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Abstract

Although estimation and testing are different statistical problems, if we want to use a test

statistic based on the Parzen–Rosenblatt estimator to test the hypothesis that the underlying

density function f is a member of a location-scale family of probability density functions, it

may be found reasonable to choose the smoothing parameter in such a way that the kernel

density estimator is an effective estimator of f irrespective of which of the null or the alternative

hypothesis is true. In this paper we address this question by considering the well-known Bickel–

Rosenblatt test statistics which are based on the quadratic distance between the nonparametric

kernel estimator and two parametric estimators of f under the null hypothesis. For each one

of these test statistics we describe their asymptotic behaviours for a general data-dependent

smoothing parameter, and we state their limiting gaussian null distribution and the consistency

of the associated goodness-of-fit test procedures for location-scale families. In order to compare

the finite sample power performance of the Bickel–Rosenblatt tests based on a null hypothesis-

based bandwidth selector with other bandwidth selector methods existing in the literature, a

simulation study for the normal, logistic and Gumbel null location-scale models is included in

this work.
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1 Introduction

Given X1, . . . ,Xn independent and identically distributed real-valued random variables from an

absolutely continuous distribution with continuous density function f , it is well known that the

unknown density function f may be estimated by using the Parzen–Rosenblatt estimator (Rosen-

blatt, 1956, Parzen, 1962) defined, for x ∈ R, by

fh(x) :=
1

n

n
∑

i=1

Kh(x−Xi),

where Kh(·) = K(·/h)/h, for h > 0, with K a kernel in R, that is, K is a bounded and symmetric

probability density function, and the bandwidth h = hn is a sequence of strictly positive real

numbers converging to zero as n tends to infinity, which we always assume along this paper (see

Devroye and Györfi, 1985, Silverman, 1986, Bosq and Lecoutre, 1987, Wand and Jones, 1995,

Simonoff, 1996, and Tsybakov, 2009, for general reviews on density estimation).

Other than the estimation of the underlying probability density function, the kernel density

estimator can also be used for testing the null hypothesis

H0 : f ∈ F0, (1)

where F0 is a parametric family of density functions, against a general alternative hypothesis.

This idea was first explored in Bickel and Rosenblatt (1973) who considered, among other, two test

statistics based on the L2 distance between the nonparametric estimator fh and two parametric

estimators of f under the null hypothesis. Focusing our attention on the case where F0 is a

location-scale family, that is,

F0 =
{

g(·; θ1, θ2) : θ1 ∈ R, θ2 > 0
}

, (2)

with g(x; θ1, θ2) = f0((x − θ1)/θ2)/θ2, and f0 is a known probability density function on R, the

Bickel–Rosenblatt test statistics we are interested in are given by

In(h) = In(X1, . . . ,Xn;h) := nh

∫

{fh(x)−Kh ∗ g(x; θ̂1, θ̂2)}2dx, (3)

and

Jn(h) = Jn(X1, . . . ,Xn;h) := nh

∫

{fh(x)− g(x; θ̂1, θ̂2)}2dx, (4)

where the integrals are over R with respect to the Lebesgue measure, θ̂k, for k = 1, 2, are consistent

estimators of θk under H0, and ∗ denotes the convolution operator. The theoretical properties of

goodness-of-fit tests based on In(h) and Jn(h) were first studied by Bickel and Rosenblatt (1973)

in the univariate case by using strong approximation techniques for empirical processes, and by

Rosenblatt (1975) in the multivariate case, by using a Poissonization of sample size technique.

However, a full description of their asymptotic behaviour was later provided in Fan (1994) by

using the fact, first noticed in Hall (1984), that central limit theorems for the integrated squared
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error of kernel density estimators can be derived by using a central limit theorem for degenerate U-

statistics with variable kernels (see Ghosh and Huang, 1991, Fan, 1998, Gouriéroux and Tenreiro,

2001 and Cao and Lugosi, 2005, for other works on goodness-of-fit tests based on the kernel

density estimator).

Taking into account that the class F0 is closed with respect to affine transformations, some

authors argue that any reasonable statistic Tn = Tn(X1, . . . ,Xn) for testingH0 should be location-

scale invariant, that is, it should satisfy the equality

Tn(a+ bX1, . . . , a+ bXn) = Tn(X1, . . . ,Xn),

for each a ∈ R and b > 0 (see Henze, 2002, p. 469, Ebner and Henze, 2020, p. 847). As we can

easily see, this invariance property does not hold for the functionals In(h) and Jn(h) whenever we

take for h a deterministic bandwidth, even when θ̂1 is location-scale equivariant and θ̂2 is scale

equivariant, that is,

θ̂1(a+ bX1, . . . , a+ bXn) = a+ b θ̂1(X1, . . . ,Xn)

and

θ̂2(a+ bX1, . . . , a+ bXn) = b θ̂2(X1, . . . ,Xn),

for each a ∈ R and b > 0. However, if we further assume that h = ĥ(X1, . . . ,Xn) depends on

the observations and is scale equivariant, then In(ĥ) and Jn(ĥ) are location-scale invariant test

statistics. This invariance property follows easily from the representations

In(ĥ) = n(ĥ/θ̂2)

∫

{f̃ĥ/θ̂2(y)−Kĥ/θ̂2
∗ f0(y)}2dy, (5)

and

Jn(ĥ) = n(ĥ/θ̂2)

∫

{f̃ĥ/θ̂2(y)− f0(y)}2dy, (6)

where

f̃h(y) =
1

n

n
∑

i=1

Kh(y − Yn,i),

is the kernel estimator with kernel K and smoothing parameter h, based on the so-called scaled

residuals Yn,j = (Xj− θ̂1)/θ̂2, j = 1, . . . , n. When ĥ takes the form ĥ = θ̂2h with h a deterministic

bandwidth, the statistic In(ĥ) is considered in Bowman (1992) (see also Fan, 1994, pp. 332–

336) and the theoretical properties of the goodness-of-fit test based on In(ĥ) are described in

Tenreiro (2007) in the case where θ1 and θ2 are, respectively, the mean and the standard deviation

of g(·; θ1, θ2), and θ̂1 = X̄n and θ̂2 = Sn, where X̄n = n−1
∑n

i=1Xi is the sample mean and

S2
n = n−1

∑n
i=1(Xi − X̄n)

2 is the sample variance. Moreover, Bowman (1992, p. 3) also suggests

to take for the deterministic bandwidth h the asymptotic optimal bandwidth, in the sense of the

mean integrated square error, for estimating the null density f0. In this case, we have

h = h1 = h1(f0;K,n) = cK R(f ′′0 )
−1/5n−1/5, (7)
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with

cK = R(K)1/5µ2(K)−2/5 (8)

(see Bosq and Lecoutre, 1987, pp. 78–83 and Wand and Jones, 1995, pp. 19–23), where R(ϕ) =
∫

ϕ(x)2dx and µ2(ϕ) =
∫

x2ϕ(x)dx, for an arbitrary real-valued measurable function ϕ, which

leads to consider for ĥ the null hypothesis based bandwidth selector

ĥH0 = θ̂2h1(f0;K,n). (9)

In the case of testing an hypothesis of normality, that is, f0 = φ, where φ(x) = (2π)−1/2 exp(−x2/2),
x ∈ R, is the standard Gaussian density, and taking K = φ and θ̂2 = Sn, this leads to the data-

dependent bandwidth

ĥH0 = (4/3)1/5Snn
−1/5. (10)

This approach, also considered in Bowman and Foster (1993, p. 535) for testing a multivariate

hypothesis of normality, was first suggested with apparent good results by Henze and Zirkler

(1990, p. 3600; see also Ebner and Henze, 2020) and the corresponding theoretical properties of

the test statistic In(ĥ) first established in Gürtler (2000).

From an estimation perspective, the choice of the bandwidth is crucial to the performance

of the kernel density estimator, this being one of the most studied topics in kernel density es-

timation, and several data-based approaches have been proposed for selecting h (see Wand and

Jones, 1995, pp. 58–89, and also Tenreiro, 2017, p. 3440, where more recent bandwidth selection

methods are mentioned). Although estimation and testing are different statistical problems, if we

want to test H0 through a test statistic based on the kernel density estimator, it may be found

reasonable to select the smoothing parameter in such a way that fh is an effective estimator of

the underlying density f irrespective of which of the null or the alternative hypothesis is true, a

property that is not fulfilled by automatic bandwidth selector (9). Although some scepticism has

been expressed about this approach by Bowman (1992, p. 3), mainly due to the extra source of

variation introduced into the null distribution of the test statistic by the considered bandwidth

selector, in this paper we intend to address this issue deeply by considering the situation where

the data-dependent smoothing parameter ĥ satisfies the relative consistency condition

ĥ

h0
− 1 = op(1), (11)

where h0 = h0(f ;K,n) is the exact optimal bandwidth in the sense that it minimizes the kernel

density estimator mean integrated square error, that is,

h0 = argmin
h>0

MISE(f ;K,n, h), (12)

where

MISE(f ;K,n, h) = E

(
∫

{fh(x)− f(x)}2dx
)

.
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For a square integrable density f , the existence of this exact optimal bandwidth for all n ∈ N

can be established whenever the kernel K is continuous at zero with R(K) < 2K(0) (see Chacón

et al., 2007). Classical data-based bandwidth selectors such as the least squares cross-validation

bandwidth or the two-stage direct plug-in bandwidth selector based on h1 = h1(f ;K,n), which

are both described in Wand and Jones (1995, pp. 63–65, 71–72), are scale equivariant and satisfy

(11).

The remainder of this work is organised as follows. In Section 2 we describe the asymptotic

behaviour of the Bickel–Rosenblatt test statistics In(ĥ) and Jn(ĥ) with ĥ = ĥn(X1, . . . ,Xn) a

general data-dependent smoothing parameter. In a univariate context these results extend those

obtained by Fan (1994), Gürtler (2000) and Tenreiro (2007). The limiting null distribution and

the consistency of the considered Bickel–Rosenblatt tests for location-scale families are stated

in Section 3. In Section 4 we conduct a simulation study to compare the finite sample power

performance of the Bickel–Rosenblatt tests based on the null hypothesis-based bandwidth selector

ĥH0 with other scale equivariant bandwidth selectors ĥ satisfying condition (11). We consider the

cases of the normal, logistic and Gumbel null location-scale models. Although ĥH0 does not satisfy

this relative consistency condition unless f ∈ F0, we conclude that the tests based on it, especially

those based on In, are in general more powerful than, or at least as powerful as, those based on the

considered bandwidth selectors that satisfy such condition. Some other data-driven bandwidths

inspired in the methods considered in Cao and Van Keilegom (2006), Mart́ınez-Camblor et al.

(2008), and Mart́ınez-Camblor and Uña-Álvarez (2013) in the context of smooth tests for the

k-sample problem are adapted to our context and included in the simulation study. These last

bandwidth selectors, which can be computed by resampling, take the general form λ̂ĥ, where ĥ

is a scale equivariant bandwidth selector (e.g. ĥ = ĥH0) and λ̂ is a data-driven tuning parameter

selector taking values in a finite set of tuning parameters Λ (e.g. Λ = {0.5, 0.75, 1, 1.5, 2}).
Nevertheless, none of these bandwidth selectors have shown to be preferable to ĥH0 . Section 5

includes a brief summary and some conclusions. For convenience of exposition the proofs are

deferred to Appendix A and some of the simulation results are relegated to the supplementary

material.

2 Test statistics asymptotic behaviour

In this section we are interested in the asymptotic behaviour of the Bickel–Rosenblatt test statistics

In(ĥ) and Jn(ĥ) given by (3) and (4), respectively, where ĥ = ĥn(X1, . . . ,Xn) is a general data-

dependent smoothing parameter. In a univariate framework the results presented here extend

those obtained by Fan (1994), Gürtler (2000) and Tenreiro (2007).

2.1 Asymptotic behaviour of In(ĥ)

In order to describe the asymptotic behaviour of the integrated square error In(ĥ) we consider

the following assumptions on the underlying probability density function f , the parametric family
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F0 given by (2), the estimators θ̂1 and θ̂2, the kernel K and the data-dependent bandwidth ĥ.

We denote by F an appropriate set of probability density functions on R that contains F0 and

to which the underlying probability density function f belongs, and by Lr, for r ∈ [1,∞], the

normed vector space of measurable functions ϕ : R → R for which ||ϕ||r < ∞, where ||ϕ||r :=
( ∫

|ϕ(x)|rdx
)1/r

<∞ for r ∈ [1,∞[, and ||ϕ||∞ = inf{c ≥ 0 : |ϕ(x)| ≤ c for almost every x}.

Assumption (D) f ∈ L∞, for all f ∈ F .

Assumption (F) f0 is two times continuously differentiable with f0 ∈ L∞, f ′0, y 7→ yf ′0(y) ∈
L2 ∩ Lr and f ′′0 , y 7→ y2f ′′0 (y) ∈ Lr, for some r ∈ ]2,∞].

Assumption (P) For all f ∈ F there exist θ1(f) ∈ R and θ2(f) > 0 such that θ̂k
p−→ θk(f), for

k = 1, 2. Moreover, if f = g(·; θ1, θ2), for some θ1 ∈ R and θ2 > 0 (i.e. f ∈ F0), we assume that

√
n
(

θ̂k − θk
)

=
1√
n

n
∑

i=1

ψk(Xi; θ1, θ2) + op(1),

where ψk(·; θ1, θ2) is a real function depending on θ1 and θ2, with Ef (ψk(X; θ1, θ2)) = 0 and

Ef (ψk(X; θ1, θ2)
2) <∞, for k = 1, 2.

Assumption (K) The kernel K belongs to K ω, for some ω ∈ {2, 3, . . . }, where K ω is the set of

real-valued functionsK on R with continuous derivatives up to order ω such that lim|u|→∞ uK(u) =

0, for which there exists η ∈ ]0, 1[, such that the real-valued functions Kℓ,η defined, for u ∈ R, by

Kℓ,η(u) = |u|ℓ sup|h−1|≤η |K(ℓ)(u/h)|, are bounded and integrable on R for ℓ = 0, 1, . . . , ω.

The standard Gaussian kernel K = φ belongs to K ω for all ω, and every kernel with compact

support with continuous derivatives up to order ω belongs to K ω.

Assumption (B) For all f ∈ F , there exists a deterministic sequence (hn(f)) = (h(f)) of strictly

positive real numbers satisfying h(f) → 0 and nh(f) → ∞, as n→ ∞, such that

ξn :=
ĥ

h(f)
− 1 = op(1).

As mentioned before, under some conditions on f and K, assumption (B) is fulfilled by the

least squares cross-validation bandwidth and by the two-stage direct plug-in bandwidth selector

with h(f) = h0, where h0 is given by (12). Of course, in these cases assumption (B) is also

fulfilled with h(f) = h1, where h1 is given by (7), as h0 and h1 are asymptotically equivalent

(see Hall and Marron, 1991, p. 159). From a density estimation point of view, the distinction

between bandwidth selectors is usually based on the rate of convergence to zero of the relative

error ξn. For example, we have ξn = Op

(

n−1/10
)

for the least squares cross-validation bandwidth

(see Scott and Terrel, 1987, Hall and Marron, 1987), and ξn = Op

(

n−5/14
)

for the two-stage

direct plug-in bandwidth selector (see Tenreiro, 2003). A better order of convergence is achieved

by the smoothed cross-validation method of Hall et al. (1992) and by the plug-in method of Hall

et al. (1991) for which we have ξn = Op

(

n−1/2
)

. Note that these rates of convergence are not
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directly comparable since the conditions imposed to f in each case are not necessarily the same.

A different situation occurs when ĥ is the well known normal scale bandwidth selector defined by

ĥ = (8
√
π/3)1/5cKn

−1/5σ̂, where cK is given by (8) and σ̂ is a consistent estimator of the standard

deviation σf of f (see Wand and Jones, 1995, p. 60). Although this bandwidth selector satisfies

assumption (B) with h(f) = (8
√
π/3)1/5cKn

−1/5σf , and we have ξn = Op

(

n−1/2
)

whenever the

scale estimator is such that σ̂ − σf = Op

(

n−1/2
)

, the normal scale bandwidth selector does not

fulfil relative consistency condition (11).

In the next result, which proof is given in Section A.1, we describe the asymptotic behaviour

of the Bickel–Rosenblatt test statistic In(ĥ) given by (3) where ĥ = ĥn(X1, . . . ,Xn) is a general

data-dependent smoothing parameter. Recall that R(ϕ) =
∫

ϕ(x)2dx for an arbitrary real-valued

measurable function ϕ.

Theorem 2.1. Under assumptions (D), (F), (P), (K) and (B), let us assume that

h(f)−1/2ξ2n + nh(f)1/2ξωn = op(1). (13)

a) If the null hypothesis is true then

ν−1
f h(f)−1/2

(

In(ĥ)−R(K)
) d−→ N(0, 1),

where

ν2f = 2R(K ∗K)R(f).

b) If the alternative hypothesis is true then

(nh(f))−1
(

In(ĥ)−R(K)
) p−→ R

(

f − g(·; θ1(f), θ2(f))
)

.

Remark 2.1. If h(f) = cn−1/5(1 + o(1)) and ξn = Op

(

n−α
)

, for some c > 0 and 0 < α ≤ 1/2,

condition (13) is satisfied whenever α > max(1/20, 9/(10ω)). Therefore, it holds for the least

squares cross-validation bandwidth selector whenever ω ≥ 10, and for the two-stage direct plug-in

bandwidth selector if ω ≥ 3.

2.2 Asymptotic behaviour of Jn(ĥ)

In order to describe the asymptotic behaviour of the integrated square error Jn(ĥ) some additional

assumptions are needed.

Assumption (D’) For all f ∈ F , f is two times continuously differentiable on R with f ′′ ∈
L∞ ∩ L2.

Assumption (F’) f0 is such that f ′′0 ∈ L∞ ∩ Ls, with 1/r + 1/s = 1 and r ∈ ]2,∞] is given in

assumption (F).

Assumption (K’) The functions u 7→ u2Kℓ,ǫ(u), for ℓ = 0, 1, . . . , ω, where Kℓ,ǫ is defined in

assumption (K), are bounded and integrable on R.
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Assumption (B’) For all f ∈ F , the deterministic sequence h(f) is such that nh(f)5 → λf , as

n→ ∞, for some λf ∈ ]0,∞[.

Note that if h(f) = h0, where h0 is given by (12), then λf = c5KR(f
′′)−1, where cK is given in

(8).

In the next result, which proof is given in Section A.2, we describe the asymptotic behaviour

of the Bickel–Rosenblatt test statistic Jn(ĥ) given by (4) where ĥ = ĥn(X1, . . . ,Xn) is a general

data-dependent smoothing parameter.

Theorem 2.2. Under assumptions (D), (D’), (F), (F’), (P), (K), (K’), (B), (B’), let us assume

that

h(f)−1/2ξn + nh1/2ξωn = op(1). (14)

a) If the null hypothesis is true then

υ−1
f h(f)−1/2

(

Jn(ĥ)−R(K)− cn(f ;K)
) d−→ N(0, 1)

where

cn(f ;K) = nh(f)R(Kh(f) ∗ f − f),

and

υ2f = 2R(K ∗K)R(f) + λfµ2(K)2Varf (ϕf (X))

with

ϕf (u) = f ′′(u)−
∑

k

ψk(u; θ1(f), θ2(f))

∫

f̄ ′′(x)
∂g

∂θk
(x; θ1(f), θ2(f))dx,

where f̄(x) = f(−x), for x ∈ R.

b) If the alternative hypothesis is true then

(nh(f))−1
(

Jn(ĥ)−R(K)− cn(f ;K)
) p−→ R

(

f − g(·; θ1(f), θ2(f))
)

.

Remark 2.2. Under the conditions of Remark 2.1, condition (14) holds if α > max(1/10, 9/(10ω)).

Therefore, it is not fulfilled by the least squares cross-validation bandwidth selector, and it holds

for the two-stage direct plug-in bandwidth selector whenever ω ≥ 3.

3 Bickel–Rosenblatt tests for location-scale families

Under the assumptions of Theorems 2.1 and 2.2, if θ̂1 and θ̂2 are location-scale and scale equivari-

ant estimators of θ1 and θ2, respectively, and the deterministic sequence h(f) is scale equivariant

(that is, h(g) = bh(f), where g(·) = f((·−a)/b)/b, for all a ∈ R and b > 0), a property that is sat-

isfied by exact optimal bandwidth (12), we can easily conclude that ν−1
f h(f)−1/2 = ν−1

f0
h(f0)

−1/2,

υ−1
f h(f)−1/2 = υ−1

f0
h(f0)

−1/2 and cn(f ;K) = cn(f0;K). Therefore, from Theorems 2.1 and 2.2 we

deduce that the tests based on the critical regions

Cn(In(ĥ), α) =
{

ν−1
f0
h(f0)

−1/2
(

In(ĥ)−R(K)
)

> Φ−1(1− α)
}
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In(ĥH0
) Jn(ĥH0

)

level α n = 102 n = 103 n = 104 n = 102 n = 103 n = 104

0.01 0.000 0.002 0.006 0.000 0.002 0.008

0.05 0.001 0.006 0.018 0.001 0.008 0.020

0.10 0.001 0.011 0.030 0.002 0.015 0.035

Table 1: Type I error estimates for the normality tests based on the critical regions Cn(In(ĥ), α)

and Cn(Jn(ĥ), α), with K = φ and ĥ = ĥH0 , for nominal significant levels α = 0.1, 0.05, 0.01 and

sample sizes n = 10k, k = 2, 3, 4. The number of replications for each case is 20, 000.

and

Cn(Jn(ĥ), α) =
{

υ−1
f0
h(f0)

−1/2
(

Jn(ĥ)−R(K)− cn(f0;K)
)

> Φ−1(1− α)
}

,

where α ∈ ]0, 1[ and Φ−1(1 − α) is the quantile of order 1 − α of the standard normal dis-

tribution, are asymptotically of level α and consistent to test f ∈ F0 against f ∈ F \ F0,

that is, Pf

(

Cn(Tn, α)
)

→ α, for all f ∈ F0, and Pf

(

Cn(Tn, α)
)

→ 1, for all f ∈ F \F0,

where Tn = Tn(X1, . . . ,Xn) stands for either In(X1, . . . ,Xn; ĥ(X1, . . . ,Xn)) or Jn(X1, . . . ,Xn;

ĥ(X1, . . . ,Xn)).

Such as in the case where ĥ is deterministic (see Fan, 1995, p. 372), some simulation results

reveal that the asymptotic normal distribution provides a poor approximation to the finite sample

distributions of In(ĥ) and Jn(ĥ) under the null hypothesis, which implies large differences between

the true level and the nominal level of the tests based on the previous critical regions. This fact

is illustrated in Table 1 where type I error estimates based on 20,000 simulations under the null

hypothesis are shown for the normality tests based on the previous critical regions with K = φ

and ĥ = ĥH0 given by (10).

In order to circumvent this problem, the standard strategy (see Fan, 1995, pp. 372–373) is to

consider instead the test defined by the critical region

C (Tn, α) =
{

Tn > q(T ∗
n , α)

}

,

where Tn = Tn(X1, . . . ,Xn) stands for either In(X1, . . . ,Xn; ĥ(X1, . . . ,Xn)) or Jn(X1, . . . ,Xn;

ĥ(X1, . . . ,Xn)), and q(T ∗
n , α) = q(T ∗

n , α;X1, . . . ,Xn) denotes the quantile of order 1 − α of the

distribution of the random variable T ∗
n defined as follows:

1) Use the original sample X1, . . . ,Xn to compute θ̂1 and θ̂2;

2) Draw a random sample U1, . . . , Un from the distribution f0 and define the bootstrap sample

by X∗
n,i = θ̂1 + θ̂2Ui, for i = 1, . . . , n;

3) Use the bootstrap sample to compute Tn(X
∗
n,1, . . . ,X

∗
n,n) and call it T ∗

n .

Of course, if the test statistic Tn is location-scale invariant, which occurs if we further assume

that ĥ is scale equivariant, the quantile q(T ∗
n , α), which does not depend on the observed sample,

is the quantile of order 1 − α of Tn under H0, we denote by q(Tn, α). This quantile is assumed

to be a known quantity as is can be well approximated by repeating steps 2) and 3) for a large
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number of times. As stated in the next result, which proof is presented in Section A.3, in this

important case the test based on the critical region C (Tn, α), has a level of significance at most

equal to α for each sample size n, and is consistent to test f ∈ F0 against f ∈ F \F0.

Theorem 3.3. Under the assumptions of Theorems 2.1 or 2.2, let us assume that θ̂1 and θ̂2 are

location-scale and scale equivariant estimators of θ1 and θ2, respectively. If the bandwidth selector

ĥ is scale equivariant, then the test statistic Tn, where Tn stands for either In(ĥ) or Jn(ĥ), is

location-scale invariant, and the test based on the critical region

C (Tn, α) =
{

Tn > q(Tn, α)
}

, (15)

where α ∈ ]0, 1[, is such that

Pf

(

C (Tn, α)
)

≤ α, for all f ∈ F0,

and

Pf

(

C (Tn, α)
)

→ 1, for all f ∈ F \F0.

4 Finite sample results

In this section we conduct a simulation study to compare the finite sample power performance

of goodness-of-fit tests based on critical regions (15) for several choices of the scale equivariant

bandwidth selector ĥ. More precisely, we intend to compare the null hypothesis based bandwidth

selector ĥH0 proposed by Bowman (1992) given by (9), with other scale equivariant bandwidth

selectors ĥ satisfying relative consistency condition (11), for which it is expected, at least from an

asymptotic point of view, that the kernel estimator fĥ is an effective estimator of the underlying

density f irrespective of which of the null or the alternative hypothesis is true. To this end, besides

ĥH0 three other automatic and scale equivariant bandwidth selectors are considered in our study.

They are the least squares cross-validation bandwidth selector ĥCV, the two-stage direct plug-in

bandwidth selector ĥPI (see Wand and Jones, 1995, pp. 63–65, 71–72), and also a modified version

of the bandwidth selector proposed in Chacón and Tenreiro (2013), where the cross-validation

function is replaced by the weighted cross-validation function with γ = 0.5 (for the definition of

the weighted cross-validation function, see Tenreiro, 2017, p. 3440). Under some conditions on f ,

ĥCT fulfils assumption (B) with h(f) = h0 and ξn = Op

(

n−5/14
)

(see Chacón and Tenreiro, 2013,

Theorem 3.1, p. 2207). The power results observed in our simulation study for the bandwidths

ĥCV, ĥPI and ĥCT reveal that this latter bandwidth presents a good overall performance for a

wide range of alternative density features, which is relevant for real data situations where there is

usually little prior information on the alternative density shape. For this reason, and because no

essential feature is lost, hereafter we confine to the results obtained by the bandwidths ĥH0 and

ĥCT.
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From representations (5) and (6), and taking for K the standard normal density, which we

always assume from now on, the test statistics In(ĥ) and Jn(ĥ) can be evaluated from the equalities

In(ĥ) =
h̃

n

n
∑

i,j=1

Q(Yn,i, Yn,j; h̃)

and

Jn(ĥ) =
h̃

n

n
∑

i,j=1

R(Yn,i, Yn,j; h̃),

where for u, v ∈ R and h > 0,

Q(u, v;h) = φ√2h(u− v)− φ√2h ∗ f0(u)− φ√2h ∗ f0(v) + φ√2h ∗ f̄0 ∗ f0(0)

and

R(u, v;h) = φ√2h(u− v)− φh ∗ f0(u)− φh ∗ f0(v) + f̄0 ∗ f0(0),

with h̃ = ĥ/θ̂2, Yn,j = (Xj − θ̂1)/θ̂2, j = 1, . . . , n, and f̄0(u) = f0(−u), for u ∈ R. Taking into

account the convolution properties of the Gaussian densities (see Wand and Jones, 1995, pp. 177–

180), the calculation of In(ĥ) and Jn(ĥ) is especially simple for the normality test in which case

no numerical integration is required. In this case, we have

In(ĥ) = nh̃

n+1
∑

k,l=1

wkφ(β2
k+β2

l )
1/2(αk − αl)wl

and

Jn(ĥ) = nh̃
n+1
∑

k,l=1

wkφ(γ2
k+γ2

l )
1/2(αk − αl)wl,

where w = ( 1n , . . . ,
1
n ,−1), α = (Yn,1, . . . , Yn,n, 0), β =

(

h̃, . . . , h̃, (h̃2 + 1)
1
2

)

and γ = (h̃, . . . , h̃, 1).

We start the study on the finite sample performance of the tests based on the critical regions

(15) for nominal levels α = 0.1, 0.05, 0.01, by considering the test of normality in which case the

null model is given by (2) with f0 = φ, and we take θ̂1 = X̄n and θ̂2 = Sn the maximum likelihood

estimators of θ1 and θ2 under H0. As the test statistics In(ĥ) and Jn(ĥ) for ĥ = ĥH0 and ĥ = ĥCT

are invariant under null hypothesis (see Theorem 3.3), the quantiles of order 1 − α in critical

regions (15) are estimated by performing 100,000 simulations under the null hypothesis. We

consider alternative distributions from a well-known set of normal mixture densities considered

in Marron and Wand (1992) which is often used in the context of kernel density estimation. This

set is very rich, containing densities with a wide variety of features, such as kurtosis, skewness,

multimodality, etc. The densities of the considered alternatives jointly with the density of the

normal distribution with the same mean and variance are shown in Figure 1. The densities are

identified as in Marron and Wand (1992) and the values for the parameters of this set of normal

mixture densities are given in Table 1 of the same article. For the nominal level α = 0.05 and

sample sizes n = 20, 50, 80 we report in Table 2 the power estimates based on 10,000 samples
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Figure 1: Probability density functions of alternatives from the Marron and Wand (1992) set of

normal mixture densities (solid) and the probability function of the Gaussian distribution with the

same mean and variance of the considered alternative (dashed).

from the considered set of alternative densities. All the simulations in this work were carried out

using programs written in the R language (R Development Core Team, 2019).

Taking into account some simulation experiments, not presented here to save space, to estimate

the mean integrated squared error of the kernel density estimator for each one of the bandwidths

ĥH0 and ĥCT, we can conclude that the kernel estimator based on ĥH0 performs better than that

based on ĥCT for the normal mixture densities 2, 6, 8, 9 and 12 (for the considered sample sizes).

This may explain the results shown in Table 2 where the tests based on ĥH0 perform generally

better than those based on ĥCT for alternatives 2, 6, 8 and 9, and they perform similarly for

alternative 12. The opposite situation occurs for the remaining four normal mixtures where the

kernel density estimator based on ĥCT performs much better than that based on ĥH0 . However,
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In(ĥ) Jn(ĥ)

ĥ n = 20 n = 50 n = 80 n = 20 n = 50 n = 80

Alternative MW 2

ĥH0
0.18 0.34 0.49 0.08 0.16 0.26

ĥCT 0.13 0.26 0.39 0.11 0.19 0.27
Alternative MW 3

ĥH0
0.86 1.00 1.00 0.74 1.00 1.00

ĥCT 0.81 1.00 1.00 0.80 1.00 1.00
Alternative MW 4

ĥH0
0.32 0.72 0.93 0.07 0.28 0.63

ĥCT 0.57 0.93 0.99 0.54 0.90 0.99
Alternative MW 6

ĥH0
0.16 0.51 0.76 0.32 0.70 0.89

ĥCT 0.13 0.41 0.66 0.20 0.61 0.86
Alternative MW 7

ĥH0
0.97 1.00 1.00 1.00 1.00 1.00

ĥCT 0.96 1.00 1.00 0.99 1.00 1.00
Alternative MW 8

ĥH0
0.13 0.38 0.59 0.22 0.51 0.72

ĥCT 0.12 0.33 0.53 0.15 0.44 0.66
Alternative MW 9

ĥH0
0.22 0.67 0.89 0.42 0.84 0.96

ĥCT 0.18 0.55 0.81 0.26 0.77 0.95
Alternative MW 12

ĥH0
0.10 0.21 0.33 0.12 0.25 0.38

ĥCT 0.09 0.20 0.35 0.10 0.24 0.39
Alternative MW 15

ĥH0
0.23 0.72 0.95 0.44 0.89 0.99

ĥCT 0.64 1.00 1.00 0.65 1.00 1.00

Table 2: Empirical power results, at level α = 0.05, for the goodness-of-fit tests for the normal

distribution based on In(ĥ) and Jn(ĥ) with ĥ = ĥH0 and ĥ = ĥCT, for some alternatives from

the Marron and Wand (1992) set of normal mixture densities. The power estimates are based on

10, 000 samples from the considered alternatives.

only for the normal mixtures 4 and 15 the tests based on ĥCT perform clearly better than those

based on ĥH0 . For densities 3 and 7 the tests perform similarly. As the considered alternative

densities are far from the null hypothesis density family in shape, we can conclude that even a low

performing bandwidth selector from a density estimation point of view is good enough to detect

such alternatives. In this situation, estimation and testing demand different answers regarding

bandwidth selection. The results presented in Table 2 for the skewed unimodal density 2 also

deserve an additional comment. This is an interesting case because density 2 is not far from the

normal density in shape, and we may expect that ĥH0 , as based on the null density family, may

reach good power results for alternative densities which are not far from the null density model in

shape. The simulations results observed for density 2 support this idea. The results presented in

Table 2 also show different performances for the tests based on the test statistics In(ĥ) and Jn(ĥ)
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no matter which bandwidth is used. The statistic Jn(ĥ) seems to be more effective in detecting

multimodal alternatives, whereas In(ĥ) shows in general a better performance in the detection of

unimodal alternatives.

Based on the previous conclusions, we have good reasons to believe that ĥH0 may reach a good

power performance for wide sets of alternative distributions. In order to examine in detail this

question, other than the goodness-of-fit test for the normal distribution we also consider two other

null location-scale models. They are the logistic model where f0(x) = (exp(−x/2)+ exp(x/2))−2,

for x ∈ R, and the Gumbel extreme value model where f0(x) = exp(−x − exp(−x)), for x ∈ R.

For this latter family of distributions we take for θ̂1 and θ̂2 the maximum likelihood estimators of

θ1 and θ2, which satisfy

θ̂2 = X̄n −
∑n

j=1Xj exp(−Xj/θ̂2)
∑n

j=1 exp(−Xj/θ̂2)
and θ̂1 = −θ̂2 log

(

n−1
n
∑

j=1

Xj exp(−Xj/θ̂2)

)

.

In the case of the goodness-of-fit test for the logistic distribution we use the moment estimators

θ̂1 = X̄n and θ̂2 =
√
3Sn/π which are simpler to evaluate and nearly as efficient as the maximum

likelihood estimators (see Johnson et al., 1995, pp. 127–130). Similarly to the goodness-of-fit test

for the normal distribution, we are under the assumptions of Theorem 3.3 and the tests based on

critical regions (15) are implemented as explained before.

For comparison proposes, besides the bandwidth selectors ĥH0 and ĥCT, we consider in this

study other bandwidth selectors which are based on the common principle that the bandwidth

should be tuned in order to improve the power performance of the test. In order to implement

this idea, we consider the set of scale equivariant bandwidths based on ĥ, where ĥ stands for ĥH0

or ĥCT, given by

ĥλ(X1, . . . ,Xn) = λĥ(X1, . . . ,Xn), λ ∈ Λ,

where Λ is a finite set of strictly positive real numbers that will act as tuning parameters. Besides

the value λ = 1 associated with the reference bandwidth ĥ, this set is meant to include tuning

parameters smaller and larger than the unit. If we denote by Tn,λ(X1, . . . ,Xn) one the statis-

tics In(X1, . . . ,Xn; ĥλ(X1, . . . ,Xn)) or Jn(X1, . . . ,Xn; ĥλ(X1, . . . ,Xn)), from the scale equivariant

property of ĥ we know that Tn,λ is location-scale invariant, and therefore the null distribution

of Tn,λ does not depend on f ∈ F0, where F0 is given by (2). Therefore, the tests with critical

regions

C (Tn,λ, α) = {Tn,λ > q(Tn,λ, α)}, λ ∈ Λ, (16)

where q(Tn,λ, α) denotes the quantile of order 1 − α of Tn,λ under H0, have levels of significance

at most equal to α. As before, we assumed that these quantiles are known quantities as they

can be well approximated by simulating under the null hypothesis for a large number of times

(100,000 replications under the null hypothesis are used). The power properties of each one of

the previous test procedures depend on λ which is the reason that its choice is usually crucial to

obtain a performing test procedure. In order to make such a choice, we need to define a suitable
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location-scale invariant measurable function taking values in Λ, λ̂ = λ̂(X1, . . . ,Xn), called tuning

parameter selector, on the basis of which we can consider a test procedure based on the critical

region

C (Tn,λ̂, α) = {Tn,λ̂ > q(Tn,λ̂, α)}, (17)

where q(Tn,λ̂, α) denotes the quantile of order 1 − α of Tn,λ̂ under H0. This test has a level of

significance at most equal to α for each sample size n.

In order to define effective methods for selecting the tuning parameter λ ∈ Λ, we will adapt

to our situation three methods considered in Cao and Van Keilegom (2006), Mart́ınez-Camblor

et al. (2008), and Mart́ınez-Camblor and Uña-Álvarez (2013) in the context of smooth tests for

the k-sample problem. Given the level α of the test, and a sample X1, . . . ,Xn from f , the first

tuning parameter selector we consider, we denote by λ̂1 = λ̂1(X1, . . . ,Xn;α), was originally used

in Cao and Van Keilegom (2006, p. 69) and is defined as the value in Λ that maximises the smooth

bootstrap power, that is,

λ̂1 = argmax
λ∈Λ

1

B1

B1
∑

k=1

I
(

Tn,λ(X
∗
k,1, . . . ,X

∗
k,n) > q(Tn,λ, α)

)

, (18)

with

X∗
k,j = XU(k−1)n+j

+ ĥCT(X1, . . . ,Xn)N(k−1)n+j ,

for k = 1, . . . , B1 and j = 1, . . . , n, where Nl, for l = 1, . . . , nB1, are independent copies of the

standard normal distribution, and Ul, for l = 1, . . . , nB1, are independent copies of the discrete

uniform distribution on {1, . . . , n}; that is, for each k = 1, . . . , B1, X
∗
k1, . . . ,X

∗
kn is generated by

resampling from the Parzen–Rosenblatt estimator with Gaussian kernel and smoothing parameter

ĥCT(X1, . . . ,Xn). As expressed by the notation λ̂1(X1, . . . ,Xn;α), note that λ̂1 depends on the

considered level α.

The second method for selecting λ we consider is based on the observation that given the

values Tn,λ(X1, . . . ,Xn) of the test statistics for the observed sample X1, . . . ,Xn, more evidence

against the null hypothesis is obtained for smaller p-values. Therefore, to construct a powerful test

it makes sense to minimise the bootstrap p-value along λ ∈ Λ, an idea that was used in Mart́ınez-

Camblor et al. (2008, pp. 4014–4015); see also Mart́ınez-Camblor and Uña-Álvarez (2009). Hence,

we denote by λ̂2 = λ̂2(X1, . . . ,Xn) the tuning parameter selector given by

λ̂2 = argmin
λ∈Λ

1

B0

B0
∑

j=1

I
(

Tn,λ(X0,(j−1)n+1, . . . ,X0,jn) ≥ Tn,λ(X1, . . . ,Xn)
)

, (19)

where X0,l, for l = 1, . . . , nB0, are independent copies of the random variable X0 with density f0.

The last method for selecting λ we consider was introduced in Mart́ınez-Camblor and Uña-

Álvarez (2013, p. 273) and is based on the idea that λ should be chosen in order to maximise

the discrimination capability, between the null and the alternative hypotheses, of the diagnostic

variable Tn,λ expressed by the area under the ROC curve associated with it. As this area is given



16

In(λĥH0
) Jn(λĥH0

)

λ n = 20 n = 50 n = 80 n = 20 n = 50 n = 80

Alternative MW 4

0.25 0.54 0.94 0.99 0.54 0.93 0.99
0.50 0.46 0.89 0.99 0.42 0.87 0.98
0.75 0.37 0.81 0.97 0.24 0.68 0.93
1.00 0.32 0.72 0.93 0.07 0.28 0.63
1.25 0.28 0.63 0.87 0.02 0.02 0.06
1.50 0.26 0.56 0.81 0.01 0.00 0.00
1.75 0.24 0.49 0.74 0.01 0.00 0.00
2.00 0.23 0.43 0.68 0.01 0.00 0.00
3.00 0.20 0.31 0.46 0.00 0.00 0.00
5.00 0.19 0.23 0.29 0.00 0.00 0.00

λ̂1 0.35 0.75 0.94 0.21 0.50 0.74
λ̂2 0.44 0.90 0.98 0.02 0.07 0.09
λ̂3 0.49 0.90 0.99 0.02 0.14 0.34

Alternative MW 8

0.25 0.15 0.33 0.49 0.15 0.33 0.49
0.50 0.17 0.40 0.59 0.18 0.43 0.62
0.75 0.16 0.40 0.61 0.20 0.49 0.69
1.00 0.13 0.38 0.59 0.22 0.51 0.72
1.25 0.11 0.35 0.56 0.23 0.51 0.71
1.50 0.08 0.31 0.52 0.23 0.49 0.68
1.75 0.07 0.27 0.49 0.22 0.46 0.65
2.00 0.07 0.23 0.44 0.21 0.44 0.61
3.00 0.06 0.15 0.29 0.21 0.39 0.53
5.00 0.05 0.12 0.21 0.20 0.37 0.48

λ̂1 0.13 0.35 0.56 0.17 0.41 0.61
λ̂2 0.16 0.37 0.54 0.14 0.10 0.08
λ̂3 0.14 0.24 0.39 0.11 0.08 0.13

Table 3: Power estimates, at level α = 0.05, for the normality goodness-of-fit tests based

on In(λĥH0) and Jn(λĥH0), with λ = 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 3, 5, and In(λ̂j ĥH0) and

Jn(λ̂j ĥH0), j = 1, 2, 3, with Λ = {0.5, 0.75, 1, 1.5, 2}, for alternatives 4 and 8 from the Marron

and Wand (1992) set of normal mixture densities. The number of replications used is 10, 000.

by P (T 0
n,λ < T 1

n,λ), where T
0
n,λ and T 1

n,λ are independent random variable with the null and the

alternative distributions of Tn,λ, respectively (see Krzanowski and Hand, 2009, pp. 26–28), we

consider the tuning parameter selector λ̂3 = λ̂3(X1, . . . ,Xn) defined by

λ̂3 = argmax
λ∈Λ

1

B0B1

B0
∑

j=1

B1
∑

k=1

I
(

Tn,λ(X0,(j−1)n+1, . . . ,X0,jn) < Tn,λ(X
∗
k,1, . . . ,X

∗
k,n)

)

, (20)

where X0,l, for l = 1, . . . , nB0, and X
∗
k,j, for k = 1, . . . , B1 and j = 1, . . . , n, are defined as before.

Taking into account that, conditionally on the sequences N = (Nl), U = (Ul) and X0 = (X0,l),

the previous tuning parameter selectors are location-scale invariants, we conclude that the tests

based on the critical region (17), where λ̂ stands for either λ̂1, λ̂2 or λ̂3, have levels of significance

at most equal to α for each sample size n (conditionally on N , U and X0). In the practical
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In(λĥCT) Jn(λĥCT)

λ n = 20 n = 50 n = 80 n = 20 n = 50 n = 80

Alternative MW 4

0.25 0.50 0.92 0.99 0.50 0.92 0.99
0.50 0.55 0.93 0.99 0.54 0.93 0.99
0.75 0.56 0.93 0.99 0.54 0.92 0.99
1.00 0.57 0.93 0.99 0.54 0.90 0.99
1.25 0.57 0.93 0.99 0.37 0.78 0.95
1.50 0.58 0.93 0.99 0.13 0.45 0.76
1.75 0.58 0.93 0.99 0.02 0.12 0.34
2.00 0.58 0.93 0.99 0.01 0.01 0.05
3.00 0.58 0.92 0.99 0.00 0.00 0.00
5.00 0.57 0.91 0.99 0.00 0.00 0.00

λ̂1 0.56 0.93 0.99 0.48 0.86 0.98
λ̂2 0.48 0.91 0.99 0.01 0.03 0.11
λ̂3 0.47 0.87 0.98 0.10 0.86 0.91

Alternative MW 8

0.25 0.14 0.31 0.48 0.15 0.32 0.48
0.50 0.15 0.34 0.53 0.15 0.36 0.55
0.75 0.13 0.34 0.54 0.15 0.40 0.61
1.00 0.12 0.33 0.53 0.15 0.44 0.66
1.25 0.11 0.31 0.51 0.08 0.28 0.51
1.50 0.10 0.29 0.49 0.04 0.04 0.11
1.75 0.09 0.27 0.47 0.03 0.02 0.02
2.00 0.08 0.25 0.45 0.03 0.02 0.01
3.00 0.07 0.20 0.37 0.03 0.02 0.01
5.00 0.07 0.16 0.30 0.03 0.02 0.01

λ̂1 0.12 0.33 0.53 0.12 0.33 0.51
λ̂2 0.15 0.35 0.51 0.02 0.01 0.00
λ̂3 0.16 0.30 0.46 0.04 0.22 0.17

Table 4: Power estimates, at level α = 0.05, for the normality goodness-of-fit tests based on

In(λĥCT) and Jn(λĥCT), with λ = 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 3, 5, and In(λ̂j ĥCT) and

Jn(λ̂j ĥCT), j = 1, 2, 3, with Λ = {0.5, 0.75, 1, 1.5, 2}, for alternatives 4 and 8 from the Mar-

ron and Wand (1992) set of normal mixture densities. The number of replications used is 10, 000.

implementation of these tests we always take Λ = {0.5, 0.75, 1, 1.5, 2}. For the normality goodness-

of-fit tests we take B0 = B1 = 200, and the quantiles q(Tn,λ̂, α) are estimated by performing

100,000 simulations under the null hypothesis. For the goodness-of-fit tests for the logistic and

Gumbel distributions we take B0 = B1 = 100, and the quantiles are estimated by performing

50,000 simulations under the null hypothesis, because the evaluation of the corresponding test

statistics is more time-consuming than in the normal case.

For the alternatives 4 and 8 from the Marron and Wand (1992) set of normal mixture densities,

Tables 3 and 4 present power estimates, at level α = 0.05, for the normality goodness-of-fit tests

based on the critical regions (16) with ĥλ = λĥ, λ = 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 3, 5, and

(17) with Λ = {0.5, 0.75, 1, 1.5, 2}, where ĥ = ĥH0 , ĥCT. As mentioned before, for all samples sizes

we see that the empirical power depends on λ. However, these two alternatives reveal different
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situations. For alternative 8 the best power results are in general observed for values of λ close

or even equal to 1, and therefore the tests based on λ̂jĥ, for j = 1, 2, 3, are not expected to be

more powerful than those based on the bandwidth selector ĥ. The figures in both tables support

this idea. A similar situation occurs for alternative 4 and bandwidth ĥCT. However, when the

bandwidth ĥH0 is used for alternative 4, an alternative for which the kernel estimator based on

ĥH0 performs poorly from a density estimation point of view, we see that it is highly advisable

to use a tuning parameter smaller than 1, which may explain the good results obtained by the

tuning parameters selectors λ̂2 and λ̂3 for the test based on In and by λ̂1 for the test based on Jn.

For α = 0.01, 0.05, 0.1, and sample sizes n = 20, 50, 80, we present in Tables 5–7 (see the

supplementary online material) estimates of the nominal levels of significance for the goodness-

of-fit tests for the normal, logistic and Gumbel distributions, respectively, based on In(ĥ) and

Jn(ĥ) for the different bandwidth selectors ĥ based on ĥH0 and ĥCT. They are based on 20, 000

simulations under the null hypothesis. These results indicate that all the tests have an effective

level of significance very close to α. With some few exceptions, the estimated levels are inside the

approximate 95% confidence interval for the preassigned nominal levels.

Although a larger set of alternative distributions, usually considered in power studies for test-

ing the normal, logistic and Gumbel distributions was considered in our study (see Epps and

Pulley, 1983, Meintanis, 2004, Epps, 2005, Romão et al., 2010), we limit ourselves to present in

Tables 8–10 (normal distribution), Tables 11–13 (logistic distribution) and Tables 14–16 (Gumbel

distribution) the empirical power results for some of these alternatives (see the supplementary

online material). The first seven alternatives are from the following location-scale families: uni-

form, exponential, Laplace, Cauchy, normal, logistic and Gumbel. The remaining six alternatives

are from the following families of distributions: Student, lognormal, Tukey, gamma, Weibull and

beta. For the exact definition of the distributions included in these tables, see Epps (2005). We

limit ourselves to present here the results obtained for the nominal level α = 0.05 and sample sizes

n = 20, 50, 80. However, similar conclusions can be drawn for the nominal levels α = 0.1, 0.01 also

considered in our study. For comparison purposes, we include in the previous tables power esti-

mates for the classical Anderson-Darling (1954) goodness-of-fit test which is based on a weighted

quadratic distance between the empirical distribution function and a parametric estimator of the

distribution function of f under the null hypothesis (see Stephens, 1986, and the references therein,

for goodness-of-fit tests based on the empirical distribution function). In order to implement this

test, the quantiles of order 1− α of the Anderson-Darling test statistic A2 are estimated by per-

forming 100,000 simulations under the null hypothesis. In the case of the goodness-of-fit test for

the normal distribution we also include in our simulation study the highly recommended Shapiro-

Wilk (1965) test SW implemented by the R-function shapiro.test. For all the tests included in the

study, the power estimates are based on 10,000 samples from the considered alternatives.

Although none of the considered tests present uniformly better results for the considered set of

alternative distributions, the main conclusion that can be drawn from this study is that the tests

based on ĥH0 present in fact a good overall performance for a wide set of alternative distributions.
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Regarding the two tests based on ĥH0 , our preference goes to the test based on the test statistic

In(ĥH0). This test is in general more powerful than, or at least as powerful as, the tests based on

ĥCT, and also proves to be quite competitive against the Anderson-Darling test, although slightly

less performing than the Shapiro-Wilk test for normality. However, no matter the considered null

hypothesis model, for some of the considered alternatives, such as the light-tailed alternatives

uniform and beta, the test based on Jn(ĥH0) shows to be more powerful than that based on

In(ĥH0). Finally, note that the new bandwidth selectors λ̂j ĥH0 or λ̂jĥCT, for j = 1, 2, 3, which

are much more time-consuming to compute than ĥH0 or ĥCT, do not reveal in general any special

advantage over these simple to compute bandwidths, the exception being the Tukey(5) alternative

distribution for the normal and the logistic models. As some simulation experiments reveal (not

presented here), the extra source of variation they introduce into the null hypothesis distribution

of the associated test statistics, especially those based on Jn, may explain the observed results.

5 Conclusions

The choice of the bandwidth is crucial to the performance of the Parzen–Rosenblatt estimator

and several automatic bandwidth selectors considered in the literature satisfy relative consistency

condition (11). This is not the case of the null hypothesis based bandwidth selector ĥH0 that only

satisfies this condition when the null hypothesis is true. However, if we want to use the Bickel–

Rosenblatt test statistics to test the hypothesis that the underlying density function f is a member

of a location-scale family of probability density functions, the finite sample results presented in

this paper support the idea that the tests based on ĥH0 present a good overall performance for a

wide set of alternative distributions. These tests are in general more powerful than, or at least

as powerful as, those based on data-dependent smoothing parameters ĥ that satisfy the relative

consistency condition irrespective of which of the null or the alternative hypothesis is true, as well

as those inspired on existing data-driven bandwidths for smooth tests for the k-sample problem

which can be computed by resampling.
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A Proofs

A.1 Proof of Theorem 2.1

Consider the expansion

(nĥ)−1In(ĥ) =

∫

{fĥ(x)−Kĥ ∗ f(x)}2dx

+

∫

{Kĥ ∗ f(x)−Kĥ ∗ g(x; θ̂1, θ̂2)}
2dx

+ 2

∫

{fĥ(x)−Kĥ ∗ f(x)}{Kĥ ∗ f(x)−Kĥ ∗ g(x; θ̂1, θ̂2)}dx

=: In,1 + In,2 + 2In,3. (21)

In order to establish the asymptotic behaviour of each one of the previous terms, we use the

approach of Tenreiro (2001), which is based on the Taylor expansion

Kh(u) :=W (u, h) =

ω−1
∑

ℓ=0

(h− 1)ℓK∂(ℓ)(u) + (h− 1)ωK∂(ω)(u, h),

where u ∈ R, h > 0,

K∂(ℓ)(u) :=
1

ℓ!

∂ℓW

∂hℓ
(u, 1), ℓ = 0, . . . , ω − 1,

and

K∂(ω)(u, h) :=
1

(ω − 1)!

∫ 1

0
(1− t)ω−1∂

ωW

∂hω
(u, 1 + t(h− 1))dt.

Note that, from assumption (K) the functions K∂(ℓ) are bounded and integrable on R, for ℓ =

1, . . . , ω−1, and there exists η ∈ ]0, 1[ such that the functionK∂(ω),η(u) := sup|h−1|≤η |K∂(ω)(u, h)|,
is bounded and integrable on R. From the previous Taylor expansion we deduce the following

expansions for fĥ, Kĥ ∗ f and Kĥ ∗ g(·; θ̂1, θ̂2), that play a crucial role in what follows. For x ∈ R

and denoting by h the deterministic bandwidth h(f) given in assumption (B), we have

fĥ(x) =

ω−1
∑

ℓ=0

ξℓn
1

n

n
∑

i=1

K
∂(ℓ)
h (x−Xi) + ξωn

1

n

n
∑

i=1

K
∂(ω)
h (x−Xi, ĥ), (22)

Kĥ ∗ f(x) =
ω−1
∑

ℓ=0

ξℓnK
∂(ℓ)
h ∗f(x) + ξωnK

∂(ω)
h (·, ĥ)∗f(x), (23)

and

Kĥ ∗ g(x; θ̂1, θ̂2) =
ω−1
∑

ℓ=0

ξℓnK
∂(ℓ)
h ∗g(x; θ̂1, θ̂2) + ξωnK

∂(ω)
h (·, ĥ)∗g(x; θ̂1, θ̂2), (24)

whereK
∂(ℓ)
h (u) = K

∂(ℓ)
h (u/h)/h andK

∂(ω)
h (u, ĥ) = K

∂(ω)
h (u/h, ĥ/h)/h. Moreover, for |ĥ/h−1| ≤ η

we have |K∂(ω)
h (u, ĥ)| ≤ K

∂(ω),η
h (u), for u ∈ R.

Each one of the terms in (21) is studied in the following propositions. We denote by h the

deterministic sequence h(f) given in assumption (B).



21

Proposition A.1. We have

In,1 = (1− ξn)
1

nh
R(K) +

1

nh1/2
Un(1 + op(1)) +Op

(

n−1h−1/2ξn + (nh)−1ξ2n + ξωn

)

,

where Un given by (25) is asymptotically normal with zero mean and variance 2R(K∗K)R(f).

Proof: Using equalities (22) and (23), and assumptions (D), (K) and (B), from Proposition 2 of

Tenreiro (2001, p. 290) we have

In,1 =

∫

{fh(x)−Kh ∗ f(x)}2dx− ξn
1

nh
R(K) +Op

(

n−1h−1/2ξn + (nh)−1ξ2n + ξωn

)

.

Moreover, using degenerated U-statistics techniques (see Hall, 1984, Tenreiro, 1997) we have

∫

{fh(x)−Kh ∗ f(x)}2dx =
1

nh
R(K) +

1

nh1/2
Un(1 + op(1)),

with

Un =
2

n

∑

1≤i<j≤n

qn(Xi,Xj), (25)

qn(u, v) = h1/2
∫

{

Kh(x− u)−Kh∗f(x)
}{

Kh(x− v)−Kh∗f(x)
}

dx,

and Un is asymptotically normal with zero mean and variance equal to 2R(K ∗K)R(f). �

Proposition A.2. We have

In,2 = R
(

f − g(·; θ1(f), θ2(f))
)

+ op(1).

Moreover, under the null hypothesis we have

In,2 = Op

(

n−1
)

.

Proof: From (23) and (24) we have

In,2 =

ω−1
∑

ℓ,ℓ′=0

ξℓ+ℓ′
n

∫

K
∂(ℓ)
h ∗ δ̂n(x)K∂(ℓ′)

h ∗ δ̂n(x)dx

+ 2
ω−1
∑

ℓ=0

ξω+ℓ
n

∫

K
∂(ℓ)
h ∗ δ̂n(x)K∂(ω)

h (·, ĥ)∗ δ̂n(x)dx

+ ξ2ωn

∫

(

K
∂(ω)
h (·, ĥ)∗ δ̂n(x)

)2
dx,

where δ̂n(x) = f(x)− g(x; θ̂1, θ̂2). Moreover,

∣

∣

∣

∣

∫

K
∂(ℓ)
h ∗ δ̂n(x)K∂(ℓ′)

h ∗ δ̂n(x)dx
∣

∣

∣

∣

≤ ||K∂(ℓ)||1||K∂(ℓ′)||1||δ̂n||22,



22

and for all ǫ ∈ ]0, η[ and for |ĥ/h− 1| ≤ ǫ we have
∣

∣

∣

∣

∫

K
∂(ℓ)
h ∗ δ̂n(x)K∂(ω)

h (·, ĥ)∗ δ̂n(x)dx
∣

∣

∣

∣

≤ ||K∂(ℓ)||1||K∂(ω),η ||1||δ̂n||22

and
∣

∣

∣

∣

∫

(

K
∂(ω)
h (·, ĥ)∗ δ̂n(x)

)2
dx

∣

∣

∣

∣

≤ ||K∂(ω),η ||21||δ̂n||22.

Therefore, from assumption (B) we can write

In,2 = R
(

Kh ∗ δ̂n
)

+Op

(

||δ̂n||22ξn
)

. (26)

On the other hand, from assumption (F) the function (θ1, θ2) 7→ g(x; θ1, θ2) has continuous

first-order partial derivatives, and the functions (θ1, θ2) 7→
∣

∣

∣

∣

∂g
∂θk

(·; θ1, θ2)
∣

∣

∣

∣

2
are locally bounded

on R×]0,+∞[ for k = 1, 2. Therefore, for each x ∈ R, a Taylor expansion of g(x; θ̂1, θ̂2) at the

point (θ1(f), θ2(f)) leads to

δ̂n(x) = f(x)− g(x; θ̂1, θ̂2) = f(x)− g(x; θ1(f), θ2(f)) + un(x), (27)

where

||un||2 = Op

(

|θ̂1 − θ1(f)|+ |θ̂2 − θ2(f)|
)

. (28)

The first part of the stated result follows now from (26) and the following convergence that

can be established from standard arguments as h tends to zero, when n tends to infinity:

R
(

Kh∗(f − g(·; θ1(f), θ2(f)))
)

= R
(

f − g(·; θ1(f), θ2(f))
)

+ o(1).

Finally, taking into account that δ̂n = un under the null hypothesis, where ||un||2 = Op(n
−1/2)

from assumption (P), we deduce that In,2 = Op(n
−1) under the null hypothesis. �

To establish the order of convergence of In,3 we need the following lemma. Note that we are

always assuming that ĥ satisfies assumption (B).

Lemma 1. Let ϕ be a real-valued function defined on R×]0,+∞[, and assume that there exists

η ∈ ]0, 1[ such that the function ϕη(u) = sup|h−1|≤η |ϕ(u, h)| is bounded and integrable.

a) If γn : R 7→ R is such ||γn||2 = O(1) then

1

n

n
∑

i=1

∫

{

ϕh(x−Xi)− ϕh ∗ f(x)
}

γn(x)dx = Op

(

n−1/2
)

.

b) If γn : R 7→ R is such ||γn||r = O(1), for some r ∈ [1,∞], then

1

n

n
∑

i=1

∫

|ϕh(x−Xi, ĥ)− ϕh(·, ĥ) ∗ f(x)|γn(x)dx = Op(1).

c) If γ̃n = γ̃n(·;X1, . . . ,Xn) : R 7→ R is such that ||γ̃n||r = Op(1), for some r ∈ [1,∞], then

1

n

n
∑

i=1

∫

|ϕh(x−Xi, ĥ)− ϕh(·, ĥ) ∗ f(x)|γ̃n(x)dx = Op

(

h−1/r
)

.
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Proof: Write Sn,a, Sn,b and Sn,c for the sums considered in each one of the parts a), b) and c).

The order of convergence stated in part a) follows from the inequalities

E(S2
n,a) ≤

1

n
E

(
∫

ϕh(x−Xi)γn(x)dx

)2

≤ 1

n

∫∫

ϕ(u)2γn(z + uh)2f(z)dudz

≤ 1

n
||f ||∞||ϕ||22||γn||22.

In order to establish parts b) and c), it is enough to note that for all ǫ ∈ ]0, η[ and for |ĥ/h−1| ≤
ǫ we have

|Sn,b| ≤
1

n

n
∑

i=1

{
∫

ϕǫ
h(x−Xi)|γn|(x)dx +

∫

ϕǫ
h ∗ f(x)|γn|(x)dx

}

=: Sǫ
n,b,

and

|Sn,c| ≤
1

n

n
∑

i=1

{
∫

ϕǫ
h(x−Xi)|γ̃n|(x)dx +

∫

ϕǫ
h ∗ f(x)|γ̃n|(x)dx

}

=: Sǫ
n,c,

where

E(Sǫ
n,b) ≤ 2

∫

ϕǫ
h ∗ f(x)|γn|(x)dx ≤ 2||f ||∞||ϕǫ||s||γn||r,

and

Sǫ
n,c ≤ 2h−1/r ||γ̃n||r||ϕǫ||s,

with 1/r + 1/s = 1. Therefore, Sǫ
n,b = Op(1) and Sǫ

n,c = Op

(

h−1/r
)

which implies the stated

results as ĥ/h− 1 = op(1). �

Proposition A.3. We have

In,3 = Op

(

(nh)−1/2
)

.

Moreover, under the null hypothesis we have

In,3 = Op

(

n−1h−1/r + n−1/2ξωn
)

,

where r ∈ ]2,∞] is given in assumption (F).

Proof: The first statement follows from Propositions A.1 and A.2 since |In,3| ≤ I
1/2
n,1 I

1/2
n,2 . On the
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other hand, from (22), (23) and (24) we have

In,3 =

ω−1
∑

ℓ,ℓ′=0

ξℓ+ℓ′
n

1

n

n
∑

i=1

∫

{

K
∂(ℓ)
h (x−Xi)−K

∂(ℓ)
h ∗f(x)

}

K
∂(ℓ′)
h ∗ δ̂n(x)dx

+

ω−1
∑

ℓ=0

ξω+ℓ
n

1

n

n
∑

i=1

{

K
∂(ℓ)
h (x−Xi)−K

∂(ℓ)
h ∗f(x)

}

K
∂(ω)
h (·, ĥ)∗ δ̂n(x)dx

+
ω−1
∑

ℓ=0

ξω+ℓ
n

1

n

n
∑

i=1

∫

{

K
∂(ω)
h (x−Xi, ĥ)−K

∂(ω)
h (·, ĥ)∗f(x)

}

K
∂(ℓ)
h ∗ δ̂n(x)dx

+ ξ2ωn
1

n

n
∑

i=1

∫

{

K
∂(ω)
h (x−Xi, ĥ)−K

∂(ω)
h (·, ĥ)∗f(x)

}

K
∂(ω)
h (·, ĥ)∗ δ̂n(x)dx

= I1n,3 + I2n,3 + I3n,3 + I4n,3.

where δ̂n(x) = f(x) − g(x; θ̂1, θ̂2). From assumption (F), the function (θ1, θ2) 7→ g(x; θ1, θ2)

has continuous second-order partial derivatives, and for some r ∈ ]2,∞] the functions (θ1, θ2) 7→
∣

∣

∣

∣

∂2g
∂θk∂θl

(·; θ1, θ2)
∣

∣

∣

∣

r
are locally bounded on R×]0,+∞[, for k, l = 1, 2. Therefore, under the null

hypothesis a Taylor expansion of g(x; θ̂1, θ̂2) at the point (θ1(f), θ2(f)) leads to

δ̂n(x) = −
∑

k

(θ̂k − θk(f))
∂g

∂θk
(x; θ1(f), θ2(f)) + vn(x), (29)

for x ∈ R, where from assumption (P)

||vn||r = Op

(

(θ̂1 − θ1(f))
2 + (θ̂2 − θ2(f))

2
)

= Op

(

n−1
)

.

Therefore, from Lemma 1 we get I1n,3 = Op

(

n−1h−1/r
)

, I2n,3 = Op

(

(n−1/2 + n−1h−1/r)ξωn
)

,

I3n,3 = Op

(

(n−1/2 + n−1h−1/r)ξωn
)

and I4n,3 = Op

(

(n−1/2 + n−1h−1/r)ξ2ωn
)

, which completes the

proof. �

We can now conclude the proof of Theorem 2.1. As ξn = op(1) and h → 0, as n → ∞, from

Proposition A.1 we have

In,1 = Op

(

(nh)−1 + ξωn
)

.

Therefore, from expansion (21) and Propositions A.2 and A.3, we get

(nh)−1
(

In(ĥ)−R(K)
)

= R
(

f − g(·; θ1(f), θ2(f))
)

+Op

(

(nh)−1/2 + ξωn
)

,

which completes the proof of part b) as nh → ∞, when n → ∞. Moreover, under the null

hypothesis from Propositions A.1, A.2 and A.3 we also have

h−1/2
(

In(ĥ)−R(K)
)

= Un +Op

(

h−1/2ξ2n + h1/2−1/r + nh1/2ξωn

)

+ op(1).

Taking into account hypothesis (13), this completes the proof of part a) as r > 2 and Un is

asymptotically normal with zero mean and variance equal to ν2f = 2R(K∗K)R(f). �
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A.2 Proof of Theorem 2.2

Let us consider the expansion

(nĥ)−1Jn(ĥ) =

∫

{fĥ(x)− f(x)}2dx

+

∫

{f(x)− g(x; θ̂1, θ̂2)}2dx

+ 2

∫

{fĥ(x)− f(x)}{f(x)− g(x; θ̂1, θ̂2)}dx

=: Jn,1 + Jn,2 + 2Jn,3. (30)

Each one of these terms will be studied in the following propositions. As before, we denote by

h the deterministic sequence h(f) which existence is assured by assumption (B).

Proposition A.4. We have

Jn,1 =
1

nh
R(K) +R(Kh ∗ f − f)+

1

nh1/2
Un(1 + op(1)) +

1√
nh−2

Vn +Op

(

(

(nh)−1 + h4
)

ξn + ξωn

)

,

where Un is defined in Proposition A.1 and Vn given by (31) is asymptotically normal with zero

mean and variance µ2(K)2Varf (f
′′(X1)).

Proof: Taking into account equality (22) and assumptions (D), (D’), (K), (K’) and (B), from

Lemma 1 of Tenreiro (2001, p. 286) we have

Jn,1 =

∫

{fh(x)− f(x)}2dx+Op

(

(

(nh)−1 + h4
)

ξn + ξωn

)

.

Using degenerated U-statistics techniques (see Hall, 1984) we know that
∫

{fh(x)− f(x)}2dx =
1

nh
R(K) +R(Kh ∗ f − f) +

1

nh1/2
Un(1 + op(1)) +

1√
nh−2

Vn,

with Un given by (25) and

Vn :=
2√
n

n
∑

i=1

∫

{Kh(x−Xi)−Kh ∗ f(x)}h−2{Kh ∗ f(x)− f(x)}dx, (31)

with

h−2{Kh ∗ f(x)− f(x)} =

∫∫ 1

0
(1− t)u2K(u)f ′′(x− tuh)dudt, (32)

is asymptotically normal with zero mean and variance equal to µ2(K)2Varf (f
′′(X1)). �

Proposition A.5. We have

Jn,2 = R
(

f − g(·; θ1(f), θ2(f))
)

+ op(1).

Moreover, under the null hypothesis we have

Jn,2 = Op

(

n−1
)

.
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Proof: It follows straightforwardly from (27) and (28). �

Proposition A.6. We have

Jn,3 = Op

(

(nh)−1/2
)

.

Moreover, under the null hypothesis we have

Jn,3 = − 1√
nh−2

(

Wn + op(1)
)

+Op

(

n−1h−1/r + n−1/2ξωn
)

,

where Wn is given by (36).

Proof: The first statement follows from Propositions A.4 and A.5 because |Jn,3| ≤ J
1/2
n,1 J

1/2
n,2 and

R(Kh ∗ f − f) = O(h4). Write

Jn,3 =

∫

{fĥ(x)−Kĥ ∗ f(x)}δ̂n(x)dx+

∫

{Kĥ ∗ f(x)− f(x)}δ̂n(x)dx

=: J1
n,3 + J2

n,3, (33)

where δ̂n(x) = f(x)− g(x; θ̂1, θ̂2). From (22) and (23) we have

J1
n,3 =

ω−1
∑

ℓ=0

ξℓn
1

n

n
∑

i=1

∫

{

K
∂(ℓ)
h (x−Xi)−K

∂(ℓ)
h ∗f(x)

}

δ̂n(x)dx

+ ξωn
1

n

n
∑

i=1

∫

{

K
∂(ω)
h (x−Xi, ĥ)−K

∂(ω)
h (·, ĥ)∗f(x)

}

δ̂n(x)dx,

where from Lemma 1 we get

J1
n,3 = Op

(

n−1h−1/r + n−1/2ξωn
)

. (34)

On the other hand, from (23) we have

J2
n,3 =

∫

{Kh ∗ f(x)− f(x)}δ̂n(x)dx

+

ω−1
∑

ℓ=1

ξℓn

∫

K
∂(ℓ)
h ∗f(x)δ̂n(x)dx+ ξωn

∫

K
∂(ω)
h (·, ĥ)∗f(x)δ̂n(x)dx, (35)

where for all ǫ ∈ ]0, η[ and for |ĥ/h− 1| ≤ ǫ we have

∣

∣

∣

∣

∫

K
∂(ω)
h (·, ĥ)∗f(x)δ̂n(x)dx

∣

∣

∣

∣

≤ ||K∂(ω),η ||1||f ||2||δ̂n||2.

Moreover, as
∫

K∂(ℓ)(u)du =
∫

uK∂(ℓ)(u)du = 0 for ℓ ≥ 1, a Taylor expansion of second order

leads to

K
∂(ℓ)
h ∗f(x) = h2

∫∫ 1

0
(1− t)u2K∂(ℓ)(u)f ′′(x− tuh)dtdu.
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Therefore, for ℓ ≥ 1 we have

∣

∣

∣

∣

∫

K
∂(ℓ)
h ∗f(x)δ̂n(x)dx

∣

∣

∣

∣

≤ h2
∫

u2|K∂(ℓ)(u)|du||f ′′||2||δ̂n||2.

Taking into account (27) and the fact that ||δ̂n||2 = Op(n
−1/2) under the null hypothesis, from

(35) we get

J2
n,3 =

∫

{Kh ∗ f(x)− f(x)}δ̂n(x)dx +Op

(

n−1/2(h2ξn + ξωn )
)

.

Finally, from (29) and (32), and assumptions (E) and (G’), we have

∫

{Kh ∗ f(x)− f(x)}δ̂n(x)dx

= h2
∫∫∫ 1

0
(1− t)u2K(u)f ′′(x− tuh)δ̂n(x)dtdudx

= − 1√
nh−2

(

Wn + op(1)
)

+Op

(

n−1h2
)

,

where

Wn =
1√
n

n
∑

i=1

∑

k

ψk(Xi; θ1(f), θ2(f))Dk(f), (36)

with

Dk(f) =
1

2
µ2(K)

∫

f̄ ′′(x)
∂g

∂θk
(x; θ1(f)θ2(f))dx,

as
∫∫∫ 1

0
(1− t)u2K(u)f ′′(x− tuh)

∂g

∂θk
(x; θ1(f)θ2(f))dtdudx = Dk(f) + o(1),

and
∣

∣

∣

∣

∫∫∫ 1

0
(1− t)u2K(u)f ′′(x− tuh)vn(x)dtdudx

∣

∣

∣

∣

≤ µ2(K)||f ′′||s||vn||r,

with 1/r + 1/s = 1. Thus

J2
n,3 = − 1√

nh−2

(

Wn + op(1)
)

+Op

(

n−1h2 + n−1/2(h2ξn + ξωn )
)

(37)

The proposition follows from (33), (34) and (37). �

We can now conclude the proof of Theorem 2.2. From Proposition A.4 and assumption (B’)

we have

Jn,1 = Op

(

(nh)−1 + ξωn
)

.

Therefore, from expansion (30) and Propositions A.5 and A.6, we get

(nh)−1
(

Jn(ĥ)−R(K)− cn(f ;K)
)

= R
(

f − g(·; θ1(f), θ2(f)
)

+Op

(

(nh)−1/2 + ξωn
)

,
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which completes the proof of part b). Moreover, from Propositions A.4, A.5 and A.6, under the

null hypothesis we also have

h−1/2
(

Jn(ĥ)−R(K)− cn(f ;K)
)

= Un + (nh5)1/2(Vn − 2Wn)

+Op

(

h−1/2ξn + h1/2−1/r + nh1/2ξωn

)

+ op(1).

Taking into account hypothesis (14), this completes the proof of part a) as r > 2 and, from

the central limit theorem for degenerate U-statistics with variable kernels established in Tenreiro

(1997, Theorem 1, p. 190), the sum Un + (nh5)1/2(Vn − 2Wn) is asymptotically normal with zero

mean and variance equal to σ2f = 2R(K ∗K)R(f) + λfµ2(K)2Varf (ϕf (X)). �

A.3 Proof of Theorem 3.3

We consider only the case of the test based on the critical region C (Jn(ĥ), α) = {Jn(ĥ), α) >
q(Jn(ĥ), α)} given in (15), where q(Jn(ĥ), α) is the quantile of order 1−α of the null distribution

of Jn(ĥ), but similar arguments can be used to establish the consistency of the test based on

C (In(ĥ), α). From Theorem 2.2.a) and for f ∈ F0 we have υ−1
f h(f)−1/2

(

q(Jn(ĥ), α) − R(K) −
cn(f ;K)

)

→ Φ−1(1− α). Therefore,

q(Jn(ĥ), α) → R(K) + c(f0;K), (38)

because h(f) tends to zero, as n → ∞, and cn(f ;K) = cn(f0;K) = c(f0;K)(1 + o(1)), with

c(f ;K) = 1
4λfµ2(K)2R(f ′′)(1 + o(1)) (see Wand and Jones, 1995, pp. 19–23, and Bosq and

Lecoutre, 1987, pp. 80–81). On the other hand, from Theorem 2.2.b) and for f ∈ F \F0 we

have (nh(f))−1
(

Jn(ĥ)−R(K)− cn(f ;K)
) p−→ R

(

f − g(·; θ1(f), θ2(f))
)

6= 0, which enables us to

conclude that

Jn(ĥ)
p−→ +∞, for all f ∈ F \F0, (39)

as nh(f) → ∞, and cn(f ;K) = c(f ;K)(1+o(1)). The consistency of the test based on C (Jn(ĥ), α)

follows now from (38) and (39). �
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2

In(ĥ) Jn(ĥ)

ĥ n = 20 n = 50 n = 80 n = 20 n = 50 n = 80

α = 0.01
ĥH0

0.009 0.010 0.011 0.009 0.010 0.011
λ̂1ĥH0

0.010 0.010 0.009 0.009 0.010 0.010
λ̂2ĥH0

0.010 0.010 0.010 0.010 0.010 0.010
λ̂3ĥH0

0.011 0.010 0.011 0.011 0.010 0.011
ĥCT 0.010 0.011 0.010 0.010 0.011 0.011
λ̂1ĥCT 0.010 0.011 0.010 0.009 0.011 0.010
λ̂2ĥCT 0.010 0.011 0.010 0.010 0.010 0.011
λ̂3ĥCT 0.011 0.011 0.011 0.010 0.010 0.009

α = 0.05
ĥH0

0.049 0.051 0.049 0.047 0.049 0.050
λ̂1ĥH0

0.051 0.050 0.048 0.050 0.048 0.049
λ̂2ĥH0

0.049 0.050 0.049 0.050 0.051 0.048
λ̂3ĥH0

0.050 0.049 0.049 0.050 0.053 0.050
ĥCT 0.051 0.050 0.050 0.049 0.050 0.050
λ̂1ĥCT 0.051 0.050 0.050 0.051 0.049 0.050
λ̂2ĥCT 0.049 0.050 0.047 0.051 0.049 0.052
λ̂3ĥCT 0.049 0.049 0.049 0.051 0.051 0.050

α = 0.10
ĥH0

0.101 0.103 0.098 0.099 0.101 0.100
λ̂1ĥH0

0.100 0.101 0.096 0.099 0.101 0.103
λ̂2ĥH0

0.099 0.100 0.096 0.099 0.101 0.100
λ̂3ĥH0

0.102 0.101 0.099 0.098 0.103 0.102
ĥCT 0.100 0.101 0.097 0.100 0.099 0.099
λ̂1ĥCT 0.100 0.100 0.096 0.101 0.102 0.101
λ̂2ĥCT 0.102 0.099 0.096 0.102 0.102 0.102
λ̂3ĥCT 0.100 0.101 0.098 0.103 0.099 0.100

Table 5: Estimates of the nominal levels of significance, for a preassigned level α, for the goodness-

of-fit tests for the normal distribution based on In(ĥ) and Jn(ĥ), for the indicated bandwidth selec-

tors. The number of replications for each case is 20, 000.
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In(ĥ) Jn(ĥ)

ĥ n = 20 n = 50 n = 80 n = 20 n = 50 n = 80

α = 0.01
ĥH0

0.009 0.008 0.009 0.010 0.009 0.009
λ̂1ĥH0

0.009 0.009 0.009 0.009 0.010 0.009
λ̂2ĥH0

0.010 0.010 0.010 0.010 0.011 0.010
λ̂3ĥH0

0.010 0.010 0.010 0.010 0.010 0.010
ĥCT 0.009 0.009 0.009 0.010 0.010 0.009
λ̂1ĥCT 0.009 0.010 0.009 0.008 0.009 0.008
λ̂2ĥCT 0.009 0.010 0.010 0.010 0.010 0.010
λ̂3ĥCT 0.010 0.011 0.011 0.010 0.010 0.010

α = 0.05
ĥH0

0.049 0.048 0.051 0.049 0.048 0.050
λ̂1ĥH0

0.049 0.047 0.047 0.052 0.051 0.048
λ̂2ĥH0

0.049 0.050 0.049 0.052 0.050 0.052
λ̂3ĥH0

0.050 0.051 0.048 0.051 0.050 0.052
ĥCT 0.050 0.050 0.051 0.049 0.047 0.051
λ̂1ĥCT 0.050 0.050 0.049 0.050 0.049 0.050
λ̂2ĥCT 0.050 0.053 0.051 0.052 0.048 0.050
λ̂3ĥCT 0.051 0.052 0.050 0.050 0.051 0.051

α = 0.10
ĥH0

0.098 0.098 0.103 0.101 0.096 0.100
λ̂1ĥH0

0.099 0.094 0.099 0.100 0.098 0.101
λ̂2ĥH0

0.100 0.099 0.095 0.102 0.101 0.100
λ̂3ĥH0

0.100 0.099 0.098 0.105 0.102 0.103
ĥCT 0.099 0.101 0.101 0.100 0.098 0.101
λ̂1ĥCT 0.100 0.100 0.097 0.100 0.098 0.102
λ̂2ĥCT 0.102 0.101 0.100 0.101 0.099 0.099
λ̂3ĥCT 0.101 0.100 0.097 0.099 0.100 0.101

Table 6: Estimates of the nominal levels of significance, for a preassigned level α, for the goodness-

of-fit tests for the logistic distribution based on In(ĥ) and Jn(ĥ), for the indicated bandwidth selec-

tors. The number of replications for each case is 20, 000.
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In(ĥ) Jn(ĥ)

ĥ n = 20 n = 50 n = 80 n = 20 n = 50 n = 80

α = 0.01
ĥH0

0.009 0.009 0.009 0.009 0.009 0.010
λ̂1ĥH0

0.010 0.010 0.010 0.010 0.010 0.010
λ̂2ĥH0

0.010 0.008 0.009 0.011 0.009 0.011
λ̂3ĥH0

0.012 0.009 0.011 0.010 0.010 0.011
ĥCT 0.010 0.009 0.009 0.010 0.009 0.009
λ̂1ĥCT 0.010 0.009 0.009 0.010 0.009 0.011
λ̂2ĥCT 0.011 0.009 0.009 0.009 0.010 0.010
λ̂3ĥCT 0.010 0.010 0.010 0.010 0.011 0.011

α = 0.05
ĥH0

0.047 0.049 0.051 0.050 0.049 0.049
λ̂1ĥH0

0.050 0.044 0.048 0.049 0.051 0.052
λ̂2ĥH0

0.050 0.048 0.048 0.051 0.048 0.048
λ̂3ĥH0

0.053 0.050 0.050 0.051 0.052 0.050
ĥCT 0.049 0.049 0.049 0.049 0.049 0.050
λ̂1ĥCT 0.050 0.046 0.047 0.047 0.046 0.050
λ̂2ĥCT 0.053 0.048 0.051 0.051 0.051 0.050
λ̂3ĥCT 0.054 0.049 0.049 0.051 0.049 0.050

α = 0.10
ĥH0

0.097 0.097 0.097 0.098 0.099 0.098
λ̂1ĥH0

0.099 0.097 0.098 0.098 0.098 0.098
λ̂2ĥH0

0.098 0.098 0.099 0.101 0.098 0.098
λ̂3ĥH0

0.104 0.101 0.099 0.102 0.101 0.102
ĥCT 0.098 0.099 0.100 0.099 0.100 0.097
λ̂1ĥCT 0.101 0.097 0.098 0.096 0.096 0.098
λ̂2ĥCT 0.104 0.098 0.099 0.099 0.101 0.101
λ̂3ĥCT 0.102 0.096 0.099 0.101 0.099 0.099

Table 7: Estimates of the nominal levels of significance, for a preassigned level α, for the goodness-

of-fit tests for the Gumbel distribution based on In(ĥ) and Jn(ĥ), for the indicated bandwidth

selectors. The number of replications for each case is 20, 000.
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In(ĥ) Jn(ĥ)

ĥ n = 20 n = 50 n = 80 n = 20 n = 50 n = 80

Uniform
ĥH0

0.19 0.62 0.87 0.39 0.83 0.97
λ̂1ĥH0

0.18 0.59 0.85 0.29 0.73 0.93
λ̂2ĥH0

0.21 0.52 0.76 0.30 0.23 0.11
λ̂3ĥH0

0.19 0.40 0.67 0.22 0.33 0.71
ĥCT 0.16 0.49 0.77 0.23 0.77 0.95
λ̂1ĥCT 0.16 0.49 0.77 0.17 0.59 0.87
λ̂2ĥCT 0.20 0.49 0.76 0.01 0.00 0.00
λ̂3ĥCT 0.21 0.47 0.73 0.02 0.38 0.41

A2 0.21 0.61 0.88 0.21 0.61 0.88
SW 0.21 0.74 0.97 0.21 0.74 0.97

Exponential
ĥH0

0.76 0.99 1.00 0.58 0.97 1.00
λ̂1ĥH0

0.70 0.98 1.00 0.49 0.94 1.00
λ̂2ĥH0

0.49 0.96 1.00 0.02 0.07 0.40
λ̂3ĥH0

0.26 0.56 0.93 0.08 0.30 0.63
ĥCT 0.66 0.98 1.00 0.64 0.98 1.00
λ̂1ĥCT 0.65 0.98 1.00 0.57 0.96 1.00
λ̂2ĥCT 0.55 0.95 1.00 0.01 0.07 0.23
λ̂3ĥCT 0.45 0.89 0.99 0.17 0.94 0.98

A2 0.78 1.00 1.00 0.78 1.00 1.00
SW 0.83 1.00 1.00 0.83 1.00 1.00

Laplace
ĥH0

0.24 0.51 0.71 0.05 0.11 0.24
λ̂1ĥH0

0.22 0.47 0.68 0.08 0.17 0.28
λ̂2ĥH0

0.15 0.40 0.61 0.01 0.00 0.00
λ̂3ĥH0

0.15 0.30 0.45 0.01 0.01 0.01
ĥCT 0.24 0.50 0.69 0.19 0.37 0.53
λ̂1ĥCT 0.23 0.48 0.68 0.15 0.29 0.42
λ̂2ĥCT 0.14 0.33 0.51 0.02 0.00 0.00
λ̂3ĥCT 0.12 0.26 0.43 0.03 0.22 0.15

A2 0.24 0.52 0.72 0.24 0.52 0.72
SW 0.25 0.52 0.71 0.25 0.52 0.71

Cauchy
ĥH0

0.87 1.00 1.00 0.65 0.97 1.00
λ̂1ĥH0

0.86 1.00 1.00 0.69 0.97 1.00
λ̂2ĥH0

0.79 0.99 1.00 0.20 0.75 0.95
λ̂3ĥH0

0.66 0.98 1.00 0.55 0.92 0.99
ĥCT 0.87 1.00 1.00 0.85 0.99 1.00
λ̂1ĥCT 0.87 1.00 1.00 0.82 0.99 1.00
λ̂2ĥCT 0.80 0.99 1.00 0.38 0.82 0.96
λ̂3ĥCT 0.78 0.99 1.00 0.58 0.99 1.00

A2 0.88 1.00 1.00 0.88 1.00 1.00
SW 0.87 1.00 1.00 0.87 1.00 1.00

Table 8: Empirical power results, at level α = 0.05, for the goodness-of-fit tests for the normal

distribution based on In(ĥ) and Jn(ĥ), for the indicated bandwidth selectors, and A2 and SW . The

power estimates are based on 10, 000 samples from the considered alternatives.
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In(ĥ) Jn(ĥ)

ĥ n = 20 n = 50 n = 80 n = 20 n = 50 n = 80

Logistic
ĥH0

0.10 0.13 0.17 0.03 0.02 0.02
λ̂1ĥH0

0.09 0.12 0.15 0.04 0.04 0.03
λ̂2ĥH0

0.06 0.09 0.11 0.02 0.01 0.01
λ̂3ĥH0

0.06 0.07 0.08 0.03 0.01 0.00
ĥCT 0.09 0.12 0.15 0.07 0.07 0.07
λ̂1ĥCT 0.08 0.11 0.15 0.06 0.05 0.05
λ̂2ĥCT 0.06 0.07 0.08 0.04 0.02 0.01
λ̂3ĥCT 0.06 0.05 0.06 0.04 0.04 0.01

A2 0.10 0.14 0.19 0.10 0.14 0.19
SW 0.11 0.19 0.26 0.11 0.19 0.26

Gumbel
ĥH0

0.28 0.57 0.76 0.14 0.36 0.55
λ̂1ĥH0

0.25 0.51 0.70 0.12 0.27 0.45
λ̂2ĥH0

0.12 0.31 0.57 0.03 0.01 0.00
λ̂3ĥH0

0.08 0.06 0.13 0.03 0.01 0.01
ĥCT 0.19 0.43 0.65 0.17 0.36 0.53
λ̂1ĥCT 0.18 0.42 0.62 0.13 0.26 0.40
λ̂2ĥCT 0.12 0.27 0.44 0.02 0.01 0.00
λ̂3ĥCT 0.10 0.17 0.31 0.03 0.19 0.15

A2 0.27 0.60 0.81 0.27 0.60 0.81
SW 0.31 0.69 0.89 0.31 0.69 0.89

Student(6)
ĥH0

0.13 0.20 0.27 0.04 0.04 0.05
λ̂1ĥH0

0.12 0.18 0.25 0.06 0.05 0.06
λ̂2ĥH0

0.08 0.12 0.18 0.02 0.01 0.01
λ̂3ĥH0

0.07 0.08 0.10 0.02 0.01 0.01
ĥCT 0.11 0.17 0.23 0.09 0.11 0.12
λ̂1ĥCT 0.11 0.17 0.22 0.08 0.08 0.08
λ̂2ĥCT 0.07 0.10 0.13 0.03 0.02 0.01
λ̂3ĥCT 0.06 0.07 0.10 0.03 0.06 0.02

A2 0.13 0.22 0.30 0.13 0.22 0.30
SW 0.15 0.28 0.39 0.15 0.28 0.39

Lognormal(0.5)
ĥH0

0.48 0.85 0.97 0.28 0.69 0.90
λ̂1ĥH0

0.43 0.80 0.94 0.23 0.59 0.84
λ̂2ĥH0

0.23 0.64 0.90 0.03 0.009 0.04
λ̂3ĥH0

0.11 0.16 0.47 0.04 0.04 0.09
ĥCT 0.35 0.75 0.93 0.32 0.70 0.89
λ̂1ĥCT 0.34 0.74 0.92 0.26 0.59 0.81
λ̂2ĥCT 0.24 0.59 0.83 0.01 0.006 0.02
λ̂3ĥCT 0.18 0.45 0.73 0.04 0.50 0.55

A2 0.47 0.87 0.98 0.47 0.87 0.98
SW 0.52 0.93 0.99 0.52 0.93 0.99

Table 9: Empirical power results, at level α = 0.05, for the goodness-of-fit tests for the normal

distribution based on In(ĥ) and Jn(ĥ), for the indicated bandwidth selectors, and A2 and SW . The

power estimates are based on 10, 000 samples from the considered alternatives.
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In(ĥ) Jn(ĥ)

ĥ n = 20 n = 50 n = 80 n = 20 n = 50 n = 80

Tukey(5)
ĥH0

0.08 0.20 0.37 0.03 0.05 0.11
λ̂1ĥH0

0.10 0.23 0.40 0.07 0.14 0.22
λ̂2ĥH0

0.15 0.38 0.58 0.02 0.01 0.01
λ̂3ĥH0

0.17 0.44 0.64 0.02 0.02 0.01
ĥCT 0.17 0.37 0.56 0.15 0.30 0.45
λ̂1ĥCT 0.16 0.37 0.56 0.12 0.22 0.35
λ̂2ĥCT 0.14 0.34 0.51 0.03 0.01 0.00
λ̂3ĥCT 0.14 0.38 0.57 0.03 0.19 0.11

A2 0.10 0.24 0.41 0.10 0.24 0.41
SW 0.07 0.12 0.26 0.07 0.12 0.26

Gamma(4,1)
ĥH0

0.27 0.55 0.75 0.15 0.38 0.60
λ̂1ĥH0

0.24 0.49 0.69 0.12 0.29 0.48
λ̂2ĥH0

0.11 0.30 0.55 0.04 0.01 0.01
λ̂3ĥH0

0.08 0.06 0.10 0.04 0.01 0.01
ĥCT 0.18 0.42 0.64 0.17 0.36 0.56
λ̂1ĥCT 0.17 0.40 0.61 0.12 0.26 0.41
λ̂2ĥCT 0.12 0.26 0.41 0.02 0.01 0.00
λ̂3ĥCT 0.09 0.15 0.27 0.02 0.18 0.13
A2 0.26 0.58 0.81 0.26 0.58 0.81
SW 0.30 0.69 0.90 0.30 0.69 0.90

Weibul(2,1)
ĥH0

0.14 0.29 0.45 0.11 0.25 0.39
λ̂1ĥH0

0.12 0.26 0.40 0.09 0.18 0.28
λ̂2ĥH0

0.08 0.15 0.26 0.07 0.05 0.03
λ̂3ĥH0

0.06 0.05 0.05 0.07 0.04 0.03
ĥCT 0.10 0.19 0.32 0.10 0.20 0.33
λ̂1ĥCT 0.09 0.19 0.31 0.08 0.14 0.21
λ̂2ĥCT 0.08 0.13 0.18 0.03 0.02 0.01
λ̂3ĥCT 0.07 0.07 0.10 0.03 0.08 0.04

A2 0.13 0.31 0.50 0.13 0.31 0.50
SW 0.15 0.41 0.66 0.15 0.41 0.66

Beta(2,3)
ĥH0

0.08 0.21 0.33 0.14 0.32 0.47
λ̂1ĥH0

0.08 0.19 0.30 0.11 0.24 0.37
λ̂2ĥH0

0.08 0.13 0.20 0.12 0.18 0.20
λ̂3ĥH0

0.08 0.07 0.10 0.11 0.15 0.23
ĥCT 0.07 0.13 0.22 0.08 0.24 0.42
λ̂1ĥCT 0.07 0.13 0.22 0.08 0.17 0.27
λ̂2ĥCT 0.08 0.13 0.18 0.04 0.03 0.02
λ̂3ĥCT 0.08 0.10 0.15 0.04 0.08 0.07

A2 0.09 0.19 0.32 0.09 0.19 0.32
SW 0.07 0.20 0.39 0.07 0.20 0.39

Table 10: Empirical power results, at level α = 0.05, for the goodness-of-fit tests for the normal

distribution based on In(ĥ) and Jn(ĥ), for the indicated bandwidth selectors, and A2 and SW . The

power estimates are based on 10, 000 samples from the considered alternatives.
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In(ĥ) Jn(ĥ)

ĥ n = 20 n = 50 n = 80 n = 20 n = 50 n = 80

Uniform
ĥH0

0.33 0.86 0.99 0.54 0.95 1.00

λ̂1ĥH0
0.32 0.84 0.98 0.48 0.92 0.99

λ̂2ĥH0
0.19 0.76 0.93 0.13 0.14 0.42

λ̂3ĥH0
0.22 0.54 0.89 0.37 0.93 0.96

ĥCT 0.20 0.69 0.95 0.43 0.94 0.99
λ̂1ĥCT 0.21 0.70 0.95 0.32 0.90 0.98

λ̂2ĥCT 0.27 0.75 0.94 0.01 0.00 0.00
λ̂3ĥCT 0.29 0.77 0.94 0.06 0.13 0.61

A2 0.30 0.83 0.99 0.30 0.83 0.99
Exponential

ĥH0
0.68 0.99 1.00 0.52 0.97 1.00

λ̂1ĥH0
0.64 0.98 1.00 0.46 0.95 1.00

λ̂2ĥH0
0.52 0.96 1.00 0.02 0.15 0.61

λ̂3ĥH0
0.26 0.81 0.98 0.06 0.26 0.60

ĥCT 0.60 0.98 1.00 0.54 0.94 1.00
λ̂1ĥCT 0.60 0.98 1.00 0.48 0.92 1.00

λ̂2ĥCT 0.58 0.96 1.00 0.00 0.01 0.03
λ̂3ĥCT 0.53 0.94 1.00 0.08 0.17 0.67
A2 0.72 0.99 1.00 0.72 0.99 1.00

Laplace

ĥH0
0.11 0.20 0.31 0.03 0.03 0.04

λ̂1ĥH0
0.11 0.20 0.30 0.04 0.05 0.07

λ̂2ĥH0
0.10 0.20 0.29 0.02 0.01 0.00

λ̂3ĥH0
0.11 0.21 0.31 0.02 0.00 0.00

ĥCT 0.13 0.25 0.36 0.08 0.08 0.12
λ̂1ĥCT 0.13 0.24 0.35 0.07 0.06 0.09
λ̂2ĥCT 0.11 0.17 0.26 0.03 0.01 0.00

λ̂3ĥCT 0.09 0.16 0.25 0.02 0.01 0.01
A2 0.12 0.21 0.31 0.12 0.21 0.31

Cauchy
ĥH0

0.78 0.99 1.00 0.52 0.92 0.99

λ̂1ĥH0
0.77 0.98 1.00 0.57 0.93 0.99

λ̂2ĥH0
0.74 0.98 1.00 0.29 0.70 0.94

λ̂3ĥH0
0.65 0.97 1.00 0.45 0.86 0.96

ĥCT 0.80 0.99 1.00 0.73 0.96 1.00

λ̂1ĥCT 0.80 0.99 1.00 0.71 0.96 0.99
λ̂2ĥCT 0.76 0.98 1.00 0.22 0.63 0.86

λ̂3ĥCT 0.73 0.98 1.00 0.41 0.74 0.95

A2 0.80 0.99 1.00 0.80 0.99 1.00

Table 11: Empirical power results, at level α = 0.05, for the goodness-of-fit tests for the logistic

distribution based on In(ĥ) and Jn(ĥ), for the indicated bandwidth selectors, and A2. The power

estimates are based on 10, 000 samples from the considered alternatives.
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In(ĥ) Jn(ĥ)

ĥ n = 20 n = 50 n = 80 n = 20 n = 50 n = 80

Normal

ĥH0
0.05 0.07 0.11 0.09 0.16 0.21

λ̂1ĥH0
0.05 0.07 0.10 0.09 0.14 0.18

λ̂2ĥH0
0.05 0.07 0.09 0.08 0.15 0.19

λ̂3ĥH0
0.06 0.05 0.06 0.10 0.19 0.27

ĥCT 0.04 0.05 0.07 0.07 0.16 0.24

λ̂1ĥCT 0.04 0.05 0.07 0.07 0.14 0.21
λ̂2ĥCT 0.05 0.07 0.08 0.06 0.10 0.13

λ̂3ĥCT 0.06 0.07 0.08 0.07 0.11 0.16

A2 0.05 0.06 0.09 0.05 0.06 0.09
Gumbel

ĥH0
0.19 0.46 0.68 0.15 0.38 0.60

λ̂1ĥH0
0.18 0.42 0.63 0.12 0.29 0.46

λ̂2ĥH0
0.12 0.30 0.38 0.04 0.04 0.02

λ̂3ĥH0
0.07 0.11 0.24 0.06 0.07 0.03

ĥCT 0.14 0.36 0.58 0.12 0.25 0.45

λ̂1ĥCT 0.14 0.35 0.57 0.10 0.20 0.35
λ̂2ĥCT 0.13 0.28 0.45 0.03 0.02 0.01

λ̂3ĥCT 0.12 0.24 0.40 0.04 0.02 0.02

A2 0.20 0.49 0.74 0.20 0.49 0.74
Student(6)

ĥH0
0.07 0.07 0.08 0.05 0.05 0.04

λ̂1ĥH0
0.07 0.07 0.07 0.05 0.05 0.04

λ̂2ĥH0
0.06 0.06 0.06 0.05 0.04 0.03

λ̂3ĥH0
0.05 0.06 0.06 0.04 0.04 0.03

ĥCT 0.07 0.07 0.08 0.06 0.05 0.04

λ̂1ĥCT 0.07 0.07 0.08 0.06 0.05 0.04
λ̂2ĥCT 0.06 0.06 0.07 0.04 0.04 0.04

λ̂3ĥCT 0.06 0.06 0.06 0.05 0.04 0.04

A2 0.07 0.08 0.09 0.07 0.08 0.09
Lognormal(0.5)

ĥH0
0.37 0.79 0.95 0.24 0.67 0.90

λ̂1ĥH0
0.34 0.74 0.93 0.20 0.57 0.82

λ̂2ĥH0
0.24 0.60 0.77 0.03 0.02 0.06

λ̂3ĥH0
0.11 0.30 0.62 0.05 0.05 0.06

ĥCT 0.29 0.70 0.92 0.22 0.53 0.81
λ̂1ĥCT 0.28 0.69 0.91 0.19 0.45 0.73

λ̂2ĥCT 0.25 0.59 0.84 0.01 0.00 0.00
λ̂3ĥCT 0.22 0.53 0.79 0.03 0.02 0.14

A2 0.38 0.82 0.97 0.38 0.82 0.97

Table 12: Empirical power results, at level α = 0.05, for the goodness-of-fit tests for the logistic

distribution based on In(ĥ) and Jn(ĥ), for the indicated bandwidth selectors, and A2. The power

estimates are based on 10, 000 samples from the considered alternatives.
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In(ĥ) Jn(ĥ)

ĥ n = 20 n = 50 n = 80 n = 20 n = 50 n = 80

Tukey(5)

ĥH0
0.05 0.09 0.18 0.04 0.05 0.06

λ̂1ĥH0
0.07 0.12 0.22 0.06 0.08 0.12

λ̂2ĥH0
0.11 0.23 0.40 0.06 0.06 0.09

λ̂3ĥH0
0.14 0.31 0.39 0.04 0.05 0.06

ĥCT 0.10 0.22 0.36 0.07 0.09 0.14

λ̂1ĥCT 0.11 0.22 0.36 0.07 0.07 0.10
λ̂2ĥCT 0.10 0.23 0.34 0.03 0.02 0.009

λ̂3ĥCT 0.11 0.24 0.37 0.04 0.01 0.01

A2 0.06 0.09 0.16 0.06 0.09 0.16
Gamma(4,1)

ĥH0
0.19 0.49 0.73 0.17 0.45 0.70

λ̂1ĥH0
0.18 0.44 0.69 0.14 0.35 0.57

λ̂2ĥH0
0.12 0.32 0.42 0.05 0.06 0.02

λ̂3ĥH0
0.07 0.13 0.26 0.07 0.10 0.05

ĥCT 0.14 0.37 0.63 0.13 0.31 0.56
λ̂1ĥCT 0.14 0.36 0.62 0.11 0.24 0.45

λ̂2ĥCT 0.13 0.31 0.49 0.03 0.02 0.008
λ̂3ĥCT 0.12 0.26 0.45 0.04 0.02 0.03

A2 0.19 0.51 0.78 0.19 0.51 0.78
Weibul(2,1)

ĥH0
0.12 0.33 0.55 0.16 0.41 0.63

λ̂1ĥH0
0.11 0.30 0.50 0.14 0.32 0.50

λ̂2ĥH0
0.08 0.22 0.30 0.08 0.12 0.06

λ̂3ĥH0
0.07 0.10 0.20 0.12 0.25 0.20

ĥCT 0.08 0.21 0.41 0.12 0.32 0.56

λ̂1ĥCT 0.09 0.21 0.40 0.10 0.25 0.45
λ̂2ĥCT 0.09 0.21 0.33 0.04 0.04 0.04

λ̂3ĥCT 0.10 0.20 0.32 0.06 0.05 0.05

A2 0.12 0.31 0.56 0.12 0.31 0.56
Beta(2,3)

ĥH0
0.12 0.38 0.63 0.23 0.57 0.80

λ̂1ĥH0
0.11 0.36 0.60 0.19 0.48 0.70

λ̂2ĥH0
0.08 0.27 0.42 0.12 0.23 0.14

λ̂3ĥH0
0.08 0.14 0.30 0.20 0.59 0.68

ĥCT 0.07 0.23 0.45 0.16 0.57 0.81

λ̂1ĥCT 0.08 0.23 0.45 0.12 0.48 0.73
λ̂2ĥCT 0.10 0.26 0.42 0.04 0.05 0.04

λ̂3ĥCT 0.11 0.27 0.42 0.08 0.15 0.14

A2 0.11 0.33 0.60 0.11 0.33 0.60

Table 13: Empirical power results, at level α = 0.05, for the goodness-of-fit tests for the logistic

distribution based on In(ĥ) and Jn(ĥ), for the indicated bandwidth selectors, and A2. The power

estimates are based on 10, 000 samples from the considered alternatives.
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In(ĥ) Jn(ĥ)

ĥ n = 20 n = 50 n = 80 n = 20 n = 50 n = 80

Uniform
ĥH0

0.34 0.79 0.96 0.50 0.90 0.99

λ̂1ĥH0
0.32 0.76 0.95 0.41 0.84 0.97

λ̂2ĥH0
0.27 0.58 0.94 0.33 0.75 0.93

λ̂3ĥH0
0.19 0.46 0.73 0.05 0.14 0.30

ĥCT 0.22 0.66 0.92 0.39 0.89 0.99

λ̂1ĥCT 0.22 0.65 0.90 0.24 0.80 0.96
λ̂2ĥCT 0.23 0.57 0.82 0.01 0.00 0.00
λ̂3ĥCT 0.20 0.52 0.69 0.11 0.20 0.91

A2 0.26 0.76 0.96 0.26 0.76 0.96
Exponential

ĥH0
0.27 0.63 0.86 0.12 0.37 0.65

λ̂1ĥH0
0.25 0.60 0.84 0.10 0.29 0.56

λ̂2ĥH0
0.23 0.48 0.82 0.21 0.55 0.81

λ̂3ĥH0
0.17 0.32 0.58 0.33 0.44 0.33

ĥCT 0.24 0.61 0.86 0.16 0.40 0.67
λ̂1ĥCT 0.23 0.60 0.84 0.12 0.32 0.58

λ̂2ĥCT 0.18 0.48 0.76 0.01 0.00 0.00
λ̂3ĥCT 0.15 0.48 0.73 0.13 0.07 0.52

A2 0.38 0.82 0.97 0.38 0.82 0.97
Laplace

ĥH0
0.43 0.83 0.96 0.35 0.77 0.93

λ̂1ĥH0
0.43 0.83 0.95 0.27 0.69 0.90

λ̂2ĥH0
0.40 0.76 0.95 0.42 0.79 0.94

λ̂3ĥH0
0.35 0.70 0.89 0.18 0.35 0.55

ĥCT 0.43 0.82 0.95 0.40 0.76 0.92

λ̂1ĥCT 0.43 0.82 0.95 0.34 0.70 0.89
λ̂2ĥCT 0.32 0.73 0.92 0.02 0.05 0.12

λ̂3ĥCT 0.34 0.75 0.92 0.24 0.40 0.85

A2 0.46 0.86 0.97 0.46 0.86 0.97
Cauchy

ĥH0
0.87 1.00 1.00 0.75 0.99 1.00

λ̂1ĥH0
0.86 1.00 1.00 0.68 0.98 1.00

λ̂2ĥH0
0.85 0.99 1.00 0.85 1.00 1.00

λ̂3ĥH0
0.80 0.99 1.00 0.72 0.97 1.00

ĥCT 0.88 1.00 1.00 0.85 0.99 1.00

λ̂1ĥCT 0.87 1.00 1.00 0.81 0.99 1.00
λ̂2ĥCT 0.81 0.99 1.00 0.37 0.86 0.97

λ̂3ĥCT 0.81 0.99 1.00 0.76 0.97 1.00

A2 0.89 1.00 1.00 0.89 1.00 1.00

Table 14: Empirical power results, at level α = 0.05, for the goodness-of-fit tests for the Gumbel

distribution based on In(ĥ) and Jn(ĥ), for the indicated bandwidth selectors, and A2. The power

estimates are based on 10, 000 samples from the considered alternatives.
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In(ĥ) Jn(ĥ)

ĥ n = 20 n = 50 n = 80 n = 20 n = 50 n = 80

Normal

ĥH0
0.20 0.47 0.67 0.23 0.50 0.68

λ̂1ĥH0
0.20 0.44 0.65 0.17 0.41 0.60

λ̂2ĥH0
0.17 0.31 0.63 0.18 0.37 0.53

λ̂3ĥH0
0.12 0.18 0.28 0.03 0.02 0.03

ĥCT 0.16 0.38 0.59 0.19 0.45 0.66

λ̂1ĥCT 0.16 0.37 0.58 0.13 0.33 0.55
λ̂2ĥCT 0.12 0.24 0.45 0.04 0.01 0.01

λ̂3ĥCT 0.11 0.24 0.36 0.06 0.04 0.40

A2 0.21 0.55 0.78 0.21 0.55 0.78
Logistic

ĥH0
0.28 0.63 0.82 0.26 0.58 0.78

λ̂1ĥH0
0.28 0.61 0.79 0.20 0.50 0.71

λ̂2ĥH0
0.25 0.49 0.78 0.25 0.52 0.71

λ̂3ĥH0
0.18 0.37 0.56 0.07 0.09 0.15

ĥCT 0.25 0.57 0.77 0.24 0.53 0.74

λ̂1ĥCT 0.25 0.56 0.76 0.18 0.43 0.65
λ̂2ĥCT 0.17 0.42 0.68 0.03 0.01 0.02

λ̂3ĥCT 0.18 0.45 0.64 0.11 0.14 0.54

A2 0.31 0.69 0.88 0.31 0.69 0.88
Student(6)

ĥH0
0.31 0.65 0.84 0.28 0.60 0.80

λ̂1ĥH0
0.30 0.63 0.83 0.21 0.52 0.74

λ̂2ĥH0
0.27 0.53 0.82 0.27 0.55 0.74

λ̂3ĥH0
0.19 0.42 0.63 0.09 0.14 0.22

ĥCT 0.28 0.60 0.81 0.28 0.56 0.76

λ̂1ĥCT 0.27 0.59 0.79 0.20 0.46 0.69
λ̂2ĥCT 0.19 0.47 0.72 0.03 0.03 0.05

λ̂3ĥCT 0.19 0.50 0.69 0.13 0.19 0.60

A2 0.33 0.71 0.89 0.33 0.71 0.89
Lognormal(0.5)

ĥH0
0.08 0.11 0.15 0.04 0.05 0.06

λ̂1ĥH0
0.07 0.10 0.13 0.05 0.05 0.06

λ̂2ĥH0
0.07 0.07 0.12 0.06 0.07 0.09

λ̂3ĥH0
0.06 0.06 0.09 0.12 0.15 0.18

ĥCT 0.06 0.09 0.13 0.05 0.04 0.05
λ̂1ĥCT 0.06 0.09 0.12 0.04 0.04 0.04

λ̂2ĥCT 0.06 0.07 0.09 0.04 0.03 0.02
λ̂3ĥCT 0.05 0.07 0.08 0.06 0.07 0.07

A2 0.09 0.15 0.22 0.09 0.15 0.22

Table 15: Empirical power results, at level α = 0.05, for the goodness-of-fit tests for the Gumbel

distribution based on In(ĥ) and Jn(ĥ), for the indicated bandwidth selectors, and A2. The power

estimates are based on 10, 000 samples from the considered alternatives.
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In(ĥ) Jn(ĥ)

ĥ n = 20 n = 50 n = 80 n = 20 n = 50 n = 80

Tukey(5)

ĥH0
0.27 0.72 0.93 0.26 0.71 0.93

λ̂1ĥH0
0.28 0.70 0.92 0.20 0.61 0.88

λ̂2ĥH0
0.25 0.62 0.90 0.33 0.75 0.92

λ̂3ĥH0
0.29 0.46 0.51 0.08 0.15 0.29

ĥCT 0.32 0.73 0.92 0.32 0.69 0.91
λ̂1ĥCT 0.33 0.71 0.91 0.25 0.59 0.85
λ̂2ĥCT 0.26 0.62 0.85 0.01 0.00 0.01

λ̂3ĥCT 0.27 0.55 0.75 0.15 0.21 0.78

A2 0.34 0.81 0.97 0.34 0.81 0.97
Gamma(4,1)

ĥH0
0.05 0.05 0.06 0.06 0.07 0.08

λ̂1ĥH0
0.05 0.05 0.06 0.06 0.07 0.08

λ̂2ĥH0
0.05 0.05 0.06 0.05 0.06 0.06

λ̂3ĥH0
0.05 0.05 0.05 0.06 0.07 0.09

ĥCT 0.05 0.05 0.06 0.05 0.06 0.08
λ̂1ĥCT 0.05 0.05 0.05 0.05 0.06 0.07

λ̂2ĥCT 0.05 0.05 0.05 0.05 0.06 0.07
λ̂3ĥCT 0.05 0.05 0.05 0.06 0.06 0.09

A2 0.05 0.05 0.06 0.05 0.05 0.06

Weibul(2,1)
ĥH0

0.06 0.09 0.11 0.10 0.16 0.21

λ̂1ĥH0
0.06 0.09 0.11 0.09 0.14 0.18

λ̂2ĥH0
0.05 0.07 0.10 0.07 0.10 0.12

λ̂3ĥH0
0.06 0.06 0.06 0.03 0.03 0.03

ĥCT 0.05 0.06 0.08 0.08 0.17 0.24

λ̂1ĥCT 0.05 0.07 0.09 0.07 0.11 0.19
λ̂2ĥCT 0.06 0.07 0.09 0.06 0.07 0.11
λ̂3ĥCT 0.06 0.06 0.05 0.05 0.05 0.12

A2 0.05 0.08 0.11 0.05 0.08 0.11
Beta(2,3)

ĥH0
0.10 0.20 0.32 0.17 0.35 0.51

λ̂1ĥH0
0.09 0.19 0.29 0.15 0.28 0.40

λ̂2ĥH0
0.08 0.10 0.27 0.10 0.19 0.28

λ̂3ĥH0
0.07 0.06 0.08 0.01 0.01 0.01

ĥCT 0.07 0.13 0.22 0.12 0.40 0.59

λ̂1ĥCT 0.07 0.13 0.21 0.09 0.27 0.47
λ̂2ĥCT 0.08 0.11 0.17 0.05 0.03 0.05

λ̂3ĥCT 0.08 0.07 0.07 0.05 0.03 0.29

A2 0.08 0.19 0.33 0.08 0.19 0.33

Table 16: Empirical power results, at level α = 0.05, for the goodness-of-fit tests for the Gumbel

distribution based on In(ĥ) and Jn(ĥ), for the indicated bandwidth selectors, and A2. The power

estimates are based on 10, 000 samples from the considered alternatives.


