative
coupling analysis. The whole strategy is simple to implement
and can be used to link the existing codes developed for each
method without having to make significant changes. Indeed,
the coupling procedure only makes use of the interface results
provided by each individual method, while the adaptive
refinement is applied to the FEM (solid) and does not
interfere with the MFS (acoustic fluid) part of the model.
The adaptive refinement could equally be applied to the fluid
part of the model without interfering with the elastodynamic
subdomain.The examples explored in this paper demonstrate
that the proposed strategy is accurate and efficient and has a
great potential for practical applications, in that it provides
reliable results even when more complex structures are
analyzed. It was noted that although the adaptive refinement
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Figure 9: Absolute displacement maps for a source in solid S1 (800 Hz): (a) single iterative approach; (b) multiple iterative approach; (c)
uniform mesh.
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Figure 10: Results for a source in the solid and a frequency of 800 Hz (solid S2): (a) pressures along a line of receivers; (b) convergence of the
iterative analyses.
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Figure 11: Results for a source in the solid and a frequency of 2000 Hz (solid S2): (a) pressures along a line of receivers; (b) convergence of
the iterative analyses.
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Figure 13: Convergence of the single iterative approach and final refined mesh (load in the fluid): (a) 25 Hz; (b) 50 Hz; (c) 100 Hz.
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Figure 14: Deformed shapes for a frequency of 50Hz (scale factor of 4∙109): (a) real results; (b) imaginary results.
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Figure 15: Convergence of the single iterative approach and final refined mesh (load in the solid): (a) 25 Hz; (b) 50 Hz; (c) 100 Hz.
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Figure 16: Results throughout a frequency range from 2 Hz to 100 Hz (load in the solid): (a) pressure at x=-20 m and y=5 m; (b) number of
iterations in the analyses; (c) percentage of CPU time (single iterative adaptive analysis/uniform fine mesh analysis).

caused a small delay to the convergence process, the gain
of concentrating the new elements where they are indeed
required is a significant advantage, which is evenmore impor-
tant when working with dynamic (frequency dependent)
problems.

Data Availability

The data used to support the findings of this study, such as
input parameters and computed results, are included within
the article, through graphics, tables, and so on. Further
details may be available to the reader, from the authors, upon
request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The first author acknowledges the financial support of FCT
(Foundation for Science and Technology) and COMPETE,
through Research Project PTDC/ECM-COM/1364/2014.

This work was also financed by FEDER funds through the
Competitivity Factors Operational Programme (COMPETE)
and by national funds through FCT (Foundation for Science
and Technology) within the scope of the project POCI-01-
0145-FEDER-007633 and through the Regional Operational
Programme CENTRO2020 within the scope of the Project
CENTRO-01-0145-FEDER-000006. The financial support
by CNPq (Conselho Nacional de Desenvolvimento Cient́ıfico
e Tecnológico), CAPES (Coordenação de Aperfeiçoamento
de Pessoal de Nı́vel Superior), and FAPEMIG (Fundação de
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