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Abstract

As in classical topology, in localic topology one often needs to restrict to locales satisfying
a certain degree of separation. In fact, the study of separation in the category of locales
constitutes a non-trivial and important piece of the theory. For instance, it is sometimes
impossible to give an exact counterpart of a classical axiom, while other times a single
property for spaces yields multiple non-equivalent localic versions.

The main goal of this thesis is to investigate several classes of separated locales and their
connections with different classes of sublocales, that is, the regular subobjects in the category
of locales.

In particular, we introduce a new diagonal separation and show that it is, in a certain
sense, dual to Isbell’s (strong) Hausdorff property. The duality between suplattices and
preframes, and that between normality and extremal disconnectedness, turn out to be of
special interest in this context.

Regarding higher separation, we introduce cardinal generalizations of normality and
their duals (e.g., properties concerning extensions of disjoint families of cozero elements),
and give characterizations via suitable insertion or extension results.

The lower separation property known as the TD-axiom, also plays an important role in
the thesis. Namely, we investigate the TD-duality between the category of TD-spaces and a
certain (non-full) subcategory of the category of locales, identifying the regular subobjects in
the localic side, and provide several applications in point-free topology.





Resumo

Tal como na topologia clássica, também na topologia dos locales (reticulados locais) é
frequente termos que nos restringir a locales que satisfaçam um certo grau de separação.
De facto, o estudo de axiomas de separação na categoria dos locales constitui um aspecto
não trivial e relevante da teoria. Por exemplo, em alguns casos é impossível termos a
contrapartida exacta de um axioma clássico, enquanto noutros casos uma única propriedade
para espaços topológicos produz, na categoria dos locales, diversas versões não equivalentes
entre si.

O objectivo principal desta tese é investigar várias classes de locales separados e suas
conexões com diferentes classes de sublocales (os subobjetos regulares na categoria dos
locales).

Em particular, introduzimos uma nova propriedade de separação diagonal e mostramos
que se trata, em certo sentido, de uma propriedade dual do axioma (forte) de Hausdorff
introduzido por Isbell. As dualidades entre semi-reticulados e reticulados pré-locais, e entre
normalidade e desconexão extrema, acabam por ter um papel relevante neste contexto.

Relativamente a axiomas de separação fortes, introduzimos generalizações de normal-
idade, em função de um cardinal arbitrário, e suas duais (por exemplo, propriedades
envolvendo extensões de famílias disjuntas de elementos co-zero), e apresentamos caracteri-
zações em termos de propriedades de inserção ou extensão de funções.

O axioma TD, uma propriedade de separação muito fraca, também desempenha um
papel importante nesta tese. Especificamente, investigamos a dualidade TD entre a categoria
dos espaços topológicos TD e uma determinada subcategoria (não plena) da categoria dos
locales, identificando os subobjetos regulares na subcategoria de locales, e apresentamos
várias aplicações à topologia sem pontos.





Resumen

Tal y como ocurre en topología clásica, en topología locálica frecuentemente uno tiene que
restringir su atención a locales que cumplen cierto grado de separación. De hecho, el estudio
de la separación en la categoría de locales es un aspecto no trivial y relevante de la teoría. En
algunos casos, es imposible dar una contrapartida exacta a un axioma clásico, mientras que
en otros casos, una sola propiedad produce multitud de versiones locálicas no equivalentes
entre sí.

El principal objetivo de esta tesis es investigar varias clases de locales separados y sus
relaciones con diferentes clases de sublocales, esto es, los subobjetos regulares en la categoría
de locales.

En particular, introducimos una nueva separación diagonal, y probamos que es, en cierto
sentido, dual al axioma Hausdorff (fuerte) de Isbell. En este contexto, la dualidad entre
retículos completos y premarcos, y aquella entre la normalidad y la desconexión extrema
resultan ser de especial interés.

En cuanto a la separación más fuerte, introducimos generalizaciones cardinales de la
normalidad y sus duales (por ejemplo, propiedades que consisten en la extensión de familias
disjuntas de elementos cozero), y damos caracterizaciones de las mismas en términos de
teoremas de extensión o inserción.

Ciertas propiedades de separación más débiles, especialmente el axioma TD, también
desempeñan un papel importante en esta tesis. Específicamente, investigamos la dualidad TD

entre la categoría de espacios topológicos TD y cierta subcategoría (no plena) de la categoría
de locales, identificando los subobjetos regulares en la categoría de locales, y proporcionamos
algunas aplicaciones en la topología sin puntos.





Laburpena

Topologia klasikoan gertatzen den antzera, topologia lokalikoan ohikoa da banantze-maila
jakin bat duten lokaleetara murriztu behar izatea. Izan ere, banantzearen azterketa lokaleen
kategorian aspektu ez-tribiala eta garrantzitsua da. Honela, batzuetan ezinezkoa da axioma
klasiko baten analogo zehatza ematea eta beste batzuetan propietate bakar batek hainbat
bertsio lokaliko ez-baliokide izan ditzake.

Tesi honen helburu nagusia zenbait lokale bananduren klase ikertzea da, eta horien
erlazioak aztertzea azpilokaleen klase desberdinekin, azken hauek lokaleen kategoriako
azpiobjektu erregularak direlarik.

Besteak beste, diagonal erako banantze mota berri bat aurkeztuko dugu, eta frogatuko
dugu, neurri batean, Isbell-en Hausdorff axioma gogorraren duala dela. Testuinguru
honetan, interes berezikoak dira erretikulu osoen eta aurremarkoen arteko dualtasuna, baita
normaltasunaren eta muturreko ez-konexutasunaren artekoa ere.

Banantze-propietate gogorrenei dagokienez, normaltasunaren orokortze kardinalak
eta beraien dualak aztertuko ditugu (esate baterako, kozero familia disjuntuen hedatze-
propietateak), eta hedatze- edo txertatze-teoremen bidez hauen karakterizazioak emango
ditugu.

Banantze-propietate ahulei, eta bereziki TD-axiomari, ere arreta jarriko diegu. Esaterako,
TD-espazio topologikoen kategoriaren eta lokaleen kategoriaren azpikategoria (ez-oso) jakin
baten arteko TD-dualtasuna ikertuko dugu, bide batez lokaleen azpikategoria horretako
azpiobjektu erregularrak identifikatuz, eta hainbat aplikazio aztertuko ditugu punturik
gabeko topologian.

xi
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Introduction

Los héroes clásicos reflejados en los espejos cóncavos dan el Esperpento.
Las imágenes más bellas en un espejo cóncavo son absurdas.
La deformación deja de serlo cuando está sujeta a una matemática perfecta.
Mi estética actual es transformar con matemática de espejo cóncavo las
normas clásicas.

Ramón María del Valle-Inclán, Luces de bohemia

A frame is a complete lattice L satisfying the infinite distributivity law

(
∨
i∈I

ai)∧ b =
∨
i∈I

ai∧ b, for any {ai}i∈I ⊆ L and b ∈ L.

Frames and their homomorphisms —maps preserving arbitrary joins and finite meets—
form the category of frames, denoted by Frm. A locale is the same thing as a frame, but
their morphisms go in the opposite direction — i.e., locales and their morphisms form a
category Loc which is dual to Frm. It turns out that Loc contains a very substantial part
of the category Top of topological spaces as a full subcategory, and hence one may regard
locales as generalized spaces. Accordingly, point-free topology (also known as localic topology
or locale theory) is the study of the category of locales (and its dual, the category of frames).

There are good reasons for studying locales as generalized spaces. Isbell pointed out
in his pioneering article [72] that the category of locales is not only a generalization but
an improvement of the category of classical topological spaces, and it has since become
clear that localic topology yields a better theory in many respects. In these pages, it is
not our purpose to discuss in depth the advantages of localic topology, and for a detailed
account we refer to any of the excellent works [79, 80, 96]. However, let us mention for
example the fact that locale theory is inherently constructive — in fact, the localic Tychonoff’s
theorem ensuring that products of compact locales are compact is completely choice-free, a
situation that contrasts strikingly with its classical counterpart. Another pleasant feature is
the behaviour of products of locales. Unlike in classical topology, products of paracompact
(resp. Lindelöf) locales are paracompact (resp. Lindelöf). Finally, we also emphasize a fact
which plays an important role in this dissertation: the category of frames is an algebraic
category (i.e., the forgetful functor of Frm into Set is monadic). In particular, free frames
exist and one may present frames by generators and relations as in other familiar algebraic

1
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structures. This is a very useful tool in point-free topology, not available in the realm of
classical topology. Notably, it allows the construction of the frame of (extended) reals [22, 26]
(for more examples of this technique, we refer to [88] and the references therein).

Generalized subspaces: sublocales

Regular subobjects (i.e., isomorphism classes of regular monomorphisms with a fixed
codomain) in the category of topological spaces correspond to subspace inclusions. Analo-
gously, generalized or point-free subspaces (known as sublocales) are defined to be the regular
subobjects in the category of locales. A major difference between the category of topological
spaces and the category of locales is the nature of their lattices of regular subobjects. Whereas
the lattice of subspaces of a topological space is of a very special nature — a complete and
atomic Boolean algebra — the lattice of sublocales of a locale is merely a coframe (i.e., the
order-theoretic dual of a frame), and in particular, not every sublocale has a complement.
Hence, lattices of regular subobjects in the category of locales are more complicated objects
and they are one of the fundamental areas of study in point-free topology.

Throughout this work, we shall adopt the concrete approach to the category of locales,
as in [92] — i.e., we shall regard morphisms in Loc not simply as frame homomorphisms
formally turned around, but as actual mappings. In particular, sublocales will be seen as
special subsets of the locale in question, thus providing a pleasant framework to deal with
the geometry of sublocales.

As with the classical topological spaces and their separation axioms, in point-free topology
one often needs to restrict to smaller classes of locales satisfying certain degree of separation.
Actually, the study of separation is one of the intricate topics in localic topology. Sometimes,
a single axiom from classical topology has multiple non-equivalent localic counterparts;
other times, the classical axiom may be too point-dependent to admit a direct lattice-theoretic
formulation. The recent monograph [98] contains an extensive and detailed account of
separation properties studied in the literature.

In this context, the main goal of this thesis is to study and introduce several classes of
sublocales, with a special emphasis on their relations with different classes of separated
locales. Our contributions may be summarized as follows:

Lower separation: the TD axiom.

The classical TD axiom of Aull and Thron [11] plays a fundamental role in localic topology
(for instance, it ensures that subspaces of a topological space have a proper representation as
sublocales of the associated locale). In this thesis, we shall study several families of sublocales
connected to the TD property: the family of smooth sublocales and that of D-sublocales.
Among other results, we will give new criteria of TD-spatiality and total TD-spatiality of
a locale. The study of TD-spatiality will rely heavily on a certain subspace of the prime
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spectrum consisting of covered primes [31, 32]. We shall also emphasize the differences of
the theory when one replaces covered primes by maximal elements.

Furthermore, by using our results we will be able to provide some new insights on the
duality of TD-spaces from [31] (in particular, we identify and study the appropriate notion of
generalized subspace in this duality).

Higher separation: normality and its variants.

Among higher separation axioms, we shall pay special attention to variants of normality and
their duals. It has long been known that normality and extremal disconnectedness mirror
each other. Indeed, not only are these concepts lattice-theoretically dual, but there are also
several pairs of parallel insertion and extension results in classical topology characterizing
normality and extremal disconnectedness. The source of this duality was investigated
point-freely in [69], where the authors used the technique of fixing a class of complemented
sublocales in order to produce relative notions of upper and lower semicontinuity which
behave dually under complementation. In this work, we will use this technique in order to
study certain variants of normality and their duals.

We will introduce point-freely a new cardinal generalization of normality, referred to
as total collectionwise normality, and subsequently, its associated insertion and extension
theorems will be proved. For that purpose, we will take advantage of the algebraic nature
of the category of frames in order to present (by generators and relations) a point-free
cardinal generalization of the ordered structure (in the sense of the Lawson topology) on the
extended real line. We will refer to it as the frame of the compact hedgehog. Furthermore, the
theory of semicontinuity of compact hedgehog-valued functions will be developed, thereby
establishing connections with disjoint families of cozero elements. The dual notions and
some other cardinal generalizations (e.g., collectionwise normality, or the infinite variants of
De Morgan laws for frames) and the relations between them will also be discussed.

Diagonal separation.

In the category of topological spaces (resp. the category of locales), a number of important
separation axioms can be expressed by requiring that the diagonal of the space (resp. locale)
in question belong to a given class of subspaces (resp. sublocales). Locales whose diagonal
is closed are known as strongly Hausdorff (introduced by Isbell). In this thesis, we shall study
a new class of separated locales corresponding to those whose diagonal is an intersection
of open sublocales — we speak about F -separated locales. We will show that the strong
Hausdorff property and F -separatedness are, in a certain sense, dual to each other. As a
consequence of this study, the parallel between suplattices and preframes, and that between
(the hereditary variants of) normality and extremal disconnectedness will emerge naturally.
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Outline of the thesis

Chapter 1 contains the necessary preliminaries and notation that will be needed throughout
this dissertation. More specific background will also be provided in some of the chapters.

Chapter 2 discusses two diagonal separation properties, the so-called strong Hausdorff
property — corresponding to locales with closed diagonal — and a new one — corresponding
to locales whose diagonal is an intersection of open sublocales — thus revealing a strong
structural parallel between both notions. Certain characterizations in terms of relaxed
morphisms are proved. As a result of this study, the duality between (the hereditary variants
of) normality and extremal disconnectedness arises.

Chapter 3 begins with an exposition of the relative approach to normality as a tool for
formalizing the duality between normality and extremal disconnectedness. This approach
is then used for studying two point-free cardinal generalizations of normality, namely
collectionwise normality and total collectionwise normality. The dual notions are then
explored and it is proved that there is no real cardinal generalization: they collapse to the
base cases. On the way, different cardinal generalizations of z-embeddings are discussed.

Chapter 4 deals with a different cardinal generalizations of extremal disconnectedness.
We introduce two new classes of frames called infinitely extremally disconnected frames and
infinitely De Morgan frames. It is shown that the latter is the conjunction of the former and a
weak scatteredness condition. For frames which are additionally coframes, the finite second
De Morgan law implies infinite extremal disconnectedness.

Chapters 5 and 6 are devoted to a localic theory of the compact hedgehog, as well as its
connections with some variants of normality studied in previous chapters.

More precisely, in Chapter 5 the compact localic hedgehog is introduced as a frame
presented by suitable generators and relations. We motivate the compact hedgehog as the
natural cardinal generalization of the ordered structure on the (extended) real line and its
associated Lawson topology. It is shown that it is a compact regular frame, and other basic
properties are established. Subsequently, we develop the theory of compact hedgehog-valued
functions and it is proved that continuous compact hedgehog-valued functions correspond
bijectively to disjoint families of cozero elements. We also prove new point-free insertion
and extension theorems characterizing normality and total collectionwise normality.

Chapter 6 develops the theory of compact hedgehog-valued functions in the more general
and unifying setting of sublocale selections. This way, generalized insertion and extension
theorems and their dual results are obtained.

The theory of real-valued (resp. compact hedgehog-valued) functions makes an essential
use of the idea of discretization of a given locale. Whereas in Chapters 5 and 6 the discretization
is taken to be the whole coframe of sublocales, in Chapter 7 an alternative construction
is explored. We systematically study the family of smooth sublocales proving that it is
a subcolocale of the coframe of sublocales which forms a complete Boolean algebra. We
investigate its relations with the TD axiom (providing new characterizations of TD-spatiality),
its functoriality properties and related topics. In particular, the theory of compact hedgehog-
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valued functions is revisited in this context, thus showing that the notion of semicontinuity
from Chapter 5 does not change after replacing the former discretization by the new one.

Another family of sublocales is studied in Chapter 8. We introduce the concept of
D-sublocale and show that it is the appropriate notion of generalized subspace in the
duality of TD-spaces. We also prove that the family of D-sublocales of a locale forms a
zero-dimensional subcolocale of the coframe of all sublocales. Following a parallel structure
with the previous chapter, we then move on to proving a strong connection with the TD

axiom (in particular providing a Niefield-Rosenthal type theorem for characterizing total
TD-spatiality) and discussing its functoriality properties.

Chapter 9 presents a short discussion relating the two families of sublocales studied in
Chapters 7 and 8. We end up with the observation that inclusion relations between these (and
other) subcolocales of the coframe of sublocales of a given locale characterize well-known
locale-theoretic properties of the locale itself.

Finally, this dissertation contains the Appendix A. This appendix is based on [69] and
it includes some technical results on relative continuity of extended real-valued functions.
The reason to include the appendix is to make this thesis as self-contained as possible and to
present the results from [69] with a slightly modified terminology more similar to that used
in Chapters 3 and 6.
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maps, Quaestiones Mathematicae, accepted for publication.

[7] I. Arrieta, J. Gutiérrez García, and J. Picado, Frame presentations of compact hedgehogs
and their properties, Quaestiones Mathematicae, accepted for publication.

[8] I. Arrieta, J. Picado, and A. Pultr, A new diagonal separation and its relations with the
Hausdorff property, Applied Categorical Structures, vol. 30, pp. 247–263, 2022.

[9] I. Arrieta and A. L. Suarez, The coframe of D-sublocales of a locale and the TD-duality,
Topology and its Applications, vol. 291, art. no. 107614, 2021.

Besides the mentioned research papers, an introductory survey paper on locale theory
has also been published:



6 List of tables

[10] I. Arrieta and A. Zozaya, ¿Qué es un espacio? La Gaceta de la Real Sociedad Matemática
Española, vol. 24 (2), pp. 249–271, 2021, in spanish.



Chapter 1

Preliminaries

In this chapter we present some general background concerning the categories of locales and
frames. Our goal is to provide the necessary preliminaries and to fix the notation that will be
used throughout the dissertation. The main references on the topic are Johnstone [78] and the
more recent Picado and Pultr [92] (see also the shorter [99, 96]). Another important reference
is the pioneering paper by Isbell [72]. The article [79] describes the main advantages of localic
topology (i.e., topology done within the category of locales rather than in the category of
topological spaces). For general category theory, we refer the reader to [87, 1].

1.1 The categories of locales and frames

A locale (or frame) is a complete lattice L with the property that (
∨

i∈I ai)∧ b =
∨

i∈I ai∧ b for
all {ai}∈I ⊆ L and b ∈ L. If L and M are frames, a map h : L→M is a frame homomorphism if it
preserves arbitrary joins (including the bottom element 0) and finite meets (including the
top element 1). Frames and frame homomorphisms form a category denoted by Frm. The
category of locales, denoted by Loc, is by definition the opposite of the category of frames —
i.e., Loc = Frmop. Since every frame homomorphism h : L→M preserves arbitrary joins, it
has a unique right adjoint, denoted by h∗ : M→ L, given by the equivalence

h(a) ≤ b ⇐⇒ a ≤ h∗(b)

for any a ∈ L and b ∈M. As a right adjoint, h∗ preserves arbitrary meets and is given by

h∗(b) =
∨
{a ∈ L | h(a) ≤ b }

for any b ∈M. A localic map is a map of the form h∗ (i.e., a meet preserving map whose left
adjoint is a frame homomorphism). Given a localic map f : L→M, we shall denote its left
adjoint frame homomorphism by f ∗ : M→ L. This left adjoint is given by

f ∗(b) =
∧
{a ∈ L | b ≤ f (a) }

7
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for any b ∈M. Accordingly, we may regard Loc as a concrete category whose objects are
locales and whose morphisms are localic maps. Note that a frame homomorphism h is
surjective (resp. injective) if and only if h∗ is injective (resp. surjective) if and only if h◦h∗
(resp. h∗ ◦h) is the identity.

For a topological space X, its lattice Ω(X) of open sets is a frame. Given a continuous
map f : X→ Y between topological spaces, the preimage operator f−1[−] : Ω(Y)→Ω(X) is a
frame homomorphism; hence we obtain a functor Ω : Top→ Frmop = Loc.

An element p , 1 in a frame L is prime if for all a,b ∈ L, a∧ b = p implies a = p or b = p
(equivalently, if a∧ b ≤ p implies a ≤ p or b ≤ p). We denote the set of prime elements in a
frame L by pt(L). For every a ∈ L, we set Σa = {p ∈ pt(L) | a � p }. It turns out that the family
{Σa | a ∈ L } is a topology on pt(L). This topology is denoted by Σ(L) and it is referred to as the
spectrum of L. The notions of prime and spectrum will be discussed further in Subsection 1.2.5.
It is easy to show that localic maps send primes into primes. Therefore, given a localic map
f : L→M, we may restrict and co-restrict it to obtain a map pt(L)→ pt(M) which is easily
seen to be continuous with respect to the topologies of the spectra; this continuous map will
be denoted by Σ( f ) : Σ(L)→ Σ(M). Accordingly, we have the spectrum functor Σ : Loc→ Top.
Furthermore, there is an important adjunction

Top Loc

Ω

Σ

⊥ (1.1.1)

If X is a topological space, for each x ∈ X the element X−{x} is prime in Ω(X). Moreover,
the unit η of the adjunction has components ηX : X→ Σ(Ω(X)) (called the soberification of X)
given by ηX(x) = X−{x}. A space X is then sober if ηX is a bijection (equivalently, if ηX is a
homeomorphism). For example, every Hausdorff space is sober. Moreover, every space of
the form Σ(L) is sober.

The axiom of sobriety has a remarkable role in point-free topology, as it allows one to
reconstruct a topological space X from the lattice-theoretic structure ofΩ(X) (as it was just
seen, X � Σ(Ω(X)) for a sober space X).

The counit ϵ of the adjunction has components ϵL whose left adjoints are surjections
ϵ∗L : L�Ω(Σ(L)) (called the spatialization of L) given by ϵ∗L(a) = Σa. Then, L is spatial if ϵL is an
isomorphism (equivalently, if there exists an isomorphism L �Ω(X) for a topological space
X).

The adjunction (1.1.1) is idempotent and therefore it restricts to an equivalence between
the full subcategories of Top and Loc consisting of sober topological spaces and spatial
locales, respectively. The functorΩ is full and faithful when restricted to sober spaces, and so
we may regard locales as generalized sober spaces. Since most of the spaces in practice are
sober, we simply regard locales as generalized topological spaces. Following this viewpoint,
a property P of locales will be said to be a conservative extension of a topological property Q
if X satisfies Q if and only if Ω(X) satisfies P.
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A cover of L is a subset C ⊆ L with the property that
∨

C = 1. A subset B ⊆ L is a
∨

-base.
of L if every a ∈ L can be expressed as a =

∨
B′ with B′ ⊆ B.

1.1.1 Frm is an algebraic category

The category Frm is algebraic (i.e., the forgetful functor Frm→ Set is monadic). This has
a number of pleasant consequences (see for instance [78, Proposition 3.8] or [96, 4.3]).
Among others, Frm is complete and cocomplete, monomorphisms in Frm are precisely the
injective frame homomorphisms and regular epimorphisms are precisely the surjective frame
homomorphisms. Moreover, free frames exist and so one can present frames by generators
and relations. We shall not go into the details of the constructions as for our purposes we
just need the fact that given a set S of symbols and a set R of relations (i.e., formal equalities∨

i∈I
∧

Fi =
∨

j∈J
∧

G j with Fi,G j ⊆ S finite subsets for all i ∈ I, j ∈ J), there is a frame ⟨S | R⟩ and
a map ϕ : S→ ⟨S | R⟩with the property that for every frame L and map f : S→ L which sends
the relations to identities in L, there exists a unique frame homomorphism h : ⟨S | R⟩ → L
such that the diagram

S ⟨S | R⟩

L

ϕ

f
h

is commutative.

1.1.2 The Heyting operator

For each a in a frame L, the map a∧ (−) : L→ L preserves arbitrary joins. Hence it has a right
adjoint a→ (−) : L→ L called the Heyting operator, thus making L into a complete Heyting
algebra. Conversely, every complete Heyting algebra is a frame. The Heyting operator is
characterized by the condition

a∧ b ≤ c ⇐⇒ a ≤ b→ c

for all a,b,c ∈ L.
This operator satisfies the following properties (see [92, III 3.1.1]):

(H1) 1→ a = a;

(H2) a ≤ b if and only if a→ b = 1;

(H3) a ≤ b→ a;

(H4) a→ b = a→ (a∧ b);

(H5) a∧ (a→ b) = a∧ b;

(H6) a∧b = a∧ c if and only if a→ b = a→ c;
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(H7) (a∧ b)→ c = a→ (b→ c) = b→ (a→ c);

(H8) a = (a∨b)∧ (b→ a);

(H9) a ≤ (a→ b)→ b;

(H10) ((a→ b)→ b)→ b = a→ b.

In particular, for each a ∈ L, the element a∗ := a→ 0 is called the pseudocomplement of a.
Pseudocomplements satisfy standard properties such as

a ≤ a∗∗, a∗∗∗ = a∗ or b∗ ≤ a∗ whenever a ≤ b.

An infinite first De Morgan law is also satisfied — i.e,(∨
i∈I

ai

)∗
=
∧
i∈I

a∗i (FDM)

for every {ai}i∈I ⊆ L.
An element a ∈ L is regular if a = b∗ for some b ∈ L (or, equivalently, if a∗∗ = a).
The Heyting operator can be used for providing a more concrete description of localic

maps:

Proposition 1.1.1. Let f : L→M be a meet-preserving map between frames and let f ∗ denote its left
adjoint. Then f is a localic map if and only if the following two properties are satisfied:

(1) f (a) = 1 implies a = 1 for all a ∈ L;

(2) f ( f ∗(b)→ a) = b→ f (a) for all a ∈ L and b ∈M.

1.1.3 Some important properties

The following notions are all topologically inspired. A frame L is said to be

• subfit if for every a,b ∈ L with a � b, there is a c ∈ L such that a∨ c = 1 , b∨ c.

• T1 if every prime element p ∈ L is maximal (that is, p ≤ a implies p = a or a = 1).

• fit if for every a,b ∈ L with a � b, there is a c ∈ L such that a∨ c = 1 and c→ b � b.

• regular if for every a ∈ L, one has a =
∨
{b ∈ L | b ≺ a }where b ≺ a means b∗∨ a = 1.

• normal if for every a,b ∈ L with a∨b = 1, there exist c,d ∈ L such that c∧d = 0, a∨ c = 1 and
b∨d = 1.

• extremally disconnected if for every a,b ∈ L with a∧ b = 0, there exist c,d ∈ L such that
c∨d = 1, a∧ c = 0 and b∧d = 0.

• compact if for every {ai}i∈I with
∨

i∈I ai = 1, there is a finite F ⊆ I such that
∨

i∈F ai = 1.
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• zero-dimensional if every a ∈ L is a join of complemented elements of L.

Regularity, normality, extremal disconnectedness, compactness and zero-dimensionality
are conservative extensions of the homonymous topological properties. For a topological
intuition of subfitness and fitness, we refer to Subsection 1.2.1 below. A sober space X is T1 if
and only if Ω(X) is a T1-frame. Moreover, the implications

zero-dimensional =⇒ regular =⇒ fit =⇒ subfit

hold; and normality together with subfitness implies regularity. For a comprehensive account
of separation properties in point-free topology, we refer to [98].

1.2 Sublocales

A generalized subspace (or point-free subspace) of a locale L is defined to be a regular
subobject of L in Loc. Regular subobjects in Loc are isomorphism classes of injective localic
maps with codomain L (equivalently, isomorphism classes of frame surjections with domain
L). There are several equivalent representations of generalized subspaces. We shall mostly
use that of sublocales, which allows us to represent generalized subspaces as actual subsets
of L closed under certain operations. Specifically, a subset S ⊆ L is a sublocale if it is closed
under arbitrary meets and a→ s ∈ S for all a ∈ L and s ∈ S. A subset S ⊆ L is a sublocale if and
only if it is a frame with the order inherited from L and the embedding jS : S ↪→ L is a localic
map. The associated frame surjection νS : L� S is given by νS(a) =

∧
{s ∈ S | a ≤ s } for any

a ∈ L, and the identity
νS(a)→ s = a→ s (1.2.1)

is satisfied for any a ∈ L and s ∈ S.

A nucleus on L is a monotone, inflationary and idempotent map ν : L→ L which preserves
finite meets. Nuclei on L are in bijection with sublocales of L. Given a nucleus ν, its set
of fixpoints {a ∈ L | ν(a) = a } is a sublocale of L. Conversely, given a sublocale S ⊆ L, the
associated nucleus is jS ◦νS. Sublocales should not be confused with subframes; the latter are
subobjects in Frm. Up to isomorphism, a subframe of L is a subset of L closed under arbitrary
joins and finite meets.

The system S(L) of all sublocales of L, partially ordered by inclusion, is a coframe, that is,
its dual lattice is a frame.1 Infima and suprema are given by∧

i∈I
Si =
⋂
i∈I

Si,
∨
i∈I

Si =
{∧

M |M ⊆
⋃
i∈I

Si

}
. (1.2.2)

1When considering coframes, we shall use lattice-theoretic duals of notions from frame theory, with the
terminology modified just by adding the prefix “co-”, e.g., we will speak about the co-Heyting operator, coframe
homomorphisms, subcolocales, and so on.
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The least element is the sublocale O = {1} and the greatest element is the entire locale L.
Occasionally, it will be convenient to work with the frame S(L)op := (S(L),≤≡⊆op). We shall
denote meets and joins in S(L)op respectively by

�
i∈I Si :=

∨
i∈I Si and

⊔
i∈I Si :=

⋂
i∈I Si.

Since S(L) is a coframe, there is a co-Heyting operator giving the difference SrT of two
sublocales S,T ∈ S(L); this operator is characterized by the condition

SrT ⊆ R ⇐⇒ S ⊆ T∨R

for any S,T,R ∈ S(L). In particular, the supplement of S ∈ S(L) is S# := LrS — i.e., the smallest
sublocale of L whose join with S is L. A sublocale S ⊆ L is complemented if it is complemented
as an element of the lattice S(L) — i.e., if S∩S# =O. Importantly, complemented sublocales
are linear, that is, if C ⊆ L is complemented, then

C∩
∨
i∈i

Si =
∨
i∈I

C∩Si (1.2.3)

for every {Si}i∈I ⊆ S(L). We shall freely use some of the following properties (a comprehensive
list of properties may be found in [58]).

Properties 1.2.1. Let S,T,R,C ∈ S(L), with C being complemented and {Si}i∈I ⊆ S(L). Then:

(1) SrT ⊆ S;

(2) SrT = 0 if and only if S ⊆ T;

(3) SrC = S∩C#;

(4) Sr
⋂

i∈I Si =
∨

i∈I(SrSi);

(5) (SrT)rR = (SrR)rT;

(6) If T ⊆ S, then the supplement of T in S(S) is SrT.

If X is a topological space, every subspace A ⊆ X induces a sublocale of Ω(X) given by
Ã := Ω(ι)∗[Ω(A)] where ι : A ↪→ X is the inclusion; we shall speak of Ã as the induced sublocale
by the subspace A (cf. [92, VI 1.1]). The concept of induced sublocale should not be confused
with that of spatial sublocale. In this text, the latter simply means a sublocale that is spatial as
a frame in its own right. If L =Ω(X), every sublocale that is induced by a subspace of X is a
spatial sublocale, but the converse is not true in general.

1.2.1 Closed and open sublocales

For any a ∈ L, the sublocales

cL(a) = ↑a = {b ∈ L | b ≥ a } and oL(a) = {a→ b | b ∈ L }
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are the closed and open sublocales of L, respectively (that we shall denote simply by c(a) and
o(a) when there is no danger of confusion). We note that o(a) is isomorphic to the frame
↓a = {b ∈ L | b ≤ a } via the isomorphism ϕ : o(a)→↓a given by ϕ(b) = b∧ a.

For each a ∈ L, c(a) and o(a) are complements of each other in S(L) and satisfy the identities

c(1) =O, c(0) = L,
∧
i∈I
c(ai) = c(

∨
i∈I

ai), c(a)∨ c(b) = c(a∧ b), (1.2.4)

o(1) = L, o(0) =O,
∨
i∈I
o(ai) = o(

∨
i∈I

ai) and o(a)∩o(b) = o(a∧b). (1.2.5)

For any sublocale S of L and any a ∈ S, the closed (resp. open) sublocales cS(a) (resp.
oS(a)) of S are precisely the intersections c(a)∩S (resp. o(a)∩S) and for any a ∈ L we have
c(a)∩S = cS(νS(a)) and o(a)∩S = oS(νS(a)).

A sublocale is locally closed if it is the intersection of an open sublocale and a closed
sublocale.

If S is a sublocale of L, the closure of S (in L), denoted by S, is the least closed sublocale
containing S, and it can be computed as S = c(

∧
S). Further, S is dense (in L) if S = L — i.e.,

if
∧

S = 0 (or, equivalently, if 0 ∈ S). Moreover, the interior of S (in L) is the largest open
sublocale contained in S, we shall denote it by int(S).

A sublocale S of L is said to be fitted if it is an intersection of open sublocales. Now, given
a sublocale S of L, set

S̊ :=
⋂

S⊆o(a)
o(a).

It is easy to show that it defines the smallest fitted sublocale containing S. This operator
was studied in [44], where it was referred to as the “other” or “dual” closure (cf. also
Subsection 2.2.3 below). We warn the reader that, unlike in other texts, the notation S̊ does
not refer to the interior int(S) of S.

Recall the subfitness and fitness from Subsection 1.1.3. A locale L is subfit if and only if
every open sublocale is a join of closed sublocales; and it is fit if and only if every closed
sublocale is fitted (equivalently, if and only if every sublocale is fitted).

The frame S(L)op is zero-dimensional. More precisely, for each sublocale S of L, one has

S =
⋂
i∈I
c(ai)∨o(bi)

for suitable {ai}i∈I, {bi}i∈I ⊆ L.

For any frame L, the canonical map cL : L→ S(L)op sending a ∈ L to cL(a) is an injective
frame homomorphism by (1.2.4). Therefore the restriction of the map cL to its image
cL[L] = ({c(a) | a ∈ L },≤≡⊆op) yields an isomorphism L � cL[L].

Moreover, cL satisfies the following universal property. If h : L→M is a frame homo-
morphism which sends every element of L to a complemented element of M, there exists a
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unique h : S(L)op
→M making the diagram

L S(L)op

M

cL

h
h

commutative.

1.2.2 Preimages and images

Given a localic map f : L→M and a sublocale S of M, the set-theoretic preimage f−1[S] is
generally not a sublocale of L. However, f−1[S] is closed under meets in L and it is then easy
to show that there exists the largest sublocale f−1[S] contained in f−1[S]. It will be referred to
as the localic preimage of S under f . In this situation, there is a pullback diagram

f−1[S] L

S M

f

in Loc. Moreover, the operation S 7→ f−1[S] defines a map f−1[−] : S(M)→ S(L) which turns
out to be a coframe homomorphism. Given a sublocale S of L, the set-theoretic image f [S] is
a sublocale of M, thus obtaining a map f [−] : S(L)→ S(M) which is the left adjoint of f−1[−]
— i.e., we have an adjunction

f [−] ⊣ f−1[−].

Furthermore, the identities

f−1[c(a)] = c( f ∗(a)) and f−1[o(a)] = o( f ∗(a))

are satisfied for each a ∈ L. Therefore, for a frame homomorphism h : L→M, there is a
commutative square

S(L)op S(M)op

L M

cL

h

(h∗)−1[−]op

cM

in Frm. This way, we have an endofunctor S(−)op : Frm→ Frm together with a natural
transformation c : 1Frm→ S(−)op whose components are the frame homomorphisms cL.

We shall make repeated use of the following lemma.

Lemma 1.2.2. A localic map f : L→M factors through o(a) ⊆M (resp. c(a) ⊆M) if and only if
f ∗(a) = 1 (resp. f ∗(a) = 0).

Proof. One has f [L] ⊆ o(a) if and only if L ⊆ f−1[o(a)] = o( f ∗(a)), that is, if and only if f ∗(a) = 1.
The closed case is similar. �
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1.2.3 Open and closed localic maps

A localic map f : L→M is said to be open if f [o(a)] is an open sublocale of M for every a ∈ L.
A result due to Joyal and Tierney [84] states that a localic map f is open if and only if its left
adjoint f ∗ is a complete Heyting homomorphism (i.e., a map preserving arbitrary joins, arbitrary
meets and the Heyting operator).

We shall also need to consider a couple of weaker variants of openness. Following [28], a
frame homomorphism h : L→M is called weakly open if h(a∗∗) ≤ h(a)∗∗ for every a ∈ L, and it
is called nearly open if h(a∗) = h(a)∗ for every a ∈ L. If f is an open localic map, then its left
adjoint f ∗ is nearly open; and near openness implies weak openness.

Finally, a localic map is closed if f [c(a)] is a closed sublocale of M for every a ∈ L.

1.2.4 Boolean sublocales

For each a ∈ L, we denote

bL(a) = {b ∈ L | (b→ a)→ a = b } = {b→ a | b ∈ L }

(or simply b(a) when there is no danger of confusion). It turns out that bL(a) is the least
sublocale of L containing a, and it is always a Boolean algebra. Conversely, every Boolean
sublocale S of L is equal to bL(

∧
S). In particular, we have the Booleanization of L, namely

BL = bL(0) = {a ∈ L | a∗∗ = a } = {a∗ | a ∈ L }.

It can be characterized as the least dense sublocale of L, or the unique Boolean dense sublocale
of L. The frame surjection associated to BL is given by the map (−)∗∗ : L� BL which sends
an a ∈ L to a∗∗. Similarly, the associated nucleus is the double negation nucleus (−)∗∗ : L→ L.
Consequently, the join of a family {ai}i∈I ⊆ BL in BL is given by

∨BL
i∈I ai = (

∨
i∈I ai)∗∗ = (

∧
i∈I a∗i )

∗

(the second equality follows from an application of the first De Morgan law (FDM)).

1.2.5 More on primes, spatiality and sublocales

If p ∈ pt(L), it is readily verified that b(p) = {1,p }, and consequently sublocales b(p) are often
referred to as one-point sublocales. Conversely, given a sublocale of the form {1,a } with a , 1,
then we must have a ∈ pt(L). Therefore there is a bijection between prime elements of L and
one-point sublocales of L. The following properties are all well known:

Properties 1.2.3. Let L be a frame and S and T sublocales.

(1) A frame L is spatial if and only if each element of L is a meet of primes;

(2) The primes in S are precisely the primes in L which belong to S, that is, pt(S) = pt(L)∩S;

(3) The equality pt(S∨T) = pt(S)∪pt(T) holds;

(4) Fit frames are T1;
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(5) The map pt(L)→ pt(S(L)op) given by p 7→ b(p) is a bijection.

For a frame L, we consider the sublocale

sp(L) =
∨

p∈pt(L)
b(p) =

{∧
i∈I

pi | {pi}i∈I ⊆ pt(L)
}
, (1.2.6)

where the second equality holds by the formula for joins in (1.2.2). By Properties 1.2.3 (1)
and (2), it follows clearly that sp(L) is the largest spatial sublocale of L. Recall now the
spatialization ϵ∗L : L�Ω(Σ(L)) of a frame L (namely, the counit of the adjunction (1.1.1)).
Since it is a surjection, it corresponds to a sublocale of L. Now, by the universality of the
counit it is readily verified that ϵ∗L corresponds to the largest spatial sublocale of L. Hence the
sublocale to which it corresponds is precisely sp(L) (see also [96, 5.8]). It is therefore justified
to speak of sp(L) as the spatialization sublocale of L.

In particular, since S(L)op is a frame, we may compute its spatialization as a concrete
sublocale of S(L)op. By (1.2.6) and Property 1.2.3 (5) the following is immediate:

Proposition 1.2.4 ([111, Proposition 3.14]). The equality sp(S(L)op) = {S ∈ S(L) | S = sp(S) } holds
— i.e., the spatialization of S(L)op is the subset of S(L) consisting of those sublocales which are spatial.

In practice, we shall mostly consider the lattice sp(S(L)op) with the dual ordering (that is,
inclusion between sublocales) — i.e., we shall view it as a subcolocale of S(L) rather than as
a sublocale of S(L)op. In this case, we denote it by sp[S(L)].

1.3 The axiom TD

A space X is said to be TD if every point x ∈ X has a neighborhood U with U−{x} open. This
axiom is stronger than T0 and weaker than T1 and it was introduced by Aull and Thron in
[11]. The axiom TD has a fundamental role in point-free topology, for example:

• Similarly as for sobriety (cf. Section 1.1), a TD-space can be completely recovered from
its frame of opens (this will be explained in detail in Subsection 1.3.2, see also [104] for
related topics).

• If X is a TD-space, then its induced sublocales constitute a one-to-one representation
of subspaces — i.e., if A and B are subspaces of X with Ã = B̃, then one has A = B (for
sobriety one has a similar fact: if X is a sober space, then every spatial sublocale S ⊆Ω(X)
is of the form Ã).

The similar behaviour between sobriety and the TD-axiom is actually suggested by the fact
that both properties are somehow symmetric (see [31]):

• A space X is sober if and only if there is no non-trivial subspace inclusion ι : X ↪→ Y such
that Ω(ι) is an isomorphism.
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• A space X is TD if and only if there is no non-trivial subspace inclusion ι : Y ↪→ X such
that Ω(ι) is an isomorphism.

Hence, it is perhaps not surprising that constructions concerning the sober-spatial duality
of Section 1.1 have parallel counterparts for the TD-case. Indeed, we now give more
examples by exhibiting the TD-analogues of the notions of spatial locale, prime element,
frame homomorphism, and, finally prove a suitable duality for TD-spaces. In Chapters 7
and 8 we shall provide more examples.

1.3.1 TD-spatiality and covered primes

Recall that a spatial locale L is isomorphic to Ω(Σ(L)) and Σ(L) is always sober. However, not
every spatial locale is isomorphic to Ω(X) for a TD-space (see [31]). In view of this, a locale is
said to be TD-spatial if it is isomorphic to Ω(X) for some TD-space X.

An element p ∈ L with p , 1 is said to be a covered prime if for every {ai}i∈I ⊆ L with
p =
∧

i∈I ai, there is an i ∈ I with p = ai. The subset ptD(L) ⊆ pt(L) will denote the set of covered
primes of L.

Remark 1.3.1. Elements p ∈ L such that p =
∧

i∈I ai implies the existence of an i ∈ I with p = ai

were also referred to as completely prime elements in [31]. However, this terminology was
corrected because that term usually means that

∧
i∈I ai ≤ p implies the existence of an i ∈ I

with ai ≤ p. In a general frame, the notions are not equivalent (see also [32, Remark 1]).

An alternative characterization of covered primes was given in [31, Proposition 2.1.1]; it
is the equivalence between (i) and (ii) of the following proposition. For our purposes it will
be convenient to present a modification of this characterization for

∨
-bases:

Proposition 1.3.2. Let L be a frame and B ⊆ L a
∨

-base of L. If p ∈ pt(L), then the following are
equivalent:

(i) p is covered;

(ii) there is an a ∈ L with p < a such that p ≤ b ≤ a implies b = p or b = a;

(iii) there is an a ∈ L with p < a such that for all b ∈ B with b ≤ a, either b ≤ p or a ≤ b∨p.

Proof. (i) =⇒ (ii). Let a =
∧
{b ∈ L | p< b }. Since p is a covered prime, we have p< a. If p< b≤ a,

we have a ≤ b and hence b = a.
(ii) =⇒ (iii). Let b ∈ B and set b′ = (b∨p)∧ a. Then p ≤ b′ ≤ a, so either b′ ≤ p or a ≤ b′. In the
former case, since p is prime we have b ≤ b∨p ≤ p, and the latter case is equivalent to a ≤ b∨p.
(iii) =⇒ (i). Let a ∈ L with p < a such that for all b ∈ B with b ≤ a, either b ≤ p or a ≤ b∨p and
suppose that p =

∧
i∈I ai. Then there is an i0 ∈ I such that a ̸≤ ai0 . Now write a∧ai0 =

∨
Bi0 with

Bi0 ⊆ B and let b ∈ Bi0 . Then b ≤ a and a ̸≤ b∨p (if a ≤ b∨p then a ≤ (a∧ ai0)∨p ≤ ai0) and so
b ≤ p. Consequently a∧ai0 =

∨
Bi0 ≤ p. By primality of p, we then necessarily have ai0 ≤ p and

so p = ai0 . �
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If p is a covered prime, it is not difficult to show that the element a > p in (ii) and (iii) of
Proposition 1.3.2 must coincide with

∧
{b ∈ L | p < b } and hence it is uniquely determined.

We shall therefore refer to it as the cover of p and we denote it by p+.
Covered primes also have the following very useful characterization in terms of one-point

sublocales:

Lemma 1.3.3 ([58, Proposition 10.2]). A prime p is covered in a frame L if and only if b(p) is a
complemented sublocale of L.

Moreover, coveredness of primes captures the TD-property:

Lemma 1.3.4 ([31, Proposition 2.3.2]). A T0-space X is TD if and only if X−{x} is a covered prime
in Ω(X) for every x ∈ X.

Recall from Section 1.1 that a localic map always sends prime elements into prime
elements. However the analogous assertion for covered primes is not generally true (cf. [31,
32]). We shall therefore say that a localic map f : L→M is D-localic if f (p) ∈ ptD(L) for each
p ∈ ptD(M) — i.e., if it sends covered primes into covered primes. Following [31] we shall also
say that a frame homomorphism is a D-homomorphism if its right adjoint is a D-localic map.

Lemma 1.3.5 ([31, 3.2]). If X and Y are TD-spaces and f : X→ Y is a continuous map, then
Ω( f ) : Ω(X)→Ω(Y) is a D-localic map.

1.3.2 The TD-duality of Banaschewski and Pultr

The material in this subsection is due to Banaschewski and Pultr [31]. Let L be a frame, and
for every a ∈ L, set Σ′a = {p ∈ ptD(L) | a � p }. It turns out that the family {Σ′a | a ∈ L } is a topology
on ptD(L). This topology is denoted by Σ′(L) and referred to as the TD-spectrum of L. It is not
difficult to show that Σ′(L) is always a TD-space (see [31, Proposition 3.3.2]). We now define
the following categories:

• FrmD is the category consisting of frames and D-homomorphisms between them. LocD

is by definition the dual of FrmD — i.e., LocD = Frmop
D . We regard LocD as a concrete

category whose morphisms are D-localic maps;

• TopD is the full subcategory of Top consisting of TD-spaces.

Because of Lemma 1.3.5, the functor Ω from Section 1.1 can be restricted to a functor
Ω : TopD→ LocD. If f : L→M is a D-localic map, it may be restricted and co-restricted to a
map ptD(L)→ ptD(M) which is easily seen to be continuous with respect to the topologies of
the TD-spectra, and so one obtains a morphism Σ′( f ) : Σ′(L)→ Σ′(M) in TopD and a functor
Σ′ : LocD→ TopD. Moreover, there is an adjunction

TopD LocD

Ω

Σ′

⊥ (1.3.1)
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Furthermore, the unit η′ of the adjunction is a natural isomorphism (and therefore Ω is full
and faithful, so one can regard LocD as a category of generalized TD-spaces). Specifically, η′

has components η′X : X→ Σ′(Ω(X)) which are homeomorphisms and send x ∈ X to X−{x}.
Hence, we may reconstruct TD-spaces from their lattices of open sets by considering the

homeomorphism X � Σ′(Ω(X)).
The counit of the adjunction has components ϵ′L whose left adjoints are surjective

D-homomorphisms (ϵ′L)∗ : L� Ω(Σ′(L)) sending a ∈ L to Σ′a. The map ϵ′L is called the
TD-spatialization of L. Moreover, L is TD-spatial if and only if ϵ′L is an isomorphism, and
so the adjunction restricts to an equivalence between TopD and the full subcategory of
LocD consisting of TD-spatial locales. We shall need the following easy consequence (cf.
Property 1.2.3 (1)):

Lemma 1.3.6. A frame L is TD-spatial if and only if every element of L is a meet of covered primes.

Proof. If X is a TD-space, U =
∧

x<U X− {x} with each X− {x} covered by Lemma 1.3.4. For
the converse, assume that every element in a locale L is a meet of covered primes. Then
obviously Σ′a = Σ′b implies a = b, hence the map (ϵ′L)∗ defined above is also injective and thus
an isomorphism. Hence, L �Ω(Σ′(L)) with Σ′(L) a TD-space. �

Corollary 1.3.7. Let f : L→M be a surjective D-localic map. If L is TD-spatial then so is M.

Remark 1.3.8. One should not confuse TD-spatiality with the following stronger notion. We
will say that a frame L is strongly TD-spatial if it is of the formΩ(X) for a sober TD-space X.
The following is straightforward from the discussion above.

Lemma 1.3.9. The following are equivalent for a frame L:

(i) L is strongly TD-spatial;

(ii) L is (TD-)spatial and pt(L) = ptD(L) (i.e., every prime is covered);

(iii) Every element of L is a meet of (covered) primes and pt(L) = ptD(L);

(iv) The frame L is spatial and pt(L) is a TD-space.

1.4 Relations and congruences

In the category Frm there is a fairly simple description of the sublocale associated to (the
congruence generated by) a binary relation. We summarize this construction in what follows
(see [92, III 11] for details).

Let R be a binary relation on L (here this simply means a subset R ⊆ L×L). An element
s ∈ L is R-saturated if

∀a,b,c ∈ L, aRb =⇒ a∧ c ≤ s if and only if b∧ c ≤ s.
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We set
L/R = {s ∈ L | s is R-saturated }.

Then it turns out that L/R is a sublocale of L with associated surjection νR : L� L/R given by
νR(a) =

∧
{s ∈ L | s is R-saturated and a ≤ s }. Moreover, the surjection νR satisfies

aRb =⇒ νR(a) = νR(b),

for any a,b ∈ L, and it is universal among frame homomorphisms with that property:

Theorem 1.4.1. Let R be a relation on a frame L and let h : L→M be a frame homomorphism such
that

aRb =⇒ h(a) = h(b)

for all a,b ∈ L. Then there is a unique frame homomorphism h : L/R→M such that the diagram

L L/R

M

νR

h
h

commutes.

1.5 Binary coproducts of frames

We shortly describe a construction of (binary) coproducts of frames. For more information
and the infinite case, we refer to [92, IV 4].

1.5.1 Semilattices

In the category SLat01 of bounded meet semilattices (that is, posets having binary meets, a
top and a bottom) the cartesian product with the injections

ι′1 : L1 −→ L1×L2 and ι′2 : L2 −→ L1×L2

given by ι′1(a) = (a,1) and ι′2(b) = (1,b) constitutes a coproduct of L1 and L2.

1.5.2 Downset frames

For a bounded meet semilattice L, we consider the family

D(L) := {U ⊆ L | ∅ ,U = ↓U }

of non-empty downsets and the map

λL : L→D(L)
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given by λL(a) = ↓a. Clearly,D(L) is a frame (ordered under set theoretic inclusion) and λL is
a bounded meet semilattice homomorphism. The construction L 7→ D(L) can be extended to
a functor which turns out to be the left adjoint of the forgetful functor Frm→ SLat01 — i.e.,
D(L) is the free frame on the bounded meet semilattice L.

1.5.3 Coproducts of frames

Let now L1 and L2 be frames. Then, their coproduct L1⊕L2 can be obtained asD(L1×L2)/R,
where R is the relation given by

R =
{ (⋃

i∈I
↓(ai,b),↓(

∨
i∈i

ai,b)
)
| {ai}i∈I ⊆ L1, b ∈ L2

}
∪

{ (⋃
i∈I
↓(a,bi),↓(a,

∨
i∈I

bi)
)
| a ∈ L1, {bi}i∈I ⊆ L2

}
,

with coproduct injections ιi given by the composites

Li L1×L2 D(L1×L2) D(L1×L2)/R = L1⊕L2
ι′i λL1×L2 νR

It is readily verified that a downset U ∈D(L1×L2) is R-saturated if and only if for all {ai}i∈I ⊆ L1,
a ∈ L1, {bi}i∈I ⊆ L2 and b ∈ L2,

(ai,b) ∈U for all i ∈ I =⇒
(∨

i∈I
ai,b
)
∈U, and

(a,bi) ∈U for all i ∈ I =⇒
(
a,
∨
i∈I

bi

)
∈U.

R-saturated downsets (i.e., members of L1⊕L2) are called cp-ideals. In particular, we have
cp-ideals

a⊕b := ↓(a,b)∪{ (x, y) ∈ L1×L2 | x = 0 or y = 0 }

which are clearly the smallest R-saturated downsets containing (a,b). The following basic
properties will be used:

Properties 1.5.1. Let U ∈ L1⊕L2, a,a′ ∈ L1, {ai}i∈I ⊆ L1, {b j} j∈J ⊆ L2 and b,b′ ∈ L2. Then:

(1) a⊕ b ≤U if and only if (a,b) ∈U;

(2) U =
∨
{u⊕v | (u,v) ∈U };

(3) ι1(a) = a⊕1 and ι2(b) = 1⊕ b;

(4)
∧

i∈I, j∈J ai⊕b j = (
∧

i∈I ai)⊕ (
∧

j∈J b j);

(5) (
∨

i∈I ai)⊕b =
∨

i∈I(ai⊕ b) and a⊕ (
∨

j∈J b j) =
∨

j∈J a⊕b j;

(6) If a,b , 0, then a⊕b ≤ a′⊕ b′ if and only if a ≤ a′ and b ≤ b′.
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Observe that given frame homomorphisms hi : Li → M, (i = 1,2), the induced map
⟨h1,h2⟩ : L1⊕L2→N is given by

⟨h1,h2⟩(U) =
∨

(a,b)∈U
h1(a)∧h2(b)

for each U ∈ L1⊕L2.

1.5.4 Diagonals in Loc

Localic diagonals will be of importance in this thesis, hence we set some notation and
properties in what follows. Let L be a frame. By the general formula in Subsection 1.5.3, the
codiagonal frame homomorphism δL := ⟨1L,1L⟩ : L⊕L→ L is given by

δL(U) =
∨

(a,b)∈U
a∧ b

for each U ∈ L⊕L. Now, since δL is a surjection, it defines a sublocale of L⊕L, namely

DL := (δL)∗[L] ⊆ L⊕L,

where (δL)∗(a) =
∨
{u⊕v ∈ L⊕L | u∧v ≤ a } = { (u,v) ∈ L×L | u∧v ≤ a } (this follows easily from

the adjunction δL ⊣ (δL)∗ and the fact that every cp-ideal can be written as a join of basic
generators — cf. Property 1.5.1 (2)).

With this description, it is clear that cp-ideals contained in the diagonal have the following
symmetry property.

Lemma 1.5.2. For a cp-ideal U ∈DL, one has (a,b) ∈U if and only if (b,a) ∈U.

The least element of DL is

dL := (δL)∗(0) =
∨

u∧v=0
u⊕v

and therefore the closure of the diagonal may be expressed as DL = c(dL).

1.6 The frame of (extended) reals

We first recall the frame of reals L(R) from [22]. Here we define it, equivalently, as the frame
presented by generators (r,—) and (—,r) for all rationals r ∈Q, and relations

(r0) (r,—)∧ (—,s) = 0 if s ≤ r;

(r1) (r,—)∨ (—,s) = 1 if r < s;

(r2) (r,—) =
∨

s>r(s,—);
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(r3) (—,r) =
∨

s<r(—,s);

(r4)
∨

r∈Q(r,—) = 1;

(r5)
∨

r∈Q(—,r) = 1.

By dropping relations (r4) and (r5) one has the frame of extended reals L(R) (see [26] for a
detailed study of this frame). For all rationals r < s, L(R) is isomorphic to the closed sublocale
↑(s,—)∨ (—,r) of L(R). Hence, L(R) is a compact and regular frame (recall Subsection 1.1.3).

1.6.1 (Extended) real-valued functions

A real-valued (resp. extended real-valued) continuous function on L is a frame homomorphism
f : L(R)→ L (resp. f : L(R)→ L). We shall denote the set of all real-valued (resp. extended
real-valued) continuous functions by C(L) (resp. C(L)).

Furthermore, following [63, 26], a real-valued (resp. extended real-valued)

• function on L is a frame homomorphism f : L(R)→ S(L)op (resp. f : L(R)→ S(L)op);

• lower semicontinuous function on L is a frame homomorphism f : L(R)→ S(L)op (resp.
f : L(R)→ S(L)op) such that f (r,—) is closed for every r ∈Q;

• upper semicontinuous function on L is a frame homomorphism f : L(R)→ S(L)op (resp.
f : L(R)→ S(L)op) such that f (—,r) is closed for every r ∈Q.

The corresponding classes of real-valued (resp. extended real-valued) functions will be
denoted by

F(L), LSC(L), and USC(L) (resp. F(L), LSC(L), and USC(L)).

By the isomorphism L � cL[L] of Subsection 1.2.1, we may regard real-valued (resp. extended
real-valued) continuous functions on L as frame homomorphisms f : L(R)→ S(L)op (resp.
f : L(R)→ S(L)op) such that f (r,—) and f (—,r) are closed for every r ∈ Q. Under this
identification, we note that C(L) = LSC(L)∩USC(L) and C(L) = LSC(L)∩USC(L).

The family C(L) (resp. C(L)) is partially ordered by

f ≤ 1 ⇐⇒ f (r,—) ≤ 1(r,—) for all r ∈Q ⇐⇒ 1(—,r) ≤ f (—,r) for all r ∈Q. (1.6.1)

Since F(L) = C(S(L)op) (resp. F(L) = C(S(L)op)), we also have a partial order in F(L) (resp.
F(L)). Specifically, it is given by

f ≤ 1 ⇐⇒ f (—,r) ⊆ 1(—,r) for all r ∈Q ⇐⇒ 1(r,—) ⊆ f (r,—) for all r ∈Q. (1.6.2)

There is a useful way of specifying continuous (extended) real-valued functions with the
help of scales ([63, 4]). An extended scale in L is a map σ : Q→ L such that σ(r)∨σ(s)∗ = 1
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whenever r < s. An extended scale is a scale if
∨

r∈Qσ(r) = 1 =
∨

r∈Qσ(r)∗. For each extended
scale σ in L, the formulas

f (r,—) =
∨
s>r
σ(s) and f (—,r) =

∨
s<r
σ(s)∗ (1.6.3)

(for any r,s ∈Q) determine an f ∈ C(L) ([26, Lemma 1]); f is in C(L) if and only if σ is a scale.
If f ,1 ∈ C(L) are generated by extended scales σ f and σ1 respectively, then one has

f ≤ 1 if and only if σ f (r) ≤ σ1(s), for all r > s. (1.6.4)

Let S ⊆ L be a sublocale and f ∈ C(S). An f ∈ C(L) is said to be a continuous extension of f to L
if νS ◦ f = f — i.e., if the following diagram commutes:

L(R)

L S
νS

f
f

The extended real-valued case is defined analogously.

Before defining cozero elements, we need to recall the notion of σ-frame. A σ-frame is a
bounded lattice L with countable joins such that (

∨
i∈I ai)∧ b =

∨
i∈I ai∧ b for each countable

family {ai}∈I ⊆ L and b ∈ L. Clearly every frame is a σ-frame but not conversely. A σ-frame
homomorphism is a map which preserves countable joins (including the bottom) and finite
meets (including the top). If a,b ∈ L, we write b ≺ a if there is a c ∈ L with b∧ c = 0 and
a∨ c = 1. If L happens to be a frame, then this relation coincides with the one introduced in
Subsection 1.1.3. A σ-frame L is then regular if every a ∈ L can be written as a =

∨
n∈N an with

an ≺ a. For a frame, being regular as a σ-frame is generally stronger than being regular as a
frame (cf. Subsection 1.1.3).

1.6.2 Some special classes of sublocales

An a ∈ L is said to be a cozero element if a = f ((—,0)∨ (0,—)) for some f ∈ C(L). Equivalently,
a is a cozero element if a = f (

∨
r∈Q(r,—)) for some f ∈ C(L). It is well known that cozero

elements are closed under countable joins and finite meets; thus they form a σ-frame CozL⊆ L.
Moreover, a zero sublocale (resp. cozero sublocale) is one of the form c(a) (resp. o(a)) with
a ∈ CozL. We warn the reader that this terminology differs from that used by other authors
(e.g., [70, 14]).

Finally, an element a ∈ L is said to be δ-regular [69] if a =
∨

n∈N an with an ≺ a (where ≺
is the relation defined in Subsection 1.1.3, that is, b ≺ a if and only if b∗∨ a = 1). δ-regular
elements are also closed under countable joins and finite meets. A sublocale c(a) (resp. o(a))
with a δ-regular will be called a δ-regular closed (resp. δ-regular open) sublocale. Since b ≺ a
implies b∗∗ ≺ a, it follows that every δ-regular element is a countable join of regular elements
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(see Subsection 1.1.2). A sublocale of the form c(a) (resp. o(a)) with a regular is usually called
regular closed (resp. regular open).

1.6.3 Cozero elements in σ-frames

Clarke and Gilmour studied cozero elements in σ-frames [41]. Let L be a σ-frame. An a ∈ L is
said to be a cozero element if a= f ((—,0)∨ (0,—)) for some σ-frame homomorphism f : L(R)→ L.
Equivalently, a is a cozero element if a = f (

∨
r∈Q(r,—)) for some σ-frame homomorphism

f : L(R)→ L. One of the main results of [41] is the following:

Theorem 1.6.1 ([41, Corollary 1]). Let L be a σ-frame. Then the collection CozL of all cozero
elements of L is a regular σ-frame.

1.6.4 C-, C∗- and z-embeddings

A sublocale S is C-embedded (resp. C∗-embedded) if every f ∈ C(S) (resp. f ∈ C(S)) has a
continuous extension to L. A sublocale S is z-embedded if for every cozero element a ∈ S there
is a cozero element b ∈ L with the property that νS(b) = a. Generally, the implications

S is C-embedded =⇒ S is C∗-embedded =⇒ S is z-embedded

hold. The following is well known (see [20, 14]):

Theorem 1.6.2. The following are equivalent for a locale L:

(i) L is normal;

(ii) Every closed sublocale is C-embedded;

(iii) Every closed sublocale is C∗-embedded;

(iv) Every closed sublocale is z-embedded.





Chapter 2

Diagonal separation in the category of
locales: fitted diagonals and closed
diagonals

2.1 Introduction

Let P be a property of subobjects relevant in a category C with finite products. An object
X ∈ ob(C) is said to be P-separated if the diagonal ∆X = (1X,1X) : X� X×X has property P.

In the category C = Top of topological spaces, typical examples are described in Table 2.1.
For instance, we have Hausdorff spaces (those in which the diagonal is closed), T1-spaces
(those in which the diagonal is an intersection of open subspaces) or discrete spaces (those in
which the diagonal is open).

Table 2.1 Examples of P-separation in Top

Property P of subobjects P-separation property

Closed subspace Hausdorff

Locally closed subspace Locally Hausdorff

Intersection of open subspaces T1

Intersection of locally closed subspaces T1

Open subspace Discrete

In the category C = Loc, locales whose diagonal is closed are known as strongly Hausdorff
(for brevity (sH)), originally introduced by Isbell [72]. Moreover, locales with open diagonal

27
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were characterized by Joyal and Tierney [84]: they are precisely the complete and atomic
Boolean algebras. However, the theory of locales whose diagonal is fitted (i.e., an intersection
of open sublocales — we will speak about F -separated or locales satisfying (F -sep)) has not
been developed so far.

The aim of this chapter is to study F -separatedness vis-á-vis with the strong Hausdorff
property. It will turn out that there is a strong structural parallel between both properties.
This parallel holds in a wide range of situations, for example:

• Frames L which satisfy (sH) (resp. (F -sep)) can be characterized by means of a Dowker-
Strauss-type condition involving the combinatorial structure of the frame homomor-
phisms L→M;

• Both properties (sH) and (F -sep) can be decomposed as the conjunction of the axiom
(TU) and the property that certain weakened frame homomorphisms are frame homomor-
phisms. In the former case, the weakened homomorphisms are a subclass of suplattice
morphisms whereas in the latter case they are a subclass of preframe homomorphisms.

• Perhaps somewhat unexpectedly, this parallel between properties (sH) and (F -sep) is
also related to another phenomenon which will be widely discussed in this thesis: the
parallel between normality and extremal disconnectedness. For example, we shall prove
that every hereditarily extremally disconnected (TU) locale is F -separated, whereas every
hereditarily normal (TU) locale is (sH).

The parallel between (F -sep) and (sH) will also be analyzed in the context of singly
generated frame extensions, (co)density, first-order separation properties, etc.

Table 2.2 Examples of P-separation in Loc

Property P of subobjects P-separation property Reference

Closed sublocale Strongly Hausdorff [72]

Locally closed sublocale Locally strongly Hausdorff [89]

Fitted sublocale F -separated [8], Section 2.2

Semifitted sublocale S-separated Section 2.10

Open sublocale Complete and atomic
Boolean algebra

[84]

The material in this chapter in based on a joint work with Jorge Picado and Aleš Pultr
and has been published in the following article:
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[8] I. Arrieta, J. Picado, and A. Pultr, A new diagonal separation and its relations with the
Hausdorff property, Applied Categorical Structures, vol. 30, pp. 247–263, 2022.

Some minor changes have been included (for example, Lemma 2.4.6 has been construc-
tivized by avoiding the use of ordinals). Moreover, the material in Sections 2.5, 2.7, 2.8, 2.9
and 2.10 is unpublished. Section 2.11 contains a table summarizing the parallel situation.

2.2 Specific preliminaries

2.2.1 Closure operators in a category

We start by recalling the definition of a closure operator in a category (in the sense of Dikranjan
and Giuli [45], we also refer to [42, 43] and the references there for more information on
closure operators). Given a factorization system (E,M), we denote by SubM(X) the partially
ordered class ofM-subobjects of X.

Definition 2.2.1. Let C be a category equipped with a proper factorization system (E,M). A
closure operator c with respect toM is a family of maps

{cX : SubM(X) −→ SubM(X)}X∈ob(C)

that satisfies the following properties:

(i) it is monotone, that is, m ≤ n implies cX(m) ≤ cX(n) for all m,n ∈ SubM(X);

(ii) it is inflationary, that is, m ≤ cX(m) for all m ∈ SubM(X);

(iii) and such that for every f : X→ Y in C and for all m ∈ SubM(X), the identity f (cX(m)) ≤
cY( f (m)) holds (where f (m) refers to theM-part of the (E,M)-factorization of f ◦m).

2.2.2 P-separation

Recall Section 2.1: given a property P of subobjects in a category with finite products, an
object X ∈ ob(C) is P-separated if the diagonal has property P. Moreover, we shall denote by
SepP(C) the full subcategory of C consisting of P-separated objects.

Every closure operator has an associated property Pc of subobjects, namely m ∈ Sub(X)
has property Pc if it is anM-subobject which is c-closed — i.e., if cX(m) = m. If P = Pc for
some closure operator c, we shall simply speak of c-separated objects and the corresponding
full subcategory will be denoted by Sepc(C).

In the latter case, separated objects enjoy useful categorical properties. We recall here
that a family {pi : X→ Xi}i∈I of morphisms in C is a mono-source or jointly monic if for each
two parallel morphisms f ,1 : Y→X with pi ◦ f = pi ◦1 for all i ∈ I, one has f = 1. For example,
limit cones are always jointly monic.
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Theorem 2.2.2 ([43, Proposition 4.2] and [42, Propositions 10.1 and 10.7]). Let C be a category
equipped with a proper factorization system (E,M) and a closure operator c with respect toM. Then
the following properties hold:

(1) An object X ∈ ob(C) is c-separated if and only if for every pair of morphisms f ,1 : Y→ X the
equalizer equ( f ,1)� Y is c-closed;

(2) The category Sepc(C) is closed under mono-sources in C. In particular, it is closed under limits
and closed under monomorphisms — i.e., if Y� X is monic and X is c-separated, then so is Y;

(3) If C is E-well-copowered, Sepc(C) is extremally epireflective in C.

Remark 2.2.3. We emphasize that the closure under monomorphisms in Theorem 2.2.2 (2)
does not refer only toM-subobjects, but to arbitrary monomorphisms. Hence it is quite a
strong property and in categories with a complex structure of monomorphisms, it can be
an interesting one. For example, it is well known that monomorphisms in C = Loc have a
rather wild behaviour (recall the fact that Loc is not well-powered), so this property can be
non-trivial.

2.2.3 Back to the category of locales

After this preparation we can now introduce the main example to be studied in this chapter.
Recall from Subsection 1.2.1 that the closure and the “other” closure of a sublocale S are
given by

S =
⋂

S⊆c(a)
c(a) and S̊ =

⋂
S⊆o(a)

o(a)

and they define the smallest closed sublocale and the smallest fitted sublocale containing S.
As is well known, (Surjections, Regular monomorphisms) is a proper factorization system

in Loc, and the assignment S 7→ S defines a closure operator whose separated objects are the
strongly Hausdorff ones.

On the other hand, it was shown in [44, 2.4], among other properties of the “other”
closure, that the assignment S 7→ S̊ defines another closure operator in Loc. As usual, νS̊ will
denote the nucleus associated to the sublocale S̊ ⊆ L. Moreover, we shall simply denote by

ν L (or by ν if there is no danger of confusion)

the nucleus νD̊L
on L⊕L (recall that DL ⊆ L⊕L denotes the diagonal sublocale, cf. Subsec-

tion 1.5.4). Clearly, separation with respect to this “other” closure amounts to the diagonal of
the locale in question being fitted. We formalize this in the following definition:

Definition 2.2.4. A locale L is F -separated (or it satisfies property (F -sep)) if its diagonal is
fitted in L⊕L.

As a consequence of Theorem 2.2.2, we immediately have the following:
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Theorem 2.2.5 (Categorical properties of F -separatedness). The following assertions hold:

(1) If f ,1 : M→ L are localic maps and L is F -separated, then their equalizer equ( f ,1) is a fitted
sublocale of M;

(2) F -separated locales are closed under mono-sources in Loc. In particular, if f : M→ L is a
monomorphism in Loc and L is F -separated, then so is M;

(3) F -separated locales are closed under limits in Loc;

(4) F -separated locales are extremally epireflective in Loc.

Moreover, recall from Subsection 1.2.1 that a locale is fit if each of its sublocales is fitted.
Since fitness is closed under products (this is proved in [93, Theorem 3]), every fit locale has
a fitted diagonal, hence:

Proposition 2.2.6. Every fit locale is F -separated.

The question naturally arises whether the converse also holds. It does not, as we shall
show in Subsection 2.6.2.

2.2.4 Equalizers and pullbacks

In any finitely complete category, the equalizer of two parallel morphisms f ,1 : X→ Y can be
computed as the pullback of the induced morphism ⟨ f ,1⟩ : X→ Y×Y along the diagonal.

Since pullback along a sublocale in Loc is given by localic preimage, for any localic maps
f ,1 : M→ L there is a pullback diagram

⟨ f ,1⟩−1[DL] M

DL L⊕L

⟨ f ,1⟩

and therefore the equalizer can be expressed as a concrete sublocale, namely

equ( f ,1) = ⟨ f ,1⟩−1[DL] ⊆M.

For more details and applications of this categorical setting, we refer to [97].

2.2.5 Preframes and suplattices

It is well known (cf. [84], see also [52, 98]) that the category Sup of suplattices — i.e., the
category of posets with joins of arbitrary subsets, and join-preserving maps — has a tensor
product in the conventional sense: for all complete lattices L and M, there is a complete lattice
L⊗M and a map tL,M : L×M→ L⊗M preserving joins in each variable which is universal
among maps L×M→N preserving joins in each variable.
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The elements tL,M(a,b) are denoted by a⊗ b and every element of L⊗M can be expressed
as a join of elements of the form a⊗b.

Importantly, it turns out that when L and M are frames, the tensor product L⊗M is also a
frame which is isomorphic to the frame coproduct L⊕M (where the isomorphism identifies
the generators a⊗b and a⊕b).

There is a “dual” approach to the frame coproduct obtained by building another tensor
product in a different category. A preframe is a poset having finite meets (including the
top) and directed joins, in which directed joins distribute over binary meets. A preframe
homomorphism is a function preserving finite meets (including the top) and directed joins.
Preframes and their homomorphisms form a category PreFrm that contains Frm as a non-full
subcategory.

It was proved by Johnstone and Vickers (see [83]) that the category PreFrm also has
a tensor product — i.e., for all preframes L and M, there is a preframe LMM and a map
t′L,M : L×M→ LMM preserving directed joins and finite meets in each variable which is
universal among maps L×M→N preserving directed joins and finite meets in each variable.

The elements t′(a,b) are denoted by aM b and every element of LMM can be expressed as
a directed join of finite meets of elements of the form aM b.

For our purpose, it is important to note that if Li and Mi are preframes and hi : Li→Mi

are preframe homomorphisms (i = 1,2), then there is a preframe homomorphism

h1Mh2 : L1ML2→M1MM2

which sends aMb to h1(a)Mh2(b).

Moreover, when L and M are frames, once again the tensor product LMM is a frame
isomorphic to the coproduct L⊕M. The isomorphism maps aM b to (a⊕1)∨ (1⊕ b) and a⊕ b
to (aM0)∧ (0Mb).

Accordingly, we shall frequently identify L⊕M = LMM and we will write

aMb = (a⊕1)∨ (1⊕b)

which can obviously be reversed to

a⊕b = (aM0)∧ (0M b).

The parallel between the suplattice and preframe approaches to locale theory has been
explored by several authors (e.g. for obtaining dual results for open maps and proper maps),
see [112] for more information.
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2.2.6 Prenuclei

In this chapter we shall make use of the notion of prenucleus (in the sense of Simmons [110]
or Escardó [55]1).

Definition 2.2.7. Let L be a frame. A mapping τ : L→ L is called a prenucleus on L if

(i) it is monotone,

(ii) it is inflationary — i.e., a ≤ τ(a) for all a ∈ L,

(iii) τ(a)∧τ(b) = τ(a∧b) for all a,b ∈ L.

Note that an idempotent prenucleus is precisely a nucleus. Prenuclei are ordered
pointwisely and the set pN(L) of all prenuclei on L is a complete lattice. Moreover, a directed
join of a family of prenuclei in pN(L) is given by their pointwise (directed) join (this is of
course not true when one replaces prenuclei by nuclei).

Given a prenucleus τ on L, its set of fixpoints {a ∈ L | τ(a) = a } is a sublocale of L. Moreover,
every prenucleus τ has a least nucleus τ above it (we speak of the nuclear reflection of τ, or
the nucleus generated by τ), and this nuclear reflection has the same set of fixpoints. Usually
the nuclear reflection is constructed by transfinite iteration, and then one uses transfinite
induction for proving facts about it. However, this approach makes use of ordinals and
hence it is not constructively valid.

Here we briefly describe a similar, but constructive, induction principle due to Escardó
[55] (cf. also an alternative approach based on an explicit formula due to Banaschewski [23]).
A set Q of prenuclei on L is called inductive if 1L ∈Q and it is closed under directed joins.

Then one has

Theorem 2.2.8 ([55, Corollary 3.1]). Let τ be a prenucleus on L and Q ⊆ pN(L) be an inductive
subset. Suppose that λ ∈Q implies τ◦λ ∈Q. Then τ ∈Q.

2.3 Dowker-Strauss-type characterizations

Dowker and Strauss proved in [46] that the strong Hausdorff property on a frame L can be
characterized by a suitable property of the family of frame homomorphisms with domain L.
We start by recalling this characterization (with slightly adapted terminology).

Definition 2.3.1. Let h,k : L→M be frame homomorphisms. The pair (h,k) is said to respect
disjoint pairs if h(a)∧ k(b) = 0 whenever a∧b = 0 (i.e., if

∨
a∧b=0 h(a)∧ k(b) = 0).

Theorem 2.3.2 ([46, Proposition 4]). A frame L is strongly Hausdorff if and only if no pair of
distinct frame homomorphisms with domain L respects disjoint pairs.

1Banaschewski uses a slightly more general notion with the same terminology, see [23] for details.
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Recall now that a frame L is TU (TU for totally unordered [78]; also known as unordered in
[73]) if for every pair of frame homomorphisms h,k : L→M one has

h ≤ k =⇒ h = k

(the homsets in Frm are ordered pointwisely).
We also introduce the following terminology:

Definition 2.3.3. Let h,k : L→M be frame homomorphisms. The pair (h,k) is said to be
bounded above (resp. bounded below) if there is another frame homomorphism h′ : L→M with
h ≤ h′ ≥ k (resp. h ≥ h′ ≤ k).

The following two lemmas are obvious:

Lemma 2.3.4. A frame L is TU if and only if no pair of distinct frame homomorphisms with domain
L is bounded above (equivalently, bounded below).

Lemma 2.3.5. If a pair of frame homomorphisms is bounded above, then it respects disjoint pairs.

From Theorem 2.3.2 and Lemmas 2.3.4 and 2.3.5 we immediately obtain the following

Corollary 2.3.6 ([78, Corollary III 1.5]). A strongly Hausdorff frame is TU.

In what follows, we show that there is a “dual” to the setting just described by replacing
the strong Hausdorff property by F -separatedness.

We begin by stating some straightforward properties concerning cp-ideals that we shall
need later.

Lemma 2.3.7. Let f ,1 : M→ L be localic maps. The following assertions hold:

(1) For each U ∈ L⊕L set Û := {a∧b | (a,b) ∈U }. Then

⟨ f ,1⟩∗(U) ≥
∨
{ f ∗(c)∧1∗(c) | c ∈ Û }.

Moreover, DL ⊆ o(U) if and only if Û is a cover of L.

(2) For each C ⊆ L set C̃ :=
∨
{a⊕ a | a ∈ C }. Then

⟨ f ,1⟩∗(C̃) =
∨
{ f ∗(a)∧1∗(a) | a ∈ C }.

Moreover, DL ⊆ o(C̃) if and only if C is a cover of L.

We also have the following technical characterization of F -separatedness:

Theorem 2.3.8. A frame L isF -separated if and only if for any localic maps f ,1 : M→ L, the equality
⟨ f ,1⟩∗(U) = 1 holds for all U ∈ L⊕L with DL ⊆ o(U) only if f = 1.
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Proof. ⇒: Take f ,1 : M→ L as in the statement and let ⟨ f ,1⟩ be the induced localic map. Then,
using the formula in Subsection 2.2.4 and the fact that preimage commutes with arbitrary
intersections,

equ( f ,1) = ⟨ f ,1⟩−1[DL] = ⟨ f ,1⟩−1[D̊L] =
⋂
{ ⟨ f ,1⟩−1[o(U)] |DL ⊆ o(U) }.

Since ⟨ f ,1⟩−1[o(U)] = o(⟨ f ,1⟩∗(U)) =M whenever DL ⊆ o(U) it follows that equ( f ,1) =M and
therefore f = 1.

⇐: Recall that
D̊L =

⋂
{o(U) |DL ⊆ o(U) }

and let ι : D̊L ↪→ L⊕L be the embedding. If U ∈ L⊕L is such that DL ⊆ o(U) then ⟨p1 ◦ ι,p2 ◦

ι⟩∗(U) = ι∗(⟨p1,p2⟩
∗(U)) = ι∗(U) = 1 by Lemma 1.2.2 and the obvious fact that ⟨p1,p2⟩ = 1L⊕L.

By the assumption it follows that p1 ◦ ι = p2 ◦ ι. Since DL is the equalizer of the product
projections p1 and p2 it follows that D̊L ⊆DL, but the reverse inclusion is obvious. �

The following concept is parallel to that of Definition 2.3.1.

Definition 2.3.9. Let h,k : L→M be frame homomorphisms. The pair (h,k) is said to respect
covers if for every cover C of L one has

∨
a∈C h(a)∧ k(a) = 1.

Lemma 2.3.10. Let f ,1 : L→M be localic maps. Then, the pair ( f ∗,1∗) respects covers if and only if
⟨ f ,1⟩∗(U) = 1 for all U ∈ L⊕L with DL ⊆ o(U).

Proof. ⇒: Assume the pair ( f ∗,1∗) respects covers and let U ∈ L⊕L be such that DL ⊆ o(U).
By Lemma 2.3.7 (1) it follows that Û is a cover of L and ⟨ f ,1⟩∗(U) ≥

∨
{ f ∗(c)∧1∗(c) | c ∈ Û }.

Since ( f ∗,1∗) respects covers, one has ⟨ f ,1⟩∗(U) = 1.

⇐: Suppose that ⟨ f ,1⟩∗(U) = 1 for all U ∈ L⊕ L with DL ⊆ o(U) and let C be a cover of
L. By Lemma 2.3.7 (2) it follows that DL ⊆ o(C̃) and ⟨ f ,1⟩∗(C̃) =

∨
{ f ∗(a)∧ 1∗(a) | a ∈ C }. By

assumption with U = C̃, one has
∨
{ f ∗(a)∧1∗(a) | a ∈ C } = 1. Thus the pair ( f ∗,1∗) respects

covers. �

Lemma 2.3.11. If a pair of frame homomorphisms is bounded below, then it respects covers.

Proof. Let C be a cover of L and let h,k : L→M be frame homomorphisms such that there is
another frame homomorphism h′ : L→M with h ≥ h′ ≤ k. Then∨

a∈C
h(a)∧ k(a) ≥

∨
a∈C

h′(a) = h′(1) = 1. �

Now we are able to prove the main results in this section. On the one hand, combining
Theorem 2.3.8 and Lemma 2.3.10 we obtain our Dowker-Strauss-type characterization for
F -separatedness:
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Theorem 2.3.12. A frame L is F -separated if and only if no pair of distinct frame homomorphisms
with domain L respects covers.

On the other hand, Lemmas 2.3.4 and 2.3.11 immediately yield

Corollary 2.3.13. An F -separated frame is TU.

Remarks 2.3.14. (1) Observe that Theorem 2.3.12 (parallel to Theorem 2.3.2) does not require
any knowledge of localic products.

(2) We emphasize that the concepts are not (and are not expected to be) order-theoretically
dual (in Definition 2.3.1 we only consider disjoint pairs, whereas in Definition 2.3.9 the joins
are possibly infinite). When one works with frames and frame homomorphisms, the relevant
operations are finite meets and arbitrary joins and, accordingly, the results are “dual to the
extent that they can be”.

(3) Regarding Corollary 2.3.13, it is now apparent that F -separatedness implies TU for
exactly the same reason as (sH) implies TU (one just replaces bounded above by bounded
below). Since fitness implies F -separatedness (see Proposition 2.2.6), in particular we obtain
a new proof of the fact that fitness implies TU due to Isbell [73, 4.4].

2.4 Relaxed morphisms

In this section, we shall show that there is another parallel between the strong Hausdorff
property and F -separatedness which involves certain relaxed frame homomorphisms.

For that purpose, we first recall the notion of weak homomorphism introduced in [30].
Precisely, a mapping h : L→M between frames is a weak homomorphism if

(i) it is a morphism in Sup — i.e., a join preserving map,

(ii) h(1) = 1, and

(iii) it preserves disjoint pairs — i.e., if a∧b = 0 in L then h(a)∧h(b) = 0.

Furthermore, a frame L satisfies property (W) if

each weak homomorphism h : L→M is a frame homomorphism. (W)

Among other results, Banaschewski and Pultr proved in [30] that a frame is strongly Hausdorff
if and only if it is TU and satisfies property (W). Our goal in the following subsections is
to obtain a parallel result by exploiting the preframe approach to frame coproducts (cf.
Subsection 2.2.5).
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2.4.1 Almost homomorphisms and the property (A)

We will say that a mapping h : L→M between frames is an almost homomorphism if

(1) it is a morphism in PreFrm — i.e., it preserves finite meets (including the top) and
directed joins,

(2) h(0) = 0, and

(3) it preserves covers — i.e., if C is a cover of L then h[C] is a cover of M.

We say that a frame L satisfies property (A) if

each almost homomorphism h : L→M is a frame homomorphism. (A)

Remark 2.4.1. Since a join of a family B ⊆ L can be expressed as the directed join of the joins of
finite subsets of B, an almost homomorphism h : L→M will be a frame homomorphism if
and only if it preserves binary joins.

We begin by noting that under property (A), the converse of Lemma 2.3.11 holds as well:

Proposition 2.4.2. Let L be a frame satisfying property (A). If a pair of frame homomorphisms with
domain L respects covers, then it is bounded below.

Proof. Let h,k : L→M be frame homomorphisms and suppose that the pair (h,k) respects
covers. Consider the “pointwise meet” mapping

h∧ k : L→M

given by a 7→ h(a)∧ k(a). It obviously preserves finite meets. Next, if D ⊆ L is directed then
(h∧ k)(

∨
D) =

∨
{h(a)∧ k(b) | a,b ∈D } =

∨
{ (h∧ k)(c) | c ∈D } and so h∧ k is a preframe homo-

morphism. Since (h∧ k)(0) = 0 and the pair respects covers, it is an almost homomorphism,
and by property (A) a frame homomorphism. As h ≥ h∧k ≤ k, the pair is bounded below. �

The following corollary is a consequence of Lemma 2.3.4, Theorem 2.3.12 and Proposi-
tion 2.4.2.

Corollary 2.4.3. A frame satisfying TU and property (A) is F -separated.

The implication of the last corollary is actually an equivalence. Note that we have already
shown thatF -separatedness implies TU (cf. Corollary 2.3.13). Showing thatF -separatedness
implies property (A) is more involved, and it makes use of the “preframe tensor” viewpoint
of the frame coproducts, as we shall see next.

2.4.2 F -separatedness implies property (A)

We need a series of lemmas in order to show the main result.
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Lemma 2.4.4. Let L be a frame and define τL : L⊕L→ L⊕L by setting

τL(U) =
∨
{V→U |DL ⊆ o(V) }

for each U ∈ L⊕L. Then

(1) τL is a prenucleus with τL(U) =U if and only if U ∈ D̊L — i.e., τL = ν L (the nuclear reflection
of τL is the nucleus associated to the sublocale D̊L);

(2) If φ : L⊕L→M⊕M is a preframe homomorphism such that for each U ∈ L⊕L with DL ⊆ o(U)
one has DM ⊆ o(φ(U)), then φ◦τL ≤ τM ◦φ.

Proof. (1) Obviously τL is monotone and by the Heyting fact (H3) one has that U ≤ τL(U),
that is, τL is inflationary. Now, for each U,U′ ∈ L⊕L we have

τL(U)∧τL(U′) =
∨

DL⊆o(V∧V′)
(V→U)∧ (V′→U′) ≤

∨
DL⊆o(V∧V′)

(V∧V′)→ (U∧U′) ≤ τL(U∧U′)

and since the other inequality follows by monotonicity, τL is a prenucleus. Moreover,
U = τL(U) if and only if for every V ∈ L⊕ L with DL ⊆ o(V) one has U = V→ U, that is,
U ∈ o(V).

(2) Let U ∈ L⊕L. The join
∨
{V→U |DL ⊆ o(V) } is obviously directed and since φ preserves

finite meets one has

φ(τL(U)) =
∨

DL⊆o(V)
φ(V→U) ≤

∨
DL⊆o(V)

φ(V)→ φ(U).

by an application of (H5). Now let V ∈ L⊕L with DL ⊆ o(V). By hypothesis DM ⊆ o(φ(V)) and
so φ(V)→ φ(U) ≤ τM(φ(U)). Hence φ(τL(U)) ≤ τM(φ(U)). �

Lemma 2.4.5. Let h : L→M be an almost homomorphism and U ∈ L⊕ L. If DL ⊆ o(U) then
DM ⊆ o((hMh)(U)).

Proof. By Lemma 2.3.7 (1) we have to prove that if {a∧ b | (a,b) ∈ U } is a cover of L, then
{u∧v | (u,v) ∈ (hMh)(U) } is a cover of M.

Let (a,b) ∈U (that is, a⊕b ⊆U). By the formulas in Subsection 2.2.5 and since h preserves
finite meets and the bottom element,

h(a)⊕h(b) = (h(a)M0)∧ (0Mh(b)) = (hMh)((aM0)∧ (0Mb)) = (hMh)(a⊕ b) ⊆ (hMh)(U),

that is, (h(a),h(b)) ∈ (hMh)(U). Finally, since h preserves covers we have∨
{u∧v | (u,v) ∈ (hMh)(U) } ≥

∨
{h(a)∧h(b) | (a,b) ∈U } =

∨
{h(a∧ b) | (a,b) ∈U } = 1. �

Lemma 2.4.6. If h : L→M is an almost homomorphism then ν M ◦ (hMh)◦ν L = ν M ◦ (hMh).
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Proof. Set
Q := {λ ∈ pN(L⊕L) | (hMh)◦λ ≤ ν M ◦ (hMh) }

and observe that Q is an inductive subset as 1L ∈ Q (because ν M is inflationary) and it is
closed under directed joins (because directed joins of prenuclei are computed pointwise and
hMh preserves directed joins).

Let λ ∈Q. By Lemmas 2.4.5 and 2.4.4 (2) we have (hMh)◦τL ≤ τM ◦ (hMh). Moreover, by
Lemma 2.4.4 (1) we have τM ◦ν M ≤ ν M ◦ν M = ν M. Hence

(hMh)◦τL ◦λ ≤ τM ◦ (hMh)◦λ ≤ τM ◦ν M ◦ (hMh) ≤ ν M ◦ (hMh)

— i.e., τL ◦λ ∈Q. By the induction principle in Theorem 2.2.8 and Lemma 2.4.4 (1) again, one
concludes that τL = ν L ∈Q, that is, (hMh)◦ν L ≤ ν M ◦ (hMh). Finally

ν M ◦ (hMh)◦ν L ≤ ν M ◦ν M ◦ (hMh) = ν M ◦ (hMh) ≤ ν M ◦ (hMh)◦ν L. �

Lemma 2.4.7. Let L be an F -separated frame. Then ν (aMb) = ν ((a∨ b)M0) for any a,b ∈ L.

Proof. If L isF -separated then D̊L =DL, hence there is an isomorphism αmaking the diagram

L⊕L L

DL

δ

ν
α

commutative. Let a,b ∈ L. By the formulas in Subsection 2.2.5 we have

δ(aMb) = δ((a⊕1)∨ (1⊕b)) = a∨ b = δ(((a∨b)⊕1)∨ (1⊕0)) = δ((a∨b)M0).

Hence ν (aM b) = α(δ(aMb)) = α(δ(((a∨b)M0))) = ν ((a∨ b)M0). �

We are now in position to prove the main result of this subsection.

Theorem 2.4.8. Every F -separated frame satisfies property (A).

Proof. Let L be F -separated and let h : L→M be an almost homomorphism. First, DM is a
sublocale of D̊M so there is a frame homomorphism β such that the diagram

M⊕M M

D̊M

δM

ν M
β
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commutes. Now, let a,b ∈M. From the formulas in Subsection 2.2.5, Lemma 2.4.6 and
Lemma 2.4.7 we obtain

ν M((h(a)⊕1)∨ (1⊕h(b)) = ν M(h(a)Mh(b)) = (ν M ◦ (hMh))(aMb) = (ν M ◦ (hMh)◦ν L)(aMb)

= (ν M ◦ (hMh)◦ν L)((a∨b)M0) = (ν M ◦ (hMh))((a∨b)M0)

= ν M(h(a∨b)M0) = ν M((h(a∨ b)⊕1)∨ (1⊕0)).

Hence h(a)∨ h(b) = δM((h(a)⊕ 1)∨ (1⊕ h(b)) = δM((h(a∨ b)⊕ 1)∨ (1⊕ 0)) = h(a∨ b). By Re-
mark 2.4.1, it follows that h is a frame homomorphism. �

By Proposition 2.2.6 and Theorem 2.4.8 we also have the following:

Corollary 2.4.9. Every fit frame satisfies property (A).

At this point, we have all the necessary results for a characterization of F -separatedness.
One half of the following corollary is a consequence of Corollary 2.4.3 and the other one
follows by Corollary 2.3.13 and Theorem 2.4.8.

Corollary 2.4.10. A frame is F -separated if and only if it is TU and satisfies property (A).

Remarks 2.4.11. (1) Closer scrutiny of the proofs of the pair of results

(F sep) ≡ (A)+ (TU) and (sH) ≡ (W)+ (TU)

reveals that the parallel is in fact deeper.

In [30] the crucial result was that (a⊕b)∨dL = ((a∧b)⊕1)∨dL for all a,b ∈ L, where dL =
∧

DL,
and it was instrumental for proving that h preserves binary meets. Now realize that (−)∨dL is
the nucleus ν− on L⊕L associated with the closure DL, hence it amounted to

ν−(a⊕ b) = ν−((a∧ b)⊕1) for all a,b ∈ L.

Now the crucial step in Theorem 2.4.8 is that

ν (aMb) = ν ((a∨b)M0) for all a,b ∈ L,

and it is instrumental for proving that h preserves binary joins. Of course, the proof for the
“other closure” is technically more involved, as the corresponding nucleus does not have an
explicit description (whereas for the usual closure it has a very simple one).

(2) Since regularity implies fitness, it also implies F -separatedness, and therefore regular
frames satisfy property (A). It might be worth showing that a direct proof of the latter fact
is much easier. Let h : L→M be an almost homomorphism with L regular. Let a,b ∈ L. We
first note that, by regularity, a∨b =

∨
{x∨ y | x ≺ a, y ≺ b }, and since {x∨ y | x ≺ a, y ≺ b } is a
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directed set, we have

h(a∨b) = h(
∨
{x∨ y | x ≺ a, y ≺ b }) =

∨
{h(x∨ y) | x ≺ a, y ≺ b }.

Now let x, y ∈ L such that x ≺ a and y ≺ b. Then (x∨ y)∗∨ (a∨ b) ≥ (x∗∨ a)∧ (y∗∨ b) = 1 and
thus h((x∨ y)∗)∨h(a)∨h(b) = 1 (since h preserves covers). Hence

h(x∨ y) = h(x∨ y)∧
(
h((x∨ y)∗)∨h(a)∨h(b)

)
≤ h(a)∨h(b).

It follows that h(a∨ b) ≤ h(a)∨h(b) and we conclude that h preserves binary joins. Finally, by
Remark 2.4.1, h is a frame homomorphism.

2.4.3 Sufficient conditions: normality versus extremal disconnectedness

In this subsection we shall use earlier work by Banaschewski and Pultr in order to establish
dual sufficient conditions for properties (W) and (A). Recall that elements a,b of a distributive
lattice L are normally separated ([30]) if

∃u,v ∈ L such that u∧v = 0, a ≤ u∨ b and b ≤ a∨v. (NS)

Dually, we will also say that elements a,b are extremally separated if

∃u,v ∈ L such that u∨v = 1, a∧v ≤ b and u∧ b ≤ a. (ES)

Observe that normal separation and extremal separation are dual to each other in the sense
that a,b ∈ L are normally separated in L if and only if they are extremally separated in Lop.

Remark 2.4.12. Elements a,b ∈ L are extremally separated if and only if (a→ b)∨ (b→ a) = 1.

Recall now that given a property P of locales, a locale L is said to be hereditarily P if each
sublocale of L satisfies P. The notions of normal separation (resp. extremal separation) are
related with hereditary normality (resp. extremal disconnectedness), see for example [65,
Corollaries 5.3 and 5.5]).

Proposition 2.4.13. The following conditions are equivalent for a frame L:

(i) L is hereditarily normal;

(ii) Every open sublocale of L is normal;

(iii) Every a,b ∈ L are normally separated.

Proposition 2.4.14. The following conditions are equivalent for a frame L:

(i) L is hereditarily extremally disconnected;

(ii) Every closed sublocale of L is extremally disconnected;
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(iii) Every a,b ∈ L are extremally separated.

The following result is due to Banaschewski and Pultr.

Lemma 2.4.15 ([30, Proposition 3.2]). Let L and M be distributive lattices. Then an h : L→M
preserving finite joins and meets of disjoint pairs, also preserves meets of normally separated pairs.

Since the result holds at the level of distributive lattices, it can obviously be dualized as
follows; we include a proof for the sake of completeness:

Lemma 2.4.16. Let L and M be distributive lattices. Then an h : L→M preserving finite meets and
joins of covering pairs, also preserves joins of extremally separated pairs.

Proof. Let a,b ∈ L be extremally separated and pick u,v ∈ L as in (ES). Since h preserves meets
of joins of covering pairs, one has h(u)∨h(v) = 1, and we therefore have

h(a∨b) = h(a∨ b)∧ (h(u)∨h(v)) ≤ h((a∨ b)∧u)∨h((a∨ b)∧v) ≤ h(a)∨h(b).

The other inequality is trivial. �

Combining Proposition 2.4.13 with Lemma 2.4.15 one obtains the following:

Corollary 2.4.17 ([30, Proposition 4.1]). Every hereditarily normal frame has property (W).

Similarly, Lemma 2.4.16, Proposition 2.4.14 and Remark 2.4.1 yield the following:

Corollary 2.4.18. Every hereditarily extremally disconnected frame has property (A).

As we have just seen, the parallel or “duality” between properties (W) and (A) studied in
this chapter is also connected to the parallel between (the hereditary variants of) normality
and extremal disconnectedness.

2.5 Downset frames, hereditary normality and extremal disconnect-
edness

For the class of downset frames, the implications in Corollary 2.4.17 and Corollary 2.4.18
are actually equivalences. Once again, one half was proved in [30] and we shall prove the
dual result. If X is a poset and a ∈ X, we denote ↓a = {b ∈ X | b ≤ a } and ↑a = {b ∈ X | b ≥ a }.
Moreover, we write Dwn(X) for the frame of all the downsets of X.

Now, we recall (cf. [18]) that X is a forest if whenever a,b ∈ X are incomparable, one has
↓a∩↓b = ∅.

Proposition 2.5.1 ([30, Proposition 6.1]). The following are equivalent for a poset X:

(i) X is a forest;

(ii) Dwn(X) is hereditarily normal;
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(iii) Dwn(X) has property (W).

We now prove a dual result. Let X be a poset and observe that Dwn(X) is hereditarily
extremally disconnected if and only if Dwn(X)op � Dwn(Xop) is hereditarily normal — i.e., if
Xop is a forest. We shall say that X is a coforest if Xop is a forest — i.e., ↑a∩↑b = ∅whenever
a,b ∈ X are incomparable.

Proposition 2.5.2. The following are equivalent for a poset X:

(i) X is a coforest;

(ii) Dwn(X) is hereditarily extremally disconnected;

(iii) Dwn(X) has property (A).

Proof. (i)⇐⇒ (ii) follows by the comments before the statement, and (ii) =⇒ (iii) by Corol-
lary 2.4.18. Hence we are only left with the task of showing that (iii) implies (i). Let a,b ∈ X
be incomparable. Define a map h : Dwn(X) −→ 2 = {0,1} by

h(U) =

1 if a,b ∈U,

0 otherwise.

Then h(↓a∪ ↓b) = 1 while, by incomparability, h(↓a)∨ h(↓b) = 0, hence h is not a frame
homomorphism.

On the other hand, h obviously preserves finite meets and the bottom element. Let us
check that it preserves also directed joins. Let {Ui}i∈I be a directed family of downsets and
suppose that a,b ∈

⋃
i Ui. Then there are i1, i2 ∈ I such that a ∈Ui1 and b ∈Ui2 . By directedness

there is an i ∈ I such that a,b ∈Ui. This shows that h(
⋃

i Ui) =
∨

i h(Ui). Thus h is a preframe
homomorphism.

Since Dwn(X) has property (A) it follows that h does not preserve covers — i.e., there
exists a family {Ui}i∈I of downsets of Dwn(X) such that

⋃
i Ui = X and

∨
i h(Ui) = 0. Hence for

each i ∈ I either a <Ui or b <Ui and so ↑a∩↑b =
⋃

i↑a∩↑b∩Ui = ∅. �

Some further equivalent conditions will be given in Chapter 4, see Corollary 4.4.8.

Remark 2.5.3. The identity (a→ b)∨ (b→ a) = 1 from Remark 2.4.12 is usually referred
to as Dummett’s law in the logic literature. The corresponding logic is known as the
Gödel-Dummett logic. It is known that the coforests are exactly the posets that validate
Dummett’s law, so the equivalence between (i) and (ii) in the previous proposition goes back
to Dummett’s work (from the late 1950s).

2.6 Relation with other separation properties

Recall that fitness impliesF -separatedness (Proposition 2.2.6). In light of the formal similarity
of both notions (fitness means that every sublocale is fitted whereas F -separatedness means
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that just the diagonal is fitted), it is natural to ask whether both properties are equivalent.
It was left as an open problem by Picado and Pultr in [97, 2.7] and in this section we shall
answer it negatively. We first briefly recall a few facts about simple extensions [24, Appendix]
(for a detailed account see also [98, IV 4]).

2.6.1 Simple extensions

In this section, Y will be a topological space and X ⊆ Y a fixed subspace. One defines

EX,Y

to be the set Y endowed with the topology generated by Ω(Y) and by the X-included topology
{A ⊆ Y | X ⊆ A }∪ {∅}, namely

{U∩A |U ∈Ω(Y), X ⊆ A, ArX ⊆U }.

We speak of EX,Y as a simple extension of X. Banaschewski used this construction for
providing examples of non-fit strongly Hausdorff frames:

Theorem 2.6.1 ([24, Corollary A.8]). If Y is a regular space and both X and YrX are dense in Y
then EX,Y is strongly Hausdorff but not fit.

2.6.2 A counterexample

We shall now use the theory of simple extensions in order to provide an example of an
F -separated frame which is not fit. We first need several lemmas:

Lemma 2.6.2. Let A,B ⊆ Y such that A∩B = X. Then A and B are extremally separated inΩ(EX,Y).

Proof. We check the identity in Remark 2.4.12. Since X ⊆ B∪ (YrA), the subset B∪ (YrA) is
open in EX,Y and so A→ B = intEX,Y (B∪ (YrA)) = B∪ (YrA). Symetrically B→A =A∪ (YrB)
and hence (A→ B)∪ (B→ A) = A∪B∪ (YrB)∪ (YrA) = Y. �

Lemma 2.6.3. If h : Ω(EX,Y)→ L is an almost homomorphism and A,B ⊇ X, then h(A∪B) =
h(A)∨h(B).

Proof. By Lemma 2.6.2 and Lemma 2.4.16 one has the non-trivial inequality — i.e., h(A∪B) =
h(A∪ (X∪ (BrA))) = h(A)∨h(X∪ (BrA)) ≤ h(A)∨h(B). �

Lemma 2.6.4. Let Ω(Y) satisfy property (A) and h : Ω(EX,Y)→M be an almost homomorphism.
Further, let U,V ∈Ω(Y) and A ⊇ X. Then, h((U∩A)∪ (V∩A)) = h(U∩A)∨h(V∩A).

Proof. Consider the subframe embedding ι : Ω(Y) ⊆Ω(EX,Y). The composite h◦ ι : Ω(Y)→M
is obviously an almost homomorphism and Y satisfies property (A), hence it is a frame
homomorphism. Thus h(U∪V) = h(U)∨h(V) and so h((U∩A)∪ (V∩A)) = h((U∪V)∩A) =
h(U∪V)∧h(A) = (h(U)∨h(V))∧h(A) = h(U∩A)∩h(V∩A), as desired. �
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Lemma 2.6.5. Let Ω(Y) satisfy property (A), Y be T1 and h : Ω(EX,Y)→M be an almost homomor-
phism. Further, let U,V ∈Ω(Y) and A,B ⊇ X such that ArX ⊆U and BrX ⊆ V and both ArX
and BrX are finite. Then h((U∩A)∪ (V∩B)) = h(U∩A)∨h(V∩B).

Proof. Let U1 := U∩A∩B, V1 := V∩A∩B, U2 := (Ur (BrX))∩ (X∪ (ArB)∪ (BrA)) and
V2 := (Vr (ArX))∩ (X∪ (ArB)∪ (BrA)). Obviously U1,V1 ∈Ω(EX,Y) and since ArX and
BrX are finite and Y is T1, also U2,V2 ∈Ω(EX,Y). Now since ArX⊆U and BrX⊆V, it follows
that (U∩A)∪ (V∩B) = (U∪V)∩ (A∪B) and that (U∪V)∩ (X∪ (ArB)∪ (BrA)) = U2∪V2.
Therefore,

h((U∩A)∪ (V∩B)) = h((U∪V)∩ ((A∩B)∪X∪ (ArB)∪ (BrA)))

= h(U∪V)∧ (h(A∩B)∨h(X∪ (ArB)∪ (BrA))) = h(U1∪V1)∨h(U2∪V2),

where we have used Lemma 2.6.3 and the fact that h preserves finite meets.
Now, since both U1 and V1 and U2 and V2 clearly satisfy the additional condition in the

statement of Lemma 2.6.4 and U1 ⊆U∩A, V1 ⊆V∩B, U2 = (Ur (BrX))∩ (X∪ (ArB))⊆U∩A
and V2 = (Vr (ArX))∩ (X∪ (BrA)) ⊆ V∩B, we obtain the non-trivial inequality — i.e.,
h((U∩A)∪ (V∩B)) = h(U1)∨h(V1)∨h(U2)∨h(V2) ≤ h(U∩A)∨h(V∩B). �

After all these preliminary results, we can prove the main theorems.

Theorem 2.6.6. Let Y be a T1-space such that Ω(Y) satisfies property (A). Then so does Ω(EX,Y).

Proof. Let h : Ω(EX,Y)→M be an almost homomorphism. We will show that it preserves
binary joins. Let U,V ∈Ω(Y) and A,B ⊇ X such that ArX ⊆U and BrX ⊆ V. Then, for any
finite subsets F ⊆ ArX and G ⊆ BrX, by Lemma 2.6.5 we have

h((U∩ (X∪F))∪ (V∩ (X∪G)) = h(U∩ (X∪F))∨h(V∩ (X∪G)) ≤ h(U∩A)∨h(V∩B).

Since (U∩A)∪ (V∩B) =
⋃
{ (U∩ (X∪F))∪ (V∩ (X∪G)) | F ⊆ ArX and G ⊆ BrX are finite },

and this union is directed, it follows that h((U∩A)∪ (V∩B)) ≤ h(U∩A)∨h(V∩B). �

Theorem 2.6.7. There exists a strongly Hausdorff F -separated spatial frame which is not fit.

Proof. Pick a regular T0-space Y with a subspace X such that both X and YrX dense in Y
(e.g. the real line with the subspace of rationals). By Theorem 2.6.1 the simple extension EX,Y

is strongly Hausdorff but not fit. Moreover, in view of Theorem 2.6.6, Ω(EX,Y) also satisfies
property (A). Now, a strongly Hausdorff frame is TU (Corollary 2.3.6). Therefore, Ω(EX,Y)
satisfies property (A) and is TU, so it is F -separated by Corollary 2.4.3. �

We now know that F -separatedness is strictly weaker than fitness, and therefore it makes
sense to compare (F -sep) with other known weaker variants of fitness. In particular there is
the subfitness (arguably even more important than fitness itself, see [98, Chapter II])

a � b =⇒ ∃c ∈ L such that a∨ c = 1 , b∨ c (sfit)
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or the weaker weak subfitness

a , 0 =⇒ ∃c ∈ L such that a∨ c = 1 , c (wsfit)

or, finally, Picado and Pultr’s prefitness

a , 0 =⇒ ∃c ∈ L such that a∨ c = 1 , c = c∗∗ (pfit)

(see [93] or [98] for a comprehensive treatment of these separation properties; in Section 2.9
we shall meet a new one also given by a first-order formula). Now we have the following:

Proposition 2.6.8. None of the properties (sfit), (wsfit) or (pfit) coincides with (F sep).

Proof. None of them is hereditary (see [93]) while each c-separation is even closed under
monomorphisms (recall Theorem 2.2.2). �

2.7 Density and codensity

It is well known that dense frame homomorphisms are monomorphisms in the category of
strongly Haudorff frames (see for example [92, Proposition V 2.5.3]). There is also a “dual”
result for F -separated frames. Recall that a frame homomorphism h is codense if for any a ∈ L,

h(a) = 1 =⇒ a = 1.

Proposition 2.7.1. Let h : L→M be a codense frame homomorphism, and 1,k : N→ L with N an
F -separated frame. If h◦1 = h◦ k then 1 = k.

Proof. Let q : L� S be the coequalizer of 1,k in Frm. Then there is a unique u making the
diagram

N L S

M

1

k q

h
u

commutative. Because of Theorem 2.2.5 (1), since N is F -separated, S corresponds to a fitted
sublocale of L, say S =

⋂
i∈I o(ai). Now, by Lemma 1.2.2, for each i ∈ I one has q(ai) = 1 and

hence h(ai) = 1. By co-density, it follows ai = 1. Thus S = L — i.e., q = 1L is the identity and
1 = k. �

Corollary 2.7.2. Codense frame homomorphisms are monomorphisms in the category of F -separated
frames.

Remark 2.7.3. In particular, we see that codense frame homomorphisms are monomorphisms
in the category of fit (or regular) frames. But this is not interesting, as it is well known that
the following stronger property holds (cf. [92, Corollary V 1.6.2]):
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a frame L is subfit if and only if every codense frame homomorphism f : L→M is
one-to-one (i.e., it is a monomorphism in the whole Frm).

2.8 Singly generated extensions

Recall that P-separation with respect to a closure operator is closed under monomorphisms
(Theorem 2.2.5). In frame language, we have in particular that for a strongly Hausdorff (resp.
F -separated) frame L, if L→M is an epimorphism then M is also strongly Hausdorff (resp.
F -separated). It is therefore a natural question to determine when the converse implication
holds; and in the strong Haudorff case it was shown in [24, Proposition 4.10] (originally due
to Xiangdong) that for the class of singly generated frame extensions it does.

A frame M is a singly generated extension of a frame L if L is a subframe of M and M can be
generated by L together with some c ∈M. In this case, one usually denotes M = L[c]. Observe
that for each x ∈M, there are ax,bx ∈ L with x = ax∨ (c∧bx).

Proposition 2.8.1. Let L be F -separated and let j : L�M = L[c] be the subframe embedding
corresponding to the singly generated extension by c ∈M. Then M is F -separated if and only if j is
epic.

Proof. As we have already noted, the “if” part always holds. Assume now that M is
F -separated and let h,k : M→N with h◦ j = k◦ j. We want to check that h = k. For that, we
shall prove that the pair (h,k) respects covers (Theorem 2.3.12). Let C be a cover of M. For
each x ∈ C, there are ax,bx ∈ L with x = ax∨ (c∧ bx). Set a :=

∨
x∈C ax and b :=

∨
x∈C bx. Then

a∨ (c∧ b) =
∨

C = 1. Now, since h◦ j = k◦ j, one has h(ax) = k(ax) and h(bx) = k(bx) for all x ∈ C,
and so ∨

x∈C
h(x)∧ k(x) =

∨
x∈C

(
h(ax)∨ (h(c)∧h(bx))

)
∧

(
k(ax)∨ (k(c)∧ k(bx))

)
=
∨

x∈C
h(ax)∨ (h(c)∧ k(c)∧h(bx)) = h(a)∨ (h(c)∧ k(c)∧h(b))

=
(
h(a)∨ (h(c)∧h(b))

)
∧

(
h(a)∨ (k(c)∧h(b))

)
= h(a∨ (c∧ b))∧ k(a∨ (c∧ b)) = h(1)∧ k(1) = 1.

Thus (h,k) respects covers and so h = k. �

2.9 A new first-order separation formula, and some of its properties

Besides Isbell’s strong Hausdorff axiom, there are a number of weaker variants of the
Hausdorff axiom in the category of locales — for a comprehensive account on the topic we
refer to [98, Chapter III].

Among those variants, there is one which deserves particular attention (for some
justification about this, we refer to [98, p. 44] or [82, p. 192]). Following the terminology from
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[98], a frame L is Hausdorff (or, briefly, L has property (H)) if

1 , a � b =⇒ ∃u,v ∈ L such that u � a, v � b and u∧v = 0. (H)

Every strongly Hausdorff frame can be shown to be Hausdorff. Among the advantages of
property (H), we have the fact that it is conservative (i.e., a space X is Hausdorff if and only
ifΩ(X) has property (H)) and well-behaved categorically (inherited by sublocales and closed
under products).

Following the main idea of the present chapter, we might seek to find a first-order property
implied by F -separatedness which would be somehow “dual” to (H). The following theorem
gives a solution to this problem:

Theorem 2.9.1. For a frame L, the following conditions are equivalent and are all implied by
F -separatedness:

(i) For every a,b ∈ L such that 1 , a � b, there exist u,v ∈ L such that u � a, v � b and
(u→ a)∨ (v→ b) = 1;

(ii) For every a,b ∈ L such that 1 , a � b, there exist u,v ∈ L such that a < u, b < v and
(u→ a)∨ (v→ b) = 1;

(iii) For every a,b ∈ L such that 1 , a � b, there exist u,v ∈ L such that v ≤ a < u, v � b and
(u→ a)∨ (v→ b) = 1;

(iv) For every a,b ∈ L such that 1 , a � b, there exist u,v ∈ L such that u→ a , a, v→ b , b and
u∨v = 1;

(v) For every a,b ∈ L such that 1 , a � b, there exist u,v ∈ L such that a ≤ u, b ≤ v, u→ a , a,
v→ b , b and u∨v = 1;

(vi) For every a,b ∈ L such that 1, a� b, there exist u,v ∈ L such that a≤ u, u→ a, a, a∧(v→ b)� b
and u∨v = 1.

Proof. Let us start by showing that F -separatedness implies (i). Let 1 , a � b. Then

aMb = { (x, y) ∈ L×L | x ≤ a or y ≤ b }

and since (a,1) ∈ aM b and (1,a) < aM b, it follows from Lemma 1.5.2 that aM b <DL. Hence
aM b < DL =

⋂
DL⊆o(U) o(U) because L is F -separated and so there exists a U ∈ L⊕U such

that DL ⊆ o(U) and aM b < o(U) — i.e.,
⋂

(x,y)∈U((x⊕ y)→ aM b) * aM b. Therefore, there is a
pair (u,v) ∈ L×L such that for all (x, y) ∈ U, one has (u,v) ∈ (x⊕ y)→ aM b but (u,v) < aM b.
The latter means u � a and v � b; while the former means that for all (x, y) ∈ U one has
(u∧x)⊕ (v∧ y) ⊆ aM b, or equivalently (u∧x,v∧ y) ∈ aM b. Hence, for each (x, y) ∈U, one has
either u∧x ≤ a or v∧ y ≤ b and so x∧ y ≤ (u→ a)∨ (v→ b). By Lemma 2.3.7 (1), the system
Û = {x∧ y | (x, y) ∈U } is a cover of L, hence (u→ a)∨ (v→ b) = 1.
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We now check that all the conditions are equivalent:

(i) =⇒ (ii): Let 1 , a � b. Then there are u,v ∈ L with u � a, v � b and (u→ a)∨ (v→ b) = 1. Set
u′ := u∨ a and v′ := v∨b. Then a < u′, b < v′ and (u′→ a)∨ (v′→ b) = (u→ a)∨ (v→ b) = 1.

(ii) =⇒ (iii): Let 1 , a � b. Then one has 1 , a � a→ b and hence there exist u,v ∈ L such that
a < u, a→ b < v and (u→ a)∨ (v→ (a→ b)) = 1. Let v′ := v∧ a. Since v � a→ b, one has v′ � b
(and v′ ≤ a). Moreover, by (H7), it follows that v→ (a→ b) = (v∧ a)→ b = v′→ b. Hence the
pair u,v′ satisfies the required conditions.

(iii) =⇒ (iv): Let 1 , a � b. Then there exist u,v ∈ L such that v ≤ a < u, v � b and
(u→ a)∨ (v→ b) = 1. Let u′ := u→ a and v′ := v→ b. Then u′ ∨ v′ = 1. Moreover, if
u′→ a ≤ a, then u ≤ (u→ a)→ a ≤ a by (H9), a contradiction. Hence u′→ a , a and similarly,
v′→ b , b.

(iv) =⇒ (v) follows easily because u→ a = (u∨ a)→ a and v→ b = (v∨ b)→ b; thus we may
replace u (resp. v) by u∨ a (resp. v∨ b).

(v) =⇒ (vi): Let 1 , a � b. Then 1 , a � a→ b and hence there exist u,v ∈ L such that
a ≤ u, a→ b ≤ v, u→ a , a, v→ (a→ b) , a→ b and u∨ v = 1. By (H5) and (H7) one has
a∧ (v→ b) = a∧ (a→ (v→ b)) = a∧ (v→ (a→ b)) ̸≤ b.

(vi) =⇒ (i): Let 1 , a � b. Then there exist u,v ∈ L such that a ≤ u, u→ a , a, a∧ (v→ b) � b and
u∨v = 1. Let u′ := u→ a and v′ := v→ b. Then u′ � a, v′ � b and (u′→ a)∨ (v′→ b) ≥ u∨v = 1
by (H9). �

A frame satisfying one (and hence all) of the equivalent conditions above will be said to
satisfy property (F), that is, L satisfies property (F) if

1 , a � b =⇒ ∃u,v ∈ L such that u � a, v � b and (u→ a)∨ (v→ b) = 1. (F)

In what follows we study some of its basic properties.

Proposition 2.9.2. Property (F) implies property (T1).

Proof. Let L be a frame and let p ∈ L be a prime. Assume by contradiction that p is not
maximal, i.e., p ≤ a ≤ 1 with a � p and a , 1. By hypothesis there exist u,v ∈ L such that u � a,
v � p and (u→ a)∨ (v→ p) = 1. Now, since p is prime and v � p, it follows that v→ p = p.
Thus 1 = (u→ a)∨p = u→ a (because p ≤ a ≤ u→ a) — i.e., u ≤ a, a contradiction. �

Remarks 2.9.3. (1) Since subfitness does not imply property (T1), it follows that subfitness
does not imply property (F) either.

(2) Property (F) has a certain formal similarity with the strong De Morgan law ([75])

(a→ b)∨ (b→ a) = 1 for all a,b ∈ L.
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However, we point out that the latter does not imply property (F) (as the strong De Morgan
law is equivalent to hereditary extremal disconnectedness and the latter does not imply (T1)).

(3) Since fitness implies F -separatedness, it also implies property (F). Now, there are a
number of well-known and relatively well-understood separation properties implied by
fitness (notably, subfitness (sfit), but also prefitness (pfit) and weak subfitness (wsfit) — see
[93, 98]). However, (F) is hereditary (see the following proposition) whereas none of the
other properties is; hence none of them is equivalent to (F).

Proposition 2.9.4. Property (F) is hereditary.

Proof. Let L be a frame which has property (F) and let S⊆ L be a sublocale with corresponding
surjection νS : L� S. We denote by ∨S (resp. ∨) the join in S (resp. L). Let a,b ∈ S
such that 1 , a � b. Since L satisfies property (F), there exist u,v ∈ L such that u � a,
v � b and (u→ a)∨ (v→ b) = 1. Let u′ := νS(u) and v′ := νS(v). Then u′ � a, v′ � b and
1 = νS(u→ a)∨S νS(v→ b) ≤ (u′→ a)∨S (v′→ b). �

Remark 2.9.5. As a consequence of Proposition 2.9.4, it follows that (F) does not imply
subfitness (otherwise, every sublocale of a locale satisfying (F) would be subfit; and hence the
locale itself would be fit — but even F -separation does not imply fitness, cf. Theorem 2.6.7).
Combining this observation with Remarks 2.9.3 (1), we conclude that

subfitness and property (F) are not comparable.

Finally, we move on to showing that property (F) behaves well with respect to products.

Proposition 2.9.6. Arbitrary products of locales with property (F) also have property (F).

Proof. The first part of the proof follows the same lines of that of [91, Lemma 1.9], cf. also
[98, p. 45]. Let {Li}i∈I be a family of frames satisfying property (F). Let 1 , V *W in

⊕
i∈I Li.

Pick aaa = (ai)i∈I ∈ V−W. Let { i1, . . . , in } be the set of indices such that ai j , 1 for all j = 1, . . . ,n.
Let aaa(0) := aaa and for each j = 1, . . . ,n, let aaa( j) be the element aaa but with all the entries in i1, . . . , i j

replaced by 1. Since aaa(0) = aaa ∈ V and aaa(n) = (1)i∈I < V, there is an j0 ∈ {1, . . . ,n } such that
aaa( j0−1)

∈ V but aaa( j0) < V.
For each x ∈ Li j0

let xxx be aaa( j0) but with the 1 in position i j0 replaced by x. Further, let
v :=
∨
{x ∈ Li j0

| xxx ∈ V } and w :=
∨
{x ∈ Li j0

| xxx ∈W }. Because V and W are cp-ideals, one has
vvv ∈ V and www ∈W. If v = 1, then aaa( j0) = vvv ∈ V, a contradiction. Thus v , 1. Assume v ≤ w. Now,
since ai j0

ai j0
ai j0
= aaa( j0−1)

∈ V, it follows that ai j0
≤ v ≤ w, and so aaa ≤www ∈W. Since W is a downset, it

follows that aaa ∈W, a contradiction. Hence 1 , v � w.
By condition (iv) in Theorem 2.9.1, there are x, y ∈ Li j0

, with x→ v � v, y→ w � w and
x∨ y = 1.

Let xi = 1 = yi ∈ Li for each i , i j0 and let xi j0
= x, yi j0

= y. Then obviously (⊕ixi)∨ (⊕iyi) = 1.
We claim that (⊕ixi)→V ,V. Assume otherwise, by contradiction. Since x→ v � v, there

is a c ∈ Li j0
such that c≤ x→ v (i.e., c∧x≤ v) and c� v. One obviously has ccc∧ (xi)i = c∧xc∧xc∧x≤vvv ∈V
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and since V is a downset, we deduce that ccc∧ (xi)i ∈ V. It follows that ccc ∈ (⊕ixi)→ V = V. But
if ccc ∈ V, one has by definition of v that c ≤ v, a contradiction. The fact that (⊕yi)→W ,W
may be shown similarly.

We have thus verified that
⊕

i∈I Li satisfies condition (iv) in Theorem 2.9.1 and so it
satisfies property (F). �

By a standard category theory result (see e.g. [1, Theorem 16.8]), Propositions 2.9.4 and
2.9.6 imply the following:

Corollary 2.9.7. Locales satisfying property (F) are epireflective in the category of locales.

In conclusion, we have shown that there is a separation property (F) that is given by
a first-order formula, that is implied by fitness and that implies property (T1), but is not
comparable with subfitness. Moreover, it is hereditary and has a good categorical behaviour.
Therefore, it seems to deserve some further investigation. The following diagram shows the
parallel situation between properties (H) and (F):

(sH) (F -sep)

(H) (F)

(T1)

We end up the section with some sparse questions for future work:

Questions 2.9.8. (1) What does one get by combining subfitness and (F)?

(2) What does one need to add to (F) in order to reach fitness?

(3) What are the spaces with property (F)?

(4) Does compactness together with property (F) imply something stronger?

2.10 Semifitted diagonals and questions for future work

A sublocale S of a locale L is said to be semifitted if it is the intersection of a fitted sublocale
with a closed sublocale. It was suggested to us by Graham Manuell to study locales with
semifitted diagonal, as these are a natural common generalization of both (sH) and (F -sep)
locales. In this section we shall briefly discuss some aspects of this new class of locales.

Recall the usual closure S and the “other” closure S̊ of a sublocale S from Subsection 2.2.3.
Now, the sublocale

S∩ S̊ =
⋂

S⊆c(a)∩o(b)
c(a)∩o(b)
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clearly defines the least semifitted sublocale containing S and the assignment S 7→ S∩ S̊
defines another closure operator in Loc (this is a general fact: closure operators are ordered
pointwisely and infima/suprema of closure operators exist and are computed pointwisely to
the extent that these pointwise infima/suprema exist — see [43, 2.5]).

We now consider separation with respect to this closure operator:

Definition 2.10.1. A locale L is S-separated (or it satisfies property (S-sep)) if its diagonal is
semifitted in L⊕L.

As we noted earlier, we have the following trivial observation:

Lemma 2.10.2. Every strongly Hausdorff locale and every F -separated locale is S-separated.

It now makes sense to study similar phenomena to that described earlier in this chapter
e.g. the existence of a Dowker-Strauss characterization, the relation with the TU axiom or the
existence of a characterization in terms of weakened morphisms.

2.10.1 Dowker-Strauss-type characterization of S-separatedness

First, we have the following technical characterization (we omit the proof since it is similar
to that of Theorem 2.3.8).

Theorem 2.10.3. A frame L is S-separated if and only if for any localic maps f ,1 : M→ L, the
equalities ⟨ f ,1⟩∗(dL) = 0 and ⟨ f ,1⟩∗(U) = 1 hold for all U ∈ L⊕L with DL ⊆ o(U) only if f = 1.

Lemma 2.10.4. Let f ,1 : M→ L be localic maps. Then the pair ( f ∗,1∗) respects covers and disjoint
pairs if and only if ⟨ f ,1⟩∗(dL) = 0 and ⟨ f ,1⟩∗(U) = 1 for all U ∈ L⊕L such that DL ⊆ o(U).

Proof. It follows trivially from Lemma 2.3.10 and the obvious fact that the pair ( f ∗,1∗) respects
disjoint pairs if and only if ⟨ f ,1⟩∗(dL) = 0 (recall that dL =

∨
a∧b=0 a⊕b). �

From the two previous results we obtain a Dowker-Strauss-type theorem for S-separat-
edness:

Theorem 2.10.5. A frame L is S-separated if and only if no pair of distinct frame homomorphisms
with domain L respects covers and disjoint pairs.

Corollary 2.10.6. An S-separated frame is TU.

Proof. By Lemmas 2.3.5 and 2.3.11, if a pair of frame homomorphisms is bounded above
and below, then it respects covers and disjoint pairs. Now, if h,k : L→ M are frame
homomorphisms such that h ≤ k, then the pair (h,k) is obviously bounded above and below
so it respects covers and disjoint pairs. By Theorem 2.10.5 it follows that h = k. �
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2.10.2 A few notes on relaxed morphisms

The task of finding a characterization in terms of weakened frame homomorphisms seems to
be more difficult. We provide a partial solution by introducing two new classes of functions:

• a B-homomorphism is a weak homomorphism h : L→M which additionally preserves
meets of covering pairs (i.e., h(a∧ b) = h(a)∧h(b) whenever a∨b = 1).

• a C-homomorphism is an almost homomorphism h : L→M which additionally preserves
joins of disjoint pairs (i.e., h(a∨b) = h(a)∨h(b) whenever a∧b = 0).

Accordingly, we will say that a frame L satisfies property (B) if

each B-homomorphism h : L→M is a frame homomorphism. (B)

Similarly, a frame L satisfies property (C) if

each C-homomorphism h : L→M is a frame homomorphism. (C)

Clearly, property (W) implies property (B) and property (A) implies property (C).

Proposition 2.10.7. If L is a frame satisfying property (B) (resp. (C)), a pair of frame homomorphisms
with domain L is bounded above (resp. below) if it respects covers and disjoint pairs.

Proof. We shall only prove that under property (C), being bounded below is implied by
respecting covers and disjoint pairs (the proof of the other statement is similar).

Let h,k : L→M be frame homomorphisms and suppose that the pair (h,k) respects covers.
By the argument in the proof of Proposition 2.4.2, the “pointwise meet” mapping h∧ k is an
almost homomorphism. Let us check that is also preserves joins of disjoint pairs whenever
(h,k) respects disjoint pairs. Let a,b ∈ L with a∧ b = 0. One has

(h∧ k)(a∨b) = h(a∨ b)∧ k(a∨ b) = ((h(a)∨h(b))∧ (k(a)∨ k(b))

= (h∧ k)(a)∨ (h(a)∧ k(b))∨ (h(b)∧ k(a))∨ (h∧ k)(b) = (h∧ k)(a)∨ (h∧ k)(b),

and thus h∧ k is a C-homomorphism. Since L satisfies property (C), it follows that h∧ k is a
frame homomorphism. As h ≥ h∧ k ≤ k, the pair (h,k) is bounded below. �

Combining Lemma 2.3.4, Theorem 2.10.5 and Proposition 2.10.7 we obtain the following:

Corollary 2.10.8. A TU-frame with property (B) (resp. property (C)) is S-separated.
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The following diagram describes the relations between the properties discussed in this
section.

(sH) (F -sep)

(W)+ (TU) (A)+ (TU)

(B)+ (TU) (C)+ (TU)

(S-sep)

(TU)

Questions 2.10.9. (1) Can the implications in Corollary 2.10.8 be reversed? If not, how could
one combine B-homomorphisms and C-homomorphisms into a single notion in order to
obtain a characterization of S-separation in terms of relaxed frame homomorphisms?

(2) Find a counterexample to the implication (TU) =⇒ (S-sep) (or prove they are equivalent).
This seems to be a hard question: as far as we know examples of TU frames which are neither
fit nor strongly Hausdorff are not known.
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2.11 Summary

The following table summarizes the parallel between (F -sep) and (sH) studied throughout
this chapter.

Table 2.3 Several parallels

Banaschewski, Pultr Arrieta, Picado, Pultr

Relaxed morphisms Weak homomorphisms:

(1) Morphism in Sup
(2) Preserve ⊤
(3) Preserve disjoint pairs

Almost homomorphisms:

(1) Morphism in PreFrm
(2) Preserve ⊥
(3) Preserve covers

Every relaxed
homomorphism is a
frame homomorphism

Property (W) Property (A)

Sufficient condition Hereditary normality (HN)
implies property (W)

Hereditary extremal
disconnectedness (HED)
implies property (A)

Downset frames The following are equivalent:

(1) X is a forest,
(2) Dwn(X) is (HN)
(3) Dwn(X) has (W)

The following are equivalent:

(1) X is a coforest,
(2) Dwn(X) is (HED)
(3) Dwn(X) is hereditarily (IED)
(cf. Subsection 4.2.2)
(4) Dwn(X) has (A)

Diagonal separation (sH) ≡ (TU)+ (W) (F sep) ≡ (TU)+ (A)

Dowker-Strauss-type
separation

(sH) if and only if no distinct
homomorphisms respect
disjoint pairs

(F sep) if and only if no distinct
homomorphisms respect covers

(Co)density Every dense map in HausLoc
is epic in HausLoc

Every codense map in FSepLoc
is epic in FSepLoc

Associated first order
property

Property (H) Property (F)





Chapter 3

Cardinal generalizations of normality
and their duals

The first goal of the present chapter is to study two cardinal generalizations of normality in
the theory of locales:

• κ-collectionwise normality has been widely studied both classically (cf. [53]) as well as
point-freely (cf. [103]). This property is strongly related to the metric hedgehog (see [66]
for details).

• The class of κ-totally collectionwise normal locales will be introduced. We shall discuss
its main properties and establish the relations with collectionwise normality, with an
eye towards Chapter 5, where this property will be further studied in the context of the
compact hedgehog.

Recall now the parallel between normality and extremal disconnectedness (we have
already discussed some of its aspects in Subsection 2.4.3). The source of this duality in point-
free topology was investigated in [69] where the authors introduced the relative approach of
sublocale selections as a tool for formalizing the parallel. Given a normality-type property,
this approach allows one to obtain the dual extremal disconnectedness-type property (and
moreover, to produce further variants by varying the sublocale selection). Furthermore,
upper and lower semicontinuity are dual notions is this setting, hence providing a convenient
framework to unify and generalize typical insertion and extension theorems.

In light of this, the second goal of the chapter is to exploit the relative approach in order
to identify the duals of collectionwise normality and total collectionwise normality. It will
turn out that there is no real cardinal generalization, as both dual notions collapse to the
base cases κ = 2 and κ = 1: extremal disconnectedness and the Oz property, respectively.

More precisely, this chapter is organized as follows. In Section 3.1 we review the basics
of sublocale selections. In Section 3.2 we illustrate the relative technique by proving the dual
half of a Tietze-type extension theorem missing in [69]. Sections 3.3 and 3.4 are devoted to

57
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study the two mentioned point-free cardinal generalizations of normality and their duals.
A number of preliminary concepts and results are needed, in particular we introduce and
discuss a cardinal generalization of z-embeddings in Subsection 3.4.1. Finally, in Section 3.5
our cardinal generalization is compared to a different one introduced by Blair for topological
spaces, thereby providing some results about cardinal generalizations of Oz locales.

Most of the results in this chapter are a collaborative work with Javier Gutiérrez García
and Jorge Picado and they cover a part of the following article:

[7] I. Arrieta, J. Gutiérrez García, and J. Picado, Frame presentations of compact hedgehogs
and their properties, Quaestiones Mathematicae, accepted for publication.

Other results of [7] may be found in Chapters 5 and 6. A number of further results are
unpublished work (e.g. Propositions 3.3.4 and 3.4.9 and the results in Subsection 3.3.2 and
Section 3.5).

3.1 Basic concepts on sublocale selections

In what follows, we introduce a convenient setting for studying normality and extremal
disconnectedness in parallel. It was introduced by Gutiérrez García and Picado in [69].

An object function F on the category of locales will be called a sublocale selection if F(L) is a
class of complemented sublocales of L for every locale L. We shall denote by F∗ the sublocale
selection defined by

F∗(L) = {S#
| S ∈ F(L) }

and we shall speak of it as the dual selection of F.
Moreover, we shall say that F is closed under (binary, countable, arbitrary) joins (resp.

meets) if F(L) is closed under (binary, countable, arbitrary) joins (resp. meets), taken in S(L),
for every locale L.

We now have a relative notion of normality with respect to a sublocale selection.

Definition 3.1.1. Let F be a sublocale selection. A locale L is called F-normal if for any
S,T ∈ F(L)

S∩T =O =⇒ ∃ A,B ∈ F(L) such that S∩A =O = T∩B and A∨B = L.

3.1.1 The parallel between normality and extremal disconnectedness

The motivating example of a sublocale selection is the selection Fc given by all closed
sublocales:

Fc(L) = {c(a) | a ∈ L }.

It is straightforward to check that Fc-normality is equivalent to standard normality.
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Now, as an advantage of the relative context, one may consider the corresponding dual
notions. In particular, one readily sees that F∗c-normality is precisely extremal disconnected-
ness.

3.1.2 Other important examples

Besides the standard example of the selection Fc consisting of all closed sublocales, other
important selections are given by choosing regular closed sublocales, zero sublocales and
δ-regular closed sublocales (recall Subsection 1.6.2). In the following, these will be denoted

Freg, Fz, and Fδreg

respectively.
These and their duals yield the following relative notions of normality:

Table 3.1 Examples of F-normality and their duals

Selection F-normality F∗-normality

Fc Normal Extremally disconnected

Freg Mildly normal Extremally disconnected

Fz Always satisfied F-frame

Fδreg δ-normal Extremally δ-disconnected

For more examples and a detailed account of the topic we refer the reader to [69]. We
remark that δ-normal locales are a point-free generalization of the δ-normal spaces in the
sense of [57] (see [57, Example 3.4 (a)] for a discussion on terminology). In Appendix A the
reader may consult a brief discussion of continuity in the relative setting.

3.2 A dual extension theorem

We begin by introducing some terminology that will be convenient for the rest of the thesis.
We shall say that a sublocale selection F is hereditary (resp. weakly hereditary) on a locale L if for
each S ∈ F(L) the equality

F(S) = {S∩T | T ∈ F(L) }

(resp. the inclusion {S∩T | T ∈ F(L) } ⊆ F(S)) holds.
Clearly, the standard examples Fc, Fz and Fδreg and their duals are weakly hereditary,

and moreover, F∗reg is hereditary. Note that, on the other hand, the selections Fz and Fδreg are
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not hereditary in general. For example, Fz is hereditary on L if and only if L has the property
that every zero sublocale is z-embedded. According to [60, 8.20 and 8.J (3)], the Tychonoff
plank is a non-normal space whose zero-sets are all z-embedded; hence this property is
strictly weaker than normality.

For technical reasons, we shall frequently restrict ourselves to Katětov sublocale selections;
for a precise definition we refer to Section A.2. A general extension theorem for hereditary
Katětov selections closed under countable meets was proved in [69] (see also Theorem A.3.1).
However, none of the selections F∗c, F∗z and F∗δreg are closed under countable meets; so our aim
in this section is to illustrate the technique by providing a “dual” result where the selections
F∗c, F∗z and F∗δreg can fit.

We shall say that a sublocale selection F is co-hereditary on a locale L if for each S ∈ F(L) the
equality

F∗(S) = {S∩T | T ∈ F∗(L) }

holds. F is co-hereditary if it is co-hereditary on any locale.

Lemma 3.2.1. Each of the sublocale selections F = F∗c, F∗z, F∗δreg is co-hereditary.

Proof. F∗c: It is well known that closed sublocales of any sublocale S are of the form S∩T
where T is closed in L.

F∗z: It amounts to showing that for every cozero element a in L and b in o(a), there exists
a cozero element c in L with νo(a)(c) = b. But in this situation one has that a∧ b is a cozero
element in L (see for example [70, Corollary 5.6.2] or [51, Corollary 3.2.11]).

F∗δreg: We have to show that for each δ-regular a in L and each δ-regular b in o(a), there exists
a δ-regular c in L with νo(a)(c) = b. It is of course enough to show that c := a∧b is δ-regular in
L. By the isomorphism ↓a � o(a), this is equivalent to show that if b is δ-regular in the frame
↓a, then it is δ-regular in L.

Since a is δ-regular in L, one can write a =
∨

n an where an ≺ a for all n ∈N (i.e., for each
n there is a cn with cn∧ an = 0 and cn∨ a = 1). Since x ≺ a and y ≺ a imply x∨ y ≺ a, we may
assume that {an}n∈N is increasing. Moreover, b is δ-regular in ↓a, so one can write b =

∨
n bn

where {bn}n∈N is increasing and for each n ∈N there is a dn with dn∧bn = 0 and dn∨b = a. Let
xn = cn∨dn. Then

xn∧ (an∧ bn) = (cn∧ an∧ bn)∨ (dn∧ an∧bn) = 0,

xn∨ b = cn∨ (dn∨ b) = cn∨ a = 1.

Finally, b ≤
∨

n an∧ bn because b ≤ a and {an}n∈N, {bn}n∈N are increasing. Hence b =
∨

n an∧bn

with an∧ bn ≺ b in L. �

This is our claimed extension theorem (for the relative notions of continuity, we refer to
Appendix A):
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Theorem 3.2.2. Let F be such that F∗ is closed under countable meets and finite joins. The following
are equivalent for a locale L on which F is co-hereditary and Katětov:

(i) L is F-normal;

(ii) For each S ∈ F(L), every f ∈ C
F

(S) has an extension f ∈ C
F

(L).

Proof. (i) =⇒ (ii): Let S ∈ F(L), f ∈ C
F

(S) and r ∈Q. Since f is F-continuous and F∗ is closed
under countable meets, both f (r,—) and f (—,r) belong to F∗(S) (cf. Lemma A.1.3). Since S is
complemented then so are f (r,—) and f (—,r) and the maps σ1,σ2 : Q→ L given by

σ1(r) = S#
∨ f (r,—) and σ2(r) = S∩ f (—,r)#

are extended scales in S(L)op; denote by f1 and f2 the corresponding functions in F(L).

Since f (r,—) and f (—,r) belong to F∗(S), by co-heredity there exist Ur,Vr ∈ F∗(L) such that
f (r,—) =Ur∩S and f (—,r) = Vr∩S. Then one has (recall (1.6.3))

f1(r,—) =
⋂
s>r
σ1(s) = S#

∨ f (r,—) = S#
∨ (Ur∩S) = S#

∨Ur ∈ F
∗(L)

and
f2(—,r) =

⋂
s<r
σ2(s)# = S#

∨ f (—,r) = S#
∨ (Vr∩S) = S#

∨Vr ∈ F
∗(L)

(as F∗(L) is closed under binary joins). It follows that f1 is lower F∗-continuous while
f2 is upper F∗-continuous. This means that f1 is upper F-continuous and f2 is lower
F-continuous. Moreover, by (1.6.4) we have f1 ≤ f2 because f (—,s)#

⊆ f (r,—), and therefore
σ1(r) ≤ σ2(s), for any s < r. Since F is Katětov on L, by [69, Theorem 7.1] (or Theorem A.2.2)
there is an F-continuous h ∈ F(L) such that f1 ≤ h ≤ f2. Let hS : S(L)→ S(S) be the coframe
homomorphism T 7→ S∩T. One readily checks that

hS( f1(r,—)) = f (r,—) and hS( f2(—,s)) = f (—,s)

and thus (recall the partial order (1.6.2)) hS ◦ f1 = f and hS ◦ f2 = f . Finally note that

f = hS ◦ f1 ≤ hS ◦h ≤ hS ◦ f2 = f .

It follows that hS ◦h = f and thus h is the desired F-continuous extension of the given f .

(ii)=⇒ (i): Let S,T ∈F(L) such that S∩T =O. Then S ∈F(S∨T)∩F∗(S∨T). Indeed, S∨T ∈F(L)
(because F∗ is in particular closed under finite meets) and T#

∈ F∗(L). Hence by co-heredity
one has S = T#

∩ (S∨T) ∈ F∗(S∨T). Exchanging the roles of S and T we obtain T ∈ F∗(S∨T)

and hence S = (S∨T)rT ∈ F(S∨T). Then, by Proposition A.1.5 one has χS ∈ C
F

(S∨T). Since

S∨T ∈ F(L), there is an extension f ∈ C
F

(L). Choose A,B ∈ F(L) with

f (1,—) ⊆ A ⊆ f (2,—) and f (—,1) ⊆ B ⊆ f (—,0).
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Then
A∨B ⊇ f (1,—)∨ f (—,1) = f ((1,—)∧ (—,1)) = f (0) = L

and S∩A = χS(—,3)∩A ⊆ f (—,3)∩ f (2,—) =O. Similarly, T∩B =O. �

The previous theorem generalizes and unifies extension results that appear in the literature.
Our guiding examples F∗c, F∗z and F∗δreg satisfy the conditions of the theorem (cf. Lemma 3.2.1
and A.2).

The case F = F∗c yields the point-free counterpart of the extension result for extremally
disconnected spaces of Gillman and Jerison [60]. In the localic setting, it was proved by
Gutiérrez García, Kubiak and Picado [64, Theorem 5.5] by using a rather different argument
to ours (their proof does not rely on an insertion theorem, ours follows the more classical
path of deducing the extension theorem as a corollary of the insertion result).

Corollary 3.2.3. The following are equivalent for a locale L:

(i) L is extremally disconnected;

(ii) For each a ∈ L, every f ∈ C(o(a)) has a continuous extension f ∈ C(L).

Specializing to the case F = F∗z, we obtain a result proved by Ball and Walters-Wayland in
[20, Proposition 8.4.10]:

Corollary 3.2.4. The following are equivalent for a locale L:

(i) L is an F-frame;

(ii) For each cozero element a ∈ L, every f ∈ C(o(a)) has a continuous extension f ∈ C(L).

Furthermore, F = F∗δreg appears to produce a new result which we have not been able to
find in the literature.

Corollary 3.2.5. The following are equivalent for a locale L:

(i) L is extremally δ-disconnected;

(ii) For each δ-regular element a ∈ L, every f ∈ C(o(a)) has a continuous extension f ∈ C(L).

3.3 Collectionwise normality

3.3.1 Background

In this section we briefly consider the first cardinal generalization of normality that we shall
meet, the so-called collectionwise normality. It has a remarkable role in the study of the
point-free metric hedgehog (see [66] or Section 5.1 of Chapter 5). Our interest in this concept
relies on the fact that the point-free compact hedgehog is related to a stronger variant of
collectionwise normality that we will call total collectionwise normality (cf. Subsection 3.4.2).
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Recall from [66] that a family {ai}i∈I of elements of L is said to be disjoint if ai∧ a j = 0 for
every i , j. It is discrete (resp. co-discrete) if there is a cover C of L such that for any c ∈ C,
c∧ai = 0 (resp. c ≤ ai) for all i with at most one exception. Note, in particular, that any discrete
family is clearly disjoint, and that a pair {a,b} is co-discrete if and only if a∨b = 1. Trivially, if
a finite {a1,a2, . . . ,an} is co-discrete then a1∨ a2∨· · ·∨ an = 1, but not conversely for n ≥ 3.

Recall also from [103] (see also [66, 98] for more information) that a frame is κ-collectionwise
normal if for every co-discrete κ-family {ai}i∈I, there is a discrete {bi}i∈I with bi∨ ai = 1 for
all i ∈ I. Moreover a frame is collectionwise normal if it is κ-collectionwise normal for every
cardinal κ.

Observe that the definition is trivially satisfied for κ = 1, hence throughout this section
we shall assume that κ ≥ 2. The following may be found in [66]:

Properties 3.3.1. (1) For every κ ≥ 2, κ-collectionwise normality implies normality, hence
κ-collectionwise normality is a cardinal generalization of normality;

(2) For every 2 ≤ κ ≤ ℵ0, κ-collectionwise normality is equivalent to normality;

(3) κ-collectionwise normality is hereditary with respect to closed sublocales.

We take this opportunity to rectify a slip in [66]: we can replace discrete families by
disjoint families in the definition of κ-collectionwise normal frames, as we shall show in
Proposition 3.3.3 below.

Lemma 3.3.2 ([103, Lemma 1.13]). For any co-discrete {ai}i∈I ⊆ L and b ∈ L, b∨
∧

i∈I ai =
∧

i∈I(b∨ai).

Proposition 3.3.3. A frame L is κ-collectionwise normal if and only if for any co-discrete κ-family
{ai}i∈I, there is a disjoint {bi}i∈I such that ai∨bi = 1 for all i ∈ I.

Proof. The implication ‘⇒’ is obvious since any discrete family is disjoint.
Conversely, let {ai}i∈I be a co-discrete family. Then there is a disjoint family {bi}i∈I such

that bi∨ ai = 1 for all i ∈ I. Set

D := {a ∈ L | a∧ bi , 0 for at most one i }

and d :=
∨

D. Clearly bi ∈ D, and hence bi ≤ d, for each i. Then, by the previous lemma,
d∨
∧

i∈I ai =
∧

i∈I(d∨ ai) ≥
∧

i∈I(bi∨ ai) = 1. Moreover, since κ-collectionwise normality implies
normality, there are u,v ∈ L such that u∨

∧
i∈I ai = 1 = v∨d and u∧v = 0. The family

{ui := bi∧u}i∈I

is then the required discrete system. Indeed, C :=D∪{v} is a cover of L (since
∨

C = d∨v = 1),
each c ∈ C meets at most one ui (since ui∧v ≤ u∧v = 0) and ui∨ai = (bi∨ai)∧ (u∨ai) = u∨ai ≥

u∨
∧

i∈I ai = 1 for every i. �

We shall need the following result later (cf. [53, Exercise 5.5.1]).
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Proposition 3.3.4. The following conditions are equivalent for a frame L:

(i) L is hereditarily κ-collectionwise normal;

(ii) Every open sublocale of L is κ-collectionwise normal;

(iii) For every sublocale S ⊆ L and every co-discrete κ-family {ai}i∈I in S, there is a disjoint family
{bi}i∈I in L such that νS(ai∨bi) = 1 for all i ∈ I.

Proof. (i) =⇒ (ii) is trivial and the implication (iii) =⇒ (i) follows from Proposition 3.3.3. Let
us prove (ii) =⇒ (iii). Let S be a sublocale and let {ai}i∈I be a co-discrete κ-family in S. For each
i ∈ I, the frame ↓(ai∨

∧
j,i a j) is normal (because it is κ-collectionwise normal). Hence there

are ui,vi ∈ ↓(ai∨
∧

j,i a j) such that ui∧vi = 0, ai∨
∧

j,i a j = ui∨ ai and ai∨
∧

j,i a j = vi∨
∧

j,i a j.
In particular, observe that

νS(ui∨ ai) = νS(ai∨
∧
j,i

a j) = ai∨
S∧

j,i
a j =
∧
j,i

ai∨
S a j = 1 (3.3.1)

by an application of Lemma 3.3.2 and the obvious fact that a subfamily of a co-discrete family
is co-discrete. Furthermore, taking meets with ui in the equality ai∨

∧
j,i a j = vi∨

∧
j,i a j we

see that ui∧ ai ≤
∧

j,i a j, and therefore, since ui ∈ ↓(ai∨
∧

j,i a j), we conclude that

ui = ui∧ (ai∨
∧
j,i

a j) = (ui∧ ai)∨ (ui∧
∧
j,i

a j) ≤
∧
j,i

a j. (3.3.2)

Let now u :=
∨

i∈I ui. Then (3.3.2) shows that the family {u∧ ai}i∈I is co-discrete in ↓u (just
take {ui}i∈I as the cover in the definition of co-discrete). Since ↓u is κ-collectionwise normal,
there is a disjoint {bi}i∈I in L with (u∧ ai)∨ bi = u for all i ∈ I, that is, u ≤ ai∨ bi for all i ∈ I.
Hence, ui∨ ai ≤ u∨ ai ≤ ai∨ bi and applying the nucleus νS and using (3.3.1) it follows that
νS(ai∨ bi) = 1 for all i ∈ I. �

Discreteness has an obvious translation to the language of sublocales. Indeed, we say
that a family {Si}i∈I of sublocales is discrete if there is a cover C of L such that for any c ∈ C,
o(c)∩ Si = O for all i with at most one exception. Then, a family {ai}i∈I is discrete (resp.
co-discrete) if and only if {o(ai)}i∈I (resp {c(ai)}i∈I) is discrete. We can therefore recast the notion
of collectionwise normality in terms of sublocales:

Lemma 3.3.5. The following conditions are equivalent for a locale L:

(i) L is κ-collectionwise normal;

(ii) For every discrete κ-family {c(ai)}i∈i, there is a discrete {o(bi)}i∈I such that c(ai) ⊆ o(bi) for every
i ∈ I;

(iii) For every discrete κ-family {c(ai)}i∈i, there is a pairwise disjoint {o(bi)}i∈I such that c(ai) ⊆ o(bi)
for every i ∈ I.

The formulation in the lemma is entirely in terms of sublocales and therefore we can now
use the relative approach in order to study the dual property.
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3.3.2 Relative notions of collectionwise normality

Let F be a sublocale selection. A family {Si}i∈I of complemented sublocales of a locale L will
be said to be F-discrete if there is a cover C ⊆ F∗(L) of S(L) (i.e.,

∨
C∈CC = L in S(L)) and such

that for any C ∈ C one has C∩Si =O for all but at most one i.
Clearly, when F = Fc, the notion of discreteness reduces to that of Subsection 3.3.1.

Lemma 3.3.6. Let L be a locale and F a sublocale selection. The following assertions hold:

(1) An F-discrete family is pairwise disjoint;

(2) If S,T belong to F(L) and they are disjoint, then {S,T } is F-discrete.

Proof. (1) Let {Si}i∈I be an F-discrete family of complemented sublocales. Then there is a
C ⊆ F∗(L) with

∨
C∈CC = L such that for any C ∈ C one has C∩Si = O for all but at most

one i. For each i , j and each C ∈ C, one has C∩Si∩S j = O, and so Si∩S j = Si∩S j∩L =
Si∩S j∩

∨
C∈CC =

∨
C∈C(Si∩S j∩C) =O because Si∩S j is complemented (cf. (1.2.3)).

(2) The cover C = {S#,T#
} ⊆ F∗(L) will do the job. �

Definition 3.3.7. Let L be a locale and F a sublocale selection. We shall say that

(1) L is weakly κ-F-collectionwise normal if for every F-discrete κ-family {Si}i∈I ⊆ F(L) there is
a pairwise disjoint {Ti}i∈I ⊆ F

∗(L) with Si ⊆ Ti for all i ∈ I.

(2) L is κ-F- collectionwise normal if for every F-discrete κ-family {Si}i∈I ⊆ F(L) there is an
F-discrete {Ti}i∈I ⊆ F

∗(L) with Si ⊆ Ti for all i ∈ I.

It follows immediately from Lemma 3.3.6 (1) that κ-F-collectionwise normality implies
weak κ-F-collectionwise normality.

Moreover, when F = Fc, both notions coincide with κ-collectionwise normality because
of Lemma 3.3.5. Now, by Lemma 3.3.6 (2) we have the following:

Corollary 3.3.8. Let L be a locale and F a sublocale selection. Then L is 2-F-collectionwise normal if
and only if it is F-normal. Hence for every κ ≥ 2, κ-F-collectionwise normality implies F-normality.

3.3.3 Collectionwise extremal disconnectedness is just extremal disconnectedness

Our main interest now is to study the dual of collectionwise normality. We start with a few
preliminary lemmas.

Let L be a locale and F a sublocale selection. Given S ∈ S(L), we denote

S
F
=
⋂
{T ∈ F(L) | S ⊆ T }

and we will speak of it as the F-closure of S (especially whenever F is closed under meets,

because in such case one has that S
F
∈ F(L)).
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Remark 3.3.9. Besides the usual localic closure, recall the “other” closure introduced in
Subsection 1.2.1 of Chapter 1. Then, S = S

Fc and S̊ = S
F∗c , that is, the usual closure and the

“other” closure are just the closure of S with respect to the sublocale selections Fc and F∗c,
respectively. In general, if a sublocale selection F is pullback stable (that is, for every localic

map f : L→M and S ∈ F(M), one has f−1[S] ∈ F(L)), then the operator S 7→ S
F

is a closure
operator in the sense of Definition 2.2.1.

Lemma 3.3.10. Let L be a locale and F a sublocale selection such that F∗ is closed under arbitrary
meets. Then the following are equivalent:

(i) L is F-normal;

(ii) For each S ∈ F(L), its F∗-closure belongs to F(L);

(iii) If S and T are disjoint sublocales contained in F(L), then their F∗-closures are also disjoint.

Proof. (i) =⇒ (ii): Let S ∈ F(L). For simplicity we write S := S
F∗

. Since F∗ is closed under

intersections, we have S ∈ F∗(L). Now, S∩S
#
=O, and since S,S

#
∈ F(L), by F-normality there

are disjoint M,N ∈F∗(L) with S ⊆M and S
#
⊆N. But S ⊆M ∈F∗(L) implies S ⊆M ⊆N#. Hence

S =N#
∈ F(L).

(ii) =⇒ (iii): Let S,T ∈ F(L) be disjoint and for simplicity write S = S
F∗

and T = T
F∗

. Observe
that we have the following chain of equivalences:

S∩T =O ⇐⇒ S ⊆ T
#
⇐⇒ S ⊆ T

#
⇐⇒ T ⊆ S#

⇐⇒ T ⊆ S#
⇐⇒ T∩S =O

(in the second and fourth implication we use that S
#
∈ F∗(L) and T

#
∈ F∗(L) respectively).

(iii) =⇒ (i): This implication is trivial. �

Lemma 3.3.11. Let L be a locale and F a sublocale selection such that F∗ is closed under arbitrary
meets. Then a family {Si}i∈I ⊆ F(L) is F-discrete if and only if it is pairwise disjoint.

Proof. The “only if” part always holds by Lemma 3.3.6 (1), so let us show the converse. For
each k ∈ I one has S#

k ∨
∨

i∈I
⋂

j,i S#
j ⊇
⋂

j,k S#
j ∨S#

k = L by pairwise disjointness and so

L =
⋂
k∈I

(
S#

k ∨
∨
i∈i

⋂
j,i

S#
j

)
=
(⋂

k∈I
S#

k

)
∨

(∨
i∈i

⋂
j,i

S#
j

)
by coframe distributivity. But, clearly,

⋂
k∈I S#

k ⊆
∨

i∈i
⋂

j,i S#
j , and therefore

∨
i∈i
⋂

j,i S#
j = L.

In other words, the family C = {
⋂

j,i S#
j | i ∈ I } is a cover of S(L). Since F∗ is closed under

intersections, one has C ⊆ F∗(L). Clearly, C satisfies the required condition in the definition
of F-discreteness. �
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Theorem 3.3.12. Let L be a locale and F a sublocale selection such that F∗ is closed under arbitrary
meets. The following are equivalent for a cardinal κ:

(i) L is F-normal;

(ii) For every pairwise disjoint family {Si}i∈I ⊆F(L) there is a pairwise disjoint family {Ti}i∈I ⊆F
∗(L)

such that Si ⊆ Ti for each i ∈ I;

(iii) L is weakly κ-F-collectionwise normal;

(iv) L is κ-F-collectionwise normal.

Proof. The implications (iv) =⇒ (iii) =⇒ (ii) =⇒ (i) are clear. Let us prove that (i) implies
(iv). Let {Si}i∈I ⊆ F(L) be an F-discrete family. In particular, by Lemma 3.3.6 (1) it is pairwise

disjoint. Now, for simplicity denote Ti = Si
F∗

. By Lemma 3.3.10 one has that {Ti}i∈I ⊆ F is
a pairwise disjoint family. Therefore, by Lemma 3.3.11 we may conclude that the family
{Ti}i∈I is F-discrete, and hence it is the desired family that shows that L is κ-F-collectionwise
normal. �

In particular, for F = F∗c (which satisfies the conditions of the theorem), one obtains that
(weak) κ-F∗c-collectionwise normality is just extremal disconnectedness. Hence, there is no
real cardinal generalization of extremal disconnectedness in this setting.

3.4 Total collectionwise normality

3.4.1 zc
κ-embeddings

We now introduce a cardinal generalization of the notion of z-embedding (cf. [14]), instru-
mental for the notion of total collectionwise normality:

Definition 3.4.1. Let κ be a cardinal. A sublocale S of L is zc
κ-embedded in L if for every disjoint

κ-family {ai}i∈I of cozero elements of S, there is a disjoint family {bi}i∈I of cozero elements of L
such that νS(bi) = ai (that is, such that oS(ai) = S∩o(bi)) for every i ∈ I.

Remarks 3.4.2. (1) Clearly, the notion of a zc
1-embedding coincides with the usual notion of

z-embedding (recall Subsection 1.6.4). It is therefore clear that zc
κ-embeddings are a cardinal

generalization of z-embeddings.

(2) Moreover, by [51, Proposition 3.3] it follows at once that the notion of a zc
2-embedding is

also equivalent to that of a z-embedding.

(3) The counterpart of this concept for topological spaces was introduced by Gutiérrez García,
Kubiak and de Prada Vicente in [62], under the different name of κ-total z-embedding. However,
that terminology may lead to confusion as there is a further cardinal generalization of the
notion of a z-embedding introduced by Blair [34] in the eighties called zκ-embedding. However,
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zc
κ-embeddings do not appear to be generally comparable with Blair’s zκ-embeddings (see

Theorem 3.4.19 and Corollary 3.5.4 below for a result indicating that the “total” terminology
is indeed misleading). For a more precise formulation of Blair’s notion see Section 3.5 below.

(4) The letter “c” in zc
κ stands for compact. Indeed, as we will see in Chapter 5, zc

κ-embedding
can be characterized as a property about appropriate compact hedgehog-valued functions.
In a parallel way, by [34, Theorem 3.8] the notion of zκ-embedding is precisely what one gets
by replacing the compact hedgehog by the metric hedgehog (cf. [66]).

We now investigate the case κ = ℵ0.

Proposition 3.4.3. A sublocale S ⊆ L is zc
ℵ0

-embedded if and only if it is z-embedded.

Proof. The “only if” part is obvious. Conversely, assume that S is z-embedded and let {an}n∈N

be a countable disjoint family of cozero elements of S. For each n ∈N, let bn be the join in
S of the family {am}m,n. Note that {an,bn } is a disjoint pair of cozero elements of S (since a
countable join of cozero elements is again a cozero element). Then, by [51, Proposition 3.3],
there is a disjoint pair {cn,dn } of cozero elements of L such that νS(cn) = an and νS(dn) = bn.
Take

u1 = c1 and un = cn∧d1∧· · ·∧dn−1 (n > 1).

Then, {un}n∈N is the required disjoint family of cozero elements of L that extends {an}n∈N.
Indeed, each un is a cozero element (because cozero elements are closed under finite meets);
for disjointness, let n <m and observe that un∧um ≤ cn∧dn = 0. Finally, νS(u1) = νS(c1) = a1

and, for n > 1,

νS(un) = νS(cn)∧νS(d1)∧· · ·∧νS(dn−1) = an∧ b1∧· · ·∧bn−1.

Note that an ≤ bm for m = 1, . . . ,n−1, hence νS(un) = an, as claimed. �

3.4.2 Total collectionwise normality

We are now ready to introduce the following:

Definition 3.4.4. A locale is totally κ-collectionwise normal if all its closed sublocales are
zc
κ-embedded. A locale is totally collectionwise normal if it is totally κ-collectionwise normal

for every cardinal κ.

As an obvious consequence of Theorem 1.6.2 and Proposition 3.4.3 one sees that total
collectionwise normality is indeed a cardinal generalization of normality:

Proposition 3.4.5. For 1 ≤ κ ≤ ℵ0, total κ-collectionwise normality is equivalent to normality.

As suggested by the name, total collectionwise normality implies collectionwise normality.
Before proving this, we recall the following point-free version of the pasting lemma:
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Proposition 3.4.6 ([95, Proposition 4.4]). Let L and M be frames, a1,a2 ∈M and hi : L→ c(ai)
(i = 1,2) frame homomorphisms such that h1(x)∨ a2 = h2(x)∨ a1 for every x ∈ L. Then the map
h : L→ c(a1∧ a2) given by h(x) = h1(x)∧h2(x) is a frame homomorphism such that the triangle

L

c(a1∧ a2) c(a2)νc(ai)

h
hi

commutes for i = 1,2.

Proposition 3.4.7. For every cardinal κ, total κ-collectionwise normality implies κ-collectionwise
normality.

Proof. Let {ai}i∈I be a co-discrete κ-family in a frame L. Fix some i ∈ I and consider constant
extended real valued functions h(i)

1 : L(R)→ c(ai) and h(i)
2 : L(R)→ c(

∧
j,i a j), given by

h(i)
1 (r,—) = 1, h(i)

1 (—,r) = ai and h(i)
2 (r,—) =

∧
j,i

a j, h(i)
2 (—,r) = 1.

One has ai∨
∧

j,i a j =
∧

j,i(ai∨ a j) = 1 (the first equality follows from Lemma 3.3.2 and the
obvious fact that any subfamily of a co-discrete family is co-discrete, whereas the second
equality holds because the family {c(ai)}i∈I is pairwise disjoint whenever {ai}i∈I is co-discrete).
Then, by Proposition 3.4.6, there is a frame homomorphism

h(i) : L(R)→ c(ai)∨ c(
∧
j,i

a j) = c(
∧
j∈I

a j)

given by h(i)(x) = h(i)
1 (x)∧h(i)

2 (x). But
∨

r∈Q h(i)(r,—) =
∧

j,i a j, thus
∧

j,i a j is a cozero element in
c(
∧

j∈I a j). Hence the family {
∧

j,i a j}i∈I is a disjoint family of cozero elements in the closed
sublocale c(

∧
j∈I a j). Finally, by assumption, there is a disjoint family {bi}i∈I of cozero elements

of L such that bi∨
∧

j∈I a j =
∧

j,i a j; in particular,

bi∨ ai = bi∨
(∧

j∈I
a j

)
∨ ai =

(∧
j,i

a j

)
∨ ai =

∧
j,i

(a j∨ ai) = 1. �

Corollary 3.4.8. For every cardinal κ, total κ-collectionwise normality implies normality.

Finally, a sufficient condition for total collectionwise normality can be given as follows.

Proposition 3.4.9. For every cardinal κ, hereditary κ-collectionwise normality implies total κ-collec-
tionwise normality.

Proof. Let L be hereditarily κ-collectionwise normal, a ∈ L and {ai}i∈I a disjoint κ-family of
cozero elements in c(a). Set c =

∨
i∈I ai, and for each i ∈ I, let ci :=

∨
j,i a j. Then, the family

{ci}i∈I is co-discrete in
S = ↓c(a)c = {b ∈ L | a ≤ b ≤ c }
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(simply take the cover {ai}i∈I in the definition of co-discrete). By Proposition 3.3.4 (iii), there is
a disjoint {bi}i∈I in L with c = νS(bi∨ ci) = (bi∨ ci∨ a)∧ c ≤ bi∨ ci for all i ∈ I. Thus, for each i ∈ I,

ai = ai∧ c ≤ (ai∧ bi)∨ (ci∧ ai) ≤ bi∨ a

because {ai}i∈I is disjoint in c(a). For each i ∈ I, ai is a cozero element of c(a), so pick an fi ∈C(c(a))
with ai = fi(

∨
r∈Q(r,—)). Let 1i ∈ C(c(bi)) be the constant extended real valued function

determined by 1i(r,—)= bi. Then for all r ∈Q one has bi∨a= fi(r,—)∨bi. The inequality≤ holds
because fi(r,—) ∈ c(a). For the reverse inequality, one has fi(r,—) ≤ f (

∨
s∈Q(s,—)) = ai ≤ bi∨ a.

Therefore, for all r ∈ Q we have 1i(r,—)∨ a = fi(r,—)∨ bi. By Proposition 3.4.6, there is an
hi ∈ C(L) with hi(r,—)∨ a = fi(r,—) and hi(r,—)∨bi = 1i(r,—) for all r ∈Q. Let di = hi(

∨
r∈Q(r,—)).

Then di is a cozero element in L with di∨ a = ai for each i ∈ I. Finally, {di}i∈I is also disjoint
because di∧d j ≤ (di∨ bi)∧ (d j∨b j) = bi∧b j = 0 by disjointness of {bi}i∈I in L. �

In Chapter 5 we shall also need the following observation.

Lemma 3.4.10. Total κ-collectionwise normality is hereditary with respect to closed sublocales.

Proof. Let S = c(a) be a closed sublocale of a totally κ-collectionwise normal frame L. Let
cS(b) be a closed sublocale of S and let {ai}i∈I be a disjoint κ-family of cozero elements of cS(b).
Since cS(b) = c(a)∩ c(b) = c(a∨b), there is a disjoint family {bi}i∈I of cozero elements of L such
that bi∨ a∨ b = ai for every i ∈ I. Then {bi∨ a}i∈I ⊆ S is the desired disjoint family extending
{ai}i∈I. �

3.4.3 Relative versions

Our goal is now to study the dual of total collectionwise normality. We begin by considering
the relative counterpart of the notion of zero sublocale:

Definition 3.4.11. Let L be a locale and F a sublocale selection. A sublocale T of L is an F-zero
sublocale of L if there is some F-continuous f ∈ F(L) such that T = f (

∨
r∈Q(r,—)).

We denote by ZF(L) the set of allF-zero sublocales of L. SinceF-continuity is self-dual (see
Corollary A.1.2) it follows that F-zero and F∗-zero sublocales coincide, i.e., ZF(L) = ZF∗(L).

For our five guiding examples, one obtains the usual notion of zero sublocale (see
Table A.1).

Definition 3.4.12. Let L be a locale and F a sublocale selection. A sublocale S of L is
F-zc

κ-embedded in L if for every κ-family {Si}i∈I consisting of F-zero sublocales of S such that
Si∨S j = S for every i , j , there is a family {Ti}i∈I of F-zero sublocales of L such that Ti∨T j = L
for every i , j and Ti∩S = Si for every i ∈ I.

Once again, we note that this is a self-dual notion, and for our guiding examples
(Table A.1), it coincides with that of zc

κ-embedding.
After this preparation, we are now ready to define the relative version of total κ-collec-

tionwise normality:



3.4 Total collectionwise normality 71

Definition 3.4.13. Let F be a sublocale selection. A frame L is an F-zc
κ frame if every S ∈ F(L)

is F-zc
κ-embedded.

For F = Fc it coincides with the notion of total κ-collectionwise normality. More generally,
for any of the guiding examples F in Table A.1 (and their duals), it amounts to requiring that
every sublocale contained in F(L) is zc

κ-embedded.

3.4.4 Relation with F-normality

Recall that total κ-collectionwise normality implies normality for κ ≥ 1. With an eye towards
Chapter 6 we now generalize this result to a general sublocale selection closed under
countable meets and finite joins.

Proposition 3.4.14. Let F be a sublocale selection closed under countable meets and finite joins and
let κ ≥ 2. If L is a F-zc

κ frame and F is weakly hereditary on L then L is F-normal.

Proof. It is of course enough to show it for κ = 2. Let L be an F-zc
2 frame and consider

S,T ∈ F(L) such that S∩T =O. Then S,T ∈ F(S∨T) (because S = S∩ (S∨T) and T = T∩ (S∨T)
and F is weakly hereditary on L), hence S = (S∨T)rT ∈ F∗(S∨T). Therefore, χS ∈ C

F
(S∨T)

by virtue of Proposition A.1.5.
Observe that χS(

∨
r∈Q(r,—)) = T and so T is an F-zero sublocale of S∨T. Exchanging the

roles of S and T, we see that S is an F-zero sublocale of S∨T as well. Now, S∨T ∈ F(L)
because F is closed under finite joins, and therefore it is F-zc

2-embedded in L. Since {S,T } is a
disjoint family in S∨T consisting of F-zero sublocales, there exist F-zero sublocales A,B of L
such that A∨B = L, A∩ (S∨T) = T and B∩ (S∨T) = S. Accordingly, A∩S =O and B∩T =O.
Finally, by Lemma A.1.3, A and B belong to F(L), and so L is F-normal. �

It remains to be proved that, in this context, F-zc
1 frames are F-zc

2. Assume that F(L)
is closed under countable meets and finite joins in S(L). Then F(L) may be regarded as a
sub-σ-frame of S(L)op; and in particular as a σ-frame in its own right. Hence, we may use the
theory of cozero elements in σ-frames (recall Subsection 1.6.3).

Lemma 3.4.15. Let F be a sublocale selection and L a locale such that F(L) is a sub-σ-frame of S(L)op.
Then CozF(L) = ZF(L).

Proof. Let S ∈ CozF(L) — i.e., there is a σ-frame homomorphism f : L(R)→ F(L) with

S = f (
∨

r∈Q(r,—)). Consider the composite L(R)
f
−→ F(L) ι

−→ S(L)op. It is clearly a frame
homomorphism because it sends relations in L(R) to identities in S(L)op (note that the
relations only involve countable joins). Hence S= (ι◦ f )(

∨
r∈Q(r,—)) and ι◦ f isF-continuous by

Lemma A.1.3. Thus S ∈ ZF(L). The reverse inclusion follows trivially from Lemma A.1.3. �

The next lemma generalizes [51, Proposition 3.3].

Lemma 3.4.16. LetF be a sublocale selection closed under countable meets and finite joins and let U be
an arbitrary sublocale of L. If S and T are F-zero sublocales of L such that U = (U∩S)∨ (U∩T), then
there are F-zero sublocales S′ and T′ of L such that S′∨T′ = L, U∩S′ =U∩S and U∩T′ =U∩T.
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Proof. By the previous lemma and Theorem 1.6.1 it follows that ZF(L) is a regular sub-σ-frame
of F(L). Therefore, there are {Sn}n∈N, {Tn}n∈N ⊆ ZF(L) such that Sn ≺ S and Tn ≺ T in ZF(L)
for each n ∈N, S =

⊔
n Sn and T =

⊔
n Tn. By substituting Sn by S1⊔ · · · ⊔Sn (that satisfies

S1⊔· · ·⊔Sn ≺ S in ZF(L)), we may assume that {Sn}n∈N (and also {Tn}n∈N) is increasing. Since
Sn ≺ S and Tn ≺T in ZF(L) for each n ∈N, there are Cn,Dn in ZF(L) such that Sn⊓Cn =Tn⊓Dn =

L and S⊔Cn = T⊔Dn = O. Set S′ :=
⋂

n∈NSn ∨Dn ∈ ZF(L) and T′ :=
⋂

n∈NTn ∨Cn ∈ ZF(L).
Clearly, S′∨T′ = L (since Sn∨Cn = Tn∨Dn = L and {Sn}n∈N and {Tn}n∈N are increasing). Now,
since T∩Dn =O, we observe that T∩S′ =

⋂
n(T∩Sn)∨ (T∩Dn) =

⋂
n T∩Sn = T∩S. Hence,

U∩S′ = (U∩S∩S′)∨ (U∩T∩S′) = (U∩S∩S′)∨ (U∩T∩S) ⊆U∩S

while U∩S ⊆ U∩S′ is trivial from the definition of S′. Hence U∩S′ = U∩S. The other
identity follows by symmetry. �

Corollary 3.4.17. Let F be a sublocale selection such that either F or F∗ is closed under countable
meets and finite joins. Then a frame is F-zc

1 if and only if it is F-zc
2.

Combining the last corollary with Proposition 3.4.14 we get the following:

Corollary 3.4.18. Let F be a sublocale selection closed under countable meets and finite joins. Then,
for each cardinal κ ≥ 1, any F-zc

κ frame on which F is weakly hereditary is F-normal.

3.4.5 F∗c-zc
κ frames are just Oz frames

We can now dualize total collectionwise normality by picking F = F∗c. Explicitly, a frame is
F∗c-zc

κ if for each a ∈ L and every κ-family {ai}i∈I of cozero elements of o(a) which is disjoint in
o(a) (i.e., ai∧ a j = a∗ for all i , j), there is a disjoint κ-family {bi}i∈I of cozero elements of L such
that νo(a)(bi) = a→ bi = ai for all i ∈ I.

In particular, we note that F∗c-zc
1 frames are those in which every open sublocale is

z-embedded — i.e., what in the literature are usually called Oz frames [25]. The Oz property is
strictly weaker than extremal disconnectedness (cf. [25, Proposition 4.2]). Hence for a general
sublocale selection F, property F-zc

κ does not imply F-normality (cf. Corollary 3.4.18).
Now, the main result of this section states that, as it happened in Theorem 3.3.12, the new

notion collapses to the base case κ = 1:

Theorem 3.4.19. An Oz frame is F∗c-zc
κ for every cardinal κ.

Proof. Let a ∈ L and let {ai}i∈I be a κ-family of cozero elements in o(a) with ai∧a j = a∗ for every
i , j. Since L is Oz, for each i ∈ I there is a cozero element bi in L with a→ bi = ai. Note that
the family {bi}i∈I is not generally disjoint. Set now

ci = bi∧ (a∧ ai)∗∗.

Then, a→ ci = (a→ bi)∧ (a→ (a∧ai)∗∗) = ai∧ (a→ (a∧ai)∗∗) = ai (because a∧ai ≤ (a∧ai)∗∗ — i.e.,
ai ≤ a→ (a∧ ai)∗∗).
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Moreover, {ci}i∈I is disjoint. Indeed, recall that double pseudocomplementation commutes
with finite meets, and hence

ci∧ c j ≤ (a∧ ai)∗∗∧ (a∧ a j)∗∗ = (a∧ ai∧ a j)∗∗ = (a∧ a∗)∗∗ = 0

for all i , j. Finally, each ci is a cozero element in L because regular elements in Oz frames
are cozero (cf. [25, Proposition 2.2]), and because cozero elements are closed under finite
meets. �

Remark 3.4.20. This characterization of the Oz property extends that given in [51, Proposi-
tion 3.3] (for the open quotient case) from κ = 2 to an arbitrary cardinal.

3.5 Blair’s cardinal generalization

As mentioned in Remarks 3.4.2, Blair introduced a different cardinal generalization of the
notion of z-embedding (which he called zκ-embedding for topological spaces). First, following
[66] we shall say that a disjoint family of cozero elements {ai}i∈I in a locale L is a join cozero
family if

∨
i∈I ai is also a cozero element of L.

Now we propose the following point-free extension of Blair’s notion.

Definition 3.5.1. Let κ be a cardinal. A sublocale S of L is zκ-embedded in L if for every join
cozero κ-family {ai}i∈I in S, there is a join cozero family {bi}i∈I in L such that νS(bi) = ai (that is,
such that oS(ai) = S∩o(bi)) for every i ∈ I.

Remark 3.5.2. Blair’s original definition of zκ-embeddings for spaces is formally different
to the one just given (join cozero families were not used in [34]). However, it follows
immediately from [34, Theorem 3.8 (2)] and [66, Proposition 4.4] that the concept just defined
is a conservative extension of the original topological notion.

By [66, Proposition 4.4 and Theorem 7.3] it follows easily that a locale is κ-collectionwise
normal if and only if all its closed sublocales are zκ-embedded (recall that analogously a locale
is totally κ-collectionwise normal if and only if all its closed sublocales are zc

κ-embedded).

On the dual side, we conservatively extend Blair’s notion of Ozκ space by saying that
a frame is Ozκ if all its open sublocales are zκ-embedded (once again, for κ = 1 one simply
gets Oz frames). Unlike the case of F∗c-zc

κ frames, Ozκ does not collapse to Oz (cf. [34,
Proposition 8.14]; there are even extremally disconnected spaces which are not Ozκ for
suitable κ).

We conclude this section by giving a new characterization of Ozκ frames in terms of join
cozero κ-families.

Lemma 3.5.3. Let L be an Ozκ frame. Then a disjoint κ-family {ai}i∈I of cozero elements of L is a join
cozero family.
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Proof. We have to show that the join
∨

i∈I ai is a cozero element in L. For every i ∈ I, we may
write ai =

∨
n∈N ai

n with ai
n regular in L (as ai =

∨
ai

n≺a ai
n and b ≺ ai implies b∗∗ ≺ ai). Obviously,

for each n ∈N, the family {ai
n}i∈I is disjoint (because so is {ai}i∈I and ai

n ≤ ai).
For each n ∈N, set

bn =
∨
i∈I

ai
n.

Let n ∈N. Clearly, ai
n is complemented (and hence cozero) in ↓(bn∨b∗n) for all i ∈ I (observe

that its complement is b∗n∨
∨

j,i a j
n). Moreover, {ai

n}i∈I is discrete in ↓(bn∨ b∗n). The family
C = {ai

n | i ∈ I}∪ {b∗n} is obviously a cover of ↓(bn∨ b∗n) and each of its members meets at most
one of the ai

n’s. By Remark 4.5(4) in [66], {ai
n}i∈I is a join cozero κ-family in ↓(bn∨ b∗n).

Since L is Ozκ, there is a join cozero κ-family {ci
n}i∈I in L such that for all i ∈ I,

ci
n∧ (bn∨ b∗n) = ai

n. (3.5.1)

Taking double pseudocomplements, using the fact that double pseudocomplementation
commutes with finite meets, and by an application of the first De Morgan law (FDM), one has

ci∗∗
n ∧ (b∗n∧ b∗∗n )∗ = ai∗∗

n = ai
n.

by the regularity of ai
n. Since b∗n∧ b∗∗b = 0, it follows that ci∗∗

n = ai
n. In particular, ci

n ≤ ai
n. But by

(3.5.1) we also have ai
n ≤ ci

n. Therefore, ai
n = ci

n for all i ∈ I. But {ci
n}i∈i is a join cozero family

in L, hence
∨

i∈I ci
n =
∨

i∈I ai
n = bn is a cozero element in L. Since countable joins of cozero

elements are cozero,
∨

n∈N bn =
∨

i∈i ai is a cozero element of L. �

Corollary 3.5.4. The following are equivalent for a frame L and a cardinal κ:

(i) L is Ozκ;

(ii) L is Oz and every disjoint κ-family consisting of cozero elements of L is a join cozero family.

Proof. (i) =⇒ (ii): That Ozκ implies Oz is trivial and the other half follows from Lemma 3.5.3.

(ii) =⇒ (i): This implication is a trivial consequence of Theorem 3.4.19 and the definitions of
zκ-embedding resp. zc

κ-embedding. �



Chapter 4

Other infinite generalizations of
extremal disconnectedness

In Chapter 3 we studied several variants of extremal disconnectedness together with
their cardinal generalizations. As is well known, extremal disconnectedness can also
be characterized by the finite second De Morgan law. More precisely, L is extremally
disconnected if and only if

(a∧ b)∗ = a∗∨b∗, for every a,b ∈ L, (ED)

or, equivalently,
(a∨b)∗∗ = a∗∗∨b∗∗, for every a,b ∈ L. (ED)′

In light of the expressions above, it also makes sense to consider other cardinal generalizations
of extremal disconnectedness, namely the infinite analogues of the formulas (ED) and (ED)′.

In this chapter, we will show that when considered in the infinite case, these conditions
are no longer equivalent, and they define two different properties strictly between Booleaness
— denoted by (CB) — and extremal disconnectedness.

The stronger one corresponds to the infinite second De Morgan law (IDM), and it
can be expressed as the conjunction of the weaker one (which we call infinite extremal
disconnectedness, (IED) for the sake of brevity) and a weak scatteredness condition. It is
the goal of the present chapter to study these new conditions and present some classes of
interesting examples.

The contents of this chapter have been published in the article

[4] I. Arrieta, On infinite variants of De Morgan law in locale theory, Journal of Pure and
Applied Algebra, vol. 225 (1), art. no. 106460, 2021.
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4.1 Preliminaries

We start by recalling the following facts (see [15, Theorem 1.2]):

Proposition 4.1.1. Let L be a frame. Then the following hold:

(1)
∧n

i=1 a∗∗i = (
∧n

i=1 ai)∗∗ for every {ai}
n
i=1 ⊆ L;

(2) (a→ b)∗∗ = a∗∗→ b∗∗ for every a,b ∈ L.

Note that the infinite version of (1) is not true in general. Therefore, we shall say that a
frame L is ⊥-scattered if the nucleus (−)∗∗ : L −→ L preserves arbitrary meets — i.e., if∧

i∈I
a∗∗i =

(∧
i∈I

ai

)∗∗
, for every {ai}i∈I ⊆ L. (⊥-scattered)

Remarks 4.1.2. (1) This terminology was introduced in [54] in the broader topos-theoretic
setting. The topos theoretic notion is a faithful extension of the present notion — i.e., a
locale L is ⊥-scatered if and only if its topos of sheaves is ⊥-scattered. It is a property strictly
weaker than scatteredness, in the sense introduced by Plewe in [101], where a locale is
said to be scattered if for each sublocale S of L, the Booleanization BS is an open sublocale
in S. More precisely, scatteredness is just the hereditary variant of ⊥-scatteredness (see
Proposition 4.1.3 (viii) below).

(2) This notion was also considered by Dube and Sarpoushi under the name of near Booleaness
(cf. [50, Theorem 4.9]).

We have the following easy characterization:

Proposition 4.1.3 ([4, Proposition 4.1]). The following conditions are equivalent for a frame L:

(i) L is ⊥-scattered;

(ii) The nucleus (−)∗∗ : L→ L preserves arbitrary meets;

(iii) The frame homomorphism (−)∗∗ : L→ BL preserves arbitrary meets;

(iv) (−)∗∗ : L→ BL is a complete Heyting homomorphism;

(v) (
∧

i∈I ai)∗ = (
∨

i∈I a∗i )
∗∗ for every {ai}i∈I ⊆ L;

(vi) If {ai}i∈I ⊆ L satisfies
∧

i∈I ai = 0, then
∧

i∈I a∗∗i = 0;

(vii) There exists an open ⊥-scattered dense sublocale;

(viii) The Booleanization BL is an open sublocale;

(ix) The interior of a dense sublocale is dense.

We shall need the following lemmas later on:
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Lemma 4.1.4. The property of being ⊥-scattered is inherited

(1) by open sublocales;

(2) by dense sublocales.

Proof. (1) Let a ∈ L. It is easily seen that the pseudocomplement b∗a of an element b in ↓a is
given by b∗a = b∗∧ a and that (b∗a)∗a = b∗∗∧ a. Since nonempty meets in ↓a are computed as in
L, it is clear that the assertion holds.

(2) Pseudocomplements in dense sublocales are the same as in the ambient frame; and
sublocales are always closed under meets. It is then obvious that being ⊥-scattered is
inherited by dense sublocales. �

Lemma 4.1.5. If f : L −→M is an open localic map and L is ⊥-scattered, then so is f [L].

Proof. First, since a localic map is open if and only if both halves of its surjection-embedding
factorization are open, we can assume that f is also a surjection. Then its left adjoint f ∗

corresponds to an open subframe embedding, and these are well known to be closed under
arbitrary meets and under pseudocomplementation [92, Proposition III 7.2]. �

We turn now our attention to extremal disconnectedness. In the following, we gather
several well-known formulations (see [75, 92]):

Proposition 4.1.6. The following conditions are equivalent for a frame L:

(i) L is extremally disconnected;

(ii) (
∧n

i=1 ai)∗ =
∨n

i=1 a∗i for every {ai}
n
i=1 ⊆ L; (Second De Morgan law)

(iii) If {ai}
n
i=1 ⊆ L satisfies

∧n
i=1 ai = 0, then

∨n
i=1 a∗i = 1;

(iv) (
∨n

i=1 ai)∗∗ =
∨n

i=1 a∗∗i for every {ai}
n
i=1 ⊆ L;

(v) The nucleus (−)∗∗ : L −→ L preserves finite joins;

(vi) The nucleus (−)∗∗ : L −→ L is a lattice homomorphism;

(vii) (
∧n

i=1 ai)∗ =
∨n

i=1 a∗i for every {ai}
n
i=1 ⊆ BL;

(viii) If {ai}
n
i=1 ⊆ L satisfies (

∨n
i=1 ai)∗ = 0, then

∨n
i=1 a∗∗i = 1.

It is easy to check that (i)⇐⇒ (ii)⇐⇒ (iii) =⇒ (iv)⇐⇒ (v)⇐⇒ (vi)⇐⇒ (vii)⇐⇒ (viii),
and (viii) =⇒ (iii) is true because of Proposition 4.1.1 (1).
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4.2 Infinite versions of extremal disconnectedness

4.2.1 Infinitely De Morgan frames

We shall say that a frame L is infinitely De Morgan if it satisfies the infinite second De Morgan
law — i.e., if (∧

i∈I
ai

)∗
=
∨
i∈I

a∗i , for every {ai}i∈I ⊆ L. (IDM)

For brevity such a frame will be referred to as an IDM frame.

We have the following characterization (cf. Proposition 4.1.6 (ii)–(iii)):

Proposition 4.2.1. The following conditions are equivalent for a frame L:

(i) L is an IDM frame;

(ii) If {ai}i∈I ⊆ L satisfies
∧

i∈I ai = 0, then
∨

i∈I a∗i = 1.

Proof. (i) =⇒ (ii) is obvious. (ii) =⇒ (i): Let {ai}i∈I ⊆ L and a = (
∧

i ai)∗. Since (
∧

i ai)∧ a = 0, it
follows that (

∨
i a∗i )∨ a∗ = 1. Hence a ≤

∨
i a∗i . The reverse inequality is trivial. �

From Proposition 4.2.1 (ii), we obtain the following characterization:

Corollary 4.2.2. A locale L is IDM if and only if for each family of closed sublocales with dense join,
the family of their interiors covers L.

Remarks 4.2.3. (1) A frame which is also a coframe does not necessarily satisfy (IDM), even
if it is extremally disconnected. Note that in a coframe one has an infinite second De Morgan
law for supplements, but these need not coincide with pseudocomplements. For instance
the frame L = [0,1] is extremally disconnected and totally ordered (and thus a coframe) but
not IDM, see (2) below.

(2) It follows immediately from Proposition 4.2.1 (ii) that if 0 is a covered prime in a frame L
then L is an IDM frame. The converse is true if L is totally ordered. Indeed, if {ai}i∈I ⊆ L is
such that

∧
i ai = 0 then, by (IDM), we have

∨
i a∗i = 1. Since a∗ = 0 whenever a , 0 it follows

that there is some i ∈ I with ai = 0.

(3) Let L be any frame and define L∗ to be the poset obtained by adding a new bottom element
⊥ to L. It is easily seen that L∗ is also a frame and that ⊥ is a covered prime. Accordingly, one
has that this new frame is IDM.

(4) Any complete Boolean algebra is an IDM frame, but there are non Boolean IDM frames.
For instance, any non Boolean frame L such that 0 is a covered prime. An easy such example
is the totally ordered frame L =N∪{+∞}, or any frame constructed as in (3) above.
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IDM frames are very close to being Boolean; in fact, under the very weak separation
axiom of weak subfitness, both concepts coincide. Recall from Chapter 2 that a frame is
weakly subfit if for each a , 0 there is some c , 1 with c∨ a = 1. Somewhat surprisingly, this
property can also be characterized by the following formula for pseudocomplements:

Lemma 4.2.4. ([93, Theorem 5.2]) Let L be a frame. The formula

a∗ =
∧
{c ∈ L | c∨ a = 1 }

is valid for every a ∈ L if and only if L is weakly subfit.

Any Boolean algebra is trivially weakly subfit. Moreover:

Lemma 4.2.5. Let L be a frame. Then L is Boolean if and only if it is a weakly subfit and IDM frame.

Proof. We only need to prove sufficiency. Let L be a weakly subfit and IDM frame and a ∈ L.
By the previous lemma and the infinite second De Morgan law we get

a∗∗ = (
∧
{c ∈ L | c∨ a = 1 })∗ =

∨
{c∗ | c∨ a = 1 }.

Now if c∨ a = 1 it follows that c∗ ≤ a, hence a∗∗ ≤ a for all a ∈ L. Thus L is Boolean. �

Remark 4.2.6. IDM does not imply weak subfitness and conversely. Indeed, the frame
L =N∪{+∞} is IDM but not weakly subfit, and the cofinite topology on an infinite set is
weakly subfit but not IDM.

4.2.2 Infinitely extremally disconnected frames

We shall say that a frame L is infinitely extremally disconnected if the nucleus (−)∗∗ : L −→ L
preserves arbitrary joins — i.e., if(∨

i∈I
ai

)∗∗
=
∨
i∈I

a∗∗i , for every {ai}i∈I ⊆ L. (IED)

For brevity such a frame will be referred to as an IED frame. We have the following
characterization (cf. Proposition 4.1.6 (iv)–(viii)):

Proposition 4.2.7. The following conditions are equivalent for a frame L:

(i) L is an IED frame;

(ii) The nucleus (−)∗∗ : L −→ L preserves arbitrary joins;

(iii) The nucleus (−)∗∗ : L −→ L is a frame homomorphism;

(iv) (
∧

i∈I ai)∗ =
∨

i∈I a∗i for every {ai}i∈I ⊆ BL;

(v) If {ai}i∈I ⊆ L satisfies (
∨

i∈I ai)∗ = 0, then
∨

i∈I a∗∗i = 1.
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Proof. (i)⇐⇒ (ii)⇐⇒ (iii) =⇒ (iv) are obvious.

(iv) =⇒ (v): Let {ai}i∈I ⊆ L such that (
∨

i ai)∗ = 0. Then {a∗i }i∈I ⊆ BL and so 1 = (
∨

i ai)∗∗ = (
∧

i a∗i )
∗
≤∨

i a∗∗i .

(v) =⇒ (i): Let {ai}i∈I ⊆ L and a = (
∨

i ai)∗. Since (a∨ (
∨

i ai))∗ = 0, it follows that a∗∗∨ (
∨

i a∗∗i ) = 1.
Hence, a∗ = (

∨
i ai)∗∗ ≤

∨
i a∗∗i . The reverse inequality is trivial. �

From Proposition 4.2.7 (v), we obtain the following characterization:

Corollary 4.2.8. A locale L is IED if and only if for each family of open sublocales with dense join,
the family of the interiors of their closures covers L.

Remarks 4.2.9. (1) In any irreducible frame L, i.e., such that BL = {0,1 }, or equivalently such
that 0 is prime (cf. [48]) condition (iv) in Proposition 4.2.7 is trivially satisfied. Consequently,
any irreducible frame L is IED. In particular, totally ordered frames are clearly irreducible,
and hence IED.

(2) Since (IDM) trivially implies condition (iv) in Proposition 4.2.7, it follows that any IDM
frame is IED, but there are IED frames which fail to be IDM. An easy such example is the
cofinite topology on an infinite set.

(3) Any IED frame is obviously extremally disconnected. However the converse is false, as
any non-Boolean regular extremally disconnected frame shows (see Lemma 4.2.11 below).
An easy such example is the Stone-Čech compactification of the frame of natural numbers.

(4) In any semi-irreducible frame L (i.e., such that BL is finite), condition (iv) in Proposi-
tion 4.2.7 is clearly satisfied if the frame is extremally disconnected. Consequently, any
semi-irreducible extremally disconnected frame L is IED.

Consequently we have the following chain of implications

(CB) =⇒ (IDM) =⇒ (IED) =⇒ (ED),

and none of them can be reversed. Frames satisfying (IED) arise quite naturally. We have
seen that every irreducible frame is IED. Another interesting class of examples is given in the
following:

Proposition 4.2.10. Let L be a frame which is also a coframe. Then the following are equivalent:

(i) L is extremally disconnected;

(ii) L is an IED frame.

Proof. We only need to prove (i) =⇒ (ii). Let L be an extremally disconnected frame which
is also a coframe and let {ai}i∈I ⊆ L. We have (

∨
i ai)∗∨

∨
j a∗∗j = (

∧
i a∗i )∨

∨
j a∗∗j =

∧
i(a∗i ∨

∨
j a∗∗j )

by coframe distributivity. Now, for each i ∈ I, one has a∗i ∨
∨

j a∗∗j ≥ a∗i ∨ a∗∗i = 1 by extremal
disconnectedness. Hence (

∨
i ai)∗∨

∨
j a∗∗j = 1, which implies (

∨
i ai)∗∗ ≤

∨
j a∗∗j , the non-trivial

inequality of (IED). �
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Note that an analogous result for (IDM) is not true by Remark 4.2.3 (1). Moreover, we see
in particular that the topology of every Alexandroff extremally disconnected space is IED (cf.
also Corollary 4.4.8 below); and these spaces appear to arise in other areas (see for example
[21]).

Finally, we identify a condition which together with property (IED) implies Booleaness.
We recall that a frame L is said to be semiregular if every element is a join of regular elements.
It is easily seen that every regular frame is semiregular.

Lemma 4.2.11. Let L be a frame. Then L is Boolean if and only if it is a semiregular IED frame.

Proof. We only need to prove sufficiency. Semiregularity means that BL generates L by joins.
But (IED) is equivalent to BL being closed under joins. Hence BL = L. �

4.2.3 The relation between IED frames and IDM frames

Recall that an IDM frame is IED. Furthermore, any IDM frame is trivially ⊥-scattered (cf.
Proposition 4.2.1 and Proposition 4.1.3 (vi)). Moreover:

Proposition 4.2.12. Let L be a frame. Then L is IDM if and only if it is ⊥-scattered and IED.

Proof. We only need to prove sufficiency. Let L be a ⊥-scattered and IED frame and consider
{ai}i∈I ⊆ L such that

∧
i ai = 0. By ⊥-scatteredness one has (

∨
i a∗i )

∗ =
∧

i a∗∗i ≤ (
∧

i ai)∗∗ = 0 and
hence Proposition 4.2.7 (v) implies that

∨
i a∗i =

∨
i a∗∗∗i = 1. By Proposition 4.2.1 (ii) it follows

that L is IDM. �

Now, if we combine this characterization with Propositions 4.1.3 and 4.2.7 we obtain:

Corollary 4.2.13. A frame is IDM if and only if the nucleus (−)∗∗ : L→ L is a complete Heyting
homomorphism.

4.3 Properties of IDM and IED frames

We now state some further equivalent formulations of these properties in terms of the
Booleanization:

Proposition 4.3.1. The following conditions are equivalent for a frame L:

(i) L is an IED frame;

(ii) The Booleanization BL is a subframe of L.

Proof. The result follows immediately from Proposition 4.2.7 and the fact that a nucleus
preserves arbitrary joins if and only if its associated sublocale is closed under arbitrary
joins. �

The following is immediate from Propositions 4.1.3 and 4.3.2 and Proposition 4.2.12.
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Proposition 4.3.2. The following conditions are equivalent for a frame L:

(i) L is an IDM frame;

(ii) The Booleanization BL is an open sublocale and a subframe of L;

(iii) The Booleanization BL is open and a complete sublattice of L.

It is a well-known fact that extremal disconnectedness is preserved under taking open or
dense sublocales [65] and taking images under open localic morphisms [69]. We have also
proved in Lemmas 4.1.4 and 4.1.5 that the same applies for ⊥-scatteredness. In what follows
we extend these results to the properties (IED) and (IDM).

Proposition 4.3.3. Both properties IED and IDM are inherited

(1) by open sublocales;

(2) by dense sublocales.

Proof. Clearly, the assertion for IDM frames will follow from the one for IED frames combined
with Lemma 4.1.4 and Proposition 4.2.12. Now, that IED is inherited by open sublocales can
be proved as in Lemma 4.1.4 (1). Let us finally show that IED is hereditary with respect to
dense sublocales. Let S be a dense sublocale of an IED frame L and denote the joins in S by

⊔
.

Note that in any dense sublocale one has (
∨

i si)∗ = (
⊔

i si)∗ for each {si}i∈I ⊆ S. Indeed, by the
first de Morgan law (FDM) in L (resp. in S) and the fact that pseudocomplements and meets
are the same in S and L, both sides are equal to

∧
i s∗i . Since S is dense, we have that BL ⊆ S,

and therefore by the (IED) law in L, one has
∨

i s∗∗i = (
∨

i si)∗∗ ∈ S. Thus the join of {s∗∗i }i∈I ⊆ S in
S coincides with the one in L. It follows that

⊔
i s∗∗i =

∨
i s∗∗i = (

∨
i si)∗∗ = (

⊔
i si)∗∗. �

We now have the following trivial observation:

Lemma 4.3.4. Let M be a subframe of L and assume that M is closed under pseudocomplementation
in L. If L is IED, then so is M.

Corollary 4.3.5. If f : L −→M is an open localic map and L is IED (resp. IDM), then so is f [L].

Proof. In view of Lemma 4.1.5 and Proposition 4.2.12, it suffices to show the assertion for IED.
Moreover, since a localic map is open if and only if both halves of its surjection-embedding
factorization are open, one can assume without loss of generality that f is surjective. Now,
the left adjoint f ∗ of f corresponds to an open subframe inclusion, and these are closed under
pseudocomplements. Therefore, the result follows from the previous lemma. �

4.4 Hereditary variants

Recall that given a propertyP of locales, a locale L is said to be hereditarilyP if each sublocale
of L satisfies P. Our main interest in this section is to study hereditarily IDM and hereditarily
IED locales. We first note the following:
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Proposition 4.4.1. Let P be a property of locales such that each dense sublocale of a locale satisfying
P also satisfies P. Then a locale L is hereditarily P if and only if each closed sublocale of L satisfies P.

Proof. We only need to prove sufficiency. Let L be a locale such that each closed sublocale of
L satisfies P and let S be an arbitrary sublocale of L. Then S is closed and so it has property
P. Now S is dense in S and since P is hereditary with respect to dense sublocales, it follows
that S also has property P. �

From Lemma 4.1.4 and Proposition 4.3.3 we get then the following (note that scatteredness
is precisely hereditary ⊥-scatteredness — cf. [101]):

Corollary 4.4.2. Let L be a locale. Then:

(1) L is scattered if and only if each closed sublocale of L is ⊥-scattered.

(2) L is hereditarily extremally disconnected if and only if each closed sublocale of L is extremally
disconnected.

(3) L is hereditarily IDM if and only if each closed sublocale of L is IDM.

(4) L is hereditarily IED if and only if each closed sublocale of L is IED.

Remarks 4.4.3. (1) By Proposition 4.2.12 we now have that a locale L is hereditarily IDM if
and only if it is scattered and hereditarily IED.

(2) Since a locale of the form Ω(X) can have more sublocales than the induced ones, it is not
clear from the definition whether hereditary IED and IDM are conservative properties. But
they are, in view of (3) and (4) above.

We met hereditarily extremally disconnected locales in Subsection 2.4.3. The following
proposition provides some further well-known characterizations, see for example [65, 75].

Proposition 4.4.4. The following conditions are equivalent for a frame L:

(i) L is hereditarily extremally disconnected;

(ii) (a→ b)∨ (b→ a) = 1 for every a,b ∈ L; (Strong De Morgan law)

(iii) (
∧n

i=1 ai)→ b =
∨n

i=1(ai→ b) for every b ∈ L and every {ai}
n
i=1 ⊆ L;

(iv) (
∧n

i=1 ai)→ b =
∨n

i=1(ai→ b) for every b ∈ L and every {ai}
n
i=1 ⊆ c(b);

(v) ((
∨n

i=1 ai)→ b)→ b =
∨n

i=1((ai→ b)→ b) for every b ∈ L and every {ai}
n
i=1 ⊆ L;

(vi) ((
∨n

i=1 ai)→ b)→ b =
∨n

i=1((ai→ b)→ b) for every b ∈ L and every {ai}
n
i=1 ⊆ c(b).

We now have the following characterizations of hereditarily IDM and IED frames:



84 Other infinite generalizations of extremal disconnectedness

Proposition 4.4.5. The following conditions are equivalent for a frame L:

(i) L is hereditarily IDM;

(ii) (
∧

i∈I ai)→ b =
∨

i∈I(ai→ b) for every b ∈ L and every {ai}i∈I ⊆ L; (
∧∨

-distr)

(iii) (
∧

i∈I ai)→ b =
∨

i∈I(ai→ b) for every b ∈ L and every {ai}i∈I ⊆ c(b).

Proof. (i) =⇒ (ii): Let b ∈ L, {ai}i∈I ⊆ L and d = (
∧

i ai)∧ b. By hypothesis c(d) is IDM, and since
pseudocomplementation in c(d) is given by x∗c(d) = x→ d and c(d) is closed under meets and
nonempty joins in L it follows that (

∧
i ai)→ d= (

∧
i ai)∗c(d)

≤
∨

i a∗c(d)
i =

∨
i(ai→ d). Consequently

(
∧

i ai)→ b = (
∧

i ai)→ d ≤
∨

i(ai→ d) ≤
∨

i(ai→ b), whereas the reverse inequality is trivial.

(ii) =⇒ (iii) is obvious.

(iii) =⇒ (i): By Corollary 4.4.2, it is enough to prove that each closed sublocale is IDM. Let
b ∈ L and {ai}i∈I ⊆ c(b) such that

∧
i ai = b. Then

∨
i a∗c(b)

i =
∨

i(ai → b) = (
∧

i ai)→ b = 1. By
Proposition 4.2.1 (ii) it follows that c(b) is IDM. �

Similarly one has the following.

Proposition 4.4.6. The following conditions are equivalent for a frame L:

(i) L is hereditarily IED;

(ii) ((
∨

i∈I ai)→ b)→ b =
∨

i∈I((ai→ b)→ b) for every b ∈ L and all {ai}i∈I ⊆ L;

(iii) ((
∨

i∈I ai)→ b)→ b =
∨

i∈I((ai→ b)→ b) for every b ∈ L and every {ai}i∈I ⊆ c(b).

Example 4.4.7. (1) Every totally ordered frame is hereditarily IED by Remark 4.2.9 (1).

(2) For any frame L, the IDM frame L∗ constructed in Remark 4.2.3 (3) is not, in general,
hereditarily IDM nor hereditarily IED (in fact, L∗ is hereditarily IDM, resp. IED, if and only if
so is L, because proper closed sublocales of L∗ and closed sublocales of L coincide).

Note that if a frame is aditionally a coframe, then all its closed sublocales are also coframes.
Therefore, by Proposition 4.2.10, we can now improve Proposition 2.5.2 and obtain a further
supply of hereditarily IED frames:

Corollary 4.4.8. The following are equivalent for a poset X:

(i) X is a coforest;

(ii) Dwn(X) is hereditarily extremally disconnected;

(iii) Dwn(X) is hereditarily IED;

(iv) Dwn(X) has property (A).
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4.5 The largest dense IED sublocale

We conclude this chapter by exploring further the category of IED locales. The following
proposition (together with the results thereafter) provides some evidence of the fact that the
IED condition itself is actually a better behaved strengthening of extremal disconnectedness
compared to the IDM condition. Furthermore, in view of the DeMorganization construc-
tion (namely, the existence of the largest dense De Morgan sublocale) established in [39,
Theorem 2.10] it also seems to share a stronger parallel with extremal disconnectedness.

Proposition 4.5.1. Any locale has a largest dense IED sublocale.

Proof. We define the following binary relation (in the sense of Section 1.4):

R = { (
∨

i a∗∗i , (
∨

i ai)∗∗) | {ai}i∈I ⊆ L } ⊆ L×L.

We set S := L/R. As explained in Section 1.4, S is a sublocale of L; and an application of
the first De Morgan law (FDM) shows that 0 is R-saturated — i.e., S is a dense sublocale.
If T ⊆ L is an arbitrary dense IED sublocale of L, we want to show that T ⊆ S. By density,
pseudocomplements coincide in each of the frames T, S and L. Let νT denote the left
adjoint to the sublocale embedding and denote the joins in T by ⊔. Since νT is a dense
surjection, it preserves pseudocomplements (i.e., it is nearly open, see [77, p. 227] and
recall Subsection 1.2.3). Let t ∈ T. Our goal is to show that t is R-saturated, that is,
(
∨

i ai)∗∗→ t = (
∨

i a∗∗i )→ t for any family {ai}i∈I ⊆ L. Since T satisfies (IED), one obtains

νT(
∨

i a∗∗i ) =
⊔

i νT(ai)∗∗ = (
⊔

i νT(ai))∗∗ = νT(
∨

i ai)∗∗ = νT((
∨

i ai)∗∗).

Then, since t ∈ T, we have

(
∨

i ai)∗∗→ t = νT((
∨

i ai)∗∗)→ t = νT(
∨

i a∗∗i )→ t = (
∨

i a∗∗i )→ t,

as required. The only point remaining is to show that S is IED. Let {si}i∈I ⊆ S. Then

(
⊔

i si)∗∗ = νS(
∨

i si)∗∗ = νS((
∨

i si)∗∗) = νS(
∨

i s∗∗i ) =
⊔

i s∗∗i ,

where
⊔

now denotes join in S and we have used again the fact that νS is nearly open as it is
a dense surjection. This proves the result. �

Remark 4.5.2. The construction of the largest dense IED sublocale is not generally functorial
(this should not be a surprise because neither of the Booleanization or the DeMorganization
construction [39] are normally functorial). Nevertheless, there are certain morphisms for
which it is. We do not know how to characterize the class of those morphisms which
restrict to the largest dense IED sublocales but it notably includes all the nearly open frame
homomorphisms (this is easily seen by an application of Theorem 1.4.1).
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Lemma 4.5.3. If L is totally ordered, there exists the largest dense IDM sublocale if and only if L is
IDM.

Proof. The “if” part is trivial. Conversely, if L is a totally ordered frame, a→ b is either equal
to 1 or b for each a,b ∈ L, and hence a sublocale of L is just a subset closed under meets.
Moreover, since a sublocale is in particular a subposet, it is also a chain, and hence the
characterization in Remark 4.2.3 (2) still applies. Denote by S the largest dense IDM sublocale
of L. By contradiction, if S , L, pick an a ∈ L such that a < S. Then S∪{a} is obviously closed
under meets and hence a (dense) sublocale. Furthermore, 0 is a covered prime in S∪{a}, for
if a∧

∧
i ai = 0 for some {ai}i∈I ⊆ S, since a , 0 and 0 is always prime in a chain, it follows that∧

i ai = 0 and so ai = 0 for some i ∈ I. This contradicts the maximality of S. �

The previous lemma yields examples of locales that do not possess the largest dense IDM
sublocale (for instance, L = [0,1]).

Remark 4.5.4. Originally the DeMorganization construction was proved more generally for
toposes, cf. [39, 40]. Therefore, it seems natural to consider Proposition 4.5.1 in that context.
We are not going to do so in this dissertation, except to say that one would need to define the
IED property for toposes appropriately. It is not sensible to define an IED topos to be one in
which double negation ¬¬ : Ω −→Ω has an internal right adjoint, since an easy modification
of the proof of Theorem 6 in [105] shows that in that case the topos would be necessarily
Boolean.



Chapter 5

Frame presentations of compact
hedgehogs and their properties

5.1 Introduction

The usual topology on the (extended) reals can be naturally introduced in two completely
different ways:

• It is the metric topology induced by the euclidean metric.

• It is the Lawson topology induced by the linear order.

The first approach is probably the best known. In this case the topology, being a metric
topology, is generated by the basis of all open balls, i.e. the open intervals ⟨a,b⟩ with a < b in
R (or just with a < b in Q).

The second approach is of particular interest when one is interested in notions like lower
and upper semicontinuity. In this case one first generates two topologies:

(1) The Scott topology, that is, the smallest topology in which the sets

↑↑a = {x ∈R | a < x }

are open for all a in R (or, equivalently, with a just in Q).

(2) The lower topology, that is, the smallest topology in which the principal filters

↑a = {x ∈R | a ≤ x }

are closed for all a in R (or, equivalently, with a ∈Q).

Then the usual euclidean topology is the Lawson topology, that is, the common refinement
of the Scott and the lower topologies ([59, Chapter III]).

87
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Now, the hedgehog can be described as a set of spines identified at a single point. More
precisely, given a cardinal κ and a set I of cardinality κ, the hedgehog with κ spines J(κ) is the
disjoint union

⋃
i∈I

(
R×{i}

)
of κ copies (the spines) of the extended real line identified at −∞:

−∞−∞−∞

J(κ) = {−∞−∞−∞}∪
⋃

i∈I((−∞,+∞]×{i}).

Fig. 5.1 The hedgehog.

The metric topology on J(κ) is precisely the cardinal generalization of the metric topology
on the unit real interval (see [3] for a description of this topology). Point-freely, it is modelled
by the frame of the metric hedgehog with κ spines [66], namely the frame L(J(κ)) generated
by abstract symbols (r,—)i and (—,r), r ∈Q and i ∈ I, subject to the following relations (see
Figure 5.2):

(h0) (r,—)i∧ (s,—) j = 0 whenever i , j;

(h1) (r,—)i∧ (—,s) = 0 whenever r ≥ s and i ∈ I;

(h2)
∨

i∈I (ri,—)i∨ (—,s) = 1 whenever ri < s for every i ∈ I;

(h3) (r,—)i =
∨

s>r (s,—)i for every r ∈Q and i ∈ I;

(h4) (—,r) =
∨

s<r(—,s) for every r ∈Q.

Fig. 5.2 The metric hedgehog generators.

(r,—)i
−∞−∞−∞

(—,r)
−∞−∞−∞

We can also consider an extension on J(κ) of the Lawson topology. For that purpose,
introduce first the following (partial) order on J(κ):

(t, i) ≤ (s, j) ≡ (t, i) =−∞−∞−∞ or i = j, t ≤ s.

The poset (J(κ),≤) is evidently a cardinal generalization of (R,≤), being (J(1),≤) precisely
(R,≤). In general, for an arbitrary cardinal κ, it fails to be a complete lattice (but it is still a
bounded complete domain [59]). We can still generate two topologies:
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(1) The Scott topology, that is, the smallest topology in which the sets

↑↑(r, i) = { (t, j) ∈ J(κ) | (r, i)≪ (t, j) } = (r,+∞]×{i}

are open for all r ∈Q and i ∈ I.

(2) The lower topology, that is, the smallest topology in which the principal filters

↑(r, i) = { (t, j) ∈ J(κ) | (r, i) ≤ (t, j) } = [r,+∞]×{i}

are closed for all r ∈Q and i ∈ I.

The Lawson topology is the common refinement of the Scott and the lower topologies.
This is a compact Hausdorff topology on J(κ), referred to as the compact hedgehog space and
denoted by

ΛJ(κ)

(see [59, Exercise III-3.25 and Theorem III-5.8]). It yields a separable metrizable space if and
only if κ ≤ ℵ0 (see [59, Corollary III-4.6.] and [3, Properties 6.7 (6) and (7)]). A subbasis of
Λ(J(κ)) is given by

{ (r,—)i | r ∈Q, i ∈ I }∪ { (—,r)i | r ∈Q, i ∈ I }

where (r,—)i := (r,+∞]×{i} and (—,r)i := J(κ)− [r,+∞]×{i} (see Figure 5.3).

With this topology, natural notions of upper and lower semicontinuity arise. We recall
from [62] that a function f defined on a topological space X with values in the hedgehog J(κ)
is said to be lower semicontinuous if it is continuous with respect to the Scott topology — i.e.,
f−1((r,—)i) is open in X for every r ∈Q and i ∈ I (this notion should not be confused with the
one of Blair and Swardson [35]); similarly, it is upper semicontinuous if it is continuous with
respect to the lower topology — i.e., f−1((—,r)i) is open in X for every r ∈Q and i ∈ I. It is
said to be continuous if it is continuous with respect to the Lawson topology, i.e. if it is both
lower and upper semicontinuous.

Our aim in this chapter is to study the compact topology of the hedgehog via frame
presentations by generators and relations (cf. Subsection 1.1.1). The main focus will be on the
point-free version of continuous and semicontinuous functions with values in the compact
hedgehog that arise from it, and their relation with variants and generalizations of normality
introduced in Chapter 3.

The material presented in this chapter is part of a joint work with Javier Gutiérrez García
and Jorge Picado:

[7] I. Arrieta, J. Gutiérrez García, and J. Picado, Frame presentations of compact hedgehogs
and their properties, Quaestiones Mathematicae, accepted for publication.
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5.2 The compact localic hedgehog and its basic properties

We define the frame of the compact hedgehog with κ spines to be the frame L(cJ(κ)) presented by
generators (r,—)i and (—,r)i, r ∈Q and i ∈ I, subject to the following relations (cf. Figure 5.3):

(ch0) (r,—)i∧ (s,—) j = 0 whenever i , j;

(ch1) (r,—)i∧ (—,s)i = 0 whenever r ≥ s for every i ∈ I;

(ch2) (r,—)i∨ (—,s)i = 1 whenever r < s for every i ∈ I;

(ch3) (r,—)i =
∨

s>r (s,—)i for every r ∈Q and i ∈ I;

(ch4) (—,r)i =
∨

s<r (—,s)i for every r ∈Q and i ∈ I.

Fig. 5.3 The compact hedgehog generators.

(r,—)i
−∞−∞−∞

(—,r)i
−∞−∞−∞

Remark 5.2.1. There is an alternative presentation for the frame L(cJ(κ)). Indeed, we define
Lc(J(κ)) to be the subframe of the frame of the metric hedgehog L(J(κ)) generated by the
elements

(r,—)i and (r,—)i
∗ =
∨
j,i

(r−1,—) j∨ (—,r), r ∈Q, i ∈ I.

It is then a straightforward (but tedious) exercise to check that Lc(J(κ)) � L(cJ(κ)). We shall
omit the details.

The following proposition indicates that the compact hedgehog and the metric hedgehog
coincide when κ is a finite cardinal. Since the latter was studied in [66], we shall mostly be
interested in the infinite case.

Proposition 5.2.2. Lc(J(κ)) is a proper subframe of L(J(κ)) if and only if κ is infinite.

Proof. If κ is finite, then
∧

i∈I (r,—)i
∗ =
(∧

i∈I
∨

j,i (r−1,—) j

)
∨ (—,r) = (—,r), hence Lc(J(κ)) =

L(J(κ)).
Otherwise, if κ is infinite, then the frame L(J(κ)) is not compact (this is a consequence of

the defining relation (h2), see [66, Remark 3.1]). But, as we shall see in Theorem 5.2.5 below,
L(cJ(κ)), and hence Lc(J(κ)), is a compact frame. �

We start with a few basic properties of the frame of the compact hedgehog. First, it is a
straightforward exercise to check that for each i ∈ I the assignments from L(cJ(κ)) into L(R)
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given by

(r,—) j 7−→

(r,—), if j = i,

0, if j , i,
and (—,r) j 7−→

(—,r), if j = i,

1, if j , i,

turn the defining relations (ch0)–(ch4) into identities in L(R) and thus determine a surjective
frame homomorphism hi : L(cJ(κ))→ L(R). Observe that similarly we can define surjective
frame homomorphisms h′i : L(cJ(κ))→Ω(Q). The following properties follow easily from the
existence of these frame homomorphisms:

Properties 5.2.3. (1) (r,—)i∧ (s,—) j = 0 if and only if i , j;

(2) (r,—)i∧ (—,s)i = 0 if and only if r ≥ s;

(3) (r,—)i∨ (—,s) j = 1 if and only if r < s and i = j;

(4) (—,r)i∨ (—,s) j = 1 if and only if i , j;

(5)
∨

i∈I
∨

r∈Q (r,—)i , 1;

(6) For each i ∈ I,
∨

r∈Q (—,r)i , 1.

Next, we introduce another important family of frame homomorphisms:

Proposition 5.2.4. For each i ∈ I, there is a frame homomorphism πi : L(R)→ L(cJ(κ)) given by

πi(r,—) = (r,—)i and πi(—,r) = (—,r)i

for all r ∈Q.

Proof. Let us confirm that it sends the relations (r0)–(r3) into identities in L(cJ(κ)):

(r1) Let r ≥ s in Q. Then πi(r,—)∧πi(—,s) = (r,—)i∧ (—,s)i = 0 by (ch1).

(r2) Let r < s in Q. Then πi(r,—)∨πi(—,s) = (r,—)i∨ (—,s)i = 1 by (ch2).

(r3) Let r ∈Q. We have πi(r,—) = (r,—)i =
∨

s>r(s,—)i =
∨

s>rπi(s,—) by (ch3).

(r4) Let r ∈Q. We have πi(—,r) = (—,r)i =
∨

s<r(—,s)i =
∨

s<rπi(—,s) by (ch4). �

We shall refer to πi as the i-th projection. Observe that hi ◦πi is the identity in L(R), and so
πi is injective.

We can now prove the main result of this section.

Theorem 5.2.5. L(cJ(κ)) is a compact regular frame.

Proof. Consider the unique frame homomorphism f , given by the coproduct universal
property, for which the following diagram commutes:

L(R)
⊕

i∈IL(R)

L(cJ(κ))
πi

ιi

f
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Let
a =
∨
i, j
ιi(
∨

r∈Q
(r,—))∧ ι j(

∨
r∈Q

(r,—)) ∈
⊕
i∈I
L(R).

By (ch0) we have

f (a) =
∨
i, j

f (ιi(
∨

r∈Q
(r,—)))∧ f (ι j(

∨
s∈Q

(s,—))) =
∨
i, j

∨
r∈Q

∨
s∈Q

(r,—)i∧ (s,—) j = 0.

Moreover, f (a∨ ιi(r,—)) = f (ιi(r,—)) = πi(r,—) = (r,—)i and f (a∨ ιi(—,s)) = f (ιi(—,s)) = πi(—,s) =
(—,s)i for every i ∈ I and r,s ∈ Q. Hence the map k : c(a)→ L(cJ(κ)) given by k(x) = f (x) for
each x ∈ c(a) is a surjective frame homomorphism making the following triangle

⊕
i∈IL(R) L(cJ(κ))

c(a)

f

(−)∨a
k

commute. On the other hand, the assignments

(—,r)i 7−→ ιi(r,—)∨ a and (s,—)i 7−→ ιi(—,s)∨ a

for each r,s ∈Q and i ∈ I determine a frame homomorphism

1 : L(cJ(κ))→ c(a)

(the fact that they turn the relations (ch0)–(ch4) into identities in c(a) follows easily from the
fact that each ιi is a frame homomorphism and the fact that the relations (r0)–(r3) are satisfied
in L(R)). Thus 1 is the unique frame homomorphism that makes the triangle

⊕
i∈IL(R) L(cJ(κ))

c(a)

f

(−)∨a
1

commutative (the fact that it commutes obviously follows from the fact that the coproduct
injections are jointly epimorphic). Consequently, L(cJ(κ)) and c(a) are isomorphic frames,
and the latter is regular and compact because it is a closed sublocale of a regular and compact
frame (by Tychonoff’s Theorem for frames [92]). �

Remark 5.2.6. Since the localic Tychonoff’s Theorem [83] and compactness of L(R) [22] are
constructively valid, the proof above is also constructively valid provided the index set I has
decidable equality (i.e., for all i, j ∈ I, one has either i = j or i , j). Implicitly, we had already
assumed this in the defining relation (ch0).

Regarding metrizability, we have the following:
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Proposition 5.2.7. L(cJ(κ)) is metrizable if and only if κ ≤ ℵ0.

Proof. The coproduct of countably many metrizable frames is metrizable by virtue of [72,
p. 31]. Hence, if κ ≤ ℵ0, then, for |I| = κ,

⊕
i∈IL(R) is metrizable, and so is any of its frame

quotients, thus L(cJ(κ)) is metrizable.
Conversely, if L(cJ(κ)) is metrizable, since it is also compact, then it must have a countable∨

-base ([29, 4.3]). Let B = {bn}n∈N be such a base. Then, for each i ∈ I, there is some ni ∈N

such that 0 , bni ≤ (0,—)i. Consequently, {bni}i∈I is a disjoint family of nonzero elements
contained in B, hence κ = |I| ≤ ℵ0. �

Hence, by [47, Proposition 3], we have:

Corollary 5.2.8. For κ ≤ ℵ0, any regular subframe of L(cJ(κ)) is metrizable.

5.2.1 The spectrum of L(cJ(κ))

In what follows, we shall show that the spectrum of L(cJ(κ)) is homeomorphic to the
hedgehog J(κ) endowed with the compact topology (see [62]). First we need a few lemmas
about primes in L(cJ(κ)).

Lemma 5.2.9. All the following elements of L(cJ(κ)) are prime (hence maximal):

(1)
∨

r>t (r,—)i∨
∨

r<t (—,r)i for any t ∈R and i ∈ I;

(2)
∨

i∈I
∨

r∈Q (r,—)i;

(3)
∨

r∈Q (—,r)i for any i ∈ I.

Proof. First note that since L(cJ(κ)) is a regular frame, any prime element is maximal by
Property 1.2.3 (4). We only show the case for (2), the others may be proved similarly.

By Property 5.2.3 (5), the element p =
∨

r∈Q
∨

i∈I (r,—)i is not the top element. Clearly, p is
prime if and only if the map

h : L(cJ(κ))→ {0 < 1 },

given by h(a) = 0 if a ≤ p and h(a) = 1 otherwise, is a frame homomorphism. For that it suffices
to show that the assignments h(r,—)i = 0 if and only if (r,—)i ≤ p, and h(—,r)i = 0 if and only
if (—,r)i ≤ p, send the defining relations into identities. But (r,—)i ≤ p for any r ∈Q and i ∈ I.
Hence h(r,—)i = 0 for all r ∈Q and i ∈ I. Moreover, (—,r)i ≤ p together with (ch2) would imply
p = 1, hence h(—,r)i = 1 for all r ∈Q and i ∈ I. Now it is clear that h turns relations (ch0)–(ch4)
into identities in the two-element frame {0 < 1 }. �

Lemma 5.2.10. For each p ∈ pt(L(cJ(κ))) let

α(p) =
∨{

r ∈Q |
∨
i∈I

(r,—)i � p
}
∈R.

We have:
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(1) α(p) = −∞ if and only if p =
∨

r∈Q
∨

i∈I (r,—)i;

(2) If α(p) , −∞, then there is a unique ip ∈ I such that (r,—)ip � p for some r ∈Q;

(3) If α(p) , −∞, then α(p) =
∧
{s ∈Q | (—,s)ip � p };

(4) If α(p) ∈R, then p =
(∨

r>α(p) (r,—)ip

)
∨

(∨
s<α(p) (—,s)ip

)
;

(5) If α(p) = +∞, then p =
∨

r∈Q(—,r)ip .

Proof. (1) Clearly α(p) = −∞ if and only if
∨

r∈Q
∨

i∈I (r,—)i ≤ p. The conclusion follows from
Lemma 5.2.9 (2).
(2) The existence is obvious from the definition of α(p). For uniqueness, assume that there are
distinct ip, jp ∈ I such that (r,—)ip � p and (s,—) jp � p. Then (r,—)ip ∧ (s,—) jp � p since p is prime,
which contradicts (ch0).
(3) Let r ∈Q such that

∨
i∈I (r,—)i � p. Then there is an i ∈ I satisfying (r,—)i � p. By uniqueness

of ip, i = ip. Let s ∈Q such that (—,s)ip � p. Then r ≤ s (otherwise, by (ch0), s < r would imply
0 = (r,—)ip ∧ (—,s)ip � p). Hence α(p) ≤

∧
{s ∈Q | (—,s)ip � p }. The inequality cannot be strict,

for otherwise there would exist r1,s1 ∈Q such that

α(p) < r1 < s1 <
∧
{s ∈Q | (—,s)ip � p },

and then (r1,—)ip ≤ p and (—,s1)ip ≤ p, a contradiction (since 1 = (r1,—)ip ∨ (—,s1)ip by (ch2)).
(4) Suppose α(p) ∈R. By Lemma 5.2.9 (1), it is enough to show that for every r > α(p) and
every s < α(p) one has (r,—)ip ≤ p and (—,s)ip ≤ p. Now, the former inequality follows from the
definition of α(p) while the latter follows from (3).
(5) It follows from (3) that

∨
r∈Q(—,r)ip ≤ p. The equality follows then from Lemma 5.2.9 (3). �

Proposition 5.2.11. The spectrum of L(cJ(κ)) is homeomorphic to the compact hedgehog space ΛJ(κ).

Proof. Consider the map π : Σ(L(cJ(κ))) −→ΛJ(κ) given by

π(p) =

(α(p), ip) if α(p) , −∞;

−∞−∞−∞ otherwise.

It readily follows from Lemma 5.2.10 (1), (4) and (5) that π is one-to-one. Let us show that π
is also onto.

By Lemma 5.2.10 (1), π
(∨

r∈Q
∨

i∈I (r,—)i

)
=−∞−∞−∞, and, by Lemma 5.2.10 (5), π

(∨
r∈Q (—,r)i

)
=

(+∞, i). For each t ∈R and i ∈ I set

p(t,i) =
(∨

r>t
(r,—)i

)
∨

(∨
r<t

(—,r)i

)
.

It is straightforward to check that
∨

j∈I(s,—) j ≤ p(t,i) if and only if s ≥ t. Hence α(p(t,i)) =∨
{s | s < t } = t. Moreover, if we select s < t, then we have (s,—)i � p(t,i) (as otherwise p(t,i) =

(s,—)i∨p(t,i) = 1 by (ch2), contradicting maximality). Therefore ip(t,i) = i and so π(p(t,i)) = (t, i).
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Furthermore, π is lower semicontinuous, since

π−1((r,+∞]×{i}) = {p ∈ Σ(L(cJ(κ))) | (r,—)i � p } = Σ(r,—)i

is open for every r ∈Q and i ∈ I, and upper semicontinuous, since

π−1(J(κ)− [r,+∞]×{i}) = {p ∈ Σ(L(cJ(κ))) | (—,r)i � p } = Σ(—,r)i

is open for every r ∈Q and i ∈ I. Hence π is continuous.

Finally, let us prove that π is an open map. Note that, since L(cJ(κ))) is generated by
{(r,—)i, (—,r)i | r ∈Q, i ∈ I} and π is a bijection, it suffices to show that the sets π(Σ(r,—)i) and
π(Σ(—,r)i) are open for every r ∈Q and i ∈ I. We have

π(Σ(r,—)i) = {π(p) | (r,—)i � p } = { (t, i) | t > r } = (r,1]×{i} and

π(Σ(—,r)i) = {π(p) | (—,r)i � p } = J(κ)− [r,1]×{i}.

Hence π is a homeomorphism. �

5.3 Semicontinuities

We are now in position to start developing the theory of semicontinuities of compact
hedgehog-valued functions. First, a compact hedgehog-valued continuous function will be a
frame homomorphism f : L(cJ(κ))→ L. The family of all compact hedgehog-valued continuous
functions will be denoted by Cκ(L). Furthermore, a compact hedgehog-valued

• function on L will be a frame homomorphism f : L(cJ(κ))→ S(L)op;

• lower semicontinuous function on L will be a frame homomorphism f : L(cJ(κ))→ S(L)op

such that f ((r,—)i) is closed for every r ∈Q and i ∈ I;

• upper semicontinuous function on L will be a frame homomorphism f : L(cJ(κ))→ S(L)op

such that f ((—,r)i) is closed for every r ∈Q and i ∈ I.

The corresponding classes of compact hedgehog-valued functions will be denoted by,
respectively,

Fκ(L), LSCκ(L), and USCκ(L).

By the isomorphism L � cL[L] of Subsection 1.2.1, we may regard compact hedgehog-valued
continuous functions on L as frame homomorphisms f : L(cJ(κ))→ S(L)op such that f ((—,r)i)
and f ((r,—)i) are closed for every r ∈ Q and i ∈ I. Under this identification, we note that
Cκ(L) = LSCκ(L)∩USCκ(L).

The following lemma is an immediate consequence of the definition of the i-th projection
πi.
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Lemma 5.3.1. Let L be a locale and f ∈ Fκ(L). Then:

(1) f ∈ LSCκ(L) if and only if f ◦πi ∈ LSC(L) for all i ∈ I;

(2) f ∈ USCκ(L) if and only if f ◦πi ∈ USC(L) for all i ∈ I;

(3) f ∈ Cκ(L) if and only if f ◦πi ∈ C(L) for all i ∈ I.

5.3.1 Disjoint families of extended real-valued functions

In this subsection we shall show that disjoint families of extended real-valued functions are
closely related to certain compact hedgehog-valued functions. Given a topological space X,
a family of functions

{
fi : : X→R

}
i∈I

is said to be disjoint if for each i , j and x ∈ X, either
fi(x) = −∞ or f j(x) = −∞. The following is the point-free extension of this notion:

Definition 5.3.2. Let
H =

{
hi : L(R)→ S(L)op

}
i∈I
⊆ F(L)

be a family of extended real-valued functions on L and set Si = hi(
∨

r∈Q(r,—)). We say thatH
is disjoint if Si⊓S j = 0 (i.e., Si∨S j = L) for every i , j.

Remark 5.3.3. In the particular case ofH ⊆ C(L), if we regard functions inH simply as frame
homomorphisms L(R)→ L, the disjointness condition is equivalent to the family {ai}i∈I being
disjoint, where ai =

∨
r∈Q hi(r,—) is the cozero element associated to hi.

We now have the following fundamental result:

Proposition 5.3.4. IfH = {hi | i ∈ I } is a disjoint κ-family of extended real-valued functions on L,
then there is a unique hH ∈ Fκ(L) such that the diagram

L(R) L(cJ(κ))

S(L)op

πi

hH
hi

commutes for all i ∈ I. Conversely, given h ∈ Fκ(L), the κ-family {h◦πi }i∈I is disjoint.

Proof. Let us first show the uniqueness part. If hH ◦πi = hi for all i, then hH ((r,—)i) =
hH (πi(r,—)) = hi(r,—) and hH ((—,r)i) = hH (πi(—,r)) = hi(—,r), and thus hH is uniquely deter-
mined.

For the existence, we define hH : L(cJ(κ))→ S(L)op by the assignments hH ((r,—)i) = hi(r,—)
and hH ((—,r)i) = hi(—,r). Let us confirm that it turns the relations (ch0)–(ch4) into identities
in S(L)op:

(ch0) Let i , j. Then hH ((r,—)i)⊓h((s,—) j) = hi(r,—)⊓h j(s,—) ≤ Si⊓S j = 0.

(ch1) Let r ≥ s. Then hH ((r,—)i)⊓hH ((—,s)i) = hi(r,—)⊓hi(—,s) = hi((r,—)∧ (—,s)) = hi(0) = 0.
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(ch2) Let r < s. Then hH ((r,—)i)⊔hH ((—,s)i) = hi(r,—)⊔hi(—,s) = hi((r,—)∨ (—,s)) = hi(1) = 1.

(ch3) hH ((r,—)i) = hi(r,—) = hi (
∨

s>r(s,—)) =
⊔

s>r h((s,—)i).

(ch4) Similar to (ch3).

Trivially, hH ◦πi = hi for all i ∈ I. The converse statement is an easy consequence of (ch0) and
the frame distributive law. �

We conclude with some immediate corollaries of Lemma 5.3.1, Proposition 5.3.4 and
Remark 5.3.3.

Corollary 5.3.5. Let L be a locale,H ⊆ F(L) a disjoint κ-family and hH be the compact hedgehog-
valued function provided by Proposition 5.3.4. Then:

(1) hH ∈ LSCκ(L) if and only if h ∈ LSC(L) for all h ∈H ;

(2) hH ∈ USCκ(L) if and only if h ∈ USC(L) for all h ∈H ;

(3) hH ∈ Cκ(L) if and only if h ∈ C(L) for all h ∈H .

Corollary 5.3.6. A κ-family {ai}i∈I ⊆ L is disjoint and consists of cozero elements of L if and only if
there is an f ∈ Cκ(L) such that ai =

∨
r∈Q f ((r,—)i) for all i ∈ I.

It is convenient to specialize the previous general results to the case of (extended)
characteristic functions. We recall that given a complemented sublocale S of a locale L, the
extended characteristic function χS ∈ F(L) (see [26, Example 2]) is defined by

χS(r,—) = S# and χS(—,r) = S, r ∈Q.

Obviously, χS ∈ LSC(L) (resp. χS ∈USC(L)) if and only if S is an open (resp. closed) sublocale.

Remark 5.3.7. A κ-family C = {Si}i∈I of complemented sublocales of L is pairwise disjoint in
S(L) if and only if the corresponding κ-family {χSi }i∈I of extended characteristic functions is
disjoint in the sense of Definition 5.3.2. Hence, by Proposition 5.3.4, such a family induces an
h ∈ Fκ(L) such that h◦πi = χSi for all i ∈ I. This h will be denoted by χC and we shall refer to
it as the characteristic function of the family C.

Finally, from Corollary 5.3.5 we obtain:

Corollary 5.3.8. Let L be a locale and C = {Si}i∈I a pairwise disjoint κ-family of complemented
sublocales of L. Then:

(1) χC ∈ LSCκ(L) if and only if each Si is open;

(2) χC ∈ USCκ(L) if and only if each Si is closed;

(3) χC ∈ Cκ(L) if and only if each Si is clopen.
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5.4 Extension results

We say that a disjoint κ-familyHS ⊆ C(S) can be disjointly extended to L if there is a disjoint
κ-familyH =

{
h | h ∈ HS

}
⊆ C(L) in which each h is a continuous extension of h. Further, a

locale L will be said to have the κ-disjoint extension property if for each a ∈ L every disjoint
κ-familyHc(a) ⊆ C(c(a)) can be disjointly extended to L. The following characterization of
the κ-disjoint extension property is a straightforward consequence of Lemma 5.3.1 (3) and
Proposition 5.3.4 (but see also Theorem 5.4.3 below for a Tietze-type result containing a
different characterization).

Proposition 5.4.1. The following are equivalent for a locale L:

(i) L has the κ-disjoint extension property;

(ii) For each a ∈ L, every f ∈ Cκ(c(a)) has an extension f ∈ Cκ(L).

Recall the notion of zc
κ-embedding from Subsection 3.4.1 of Chapter 3. We are now ready

to characterize it as a property about appropriate compact hedgehog-valued functions (see
Remark 3.4.2 (4)).

Lemma 5.4.2. The following are equivalent for a sublocale S ⊆ L:

(i) S is zc
κ-embedded in L;

(ii) For each f ∈Cκ(S), there is a 1 ∈Cκ(L) such that νS

(
1(
∨

r∈Q (r,—)i)
)
= f (
∨

r∈Q (r,—)i) for every
i ∈ I.

Proof. (i) =⇒ (ii): Let f ∈ Cκ(S). For each i ∈ I set

ai :=
∨

r∈Q
( f ◦πi)(r,—) =

∨
r∈Q

f ((r,—)i).

By Corollary 5.3.6, {ai}i∈I is a disjoint κ-family of cozero elements of S. Then, by assumption,
there is a disjoint family {bi}i∈I of cozero elements of L such that νS(bi) = ai for every i ∈ I.
Applying Corollary 5.3.6 to {bi}i∈I we get a 1 ∈ Cκ(L) such that bi =

∨
r∈Q 1((r,—)i). Finally,

νS

(∨
r∈Q 1((r,—)i)

)
= νS(bi) =

∨
r∈Q f ((r,—)i) for every i ∈ I.

(ii) =⇒ (i): Let {ai}i∈I be a disjoint κ-family of cozero elements of S, and take the f ∈ Cκ(S),
provided by Corollary 5.3.6, that satisfies ai =

∨
r∈Q f ((r,—)i) for all i ∈ I. By hypothesis, there

is a 1 ∈ Cκ(L) such that νS

(∨
r∈Q 1 ((r,—)i)

)
= ai for all i ∈ I. Set bi :=

∨
r∈Q 1((r,—)i) for each i ∈ I.

Clearly, {bi}i∈I is the claimed disjoint family. �

The following is the main result of this section and provides a Tietze-type theorem
for compact hedgehog valued functions that characterizes total κ-collectionwise normality
(recall Section 3.4 in Chapter 3).
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Theorem 5.4.3 (Tietze-type theorem for total κ-collectionwise normality). The following are
equivalent for a locale L:

(i) L is totally κ-collectionwise normal;

(ii) For each a ∈ L, every f ∈ Cκ(c(a)) has an extension f ∈ Cκ(L).

Proof. (i) =⇒ (ii): Let f ∈ Cκ(c(a)) and set ai :=
∨

r∈Q f ((r,—)i). By the previous lemma, there
is a 1 ∈ Cκ(L) such that a∨ bi = ai for every i ∈ I, where bi :=

∨
r∈Q 1 ((r,—)i). For each i ∈ I,

consider
h(i)

1 = f ◦πi : L(R)→ c(a) and h(i)
2 = 0 : L(R)→ c(bi)

(the latter defined by h(i)
2 (r,—) = bi and h(i)

2 (—,r) = 1 for every r ∈ Q). Let us show that
h(i)

1 (x)∨ bi = h(i)
2 (x)∨ a for every x ∈ L(R) by checking it for the generators of L(R). For each

r ∈Qwe have
a∨ bi ≤ h(i)

1 (r,—)∨bi = f ((r,—)i)∨ bi ≤ ai∨bi = a∨bi.

Hence h(i)
1 (r,—)∨ bi = a∨ bi = h(i)

2 (r,—)∨ a. On the other hand, pick some rational t < r and
conclude that

h(i)
1 (—,r)∨bi = (h(i)(—,r)∨ a)∨bi = f ((—,r)i)∨ (a∨ bi) = f ((—,r)i)∨ ai

≥ f ((—,r)i)∨ ai ≥ f ((—,r)i)∨ f ((t,—)i) = 1.

Hence h(i)
1 (—,r)∨bi = 1 = h(i)

2 (—,r)∨ a.

Consequently, by Proposition 3.4.6, there is a frame homomorphism hi : L(R)→ c(a∧bi),
such that ν1 ◦ hi = h(i)

1 and ν2 ◦ hi = h(i)
2 , where ν1 : c(a∧ bi)→ c(a) and ν2 : c(a∧ bi)→ c(bi) are

the associated surjections. Since L is normal (by Corollary 3.4.8), the standard point-free
version of Tietze’s extension theorem [92, Corollary XIV 7.6.1] yields a frame homomorphism
1i : L(R)→ L such that ν ◦ 1i = hi, where ν : L→ c(a∧ bi) is the corresponding surjection.
Observe that the family {1i}i∈I is disjoint since

1i(
∨

r∈Q
(r,—)) ≤ hi(

∨
r∈Q

(r,—)) ≤ h(i)
2 (
∨

r∈Q
(r,—)) = bi

and {bi}i∈I is disjoint. Therefore, consider the continuous hedgehog-valued function
h : L(cJ(κ))→ L defined by h◦πi = 1i for all i ∈ I (provided by Proposition 5.3.4 and Corol-
lary 5.3.5). This is the claimed extension. Indeed, denote by νc(a) : L→ c(a) the surjection
associated to c(a). Then

νc(a) ◦h◦πi = νc(a) ◦1i = ν1 ◦ν◦1i = ν1 ◦hi = h(i)
1 = f ◦πi,

and thus νc(a) ◦h = f follows from the uniqueness of Proposition 5.3.4.

(ii)=⇒ (i) is an immediate consequence of the implication (ii)=⇒ (i) in the previous lemma. �
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Corollary 5.4.4. The following are equivalent for a locale L:

(i) L is totally collectionwise normal;

(ii) For every κ ≥ 1 and a ∈ L, every f ∈ Cκ(c(a)) has an extension f ∈ Cκ(L).

We can give a new characterization of normality by combining the previous theorem
with Proposition 3.4.5:

Corollary 5.4.5. The following are equivalent for a locale L:

(i) L is normal;

(ii) For each a ∈ L, every f ∈ Cℵ0(c(a)) has an extension f ∈ Cℵ0(L).

5.5 Insertion results

We close this chapter with the corresponding Katětov-Tong-type insertion results for compact
hedgehog-valued functions.

Recall the partial order in C(L) in (1.6.1). We may extend it to Cκ(L) by defining, for any
f ,1 ∈ Cκ(L),

f ≤ 1 ⇐⇒ f ◦πi ≤ 1◦πi for every i ∈ I. (5.5.1)

Since Fκ(L) = Cκ(S(L)op), equation (5.5.1) describes in particular a partial order in Fκ(L),
explicitly given by

f ≤ 1 ⇐⇒ f (—,r)i ⊆ 1(—,r)i for all r ∈Q, i ∈ I ⇐⇒ 1(r,—)i ⊆ f (r,—)i for all r ∈Q, i ∈ I. (5.5.2)

This is our cardinal generalization of the Katětov-Tong insertion theorem:

Theorem 5.5.1. The following are equivalent for a locale L:

(i) L is normal;

(ii) For every κ ≥ 1, and every f ∈ USCκ(L) and 1 ∈ LSCκ(L) such that f ≤ 1, there exists an
h ∈ Cκ(L) such that f ≤ h ≤ 1;

(iii) There is a κ ≥ 1 such that for every f ∈USCκ(L) and 1 ∈ LSCκ(L) satisfying f ≤ 1, there exists
an h ∈ Cκ(L) such that f ≤ h ≤ 1.

Proof. (i) =⇒ (ii): Let κ ≥ 1, |I| = κ, f ∈ USCκ(L) and 1 ∈ LSCκ(L) with f ≤ 1 and i ∈ I. Then
f ◦πi ≤ 1◦πi in F(L), and f ◦πi ∈ USC(L) and 1◦πi ∈ LSC(L) (by Corollary 5.3.1). By the
standard point-free version of Katětov-Tong insertion theorem [63], there is an hi ∈ C(L) such
that f ◦πi ≤ hi ≤ 1◦πi. Since {1◦πi}i∈I is a disjoint family, then so is {hi}i∈I. Let h ∈Cκ(L) be the
function defined by h◦πi = hi for all i ∈ I (provided by Proposition 5.3.4 and Corollary 5.3.5).
Obviously, f ≤ h ≤ 1.
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(ii) =⇒ (iii) is obvious.

(iii) =⇒ (i): Let |I| = κ and fix some i0 ∈ I. Let a,b ∈ L such that a∨b = 1. Consider the pairwise
disjoint κ-families C = {Si}i∈I and D = {Ti}i∈I defined by Si0 = c(a), Ti0 = o(b) and Si =O = Ti

for every i , i0. By Corollary 5.3.8, χC ∈USCκ(L) and χD ∈ LSCκ(L). Moreover, since a∨b = 1
is equivalent to c(a) ⊆ o(b) in S(L), it follows that χC ≤ χD. Hence, there is an h ∈ Cκ(L) such
that χC ≤ h ≤ χD, from which it follows that χc(a) ≤ h◦πi0 ≤ χo(b). The normality of L follows
then from the standard point-free version of Urysohn’s Lemma (as e.g. in the formulation of
[63, Corollary 8.2]). �

We also have the following modified version which characterizes total κ-collectionwise
normality rather than normality.

Theorem 5.5.2. The following are equivalent for a locale L:

(i) L is totally κ-collectionwise normal;

(ii) For each a ∈ L and every f ∈ USCκ(c(a)) and 1 ∈ LSCκ(c(a)) such that f ≤ 1, there exists an
h ∈ Cκ(L) such that f ≤ νc(a) ◦h ≤ 1.

Proof. (i) =⇒ (ii): Suppose L is totally κ-collectionwise normal and consider a ∈ L. By
Corollary 3.4.8, L is normal, and so is c(a) (because normality is a closed-hereditary property).
Let f ∈USCκ(c(a)) and 1 ∈ LSCκ(c(a)) such that f ≤ 1. By Theorem 5.5.1, there is an h ∈Cκ(c(a))
such that f ≤ h ≤ 1. Then, since c(a) is also totally κ-collectionwise normal (by Lemma 3.4.10),
the conclusion follows readily from Theorem 5.4.3.

(ii) =⇒ (i): Let c(a) be a closed sublocale of L and let h ∈ Cκ(c(a)). Applying the insertion
condition to h ≤ h we get an h̄ ∈ Cκ(L) such that h ≤ νc(a) ◦ h̄ ≤ h. Of course, h = νc(a) ◦ h̄ is an
extension of h and the conclusion follows then from Theorem 5.4.3. �





Chapter 6

A relative view on the theory of
compact hedgehog-valued functions

As described in Chapter 3, the theory of sublocale selections is useful for unifying several
variants of normality and their duals. In this setting, upper and lower semicontinuous
(extended) real-valued functions are also dual to each other (see Appendix A). Now, in
view of Chapter 5, it is also natural to pursue a relative view on compact hedgehog-valued
functions. Observe that, unlike in the case of the extended reals, the generators (r,—)i and
(—,r)i do not play a symmetric role in the presentation of the frame of the compact hedgehog.
In the present chapter, we shall show that it is still possible to introduce relative variants of
upper and lower semicontinuity of compact hedgehog-valued functions in such a way that
they are dual to each other. Moreover, extension and insertion results generalizing those of
Chapter 5 and multiple corollaries are provided.

6.1 Relative semicontinuities

We now introduce relative counterparts of the semicontinuous and continuous compact
hedgehog-valued functions introduced in Section 5.3. Throughout this chapter, Fwill always
denote a sublocale selection (recall Section 3.1).

An f ∈ Fκ(L) will be called

• lower F-semicontinuous if for every r < s in Q and i ∈ I, there is an Fi
r,s ∈ F(L) such that

f ((s,—)i) ≤ Fi
r,s ≤ f ((r,—)i);

• upper F-semicontinuous if for every r < s in Q and i ∈ I, there is a Gi
r,s ∈ F(L) such that

f ((—,r)i) ≤ Gi
r,s ≤ f ((—,s)i);

• F-continuous if it is lower and upper F-semicontinuous.
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This defines the following subclasses of Fκ(L), respectively:

LSCFκ (L), USCFκ (L), and CFκ (L) = LSCFκ (L)∩USCFκ (L).

Recall that Fκ(L) is partially ordered (cf. (5.5.2)), hence so are LSCFκ (L), USCFκ (L) and CFκ (L).
The following results are all very easy to prove (cf. Lemma 5.3.1 and Corollaries 5.3.5 and
5.3.8); we omit the proofs:

Proposition 6.1.1. Let L be a locale and f ∈ Fκ(L). Then:

(1) f ∈ LSCFκ (L) if and only if f ◦πi ∈ LSC
F

(L) for all i ∈ I;

(2) f ∈ USCFκ (L) if and only if f ◦πi ∈ USC
F

(L) for all i ∈ I;

(3) f ∈ CFκ (L) if and only if f ◦πi ∈ C
F

(L) for all i ∈ I.

In particular, for F = Fc one recovers the notions from Section 5.3. Combining Propo-
sition 6.1.1 with Proposition A.1.1 we have that upper and lower semicontinuity are dual
notions:

Corollary 6.1.2. Let L be a locale and f ∈ Fκ(L). Then:

(1) f ∈ LSCFκ (L) if and only if f ∈ USCF
∗

κ (L);

(2) f ∈ CFκ (L) if and only if f ∈ CF
∗

κ (L).

Corollary 6.1.3. Let L be a locale,H ⊆ F(L) a disjoint κ-family and hH the compact hedgehog-valued
function provided by Proposition 5.3.4. Then:

(1) hH ∈ LSCFκ (L) if and only if h ∈ LSC
F

(L) for all h ∈H ;

(2) hH ∈ USCFκ (L) if and only if h ∈ USC
F

(L) for all h ∈H ;

(3) hH ∈ CFκ (L) if and only if h ∈ C
F

(L) for all h ∈H .

Proposition 6.1.4. Let L be a locale and C = {Si}i∈I a pairwise disjoint κ-family of complemented
sublocales. Then:

(1) χC ∈ LSCFκ (L) if and only if Si ∈ F
∗(L) for all i ∈ I;

(2) χC ∈ USCFκ (L) if and only if Si ∈ F(L) for all i ∈ I;

(3) χC ∈ CFκ (L) if and only if Si ∈ F(L)∩F∗(L) for all i ∈ I.
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6.2 Relative extension results

After this preparation, we may now prove a generalized extension result for selections closed
under countable meets and finite joins — i.e., a cardinal extension of Theorem A.3.1.

Theorem 6.2.1. Let F be closed under countable meets and finite joins. The following are equivalent
for a cardinal κ and a locale L on which F is hereditary and Katětov:

(i) L is an F-zc
κ frame;

(ii) For each S ∈ F(L), every f ∈ CFκ (S) has an extension f ∈ CFκ (L).

Proof. (i) =⇒ (ii): Let f ∈ CFκ (S) and for each i ∈ I set Si :=
⋂

r∈Q( f ◦πi)(r,—). Then {Si}i∈I is a
disjoint family of F-zero sublocales of S. Since S ∈ F(L) is F-zc

κ-embedded, there is a disjoint
family {Ti}i∈I of F-zero sublocales of L such that Ti∩S = Si for every i ∈ I. For each i ∈ I, set

h(i)
1 := f ◦πi ∈ C

F
(S) and consider the extended real valued function h(i)

2 ∈ F(Ti) defined by

h(i)
2 (r,—) = Ti = 0S(Ti)op , and h(i)

2 (—,r) =O = 1S(Ti)op

for every r ∈Q. Trivially, h(i)
2 ∈C

F
(Ti) (as 1S(Ti)op ,0S(Ti)op ∈ F(Ti)). Let us show that h(i)

1 (x)∩Ti =

h(i)
2 (x)∩S for all x ∈ L(R) by showing it for the generators of L(R). For any (r,—) we have

Si ⊆ ( f ◦πi)(r,—) ⊆ S and thus S∩Ti = Si∩Ti ⊆ ( f ◦πi)(r,—)∩Ti ⊆ S∩Ti. Hence

h(i)
1 (r,—)∩Ti = S∩Ti = h(i)

2 (r,—)∩S.

Further, for any (—,r) select t ∈Q such that t < r; we then have

h(i)
1 (—,r)∩Ti = h(i)

1 (—,r)∩S∩Ti = h(i)
1 (—,r)∩Si ⊆ h(i)

1 (—,r)∩h(i)
1 (t,—) = h(i)

1 ((—,r)∨ (t,—)) =O.

Hence h(i)
1 (—,r)∩Ti = O = h(i)

2 (—,r)∩S. We may therefore apply Lemma 3.4.6 to conclude
that for each i ∈ I there is a hi ∈ F(S∨Ti) given by hi(x) = h(i)

1 (x)∨h(i)
2 (x) for all x ∈ L(R). Now,

because of the hereditary property and the fact that F is closed under finite joins, it follows
easily that hi is F-continuous.

Since L is F-normal (by Corollary 3.4.18) and F is a Katětov and hereditary selection on
L, closed under countable meets and finite joins, we may apply [69, Theorem 8.6] (see also

Theorem A.3.1) and obtain frame homomorphisms 1i ∈ C
F

(L) such that 1i(x)∩ (S∨Ti) = hi(x)
for all x ∈ L(R). Note that {1i}i∈I is a disjoint family. Indeed, for each i , j,

1i

(∨
r∈Q

(r,—)
)
∨1 j

(∨
r∈Q

(r,—)
)
⊇ hi

(∨
r∈Q

(r,—)
)
∨h j

(∨
r∈Q

(r,—)
)

⊇ h(i)
2

(∨
r∈Q

(r,—)
)
∨h( j)

2

(∨
r∈Q

(r,—)
)
= Ti∨T j = L.

Now consider the h ∈ Fκ(L) defined by h◦πi = 1i for all i ∈ I (recall Proposition 5.3.4), which
is F-continuous by virtue of Corollary 6.1.3. We claim that h is the desired extension.
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We need to check that h(x)∩S = f (x) for all x ∈ L(cJ(κ)) by showing it for the generators
of L(cJ(κ)). For any (r,—)i we have

S∩1i(r,—) = S∩ (S∨Ti)∩1i(r,—) = S∩hi(r,—) = h(i)
1 (r,—)∨ (S∩h(i)

2 (r,—))

= ( f ◦πi)(r,—)∨ (S∩Ti) = ( f ◦πi)(r,—)∨Si = ( f ◦πi)(r,—).

Hence h((r,—)i)∩S = 1i(r,—)∩S = f ((r,—)i). Furthermore, for any (—,r)i,

S∩1i(—,r) = S∩ (S∨Ti)∩1i(—,r) = S∩hi(—,r) = h(i)
1 (—,r)∨ (S∩h(i)

2 (—,r))

= ( f ◦πi)(—,r)∨ (S∩O) = ( f ◦πi)(—,r)∨O = ( f ◦πi)(—,r).

Hence h((—,r)i)∩S = 1i(—,r)∩S = f ((—,r)i).

(ii) =⇒ (i): Let S ∈ F(L) and let {Si}i∈I be a disjoint family of F-zero sublocales of S. Then

for each i ∈ I there is an fi ∈ C
F

(S) such that fi(
∨

r∈Q(r,—)) = Si. Let f ∈ Fκ(S) be the unique
frame homomorphism such that f ◦πi = fi for all i ∈ I. By Corollary 6.1.3, f ∈ CFκ (S). Then,
by assumption, there is an F-continuous extension f ∈ CFκ (L) of f . Set Ti := f (

∨
r∈Q(r,—)i) for

each i ∈ I. It is clear that {Ti}i∈I is the desired disjoint family of F-zero sublocales. �

As a particular case, we obtain Theorem 5.4.3. Other sublocale selections are not generally
hereditary, but the theorem may still be applicable. For instance, considering the family Fz

one obtains a cardinal extension of the well-known classical fact that zero subspaces are
z-embedded if and only if they are C∗-embedded (see [2, Corollary 7.5]):

Corollary 6.2.2. The following are equivalent for a locale L:

(i) L is an Fz-zc
κ frame (i.e., every zero sublocale is zc

κ-embedded);

(ii) For every cozero element a ∈ L, every f ∈ Cκ(c(a)) has a continuous extension f ∈ Cκ(L).

Proof. The proof of the implication (ii) =⇒ (i) in Theorem 6.2.1 does not require the selection
to be hereditary, hence (ii) =⇒ (i) follows. Now, assume (i) holds. In particular, every zero
sublocale of L is z-embedded; but, as we noted in Section 3.2, this is equivalent to the family
Fz being hereditary on L. Thus we may apply Theorem 6.2.1. �

One may also attempt a “dual” extension theorem — i.e., a cardinal generalization of
Theorem 3.2.2. Since we shall need specific results for the selection F∗c (cf. Subsection 3.4.5)
we content ourselves with the case F∗c:

Theorem 6.2.3. The following are equivalent for a locale L:

(i) L is extremally disconnected;

(ii) For every κ ≥ 1 and a ∈ L, every f ∈ Cκ(o(a)) has a continuous extension f ∈ Cκ(L);

(iii) There is a κ ≥ 1 such that for every a ∈ L, every f ∈ Cκ(o(a)) has a continuous extension
f ∈ Cκ(L).
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Proof. (i)=⇒ (ii): For each i ∈ I, set h(i)
1 := f ◦πi ∈C(o(a)) and consider the extended real valued

function h(i)
2 ∈ C(o(b∗i )) defined by

h(i)
2 (r,—) = 0o(b∗i ) = b∗∗i and h(i)

2 (—,r) = 1

for every r ∈Q. Let us show that h(i)
1 (x)∧ a∧b∗i = h(i)

2 (x)∧ a∧ b∗i for all x ∈ L(R) by showing it
for the generators of L(R). For each r ∈Qwe have

h(i)
1 (r,—)∧ a∧ b∗i ≤ ai∧ a∧ b∗i = 0 = h(i)

2 (r,—)∧ a∧b∗i .

Moreover, by (r1) one has ( f ◦πi)(—,r)∨ ai = 1 and therefore

a∧b∗i ≤ ( f ◦πi)(—,r)∨ (a∧ b∗i ∧ ai) = h(i)
1 (—,r).

Hence
h(i)

1 (—,r)∧ a∧ b∗i = a∧b∗i = h(i)
2 (—,r)∧ a∧b∗i .

Consequently, by [95, 3.2, 3.3] there is an hi ∈ C(o(a∨ b∗i )) given by

hi(x) = (h(i)
1 (x)∧ a)∨ (h(i)

2 (x)∧ b∗i )

— i.e., hi(r,—) = ( f ◦πi)(r,—)∧ a and hi(—,r) = (( f ◦πi)(—,r)∧ a)∨ b∗i for every r ∈ Q, which
extends h(i)

1 and h(i)
2 . By Corollary 3.2.3, for each i ∈ I there is a 1i ∈ C(L) which extends hi (i.e.,

satisfying νo(a∨b∗i )
◦1i = hi). Let us check that the family {1i}i∈I is disjoint:

1i

(∨
r∈Q

(r,—)
)
∧1 j

(∨
s∈Q

(s,—)
)
≤ hi

(∨
r∈Q

(r,—)
)
∧h j

(∨
s∈Q

(s,—)
)

= ( f ◦πi)
(∨

r∈Q
(r,—)

)
∧ ( f ◦π j)

(∨
s∈Q

(s,—)
)
∧ a

= ai∧ a j∧ a = a∗∧ a = 0.

For each i ∈ I, 1i extends hi, and the latter extends h(i)
1 = f ◦πi, hence 1i extends f ◦πi. Therefore

the function f ∈Cκ(L) given by f ◦πi = 1i extends f : indeed, note that νo(a) ◦ f ◦πi = νo(a) ◦1i =

f ◦πi and use the uniqueness clause of Proposition 5.3.4.

(ii) =⇒ (iii) is trivial.

(iii) =⇒ (i) is similar to (ii) =⇒ (i) in Theorem 3.2.2. �

6.3 Relative insertion results

We may now easily prove a generalized insertion result for compact hedgehog-valued
functions (cf. Theorem 5.5.1):
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Theorem 6.3.1. The following are equivalent for any locale L such that F is a Katětov selection on L
and L ∈ F(L)∩F∗(L):

(i) L is F-normal;

(ii) For every κ ≥ 1, and every f ∈ USCFκ (L) and 1 ∈ LSCFκ (L) such that f ≤ 1, there exists an
h ∈ CFκ (L) such that f ≤ h ≤ 1;

(iii) There is a κ ≥ 1 such that for every f ∈USCFκ (L) and 1 ∈ LSCFκ (L) satisfying f ≤ 1, there exists
an h ∈ CFκ (L) such that f ≤ h ≤ 1.

Proof. (i) =⇒ (ii): Let κ ≥ 1, |I| = κ, f ∈ USCFκ (L) and 1 ∈ LSCFκ (L) with f ≤ 1 and i ∈ I. Then,

by Corollary 6.1.1, f ◦πi ≤ 1 ◦πi in F(L) with f ◦πi ∈ USC
F

(L) and 1 ◦πi ∈ LSC
F

(L). By

[69, Theorem 7.1] (or Theorem A.2.2), there is an hi ∈ C
F

(L) such that f ◦πi ≤ hi ≤ 1 ◦πi.
Since {1◦πi}i∈I is a disjoint family, then so is {hi}i∈I. Let h ∈ CFκ (L) be the function given by
Corollary 6.1.3 (defined by h◦πi = hi for every i ∈ I). It satisfies f ≤ h ≤ 1, as claimed.

(ii) =⇒ (iii) is obvious.

(iii) =⇒ (i): Let |I| = κ and fix some i0 ∈ I. Let S,T ∈ F(L) such that S∩T =O. Define pairwise
disjoint κ-families C = {Si}i∈I and D = {Ti}i∈I by Si0 = S, Ti0 = T# and Si = O = Ti for i , i0.
By Proposition 6.1.4 (and the fact that O and L belong to F(L)), one has χC ∈ USCFκ (L) and
χD ∈ LSCFκ (L). Moreover, χC ≤ χD, since S ⊆ T#. Hence, there exists h ∈ CFκ (L) such that
χC ≤ h ≤ χD, from which it follows in particular that χS ≤ h◦πi0 ≤ χT# . Let A,B ∈ F(L) such
that

(h◦πi0)(1,—) ⊆ A ⊆ (h◦πi0)(2,—) and (h◦πi0)(—,1) ⊆ B ⊆ (h◦πi0)(—,0).

Then

A∨B ⊇ (h◦πi0)((1,—)∧ (—,1)) = L and S∩A = χS(—,3)∩A ⊆ (h◦πi0)((—,3)∨ (2,—)) =O.

Similarly, T∩B =O. �

Note that the particular case F = Fc yields immediately Theorem 5.5.1. In the case F = Fz

we obtain a point-free cardinal generalization of a classical result of Blatter and Seever [36].

Corollary 6.3.2. Let L be a locale and κ ≥ 1. Then for every upper zero-semicontinuous f ∈ Fκ(L)
and every lower zero-semicontinuous 1 ∈ Fκ(L) such that f ≤ 1, there exists an h ∈ Cκ(L) such that
f ≤ h ≤ 1.
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For F = Fδreg we obtain a cardinal generalization of a result whose classical counterpart
we have not found in the literature.

Corollary 6.3.3. The following are equivalent for a locale L:

(i) L is δ-normal;

(ii) For every κ ≥ 1, and every upper regular-semicontinuous f ∈ Fκ(L) and every lower regu-
lar-semicontinuous 1 ∈ Fκ(L) such that f ≤ 1, there exists an h ∈ Cκ(L) such that f ≤ h ≤ 1;

(iii) There is a κ ≥ 1 such that for every upper regular-semicontinuous f ∈ Fκ(L) and lower
regular-semicontinuous 1 ∈ Fκ(L) satisfying f ≤ 1, there exists an h ∈Cκ(L) such that f ≤ h≤ 1.

Similarly, for F = Freg we obtain a cardinal extension of a classical result by Lane [85].

Corollary 6.3.4. The following are equivalent for a locale L:

(i) L is mildly normal;

(ii) For every κ ≥ 1, and every upper normal-semicontinuous f ∈ Fκ(L) and every lower nor-
mal-semicontinuous 1 ∈ Fκ(L) such that f ≤ 1, there exists an h ∈ Cκ(L) such that f ≤ h ≤ 1;

(iii) There is a κ ≥ 1 such that for every upper normal-semicontinuous f ∈ Fκ(L) and lower
normal-semicontinuous 1 ∈ Fκ(L) satisfying f ≤ 1, there exists an h ∈Cκ(L) such that f ≤ h≤ 1.

Proof. Recall that Freg is a Katětov selection on any mildly normal locale (see Example A.2.1).
Moreover, note that the proof of implication (iii) =⇒ (i) in Theorem 6.3.1 does not need F to
be Katětov. �

We may also apply Theorem 6.3.1 to the dual sublocale selections (cf. Proposition 6.1.2).
Combining the cases F = F∗c and F = F∗reg we have the following cardinal generalization of a
classical result by Lane [86] and of the point-free version of Stone’s insertion theorem [64].

Corollary 6.3.5. The following are equivalent for a locale L:

(i) L is extremally disconnected;

(ii) For every κ ≥ 1, and every f ∈ LSCκ(L) and 1 ∈ USCκ(L) such that f ≤ 1, there exists an
h ∈ Cκ(L) such that f ≤ h ≤ 1;

(iii) There is a κ ≥ 1 such that for every f ∈ LSCκ(L) and 1 ∈USCκ(L) satisfying f ≤ 1, there exists
an h ∈ Cκ(L) such that f ≤ h ≤ 1;

(iv) For every κ ≥ 1, and every lower normal-semicontinuous f ∈ Fκ(L) and upper normal-semicon-
tinuous 1 ∈ Fκ(L) such that f ≤ 1, there exists an h ∈ Cκ(L) such that f ≤ h ≤ 1;

(v) There is a κ ≥ 1 such that for every lower normal-semicontinuous f ∈ Fκ(L) and upper
normal-semicontinuous 1 ∈ Fκ(L) satisfying f ≤ 1, there exists an h ∈Cκ(L) such that f ≤ h≤ 1.
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For F = F∗z, we obtain a point-free cardinal generalization of a classical result by Seever
[107].

Corollary 6.3.6. The following are equivalent for a locale L:

(i) L is an F-frame;

(ii) For every κ ≥ 1, and every lower zero-semicontinuous f ∈ Fκ(L) and every upper zero-semicon-
tinuous 1 ∈ Fκ(L) such that f ≤ 1, there exists an h ∈ Cκ(L) such that f ≤ h ≤ 1;

(iii) There is a κ ≥ 1 such that for every lower zero-semicontinuous f ∈ Fκ(L) and every upper
zero-semicontinuous 1 ∈ Fκ(L) satisfying f ≤ 1, there exists an h ∈ Cκ(L) such that f ≤ h ≤ 1.

Finally, for F = F∗δreg we obtain a cardinal extension of a result whose classical counterpart
we have not been able to find in the literature:

Corollary 6.3.7. The following are equivalent for a locale L:

(i) L is an extremally δ-disconnected frame;

(ii) For every κ ≥ 1, and every lower regular-semicontinuous f ∈ Fκ(L) and every upper regu-
lar-semicontinuous 1 ∈ Fκ(L) such that f ≤ 1, there exists an h ∈ Cκ(L) such that f ≤ h ≤ 1;

(iii) There is a κ ≥ 1 such that for every lower regular-semicontinuous f ∈ Fκ(L) and every upper
regular-semicontinuous 1 ∈ Fκ(L) satisfying f ≤ 1, there exists an h ∈Cκ(L) such that f ≤ h≤ 1.



Chapter 7

The Boolean algebra of smooth
sublocales

7.1 Introduction

A major difference between the category of topological spaces and the category of locales is
the nature of their lattices of regular subobjects. Whereas in the former they constitute very
special lattices — complete and atomic Boolean algebras — in the latter they are coframes.
Hence, subobject lattices in Loc are more complicated objects and they comprise one of the
fundamental areas of study in locale theory. Accordingly, if L is a locale, the locale S(L)op can
be regarded from two quite opposing points of view:

(1) As a sort of “discrete version” of L. Quoting Johnstone [81]:

We may think of Xd as playing a role in locale theory analogous to that of the discrete
modification of a space X (that is, the space obtained by retopologizing the underlying
set of X with the discrete topology).

This idea has been extensively and successfully used for obtaining a pleasant theory of
real-valued functions in point-free topology (see e.g. [63, 56, 61, 67, 26, 68, 69, 14]).

(2) As a locale in its own right which will contain some amount of information of L itself (cf.
for example the well-known fact that a locale L is totally spatial if and only if S(L)op is
spatial [90]).1

Of course, these two viewpoints can arise simultaneously. For example, we shall see
that the system Sb(L) consisting of smooth sublocales is useful for detecting whether L is
TD-spatial; but, on the other hand, Sb(L) can also be proved to be a discretization of L (and, in
fact, typically “more discrete” than S(L)op), see Section 7.6 below. Actually, the system Sb(L)

1Clearly, we cannot expect the coframe S(L) to contain all of the information of L: the non-Boolean Sierpinski
locale and the 4-element Boolean algebra have isomorphic coframes of sublocales.

111
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will allow us to present an alternative description of arbitrary compact hedgehog-valued
functions without affecting the treatment of semicontinuities from Chapter 5.

In particular, following viewpoint (2), we may study subcolocales of S(L). A systematic
study of some of these families of sublocales will hopefully lead to a better understanding
of the complex lattice S(L). Chapters 7 and 8 are devoted to the study of two important
subcolocales of S(L): the system of smooth sublocales (which, in the subfit case, has enjoyed
some attention recently) and the system of D-sublocales. Moreover, this study will be largely
carried out in parallel: e.g. their connection with the TD axiom, or functoriality properties.

After that, in Chapter 9, we relate these subcolocales to other known ones; and we will
see that inclusions between these systems actually characterize well-known and interesting
properties of the locale in question (among others, spatiality, total spatiality, TD-spatiality,
total TD-spatiality, being a T1-locale, etc.).

Most of the material presented in this chapter is contained in the article [5], but the
contents of Subsection 7.7.4 are a joint work with Javier Gutiérrez García [6]:

[5] I. Arrieta, On joins of complemented sublocales, Algebra Universalis, vol. 83, art. no. 1,
2022.

[6] I. Arrieta and J. Gutiérrez García, On the categorical behaviour of locales and D-localic
maps, Quaestiones Mathematicae, accepted for publication.

However, some other additional results have also been included in this thesis (for example
Subsection 7.6.1 is new and so are some of the results in Section 7.7).

7.2 Preliminaries about Sc(L)

If L is a locale, denote by Sc(L) the subset of S(L) consisting of joins of closed sublocales —
i.e.,

Sc(L) =
{ ∨

a∈A
c(a) | A ⊆ L

}
,

endowed with the inclusion order inherited from S(L). Clearly, the subset Sc(L) is closed
under the formation of arbitrary joins in S(L) and is therefore a complete lattice (cf. [100]).
Actually, Picado, Pultr and Tozzi showed in [100, 2.3] that, somewhat surprisingly, Sc(L) is
always a frame. Moreover, for a large class of frames, Sc(L) turns out to be Boolean. Indeed,
one of the main results from [100] reads as follows:

Theorem 7.2.1 ([100, Theorem 3.5]). The following are equivalent for a locale L:

(i) L is subfit;

(ii) Sc(L) is a Boolean algebra;

(iii) Sc(L) is the Booleanization of S(L);

(iv) Sc(L) is a subcolocale of S(L).
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For an L = Ω(X), the coframe S(L) contains typically more sublocales than those induced
by X (cf. Section 1.2). However, for the T1-spatial case, the smaller Sc(L) consists precisely of
the induced sublocales:

Theorem 7.2.2 ([100, Theorem 4.5]). If X is a T1-space, then Sc(Ω(X)) �P(X).

In light of the last two results, the frame Sc(L) has subsequently attracted attention in
point-free topology. Let us mention for example the following aspects:

• the naturality of the construction as a maximal essential extension in the category of
frames [19];

• its role as a discretization of L for modeling not necessarily continuous real-valued
functions (conservatively in the class of T1-spaces) [94];

• its (non-) functoriality properties [17];

• as a useful tool for studying several (conservative) point-free extensions of classical
topological properties [49].

All of the applications listed above have been carried out under the assumption that L is
subfit (i.e., that Sc(L) is Boolean). Throughout this chapter, we shall systematically investigate
the Booleanization of S(L) for an arbitrary L and extend the results listed above to this more
general setting. In particular, we shall emphasize in Subsection 7.6.1 its role as a discrete
cover of locales thus yielding a conservative theory of (not necessarily continuous) localic
hedgehog-valued functions .

7.3 The Boolean algebra of smooth sublocales

7.3.1 Smooth sublocales

We start by recalling that a sublocale S of L is said to be locally closed if it is of the form
S = o(a)∩ c(b) for some a,b ∈ L. Moreover, following Isbell [72], a sublocale S is said to
be smooth if it is a join of complemented sublocales in L. Moreover, any complemented
sublocale is a join of locally closed sublocales. Indeed, if S is a complemented sublocale, then
S# =

⋂
i c(ai)∨o(bi) for some ai,bi ∈ L. Thus

S = S## =
∨
i

(c(ai)∨o(bi))# =
∨
i
o(ai)∩ c(bi).

Hence,

a sublocale is smooth if and only if it is a join of locally closed sublocales.

We denote by Sb(L) the subset of S(L) consisting of smooth sublocales — i.e.,

Sb(L) =
{ ∨

a∈A,b∈B
c(a)∩o(b) | A,B ⊆ L

}
.
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The system Sb(L) will be the main object of study of this chapter, and we shall always
consider it endowed with the ordering inherited from S(L), that is, inclusion between
sublocales.

7.3.2 The Boolean algebra Sb(L)

Observe that complemented elements of a locale are always regular, and meets of regular
elements are regular, consequently any meet of complemented elements is regular. Moreover:

Lemma 7.3.1. Any regular element of a zero-dimensional frame is a meet of complemented elements.

Proof. Let L be a zero-dimensional frame and a = b∗ for some b ∈ L. Then there exists a family
{ci}i∈I of complemented elements such that b =

∨
i ci. By the first De Morgan law (FDM),

a = b∗ = (
∨

i ci)∗ =
∧

i c∗i =
∧

i cc
i . �

Corollary 7.3.2. Let L be a zero-dimensional frame. Then the Booleanization BL of L is precisely the
set of all meets of complemented elements.

Since S(L)op is a zero-dimensional frame, we immediately obtain the following:

Corollary 7.3.3. The Booleanization subcolocale of S(L) is precisely Sb(L) — i.e., one has

Sb(L) = {S ∈ S(L) | S = S##
}.

Recall from Theorem 7.2.1 that L is subfit if and only if the Booleanization of S(L) is Sc(L).
Combining this with the previous corollary yields the following:

Corollary 7.3.4. L is subfit if and only if Sc(L) = Sb(L).

Remark 7.3.5. Since Sb(L) is a subcolocale of S(L), it is closed under arbitrary joins and the
co-Heyting operator in S(L). However, it is generally not closed under meets. Consequently,
in this chapter we shall denote by ∧Sb(L) (or just by ∧, when there is no danger of confusion)
the meet operation in Sb(L).

Nevertheless, in one important case meets in Sb(L) are just intersections: if C is a
complemented sublocale and S ∈ Sb(L), we have C∧S = C∩S. Indeed, if S =

∨
i Ci with each

Ci complemented, then one has C∩S = C∩
∨

i Ci =
∨

i C∩Ci ∈ Sb(L) because of the linearity
from (1.2.3).

7.3.3 Categorical characterization of smoothness

Perhaps somewhat surprisingly, smooth sublocales can be characterized purely in categorical
terms: they are precisely the sublocales (=regular subobjects in Loc) S of L such that surjections
(=epimorphisms in Loc) are stable under pulling back along the inclusion S ↪→ L. Since we
have not found this result in the literature, we devote the present subsection to proving it.

Firstly, we need to recall the following Frobenius-type formula which holds in the category
of locales.
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Proposition 7.3.6 ([113, Proposition 1.4]). Let f : L→M be a localic map, let C be a complemented
sublocale of M and let S be an arbitrary sublocale of L. Then, f [S∩ f−1[C]] = f [S]∩C. In particular,
if f is a surjection, f [ f−1[C]] = C for every complemented C ⊆M — that is, arbitrary surjections are
pullback-stable along complemented inclusions.

We can now give our characterization of smooth sublocales:

Proposition 7.3.7. Let L be a locale and S ∈ S(L). Then the following are equivalent:

(1) S is smooth;

(2) for every surjection f : M� L in Loc, f [ f−1[S]] = S.

Proof. (1) =⇒ (2): The inclusion ⊆ follows by the adjunction f [−] ⊣ f−1[−]. Let us now show
the inclusion S ⊆ f [ f−1[S]]. By zero-dimensionality of S(L)op write f [ f−1[S]] =

⋂
i Ci for a

suitable family {Ci}i∈I of complemented sublocales, and by smoothness write S =
∨

j D j

for a suitable family {D j} j∈J of complemented sublocales. Let i ∈ I and j ∈ J. One has
f [ f−1[D j]] ⊆ f [ f−1[S]] ⊆ Ci and by Proposition 7.3.6 the left-hand side equals D j. Hence we
have D j ⊆ Ci for each i ∈ I and j ∈ J, that is, S =

∨
j D j ⊆

⋂
j Ci = f [ f−1[S]].

(2) =⇒ (1): Let S be a sublocale satisfying the property. By looking at the left adjoint frame
homomorphisms, we see that the composite localic map

p : Sb(L)op S(L)op Lι c∗

is a surjection (observe that ι∗(S) = S##, see Subsection 1.2.4). Now, we have

p−1[S] = ι−1[c∗−1[S]] = ι−1[c(S)] = Sb(L)op
∩ c(S) = {T ∈ Sb(L) | T ⊆ S }

= {T ∈ Sb(L) | T ⊆ S##
} = Sb(L)op

∩ c(S##) = p−1[S##].

By adjunction we therefore have p[p−1[S]] ⊆ S## and by assumption the left-hand side equals
S. Therefore S ⊆ S## and S is smooth. �

7.4 Relating Sb(L) and Sc(L)

As we mentioned in Section 7.2 the system Sc(L) is always a frame. However, the rather
technical proof from [100] may somehow obscure the geometric intuition. Here we present
an alternative and more direct proof based on Sb(L).

First, note that we have the inclusion Sc(L) ⊆ Sb(L). Moreover this inclusion preserves
arbitrary joins, since joins in both of them are just joins is S(L) — i.e., we have the following
chain of suplattice embeddings:

Sc(L) ⊆ Sb(L) ⊆ S(L).

In fact we have more:
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Theorem 7.4.1. Sc(L) is a subframe of Sb(L). In particular, it is a frame.

Proof. The only point remaining is to show that Sc(L) is closed under binary meets in Sb(L).
Let S =

∨
i c(ai) and T =

∨
j c(b j) in Sc(L). Then

S = (
⋂
i
o(ai))# and T = (

⋂
j
o(b j))#

and their meet in Sb(L) is given by the formula S∧Sb(L) T = (S∩T)## = (S#
∨T#)# (see Subsec-

tion 1.2.4 for the dual of this general fact on the Booleanization for frames). Thus

S∧Sb(L) T = (S#
∨T#)# = ((

⋂
i o(ai))##

∨ (
⋂

j o(b j))##)# = (
⋂

i, j o(ai∨ b j))### =
∨

i, j c(ai∨ b j),

where the third equality follows from the fact that in a coframe double supplements commute
with finite joins (cf. Proposition 4.1.1 (1)) and from the coframe distributivity of S(L). Hence
the meet of S and T in Sb(L) lies in Sc(L) and so it is also their meet in Sc(L). �

7.5 Connections with TD-spatiality

7.5.1 Computing Sb(Ω(X)) for a TD-space X

For a T1-space X, we have an isomorphism Sc(Ω(X)) �P(X) (see [100]). With our Sb(L), we
can extend the result to the TD case.

If A is a subspace of a topological space X, let us denote by Ã the corresponding induced
sublocale in S(Ω(X)) (recall Section 1.2).

Lemma 7.5.1. Let X be a TD-space. The map π : P(X) −→ S(Ω(X)) given by π(A) = Ã restricts
to an isomorphism P(X) −→ Sb(Ω(X)) — i.e., classical subspaces correspond precisely to smooth
sublocales.

Proof. It is well known that π is injective if and only if X is TD (see [92, VI 1.2]) and that π
always preserves joins (see e.g. [99, p. 66]). The only task remaining is to show that the
image of π coincides with Sb(Ω(X)).

Let A ⊆ X. Then we have

π(A) = Ã =
⋃̃

x∈A
{x} =

∨
x∈A
{̃x} =

∨
x∈A
b(X−{x}),

so by Lemmas 1.3.4 and 1.3.3, one has π(A) ∈ Sb(Ω(X)). Finally, if S ∈ Sb(Ω(X)), we have
S =
∨

i Ci with Ci complemented. But it is well known that complemented sublocales are
always induced — i.e., Ci = π(Ai) for suitable Ai ⊆ X. Hence S = π(

⋃
i Ai). �

7.5.2 More on TD-spatiality

More interestingly, the converse of the previous lemma also holds.
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Theorem 7.5.2. The following are equivalent for a locale L:

(i) L is TD-spatial;

(ii) The mapm : P(ptD(L))→ Sb(L) which sends Y ⊆ ptD(L) to
∨

p∈Y b(p) is an isomorphism (whose
inverse ptD : Sb(L)→P(ptD(L)) sends S ∈ Sb(L) to ptD(S));

(iii) There exists an isomorphism Sb(L) �P(ptD(L));

(iv) Sb(L) is atomic (i.e., it is spatial).

Proof. (i) =⇒ (ii): Let L =Ω(X) with X a TD-space. The map X→ ptD(Ω(X)) = {X−{x} | x ∈X }
given by x 7→ X−{x} is a bijection because it is the unit of the adjunction (1.3.1). Hence this
implication is just a re-statement of Lemma 7.5.1.

(ii) =⇒ (iii) and (iii) =⇒ (iv): These implications are trivial.

(iv) =⇒ (i): Because of Properties 1.2.3 (2) and (5), the set of prime elements of Sb(L)op is
precisely the set of sublocales b(p) (with p prime in L) contained in Sb(L). But a two-element
sublocale is complemented as soon as it belongs to Sb(L) (indeed, if {1,p } =

∨
i Ci with each

Ci complemented, then there is a Ci , O and hence Ci = {1,p }). Accordingly, by virtue of
Lemma 1.3.3 we have that prime elements of Sb(L)op are precisely the b(p) with p covered in
L.

Since Sb(L)op is spatial, each smooth sublocale is a meet of primes in Sb(L)op. In particular,
for each a ∈ L,

c(a) =
Sb(L)op∧

i
b(pi) =

∨
i
b(pi)

for a suitable family {pi}i∈I of covered primes in L. Hence a =
∧

i xi with xi ∈ b(pi) = {1,pi } for
each i ∈ I. We have therefore shown that every element of L is a meet of covered primes. The
result now follows from Lemma 1.3.6. �

7.6 Sb(L) as a discrete cover of L

First, we note that L is always embedded as a subframe in Sb(L)

Lemma 7.6.1. There is an injective frame homomorphism oL : L→ Sb(L) which sends a ∈ L to oL(a).
Moreover, this map oL is an epimorphism in Frm.

Proof. Clearly, oL is a frame homomorphism since it is the composite of the canonical
embedding of L into S(L)op followed by the quotient of S(L)op onto its Booleanization and by
complementation in the Boolean algebra Sb(L):

L S(L)op Sb(L)op Sb(L)
cL (−)## (−)#(∼)

The fact that it is an epimorphism follows easily from the fact that frame homomorphisms
commute with complements. �
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The map oL : L� Sb(L) is in fact of a quite canonical nature: it can be characterized as
the maximal essential extension of L in the category of frames (this follows readily by an
application of [19, Proposition 4.3]). For a more detailed account on this notion we refer to
[19], cf. also [33].

If instead we look at the localic side, the right adjoint (oL)∗ : Sb(L)op� L is a surjection of
locales; and can thus be regarded as a “discrete cover” of the locale L; similar to the canonical
surjection (cL)∗ : S(L)op� L, but this time more discrete.

Following the spirit in [94], the viewpoint of Sb(L) as a “discrete cover” can be usefully
exploited for dealing with an alternative representation of real-valued (or more generally
hedgehog-valued) localic maps, as we show in the next subsection.

7.6.1 An application: another representation of hedgehog-valued functions

Let
F′κ(L) = Frm(L (J(κ)) ,Sb(L)).

Since F′κ(L) = Cκ(Sb(L)), it is partially ordered with the ordering from (5.5.1). Explicitly, for
f ,1 ∈ F′κ(L) we have

f ≤ 1 ⇐⇒ f ((r,—)i)⊆ 1((r,—)i) for all i ∈ I, r ∈Q ⇐⇒ 1((—,r)i)⊆ f ((—,r)i) for all i ∈ I, r ∈Q.

Frame homomorphisms in F′κ(L) can be regarded as an alternative representation of localic
hedgehog-valued maps on L.

Moreover, in view of this representation, it is natural to formulate also alternative notions
of lower resp. upper semicontinuity. More precisely, set

LSC′κ(L) = { f ∈ F′κ(L) | f ((r,—)i) is an open sublocale for all r ∈Q and i ∈ I }

and
USC′κ(L) = { f ∈ F′κ(L) | f ((—,r)i) is an open sublocale for all r ∈Q and i ∈ I }.

The following theorem ensures that the notions of lower (resp. upper semicontinuity)
that arise from the alternative representation discussed above do not alter the theory of
semicontinuity from Section 5.3 in Chapter 5:

Theorem 7.6.2. For every locale L, there are order-preserving bijections

LSCκ(L) � LSC′κ(L) and USCκ(L) � USC′κ(L).

Proof. Lower semicontinuity. On one direction, if f ∈ LSCκ(L), we consider the composite

ϕ( f ) : L (J(κ)) S(L)op Sb(L)op Sb(L).
f (−)## (−)#(∼)

If r ∈Q and i ∈ I, we have that f ((r,—)i) is closed and thus ϕ( f )((r,—)i) = ( f ((r,—)i))# is open.
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On the other way around, let 1 ∈ LSC′κ(L). For each i ∈ I the family {1((r,—)i)#
}r∈Q is an

antitone family in S(L)op consisting of closed sublocales, and therefore it defines an hi ∈ F(L)
given by

hi(r,—) =
⋂
s>r
1((s,—)i)# =

(⋂
s>r
1((s,—)i)#

)##
=
(∨

s>r
1((s,—)i)##

)#
=
(∨

s>r
1((s,—)i)

)#
= 1
(∨

s>r
(s,—)i

)#
= 1((r,—)i)#

where the last equality follows from (ch3) and we have used the fact that
⋂

s>r 1((s,—)i)# is
closed and thus smooth. Clearly, hi ∈ LSC(L). Moreover, for i , j, one has

hi(r,—)∨h j(s,—) = 1((r,—)i)#
∨1((s,—) j)# =

(
1((r,—)i)∧Sb(L) 1((s,—) j)

)#
=O# = L

by (ch0) and so {hi}i∈I is a disjoint family. Hence there is a unique ψ(1) ∈ LSCκ(L) satisfying
ψ(1)◦πi = hi for all i ∈ I. An application of the antitone (−)# easily shows that the two maps
ϕ : LSCκ(L)→ LSC′κ(L) and ψ : LSC′κ(L)→ LSCκ(L) are monotone. Moreover, we have

ψ(ϕ( f ))◦πi(r,—) = f ◦πi(r,—) and ϕ(ψ(1))◦πi(r,—) = 1◦πi(r,—)

for all i ∈ i. Indeed, ψ(ϕ( f )) ◦πi(r,—) = ϕ( f )((r,—)i)# = f ((r,—)i)## = f ((r,—)i) where the last
equality follows because f ((r,—)i) is closed and hence complemented. The second identity
is equally straightforward. Hence ψ(ϕ( f ))◦πi = f ◦πi and ϕ(ψ(1))◦πi = 1◦πi for each i ∈ I,
which by the uniqueness clause in Proposition 5.3.4 imply ψ(ϕ( f )) = f and ϕ(ψ(1)) = 1, that
is, ϕ and ψ are mutually inverse isomorphisms.

Upper semicontinuity. The case of upper semicontinuity is similar. We only sketch the proof
of how to build the function ψ : USC′κ(L)→ USCκ(L). If 1 ∈ USC′κ(L), then for each i ∈ I, the
collection {1((—,r)i)#

}r∈Q is a monotone family in S(L)op consisting of closed sublocales, hence
it defines an hi ∈ F(L) satisfying hi(r,—) =

⋂
s>r 1((—,s)i) and

hi(—,r) =
⋂
s<r
1((—,s)i)# =

(⋂
s<r
1((—,s)i)#

)##
=
(∨

s<r
1((—,s)i)##

)#
=
(∨

s<r
1((—,s)i)

)#
= 1(
∨
s<r

(—,s)i)# = 1((—,r)i)#.

Now the family {hi}i∈I is disjoint: if i , j then

hi(r,—)∨h j(r′,—) =
⋂

s>r,s′>r′
1((—,s)i)∨1((—,s′) j) =

⋂
s>r,s′>r′

1((—,s)i∨ (—,s′) j) = L

because of Property 5.2.3 (4). Hence there is a unique ψ(1) ∈ F(L) with ψ(1)◦πi = hi for all
i ∈ I. It is straightforward to verify that it fullfils the required properties. �

For the spatial case, we have the following
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Proposition 7.6.3. If X is a TD-space, we have an isomorphism F′κ(Ω(X)) � Set(X,ΛJ(κ)) — i.e.,
frame homomorphisms in F′κ(Ω(X)) correspond bijectively to functions X→ΛJ(κ).

Proof. By Lemma 7.5.1, in the TD-case we have Sb(Ω(X)) �P(X). Then, if we denote by Xdis

the discrete topology on X, one has

F′κ(Ω(X)) = Frm(L (J(κ)) ,Sb(Ω(X))) � Frm(L (J(κ)) ,P(X)) = Frm(L (J(κ)) ,Ω(Xdis))

� Top(Xdis,Σ(L (J(κ)))) � Top(Xdis,ΛJ(κ)) � Set(X,ΛJ(κ)),

by using the isomorphism Σ(L (J(κ))) �ΛJ(κ) from Proposition 5.2.11. �

Theorem 7.6.2 and Proposition 7.6.3 generalize and improve the results in [94] from
several points of view:

• Firstly, it is a cardinal generalization, that is, for κ = 1 we obtain results for L(R). A similar
argument can be used in order to obtain results for L(R).

• The standing assumption in [94] is subfitness. Here Theorem 7.6.2 holds without any
separation hypothesis.

• Moreover, in the spatial case one has F′κ(Ω(X)) � Set(X,ΛJ(κ)) for every TD-space X. The
analogous result (for κ = 1) corresponding to Sc(L) requires the space in question to be T1

(cf. [94]).

7.7 Functoriality

We have seen that Sb(L) is a useful discretization of a locale L which possesses a number of
advantages with respect to the larger system S(L)op; in particular it allows a conservative
treatment of the notion of real- or hedgehog-valued function.

There is, however, one aspect of Sb(L) which shows a worse behaviour than that of its
counterpart S(L)op, namely the fact that the assignment L 7→ Sb(L) is generally not functorial
(in fact, this does not come as a surprise regarding the non-functoriality of the Booleanization
[28]).

It is therefore a fundamental problem in the theory to study the class of morphisms for
which L 7→ Sb(L) is actually a functorial construction.

More precisely, if f : L→M is a frame homomorphism, the map Sb( f ) : Sb(L)→ Sb(M)
given by

Sb( f )(S) =
∨
{oM( f (a))∩ cM( f (b)) | oL(a)∩ cL(b) ⊆ S } (7.7.1)
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is the only possible candidate for obtaining a commutative square

Sb(L) Sb(M)

L M

Sb( f )

f

oL oM
(7.7.2)

in Frm. We shall say that f has an Sb-lift (or that it Sb-lifts) if the Sb( f ) defined above is indeed
a frame homomorphism (clearly, the square always commutes). In that case, we will speak
of Sb( f ) as the Sb-lift of f .

Some functoriality results (in the subfit case) were proved in [17].
In this section we provide further Sb-lifting results, both positive and negative, which

can be summarized as follows:

• A frame homomorphism Sb-lifts if and only if both halves of its (RegEpi, Mono) factor-
ization Sb-lift (Proposition 7.7.2).

• A surjection Sb-lifts if and only if it corresponds to a smooth quotient (Corollary 7.7.3). In
particular, a quotient onto a point Sb-lifts if and only if it corresponds to a covered prime.

• The canonical monomorphism c : L� S(L)op seldom Sb-lifts (Proposition 7.7.7).

• Under subfitness, all closed maps of locales Sb-lift (Theorem 7.7.10).

• Étale maps of locales Sb-lift (Theorem 7.7.10).

7.7.1 General results

The map Sb( f ) from above is generally not a frame homomorphism but it is more than just a
plain set map:

Lemma 7.7.1. If f : L→M is a frame homomorphism then Sb( f ) preserves finite meets.

Proof. Let S,T ∈ Sb(L). Using the frame distributivity in Sb(L) and (7.7.1), we have

Sb( f )(S)∧Sb( f )(T) =
( ∨
oL(a)∩cL(b)⊆S

oM( f (a))∩ cM( f (b))
)
∧

( ∨
oL(a′)∩cL(b′)⊆T

oM( f (a′))∩ cM( f (b′))
)

=
∨

oL(a)∩cL(b)⊆S
oL(a′)∩cL(b′)⊆T

oM( f (a))∩ cM( f (b))∩oM( f (a′))∩ cM( f (b′))

=
∨

oL(a)∩cL(b)⊆S
oL(a′)∩cL(b′)⊆T

oM( f (a∧ a′))∩ cM( f (b∨ b′))

⊆
∨

oL(a∧a′)∩cL(b∨b′)⊆S∧T
oM( f (a∧ a′))∩ cM( f (b∨b′))

⊆
∨

oL(a)∩cL(b)⊆S∧T
oM( f (a))∩ cM( f (b)) = Sb( f )(S∧T).
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The other inequality is trivial. �

The following result indicates that the problem of studying Sb-lifts of frame homomor-
phisms amounts to studying Sb-lifts of surjections and Sb-lifts of subframe embeddings.

Proposition 7.7.2. A frame homomorphism Sb-lifts if and only if both halves of its (Regular Epi,
Mono) factorization Sb-lift. Moreover, in case f has an Sb-lift,

(1) if f is surjective, then so is Sb( f );

(2) if f is injective, then so is Sb( f ).

Proof. The “if” part is clear, so let us show the “only if”. Assume that a frame homomorphism
f : L→M has a lift Sb( f ). We factor Sb( f ) through its image, say

Sb(L) Sb( f )[Sb(L)] Sb(M)e m

— i.e., Sb( f )=m◦e where e is surjective and m is injective. The surjection e : Sb(L)�Sb( f )[Sb(L)]
corresponds to a sublocale of the Boolean locale Sb(L), and every sublocale of a Boolean
locale is open, hence e corresponds to an open sublocale — i.e., there is a T ∈ Sb(L) and an
isomorphism k : ↓T→ Sb( f )[Sb(L)] making the following diagram commutative:

Sb(L) Sb( f )[Sb(L)]

↓T

e

(−)∧T
k

Therefore, we have that M = Sb( f )(L) = e(L) = e(T) = Sb( f )(T). Now, since T ∈ Sb(L), we can
write T =

∨
o(a)∩c(b)⊆T o(a)∩ c(b), and so (7.7.1) and (7.7.2) yield

M = Sb( f )(T) =
∨

oL(a)∩cL(b)⊆T
Sb( f )(oL(a))∩Sb( f )(cL(b))

=
∨

oL(a)∩cL(b)⊆T
oM( f (a))∩ cM( f (b)) =

∨
oL(a)∩cL(b)⊆T

( f∗)−1[oL(a)∩ cL(b)].

The colocalic map f∗[−] : S(M) −→ S(L) preserves joins, and hence we obtain

f∗[M] =
∨

oL(a)∩cL(b)⊆T
f∗[( f∗)−1[oL(a)∩ cL(b)]] ⊆

∨
oL(a)∩cL(b)⊆T

oL(a)∩ cL(b) = T

where the inclusion follows because of the adjunction f∗[−] ⊣ ( f∗)−1[−]. Hence we have
inclusions of sublocales f∗[M]⊆T⊆ L.Now, let i : L�T and j : T� f∗[M] be the corresponding
frame surjections. Then f factors as

L T f∗[M] Mi j n
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(note that ( j◦ i,n) is the (Regular Epi, Mono) factorization of f ). We also observe that since
T ∈ Sb(L), then Sb(T) = ↓T. For the remainder of the proof it is convenient to consider the
diagram

Sb(L) Sb(T) Sb(M)

L T f∗[M] M

(−)∧T m◦k

i

oL

j

oT

n

oM (7.7.3)

The left hand side square commutes because for all a ∈ L one has oT(i(a)) = oL(a)∩T (cf. [92,
III 6.2.1]). Commutativity of the right hand side square follows from the commutativity
of the left hand side square, commutativity of the outer square (i.e., (7.7.2) above) and the
fact that i is an epimorphism. Now, since the composite oM ◦n◦ j is monic, so is j, thus it
is an isomorphism — i.e., f∗[M] = T. Diagram (7.7.3) therefore displays the desired Sb-lifts.
Observe that diagram (7.7.3) also proves that (1) and (2) of the statement hold. �

7.7.2 Surjections

It is now easy to fully characterize surjections which Sb-lift:

Corollary 7.7.3. Let f : L� S be a frame surjection onto a sublocale S of L. Then f has an Sb-lift if
and only if S is smooth.

Proof. =⇒: On the way of proving the Proposition 7.7.2 we showed that the image of the map
which is Sb-lifted always corresponds to a join of complemented sublocales of its domain,
hence this implication follows.

⇐=: If S ∈ Sb(L), it is immediate to check that Sb(S) = ↓S ⊆ Sb(L). Hence there is a surjection
Sb(L)→ Sb(S) which maps T to S∧T. The fact that oS( f (a)) = S∩oL(a) = S∧oL(a) ensures that
the relevant diagram commutes. �

Remark 7.7.4. The authors proved in [17] that, in the regular case, an open frame homomor-
phism with Boolean codomain Sb-lifts. However, in view of Proposition 7.7.2, this result
is equivalent to the statement that every open surjection with Boolean codomain Sb-lifts
(which is, in turn, a very special case of the last corollary). Indeed, a frame homomorphism
is open if and only if both halves of its (RegEpi, Mono) factorization are open, so an open
f : L→ B (with B Boolean) Sb-lifts if and only if the open surjection L� f [L] and the open
subframe embedding f [L]� B have Sb-lifts. But an open subframe of a Boolean frame is
necessarily Boolean, hence the embedding f [L]� B trivially Sb-lifts.

In particular, we can strengthen [17, Theorem 4.5] as follows:

Corollary 7.7.5. Let p be a prime in a frame L. Then the frame surjection associated to the sublocale
b(p) has an Sb-lift if and only if p is a covered prime.

As an easy consequence, we also have the following necessary condition for a map to
Sb-lift:
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Corollary 7.7.6. If a frame homomorphism Sb-lifts, it is a D-homomorphism.

Proof. Let f : L→M have an Sb-lift and let p be a covered prime in M. By Corollary 7.7.5 it
follows that the left adjoint of the inclusion b(p) ↪→M has an Sb-lift. Since f also Sb-lifts, the
left adjoint of the upper-left composite in the square

M L

b(p) b( f∗(p))

f∗

f∗

has an Sb-lift. Now, the bottom-right composite consists of an isomorphism followed by
b( f∗(p)) ↪→ L, hence the left adjoint of b( f∗(p)) ↪→ L has an Sb-lift, which by another application
of Corollary 7.7.5 implies that f∗(p) is covered. �

7.7.3 Monomorphisms

Dealing with monomorphisms is a more difficult task. Here we will not be able to provide a
full characterization but instead give some negative and positive results — including a large
class of monomorphisms which indeed Sb-lift.

We start with the following result:

Proposition 7.7.7. Let L be fit. The canonical monomorphism cL : L� S(L)op has an Sb-lift if and
only if S(L) is Boolean.

Proof. The “if” implication is trivial, so let us assume that cL : L� S(L)op has an Sb-lift.
Consider the surjective coframe homomorphism f : S(L)→ Sb(L)op sending S to S#. Let
us show that it is also injective. Let S,T ∈ S(L) with S# = T#. Since L is fit, we can write
S =
⋂

i oL(ai) and T =
⋂

j oL(b j) for appropriate families {ai}i∈I, {b j} j∈J ⊆ L. Now, from S# = T#,
we obtain

∨
i cL(ai) =

∨
j cL(b j). Since Sb(cL)(cL(a)) = cS(L)op(cL(a)) for each a ∈ L and the Sb-lift

Sb(cL) : Sb(L)→ Sb(S(L)op) preserves arbitrary joins, it follows that∨
i cS(L)op(cL(ai)) = Sb(cL)(

∨
i cL(ai)) = Sb(cL)(

∨
j cL(b j)) =

∨
j cS(L)op(cL(b j)).

But the cL(ai) and cL(b j) are complemented in S(L)op, so we can write the last equality as∨
i oS(L)op(oL(ai)) =

∨
j oS(L)op(oL(b j)), and therefore we have

oS(L)op(
∨

i oL(ai)) = oS(L)op(
∨

j oL(b j)).

Accordingly,
∨

i oL(ai) =
∨

j oL(b j) in S(L)op — i.e., S =
⋂

i oL(ai) =
⋂

j oL(b j) = T. Therefore S(L)
is Boolean. �

Remark 7.7.8. Recall that locales L such that S(L) is Boolean are known as scattered (see [101,
Theorem 11]). It is a very restrictive property, and therefore the previous proposition shows
that the canonical monomorphism cL : L� S(L)op seldom lifts.
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In what follows, we shall use localic techniques (rather than working in the category of
frames as in the preceding results) as it seems much simpler because we will have to deal
with localic images and preimages.

Recall that a morphism f : L→M in Loc is said to be an étale map or local homeomorphism
[37, 1.7] if there is a cover {ai}i∈I of L such that f [oL(ai)] is an open sublocale in M and the
restriction f |oL(ai) : oL(ai)→ f [oL(ai)] is an isomorphism for every i ∈ I.

Lemma 7.7.9. Let f : L→M be a localic map. Then the following assertions hold:

(1) If f is an étale map and S ∈ Sb(L), then f [S] ∈ Sb(M);

(2) If L is subfit, f is a closed map and S ∈ Sb(L), then f [S] ∈ Sb(M);

(3) If L is TD-spatial, f ∗ is a D-homomorphism and S ∈ Sb(L), then f [S] ∈ Sb(M).

Proof. (1) Write S=
∨

j∈J cL(x j)∩oL(y j) ∈Sb(L) and let {ai}i∈I be the cover of L as in the definition
of local homeomorphisms. Since complemented sublocales are linear (cf. (1.2.3)) and f [−]
preserves joins, we have

f [S] = f [S∩
∨

i oL(ai)] = f [
∨

i, j cL(x j)∩oL(y j)∩oL(ai)] =
∨

i, j f [cL(x j)∩oL(y j∧ ai)].

Now for each i ∈ I and j ∈ J, the sublocale cL(x j)∩oL(y j∧ai) is locally closed in oL(ai) — note that
it equals co(ai)(νo(ai)(x j))∩ooL(ai)(νoL(ai)(y j)). Since f |oL(ai) : oL(ai)→ f [oL(ai)] is an isomorphism,
f [cL(x j)∩oL(y j∧ ai)] is locally closed in f [o(ai)]. But f [oL(ai)] is open in M, so it follows easily
that f [cL(x j)∩oL(y j∧ ai)] is locally closed in M. Hence f [S] ∈ Sb(M).

(2) By subfitness, write S =
∨

j∈J cL(x j) ∈ Sc(L) = Sb(L) (see Corollary 7.3.4). Then f [S] =∨
j f [cL(x j)] and each f [cL(x j)] is closed in M. Hence the result follows.

(3) Since L is TD-spatial and S ∈ Sb(L), by Lemma 1.3.4 and Lemma 7.5.1 we deduce that
S =
∨

i∈I bL(pi), with pi covered primes in L. Again, f [S] =
∨

i∈i f [bL(pi)] =
∨

i∈i bM( f (pi)) and
each bM( f (pi)) is complemented because f ∗ is a D-homomorphism. �

Theorem 7.7.10. Let f : L→M be a localic map. Then the following assertions hold:

(1) If f is an étale map, then f ∗ has an Sb-lift;

(2) If L is subfit and f is a closed map, then f ∗ has an Sb-lift;

(3) If L is TD-spatial and f ∗ is a D-homomorphism, then f ∗ has an Sb-lift.

Proof. Let f and L be as in (1), (2) or (3). The coframe homomorphism f−1[−] is coweakly
open (i.e., the frame homomorphism f−1[−]op is weakly open, cf. Subsection 1.2.3) if and
only if f−1[S]##

⊆ f−1[S##] — i.e., if and only if f [ f−1[S]##] ⊆ S##. In view of the previous
lemma, since f−1[S]##

∈ Sb(L) it follows that f [ f−1[S]##] ∈ Sb(M). Hence f [ f−1[S]##] ⊆ S## if
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and only if f [ f−1[S]##] ⊆ S. But the latter holds trivially because f−1[S]##
⊆ f−1[S]. Then, by

[28, Proposition 1.1], there is a frame homomorphism h making the square

Sb(M)op Sb(L)op

S(M)op S(L)op

(−)## (−)##

f−1[−]op

h

commutative. By the usual functoriality of the assembly and by complementation in the
Boolean algebras Sb(M) and Sb(L) we obtain a commutative diagram

Sb(M) Sb(L)

Sb(M)op Sb(L)op

S(M)op S(L)op

M L

(−)## (−)##

f−1[−]op

h

cM cL

f ∗

∼ ∼

whose outer square displays the desired Sb-lift. �

Remark 7.7.11. Using Proposition 7.7.2 and the fact that a localic map is closed if and only
if both halves of its (RegEpi, Mono) factorization are closed, it follows that item (2) of the
previous theorem is equivalent to the statement that, under subfitness,

closed surjections of locales and closed sublocale embeddings have Sb-lifts

— but the latter holds by Corollary 7.7.3 as closed embeddings are smooth. Hence, what
we really get is that closed surjections of locales have Sb-lifts. This is the largest class of
monomorphisms of frames which we know to have Sb-lifts (the open case proved by Ball,
Picado and Pultr is much more restrictive as the codomain has to be Boolean, cf. [17] and
Remark 7.7.4).

Corollary 7.7.12. If M is TD-spatial, a frame homomorphism f : L→M has an Sb-lift if and only if
it is a D-homomorphism.

Proof. Necessity follows by Corollary 7.7.6 and sufficiency follows by Theorem 7.7.10. �
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7.7.4 Interaction with localic products

As an application of the previously proved results, we can now shed some light over a
question posed to us by Martin Hyland concerning how the assignment L 7→ Sb(L) interacts
with localic products.

We start with a few properties about prime elements in localic products. Recall that
if L and M are frames and a ∈ L and b ∈M, we denote aM b = (a⊕ 1)∨ (1⊕ b) ∈ L⊕M (see
Subsection 2.2.5).

Lemma 7.7.13. Let L⊕M be the localic product of L and M, π1 : L⊕M→ L and π2 : L⊕M→M
the projections, a ∈ L and b ∈M, and {ai}i∈I ⊆ L and {b j} j∈J ⊆M. Then:

(1) aM b = { (x, y) ∈ L×M | x ≤ a or y ≤ b }.

(2)
(∧

i∈I ai

)
M
(∧

j∈J b j

)
=
∧

i∈I, j∈J aiMb j.

(3) If b , 1, then π1(aMb) = a, and if a , 1, then π2(aM b) = b.

(4) If a is prime in L and b is prime in M, then aMb is prime in L⊕M.

(5) If a is a covered prime in L with cover a+ and b is a covered prime in M with cover b+, then
aM b is covered in L⊕M with cover (aMb)+ = (a+Mb)∧ (aMb+).

Proof. (1) follows easily from the fact that { (x, y) ∈ L×M | x ≤ a or y ≤ b } is a cp-ideal.
The inequality ≤ in (2) is trivial so let us show the reverse one. Let (x, y) ∈

∧
i∈i, j∈J aiMb j.

By (1), it suffices to show that x ≤
∧

i∈i ai or y ≤
∧

j∈J b j. Assume that x �
∧

i∈I ai. Then there
is an i0 ∈ I with x � ai0 . But (x, y) ∈

∧
i∈i, j∈J aiM b j and so (x, y) ∈ ai0M b j for all j ∈ J. By (1), we

have y ≤ b j for all j ∈ J — i.e., y ≤
∧

j∈J b j.
For (3), we use the adjunction ι1 ⊣ π1 to compute

π1(aMb) =
∨
{x ∈ L | x⊕1 ≤ aM b } =

∨
{x ∈ L | x ≤ a or b = 1 }.

Similarly π2(aMb) =
∨
{ y ∈M | a = 1 or y ≤ b }.

(4) can be shown using the fact that Σ : Loc→ Top is a right adjoint and hence it preserves
limits. For the sake of completeness, we give a direct proof. First, let a ∈ pt(L) and b ∈ pt(M). Let
U1,U2 ∈ L⊕M with U1∧U2 ≤ aMb and suppose that U1 � aMb. Then there is an (x1, y1) ∈U1

with x1 � a and y1 � b. For each (x2, y2) ∈U2, one has (x1∧x2, y1∧ y2) ∈U1∧U2 ≤ aMb, and so
either x1∧x2 ≤ a or y1∧ y2 ≤ b. By primality of a and b, it follows that either x2 ≤ a or y2 ≤ b.
Thus U2 ≤ aM b and aMb ∈ pt(L⊕M).

For (5), let a ∈ ptD(L) and b ∈ ptD(M). Since {x⊕ y | x ∈ L, y ∈M } is a
∨

-base of L⊕M, we
shall use Proposition 1.3.2 (iii) for proving that aMb is covered with

(aMb)+ := (a+Mb)∧ (aMb+) = (a+⊕b+)∨ (aMb).

Obviously, aMb < (aMb)+ (if the equality holds then we would have (a+,b+) ∈ (a+Mb)∧ (aM
b+) = aM b and so either a+ ≤ a or b+ ≤ b, a contradiction). Now let x ∈ L and y ∈M with
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x⊕y≤ (aMb)+. If x≤ a or y≤ b, then x⊕y≤ aMb and we are done. Hence suppose that x� a and
y� b. Then a+ ≤ x∨a and b+ ≤ y∨b and so (aMb)+ ≤ ((x∨a)⊕ (y∨b))∨ (aMb) = (x⊕ y)∨ (aMb),
as required. Hence aM b ∈ ptD(L⊕M). �

Corollary 7.7.14. The mapϕL,M : pt(L)×pt(M)→ pt(L⊕M) given byϕL,M(p,q)= pMq is a bijection.

Proof. ϕL,M is well-defined by Lemma 7.7.13 (4) and it is obviously injective. Moreover, given
a prime U ∈ pt(L⊕M), since localic maps send primes into primes, one has p = π1(U) ∈ pt(L)
and q = π2(U) ∈ pt(M) and clearly pM q ≤ U. On the other hand, if (a,b) ∈ U then a⊕ b =
(aM0)∧ (0Mb) ≤U, and since U is prime, either aM0 ≤U or 0Mb ≤U. Assume without loss
of generality the former. Then ι1(a) = a⊕1 = aM0 ≤U, i.e., a ≤ π1(U) = p, and thus (a,b) ∈ pMq.
Consequently, pMq =U and ϕL,M is surjective. �

We can now show the following property of coproduct injections:

Lemma 7.7.15. Let L and M be frames. The coproduct injections ι1 : L→ L⊕M and ι2 : M→ L⊕M
are D-homomorphisms. Equivalently, the projections π1 : L⊕M→ L and π2 : L⊕M→M are
D-localic maps.

Proof. Let U ∈ ptD(L⊕M). Since in particular U is a prime in L⊕M, by Corollary 7.7.14 there
are p ∈ pt(L) and q ∈ pt(M) with U = pMq. By Lemma 7.7.13 (3) we have to show that p ∈ ptD(L)
and q ∈ ptD(M). We shall only show that p ∈ ptD(L) since the other case is similar. Assume that
p =
∧

i ai with {ai}i∈I ⊆ L and let (a,b) ∈
∧

i(aiMq). If b ≤ q, then obviously (a,b) ∈ pMq. On the
other hand, if b � q, then a ≤ ai for all i ∈ I, and so a ≤

∧
i ai = p. Thus (a,b) ∈ pMq. This shows

that
∧

i(aiM q) ≤ pM q, whereas the reverse inequality is trivial. Since U = pM q ∈ ptD(L⊕M),
there is an i0 ∈ I with ai0M q = pMq. Since q , 1, it follows that p = ai0 . �

Remark 7.7.16. (1) By the previous lemma and Theorem 7.7.10 (3), it follows that if L⊕M
is TD-spatial, then the coproduct injections ι1 : L→ L⊕M and ι2 : M→ L⊕M have Sb-lifts.
Hence there is a canonical comparison frame homomorphism

⟨Sb(ι1),Sb(ι2)⟩ : Sb(L)⊕Sb(M)→ Sb(L⊕M).

For more information on this comparison map, see Theorem 7.7.23 below.

(2) The coproduct L⊕M being TD-spatial is not a necessary condition in (1). A sublocale is
pointless if it does not contain any prime element. Now, if B is a nontrivial pointless Boolean
algebra, then B⊕B is not spatial and ι1, ι2 : B→ B⊕B have Sb-lifts (for trivial reasons, as the
domain is Boolean).

Corollary 7.7.17. Let L and M be frames. The map ψL,M : ptD(L)×ptD(M)→ ptD(L⊕M) given by
ψL,M(p,q) = pMq is a bijection.

Proof. ψL,M is well-defined by Lemma 7.7.13 (5) and it is obviously injective. Moreover, it
is surjective by the proof of Lemma 7.7.15, because we showed that if U ∈ ptD(L⊕M), then
U = pMq with p ∈ ptD(L) and q ∈ ptD(M). �
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Corollary 7.7.18. Let L and M be frames. Then the following are equivalent:

(i) L⊕M is TD-spatial;

(ii) L⊕M is spatial and both L and M are TD-spatial.

Proof. (i) =⇒ (ii) follows immediately from Lemma 7.7.15 and Corollary 1.3.7.

(ii) =⇒ (i): Let U ∈ L⊕M. Since L⊕M is spatial, then one can write U =
∧

i∈I piM qi with
{pi}i∈I ⊆ pt(L) and {qi}i∈I ⊆ pt(M) by Corollary 7.7.14. Now, L is TD-spatial, so by Lemma 1.3.6,
for each i ∈ I there is a family {pi

j} j∈Ii ⊆ ptD(L) with pi =
∧

j∈Ii
pi

j. Similarly, for each i ∈ I there
is a family {qi

k}k∈Ji ⊆ ptD(M) with qi =
∧

k∈Ji
qi

k. By Lemma 7.7.13 (2) and (5), it follows that
U =
∧

i∈I, j∈Ii,k∈Ji
pi

jM qi
k with each pi

jM qi
k being covered in L⊕M, so the assertion now follows

from Lemma 1.3.6. �

Recall the category FrmD of Subsection 1.3.2. As a consequence of the previous results
we obtain the following:

Corollary 7.7.19. Let L and M be frames. Then the system (L⊕M, ι1, ι2) is a coproduct in FrmD.
Consequently, the category FrmD has finite coproducts and the inclusion functor I : FrmD ↪→ Frm
preserves them.

Proof. The coproduct injections ι1 and ι2 are D-homomorphisms by Lemma 7.7.15. It remains
to be proved that if h : L→ P and k : M→ P are D-homomorphisms, then the induced map
⟨h,k⟩ : L⊕M→ P is also a D-homomorphism. Hence let p ∈ ptD(P). Then

⟨h,k⟩∗(p) =
∨
{a⊕b | h(a)∧ k(b) ≤ p } =

∨
{a⊕ b | h(a) ≤ p or k(b) ≤ p }

=
∨
{a⊕ b | a ≤ h∗(p) or b ≤ k∗(p) } =

∨
{a⊕b | a ≤ h∗(p) }∨

∨
{a⊕b | b ≤ k∗(p) }

= (h∗(p)⊕1)∨ (1⊕ k∗(p)) = h∗(p)M k∗(p).

Since h and k are D-homomorphisms, h∗(p) ∈ ptD(L) and h∗(q) ∈ ptD(M), so the conclusion now
follows from Lemma 7.7.13 (5). �

Since Σ′ : LocD→ TopD is a right adjoint (see (1.3.1)), it preserves products, so by the
previous corollary we can improve the bijection in Corollary 7.7.17 to a homeomorphism
(observe that finite products of TD-spaces are TD, hence finite products in TopD are just
products in Top):

Corollary 7.7.20. Let L and M be locales. Then the canonical map

(Σ′(π1),Σ′(π2)) : Σ′(L⊕M)→ Σ′(L)×Σ′(M)

is a homeomorphism.

As an application of the above, we obtain a finite TD-analogue of a well-known result for
the classical spectrum, namely the fact that for sober spaces Xi, if ⊕i∈IΩ(Xi) is spatial, then
⊕i∈IΩ(Xi) �Ω(

∏
i∈I Xi) (see [92, IV 5.4.2]).
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Corollary 7.7.21. Let X and Y be TD-spaces. Then the the following are equivalent:

(i) Ω(X)⊕Ω(Y) �Ω(X×Y);

(ii) Ω(X)⊕Ω(Y) is spatial;

(iii) Ω(X)⊕Ω(Y) is TD-spatial.

Proof. (i) =⇒ (ii) is trivial and the equivalence between (ii) and (iii) follows from Corol-
lary 7.7.18. Finally, assume that Ω(X)⊕Ω(Y) is TD-spatial. Then, one has Ω(X)⊕Ω(Y) �
Ω(Σ′(Ω(X)⊕Ω(Y)) via the counit of the adjunction Ω ⊣ Σ′, which is an isomorphism by
TD-spatiality. Finally,

Ω(Σ′(Ω(X)⊕Ω(Y))) �Ω(Σ′(Ω(X))×Σ′(Ω(Y))) �Ω(X×Y),

where the first isomorphism follows by applyingΩ to the homeomorphism in Corollary 7.7.20,
and the second isomorphism follows from the fact that the unit of the adjunction Ω ⊣ Σ′ is
always an isomorphism. Hence Ω(X)⊕Ω(Y) �Ω(X×Y). �

We shall need one last lemma concerning one-point sublocales and product projections.

Lemma 7.7.22. Let L and M be frames and assume that L⊕M is spatial. If p ∈ ptD(L) and q ∈ ptD(M),
then b(pM q) = (π1)−1[b(p)]∩ (π2)−1[b(q)].

Proof. The inclusion ⊆ follows immediately from Lemma 7.7.13 (3) since π1[b(pM q)] =
b(π1(pM q)) = b(p) and π2[b(pM q)] = b(π2(pMq)) = b(q).

Let us show the reverse inequality. Since L⊕M is spatial, we have L⊕M =
∨

i b(piM qi)
for {pi}i∈I ⊆ pt(L) and {qi}i∈I ⊆ pt(M), by Corollary 7.7.14. Now, by Lemma 1.3.3, b(p) (resp.
b(q)) is complemented in L (resp. M), hence the sublocale S := (π1)−1[b(p)]∩ (π2)−1[b(q)] is
complemented in L⊕M. By linearity (cf. (1.2.3)), it follows that

S = S∩
∨
i
b(piM qi) =

∨
i

S∩b(piM qi).

If b(piM qi) ⊆ S then by adjunction we have b(pi) = π1[b(piMqi)] ⊆ b(p), thus pi = p. Similarly,
q = qi. Since either S∩b(piM qi) =O or S∩b(piM qi) = b(piMqi), it follows that S ⊆ b(pMq). �

We are now in position to prove the main result, which connects preservation of certain
localic products by Sb(−) and the TD-spatiality of them.

Theorem 7.7.23. The following are equivalent for a frame L:

(i) L⊕L is TD-spatial;

(ii) The coproduct injections ι1, ι2 : L→ L⊕L have Sb-lifts and the comparison frame homomorphism
⟨Sb(ι1),Sb(ι2)⟩ : Sb(L)⊕Sb(L)→ Sb(L⊕L) is an isomorphism;

(iii) There exists an isomorphism Sb(L⊕L) � Sb(L)⊕Sb(L).
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Proof. (i) =⇒ (ii). By Remark 7.7.16 (1), the coproduct injections Sb-lift and hence the
comparison map ⟨Sb(ι1),Sb(ι2)⟩ exists. For p ∈ ptD(L) and q ∈ ptD(L) we have b(p) ∈ Sb(L) and
b(q) ∈ Sb(L). One has by (7.7.1)

Sb(ι1)(b(p)) =
∨
{oL⊕L(ι1(a))∩ cL⊕L(ι1(b)) | oL(a)∩ cL(b) ⊆ b(p) }

=
∨
{ (π1)−1[oL(a)∩ cL(b)] | oL(a)∩ cL(b) ⊆ b(p) } = (π1)−1[b(p)]

and similarly Sb(ι2)(b(q)) = (π2)−1[b(q)]. It follows that

⟨Sb(ι1),Sb(ι2)⟩(b(p)⊕b(q)) = (π1)−1[b(p)]∩ (π2)−1[b(q)] = b(pM q),

where the last equality follows by Lemma 7.7.22.
Now, since L⊕L (and hence L) is TD-spatial, it follows by Theorem 7.5.2 that the maps

m : P(ptD(L⊕L))→ Sb(L⊕L) and ptD⊕ptD : Sb(L)⊕Sb(L)→P(ptD(L))⊕P(ptD(L)) are isomor-
phisms. On the other hand, the map ψL,L : ptD(L)×ptD(L)→ ptD(L⊕L) from Corollary 7.7.17
is a bijection, and hence P(ψL,L) is an isomorphism (where P is the covariant power set
functor). Finally, it is well known (see for example [97, 1.6.4] for a direct proof) that for
any set X, the map P(X)⊕P(X)→P(X×X) that sends A⊕B ∈ P(X)⊕P(X) to A×B is an
isomorphism. Consequently, the composite

Sb(L)⊕Sb(L) Sb(L⊕L)

P(ptD(L))⊕P(ptD(L)) P(ptD(L)×ptD(L)) P(ptD(L⊕L))

ptD⊕ptD

P(ψL,L)

m

is an isomorphism which sends each b(p)⊕b(q) ∈Sb(L)⊕Sb(L) into b(pMq). Hence it coincides
with ⟨Sb(ι1),Sb(ι2)⟩.

(ii) =⇒ (iii) is trivial.

(iii) =⇒ (i): Assume that Sb(L⊕L) � Sb(L)⊕Sb(L) holds. Since Sb(L⊕L) is Boolean, so is
Sb(L)⊕Sb(L). In particular, the localic diagonal in Sb(L)⊕Sb(L) is open and hence Sb(L) is
atomic (see [84]). Now, since Sb(L) is atomic, the product Sb(L)⊕Sb(L) is atomic as well (as
we mentioned above, P(X×X) �P(X)⊕P(X) for any set X). Thus Sb(L⊕L) is atomic, and by
Theorem 7.5.2 it follows that L⊕L is TD-spatial. �





Chapter 8

The coframe of D-sublocales

The symmetry between sobriety and the TD property yields multiple parallel constructions
and results for the classical spectrum and for the TD-spectrum (we refer to Section 1.3 for a
brief account, for more information see [104, 31]). In this chapter we will introduce a new
class of sublocales, namely the family consisting of D-sublocales. As we will see, this turns
out to be the appropriate restriction of the notion of sublocale in the duality of TD-spaces due
to Banaschewski and Pultr [31] (see Subsection 1.3.2). In fact, the concept of D-sublocale will
be closely related to the TD axiom and TD-spatiality, and it will come in handy for answering
questions such as “when is every prime of a locale covered?” or “how can we characterize those
locales whose sublocales are all TD-spatial?”. In particular we will provide a Niefield-Rosenthal
type theorem (cf. [90]) for total TD-spatiality.

The results in Sections 8.1, 8.2, 8.3 and 8.5 have been obtained in collaboration with Anna
Laura Suarez, whereas Section 8.4 is a joint work with Javier Gutiérrez García. This material
is contained respectively in the following papers:

[6] I. Arrieta and J. Gutiérrez García, On the categorical behaviour of locales and D-localic
maps, Quaestiones Mathematicae, accepted for publication.

[9] I. Arrieta and A. L. Suarez, The coframe of D-sublocales of a locale and the TD-duality,
Topology and its Applications, vol. 291, art. no. 107614, 2021.

Finally, most of the material presented in Sections 8.6 and 8.7 is unpublished work.

8.1 D-sublocales

Let S ⊆ L be a sublocale and recall Property 1.2.3 (2): a prime in S is precisely a prime in L
contained in S — i.e., pt(S) = pt(L)∩S.

However, the analogous assertion when prime is replaced by covered prime is no longer
true in general — i.e., a covered prime in L contained in S is obviously covered in S, but we
may have sublocales S ⊆ L and covered primes p in S which are not covered in the whole of L.
Indeed, observe that every prime, covered or not, is covered in a sufficiently small sublocale:

133
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If p is a prime in L, then it is trivially a covered prime in the sublocale b(p) = {1,p }.

These considerations motivate the following definition:

Definition 8.1.1. A sublocale S of a locale L will be said to be a D-sublocale if covered primes
in S are covered primes in L, that is, if ptD(S) ⊆ ptD(L).

Remarks 8.1.2. (1) We note that S is a D-sublocale of L if and only if the embedding S ↪→ L
is a D-localic map (i.e., if and only if the frame surjection L� S corresponding to S is a
D-homomorphism).

(2) If S and T are sublocales of a locale L such that S⊆T, then ptD(T)∩S⊆ ptD(S). Consequently,
S is a D-sublocale if and only if ptD(S) = ptD(T)∩S for any sublocale T such that S ⊆ T.

(3) A one-point sublocale b(p) is a D-sublocale if and only if p is a covered prime.

8.2 The zero-dimensional frame SD(L)op

We are now in position to introduce a new subset of S(L): denote by SD(L) the collection of
D-sublocales of L — i.e.,

SD(L) = {S ∈ S(L) | ptD(S) ⊆ ptD(L) }

ordered under the inclusion inherited from S(L). It is the goal of this chapter to study
systematically the structure of SD(L) and to explore its various applications in point-free
topology and connections with the Boolean algebra Sb(L) from Chapter 7.

We begin by observing that the system of D-sublocales is generally not closed under
intersections:

Example 8.2.1. One of the simplest examples of an intersection of two D-sublocales which is
not a D-sublocale seems to be the following: let L = [0,1] (the unit interval with its usual
total order). A subset of a totally ordered set is a sublocale if and only if it is closed under
meets, so the following two subsets are indeed sublocales:

S = {0,1 }∪
⋃

n∈N

[
1

2n ,
1

2n−1

)
and T = {0,1 }∪

⋃
n∈N

[
1

2n+1 ,
1

2n

)
.

S
T

Obviously, for every s , 1 in S, one has s =
∧

s<t∈S t, and this shows that ptD(S) = ∅, so S is a
D-sublocale of L. Similarly, ptD(T) =∅ and so it is also a D-sublocale of L. Now, S∩T = {0,1 }
and this is not a D-sublocale: 0 is obviously covered in {0,1 } but not in L.

We now move on to showing one of the main results of this chapter, namely that the system
SD(L) is a subcolocale of S(L). First we need the following observation (cf. Property 1.2.3 (3)):
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Lemma 8.2.2. If {Si}i∈I ⊆ SD(L) is a family of D-sublocales, then ptD
(∨

i∈I Si

)
=
⋃

i∈I ptD(Si).

Proof. Since Si is a D-sublocale of L for each i ∈ I, by Remark 8.1.2 (2), we have
⋃

i∈I ptD(Si) =⋃
i∈I ptD(

∨
j∈I S j)∩Si ⊆ ptD(

∨
i∈I Si). For the reverse inclusion, let p ∈ ptD(

∨
i Si). Since p ∈

∨
i Si,

then p=
∧

i ai for some {ai}i∈I ⊆ L with ai ∈ Si ⊆
∨

i Si for each i ∈ I, and since p is covered in
∨

i Si,
it follows that there is an i0 ∈ I such that p = ai0 ∈ Si0 . Hence p ∈ ptD(Si0) ⊆

⋃
i∈I ptD(Si). �

Proposition 8.2.3. The system SD(L) is closed under arbitrary joins in S(L).

Proof. Let {Si}i∈I ⊆ SD(L). Since Si is a D-sublocale for each i ∈ I, we have that ptD(Si) ⊆ ptD(L)
for each i ∈ I and hence it follows by the previous lemma that ptD

(∨
i∈I Si

)
=
⋃

i∈I ptD(Si)⊆ ptD(L)
— i.e.,

∨
i∈I Si is a D-sublocale. �

Lemma 8.2.4. Let p be a prime element in a frame L and let S and T be sublocales of L. Then:

(1) p ∈ ptD(S) if and only if p < Srb(p);

(2) If p ∈ ptD(SrT) then either p ∈ ptD(S) or p ∈ T.

Proof. (1) By Lemma 1.3.3 we see that p ∈ ptD(S) if and only if b(p) is a complemented sublocale
of S, that is, if and only if b(p)∩ (Srb(p)) =O in light of Property 1.2.1 (6). The later is clearly
equivalent to p < Srb(p).

(2) Let p ∈ ptD(SrT) and suppose that p < ptD(S). By two applications of (1) we then have
p < (SrT)rb(p) and p ∈ Srb(p). By Property 1.2.1 (5), p < (Srb(p))rT. Since b(p) ⊆ Srb(p),
it follows that p < b(p)rT, that is, b(p)rT =O. Therefore, p ∈ T by Property 1.2.1 (2). �

Proposition 8.2.5. If S ∈ SD(L) and T ∈ S(L), then SrT ∈ SD(L).

Proof. Let p ∈ ptD(SrT). Since S(L)op is zero-dimensional, there is a family {Ci}i∈I of comple-
mented sublocales with T =

⋂
i Ci. Then, by Properties 1.2.1 (3) and (4), p ∈ SrT =

∨
i(SrCi) =∨

i(S∩C#
i ) and so p =

∧
i ai for some {ai}i∈I ⊆ L such that ai ∈ S∩C#

i ⊆ SrT for each i ∈ I. Since
p is a covered prime in SrT, it follows that there is an i0 ∈ I with p = ai0 ∈ C#

i0
, hence p < T

because Ci0 ∩C#
i0
=O. By Lemma 8.2.4 (2) it follows that p ∈ ptD(S) ⊆ ptD(L), as desired. �

We have therefore almost shown the following

Theorem 8.2.6. SD(L) is a dense D-subcolocale1 of S(L). In particular, it is a coframe.

Proof. The fact that SD(L)op is a sublocale of S(L)op follows from the two previous propositions.
Moreover, density follows from the obvious fact that L (i.e., the bottom element of S(L)op)
belongs to SD(L). Finally, since S(L)op is a zero-dimensional frame, it is in particular fit;
and by Property 1.2.3 (4) primes in any fit frame are maximal (thus covered). Hence, every
sublocale of S(L)op is a D-sublocale. �

Corollary 8.2.7. The inclusion Sb(L) ⊆ SD(L) holds.
1This has to be understood just as a shorthand for “SD(L)op is a dense D-sublocale of S(L)op”
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Proof. Sb(L)op is the Booleanization of S(L)op and it can therefore be characterized as the least
dense sublocale of S(L)op. �

Corollary 8.2.8. The frame SD(L)op is zero-dimensional.

Proof. If S ∈ SD(L), by zero-dimensionality of S(L)op there is a family {Ci}i∈I of complemented
sublocales with S =

⋂
i Ci. By Corollary 8.2.7 one has Ci ∈ Sb(L) ⊆ SD(L) for each i ∈ I, and so

S is actually the meet of {Ci}i∈I in SD(L). �

We are now in position to provide several examples of D-sublocales.

Examples 8.2.9. (1) In view of Corollary 8.2.7, every smooth sublocale is a D-sublocale. In
particular, open, closed, locally closed and complemented sublocales are all D-sublocales.

(2) Recall that a sublocale is pointless if it does not contain any prime element. Every
pointless sublocale S of a locale L is a D-sublocale, for trivial reasons: one simply has
ptD(S) ⊆ pt(S) = ∅.

(3) It is well known that joins of pointless sublocales may contain points (see for example
[74, 2.3]). However, by (2) and Proposition 8.2.3 it follows that joins of pointless sublocales
are also D-sublocales.

(4) We recall that a sublocale S of a locale L is codense (in L) [27, 44] if the associated frame
surjection νS : L� S satisfies the implication

νS(a) = 1 =⇒ a = 1

for any a ∈ L (cf. Subsection 2.7). Then we claim that every codense sublocale S of L such
that covered primes in S are maximal in S is a D-sublocale (so, for instance, every T1 codense
sublocale is a D-sublocale). Indeed, let p ∈ ptD(S) and a ∈ L with p ≤ a. Then p ≤ νS(a) and
since p is maximal in S, either p = νS(a) or νS(a) = 1. In the former case, we have a ≤ p by
adjunction, and in the latter, by codensity it follows that a = 1. Thus p is maximal, and in
particular covered, in L.

(5) Given any locale L, its diagonal sublocale DL ⊆ L⊕L (cf. Chapter 2) is always a D-sublocale
of L⊕L. To see this, recall the isomorphism (δL)∗ : L→DL from Subsection 1.5.4. Clearly, for
any p ∈ pt(L) one has (δL)∗(p) = pMp. Hence the covered primes in DL are those of the form
pMp with p ∈ ptD(L). But all such primes are covered in L⊕L by Lemma 7.7.13 (5). In passing,
we note that consequently the property of being a D-sublocale cannot be pullback stable (cf.
Subsection 2.2.4).

For a large class of locales we have that every sublocale is a D-sublocale. For the moment,
we have the following (but we shall discuss further this class of locales in Section 8.7.1 below):
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Proposition 8.2.10. The following are equivalent for a locale L:

(i) Every prime of L is covered — i.e., pt(L) = ptD(L);

(ii) sp[S(L)] ⊆ Sb(L);

(iii) sp[S(L)] ⊆ SD(L);

(iv) SD(L) = S(L);

(v) SD(L) is closed under arbitrary intersections in S(L).

Proof. For (i) =⇒ (ii), recall that by Proposition 1.2.4 every S ∈ sp[S(L)] is of the form
S = sp(S) =

∨
p∈pt(S) b(p). But by Lemma 1.3.3 each b(p) is complemented, and thus it

belongs to Sb(L). Thus S ∈ Sb(L). The implication (ii) =⇒ (iii) follows immediately from
Corollary 8.2.7. Assume now that (iii) holds, let S be a sublocale and p ∈ ptD(S). Then
b(p) ∈ sp[S(L)] ⊆ SD(L) and thus p is a covered prime in L by Remark 8.1.2 (3). Hence (iv)
follows. The implication (iv) =⇒ (v) is trivial. Assume finally that (v) holds and let p ∈ pt(L).
By zero-dimensionality of S(L)op there is a family {Ci}i∈I of complemented sublocales with
b(p) =

⋂
i Ci. By Corollary 8.2.7, one has Ci ∈ Sb(L) ⊆ SD(L) and so by assumption b(p) ∈ SD(L).

Then p ∈ ptD(L) by Remark 8.1.2 (3). �

8.3 Connections with TD-spatiality

After having explored some basic examples and properties concerning D-sublocales, we now
study their applications in the TD-duality.

We start by providing a construction which reveals the close connection between
TD-spatiality and the coframe SD(L). If S is a D-sublocale we have ptD(S) ⊆ ptD(L) and thus
there is a well-defined map

ptD : SD(L) −→P(ptD(L)).

Moreover, let
M : P(ptD(L)) −→ SD(L)

be the map given by
M(Y) =

∨
p∈Y
b(p) = {

∧
M |M ⊆ Y }

for each Y ⊆ ptD(L) (the second equality clearly follows from the general formula for joins
in S(L) —see (1.2.2)). Observe that M is well-defined. Indeed, each b(p) with p ∈ Y ⊆
ptD(L) is obviously a D-sublocale by Remark 8.1.2 (3) and SD(L) is closed under joins (by
Proposition 8.2.3).

After this preparation, we have the following:
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Proposition 8.3.1. There is an adjunction

P(ptD(L)) SD(L)
M

ptD

⊥

with the following properties:

(1) ptD ◦M is the identity;

(2) The fixpoints ofM◦ptD are the D-sublocales which are TD-spatial;

(3) ptD is a complete lattice homomorphism.

Proof. Clearly both ptD and M are monotone. For the adjunction, we have to check that
M(Y) ⊆ S if and only if Y ⊆ ptD(S) for each S ∈ SD(L) and Y ⊆ ptD(L). The “only if” implication
is trivial because Y ⊆M(Y), and the converse clearly follows from the fact that sublocales are
closed under meets.

(1) Let Y ⊆ ptD(L) and p ∈ ptD(M(Y)). Since p ∈M(Y), then p =
∧

M for some M ⊆ Y, and since
p is covered in Y, it follows that p ∈M ⊆ Y. Hence ptD(M(Y)) ⊆ Y. The other inclusion follows
by adjunction.

(2) Let S ∈ SD(L). ThenM(ptD(S)) = S if and only if every element of S is a meet of a subset of
ptD(S), and, by Lemma 1.3.6 this is equivalent to S being TD-spatial.

(3) ptD preserves meets as it is a right adjoint, and it preserves joins by Lemma 8.2.2. �

Furthermore, as it was done for the (classical) spatialization in Subsection 1.2.5, it is
useful to recast the TD-spatialization ϵ′L : Ω(Σ′(L))→ L from Subsection 1.3.2 as a concrete
sublocale. Since ϵ′L is injective, it corresponds to a sublocale of L. Now, as a consequence of
Proposition 8.3.1 we can identify the concrete sublocale to which it corresponds:

Corollary 8.3.2. The TD-spatialization of L is given byM(ptD(L)) =
∨

p∈ptD(L) b(p).

Proof. It follows at once from the adjunction in Subsection 1.3.2 that for every D-localic
map f : M→ L with M a TD-spatial frame, there is a unique 1 : M→Ω(Σ′(L)) such that the
diagram

M Ω(Σ′(L))

L

f

1

ϵ′L

commutes. It follows from Remark 8.1.2 (1) that ϵ′L : Ω(Σ′(L))→ L corresponds to the largest
TD-spatial D-sublocale of L. Moreover, M(ptD(L)) is TD-spatial by Proposition 8.3.1 (2).
Finally, suppose S is a further TD-spatial D-sublocale of L. Then, by Proposition 8.3.1,
S =M(ptD(S)) ⊆M(ptD(L)). Hence,M(ptD(L)) is the largest TD-spatial D-sublocale of L. �
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It is now apparent that, as we claimed at the beginning of this chapter, D-sublocales in
the TD-duality take up the role of plain sublocales in the classical sober-spatial duality (some
more justification is given in Section 8.4 below, see also further applications in Section 8.5).

From the last corollary, it follows thatM◦ptD : SD(L)→ SD(L) sends every D-sublocale to
its TD-spatialization. Therefore, we will denote this map by

spD :=M◦ptD : SD(L)→ SD(L)

and we will call it the TD-spatialization operator on L.
In the following corollary we gather some properties concerning the operator spD and its

fixset that will be useful at a later stage:

Corollary 8.3.3. The following properties hold:

(1) The operator spD : SD(L)→ SD(L) is a conucleus on SD(L);

(2) The fixset spD[SD(L)] of the conucleus spD is the ordered collection of TD-spatial D-sublocales,
and it is a subcolocale of SD(L);

(3) spD[SD(L)] is a complete and atomic Boolean algebra. Moreover, when we regard spD[SD(L)]op

as a Boolean sublocale of S(L)op, we have spD[SD(L)]op = bS(L)op(spD(L)).

Proof. (1) By the adjunction in Proposition 8.3.1 it follows that spD : SD(L)→ SD(L) is an
interior operator. Moreover, it preserves joins (indeed,M preserves joins as a left adjoint and
ptD preserves joins by Lemma 8.2.2). Hence it is a conucleus on SD(L).

(2) is trivial in view of Proposition 8.3.1 (2) and the familiar fact that the fixset of a nucleus is
a sublocale set.

(3) An adjunction between posets restricts to an isomorphism between the corresponding
fixsets, so in light of (1) and (2) of Proposition 8.3.1 it follows that SD(L) � P(ptD(L)) and
hence it is a complete and atomic Boolean algebra. For the last assertion, we note that
if S is a Boolean sublocale of a locale L, then S = bL(

∧
S). Applying this observation, we

get spD[SD(L)]op = bS(L)op(S) where S is the least element in spD[SD(L)]op — i.e., the largest
TD-spatial D-sublocale of L, namely spD(L). �

8.3.1 Global versus local

We have just seen that the collection spD[SD(L)] consisting of TD-spatial D-sublocales is a
subcolocale of SD(L). Throughout this section, we will say that this construction is local in
order to emphasize that spD[SD(L)] = {M(ptD(S)) | S ∈ SD(L) } is obtained by applying the
operator

spD : SD(L)→ SD(L)

pointwisely. However, SD(L)op is a sublocale of S(L)op, and hence in particular a frame in
its own right. Accordingly, we can also compute the TD-spatialization of SD(L)op, the global
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TD-spatialization, so to speak. Because of Corollary 8.3.2, the latter can be computed precisely
as spD(SD(L)op) =M(ptD(SD(L)op)) where

spD : SD(SD(L)op)→ SD(SD(L)op)

is the TD-spatialization operator on SD(L)op.
It is therefore a natural question to ask whether both the “local” and the “global”

construction agree and whether we can use the notation spD[SD(L)] without risk of confusion.
The following is an affirmative answer:

Proposition 8.3.4. For every locale L, we have the equality spD[SD(L)]op = spD(SD(L)op) — i.e.,
the local and the global TD-spatializations coincide.

Proof. Since S(L)op is zero-dimensional and SD(L)op is a sublocale of S(L)op, by Proper-
ties 1.2.3 (2) and (4) it follows that all the primes of SD(L)op are maximal (and in particular
covered). Hence ptD(SD(L)op) = pt(SD(L)op), and by Property 1.2.3 (5) and Remark 8.1.2 (3) we
have that ptD(SD(L)op) = {b(p) | p ∈ ptD(L) } and so

spD(SD(L)op) =M(ptD(SD(L)op)) =
{S(L)op∧

M |M ⊆ ptD(SD(L)op)
}
=
{ ∨

p∈Y
b(p) | Y ⊆ ptD(L)

}
= {M(Y) | Y ⊆ ptD(L) } = spD[SD(L)]op,

where the last equality follows from the adjunction in Proposition 8.3.1. �

We state the following corollary for future reference:

Corollary 8.3.5. The following are equivalent for a locale L:

(i) Every D-sublocale of L is TD-spatial — i.e., SD(L) = spD[SD(L)];

(ii) SD(L)op is TD-spatial;

(iii) SD(L)op is spatial.

Proof. The equivalence between (i) and (ii) follows readily from the previous proposition.
Finally, since all primes in SD(L)op are covered, TD-spatiality is equivalent to spatiality (to see
this, use Lemma 1.3.6 and the fact that a frame is spatial if and only if every element is a
meet of primes). �

8.4 D-sublocales and regular monomorphisms

As is well known, regular subobjects in the category Loc are precisely the embeddings of
sublocales. Now, we claimed above that the D-sublocales constitute the right restriction of
the notion of sublocale to the TD-duality, and it therefore seems a natural question whether
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the D-sublocales are the regular subobjects in LocD. It is the goal of this section to provide an
affirmative answer to this problem.

For this purpose, we first need to study the existence of equalizers in LocD. We begin by
noting the following easy fact:

Lemma 8.4.1. Let f ,1 : L→M be D-localic maps such that their equalizer in Loc is a D-sublocale.
Then, that equalizer is also the equalizer of f and 1 in LocD.

Proof. Let S ⊆ L be the equalizer of f and 1 in Loc. By hypothesis, the embedding ι : S ↪→ L is
a morphism in LocD. Let h : N→ L be a D-localic map such that f ◦h = 1◦h. We only need to
show that the unique localic map k such that ι◦ k = h is a D-localic map. Let p ∈ ptD(N). Then
k(p) = h(p) ∈ S∩ptD(L) ⊆ ptD(S) (cf. Remark 8.1.2 (2)). �

Further, it follows from Proposition 8.2.3 that there is always the largest D-sublocale
contained in a given sublocale, and it can therefore be tempting to conjecture that the
equalizer of any pair of D-localic maps is given by the largest D-sublocale contained in their
Loc-equalizer. However, it does not satisfy the appropriate universal property because the
embedding part of the factorization of a D-localic map is generally not a D-sublocale. In fact,
equalizers in LocD may fail to exist at all.

We need the following:

Lemma 8.4.2. Let L and M be locales and let f ,1 : L→M be localic maps. If e : E→ L is an equalizer
of f and 1 in LocD then e[E] is a D-sublocale of L.

Proof. Let p ∈ ptD(e[E]). By Lemma 1.3.3, b(p) is a complemented sublocale of e[E] and it
follows that e−1[b(p)] is a complemented sublocale of E. Indeed, consider the factorization of
e, namely

E e[E] L
j ι

.

Then e−1[b(p)] = j−1[ι−1[b(p)]] = j−1[b(p)∩ e[E]] = j−1[b(p)] and recall that coframe homomor-
phisms preserve complements.

We distinguish two cases:

(1) Suppose first that there is some q ∈ ptD(e−1[b(p)]). Then b(q) ⊆ e−1[b(p)] so by adjunction
b(e(q)) = e[b(q)] ⊆ b(p) — i.e., e(q) = p. But e−1[b(p)] is a complemented sublocale of E, so in
particular it is a D-sublocale by Corollary 8.2.7. Thus q ∈ ptD(E), and since e is a D-localic
map it follows that p = e(q) ∈ ptD(L), as required.

(2) Assume now that ptD(e−1[b(p)]) = ∅ and select a locale M such that pt(M) , ∅ and
ptD(M) = ∅ (as e.g. the totally ordered M = [0,1]) and let h be the composite

M b(p) L

where the first map is the unique surjection onto the terminal locale given by h(1) = 1 and
h(a) = p for all a < 1. Since ptD(M) = ∅, h is a D-localic map, and it equalizes f and 1 because
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so does e and p ∈ e[E]. Hence there is a unique D-localic map k : M→ E such that the diagram

M E

L

k

h
e

commutes. Pick p0 ∈ pt(M) and set q0 := k(p0). Since localic maps send primes into primes,
we have q0 ∈ pt(E), and e(q0) = h(p0) = p.

Finally, let ℓ be the composite

e−1[b(p)] b(q0) E .

Then e◦ ℓ = e◦ ι where ι : e−1[b(p)] ↪→ E is the inclusion. Since ptD(e−1[b(p)]) = ∅, ℓ and ι are
trivially D-localic maps and by the uniqueness clause of the equalizer we must then have
ℓ = ι. But then b(q0) = e−1[b(p)] is a complemented sublocale of E — i.e., q0 ∈ ptD(E). Since e is
a D-localic map, p = e(q0) ∈ ptD(L), as required. �

Proposition 8.4.3. Let L and M be locales and let f ,1 : L→M be D-localic maps. If the equalizer of
f and 1 exists in LocD then their Loc-equalizer is a D-sublocale.

Proof. Assume that

E L Me
f

1

is an equalizer in LocD and let S ⊆ L be the equalizer of f and 1 in Loc. Hence e[E] ⊆ S by
the universal property of the equalizer, and by the previous lemma we know that e[E] is a
D-sublocale of L. Let p ∈ ptD(S). Select a nontrivial pointless Boolean algebra B and let h be
the composite

B b(p) L

where the first map is the unique surjection onto the terminal locale given by h(1) = 1 and
h(a) = p for all a < 1. Since ptD(B) ⊆ pt(B) = ∅, h is a D-localic map, and it equalizes f and 1
because p ∈ S. Hence there is a unique D-localic map k : B→ E such that the diagram

B E

L

k

h
e

commutes. Then p = h(0) = e(k(0)) ∈ e[E] ⊆ S and since e[E] is a D-sublocale, p ∈ ptD(S)∩ e[E] ⊆
ptD(e[E]) ⊆ ptD(L) by Remark 8.1.2 (2). Hence S is a D-sublocale. �
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Example 8.4.4. Let L = {0 }∪ { 1
n | n ∈N } and let f : L→ L be given by f (0) = 0, f (1) = 1 and

f ( 1
n ) = 1

n+1 . One readily verifies that f is a D-localic map. It follows that

b(0) = {0,1 } L L
1L

f

is the equalizer in Loc. Hence, the equalizer of f and 1L in LocD does not exist because b(0) is
not a D-sublocale.

Combining the last proposition with Lemma 8.4.1 we are now in position to fully
characterize the existence of equalizers in LocD.

Corollary 8.4.5. Let L and M be locales and let f ,1 : L→M be D-localic maps. Then the equalizer
of f and 1 in LocD exists if and only if the equalizer of f and 1 in Loc is a D-sublocale (and so their
equalizers in Loc and LocD coincide).

A sufficient condition for the situation in Proposition 8.4.3 is as follows:

Proposition 8.4.6. If M has a complemented diagonal (e.g., if M is locally strongly Hausdorff), then,
for every pair of morphisms f ,1 : L→M in LocD, their equalizer in LocD exists and is given by their
equalizer in Loc.

Proof. It follows from general category theory (see Subsection 2.2.4) that the equalizer of f and
1 in Loc can be computed as the preimage of the diagonal along the map ⟨ f ,1⟩ : L→M⊕M. But
the preimage operator is a coframe homomorphism and so it sends complemented sublocales
into complemented sublocales. It follows that the equalizer in Loc is a complemented
sublocale of L. But complemented sublocales are D-sublocales by Corollary 8.2.7. �

As we claimed that D-sublocales play the role of plain sublocales in the duality of
TD-spaces, we now provide some more evidence for this assertion by showing that they are
precisely the regular monomorphisms in LocD:

Proposition 8.4.7. Any D-sublocale is a regular monomorphism in LocD.

Proof. Let S ⊆ L be a D-sublocale. As is well known, sublocale embeddings are regular
monomorphisms in Loc, and hence S ↪→ L is the equalizer of its cokernel pair in Loc — i.e.,
there is an equalizer diagram

S L P
f

1

in Loc, where P = { (x, y) ∈ L× L | νS(x) = νS(y) } (νS denotes the nucleus associated to the
sublocale S),

f (a) =
∨
{ (b,c) ∈ P | b ≤ a } = (a,νS(a)) and 1(a) =

∨
{ (b,c) ∈ P | c ≤ a } = (νS(a),a)
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for each a ∈ L. Observe that f (resp. 1) is the right adjoint of the coordinate projection P→ L
sending (b,c) to b (resp. (b,c) to c).

By Lemma 8.4.1, it suffices to show that f and 1 are D-localic maps, as then the equalizer
diagram above will be a equalizer diagram in LocD. By symmetry, we shall just prove it for
f . Let p ∈ ptD(L) and denote by p+ the cover of p in L. We distinguish two cases:

(1) If p ∈ S then νS(p) = p, and since p < p+ it follows that f (p) = (p,p) < (p+,p+). Let (b,c) ∈ P
with

f (p) = (p,p) ≤ (b,c) ≤ (p+,p+).

Then p ≤ b∧ c ≤ p+ and we again distinguish two cases:

(1.1) If b∧ c = p then b ≤ νS(b) = νS(b∧ c) = νS(p) = p and hence (b,c) ≤ f (p).

(1.2) If b∧ c = p+ then (p+,p+) ≤ (b,c).

Consequently (p+,p+) is the cover of f (p) in P.

(2) If p < S — i.e., p < νS(p) then since p ≤ νS(p)∧ p+ ≤ p+ and p is prime, we must have
νS(p)∧p+ = p+. It follows that νS(p+) = νS(p) and so we have f (p) = (p,νS(p)) = (p,νS(p+)) <
(p+,νS(p+)) = f (p+). Let (b,c) ∈ P with

f (p) = (p,νS(p+)) ≤ (b,c) ≤ (p+,νS(p+)) = f (p+).

Then p ≤ b ≤ p+ and c = νS(p+). If b = p then clearly (b,c) = f (p), and if b = p+ then (b,c) = f (p+).
Consequently f (p+) is the cover of f (p) in P. �

Corollary 8.4.8. The D-sublocales are precisely the regular subobjects in LocD.

Proof. The “only if” implication follows from Proposition 8.4.7 whereas the “if” implication
follows from Proposition 8.4.3. �

8.5 Total TD-spatiality

Let us recall from Simmons [110] that a locale is called totally spatial if every sublocale is
spatial. A classical and beautiful result in locale theory asserts that L is totally spatial if and
only if S(L)op is spatial (Niefield and Rosenthal [90]).

In this section we introduce and study the TD-analogue of total spatiality and we shall
show that D-sublocales play an important role.

Definition 8.5.1. A locale L is totally TD-spatial if every sublocale of L is TD-spatial.

This is our characterization of total TD-spatiality:
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Theorem 8.5.2. The following are equivalent for a locale L:

(i) L is totally TD-spatial;

(ii) Every D-sublocale of L is TD-spatial;

(iii) M◦ptD is the identity on SD(L);

(iv) There is an isomorphism SD(L) �P(ptD(L));

(v) SD(L)op is TD-spatial;

(vi) SD(L)op is spatial;

(vii) SD(L)op is spatial and Boolean (i.e., a complete and atomic Boolean algebra);

(viii) SD(L) = Sb(L) and L is TD-spatial;

(ix) Every nonzero sublocale of L contains a covered prime in itself.

Proof. (i) obviously implies (ii) and (ii) is equivalent to (iii) by the adjunction in Proposi-
tion 8.3.1.

(iii) =⇒ (iv): The isomorphism is obtained by restricting the adjunction in Proposition 8.3.1
to the fixsets, which under the assumption are P(ptD(L)) and SD(L).

(iv) =⇒ (v) and (v) =⇒ (vi) are clear.

(vi) =⇒ (vii): From Corollary 8.3.5 we obtain that spD[SD(L)] = SD(L). Now, use Corol-
lary 8.3.3 (3).

(vii) =⇒ (viii): Suppose that SD(L)op is spatial and Boolean. If SD(L)op is Boolean, since it
is also dense, it must coincide with the unique Boolean dense sublocale of S(L)op, namely
Sb(L)op. Hence SD(L) = Sb(L) and so Sb(L)op � Sb(L) is also spatial. By Theorem 7.5.2 we
conclude that L is TD-spatial.

(viii)=⇒ (ix): Notice that every non-smooth sublocale has a covered prime in itself (otherwise,
we would have a non-smooth sublocale S with ptD(S) = ∅, then S would be obviously a
D-sublocale so by assumption it would be smooth, a contradiction). But L being TD-spatial,
say L = Ω(X) with X a TD-space, every (nonzero) smooth sublocale of it is induced by a
subspace A ⊆ X by Lemma 7.5.1. Hence, it contains a covered prime of L, in particular a
covered prime in itself. Thus every nonzero sublocale contains a covered prime in itself.

(ix) =⇒ (i): Clearly, the condition (ix) is hereditary with respect to any sublocale. Hence,
it suffices to show that L is TD-spatial. If for any complemented sublocale C ⊆ L such that
spD(L) ⊆ C one has C = L, then by zero-dimensionality of S(L)op, it follows that L = spD(L)
and so L is TD-spatial. Hence assume by way of contradiction that there is a complemented
sublocale C ⊆ L such that C , L and spD(L) ⊆ C. Since C , L, then C# ,O, so by assumption
there is a p ∈ ptD(C#). But C# is complemented; in particular it is a D-sublocale, hence
p ∈ ptD(L). But then b(p) ⊆ spD(L) ⊆ C, whence b(p) ⊆ C∩C# =O, a contradiction. �
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Remarks 8.5.3. (1) The fact that TD-spatiality of D-sublocales implies total TD-spatiality (i.e.,
TD-spatiality of all sublocales) may seem somewhat surprising: we emphasize that even
under the conditions of Theorem 8.5.2 there may be strictly more sublocales than D-sublocales
(for an example, see Example 8.5.6 below). If, additionally, every sublocale is a D-sublocale,
we already reach strong TD-spatiality (see Theorem 8.5.4: every sublocale of L is strongly
TD-spatial if and only if L is totally TD-spatial and every sublocale is a D-sublocale).

(2) Regarding the equivalence (i)⇐⇒ (v), we have achieved a counterpart of the aforemen-
tioned classical result of Niefield and Rosenthal which states that a frame is totally spatial if
and only if S(L)op is spatial. Here we have the parallel statement that

a frame is totally TD-spatial if and only if SD(L)op is TD-spatial.

(3) It is sometimes incorrectly stated in the literature that for a TD-space X, S(Ω(X))op is
spatial if and only if it is Boolean (see e.g. [90, p. 267]). The assertion is generally not true.
Certainly if S(Ω(X))op is Boolean then it is spatial (every sublocale is complemented, and
thus induced by a subspace of X, so Ω(X) is totally spatial). However, spatiality of S(Ω(X))op

is strictly weaker. For the sake of clarification, we characterize the stronger condition in
the corollary of the following theorem (the result is an easy combination of Theorem 7.5.2,
Theorem 8.5.2 and Lemma 1.3.9 and we omit the details). We also give an example of the
strict implication afterwards.

Theorem 8.5.4. The following are equivalent for a locale L:

(i) Every sublocale of L is strongly TD-spatial;

(ii) L is totally (TD-)spatial and strongly TD-spatial;

(iii) L is totally (TD-)spatial and all its primes are covered;

(iv) There is an isomorphism S(L) �P(ptD(L));

(v) S(L)op is spatial and Boolean (i.e., a complete and atomic Boolean algebra);

(vi) S(L)op is Boolean and L is (TD-)spatial;

(vii) Every nonzero sublocale of L contains a covered prime of L.

Combining the equivalence (iii)⇐⇒ (vi) of last result with Lemma 1.3.4, we obtain the
following (cf. also [109]):

Corollary 8.5.5. If X is a T0-space, S(Ω(X))op is Boolean if and only if S(Ω(X))op is spatial and X is
sober and TD.

Example 8.5.6. Consider the totally ordered set of the natural numbers with the Alexandroff
topology, that is, Ω(N) = {∅ } ∪ {↑n | n ∈ N }. Observe that for any n > 1 the element
↑n =N−{n−1 } is a covered prime inΩ(N) and ∅ is a prime which is not covered. Hence
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condition (iii) in Theorem 8.5.4 is not satisfied. Moreover, it was pointed out in [12] that
Ω(N) is totally spatial. In fact, one has slightly more:

every sublocale is TD-spatial.

In order to see this, let S be a nonzero sublocale. If S = {∅,N }, obviously S contains a covered
prime in itself (namely, ∅). Otherwise, S contains an element of the form ↑n with n > 1, but all
such elements are covered in Ω(N), and in particular they are covered in S. Thus condition
(ix) in Theorem 8.5.2 holds. Of course, {∅,N } is a sublocale but not a D-sublocale.

8.6 Functoriality

Recall the non-functoriality of Sb(L) from Section 7.7. Here we have a similar situation: the
assignment L 7→ SD(L)op is not functorial in the whole category of frames. Accordingly, we
have to deal with individual lifts once again. Precisely, in the present section we will say
that a frame homomorphism f : L→M has an SD-lift (or that it SD-lifts) if there is a coframe
homomorphism SD( f ) : SD(L)→ SD(M) such that the associated naturality square

SD(L)op SD(M)op

L M

SD( f )op

f

cL cM
(8.6.1)

in the category of frames commutes.
Of course, the coframe of sublocales yields a functor S(−) : Frm→ Frm (cf. Subsec-

tion 1.2.2). Moreover, we have justified that the system SD(L) takes up the role of the whole
S(L) when switching from the classical duality to the TD-duality. It is therefore a natural
and important question whether if, after all, the subcategory of Frm consisting of maps
which SD-lift is just (or, better, it contains) the category FrmD from Subsection 1.3.2 (because
D-homomorphisms are the “good morphisms” in the TD-duality). We left this question open
when writing [9] and in this thesis we will give a negative solution to it.2. Before that, we
prove a few more general results.

8.6.1 General results

We begin by an easy description of the candidate for a SD-lift:

Lemma 8.6.1. Let f : L→M be a frame homomorphism which SD-lifts and S be a D-sublocale of L.
Then SD( f )(S) can be computed as the largest D-sublocale in M which is contained in ( f∗)−1[S].

Proof. If S is a sublocale of L, then one can write S =
⋂

S⊆oL(a)∨cL(b) oL(a)∨ cL(b). Each of the
sublocales oL(a)∨ cL(b) belongs to SD(L) (as complemented sublocales belong to SD(L); see

2However, we will see that surjections which SD-lift are precisely D-homomorphisms.
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Corollary 8.2.7), and observe that if S happens to be a D-sublocale, then the intersection⋂
S⊆oL(a)∨cL(b) oL(a)∨ cL(b) coincides with the meet

∧
S⊆oL(a)∨cL(b) oL(a)∨ cL(b) taken in SD(L).

Now, applying the coframe homomorphism SD( f ) and using the fact that coframe homo-
morphisms commute with complements and that preimage is also a coframe homomorphism,
we readily obtain

SD( f )(S) =
∧

S⊆oL(a)∨cL(b)
cM( f (a))∨oM( f (b))

= jSD(M)

( ⋂
S⊆oL(a)∨cL(b)

( f∗)−1[cL(a)∨oL(b)]
)
= jSD(M)

(
( f∗)−1

[ ⋂
S⊆oL(a)∨cL(b)

cL(a)∨oL(b)
])

= jSD(M)(( f∗)−1[S]),

where
∧

denotes meet in SD(M) and jSD(M) is the conucleus associated to SD(M) in S(M).
Then, one has that SD( f )(S) is the largest D-sublocale of M contained in ( f∗)−1[S]. �

We shall need the following corollary later:

Corollary 8.6.2. The following properties hold:

(1) Let f : L→M be a frame homomorphism which SD-lifts, let S be a D-sublocale of L, and assume
that every prime in M is covered. Then SD( f )(S) = ( f∗)−1[S].

(2) If every prime of M is covered, a frame homomorphism f : L→M has an SD-lift if and only if

f∗
[
( f∗)−1

[⋂
i∈I

Si

]]
⊆

SD(L)∧
i∈I

Si

for every {Si}i∈I ⊆ SD(L).

Proof. If every prime is covered, every sublocale is a D-sublocale so the first assertion follows
from the previous lemma. Now, in view of this, f has an SD-lift if and only if the usual
preimage is a coframe homomorphism when regarded as a map SD(L)→ SD(M) = S(M); it
clearly preserves finite joins so it SD-lifts if and only if it preserves arbitrary meets. But for
every {Si}i∈I ⊆ SD(L), we have the chain of equivalences

⋂
i

( f∗)−1[Si] = ( f∗)−1

[SD(L)∧
i

Si

]
⇐⇒ ( f∗)−1

[⋂
i

Si

]
⊆ ( f∗)−1

[SD(L)∧
i

Si

]
⇐⇒ f∗

[
( f∗)−1

[⋂
i

Si

]]
⊆

SD(L)∧
i

Si.

�

8.6.2 Surjections

In parallel with the situation concerning Sb(L), surjections which SD-lift are easily character-
ized. The following results are the counterparts of Corollaries 7.7.5, 7.7.6 and 7.7.3.

Corollary 8.6.3. Let p be a prime in a locale L. Then the frame surjection associated to the sublocale
b(p) has an SD-lift if and only if p is a covered prime.
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Proof. ⇒: By Corollary 8.2.7 we have that C = {C ∈ S(L) | b(p) ⊆ C, C complemented } ⊆ SD(L).
Moreover, because of the zero-dimensionality of S(L)op and Corollary 8.6.2 (2) one clearly
has
∧
C =
⋂
C = b(p) ∈ SD(L). It follows that p ∈ ptD(L).

⇐: Since b(p) trivially satisfies the assumptions in Corollary 8.6.2 (2), it is enough to prove
that b(p)∩

⋂
i Si ⊆

∧
i Si for every family {Si}i∈I of D-sublocales of L. Let {Si}i∈I ⊆ SD(L). If

b(p)∩
⋂

i Si =O, then obviously b(p)∩
⋂

i Si ⊆
∧

i Si. Otherwise b(p) = b(p)∩
⋂

i Si ⊆
⋂

i Si, and
applying the conucleus jSD(L), we obtain b(p) = jSD(L)(b(p)) ⊆

∧
i Si. �

Now, exactly the same proof as the one of Corollary 7.7.6 yields the following necessary
condition:

Corollary 8.6.4. If a frame homomorphism SD-lifts, it is a D-homomorphism.

Corollary 8.6.5. Let f : L� S be a frame surjection onto a sublocale S of L. Then f has an SD-lift if
and only if S is a D-sublocale.

Proof. ⇒: This implication follows by Corollary 8.6.4 and Remark 8.1.2 (1).

⇐: If S is a D-sublocale of L and T ⊆ S, it is clear that T is a D-sublocale of S if and
only if T is a D-sublocale of L. It follows that SD(S) = ↓SD(L)S. Hence there is a coframe
homomorphism SD(L)→ SD(S) given by T 7→ T∧S. For showing that the relevant naturality
square commutes it suffices to check that S∩ cL(a) is a D-sublocale of L. But this follows
because S∩ cL(a) = cS(νS(a)) is a closed (hence smooth) sublocale of S, so by Corollary 8.2.7 it
is a D-sublocale of S. Therefore, ptD(S∩ cL(a)) ⊆ ptD(S) ⊆ ptD(L). �

8.6.3 Monomorphisms

As mentioned above, unfortunately being a D-homomorphism is not a sufficient condition
for a monomorphism to SD-lift. For showing this, we start by specializing Corollary 8.6.2 to
a particular case:

Lemma 8.6.6. Let f : L→M be a frame homomorphism such that f∗ is a surjection stable under
pullback along inclusions in Loc3, and assume that every prime of M is covered. Then f has an
SD-lift if and only if every prime of L is covered.

Proof. By Corollary 8.6.2 (2), f has an SD-lift if and only if f∗[( f∗)−1[
⋂

i∈I Si]] ⊆
∧SD(L)

i∈I Si for
every {Si}i∈I ⊆ SD(L). By hypothesis, f∗[( f∗)−1[

⋂
i∈I Si]] =

⋂
i∈I Si and therefore f has an SD-lift

if and only if
⋂

i∈I Si =
∧SD(L)

i∈I Si for every {Si}i∈I ⊆ SD(L). But by Proposition 8.2.10 this holds
if and only if every prime of L is covered. �

Example 8.6.7. Consider the natural numbersNwith the cofinite topology4. It is a fact of
general topology due to Shimrat [108] that every space can be expressed as the image of a

3That is, a semi-stable epimorphism in the terminology of Plewe [102].
4Or, more generally, any other TD-space with a non-covered prime.
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Hausdorff space under an open continuous map. So let X be Hausdorff and f : X→N be an
open continuous surjection. Let

h :=Ω( f ) : Ω(N)→Ω(X)

be the associated frame homomorphism given by preimage. Then, h is injective, and
moreover it is also an open frame homomorphism. Hence h∗ is an open surjection in Loc,
and in particular, by [76, Theorem 4.7] it is stable under pullback along inclusions. Now
since X andN are both TD, it follows that h is a D-homomorphism (recall Lemma 1.3.5).

Finally every prime in X is covered (as X is Hausdorff, so in particular it is sober and TD),
but ∅ is a non-covered prime inN (as ∅ =

∧
n∈NN−{n }). By the previous lemma, h does

not SD-lift.

Therefore, we have shown that

there is an open D-homomorphism between spatial frames which is a monomorphism and
does not SD-lift.

Remark 8.6.8. In the spatial case, this example exhibits a major difference with the smooth
case (compare it with Corollary 7.7.12).

8.7 Concluding remarks

Our analysis of TD-spatiality and related topics relies heavily on a subset (actually subspace)
of the prime spectrum, namely the subset consisting of covered primes. However, there is
also the more restricted subset of maximal elements which are well known to be connected
to “closed points” and thus to the T1-axiom (recall e.g. the observation that p is maximal if
and only if the one-point sublocale b(p) is closed).

Accordingly, one may wonder how much of our theory can be developed when replacing
“covered prime” by “maximal element” and, vice-versa, which familiar facts concerning
maximal elements still hold in our setting concerning covered primes.

In this last section we present several examples of opposite behaviour between “TD-points”
and “T1-points”.

8.7.1 A categorical comment

We have met several point-free counterparts of the T1 axiom from classical topology. Among
others, there is the notion of T1-frame (see Subsection 1.1.3) introduced by Rosický and
Šmarda [106]. More precisely, we recall that a frame is T1 if every prime is maximal (clearly,
a sober space is T1 if and only if the associated frame is T1 in this sense).

Despite the fact that other point-free analogues of the T1 axiom (especially subfitness or
fitness) are arguably more relevant in point-free topology [98, p. xv], the T1-frames have the
following motivating property:
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Theorem 8.7.1 ([106]). The epireflective hull of the subcategory of Loc consisting of sober T1

topologies is precisely the subcategory of T1-locales.

We have already implicitly met its TD-analogous notion in Proposition 8.2.10. In light of
the preceding discussion, we formulate it as follows:

Definition 8.7.2. A TD-frame is one in which every prime is covered.

Unfortunately the counterpart of Theorem 8.7.1 is not true when “T1” is replaced by “TD”.
In fact,

the full subcategory of Loc consisting of TD-locales is not closed under products.

Example 8.7.3. One of the simplest examples seems to be the following: the Sierpiński locale
S is clearly a TD-locale, but the infinite product ⊕n∈NΩ(S) is not TD. Indeed, by way of
contradiction suppose that in the product ⊕n∈NΩ(S) every prime is covered. Then

Σ′⊕n∈NΩ(S) = Σ⊕n∈NΩ(S) �
∏

n∈N
ΣΩ(S) =

∏
n∈N
S.

But Σ′(L) is always TD (Subsection 1.3.2), and hence so is
∏

n∈NS, a contradiction with the
well-known fact that an infinite product of Sierpiński spaces is not TD (see e.g. [38]).

This last fact provides an example where T1-locales behave better than TD-locales.

8.7.2 The system of M-sublocales

An essential part of the theory developed so far exploited the subcolocale nature of SD(L)
(see Table 9.1 for a comprehensive account of the examples discussed so far).

According to the considerations above, it is a natural question whether one can build an
analogue construction with “covered prime” replaced by “maximal element”. The aim of
the following is to show that, unfortunately, there is generally no such nice structure in the
modified context of maximal elements.

Inded, let us call a sublocale S of L an M-sublocale if maximal elements in S are maximal
in L — i.e., if max(S) ⊆max(L). Moreover let SM(L) denote the family of M-sublocales of L.
Then one has:

Remark 8.7.4. Let L have a non-maximal covered prime. We claim that SM(L) is not a
subcolocale of S(L). Indeed, let p be a covered prime which is not maximal and by way of
contradiction suppose that SM(L) is a subcolocale. Since L ∈ SM(L), we actually have that
SM(L) is a dense subcolocale, and thus Sb(L) ⊆ SM(L). Since p is covered, by Lemma 1.3.3 it
follows that b(p) is complemented. Then b(p) ∈ Sb(L) ⊆ SM(L). In view of the fact that p is
maximal in b(p) and b(p) ∈ SM(L), we deduce that p is maximal in L, a contradiction.

In particular, if X is a TD-space which is not T1, the system SM(Ω(X)) is not a subcolocale;
thus showing that in this context T1-points lack a convenient property which TD-points enjoy.
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8.7.3 Total T1-spatiality

Recall that every subspace of a TD-space (resp. T1-space) is also TD (resp. T1). Therefore, if L
is TD-spatial (resp. T1-spatial), say L =Ω(X) with X a TD-space (resp. T1-space), then every
sublocale induced by a subspace of X is trivially TD-spatial (resp. T1-spatial). It naturally
arises the related question whether every spatial sublocale is TD-spatial (resp. T1-spatial).
Certainly, if X is sober, the answer to both questions is positive (since spatial sublocales
are induced). Furthermore, for the T1-spatial case, Herrlich and Pultr proved that such a
situation can happen only if X is sober:

Theorem 8.7.5 ([71, Theorem 3.4]). If X is a T1-space, then every spatial sublocale of Ω(X) is
T1-spatial if and only if X is sober.

In the TD-spatial case, sobriety is not a necessary condition, as Example 8.5.6 shows.
Observe also that Theorem 8.7.5 shows that there is no interesting notion of total T1-spatiality:
it follows that every sublocale of L is T1-spatial if and only if L is totally spatial and all its
primes are maximal — i.e., in the T1-case the conditions analogous to those of Theorem 8.5.2
collapse to the analogues of those of Theorem 8.5.4.

It still remains the question whether a TD-spatial frame can have a spatial sublocale which
is not TD-spatial. It can, as the following example shows. Let L = [0,1] denote the totally
ordered frame of the unit interval and consider the frame surjection

h : Dwn(L)� L

given by h(U) =
∨

U. Note that (L,Dwn(L)) is a TD-space and so Dwn(L) is TD-spatial.
Moreover, L is (isomorphic to) a sublocale of Dwn(L), and L is spatial (since every element is
prime) but not TD-spatial (actually it does not contain any covered prime).

Incidentally, this example also shows that a totally spatial TD-spatial locale is not
necessarily totally TD-spatial. Indeed, Dwn(L) is totally ordered (it consists of ↓t and
< t := {s ∈ [0,1] | s < t } for each t ∈ [0,1]) and so it follows from [13, Corollary 4.2] that Dwn(L)
is totally spatial (and TD-spatial, as we mentioned above).



Chapter 9

The big picture — relating
subcolocales of S(L)

We devoted Chapters 7 and 8 to the study of two subcolocales of S(L), namely the system of
smooth sublocales and that of D-sublocales, denoted by

Sb(L) and SD(L)

respectively. We also met the spatialization subcolocale

sp[S(L)]

from Subsection 1.2.5 and Picado, Pultr and Tozzi’s family of joins of closed sublocales, the

Sc(L)

from Section 7.2 (the latter is generally not a subcolocale but just a sub-suplattice).
Now, it turns out that relations between these subsets and S(L) often characterize

interesting and well-known properties of the locale in question (recall for example the
statement that sp[S(L)] = S(L) if and only if every sublocale of L is spatial [90], or its
TD-analogue in Theorem 8.5.2). In this chapter we shall study all the remaining possible
inclusions between the aforementioned subsets. The material contained in this chapter is
part of the joint paper [9] with Anna Laura Suarez:

[9] I. Arrieta and A. L. Suarez, The coframe of D-sublocales of a locale and the TD-duality,
Topology and its Applications, vol. 291, art. no. 107614, 2021.

9.1 A few more results

In what follows we prove some additional results in order to complete the gaps in Table 9.1
below. We start by observing the following easy result:
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Lemma 9.1.1. The following are equivalent for a locale L:

(i) L is spatial;

(ii) Sb(L) ⊆ sp[S(L)];

(iii) Sc(L) ⊆ sp[S(L)].

Proof. If (i) holds, we have L ∈ sp[S(L)] (recall Proposition 1.2.4). This means that sp[S(L)]op is
a dense sublocale of S(L)op; hence it contains its least dense sublocale. Moreover, (ii)=⇒ (iii) is
obvious because Sc(L) ⊆ Sb(L) and (iii) =⇒ (i) follows immediately from Proposition 1.2.4. �

9.1.1 Total spatiality

Somewhat more surprisingly the family SD(L) can also be used for characterizing “plain”
total spatiality:

Proposition 9.1.2. The following are equivalent for a locale L:

(i) L is totally spatial;

(ii) SD(L) ⊆ sp[S(L)].

Proof. If L is totally spatial then SD(L) ⊆ sp[S(L)] = S(L). Conversely, if SD(L) ⊆ sp[S(L)] then
every pointless sublocale is spatial (see Example 8.2.9 (2)). Thus every nontrivial sublocale of
L has a point. By [90, p. 269], it follows that L is totally spatial. However, since no proof of
the latter fact is provided therein, we give one for the sake of completeness:

Let S be an arbitrary sublocale and let C be a complemented sublocale such that
sp(S) ⊆ C. If S∩C# ,O then by assumption it has a point — i.e., there is some p ∈ pt(L) with
b(p) ⊆ S∩C#. Then b(p) ⊆ sp(S) ⊆ C, but also b(p) ⊆ C#, a contradiction. Hence S∩C# = O,
or, equivalently, S ⊆ C because of Properties 1.2.1 (2) and (3). By zero-dimensionality we
conclude that S ⊆

⋂
{C | sp(S) ⊆ C, C complemented } = sp(S) and so S = sp(S). Hence L is

totally spatial. �

9.1.2 D-scatteredness

Recall that the notion of scatteredness for locales can be characterized as follows: a locale L is
scattered if and only if S(L) is Boolean [101, Theorem 11]. It also makes sense to consider the
analogue of scatteredness in the TD-duality — i.e., to study locales L for which the system
SD(L) is Boolean. Accordingly, we shall call these locales D-scattered. By Theorem 8.5.2,
totally TD-spatial locales are D-scattered (more precisely, total TD-spatiality is the conjunction
of D-scatteredness and TD-spatiality).

We have the following characterization:
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Proposition 9.1.3. The following are equivalent for a locale L:

(i) L is D-scattered;

(ii) SD(L) = Sb(L);

(iii) If S is a sublocale such that ptD(S) = ∅, then S is smooth.

Proof. If (i) holds, that is, if SD(L) is Boolean, then SD(L)op is a Boolean dense sublocale of
S(L)op, hence it must coincide with the Booleanization of S(L)op. Moreover, (ii) clearly implies
(iii) as a sublocale without covered primes is a D-sublocale for trivial reasons. Let us assume
(iii) and let S ∈ SD(L). Consider the decomposition S = spD(S)∨ (SrspD(S)). Observe that by
Proposition 8.2.5, SrspD(S) is a D-sublocale as well — i.e., ptD(SrspD(S)) ⊆ ptD(L). Assume
that there exists some p ∈ ptD(SrspD(S)). Then p ∈ ptD(L)∩S ⊆ ptD(S) and hence b(p) ⊆ spD(S).
Therefore, b(p)⊆ SrspD(S)⊆ Srb(p)⊆ Lrb(p)= b(p)#, which yields a contradiction because of
Lemma 1.3.3 and the fact that p ∈ ptD(L). Hence ptD(SrspD(S))=∅ and so SrspD(S) is smooth
in L. Moreover, spD(S) =

∨
p∈ptD(S) b(p) is also a smooth sublocale because ptD(S) ⊆ ptD(L) and

Lemma 1.3.3. Hence S= spD(S)∨ (SrspD(S)) is smooth, as it is a join of smooth sublocales. �

Remark 9.1.4. Condition (iii) in the proposition is certainly simpler than (ii): being a
D-sublocale is a relative condition with respect to the ambient locale, whereas the condition
ptD(S) = ∅ (having no covered prime in itself) is absolute.

9.2 Some final remarks

Among the subsets of S(L) we studied, not all of them are of the same nature. Indeed,
sp[S(L)] and Sb(L) arise after applying a general locale-theoretic construction (spatialization
and Booleanization, respectively) to the particular case of the locale S(L)op.

More precisely, recall that if L is a locale, then BL = {a∗ | a ∈ L } and sp(L) = {
∧

Y | Y ⊆ pt(L) }
are the Booleanization and the spatialization of L, respectively. Thus they only depend on the
lattice-theoretic structure of the assembly S(L)op (and not on L itself, nor on the embedding
cL : L� S(L)op).

The same applies to the case of SD(L), even if its definition as given in Chapter 8 may
slightly obscure this fact. Indeed, if L is a locale, set

LD := {a ∈ L | (p ∈ pt(L), a ≤ p, p∨ (p→ a) = 1) =⇒ p is complemented }.

This general locale-theoretic construction, when applied to the particular case of the locale
S(L)op, leads to the equality (S(L)op)D = SD(L)op (by Property 1.2.3 (5), Lemma 1.3.3 and the
fact that a sublocale S is complemented if and only if S∩S# =O). Consequently, if L and M
are locales such that S(L) � S(M) then one has SD(L) � SD(M).

On the contrary, the construction Sc(L) does not depend only on the lattice structure
of S(L). In fact, we may have locales L and M such that S(L) � S(M) but Sc(L) � Sc(M).
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Indeed, if S denotes de Sierpiński space and B4 is the 4-element Boolean algebra, one has
Sc(Ω(S)) �Ω(S) and Sc(B4) � B4. However S(Ω(S)) � S(B4) � B4.

9.3 Summary

To sum up, we gather all the previously obtained results in the following table.

Table 9.1 Characterizations of locale-theoretic properties in terms of subsets of the assembly

Subsets of S(L) Property of L Reference

Sb(L) ⊆ sp[S(L)] Spatial Lemma 9.1.1

Sc(L) ⊆ sp[S(L)] Spatial Lemma 9.1.1

sp[Sb(L)] = Sb(L) TD-spatial Theorem 7.5.2

Sb(L) = sp[S(L)] Strongly TD-spatial Lemma 9.1.1,
Proposition 8.2.10,
Lemma 1.3.9

SD(L) = S(L) TD-locale Proposition 8.2.10

sp[S(L)] ⊆ SD(L) TD-locale Proposition 8.2.10

sp[S(L)] ⊆ Sb(L) TD-locale Proposition 8.2.10

sp[S(L)] ⊆ Sc(L) T1-locale [9, Lemma 5.2]

S(L) = sp[S(L)] Totally spatial [90, Theorem 3.4]

SD(L) ⊆ sp[S(L)] Totally spatial Proposition 9.1.2

SD(L) = sp[SD(L)] Totally TD-spatial Theorem 8.5.2

Sb(L) = S(L) Scattered [101, Theorem 11]

Sc(L) = S(L) Scattered and fit [16, Theorem 3.6]

SD(L) = Sb(L) D-scattered Proposition 9.1.3

SD(L) = Sc(L) D-scattered and subfit Proposition 9.1.3,
Theorem 7.2.1
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Appendix A

Relative variants of semicontinuities
and relative insertion and extension
results

In this appendix we continue the development of Section 3.1 and provide a brief account of
the theory of relative real-valued functions in point-free topology (introduced by Gutiérrez
García and Picado in [69]). All the concepts and results in [69] are stated for the frame of
real numbers; however, for technical reasons, here we shall rather work with the frame of
extended real numbers (clearly, all the results can be obtained from [69] with only minor
modifications).

A.1 Relative semicontinuities

Let F be a sublocale selection. First, an f ∈ F(L) is called

• lower F-semicontinuous if for every r < s in Q there is an Fr,s ∈ F(L) such that f (s,—) ≤ Fr,s ≤

f (r,—);

• upper F-semicontinuous if for every r < s in Q there is a Fr,s ∈ F(L) such that f (—,r) ≤ Fr,s ≤

f (—,s);

• F-continuous if it is lower and upper F-semicontinuous.

This defines the following subclasses of F(L):

LSC
F

(L), USC
F

(L), C
F

(L) = LSC
F

(L)∩USC
F

(L).

Importantly, in this setting lower semicontinuity and upper semicontinuity are dual
notions (and hence F-continuity is self dual):
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Proposition A.1.1 ([69, Remark 5.2]). Let F be a sublocale selection and f ∈ F(L). Then f is lower
F-semicontinuous if and only if it is upper F∗-semicontinuos.

Corollary A.1.2 ([69, Remark 5.2]). Let F be a sublocale selection and f ∈ F(L). Then f is
F-continuous if and only if it is F∗-continuous.

In some cases continuity has a simpler form:

Lemma A.1.3. Assume F is a sublocale selection closed under countable meets. Then:

(1) f ∈ LSC
F

(L) if and only if f (r,—) ∈ F(L) for all r ∈Q;

(2) f ∈ USC
F

(L) if and only if f (—,r) ∈ F(L) for all r ∈Q;

(3) f ∈ C
F

(L) if and only if f (r,—) ∈ F(L) and f (—,r) ∈ F(L) for all r ∈Q.

Proof. The implications⇐ always hold. Further, (3) is an obvious consequence of (1) and (2).

Assume that f ∈ LSC
F

(L) and consider r ∈Q. Then by (r2)

f (r,—) =
⊔
s>r

f (s,—) ≤
⊔
s>r

Fr,s ≤ f (r,—)

for some Fr,s ∈ F(L) (s > r). Hence f (r,—) =
⊔

s>r Fr,s =
⋂

s>r Fr,s ∈ F(L). The assertion in (2) may
be proved in a similar way. �

Moreover, lower (resp. upper) Fc-semicontinuity yields the usual notion of lower (resp.
upper) semicontinuity for extended real valued localic maps (cf. [26]). The notions of
semicontinuity obtained from the rest of the guiding examples (cf. Subsection 3.1.2) are
described in Table A.1.

Table A.1 Examples of F-semicontinuity and their duals

Selection Lower
F-semicontinuous

Upper
F-semicontinuous

F-continuous

Fc Lower semicontinuous Upper semicontinuous Continuous

Freg Normal lower
semicontinuous

Normal upper
semicontinuous

Continuous

Fz Zero lower
semicontinuous

Zero upper
semicontinuous

Continuous

Fδreg Regular lower
semicontinuous

Regular upper
semicontinous

Continuous
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Remark A.1.4. The authors of [69] called Fz-continuity zero continuity and Fδreg-continuity
regular continuity. However, they were not aware that they both reduce to ordinary continuity.
Obviously, Fz-continuity and Fδreg-continuity imply ordinary continuity. Moreover, since Fz

is closed under countable meets an f ∈F(L) isFz-continuous if and only if f (r,—), f (—,r) ∈Fz(L)
for all r ∈Q. Then, for an f ∈ C(L), the sublocales f (r,—), f (—,r) are always zero sublocales
(one has coz(( f − r)+) = f (r,—) and coz((r− f )+) = f (—,r)). For the case of Fδreg, it suffices to
observe that Fz(L) ⊆ Fδreg(L).

Recall the extended characteristic function χS ∈ F(L) of a complemented sublocale S ⊆ L
from Subsection 5.3.1. Obviously, χS ∈ LSC(L) (resp. χS ∈ USC(L)) if and only if S is an open
(resp. closed) sublocale. More generally, we have the following:

Proposition A.1.5. Let F be a sublocale selection and S a complemented sublocale of a locale L. Then:

(1) χS ∈ LSC
F

(L) if and only if S ∈ F∗(L);

(2) χS ∈ USC
F

(L) if and only if S ∈ F(L);

(3) χS ∈ C
F

(L) if and only if S ∈ F(L)∩F∗(L).

A.2 Relative insertion theorem

We now recall the relations bF in S(L)op (for any L):

S bF T ≡ ∃U ∈ F(L), ∃V ∈ F∗(L) : S ≤ V ≤U ≤ T.

We shall say that a sublocale selection F is a Katětov selection on L if for S,S′,T,T′ ∈ S(L),

(1) S,S′ bF T implies S∩S′ bF T, and

(2) S bF T,T′ implies S bF T∨T′.

Example A.2.1. Almost all of the guiding examples are Katětov selections. Indeed, Fc, Fz,
Fδreg, F∗c, F∗z, F∗δreg and F∗reg are all Katětov selections on any locale while Freg is a Katětov
selection on any mildly normal locale.

Now, we state the main result of this section:

Theorem A.2.2 ([69, Theorem 7.1]). Let F be a sublocale selection. The following are equivalent for
any locale L such that F is a Katětov selection on L:

(i) L is F-normal;

(ii) For every f ∈ USC
F

(L) and 1 ∈ LSC
F

(L) such that f ≤ 1, there exists an h ∈ C
F

(L) such that
f ≤ h ≤ 1.

Applying the previous theorem to the various Katětov selections discussed above, several
insertion theorems are unified within a single result. The reader may consult [69, Notes 7.3]
and the references there for a detailed list of its corollaries.
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A.3 Relative extension theorem

Under more restricted conditions, the authors of [69] also obtained a relative Tietze type
extension theorem. In what follows we state it with some modifications (cf. Remarks A.3.2).

Recall from Section 3.1 that a sublocale selection F is hereditary on a locale L if for each
S ∈ F(L) the equality

F(S) = {S∩T | T ∈ F(L) }

holds.

Theorem A.3.1 ([69, Theorem 8.6]). Let F be a sublocale selection closed under countable meets
and finite joins. The following are equivalent for any locale L such that F is a hereditary and Katětov
selection on L:

(i) L is F-normal;

(ii) For every S ∈ F(L), every f ∈ C
F

(S) has an extension f ∈ C
F

(L).

Remarks A.3.2. (1) The families Fc, Fz and Fδre1 are closed under countable meets and finite
joins. However, their duals are not, hence one cannot use the extension theorem for F∗c, F∗z
and F∗δreg. In one of the results of this thesis we fix this gap by proving a “dual” extension
result which covers all of the dual cases (see Theorem 3.2.2).

(2) The term hereditary sublocale selection was not used in [69]. In fact, the authors of that
paper use a different, more restrictive, notion of relative continuity for the function f ∈ F(S)
to be extended. This notion, however, does not generally coincide with the appropriate one,
namely F-continuity on S. The condition hereditary ensures that both continuities coincide.
In any case, we note that the assumption on heredity cannot be dropped. For instance, if
one takes the family Fz, condition (i) in Theorem A.3.1 is always satisfied (recall Table 3.1),
whereas (ii) means that every zero sublocale is C∗-embedded, which is well known not to be
generally satisfied (cf. [2]).
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co- ∼, 139
fixpoints of ∼, 11
generated by a prenucleus, 33

object
c-separated ∼, 29
P-separated ∼, 27–29
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operator
closure ∼ in a category, 29, 30, 52, 66
TD-spatialization∼, 139, 140

preframe, 32, 36, 37
tensor product, 32

preimage
localic ∼, 14, 31, 66, 125, 147, 148

prenucleus, 33, 38
fixpoints of a ∼, 33
inductive set of ∼, 33
nuclear reflection of a ∼, 33
nucleus generated by a ∼, 33

property
(A), 37, 39, 40, 42, 43, 45, 54, 55, 84
(B), 53, 54
(C), 53, 54
conservative ∼, 8, 11, 48, 73, 113, 118,

120
(F), 49–51, 55
(H), 48, 51, 55
hereditary ∼, 41, 50, 82, 83
κ-disjoint extension ∼, 98
pullback-stable ∼, 136
(W), 36, 40, 42, 43, 54, 55

pseudocomplement, 10, 78, 82

relation
binary ∼, 19–21, 24, 85∨

-base, 9, 17, 93, 127
Sb-lift, 121–126, 128, 130
scale, 24

extended ∼, 23, 61
SD-lift, 147–150
semilattice

bounded meet ∼, 20
separated

extremally ∼ pair, 41, 42, 44
normally ∼ pair, 41, 42

soberification, 8
spatialization, 8, 16, 138, 155

TD-∼, 19, 138, 139
spectrum, 8, 93, 94, 129, 133, 150

TD-∼, 18, 129, 133
functor, 18, 129

functor, 8
subcategory, 32, 151

closed under limits, 30, 31
closed under mono-sources, 30, 31
closed under monomorphisms, 30, 31
epireflective ∼, 51, 151
extremally epireflective ∼, 30, 31

subcolocale, 11, 16, 112, 114, 151, 153
D- ∼, 135

subframe, 11, 47, 81, 82, 116, 117, 122, 123
sublocale, 11

Boolean ∼, 15
C-embedded ∼, 25
C∗-embedded ∼, 25, 106
closed ∼, 13, 28
co-hereditary ∼ selection, 60, 61
codense ∼, 136
complemented ∼, 12, 18, 58, 113, 115,

136, 143
cozero ∼, 24
D- ∼, 133–149
dense ∼, 13
δ-regular closed ∼, 24
δ-regular open ∼, 24
dual ∼ selection, 58, 104, 163, 164
F-zero ∼, 70
fitted ∼, 13, 28, 30, 31
hereditary ∼ selection, 59, 105, 106,

166
induced ∼, 12, 16, 83, 116, 146
Katětov ∼ selection, 60, 61, 105, 108,

165, 166
largest dense IED ∼, 85
linear ∼, 12
locally closed ∼, 13, 28, 113, 143
M- ∼, 151
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one-point ∼, 15
open ∼, 13
pointless ∼, 128, 136
pullback stable ∼ selection, 66
regular closed ∼, 25
regular open ∼, 25
selection, 58
selection closed under joins, 58, 71, 72,

105, 166
selection closed under meets, 58, 60,

61, 65–67, 71, 72, 105, 164–166
semifitted ∼, 28, 51
smooth ∼, 113–116, 121, 123, 126, 136,

150, 155
spatialization ∼, 16
spatial ∼, 12, 16, 144
TD-spatial D-∼, 138–140, 145
weakly hereditary ∼ selection, 59, 71,

72
z-embedded ∼, 25, 67, 68, 73, 106
zero ∼, 24, 60, 70, 106, 165, 166

subobject
c-closed ∼, 29, 30
M-closed ∼, 29, 30
regular ∼, 11, 140, 141, 144
with property P, 27, 29
with property Pc, 29

suplattice, 31, 32, 115
sub- ∼, 153
tensor product, 31

supplement, 12, 78

topological space, 8, 27
δ-normal ∼, 59
extremally disconnected ∼, 81
Hausdorff ∼, 8
metrizable ∼, 89
normal ∼, 60
regular ∼, 44
separable ∼, 89
Sierpiński ∼, 151, 156
sober ∼, 8, 11, 16, 19
subspace of a ∼, 12, 116
T1-∼, 11, 45, 116, 120, 150–152
TD-∼, 16–19, 116, 119, 120, 129, 130,

146, 151, 152
topology, 8

X-included ∼, 44
Lawson ∼, 87–89
lower ∼, 87, 89
Scott ∼, 87, 89

topos, 76, 86
Boolean ∼, 86
⊥-scattered ∼, 76
of sheaves, 76
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