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Resumo 

 
 

Nesta tese estudamos a relação entre a previsibilidade dos retornos e a seleção 

ótima de portfólio através de uma abordagem empírica. Para tal, em cada capítulo 

utilizamos diferentes métodos para prever os retornos de ativos e analisamos as 

implicações destas previsões na otimização de portefólio de investidores CRRA. 

Em primeiro lugar,  analisamos a precisão das previsões de diferentes modelos 

Vector Autoregressive (VAR) e modelos Bayesianos Time-Varying Parameters Vector 

Autoregressive (TVP-VAR) que integram a seleção/média dinâmica de modelos. Em 

particular, estes modelos são utilizados para prever conjuntamente os retornos mensais 

de índices de ações, de obrigações e dos Real Estate Investment Trusts (REITs) dos EUA, 

para o período de janeiro de 1976 a dezembro de 2017. Posteriormente, as previsões 

obtidas são utilizadas na seleção de portefólio. Os resultados obtidos sugerem que os 

métodos Bayesianos proporcionam ganhos significativos em termos de previsibilidade 

estatística, medida pelo pseudo-R2 fora da amostra, e em termos de desempenho 

económico, que quantificamos pelo Equivalente Certo e pelos rácios de Sharpe e de 

Sortino. Por último, comparamos o desempenho dos modelos antes e depois da crise do 

subprime e concluímos que as abordagens Bayesianas são adequadas para acomodar a 

instabilidade do mercado. 

Em segundo lugar, apresentamos um modelo assimétrico Dynamic Conditional 

Correlation (DCC) multivariado baseado em Machine-Learning para prever 

dinamicamente retornos e covariâncias que são posteriormente utilizados na otimização 

de portefólios. Este modelo é aplicado a retornos diários de 77 índices de ações e 

obrigações para o período de agosto de 2001 a setembro de 2020. Através desta aplicação 

concluímos que os modelos propostos levam a elevados ganhos económicos. Em 

particular, o modelo proposto assimétrico DCC multivariado que inclui Florestas 

Aleatórias aumenta consideravelmente o desempenho do portefólio e o Equivalente Certo 

de um investidor CRRA. Verificamos ainda que, investidores da América do Sul, da 

Europa, do Médio Oriente, da Ásia e da Oceânia beneficiariam amplamente de 

diversificar internacionalmente os seus portefólios, no período de 2012-2020. 

Por último, analisamos as relações lead-lag entre onze indústrias de países 

desenvolvidos, no período de janeiro de 1973 a maio de 2021. Em particular, 
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identificamos o papel de liderança internacional desempenhado pelos EUA. 

Nomeadamente, os retornos semanais das indústrias dos EUA e, em especial, as indústrias 

de Materiais Básicos e Energia, causam significativamente à Granger os retornos da 

maioria das indústrias de outros países. Este resultado sugere que as indústrias não 

americanas reagem com atraso a novas informações. Essa reação tardia é ainda mais 

percetível durante períodos de recessão nos EUA, quando as correlações entre países são 

mais elevadas. Assim, os retornos desfasados das indústrias americanas têm uma maior 

capacidade em prever os retornos das indústrias de outros países desenvolvidos, quando 

os EUA estão numa recessão económica. Identificamos ainda uma relação assimétrica 

semelhante entre a volatilidade das indústrias dos EUA e a volatilidade das indústrias de 

outros países. Por fim, a análise de causalidade na distribuição de retornos e volatilidade 

demonstra-nos, uma vez mais, que a causalidade se verifica principalmente dos EUA para 

outros países, especialmente na presença de choques negativos extremos. 

 

 

Palavras-chave: Retornos; Previsibilidade; VAR; Modelos Bayesianos; Machine-

Learning; DCC; Seleção de portefólios; Diversificação Internacional; Indústria; Lead-

Lag. 

 

Classificação JEL: C45, C61, G11, G12, G17. 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

x 

 

Abstract 

 
 

This thesis provides empirical evidence on the relationship between return 

predictability and optimal portfolio selection. Each chapter addresses this topic using 

different approaches to forecast asset returns and determine their implications for 

portfolio optimization by CRRA investors. 

Firstly, we analyse the predictive accuracy of different multivariate VAR models 

and TVP-VAR Bayesian models with dynamic model selection/averaging to jointly 

forecast monthly returns of US stocks, bonds, and REITs indexes from January 1976 to 

December 2017. The forecasts are obtained by those models and then used as inputs for 

portfolio selection. We conclude that Bayesian-based approaches provide the most 

significant gains in terms of statistical predictability, as measured by out-of-sample 

pseudo-R2, and in terms of economic performance, which we quantify through certainty 

equivalent returns, Sharpe ratios, and Sortino ratios. The comparison between the 

performance of the models before and after the subprime crisis supports the claim that 

Bayesian approaches can accommodate market instability. 

Secondly, we use a Multivariate Machine Learning - Asymmetric Dynamic 

Conditional Correlation (DCC) model to dynamically forecast returns and covariances, 

which are then used in the portfolio optimization problem. We apply our model to daily 

returns of 77 national stock and bond indexes for the period from August 2001 to 

September 2020. We find that our methods lead to large economic gains. Most notably, 

we show that relative to the proposed Random Forest - Asymmetric DCC model 

considerably increases the portfolio performance and the certainty equivalent of a CRRA 

investor. We also show that international diversification is amply beneficial for investors 

from South America, Europe, the Middle East, Asia, and Oceania, between 2012-2020. 

Thirdly, we analyse the lead-lag relationships within and across eleven industries 

of developed countries in the period from January 1973 to May 2021. We identify the 

international leading role played by the US, namely by showing that weekly returns of 

US industries, especially US Basic Materials and Energy industries, significantly Granger 

cause the returns of most of the industries of other countries, suggesting that non-US 

industries react with some delay to new information. This delayed reaction is even more 

noticeable during periods of recession in the US, when cross-country correlations are 
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higher. This implies that the ability of lagged returns of US industries to predict returns 

of industries from other developed countries is even more pronounced when the US is 

experiencing an economic recession. A similar asymmetric relationship is also identified 

between the volatility of US-industries and the volatility of industries of other countries. 

The analysis of causality in the distribution of returns and volatility shows, once more, 

that causality runs mainly from the US to other countries, especially in the presence of 

extreme negative shocks. 

 

 

Keywords: Return; Predictability; VAR; Bayesian models; Machine Learning; DCC; 

Portfolio Selection; International Diversification; Industry; Lead-Lag.  
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Chapter 1 - Introduction 

 

 

 
Return predictability is one of the most debated issues in modern financial 

literature. The ability to predict returns has been a subject of interest for both academics 

and finance practitioners due to its implications for strategic portfolio management. 

Until the 1980s, it was believed that returns of bonds and stocks were utterly 

unpredictable, and this unpredictability was perceived as the essence of the Efficient 

Market Hypothesis. However, since the mid-1980s, academics have increasingly 

demonstrated that stocks and bonds were, to some extent, predictable from lagged 

valuation ratios, such as dividend-price ratios, earning-price ratios, and macroeconomic 

variables, such as nominal interest rates, interest rate spreads, labour income, stock 

market volatility, aggregate output, industry returns, output gap, expected business 

conditions, accruals, inflation rate, oil-related variables, technical indicators, manager 

sentiment, among others. Notably, return predictability maybe not be the result of 

irrationality and market inefficiency (mispricing, bubbles, noise traders, etc.) but, instead, 

may result from changes in aggregate risk-aversion and risk premia (Rapach et al. 2013). 

If that is the case, predictability is theoretically consistent with the Efficient Markets 

Hypothesis. 

Historically, return predictability has been attributed to several sources. For 

instance, Rapach et al. (2013) argued that stock return predictability was closely related 

to the business cycles. According to the authors, investors become more risk-averse 

during recessions, when consumption and income levels are lower. Hence, during 

recessions, they will demand a higher expected return. Therefore, variables that measure 

and/or predict the state of the economy may help predict returns.  

Another possible explanation for return predictability is that different investors 

use different forecasting models, resulting in different assessments of the level of 

financial uncertainty. When market instability rises, uncertainty becomes very high, and 

the level of disagreement between investors increases. According to Cujean and Hasler 

(2017), there is a positive relationship between investor disagreement and future returns, 

creating time-series momentum (which grows during bad times). 
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Return predictability has a great impact on portfolio selection (Campbell and 

Viceira, 2003; Dangl and Weissensteiner, 2020). An investor adapts her portfolio strategy 

to incorporate the predictions made by her forecasting models. If these models are 

effective, portfolios based on forecasts could perform better than naïve strategies solely 

aiming to achieve high diversification levels. If, in fact, returns are predictable, rational 

investors will incorporate that knowledge into their decisions related to strategic asset 

allocation, active portfolio management, and market timing.  

Additionally, when stock returns are predictable, the optimal allocation becomes 

horizon-dependent and may originate changes in asset demands. For instance, an investor 

with a 10-year horizon tends to allocate more capital into stocks than an investor with a 

one-year horizon. Hence, stocks appear less risky to long-horizon than to short-term 

investors (Barberis, 2000; Xia, 2001; Ferson, 2003). A long-term investor is more 

interested in the consequences of predictability on the covariance structure of returns 

during the holding period. In other words, predictability makes the trade-off between risk 

and return depending on the investment horizon. Therefore, one part of the unconditional 

variance of asset returns is predictable, and it is no longer considered investment risk. 

This effect is known as time diversification. However, part of it is sometimes erased by 

estimation errors in the term structure of the trade-off between risk and return (Dangl et 

al., 2020).  

According to the literature, the possibility of predicting asset returns creates an 

opportunity to construct dynamic trading strategies which offer superior expected return-

risk trade-offs relative to standard portfolios. For instance, Xu et al. (2004) showed that 

a trading strategy, with monthly portfolio rebalancing, based on the observed small return 

predictability, from 1952 to 1998, would double the return of benchmark portfolios. 

Despite the enormous advantages of predicting asset returns, predictability itself 

does not guarantee that an investor will obtain abnormal returns (Pesaran and 

Timmermann, 1995). This is due to the presence of transaction costs that may dilute the 

profit of dynamic trading strategies based on forecasting models, rendering these 

investment strategies less attractive than simple buy-and-hold strategies.  

A question that often arises in predictability literature is: “What level of return 

predictability should we expect?”. Several forecasting variables used to predict stock and 

bond returns have significant out-of-sample accuracy (Campbell and Thompson 2008; 

Welch and Goyal, 2008; Neely et al., 2014). However, the predictive power, typically 

measured via the in-sample R2 or out-of-sample pseudo-R2 statistics, is quite small. For 
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instance, Fama (1990) reported monthly R2 statistics of 1% for a model predicting US 

stocks from the dividend-price ratios. Zhou (2010) registered a monthly R2 smaller than 

1% for individual assets regressions based on ten popular economic variables. Campbell 

and Thompson (2008) indicated an even smaller pseudo-R2 of less than 1%. Rapach et al. 

(2013) showed small and negative monthly pseudo-R2. Zhu et al. (2013) reported pseudo-

R2 ranging from -4% to 4% for monthly stock returns using several typical predictors. 

Nevertheless, better results were achieved by Ludvigson and NG (2009) for forecasting 

bonds based on macro factors and Golez and Koudijs (2018), which reported annualized 

R2 of around 10% for stocks in the US, the UK, and the Netherlands.  

 From the standpoint of return predictive regression models, we should only 

expect a limited degree of predictability in stocks and bonds returns. A monthly R2 

statistic of around 1% is a good indicator of return predictability or the presence of market 

inefficiencies in the perspective of traditional asset pricing models. However, many 

authors, such as Campbell and Thompson (2008) and Rapach et al. (2013) are suspicious 

about high predictability levels. According to these authors, predictive models that report 

high return predictability are most likely incorrectly designed, have several inaccuracies, 

or suffer from data mining problems, but nevertheless, there is the possibility that these 

positive results come from significant market inefficiencies or anomalies. Although one 

should expect a small degree of return predictability, it is crucial to note that even a 

minimal level of predictability may contain valuable information for a risk-averse 

investor who is planning her portfolio strategy, as it could translate into significant 

economic gains (Kandel et al., 1996; Xu, 2004; Campbell and Thompson, 2008; Rapach 

et al., 2013). 

Despite the numerous advantages of return predictability, the literature has 

reported biases and limitations in the predictive regression models. The first one is the 

evidence of Stambaugh's bias (Stambaugh, 1999) that occurs when the predictor and 

return innovations are correlated, and the predictor is highly persistent in in-sample tests 

of return predictability. When applying a traditional t-statistic to test the null hypothesis 

of no predictability, this bias can generate significant size distortions. Several studies have 

developed approaches that improve the inference of predictive regressions with persistent 

predictors (e.g., Pástor and Stambaugh, 2009). 

A second problem is related to the occasional unreliability of return predictions. 

This problem arises when academics implicitly use a strong prior on predictability for the 

econometric methods (Rapach et al., 2013). Predictive regression models have been 
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associated with parameter instability and model uncertainty. Parameter instability means 

that the value of the coefficients can change over time. Model uncertainty occurs when 

the researcher does not know which model is correct (e.g., variables to include, functional 

specification, etc). Further, many regression models face overparameterization and 

cannot handle the uncertainty and instability that characterize financial data. These 

problems challenge the real predictability of the models and highlight the importance of 

providing flexible yet suitable methods that accommodate and improve out-of-sample 

forecasting performances. 

A third concern that has for long divided academics and practitioners is the 

question of whether return predictability should be tested in-sample or out-of-sample, 

making an overall statement on return predictability a complex issue. Until the 2000s, 

most studies analysed the predictability of returns in-sample. However, in recent years, 

the analysis has shifted to out-of-sample evidence. The in-sample analysis is typically 

conducted using standard t- or F-tests, while out-of-sample tests focus mainly on 

forecasting accuracy. In many cases, in-sample tests are viewed as providing more power 

in detecting return predictability. This is usually justified by the fact that in-sample 

analysis uses all available data, delivers efficient parameter estimates, and translates into 

more precise estimates of the expected equity risk premium (Neely et al., 2014). However, 

in-sample tests are most likely subject to Stambaugh bias and usually tend to over reject 

the null hypothesis of “no predictability”. This occurs because there is an artificial 

increase in the size of the predictive tests, which consequently leads to spurious rejections 

of the null hypothesis.  

Also, typically, in-sample fits are more prone to data mining than out-of-sample 

tests predictability. Yet out-of-sample tests are also susceptible to data mining problems. 

Inoue (2005) argued that given appropriated critical values, both in-sample and out-of-

sample tests are likely to face this problem. Obviously, the researcher can freely choose 

alternative predictor spaces until she finds a significant one before publication.  

A common criticism of the out-of-sample analysis regards the estimation period. 

The choice of the periods over which a model is estimated and subsequently evaluated 

has important implications on the results, always involving the loss of some information 

(see, for instance, Inoue et al., 2005; Hansen et al., 2012; or Kolev et al., 2017). However, 

this choice should not be arbitrary. According to Welch and Goyal (2008), it is critical to 

have enough starting data to obtain solid estimates and a long enough evaluation period 

to be representative.  
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Out-of-sample evidence should not be viewed as a substitute for in-sample 

analysis but rather as an essential complement in determining the quality of the underlying 

model. Several authors compare the power of out-of-sample tests with in-sample tests; 

however, this is not correct. Under a well-specified model, an in-sample estimate is more 

efficient. A researcher who has confidence in her underlying model should rely on in-

sample evidence. However, no one really knows a priori what a well-specified model is, 

hence there is model uncertainty. This is where the out-of-sample tests enter. Out-of-

sample frameworks provide essential and valuable statistical diagnostics tools, helping 

the researcher to detect whether a model is well-specified and even stable through time. 

Both in- and out-of-sample evidence should be considered, and research should explore 

whether, conditional on observed in-sample significance, out-of-sample diagnostics are 

reasonably powerful (Welch and Goyal, 2008).  

From the above discussion, we may undoubtedly state that the literature on return 

predictability has evolved over the years and has given itself room to accommodate 

several modifications that better explain the data. The increasing availability of data and 

computation power has proven effective in discovering more flexible procedures and 

methodologies. In this thesis, we attempt to contribute to this strand of literature. 

Particularly, this work consists of a compilation of three studies from which we attempt 

to provide empirical and conceptual evidence concerning the relationship between return 

predictability and portfolio selection. Each chapter addresses these topics using different 

approaches to assess the predictability of returns and their implication for portfolio 

allocation by Constant Relative Risk Averse (CRRA) investors.  

 

First, in Chapter 2, "Multi-asset return predictability using VARs," we conduct 

a comprehensive analysis of return predictability on stocks, bonds, and real-estate 

investment trusts (REITs). Motivated by the limitations of existing literature in assessing 

which single model should be employed by investors, we compare the performance of 

different VAR models and time-varying Bayesian models with dynamic model averaging/ 

selection. Additionally, we highlight the importance for investors to have at their disposal 

adequate forecasting methods to better establish the empirical reliability of asset return 

predictability and to plan their investment choices. 

In this sense, we make three main contributions. The first one lies in analysing 

different model specifications and features out-of-sample, such as time-varying 

parameters, model/forecast combinations, and dynamic Bayesian model 
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selection/averaging. The critical element of our analysis is to consolidate several useful 

features employing simple but flexible computational methods, suitable for jointly 

forecasting multiple risky assets. Results point out that the Bayesian models are the best 

ones in terms of statistical and economic performances. 

The second contribution of this chapter is to empirically analyse the interaction 

of these ensemble features in a multiple asset portfolio. More specifically, we use the 

forecasts obtained by the models as inputs in a dynamic optimizing investment portfolio. 

We focus on three distinct asset classes and assess the additional economic value of out-

of-sample forecasts in a multi-asset investment strategy of an investor endowed with a 

power utility function.  

Due to the frequent occurrence of shocks in financial markets, investors face 

high levels of uncertainty, therefore the need to have highly adaptive methods to construct 

optimal portfolios. Hence the third contribution of this chapter is related to the 

examination of whether portfolio performances based on a given model presented 

substantial differences before and after January 2008, the beginning of the subprime 

crisis.  

 

In its most basic formulation, Markowitz portfolio selection requires estimates 

of the expected return vector and the covariance matrix of all assets in the investment 

universe. On the one hand, the expected return vector estimates resulting from traditional 

methods (such as the historical averaging or momentum) are prone to severe measurement 

errors. This is most likely caused by the high nonlinearity of the data and the inability of 

these methods to capture complex data interactions or structural breakdowns. On the other 

hand, the conditional covariance matrix estimation typically faces the problem of the 

curse of dimensionality. Therefore, in Chapter 3, "International Portfolio Selection with 

Machine-Learning and a Multivariate Asymmetric DCC model” we introduce a 

Multivariate Machine Learning Asymmetric DCC model that is well-suited to deal with 

the problems mentioned earlier.  

Mainly, our approach builds on Random Forests and Artificial Neural Networks 

to forecast the returns and builds on an Asymmetric DCC model to estimate the 

covariance matrix. The key element of this approach is the ability to integrate several data 

features into a flexible method that is suitable for large predictive datasets and highly 

correlated predictors by reducing degrees of freedom and condensing redundant 

variations.  
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When applied to a diversified international portfolio, we find that our methods 

lead to significant economic gains. Notably, we show that the model considerably 

increases the certainty equivalent of CRRA investors. Finally, we examine the potential 

in diversification under different portfolio performance measures. Results reveal that 

international diversification is amply beneficial for risk-averse investors from five other 

regions, from 2012 to 2020.  

 

The way that information is communicated between markets is essential for an 

investor planning her investment strategy. Nowadays, investors can invest in many 

classes of assets from various countries and regions. The decision on what assets to invest 

in benefits from the examination of which country plays the key role in international 

information transmission. The US is expected to have a prominent role since it is the 

world’s largest open economy, harbouring the largest corporations in the world. Hence, 

events in the US are likely to impact other economies.  

In Chapter 4, “Industry Lead-lag relationships between the US and other 

developed countries”, we look at the information transmission role played by the US. 

More specifically, we analyse within and cross-industry interdependences and lead-lag 

relationships in a global context. We confirm the leading role played by the US, namely 

that weekly lagged returns of US industries Granger cause most of the industry returns of 

the non-US countries. This suggests that non-US industries react slowly to new 

information from US industries. This delayed reaction is even more pronounced during 

recession periods (when cross-country correlations are more substantial). This also 

suggests that the predictive power of US industry returns is much greater when the US is 

experiencing a recession. Lastly, we analyse the Granger causality in distribution for both 

industry returns and volatilities. Our results reveal that other countries do not timely 

incorporate shocks affecting the US industries.  

This study differs from previous literature as we explicitly analyse the 

asymmetries in the leading role of the US industries in an international context. Previous 

research has focused primarily on the international stock index stock or firm-level returns, 

ignoring intra-industry information flows (see, for instance, Rapach et al., 2013; 

Bollerslev et al., 2013). And, to the best of our knowledge, this is one of the first studies 

to provide international empirical evidence supporting asymmetric reactions to news 

arriving from the US industries during expansionary and recessionary periods.  

Chapter 5 provides a summary of the results reached in this thesis.  
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Chapter 2 – Multi-Asset Return 

Predictability Using VARs 

 

 

 
2.1. Introduction 
 

 

Return predictability and portfolio selection are two of the most relevant topics 

in financial markets. From the point of view of practitioners and investors, the ability to 

forecast returns has important implications on optimal long-term portfolio asset 

allocation, as highlighted by, e.g., Campbell and Viceira (2002) and Campbell et al. 

(2003). Furthermore, the possibility of return predictability motivates the use of more 

robust estimation techniques to detect all the pertinent information available in the data.  

Recent research has analysed stock and bond return predictability considering 

several macroeconomic variables, such as inflation rates (Ludvigson and Ng, 2009), 

interest rates (Golez and Koudijs, 2018, and Bandi et al., 2019), valuation ratios, and the 

well-known dividend-price ratio (Cochrane, 2007), Typically, these studies have relied 

on specific sets of predictors to forecast multiple-asset returns (Gao and Nardari, 2018). 

The definition of the predictor space is of utmost importance in this type of studies, since 

the use of inadequate predictors reduces the predictive ability of forecasting regressions 

and, consequently, the performance of asset allocation strategies devised upon those 

models. One of the aims of this chapter is to analyse the adequacy of different sets of 

predictors for Stock, Bonds and REITs, using a pre-selection method.  

Traditionally, research on return predictability has mainly been building up in-

sample empirical evidence. However, more recent literature has highlighted the power 

and robustness of out-of-sample analyses (Welch and Goyal, 2008; Fisher et al., 2020). 

The debate between the advantages and disadvantages of in-sample versus out-of-sample 

analysis has focused on different aspects, such as data snooping, data mining, spurious 

regressions, and instability in return predictability (Wu et al., 2013; Dichtl et al., 2020). 

For instance, it is known that financial markets are subjected to permanent shocks and 

experience volatility clustering. Hence well-defined investment strategies should be 
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designed upon flexible forecasting models that accommodate these sources of 

uncertainty.  

There is an extensive body of empirical literature comparing the predictive 

power of different models. Typically, asset returns are forecasted by past values of 

predictive variables within a Vector Autoregressive (VAR) framework (Guidolin and 

Hyde, 2012). Despite its popularity, the flexibility of VAR models entails the danger of 

over-parameterization, leading to unreliable predictions. Nowadays, the toolbox of 

applied econometrics includes numerous efficient modelling tools to prevent the 

proliferation of parameters and reduce parameter and model uncertainty. These new 

modelling tools, such as time-varying parameters, forecast combinations, model 

averaging, and model selection techniques, have been fuelled by the noticeable advances 

in computational power. An example of this is the Bayesian approach and, more 

specifically, Bayesian model selection and model averaging. For instance, Koop and 

Korobilis (2013) applied these methods to estimate and forecast large VARs and time-

varying VARs. Different from most methods presented in the literature of large 

multivariate models, which require Markov Chain Monte Carlo (MCMC) simulations, 

the authors estimate forgetting (discount) factors and allow for model switching between 

different restricted VARs to mitigate the probability of excessive parameterization.  

Although the existing literature proposes numerous alternatives to VAR models, 

this framework still retains its interest when dealing with forecastability in a multivariate 

setup. According to Fisher et al. (2020), not a single feature alone, but an ensemble of 

them, is required to handle uncertainty and instability of financial markets, as well as 

making good predictions. Hence, our study analyses different model specifications and 

features, such as time-varying parameters, model/forecast combinations, and dynamic 

model selection/averaging, to jointly model multiple risky assets out-of-sample. The key 

element of our analysis is to consolidate several useful features employing a flexible yet 

straightforward computational method suitable to manage multiple risky assets. 

Therefore, this is our second contribution to the literature. 

Despite some literature supporting the ensemble of features when modelling a 

single risky asset return, surprisingly, few studies have investigated how these features 

connect when jointly forecasting multiple risky asset returns. Nevertheless, most 

investors hold several risky assets in their portfolios, making this an empirically relevant 

issue. The third contribution of this study is to empirically analyse the interaction of these 

features in a configuration of multiple assets. We focus on three classes of assets: stocks, 
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bonds, and Real Estate Investment Trusts (REITs). We also conduct an out-of-sample 

analysis of the economic value that the forecasts add to an investment strategy with 

multiple assets. More specifically, we apply a dynamic optimization technique to predict 

multiple assets returns and use these predictions as inputs for optimal portfolio allocation.  

Investors face high levels of uncertainty stemming from the frequent shocks in 

financial markets and the need to have highly adaptive methods to construct optimal 

portfolios. Understanding how market conditions affect the variability of portfolio returns 

is extremely relevant for optimal portfolio choices. In this way, our fourth contribution is 

to examine whether portfolio returns present substantial performance differences before 

and after January 2008 (i.e., the beginning of the subprime crisis). We also analyse 

whether our models are appropriate under periods of market instability.   

The main goal of this study is to obtain the single best model to forecast both the 

expected return vector and the covariance matrix of stocks, bonds, and REITs and employ 

it in portfolio selection. In sum, we proceed as follows: first, the predictive variables are 

pre-selected based on the correlations between asset returns and predictors. We begin by 

considering 19 predictors for stock returns, 125 predictors for bond returns, and 14 

predictors for REITs that potentially contain relevant information to forecast these asset 

returns. Second, conventional Vector autoregressive (VAR) models are built, including 

the previously selected explanatory variables. Third, we combine the asset returns 

forecasts obtained through these VARs. These combinations are based on simple schemes 

such as the Mean, Median, Trimmed Mean, and the Weighted Mean Squared Forecast 

Error (WMSFE). Fourth, we estimate Bayesian models with Dynamic Model Selection 

(DMS) and Dynamic Model Averaging (DMA) to obtain another set of forecasts. The 

estimation process uses the well-known Kalman-filter method along with forgetting 

factors. These methods are robust since they choose the best model available or average 

different models over time.  

Lastly, we evaluate the performance of the different ensemble features when 

jointly forecasting monthly excess returns on stocks, bonds, and REITs from January 

1976 to December 2017. Further, we analyse the stability of these models before and after 

the beginning of the subprime crisis of 2008.  

Among the features considered, we conclude that Bayesian-based models bring 

the largest gains in terms of statistical predictability, as measured by the R2 out-of-sample 

and the MSFE-adjusted statistic of Clark and West (2007), and in terms of economic 

performance, which we quantify using Certainty Equivalent Returns (CERs), Sortino 
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ratios, and Sharpe ratios. We also show that these models are stable under uncertainty 

periods. In sum, we emphasize that investors and practitioners need to have at their 

disposal adequate forecasting methods to better establish the empirical reliability of 

equity premium predictability and to formulate their investment choices. 

The remaining of this chapter is structured into six sections. Section 2.2 presents 

a brief literature review. Section 2.3 describes the data and provides several descriptive 

statistics. Section 2.4 outlines the basic theoretical concepts and shows the specifications 

of the models. Section 2.5 shows the results obtained from different models. Section 2.6 

conducts an analysis of the effects of the 2008 subprime crises on the return’s 

predictability and portfolio performance. Finally, Section 2.7 highlights the main 

conclusions.  

 

 

 

2.2. Literature Review 
 
 

Throughout the years, several studies have analysed the predictability of 

financial returns using different predictor spaces (some recent examples are Kothari and 

Shanken, 1997, Campbell and Shiller, 1998, Pontiff and Schall, 1998, Baker and Wurgler, 

2000, Goetzmann et al., 2001, Lettau and Ludvigson, 2001, Guo, 2006, van Binsbergen 

and Koijen, 2010, Ferreira and Santa-Clara, 2011, Rapach et al., 2013, Neely et al., 2014, 

Maio and Santa-Clara, 2015, Golez and Koudijs, 2018, Jagannathan and Liu, 2019, le 

Bris et al., 2019, Bandi et al., 2019, and Piatti and Trojani, 2019). 

le Bris et al. (2019) studied the Bazacle company of Toulouse, the earliest 

documented shareholding corporation, using share prices and net dividends for a period 

of almost six centuries, from 1372 to 1946. According to the authors, a significant fraction 

of price variations resulted from changes in expectations regarding future dividends. 

Goetzmann et al. (2001) analysed the US aggregate stock market and found little evidence 

of stock return predictability during a period covering most of the XIX century until 1925. 

Ferreira and Santa Clara (2011) addressed the predictability of international stock returns 

using dividend-price ratios, earnings growths, and price-earnings ratio growths during the 

period from 1927 to 2007 finding substantial predictability, hence concluding that it 

would have been possible to profitably “time the market”. Neely et al. (2014) examined 
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the importance of technical analysis indicators in forecasting the equity risk premium in 

the US market from 1950 to 2011. They concluded that these indicators displayed 

statistically and economically significant in-sample and out-of-sample prediction power, 

matching or exceeding that of macroeconomic variables. Golez and Koudijs (2018) 

showed that dividend-price ratios did not predict US stock returns from 1871 to 1945, 

however, that forecastability seemed to exist afterward until 2015. Piatti and Trojani 

(2019) also reached a similar conclusion to the previous study.  

Although the mainstream research has focused solely on stocks and bonds, more 

recently, other types of assets, such as Real Estate Investment Trusts (REITs), have 

attracted the attention of researchers. According to Bhuyan et al. (2014), REITs have been 

an alternative investment vehicle since the 1980s. Historically, REITs have been a 

desirable financial asset by providing diversification benefits, improving the risk-return 

trade-off, and supplying a non-negligible dividend income. Since REITs tend to adjust 

quickly to the cost of living, they provide an hedge against inflation, turning their real 

return relatively stable. Furthermore, REITs returns show high predictability since their 

income comes from the underlying commercial real estate with long-term lease periods 

(Bhuyan et al., 2014; Fugazza et al., 2015).  

There is extensive research on which variables are more suitable to predict 

excess returns of stocks, bonds, and REITs. Research on the potential predictors of asset 

returns goes far back to 1933, with a seminal paper entitled “Can Stock Market 

Forecasters Forecast?” (Cowles, 1933). In that article, the author reported that portfolios 

based on broad market recommendations from 24 individual financial publications 

between 1928 and 1932 failed to outperform a passive investment in the DJIA index by 

4% annually. The author also highlighted that the performance of the most successful 

portfolios was not substantially different from what would be expected from pure chance.  

In the early 1960s, several studies examined the forecast power of several 

technical indicators such as moving averages, filter rules, and momentum oscillators. This 

line of research was recently recovered by some authors such as Neely et al. (2014), Gao 

et al. (2018), and Zhang et al. (2019). Besides these indicators, the literature has provided 

a broad list of predictors of stock and bond returns, such as the dividend-price ratio 

(Campbell and Shiller, 1988; Cochrane, 2007), earnings-price ratio (Campbell and 

Shiller, 1988b), book-to-market ratio (Kothari and Shanken, 1997), nominal interest rate 

and interest rate spread (Fama, 1990, Rapach et al., 2016), labour income (Santos and 

Veronesi, 2006),  stock market volatility (Guo, 2006), aggregate output (Rangvid, 2006), 
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lagged industry returns (Hong et al., 2007), oil prices (Driesprong et al., 2008) and oil-

relative variables (Nonejad, 2018), output gap (Cooper and Priestly, 2009), expected 

business conditions (Campbell and Diebold, 2009), accruals (Hirshleifer et al., 2009), 

inflation rate (Ludvigson and Ng, 2009), and manager sentiment (Jiang, 2019). Welch 

and Goyal (2008) summarized a list of several variables that have been used in the 

literature with positive results. The present study considers not only the list of Welch and 

Goyal (2008) but also other variables that have also been used for predicting returns in a 

multi-asset framework.  

As mentioned before, most studies report in-sample evidence on return 

predictability. The predominance of in-sample studies could be justified by using all 

available data which increases the power of econometric tests (Neely et al., 2014). As 

argued by the authors, in-sample estimations produced efficient and precise estimates of 

the parameters. However, in-sample tests may be biased if the predictor and return 

innovations are correlated, and the predictor is highly persistent (Stambaugh, 1999). That 

bias potentially leads to substantial size distortions in the usual t-tests on the significance 

of the variables.  

The focus on in-sample predictability has been gradually shifting to out-of-

sample predictability. For instance, Welch and Goyal (2008) and Thornton and Valente 

(2012) showed that, although some predictive variables successfully predicted returns in-

sample, they were not significant out-of-sample. Predictions based on these variables 

failed to consistently outperform the simple historical average benchmark forecast in 

terms of Mean Squared Forecast Error (MSFE). In fact, the so-called “kitchen sink” 

forecast model, a multiple regression model that includes all potential predictors, also 

performed much worse than the historical average forecast. This is not surprising, as it is 

well-known that, due to in-sample over-fitting, highly parameterized models typically 

perform worst in out-of-sample configurations. In sum, the authors argued that 

forecasting regressions were not stable, and traditional forecasting methods performed 

worse than the historical average. 

Whether returns are predictable out-of-sample or not is still an ongoing debate. 

According to Wu et al. (2013), the conflicting empirical results presented in the literature 

may be related to problems such as data mining, spurious regressions, and instability of 

return predictability. Hence, recent studies have provided adaptative methods that 

accommodate and improve forecasting in a dynamic setup. Amongst such methods, are 

those with time-varying parameters or time-varying volatility (Dangl and Halling, 2012), 
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the adoption of a diffusion index approach to improve equity premium forecasting 

(Ludvigson and Ng, 2007), the combination of a large number of potential return 

predictors (Rapach et al., 2013, Fisher et al., 2020, Zhang et al., 2018, Bahrami et al., 

2019, and Gargano et al., 2019), or the consideration of regime shifts (Hammerschmid 

and Lohre, 2018). Nevertheless, other recent studies have argued in favour of traditional 

predictive regressions, showing that these methods, updated with schemes to resolve 

parameter uncertainty and instability, outperform the historical average forecast in out-

of-sample experiments (see, for instance, Rapach et al., 2013, Koop and Korobilis, 2013, 

or Fisher et al., 2020). Hence, this study mainly considers out-of-sample predictability by 

using up-to-date forecasting methods.  

Typically, asset returns are forecasted by past values of predictor variables 

within a Vector Autoregressive (VAR) framework (Guidolin and Hyde, 2012). VAR 

models provide a coherent way to generate internally consistent multiperiod forecasts that 

account for concurrent and dynamic correlations across the variables (Elliott and 

Timmermann, 2008). The basic VAR model is a valuable tool for a small number of assets 

and a predictor set with low cardinality; however, as more variables are included, the 

number of parameters required to be estimated increases, possibly leading to a rise in 

estimation errors. Fortunately, different methodologies have been developed to deal with 

this issue, such as Bayesian methods, that make use of the high computational power that 

is now available to researchers. Koop and Korobilis (2013) and Dangl and Halling (2012) 

are two examples of applications of such methodologies with positive results (their 

models outperformed the forecasts based on the historical mean equity premium over a 

wide range of periods).  

According to Parslow et al. (2013), the main advantage of Bayesian methods is 

the potential to systematically incorporate previous knowledge on models and 

parameters. Additionally, Bayesian frameworks allow for discounting or ignoring prior 

information through uninformative priors. Barberis (2000) examined optimal asset 

allocation for stocks and cash through a Bayesian framework by incorporating parameter 

uncertainty in the model specifications, i.e., the author specified uninformative prior 

beliefs to the parameters characterizing the linear relationships between asset returns and 

predictors. This method worked as follows: first, a posterior distribution of the parameters 

is obtained by applying Bayes’ rule. Second, the resulting joint posterior distribution is 

used to generate the conditional predictive density of returns, a predictive distribution of 

future utility levels, and then the portfolio weights (Fugazza et al., 2015). 
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 Bayesian models may also include numerous efficient modelling tools to 

prevent the proliferation of parameters and eliminate parameter/model uncertainty. An 

example is the Bayesian model averaging and model selection methods. For instance, 

Koop and Korobilis (2013) used Bayesian-based dynamic model averaging and model 

selection (DMA and DMS) methods for estimating and forecasting large VARs and time-

varying VARs models.  

Koop and Korobilis (2013) differed from the rest of the literature that typically 

worked with single VARs. These methods have three main advantages. First, they do not 

require Markov Chain Monte Carlo (MCMC) simulations. Instead, they rely on estimated 

discount factors that characterize the degree of variation of the VAR coefficients. Second, 

they allow switching between different models, which mitigates overparameterization. 

Basically, the method selects a model over a set of different dimensions based on the past 

predictive likelihoods of the dependent variables. Third, these methods consider time-

varying parameters. Typically, forecasting models assume that coefficients are constant 

over time, although there is ample evidence of instability in the relationship between asset 

returns and predictors. This has led researchers, such as Dangl and Halling (2012) and 

Koop and Korobilis (2013), to consider time-varying parameters, highlighting that there 

is strong evidence on the existence of breaks in predictive regressions, which, if taken 

into account, may have a substantial impact on the optimal asset allocation.  

The literature on asset allocation has shown substantial utility benefits when 

investors incorporate return predictability into their investment decisions. Nevertheless, 

it is important to account for model uncertainty in the asset allocation decision to realize 

such benefits (Rapach and Zhou, 2013; Diris et al., 2014). Hence, several studies have 

implemented Bayesian approaches to portfolio strategies. Johannes et al. (2014), Gargano 

et al. (2017), Gao and Nardari (2018), and Fisher et al. (2020) investigated the optimal 

asset allocation of a Bayesian investor endowed with a power utility function, i.e., a 

Constant Relative Risk Averse (CRRA) investor (Campbell and Viceira, 2003).  

Most academic studies regarding asset allocation focus on solving recursive 

myopic portfolio optimization problems (DeMiguel, et al., 2009, Daskalaki and 

Skiadopoulos, 2011, and Cenesizoglu and Timmermann, 2012). However, an increasing 

number of studies has included dynamic optimization frameworks (Almadi, 2014; 

Johannes et al., 2014; and Fisher et al., 2020). For instance, Johannes et al. (2014) 

analysed the out-of-sample success of dynamic portfolio choice in a model where the 

stock market was the only risky asset over a two-year investment horizon. They 
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concluded that dynamic approaches outperform static baseline approaches. Therefore, we 

also implement a dynamic optimization approach when evaluating portfolio strategies. 

 

 

 

2.3. Data Description and Preliminary Analysis 
 

 

2.3.1. Asset Classes 
 

We consider three US-based asset classes: Stocks, Bonds, and REITs. Stocks are 

proxied by the S&P 500 total return index, Bonds are proxied by the Barclays Capital US 

aggregate bond index, and REITs refers to an index of US publicly traded Equity Real-

estate Vehicles.  Data on stocks and bonds were obtained from the Welch and Goyal 

(2008) database, while data on REITs were obtained from the NAREIT website 

(https://www.reit.com/data-research). The monthly log-returns of these indices were then 

used to compute excess returns, by subtracting the risk-free rate (proxied by the monthly 

yield-to-maturity of 3-month Treasury Bills, also obtained from the Welch and Goyal 

database). The total period spans from January 1976 to December 2017, covering 504 

months. 

Figure 2.1 plots the cumulative returns of the total return indexes of the Stocks, 

Bonds, and REITs (using a base value of 100). All series are notably more volatile after 

2000, and Stocks and REITs are more sensitive to the business cycle than Bonds. 

However, the cumulative returns of Stocks and REITs dominate those of Bonds 

throughout the all sample. 

 

 

 

 

 

 

 

 

 

https://www.reit.com/data-research
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Figure 2.1: Total return indexes 

Notes: This figure shows the path of the total return indexes of Stocks, Bonds and REITs computed using 

cumulative log-returns, i.e., 𝐼𝑡 = 100 exp(∑ 𝑟𝐼,𝜏
𝑡
𝜏=1 ). The vertical lines bound the recession periods in the 

US according to the NBER (https://www.nber.org/research/data/us-business-cycle-expansions-and-

contractions).  
 

 

To analyse the predictability of the returns of these three classes of assets, we 

divided the sample into an in-sample (IS) period (2/3 of the sample, corresponding to 336 

months) and an out-of-sample (OOS) period (1/3 of the sample, corresponding to 168 

months).  

Table 2.1 reports the summary statistics of Stocks, Bonds, and REITs excess 

returns for the overall sample, in-sample, and out-of-sample periods. The mean excess 

stock return is approximately 0.54%, ranging from -24.82% to 12.23%. The mean is 

higher in the most recent data (OOS), 0.63%, and the range amplitude is lower, with the 

excess returns ranging between -18.33% to 10.35%. The same happens with the REITs 

excess returns, which are on average slightly higher in the full sample (0.55%) than those 

of Stocks, ranging from -36.05% to 24.65%.  

Both Stocks and REITs offer higher monthly excess returns on average than the 

Long-term U.S. government Bonds for the full sample (the mean excess return of Bonds 

is only 0.30%). There is no significant difference in the standard deviations, except for 

REITs in the OOS period, where the standard deviation more than doubled relative to the 

previous period. The first-order autocorrelations indicate some persistence in excess 

returns, especially for Stocks in the OOS period and REITs in the overall sample. Bonds 

have positive skewness, whilst Stocks and especially REITs are negatively skewed. The 

https://www.nber.org/research/data/us-business-cycle-expansions-and-contractions
https://www.nber.org/research/data/us-business-cycle-expansions-and-contractions
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three classes of asset present mild excess kurtosis, and REITs stand out as the one with 

the most leptokurtic distribution. 

 

Table 2.1: Descriptive statistics of excess returns 

Variable Sample Stocks Bonds REITs 

Mean 
Full 0.54 0.30 0.55 
IS 0.51 0.24 0.53 

OOS 0.63 0.42 0.62 

Std 
Full 4.28 3.12 4.82 
IS 4.46 3.11 3.72 

OOS 3.88 3.14 6.48 

𝝆(𝟏) 
Full 4.30 4.84 10.61 
IS -0.12 7.03 15.70 

OOS 15.83 0.36 07.24 

Max 
Full 12.23 13.46 24.65 
IS 12.23 13.08 13.20 

OOS 10.35 13.46 24.65 

 Full -24.82 -11.93 -36.05 

Min 
IS -24.82 -10.41 -15.92 

OOS -18.33 -11.93 -36.05 

 Full -0.84 0.12 -1.41 

Skew IS -0.76 0.10 -0.51 
 OOS -1.02 0.1338 -1.56 

Kurt 
Full 6.20 4.96 13.07 
IS 6.04 4.69 5.50 

OOS 6.26 5.51 10.88 
Notes: This table reports some summary statistics of Stocks, Bonds and REITs monthly excess log-returns 

over the period from January 1976 to December 2017 (504 monthly observations). Full refers to the full 

sample period, IS is the in-sample period (2 3⁄  of the sample, corresponding to 336 months), and OOS is 

the out-of-sample period (1 3⁄  of the sample, corresponding to 168 months). The statistics are the Mean, 

standard deviation, Std, first-order autocorrelation, 𝜌(1), maximum and minimum values, Max and Min, 

respectively, skewness, Skew, and kurtosis, Kurt. All values are percentages, except Skew and Kurt. 

 

 

2.3.2. Predictive Variables  
 

We have collected a comprehensive set of predictive variables, which were 

documented in the literature on asset return predictability. We attempt to be as 

comprehensive as possible rather than arbitrarily selecting a few predictors indicated in 

previous studies. Appendix 2.1 lists these variables (19 for stocks, 125 for Bonds and 14 

for REITs). To reduce the dimensionality of the predictor space, we proceed by selecting, 

for each asset class, the 5 predictors with the highest absolute correlation between excess 

returns at time 𝑡 and predictors at time 𝑡 − 1 in the IS period. The chosen variables and 

the corresponding correlation coefficients are shown in Table 2.2. 
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Table 2.2: Selected predictors for each asset class 

Stocks Bonds REITs 
-0.0848 

(Net Equity Expansion) 

-0.1686 

(Retail Sales) 

-0.0843 

(Change in Employment) 

0.0895 

(Small minus Big Factor) 
0.1805 

(1-Year Federal Fund 

Spread) 

0.0855 

(Term Spread) 

-0.0954 

(High minus Low Factor) 
-0.1828 

(New Order for Non-Defence 

Capital Goods) 

-0.0867 

(Inflation) 

-0.0960 

(Inflation) 

-0.1842 

(CPI Durables) 

-0.0987 

(Mortgage Loan Amount) 

-0.1149 

(Conservative minus 

Aggressive Factor) 

0.1847 

(Composite Federal Fund 

Spread) 

0.1013 

(Default Yield Spread) 

Notes: This table reports, for each asset class, the 5 predictors with the highest absolute correlations. In bold 

are the correlation coefficients between the excess returns of Stocks, Bonds, and REITs and the lagged 

values of the predictive variables, in the in-sample period.  
 

Notice that the variable Inflation is a common predictor of Stocks and REITS, 

so we end up with 14 predictive variables.  

 

 

 

2.4. Methodology 
 

 

This section presents the basic theoretical concepts and specifications. It begins 

by presenting simple Vector Autoregressive models (VAR) and the procedures used to 

obtain forecasts based on the combinations of various VAR models considering different 

combinations of the variables in the predictor space. Then we present the Time-Varying 

Parameter Vector Autoregressive model (TVP-VAR), the procedures used to estimate 

these models with forgetting factors, and the methods to select or combine these models. 

Finally, we present the measures of forecasting accuracy and portfolio performance from 

the perspective of a risk-averse investor. 
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2.4.1. Vector Autoregressive Models (VAR) 
 

Since their introduction by Sims (1980), Vector autoregressive models (VARs) 

have become an important tool for predicting macroeconomic and financial time series. 

These models are a straightforward multivariate generalization of univariate 

autoregressions and can generate dynamic forecasts that ensure consistency across 

different equations and forecast horizons. For this reason, many researchers in 

macroeconomics and finance have used large VARs that involve dozens or even hundreds 

of dependent variables (see, among many others, Banbura et al., 2010, Carriero et al., 

2009, and Koop and Korobilis, 2013). 

This study implements first-order vector autoregressive models, VAR(1), to 

capture the dynamics of asset returns and predictors,1 as in Campbell et al. (2003), such 

that:  
 

𝐳𝑡 = 𝚽0 +𝚽1𝐳𝑡−1 + 𝛜𝑡, where 𝐳𝑡 ≡ [
𝐫𝑡
𝐬𝑡
], (2.1) 

 

where 𝐳𝑡 denotes an (𝑚 × 1) column state vector at time 𝑡, with 𝑚 = 𝑚1 + 𝑚2, which 

includes the (𝑚1 × 1) vector of excess log-returns at time 𝑡, 𝐫𝑡, and the other forecasting 

variables into an (𝑚2 × 1) single state vector 𝐬𝑡. In our empirical application, 𝐫𝑡 =

[𝑟1,𝑡 𝑟2,𝑡 𝑟3,𝑡]′, where 𝑟1,𝑡, 𝑟2,𝑡, and 𝑟3,𝑡 are the excess log-returns over the risk-free rate of 

Stocks, Bonds, and REITs, respectively. 𝚽0 is the (𝑚 × 1) vector of intercepts, 𝚽1 is the 

(𝑚 ×𝑚) matrix of slope coefficients, and 𝛜𝑡 is the vector of shocks to the state variables 

satisfying the following distributional assumptions: 
 

𝛜𝑡 ~ 𝒩(𝟎, 𝚺), (2.2) 

 

𝚺 ≡ 𝐶𝑜𝑣𝑡−1(𝛜𝑡) =  [
𝚺𝑥𝑥 𝚺′𝑥𝑠
𝚺𝑥𝑠 𝚺𝑠𝑠

]. (2.3) 

 

Shocks are independently normal distributed, homoscedastic, with zero mean 

and covariance matrix 𝚺, but they can be cross-sectionally correlated. Hence, the VAR 

captures the linear dependence structure between all the state variables in 𝐳𝑡.  

In the present study, we implement a VAR(1) with 3 assets and 3 predictors. 

This implies the estimation of 6 + 6 × 6 = 42 coefficients. Since there are 15 predictive 

 
1 The VAR(1) avoids additional lags that would require a larger state vector with a large number of 

parameters. Nevertheless, this representation is not restrictive, since any vector autoregression can be 

rewritten as a VAR(1) by increasing the variables in the state vector. 
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variables to choose from, 5 for each asset return, we would have 53 = 125 possible 

combinations. However, it turns out that one predictor is common to both stocks and 

REITS, therefore the number of different combinations reduces to 120. 

 

 

2.4.2. Forecast Combinations  
 

In order to obtain the forecasts of the excess return vector, we use several 

methods drawn upon the combination of individual forecasts, 𝔼(𝐫𝑡|ℳ𝑗 , ℱ𝑡−1), and the 

forecasted covariance matrix,  𝐶𝑜𝑣̂(𝐫𝑡|ℳ𝑗 , ℱ𝑡−1), considering the information set up to 

time 𝑡 − 1, ℱ𝑡−1, under the various models ℳ𝑗 , with 𝑗 = 1, 2, … ,𝑁. These combinations 

use the mean, median, trimmed-mean, and weighted mean squared forecasting errors 

(WMSFE) for the purposes of statistical analysis and the mean and WMSFE for the 

economic analysis. We benchmark the performance of these combinations against the 

historical average, which is simply the average of past asset returns up to the date on 

which the prediction is made.  

The mean and median combinations forecasts are just the mean and median of the 

individual forecasts, respectively. The trimmed-mean forecast sets the weight of the 

individual forecasting models at time 𝑡 as  𝜔𝑗,𝑡 = 0, for the lowest and highest forecasts, 

and 𝜔𝑗,𝑡 = 1/(𝑁 − 2) for the remaining forecasts. Due to its simplicity and the fact that 

it does not require any estimation procedure, these combinations are frequently used in 

the literature and often perform better than other, more complex, combination methods.  

Despite the simplicity of the previous methods, it can be advantageous to give 

more emphasis to certain individual forecasts. A way to achieve this is by using the 

WMSFE (also known as the square Mahalanobis distance). The WMSFE of model 𝑗, is 

computed as follows: 
 

𝑊𝑀𝑆𝐹𝐸𝑗 =
1

𝑇−𝑡𝑜 
∑𝑡=𝑡𝑜+1 
𝑇 𝐞𝑗,𝜏

′ [𝐶𝑜𝑣̂(𝐫𝑡)]
−1𝐞𝑗,𝑡, (2.4) 

 

where 𝐞𝑗,𝑡 is the column vector of forecast errors at time 𝑡 associated with model 𝑗, such 

that, 𝑒𝑗,𝑖,𝑡 = 𝑟𝑖,𝑡 − 𝑟̂𝑗,𝑖,𝑡  is the forecast error of the return of asset 𝑖 (with 𝑖 =

 {𝑆𝑡𝑜𝑐𝑘, 𝐵𝑜𝑛𝑑𝑠, 𝑅𝐸𝐼𝑇𝑠} at time 𝑡 computed as the difference between the asset excess 

return, 𝑟𝑖,𝑡, and the one-step-ahead asset excess return forecast, 𝑟̂𝑗,𝑖,𝑡, at time 𝑡 using model 

𝑗. 𝐶𝑜𝑣̂(𝐫𝑡) denotes the sample estimate of the asset excess returns unconditional 
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covariance matrix, computed over the evaluation period (in-sample), 𝑡𝑜 denotes the end 

of the in-sample period, and 𝑇 is the overall sample size. 

 

The combination based on the WMSFE emphasizes certain individual forecasts 

since the covariance matrix weights the forecast errors of asset returns differently 

according to the variability and correlation of asset returns. This procedure attributes 

higher penalties to forecast errors with lower standard deviations, that is, those on which 

the investor is highly confident. Conversely, it penalizes more lightly diffuse forecasts.  

Similarly, there are higher penalties for forecast errors in contrary directions for correlated 

assets and high penalties for forecast errors in the same direction for negatively correlated 

assets.  

Furthermore, combinations based on the WMSFE allow the weights on 

individual forecasting models to reflect their past predictive accuracy. More specifically, 

we compute model 𝑖 weight at each point in time by looking at its WMSFE in the period 

before. This means that the weight combination based on the WMSFE uses the 

information up to the period in which the forecast is made (that is, in the return forecasts 

of  𝑡 it uses the WMSFE calculated up to 𝑡 − 1). The weight of the model 𝑗 at time 𝑡 is 

given by:   
 

𝜔𝑗,𝑡 =
𝜑𝑗,𝑡
−1

∑ 𝜑𝑗,𝑡
−1𝑛

𝑗=1

, (2.5) 

 

Where 𝜑𝑗,𝑡  are the sorted WMSFE for the n models according to the WMSFE 

for the period 𝑡. The weight 𝜔𝑗,𝑡 may be computed using all models or just a subset of 

these models. In this study we consider several values of 𝑛, corresponding to the 10%, 

20%, 30%, 40%, and 50% best models. This forecasting scheme attaches greater weight 

to individual predictive forecasts with lower WMSFE (better forecasting performance) 

over period 𝑡. 

Regardless of the method implemented, there are numerous advantages to using 

forecast combinations. These combinations allow the researcher to use information across 

individual forecasts, can be seen as a diversification strategy in asset allocation theory 

may capture different aspects of business conditions, and provide information signals to 

models and predictive power variations through time (Bates and Granger, 1969, Rapach 

et al., 2010). For instance, if the correlation between individual forecasts is weak, their 
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combination may produce models that are less unstable and, in this way, stabilize 

forecasts, reduce forecast risk, and improve forecast performance under model instability 

and uncertainty (Rapach and Zhou, 2013).   

 

 

2.4.3. Time-Varying Parameter Vector Autoregressive (TVP-VAR) 
 

A Time-Varying Parameter-Vector Autoregressive model of order 1, TVP-

VAR(1), may be represented as follows: 
 

𝐲𝒕 = 𝐗𝑡𝛃𝑡 + 𝛆𝑡 , (2.6) 

and   

𝛃𝑡 = 𝛃𝑡−1 + 𝐮𝑡 . (2.7) 

 

Where 𝛆𝑡 is i.i.d. 𝒩(0, 𝚺𝑡) and 𝐮𝑡 is i.i.d. 𝒩(0,𝐐𝑡). 𝛆𝑠  and 𝐮𝑡   are independent of one 

another for all 𝑡 and 𝑠. 𝐲𝑡, for 𝑡 = 1,… , 𝑇, is an (𝑀 × 1) vector containing the 

observations on 𝑀 time series variables and 𝐗𝑡 is a (𝑀 × 𝑘) matrix defined so that each 

TVP-VAR equation contains an intercept and the first lag of each of the 𝑀 variables: 
 

𝐗𝑡 = (

𝐱′𝑡 0 ⋯ 0

0 𝐱′𝑡 ⋱ ⋮
⋮ ⋱ ⋱ 0
0 ⋯ 0 𝐱′𝑡

), (2.8) 

 

where 𝐱𝑡 is a vector containing an intercept and one lag of each of the 𝑀 variables. Thus, 

𝑘 = 𝑀(1 +𝑀).  

 

The TVP-VAR was commonly estimated using forgetting factors (also known as 

discount factors) in the past when computer capacities were small. However, this method 

is still implemented in recent applications due to its simplicity and fast-tracking (see, for 

instance, Dangl and Halling, 2012, and Koop and Korobilis, 2013).   

Let first denote  𝑦𝑠  =  (𝑦1, … , 𝑦𝑠)′  as the observations through time 𝑠. The 

Bayesian inference for 𝛃𝑡 involves the Kalman filter. The state vector distribution at 𝑡 −

1, using information up to date 𝑡 − 1, is 
 

𝛃𝑡−1|𝑦
𝑡−1~𝒩(𝛃𝑡−1|𝑡−1, 𝐕𝑡−1|𝑡−1),          (2.9) 
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where 𝜷𝑡−1|𝑡−1 and 𝑽𝑡−1|𝑡−1 formulations may be found, for instance, in Hamilton 

(1994). The distribution of the state vector in the next period, using the same information 

set, is 
 

𝛃𝑡|𝑦
𝑡−1~𝒩(𝛃𝑡|𝑡−1, 𝐕𝑡|𝑡−1),   (2.10) 

 

for 
 

𝐕𝑡|𝑡−1 = 𝐕𝑡−1|𝑡−1 + 𝐐𝑡.    (2.11) 

 

By replacing 𝐐𝑡 = (𝜆
−1 − 1)𝐕𝑡−1|𝑡−1 in the previous equation we obtain 

 

𝐕𝑡|𝑡−1 =
1

𝜆
𝐕𝑡−1|𝑡−1,  (2.12) 

 

where 𝜆 denotes the forgetting factor, with 0 < 𝜆 ≤ 1. This equation implies that 

observations ℎ periods in the past have weight 𝜆ℎ in the filtered estimate of 𝛃𝑡. Raftery 

et al. (2010) simply set 𝜆 as a number very close to one, 𝜆 = 0.99. These authors state 

that this number leads to a stable model, where the coefficient changes gradually, and the 

parameter has properties similar to what Cogley and Sargent (2005) call a “business as 

usual” prior.  Dangl and Halling (2012) conducted their estimations with two granularity 

choices for 𝜆, more precisely 𝜆 ∈ {0.96, 0.98, 1.00} and 𝜆 ∈

{0.96, 0.97, 0.98, 0.99, 1.00}. These authors refer that a value strictly lower than one 

corresponds to an increase in the variance of the coefficient vector by a factor of  
1

𝜆
 per 

period, where  𝜆 represents the weight loss of past observations compared to the last one. 

For example, with 𝜆 =  0.98 an observation that occurred 20 periods ago is weighted in 

the variance estimate by 0.9820  =  66.7% of the weight of the last observation, which 

implies that the weight of the last observation is 1 0.667⁄ − 1 =  50% greater than the 

weight of an observation 20 periods earlier. This characterizes a situation where 

coefficients are very unstable. That is why the authors consider 0.98 as the lower bound 

for 𝜆. Koop and Korobilis (2013) implemented a more robust technique. Instead of simply 

setting it equal to a fixed value, they estimated 𝜆 using 𝜆𝑡, such that 
 

𝜆𝑡 = 𝜆𝑚𝑖𝑛 + (1 − 𝜆𝑚𝑖𝑛)𝐿
𝑓𝑡 , (2.13) 

 

where 𝑓𝑡 = −𝑁𝐼𝑁𝑇(𝛆̃′𝑡−1𝛆̃𝑡−1), and 𝛆̃′𝑡−1 = 𝐲𝑡 − 𝛃𝑡|𝑡−1𝐗𝑡 is the one-step-ahead 

prediction error produced by the Kalman filter and NINT rounds to the nearest integer. 
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Following Koop and Korobilis (2013) we set  𝜆𝑚𝑖𝑛 = 0.96 and 𝐿 = 1.1 to obtain values 

between 0.96 and 1 for the forgetting factor. 

We proceed in the same way to eliminate the need to simulate the multivariate 

stochastic volatility in the measurement equation. We use an Exponentially Weighted 

Moving Average (EWMA) estimator for the error covariance matrix: 
 

𝚺̂𝑡 = 𝜅𝚺̂𝑡−1 + (1 − 𝜅)𝛆̃𝑡𝛆̃′𝑡, (2.14) 

 

where the decay factor 𝜅  is set to 0.96, as in Riskmetrics (1996). The computation of 𝚺̂𝑡 

also requires the choice of an initial condition for 𝚺0, that we set equal to the sample 

covariance matrix of 𝐲𝑡0, where 𝑡0 + 1 is the initial period at which the forecasting 

estimations start. 

 

2.4.3.1 TVP-VAR selection   

 

Models such as TVP-VARs are designed to accommodate gradual changes in 

the coefficients (Koop and Korobilis, 2013). However, they are unable to adjust to abrupt 

changes, which reduces their performances. A way to deal with the possibility of 

significant changes is to allow the switching between different models.  Thus, we enable 

the TVP-VAR(1) to change dimensions over time by using a Dynamic Model Selection 

(DMS) procedure. This procedure requires the estimation of the forgetting factors, the 

definition of the priors, and the definition of various dimensions of the combinations of 

the TVP-VARs models. We use the DMS to select the optimal values for the VAR 

shrinkage parameter in a time-varying manner.  

To implement DMS, we consider TVP-VARs models with different sets of 

explanatory variables, that is, we consider different  𝑗 = 1, … ,𝑁 models.  

DMS is a recursive algorithm where the important recursions are similar to the 

forecast and updating equations of the Kalman filter method. Following Koop and 

Korobilis (2013), the model prediction and updating equations using a forgetting factor 

𝛼 are derived from:  
 

𝜋𝑡|𝑡−1,𝑗 =
𝜋𝑡−1|𝑡−1,𝑗
𝛼

∑ 𝜋𝑡−1|𝑡−1,𝑙
𝛼𝑁

𝑙=1

, (2.15) 

 

which is the probability that model 𝑗 will be chosen, given the information up to 𝑡 − 1, 

and, 
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𝜋𝑡|𝑡,𝑗 =
𝜋𝑡|𝑡−1,𝑗𝑝𝑗(𝑦𝑡|𝑦

𝑡−1)

∑ 𝜋𝑡|𝑡−1,𝑙 𝑝𝑙(𝑦𝑡|𝑦𝑡−1)
𝑁
𝑙=1

, 

 

(2.16) 

 

where 𝑝𝑗(𝑦𝑡|𝑦
𝑡−1) is the predictive likelihood (the predictive density of 

model 𝑗 calculated at 𝑦𝑡). We can also write the probability used to select models as: 
 

𝜋𝑡|𝑡−1,𝑗 ∝∏[𝑝𝑗(𝑦𝑡−𝑘|𝑦
𝑡−𝑘−1)]

𝛼𝑖
𝑡−1

𝑘=1

. (2.17) 

 

Model  𝑗 will receive more weight at time 𝑡 according to the accuracy of its forecasts in 

the recent past. The weight of past predictive densities is controlled by the forgetting 

factor, 𝛼, which has similar features to the forgetting factor defined before, 𝜆.  

In our study, we set 𝛼 = 0.99 as in Koop and Korobilis (2013), which implies 

that the forecast performance five years ago receives 55% as much weight as the forecast 

performance in the last period. We do not define any other values for 𝛼, as in Koop and 

Korobilis (2013). The authors choose a range of values between 0.95 and 1, however, 

results are not very different for these minor interval changes. We also consider the case 

of 𝛼 = 1, however, this matches the conventional model averaging using the marginal 

likelihood. Setting 𝛼 =  0.95 indicates that the forecast performance five years ago 

receives only 5% as much weight. In sum, we set 𝛼 as a fixed value of 0.99, and we 

consider 𝜆 =  0.99 and 𝜅 =  0.96. 

Our approach does not require the estimation of 𝐐𝑡, and, as we referred before, 

it uses an EWMA estimator of 𝚺𝑡 that requires prior information on 𝛃0. Thus, as in Koop 

and Korobilis (2013), we use a tight Minnesota prior for 𝛃0. In the literature, it is popular 

to use training sample priors to produce hyperparameters that monitor the degree of 

shrinkage when working with large VARs or TVP-VARs (Banbura et al., 2010). 

Typically, a constant prior is used over each point in time. However, Koop and Korobilis 

(2013) used a different approach which allows for the estimation of the shrinkage 

hyperparameter in a time-varying manner. To do so, they used an automatic updating 

procedure. This approach is less computationally demanding since it does not require the 

re-estimation of the shrinkage priors or the model at each point in time.  

In our study, we use a normal prior for 𝛃0 similar to a Minnesota prior, set the 

prior mean to be 𝔼(𝛃0 ) = 0, and the Minnesota prior covariance matrix of 𝛃0 is set to be 

diagonal, 𝑐𝑜𝑣(𝛃0 ) = 𝑉, such that 
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𝑉𝑖 = {
𝑎, for the intercepts         

𝛿, for the lag coefficients 
, 

(2.18) 

  

where 𝑉𝑖 is the 𝑖-th diagonal element of the covariance matrix. Hence, 𝛿 controls for the 

degree of shrinkage on the VAR coefficients,2 and  𝑎 = 103, for the intercepts to be 

uninformative. We need a large degree of shrinkage to obtain a good forecasting 

performance in large VARs and TVP-VARs. To do so, we estimate 𝛿 at each point in 

time using a strategy similar to the estimation of the forgetting and decay factors. As in 

Koop and Korobilis (2013), we use a grid for 𝛿, such that 𝛿 ∈ {10−10, 10−5, 0.001,

0.005, 0.01, 0.05, 0.1}. 

In sum, the DMS implies choosing the model with the highest value of 𝜋𝑡|𝑡−1,𝑗 

to obtain the forecast at time 𝑡. Since 𝜋𝑡|𝑡−1,𝑗 varies over time, the forecasting model will 

change, allowing, in this way, the model switching feature.  

Besides the DMS, we also consider Dynamic Model Averaging (DMA), which 

uses 𝜋𝑡|𝑡−1,𝑗 as the weighting scheme.  

We also consider different dimensions (i.e., different cardinalities of the state 

space set) when implementing the DMS and DMA procedures. These models are:  

• A “Small” model without any additional predictors, implying that it only 

considers the first-order lags of the excess returns. 

• A “Medium” model with three additional predictors. These predictors are the 

ones with the highest absolute correlation with the excess returns. 

• A “Large” model with all additional predictors, corresponding to 17 variables 

(3 lagged excess returns plus 14 predictive variables).  

• A “Full” model, which is selected or averaged (for the DMS and DMA, 

respectively) across all small, medium, and large models. 

A crucial point of TVP-VAR selection and averaging is the calculation of  

𝜋𝑡|𝑡−1,𝑗. When forecasting at time 𝑡, we evaluate this probability for every model 𝑗 and 

use the values of 𝛿 and the dimension of TVP-VAR(1) that maximizes it. We use the 

recursive algorithm presented in Equation (2.15) and Equation (2.16) and set the initial 

probability of selecting each model equal to 𝜋0|0,𝑗 = 1 𝑁⁄  for all models. However, when 

dealing with TVP-VAR with different dimensions we have different predictive densities, 

 
2 Note that this differs from the Minnesota prior in that the latter contains two shrinkage parameters 

(corresponding to own lags and other lags) and these are set to be constant. For ease of computation, we 

only use one shrinkage parameter, as in Banbura et al. (2010). 
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𝑝𝑗(𝑦𝑡|𝑦
𝑡−1) , since 𝐲𝑡 has different dimensions, rendering them incomparable. A possible 

solution is to use the same predictive densities for all dimensions. So, we used the small 

model TVP-VAR predictive density since the variables in this model are common to all 

models.3  

 

 

2.4.4. Measures of Forecasting Accuracy 
 

The precision of the point forecasts of each model 𝑗 is measured using the Mean-

Squared Forecast Errors (MSFEs). This is the most common metric for assessing 

forecasting accuracy, especially in return predictability studies. To calculate the MSFE, 

firstly, we divide the total sample into an initial in-sample period comprising the first 

𝑡𝑜 observations and an out-of-sample period comprising of the last 𝑇 − 𝑡𝑜 observations, 

and then we compute the mean value of the squared forecasting errors for the model and 

the historical averaging: 
 

𝑀𝑆𝐹𝐸𝑗,𝑖 =
1

𝑇 − 𝑡𝑜
∑𝑡=𝑡𝑜+1
𝑇 𝑒𝑗,𝑖,𝑡

2 , 
(2.19) 

  

𝑀𝑆𝐹𝐸𝐻𝐴,𝑖 =
1

𝑇 − 𝑡𝑜
∑𝑡=𝑡𝑜+1
𝑇  𝑒𝐻𝐴,𝑖,𝑡

2 , 
(2.20) 

 

where 𝑡𝑜 denotes the beginning of the out-of-sample period, 𝑗 refers to the models under 

consideration,  𝑒𝑗,𝑖,𝑡 is the forecast error of asset return 𝑖 at time 𝑡 associated with model 

𝑗, 𝑟𝑖,𝑡  is the asset return for period  𝑡  and 𝑟̂𝑗,𝑖,𝑡 is the one-step ahead asset return forecast. 

𝑒𝐻𝐴,𝑖,𝑡 = 𝑟𝑖,𝑡 − 𝑟̅𝑖,𝑡 is the forecast error in relation to the historical average of asset 𝑖 at 

time 𝑡, i.e., 𝑟̅𝑖,𝑡 is the return average of asset 𝑖 at time 𝑡, using information up to time 𝑡 −

1. 

Following Campbell and Thompson (2008), the additional predictive power of 

the models relative to the historical average can be measured through the pseudo 𝑅2 out-

of-sample: 
 

𝑅𝑂𝑂𝑆,𝑗,𝑖
2  =  1 − 

𝑀𝑆𝐹𝐸𝑗,𝑖

𝑀𝑆𝐹𝐸𝐻𝐴,𝑖
 , 

(2.21) 

 
3 This implies that the dynamic model selection is determined by the joint predictive likelihood of the three 

asset returns. 
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Model 𝑗 produces better predictions than the reference model (historical average) if the 

𝑅𝑂𝑂𝑆,𝑗,𝑖
2  is positive. We also analyse whether the models exhibit higher predictive ability 

than the historical average using the adjusted mean squared forecast errors statistic of 

Clark and West (2007) (hereafter adj-MSFE). This test is an approximately normal 

modified version of the MSFE statistic, which the authors show to be undersized. Its null 

hypothesis stipulates that the MSFE of both the model and the historical average are 

equal, whereas, according to the alternative hypothesis, the model predictions are more 

accurate. The most convenient way to implement this one-side test is to compute for each 

model 𝑖 and each excess asset return 𝑖, at time 𝑡: 
 

𝑓𝑗,𝑖,𝑡  =  (𝑟𝑖,𝑡 − 𝑟̅𝑖,𝑡−1)
2
− [(𝑟𝑖,𝑡 − 𝑟̂𝑗,𝑖,𝑡−1)

2
− (𝑟̅𝑖,𝑡 − 𝑟̂𝑗,𝑖,𝑡−1)

2
] (2.22) 

 

and then regress 𝑓𝑗,𝑖,𝑡 on a constant and use the resulting t-statistics. The null hypothesis 

of equal predictive ability is rejected, for example, at the 5% significance level, if the t-

statistic exceeds 1.645. 

 

 

2.4.5. Asset Allocation Problem 
 

Here we present the asset allocation problem faced by a long-term investor with 

constant relative risk aversion (CRRA) utility function: 
 

𝑈(𝑊𝑡) =
𝑊𝑡

1−𝛾

1 − 𝛾
. (2.23) 

 

In that utility function, 𝑊𝑡 denotes the investor’s wealth at time 𝑡, and 𝛾, with 𝛾 > 1, is 

the risk-aversion coefficient. At each point in time, the investor chooses the optimal 

allocation amongst the risky assets and a risk-free asset that maximizes her 1-period-

ahead expected utility 𝔼𝑡[𝑈(𝑊𝑡+1)].  The optimal weights implied by model 𝑗 are given 

by the solution of the following constrained maximization problem: 
 

argmax
𝐱𝑗,𝑡

𝐱′𝑗,𝑡 (𝛍 ̂𝑗,𝑡+1|𝑡 +
1

2
𝑑𝑖𝑎𝑔𝚺̂𝑗,𝑡+1|𝑡) −

𝛾

2
𝐱′𝑗,𝑡 𝚺̂𝑗,𝑡+1|𝑡 𝐱𝑗,𝑡 

               s.t.: (1) 𝐱′𝑗,𝑡 𝛊 = 1 and (2) 𝐱𝑗,𝑡 ≥ 𝟎 

 

(2.24) 

where 𝐱𝑗,𝑡 denotes the vector of portfolio weights,  𝛍 ̂𝑗,𝑡+1|𝑡 = 𝔼(𝐫𝑡+1|ℳ𝑗 , ℱ𝑡) is the mean 

of the predictive density of the vector of risky asset 𝐫𝑡+1, computed using the information 
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available at time 𝑡 and under model 𝑗, 𝚺 ̂𝑗,𝑡+1|𝑡 = 𝑐𝑜𝑣̂(𝐫𝑡+1|ℳ𝑗 , ℱ𝑡) is the risky assets’ 

forecasted covariance matrix at time 𝑡 based on the estimates given by models 𝑗 and 

conditional on the information set at time 𝑡, and 𝛊 is a vector of ones with the same length 

as 𝐫𝑡+1. Following much of the asset allocation literature, we rule out short-selling (i.e., 

negative portfolio weights). Notice that the investment portfolio is rebalanced each 

month. 

Assuming that the excess returns of the risky assets are log-normally distributed, 

the portfolio log-return implied by model 𝑗 at time 𝑡 is the following (Campbell et al., 

2003):  
 

𝑟𝑝,𝑗,𝑡+1 = 𝑟𝑓,𝑡 + 𝐱
′
𝑗,𝑡(𝐫𝑡+1 − 𝑟𝑓,𝑡𝛊) +

1

2
𝐱′𝑗,𝑡𝑑𝑖𝑎𝑔𝚺̂𝑗,𝑡+1|𝑡 −

1

2
𝐱′𝑗,𝑡𝚺̂𝑗,𝑡+1|𝑡𝐱𝑗,𝑡 (2.25) 

 

where 𝑟𝑓,𝑡 represents the continuously compounded risk-free rate.  

 

 

2.4.6. Portfolio Performance Evaluation 
 

Besides presenting the descriptive statistics of the returns of the portfolios 

(mean, standard-deviation, skewness, and kurtosis), we also use three metrics to assess 

the portfolio performance chosen by the risk-averse investor. The first metric is the 

Certainty Equivalent Return (CER) which is the risk-free return that would make the 

investor indifferent between following a certain investment strategy and accepting this 

risk-free return. The annualized CER can be expressed as follows: 
 

𝐶𝐸𝑅𝑗 =

[
 
 
 
 

(
1

𝑇 − 𝑡0
∑ 𝑊̂𝑗,𝑡

1−𝛾

𝑇

𝑡=𝑡0+1

)

12
1−𝛾

− 1

]
 
 
 
 

 (2.26) 

 

where 𝑊̂𝑗,𝑡 =  exp{𝑟𝑝,𝑗,𝑡} denotes the realized wealth at time 𝑡 as implied by model 𝑗. 

The second measure is the annualized Sharpe ratio (SR), which measures the 

desirability of a risky investment strategy, by dividing the average by the standard 

deviation of the excess return. In other words, the SR measures the reward per unit of 

variability. It can be expressed as: 
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𝑆𝑅𝑗 =
√12𝜇 ̂𝑟𝑝,𝑗
𝜎 ̂𝑟𝑝,𝑗

, (2.27) 

 

where 𝜇 ̂𝑟𝑝,𝑗 and 𝜎 ̂𝑟𝑝,𝑗 denote the mean and standard deviation of the portfolio excess 

return implied by model 𝑗 at time 𝑡, respectively. 

The third metric is the annualized Sortino ratio (SOR), which only considers the 

negative deviations from a certain target, 𝐵, i.e., the “downside risk”. 
  

𝑆𝑂𝑅𝑗 =
√12 (𝜇 ̂𝑟𝑝,𝑗 − 𝐵)

√
1

𝑇 − 𝑡𝑜
∑ 𝑚𝑖𝑛[(𝑟𝑝,𝑗,𝑡 − 𝐵), 0]

2𝑇
𝑡=𝑡𝑜+1

, (2.28) 

 

where 𝐵 is the reference point that constitutes the minimum acceptable rate of return, T 

is the total number of periods, and 𝑡0 + 1 is the initial out-of-sample period. In the 

computation of SOR, we use 𝐵 = 0. Notice that this is different from using the semi-

standard deviation, which is obtained from the negative deviations relative to the 

endogenous mean, as the downside deviation is computed in relation to an exogenous 

reference point.  

 

 

 

2.5. Empirical Results  

 

This section presents the results on the forecast predictability of various model 

combination schemes for each asset class. Table 2.3 reports the pseudo-R2 and the 

significance of the adj-MSFE test. Although there is only one model for small, medium, 

and large sets, the selection/average of 𝛿 is still made, among the 7 possible values 

reported in Section 2.4.3. The results of the DMS and DMS are the same for individual 

models (the same situation occurs in Koop and Korobilis, 2013).  
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Table 2.3: Out-of-sample pseudo-R2  

Forecasting schemes Model Stocks Bonds REITs 

Mean  -4.06 5.00* 1.72 

Median  -3.59 5.12* 1.32 

Trimmed Mean  -3.95 5.03* 1.71 

WMSFE  -3.85 3.99* 1.99 

 Small -1.79 1.83 0.56 

DMS and DMA Medium 3.69 1.96 2.47 

 Large 0.63 -3.58   1.49** 

DMS Full  -0.43 -8.34 -0.60 

DMA Full  1.34 0.65 0.35 

Notes: This table reports the out-of-sample pseudo-R2 (Campbell and Thompson, 2008), in percentage, of 

the different forecasting schemes based on the mean, median, trimmed mean, WMSFE and DMS and DMA 

of the Small, Medium, Large and Full TVP-VAR(1) models. The DMS and DMA statistics are the same, 

except for the Full model. Associated with these statistics, the table also presents the significance of the 

adj-MSFE (Clark and West, 2007).  Asterisks (*) and (**) indicate test statistics significant at the 10% and 

5% levels. 

 
Table 2.3 reports positive pseudo-R2 for all VAR combinations to predict the 

excess returns of REITs returns, ranging from 1.32% to 1.99%, and, most notably, to 

predict excess returns of Bonds, ranging from 3.99% to 5.12%. However, only Bonds 

present statistical significance at the 10% level. For Stocks the VAR combinations have 

negative pseudo- R2, hence the VAR combinations do not improve the forecasting ability 

relative to the historical mean return.  

 The DMS and DMA approaches provide better results than the VAR 

combinations for Stocks, although the DMS and DMA for the Small model and the DMS 

for the Full model still present negative pseudo-R2. This is not the case for REITs, for 

which only the DMS and DMA for the Medium model show better results (although the 

highest significance is obtained for the DMS and DMA large model approaches), and, 

most especially, for Bonds, for which none of the DMS and DMA beat the VAR 

combinations.  

These mixed results highlight the problem of model uncertainty faced when 

dealing with forecasting returns However, if one had to choose among all the approaches 

under study, the best candidate is the DMS (or DMA) using the Medium model. That is, 

selecting or averaging across TVP-VAR(1)  a dimension given by the three excess returns 

plus three additional predictors, with the highest absolute correlation with the excess 
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returns. The DMS Medium model presents a pseudo-R2 of 3.69%, 1.96%, and 2.47% for 

Stocks, Bonds, and REITs, respectively. Although these pseudo-R2 are lower than 5%, 

these are in fact, good results, as the literature reports pseudo-R2 out-of-sample of around 

1% for quarterly data and 0.5% for monthly data.   

Figure 2.2 illustrates the cumulative differences between the squared prediction 

error of the historical average and the squared prediction error of several forecasting 

combinations for the three asset classes. For stocks, the series have negative values and 

are decreasing. The exception is the Full TVP-VAR DMA. This suggests that amongst 

these forecasting schemes, this is the only one that delivers out-of-sample forecasting 

gains on a consistent basis over time. For Bonds, all the forecasting schemes show mostly 

positive values, except the Full TVP-VAR DMS. Notably, there are jumps in the series 

in 2008, meaning that the forecasting schemes were able to better forecast the negative 

returns during the subprime crisis than the historical means. For REITs the combinations 

of VAR(1) based on the Mean, Median, Trimmed Mean, and WMSFE are clearly better 

than the Full TVP-VAR DMS and Full TVP-VAR DMA. For REITs those initial 4 

combinations of VAR(1) were able to some extent forecast the effects of the subprime 

crisis, while the opposite happened in the latter 2 forecasting schemes.   

 

Figure 2.2: Cumulative differences of squared forecast errors  

 

Exhibit A: Stocks 
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Exhibit B: Bonds 

 
 

 

Exhibit C: REITs 

 
Notes: This figure shows the cumulative differences between the squared prediction error of the historical 

average benchmark and the squared prediction error of a given forecasting combination (Mean, Median, 

Trimmed Mean, Full TVP-VAR DMS and DMA). Exhibit A, Exhibit B, and Exhibit C refer to Stocks, 

Bonds, and REITs, respectively. 

 

Table 2.4 reports the mean, standard deviation, skewness, and kurtosis of the 

portfolio returns obtained using different approaches to forecast the asset returns 

considering three risk aversion coefficients (𝛾 = 3, 5, and 10). 
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The mean expected returns of the portfolios based on DMS and DMA are 

generally higher than those of all the other forecasting schemes. The only exceptions are 

the large individual TVP-VAR models. For instance, the mean return of a portfolio 

strategy for 𝛾 = 5 based on the Medium DMA/DMS is the largest, 5.99% per year. The 

equally weighted portfolio, 1/N, only achieves a mean return of 2.01%. Regarding the 

portfolio risk (measured by the standard deviation) for a level of risk aversion of 𝛾 = 5, 

we report a value of 14.28% per year for the medium DMA model, 16.25% for the full 

DMA approach, and only 11.49% for the 1/N portfolio.  

It is not surprising that higher means are associated with higher risks. However, 

the standard deviations associated with portfolios based on Small, Medium, and Full 

DMS models are not substantially high relative to the average return they provide. 

Average returns for these strategies for an investor with 𝛾 = 5 range between 4.05% to 

5.99% and the standard deviation between 14.28% and 18.65%, annually. The strategies 

based on WMSFE forecasting schemes have standard deviations ranging from 13.86% 

and 14.7%, but their average returns are very small, ranging between 3.36% to 3.60%. 

These results outline the superiority of Bayesian predictive models when formulating 

portfolio strategies.  

Table 2.4 also reports the higher-order moments (skewness and kurtosis), which 

are also important for a power utility investor. Strategies based on WMSFE and Medium 

and Full DMA have positive skewness. In any case, the forecasting schemes provide a 

higher skewness than the 1/N portfolio. However, these models also produce relatively 

high kurtosis. 
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Table 2.4: Statistics of out-of-sample portfolio returns for different risk aversion coefficients 

  Mean Standard deviation Skewness Kurtosis 

Forecasting schemes  γ = 3 γ = 5 γ = 10 γ = 3 γ = 5 γ = 10 γ = 3 γ = 5 γ = 10 γ = 3 γ = 5 γ = 10 

Mean  2.88 2.67 2.01 13.42 12.96 12.49 -0.88 -2.14 -3.69 16.44 16.69 21.62 

   WMSF 

10% 3.78 3.36 2.60 15.49 13.86 11.49 2.75 0.16 -1.01 31.18 18.57 23.52 

20% 3.78 3.60 2.81 15.10 14.70 12.00 4.16 4.82 1.96 38.87 43.32 31.39 

30% 3.60 3.53 2.77 15.49 14.70 12.00 3.75 4.47 2.92 40.43 44.81 39.23 

40% 3.53 3.46 2.74 15.10 14.70 12.00 3.93 4.51 2.85 41.95 46.01 39.05 

50% 3.43 3.43 2.67 14.70 14.70 12.00 4.15 4.54 2.56 43.57 47.02 37.84 

DMS 

and 

DMA 

Small 5.51 5.65 5.79 14.70 14.28 12.96 -1.83 -1.01 0.95 29.76 25.75 20.04 

Medium 5.92 5.99 5.58 14.28 14.28 12.49 6.79 7.05 3.30 45.16 47.18 22.04 

Large 2.56 2.88 2.49 20.20 18.65 12.49 -2.60 -1.66 -2.81 34.13 37.94 25.17 

DMS Full 3.85 4.05 3.53 20.20 18.97 13.42 -1.95 -1.77 -1.34 34.88 36.66 26.89 

DMA Full 5.13 5.30 5.37 16.61 16.25 15.10 3.93 4.40 5.01 28.78 30.72 33.12 

Historical   2.36 1.87 1.42 1.04 0.097 0.090 -1.57 -0.79 -0.18 34.21 33.87 37.00 

                1/N   2.01   11.49   -5.19   33.47  

Notes: This table reports the annualized mean, annualized standard deviation, skewness, and kurtosis of the portfolio returns based on the following forecasting schemes: Mean, 

WMSFE (10%, 20%, 30%, 40%, and 50% best models), DMS and DMA of the Small, Medium, Large and Full TVP-VAR(1). The portfolios were selected considering three 

risk aversion coefficients (γ = 3, γ = 5 and γ = 10). “Historical” refers to the portfolio based on the historical means and 1/N is the equally weighted portfolio. The mean and 

standard deviation are in percentage.
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Table 2.5 shows some out-of-sample performance metrics of different portfolio 

strategies, considering different risk aversion coefficients. The portfolio strategy based 

on the historical means generates CER, SR, and SOR that are smaller than those of all 

forecasting schemes, except the strategy based on Large DMS/DMA for an investor 

with 𝛾 = 3. All the forecasting schemes are better than the 1/N, in all metrics and risk 

aversion coefficients, except the Large DMS/DMA for an investor with 𝛾 = 3 or 𝛾 = 5. 

The Small and Medium DMS/DMA forecasting schemes provide the best 

performing strategies. For instance, the CER of portfolios based on the Medium 

DMS/DMA are twice as high as the CER of the other portfolios. For instance, an investor 

with 𝛾 = 5, who derives her portfolio strategy on a medium DMS/DMA model would 

have a CER of 19.16%, a SR of 1.47%, and a SOR of 4.04%.  
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Table 2.5: Portfolio performance for different risk aversion coefficients 

  CER SR SOR 

Forecasting schemes 𝜸 = 𝟑 𝜸 = 𝟓 𝜸 = 𝟏𝟎 𝜸 = 𝟑 𝜸 = 𝟓 𝜸 = 𝟏𝟎 𝜸 = 𝟑 𝜸 = 𝟓 𝜸 = 𝟏𝟎 

Mean  8.73 6.15 -0.87 0.74 0.71 0.57 1.18 1.08 0.81 

WMSFE 

10% 11.18 8.34 3.12 0.82 0.84 0.79 1.49 1.43 1.26 

20% 11.58 9.10 3.93 0.86 0.83 0.82 1.63 1.63 1.43 

30% 10.82 8.68 3.55 0.81 0.83 0.79 1.50 1.56 1.40 

40% 10.61 8.48 3.44 0.80 0.82 0.78 1.49 1.53 1.38 

50% 10.43 8.36 3.33 0.80 0.81 0.77 1.48 1.52 1.36 

DMS 

and 

DMA 

Small 18.43 16.71 13.89 1.31 1.37 1.55 2.30 2.51 3.22 

Medium 20.66 19.16 14.57 1.43 1.47 1.57 3.83 4.04 3.94 

Large 3.31 1.12 0.34 0.43 0.53 0.68 0.62 0.78 1.02 

DMS Full 8.28 5.08 2.78 0.66 0.74 0.90 1.00 1.16 1.47 

DMA Full 16.20 14.61 10.51 1.07 1.14 1.22 2.25 2.51 2.85 

Historical  3.82 -1.39 -12.53 0.44 0.36 0.28 0.63 0.51 0.40 

1/N  6.33 4.71 -0.12  0.62   0.86  

Notes: This table reports the annualized Certainty Equivalent Return (CER), Sharpe Ratio (SR), and Sortino ratio (SOR), in percentage, of the portfolio returns based on 

the following forecasting schemes: Mean, WMSFE (10%, 20%, 30%, 40%, and 50% best models), DMS and DMA of the Small, Medium, Large and Full TVP-VAR(1). 

The portfolios were selected considering three risk aversion coefficients (γ = 3, γ = 5 and γ = 10). “Historical” refers to the portfolio based on the historical means and 

1/N is the equally weighted portfolio.  
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2.6. The impact of the subprime crisis  
 

 

The question of how portfolio returns vary with economic activity is pertinent to 

the issue of optimal portfolio selection. In this section, we examine whether portfolio 

performances present substantial differences, before and after January 2008, the 

beginning of the subprime crisis. Hence, we investigate to what extent the models are 

suitable to accommodate market instability.   

 

Table 2.6: Out-of-sample pseudo-R2 before and after the subprime crisis (January 2008) 

Forecasting 

schemes 

Model Stocks Bonds REITs 

  Pre Post Pre Post Pre Post 

Mean  -2.41 -4.27 -1.14 6.12 -1.43 2.40 

Median  -1.49 -3.83 -2.90 6.66 -1.54 1.93 

Trimmed Mean  -2.25 -4.15 -1.38 6.26 -1.46 2.39 

WMSFE  -3.21 -4.78 -3.17 4.62 -1.84 2.02 

DMS and DMA 

 

Small 15.69 -2.24 -1.86 2.01 -3.43 0.72 

Medium 13.45 4.34 -1.48 1.96 -2.37 2.80 

Large 16.49 0.05 -3.49 -4.03 0.45 1.01 

DMS Full 17.83 0.83 -1.14 0.52 -0.84 -0.11 

DMA Full 16.64 -1.17 -3.60 -9.72 0.40 -1.54 

Notes: This table presents a similar analysis to the one reported in Table 2.3, considering a partition of the 

data in January 2008, the beginning of the subprime crisis. “Pre” refers to the period from January 2004 to 

December 2007, and “Post” refers to the period from January 2008 to December 2017. This table reports 

the out-of-sample pseudo-R2 (Campbell and Thompson, 2008), in percentage, of the different forecasting 

schemes based on the mean, median, trimmed mean, WMSFE and DMS and DMA of the Small, Medium, 

Large and Full TVP-VAR(1) models. The DMS and DMA statistics are the same, except for the Full model. 

Associated with these statistics, the table also presents the significance of the adj-MSFE (Clark and West, 

2007).  Asterisks (*) and (**) indicate test statistics significant at the 10% and 5% levels. 
 

Table 2.6 reports the out-of-sample pseudo-R2 of the different forecasting 

schemes considered in this study, over two sample periods, before the subprime crisis 

(from January 2004 to December 2007, we call it “Pre”) and, during and after the crisis 

(January 2008 to December 2017, we call this period “Post”).4 Bayesian models perform 

 
4 We also analysed whether there was an asymmetric return predictability across business cycles. Following 

Sander (2018), we set up a recession dummy based on real-time indicators of recessions. We allowed the 

regression intercept and slope coefficients to change freely across recessions and expansions. We concluded 
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well in predicting Stocks excess returns before the crisis. The pseudo-R2 for the period 

before the subprime crisis is surprisingly high for these schemes, varying between 13.45% 

to 17.83%. After 2008, the Medium DMS and DMA also present interesting results (the 

pseudo-R2is 4.34%, 1.96%, and 2.80% for Stocks, Bonds, and REITs, respectively). This 

may indicate that the Medium DMS and DMA are suitable to accommodate periods with 

market turmoil. The simpler forecasting schemes also exhibit some predictive power for 

Bonds and REITs after 2008.  

Table 2.7 reports the statistics of portfolios before and after 2008, while Table 

2.8 present the annualized CERs, SR and SOR. Results for the skewness are negative 

before 2008 and positive after 2008 for every WMSFE strategy and Medium DMS/DMA. 

Standard deviations tend to be higher after 2008 due to the market turmoil. However, 

kurtosis is extremely high in both periods. Across all tables, almost all statistics and 

metrics exhibit better results after 2008 (the exception being the Mean forecasting 

scheme). For instance, for γ = 3, the CER of Medium DMS/DMA model after the crisis 

is 25.12% while before the crisis was only 10.55%. This implies that the investor would 

be better off holding this portfolio after the subprime crisis. 

In sum, portfolios generally perform better after January 2008. Nevertheless, 

portfolios based on Bayesian models can produce good results in both sub-sample 

periods. This may indicate that these models are more able to accommodate market 

instability and therefore are more robust techniques. 

 

 
that there were no significant differences in the predictability of returns between recession and expansion 

periods.  
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Table 2.7: Statistics of out-of-sample portfolio returns for different risk aversion coefficients, before and after the subprime crisis (January 2008) 

 Mean Standard deviation Skewness Kurtosis 

Forecasting schemes 𝜸 = 𝟑 𝜸 = 𝟓 𝜸 = 𝟏𝟎 𝜸 = 𝟑 𝜸 = 𝟓 𝜸 = 𝟏𝟎 𝜸 = 𝟑 𝜸 = 𝟓 𝜸 = 𝟏𝟎 𝜸 = 𝟑 𝜸 = 𝟓 𝜸 = 𝟏𝟎 

Mean 
 Pre 

Post 
2.49 

3.01 

2.29 

2.81 

1.73 

2.15 

32.86 

14.70 

10.95 

13.86 

11.49 

12.49 

-2.51 

-0.68 

-3.41 

-1.88 

-4.74 

-3.39 

12.62 

15.64 

14.80 

16.45 

21.09 

21.55 

 

 

 

 

WMSFE 

10% 
Pre 

Post 
2.46 

4.30 

2.22 

3.85 

1.77 

2.94 

13.86 

16.61 

12.96 

14.28 

11.49 

11.49 

-4.22 

4.27 

-4.70 

1.51 

-5.45 

0.62 

18.45 

32.12 

19.61 

17.51 

24.37 

22.62 

20% 
Pre 

Post 
2.84 

4.16 

2.70 

3.98 

2.18 

3.08 

11.49 

16.61 

11.49 

15.87 

10.39 

12.49 

-2.06 

4.72 

-2.71 

5.67 

-4.09 

3.29 

10.51 

37.92 

12.69 

42.98 

18.69 

32.62 

30% 
Pre 

Post 
2.63 

3.98 

2.63 

3.91 

2.08 

3.08 

10.95 

16.61 

10.95 

15.87 

10.39 

12.96 

-1.99 

4.13 

-2.73 

5.18 

-4.16 

4.16 

11.06 

38.63 

13.02 

43.80 

19.23 

40.13 

40% 
Pre 

Post 
2.60 

3.88 

2.60 

3.81 

2.08 

3.01 

10.39 

16.61 

10.95 

16.25 

9.80 

12.96 

-1.98 

4.28 

-2.37 

5.05 

-3.81 

3.92 

11.86 

39.63 

11.99 

44.29 

17.89 

39.70 

50% 
Pre 

Post 
2.70 

3.78 

2.67 

3.74 

2.08 

2.91 

10.39 

16.61 

10.39 

16.25 

9.80 

12.96 

-1.84 

4.42 

-1.99 

4.99 

-3.51 

3.52 

12.76 

40.42 

12.14 

44.85 

17.17 

38.44 

DMS 

and 

DMA 

Small 
Pre 

Post 
2.84 

6.62 

2.60 

6.86 

2.53 

7.10 

9.80 

16.25 

9.80 

15.49 

9.17 

13.86 

-1.75 

-2.23 

-2.16 

-1.40 

-2.18 

0.71 

8.22 

28.42 

8.50 

24.68 

8.50 

18.97 

Medium 
Pre 

Post 
2.22 

7.41 

2.32 

2.22 

2.81 

6.72 

8.49 

15.87 

8.49 

8.49 

7.75 

13.42 

-1.84 

6.44 

-1.901 

-1.76 

-1.50 

2.92 

10.07 

39.02 

10.65 

9.70 

9.33 

19.07 

Large 
Pre 

Post 
2.36 

2.63 

2.53 

3.01 

1.97 

2.67 

17.66 

21.35 

16.61 

19.60 

10.95 

12.96 

-3.47 

-2.39 

-3.63 

-1.19 

-3.27 

-2.72 

13.08 

36.81 

14.43 

41.83 

12.23 

27.25 

DMS Full 
Pre 

Post 
2.36 

4.47 

2.53 

4.64 

2.04 

4.19 

17.66 

21.07 

16.61 

19.90 

11.49 

14.28 

-3.47 

-1.71 

-3.62 

-1.01 

-3.34 

-0.94 

13.08 

38.01 

14.30 

40.62 

12.44 

27.43 

DMA Full 
Pre 

Post 
3.33 

5.82 

3.36 

6.10 

2.81 

6.44 

15.49 

16.97 

14.70 

16.61 

12.49 

16.25 

-1.93 

5.53 

-1.55 

5.86 

-1.74 

6.23 

8.81 

32.59 

8.05 

34.47 

7.90 

35.74 
Notes: This table presents a similar analysis to the one reported in Table 2.4, considering a partition of the data in January 2008, the beginning of the subprime crisis. “Pre” 

refers to the period from January 2004 to December 2007, and “Post” refers to the period from January 2008 to December 2017. This table reports the annualized mean, 

annualized standard deviation, skewness, and kurtosis of the portfolio returns based on the Mean, WMSFE (10%, 20%, 30%, 40%, and 50% best models), DMS and DMA of 

the Small, Medium, Large and Full TVP-VAR(1). The portfolios were selected considering three risk aversion coefficients (γ = 3, γ = 5 and γ = 10). The mean and standard 

deviation are in percentage.
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Table 2.8: Portfolio performance for different risk aversion degrees before and after the subprime crisis (January 2008) 

   CER SR SOR 

Forecasting schemes  𝜸 = 𝟑 𝜸 = 𝟓 𝜸 = 𝟏𝟎 𝜸 = 𝟑 𝜸 = 𝟓 𝜸 = 𝟏𝟎 𝜸 = 𝟑 𝜸 = 𝟓 𝜸 = 𝟏𝟎 

Mean  
Pre 

Post 

10.97 

7.84 

8.41 

5.25 

1.48 

-1.78 

0.83 

0.72 

0.71 

0.71 

0.52 

0.59 

1.29 

1.16 

1.04 

1.10 

0.70 

0.84 

WMSFE 

10% 
Pre 

Post 

9.24 

11.98 

8.82 

11.13 

7.84 

8.85 

0.61 

0.90 

0.59 

0.93 

0.54 

0.88 

0.85 

1.80 

0.82 

1.75 

0.73 

1.55 

20% 
Pre 

Post 

11.92 

11.44 

11.35 

11.19 

9.65 

9.10 

0.86 

0.87 

0.82 

0.87 

0.71 

0.85 

1.36 

1.72 

1.25 

1.79 

1.02 

1.62 

30% 
Pre 

Post 

11.23 

10.65 

11.28 

10.70 

9.39 

8.96 

0.82 

0.82 

0.82 

0.84 

0.70 

0.82 

1.29 

1.57 

1.26 

1.67 

1.00 

1.58 

40% 
Pre 

Post 

11.20 

10.38 

9.90 

7.92 

4.95 

2.85 

0.83 

0.81 

0.83 

0.82 

0.70 

0.82 

1.32 

1.55 

1.30 

1.62 

1.02 

1.53 

50% 
Pre 

Post 

11.75 

9.90 

10.33 

7.58 

5.37 

2.53 

0.90 

0.79 

0.88 

0.81 

0.73 

0.79 

1.47 

1.50 

1.40 

1.57 

1.07 

1.47 

DMS 

and 

DMA 

Small 
Pre 

Post 

12.57 

20.89 

10.71 

19.25 

8.37 

16.26 

1.01 

1.42 

0.95 

1.53 

0.97 

1.76 

1.67 

2.52 

1.50 

2.84 

1.55 

3.83 

Medium 
Pre 

Post 

10.55 

25.12 

10.32 

10.86 

10.67 

16.31 

0.91 

1.61 

0.99 

0.88 

1.27 

1.71 

1.46 

4.82 

1.63 

1.41 

2.2859 

4.52 

Large 
Pre 

Post 

6.93 

1.89 

4.84 

-0.33 

3.57 

-0.91 

0.46 

0.43 

0.53 

0.53 

0.62 

0.71 

0.64 

0.61 

0.74 

0.80 

0.88 

1.07 

DMS Full 
Pre 

Post 

6.92 

8.84 

4.77 

5.22 

3.60 

2.68 

0.46 

0.73 

0.53 

0.81 

0.63 

1.00 

0.63 

1.14 

0.73 

1.32 

0.90 

1.72 

DMA Full 
Pre 

Post 

12.08 

17.91 

10.15 

16.44 

5.29 

12.89 

0.75 

1.18 

0.79 

1.26 

0.78 

1.38 

1.17 

2.93 

1.27 

3.25 

1.22 

3.84 
Notes: This table presents a similar analysis to the one reported in Table 2.5, considering a partition of the data in January 2008, the beginning of the subprime crisis. “Pre” 

refers to the period from January 2004 to December 2007, and “Post” refers to the period from January 2008 to December 2017. This table reports the annualized Certainty 

Equivalent Return (CER), Sharpe Ratio (SR), and Sortino ratio (SOR), in percentage, of the portfolio returns based on the Mean, WMSFE (10%, 20%, 30%, 40%, and 50% 

best models), DMS and DMA of the Small, Medium, Large and Full TVP-VAR(1). The portfolios were selected considering three risk aversion coefficients (γ = 3, γ = 5 and 

γ = 10).  
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2.7. Conclusion 
 

 

This chapter aims to study the predictability of returns using VARs. It uses 

several schemes, such as Dynamic Model Selection (DMS) and Dynamic Model 

Averaging (DMA), to provide forecasts that are then used in portfolio selection problems. 

These approaches embed several useful features into a predictive system, namely, model 

and parameter uncertainty, time-varying parameters for modelling and forecasting 

multiple asset returns, combinations of predictors, and time-varying covariance matrices. 

For the period from 1976 to 2017, we have found large statistical and economic benefits 

from using these ensembles of features in predicting excess returns of stocks, bonds, and 

REITs. Notably, Bayesian DMS and DMA combinations deliver out-of-sample gains on 

a consistent basis over time, unlike simple predictive regressions. We conclude that a 

power utility investor benefits from holding a Bayesian portfolio rather than pursuing 

investment strategies based on other, simpler, forecasting schemes. 

We have also compared the performance of different portfolios before and after 

January 2008, the beginning of the subprime crisis. We examined whether portfolio 

returns present substantial performance differences in both periods and the extent to 

which the implemented models were suitable under increased market instability. DMS 

and DMA portfolios have good results before and after the subprime crisis. Arguably, this 

suggests that Bayesian portfolios accommodate market instability in their specifications 

and can be seen as more robust methods. 

Our dynamic optimizing strategies do not take transaction costs into account. 

These costs are likely to be relevant in the framework of dynamic portfolio selection and 

may reduce the performance of the dynamic models. 
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Chapter 3 - International Portfolio 

Selection with Machine-Learning and a 

Multivariate Asymmetric DCC model 

 

 

 
3.1. Introduction 
 

Since Markowitz (1952), it is unanimously recognized that an investor can 

significantly reduce her exposure to risk by properly diversifying the investment 

portfolio. While conservative investors previously depended mainly on low-volatility 

assets to reduce the risk of their portfolios, Markowitz showed that they might achieve 

identical volatility (or lower), together with higher (or the same) returns, through the 

combination of risky assets that have low or negative correlations. The initial Markowitz 

framework remains the basic research model for portfolio selection and diversification 

strategies, despite concerns regarding parameter sensitivity (Best and Grauer, 1991) and 

the numerous robust or more realistic extensions that have been proposed in the literature 

(Britten-Jones, 1999; Ang and Bekaert, 1999).  

Higher levels of diversification may even be achieved by allocating the 

investment into assets of several international markets. The idea of international 

diversification is that investment opportunities within countries are often more correlated 

to each other than across countries, hence including assets from non-domestic countries 

may produce higher diversification benefits. 

In its most basic formalization, the Markowitz portfolio selection model requires 

estimates of the expected return vector and the covariance matrix of all assets in the 

investment universe. Green et al. (2013) listed more than 300 papers that discuss the 

estimation problems relative to these inputs, and many more have likely been published 

since then. However, these issues continue to be studied, with methodologies that make 

use of recent technological and computational advances.  

The expected return vector estimation resulting from traditional methods, such 

as the historical average or momentum, may incorporate a significant measurement error. 
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This is most likely caused by structural breaks and nonlinearities, which are not captured 

by those methods. The conditional covariance matrix, 𝐇𝑡 = 𝐶𝑜𝑣(𝐫𝑡|ℱ𝑡−1), where 𝐫𝑡 is 

the vector of asset return at time 𝑡, subject to information up to time 𝑡 − 1, is the key 

object of interest in a multivariate environment. However, when the number of assets is 

fairly big, modelling 𝐇𝑡 presents the problem usually known as the curse of 

dimensionality. The Dynamic Conditional Correlation (DCC) model of Engle et al. 

(2019) deals with this problem by combining the composite likelihood and a nonlinear 

shrinkage method. The DCC can deal with large dimensions of the asset space, which are 

frequently encountered in practical problems of portfolio selection and asset allocation. 

However, this model cannot capture some important features of the data, for instance, the 

leverage or asymmetric effects (Black, 1976). The common asymmetric effect in finance 

occurs when an unanticipated asset price decline (bad news) increases the volatility more 

than an unexpected rise (good news) of comparable magnitude. If this effect exists, 

assuming a symmetric function for the conditional variance may not be appropriate.  

This study aims to combine new estimation schemes for the vector of expected 

returns and the covariance matrix in a large dimension problem. Firstly, we build on 

Machine Learning techniques to jointly forecast daily stock and bond excess returns. The 

key aspect of this approach is its ability to integrate several important data features into a 

flexible, yet computationally simple method, well-suited for dealing with large asset 

spaces. Secondly, we introduce asymmetric effects in the innovations of the Dynamic 

Conditional Correlation (DCC) model by Engle et al. (2019). The estimates of the return 

vector and covariance matrix obtained using these methodologies are then used as inputs 

in the Markowitz portfolio selection problem. Therefore, our first contribution is to 

empirically compare the performance of the portfolios using those more recent 

methodologies and the performance of portfolios derived from simple benchmark 

portfolios. The second contribution is to examine the potential contribution of different 

countries to diversification using several measures of portfolio performance. We rely on 

the proposed model to study the benefits of holding a diversified international portfolio 

of 77 stocks and bonds indexes.  

Our results reveal that the proposed models produce sizable gains in terms of 

portfolio performances. We find that a power utility investor with moderate risk-aversion 

that uses the proposed Random Forest - Asymmetric Dynamic Conditional Correlation 

model (RF-ADCC) obtains an average return and a Sharpe ratio 10% and 48% higher 

than the ones obtained in a strategy based on a DCC model, respectively. This suggests 
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that Random Forests provide an effective way to estimate the expected return. We also 

show that international diversification is economically and statistically beneficial for 

investors in South America, Europe, the Middle East, Asia, and Oceania, from 2012 to 

2020. However, these benefits are time-varying.  

The remaining of this study consists of five sections. Section 3.2 shows a brief 

literature review. Section 3.3 presents the data and provides some descriptive statistics. 

Section 3.4 outlines the basic theoretical concepts, presents the specifications of the 

models, the measures used to assess the performance of the portfolios out-of-sample, and 

the research setup. Section 3.5 shows the results, and Section 3.6 concludes the chapter.  

 

 

3.2. Literature Review 
  
 

Numerous studies have examined international diversification using different 

methodologies and datasets. Some studies are Grubel (1968), Levy and Sarnat (1970), 

Solnik (1974), Heston and Rouwenhorst (1994), Longin and Solnik (2001). More recent 

works are D’Ecclesia et al. (2006), Yang et al. (2006), Driessen et al. (2007), Bekaert et 

al. (2009), Christoffersen et al. (2014), Viceira and Wang (2018), and Kellner (2019).  

Early research in the 1970s demonstrated that correlations between different 

national stock markets were small and that national markets primarily react to domestic 

economic fundamentals (Levy and Sarnat, 1970; and Solnik, 1974). In the 1980s, part of 

the literature revealed the existence of large and statistically significant interdependences 

between national economies. Cooper (1985) confirmed that economies were becoming 

more integrated worldwide. In the 1990s and 2000s, extreme global events, such as the 

1987 market crash, the invasion of Kuwait in 1990, and the 9/11 attack in 2001, caused 

interconnected reactions in financial markets worldwide, resulting in a reduction of the 

effectiveness of international diversification. In the absence of extreme events, however, 

national financial markets are mostly prone to domestic fundamentals, therefore investing 

in foreign countries tends to enhance the advantages of diversification. For instance, 

Adjaouté and Danthine (2004) reported low portfolio diversification opportunities in 

Europe during the euro convergence period (1988 to 2001), which have significantly 

improved afterward. Yang et al. (2006), Driessen et al. (2007), and Bekaert et al. (2009) 
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reported decreasing diversification benefits in most of the developed markets in the 1990s 

and early 2000s.  

So, despite the consensus on the benefits of having an internationally diversified 

long-term portfolio, many authors reported that in some periods these benefits decreased. 

Possible explanations for these phenomena are the evidence of increasing return 

correlation between international economies, the increasing market integration, and the 

fact that many investors still prefer to allocate their funds to local assets instead of 

broadening the geographical scope of their investment (see, for example, Bekaert et al., 

2017; Viceira and Wang, 2018). 

Since the 2000s, most studies have analysed separately developed or emerging 

markets (see, for instance, Yang et al., 2006; Driessen et al., 2007; Bekaert et al., 2009; 

Christoffersen et al., 2014; and Kellner et al., 2019), mainly concluding that emerging 

markets seem to be of higher interest due to lower interdependencies and higher 

diversification benefits. Additionally, the increasing level of integration among 

developed markets suggests that they are more susceptible to common factors, increasing 

their comonotonic behaviour and decreasing the diversification advantages. 

Christoffersen et al. (2014) showed that the correlations between emerging and developed 

markets increased significantly from 1989 to 2012. Kellner et al. (2019) analysed 

international investments between 2002 and 2016, highlighting that Chile, Jordan, 

Malaysia, Singapore, and Switzerland markets had high diversification potential, while 

Argentina, Brazil, and South Korea exhibited high individual risk levels and high market 

connections.  

In more recent years, several studies have developed approaches to investigate 

the dynamics of assets’ covariances. A model that typically performs well in identifying 

covariances fluctuations and volatility spillovers between financial time series is the 

multivariate Generalized Autoregressive Conditional Heteroscedastic (GARCH) model 

(Chang et al., 2013). When the asset space only considers a moderate number of assets 

(usually less than 25), this is one of the most used approaches. However, for a larger 

number of assets, the estimation of the conditional covariance becomes computationally 

difficult and faces the curse of dimensionality (Solnik and Roulet, 2000).  

The fundamental cause of estimation problems, according to Pakel et al. (2020), 

is that the most commonly used approaches rely on a simple-to-implement estimator of 

the unconditional covariance/correlation matrix. This implies estimating 𝑂(𝐿2) 

parameters using 𝑂(𝐿𝑇) data points, where 𝐿 is the number of assets and 𝑇 is the length 
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of the time series. Unless 𝑇 is considerably larger than 𝐿, it will be subject to significant 

estimation errors. Consequently, the likelihood function would be contaminated, resulting 

in biased estimates. Furthermore, the Gaussian (quasi-) likelihood estimation procedure 

requires the inversion of the (𝐿 × 𝐿) conditional covariance matrix and since 

the estimation is based on numerical optimization, many matrix inversions are needed. 

Therefore, the multivariate GARCH may have an unsatisfactory performance for an 

investment universe with numerous assets. 

Recently, several studies have proposed procedures to deal with the curse of 

dimensionality in the context of conditional covariance models. Engle et al. (2019) 

suggested a simple and efficient combination procedure based on composite likelihood 

and nonlinear shrinkage to estimate Dynamic Conditional Correlation (DCC) models. 

The former accounts for the complex dynamic correlation parameters (time series), while 

the latter accounts for the correlation targeting matrix (cross-section). This procedure 

overcomes large dimension problems, which are commonly encountered in practice. 

Complex data interactions, nonlinearities and strongly correlated predictors 

usually characterize financial time series prediction problems (Gu et al., 2018), rendering 

traditional financial time series estimation methods inefficient. With the increasing 

computational ability, the focus has shifted to the use of Machine Learning techniques, 

such as, for instance, Random Forests (RF) and Artificial Neural Networks (NN). These 

methods have been successfully used in a wide variety of applications and enjoy 

considerable popularity in several disciplines (see, for instance, Cutler et al., 2012), and 

have also been successfully employed to forecast a wide range of financial time series 

(Cutler et al., 2012; Heaton et al., 2017; Krauss et al., 2017; Gu et al., 2018, Lohrmann et 

al., 2019). According to Cutler et al. (2012), these techniques are well-suited for 

challenging prediction problems, such as large predictive datasets and highly correlated 

predictors, because they increase the degrees of freedom and condense redundant 

variations among predictors. For instance, Krauss et al. (2017) employed a binary 

classification method based on RF and NN to predict one-day-ahead S&P 500 excess 

returns. They found sustainable profit opportunities in the short run. Gu et al. (2018) 

conducted a comparative study of approaches in the Machine Learning repertoire applied 

to return series. They concluded that these approaches, especially Random Forests and 

Artificial Neural Networks, are better than conventional forecasting methods. They 

argued that the predictive gains came from these techniques accounting for nonlinear 

predictor interactions that other techniques neglect.  
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3.3. Data Description and Preliminary Analysis 
 
 

This study uses daily closing values, in US dollars, of 44 stocks and 33 bonds 

total return indexes for 16 countries of the European Union (EU) and 28 countries from 

different geographic regions around the world, from 01/08/2001 to 14/09/2020 (a total of 

4989 days),5 obtained from the “Thompson Reuters DataStream” database. 

The EU countries are Austria, Belgium, Czech Republic, Denmark, Finland, 

France, Germany, Greece, Hungary, Ireland, Italy, Netherlands, Poland, Portugal, Spain, 

and Sweden.  

The other 28 countries are Canada, Mexico, and the US (North America), 

Argentina, Brazil and Chile (South America), Egypt, Israel, Pakistan, and Turkey (Middle 

East), China, India, Indonesia, Korea, Singapore, Japan, Hong Kong, Malaysia, 

Philippines, Taiwan and Thailand (Asia), Australia and New Zealand (Oceania), and 

Norway, Russia, Switzerland, and UK (Europe), and South Africa (Africa).  

These countries were also grouped into emerging and developed markets 

according to the Market classification MSCI (https://www.msci.com/our-

solutions/indexes/market-classification): 

- Emerging Markets: Argentina, Brazil, Chile, China, Egypt, Hungary, India, 

Indonesia, Israel, Korea, Malaysia, Mexico, Pakistan, Philippines, Poland, Russia, South 

Africa, Singapore, Taiwan, Thailand, Turkey. 

- Developed markets: Australia, Austria, Belgium, Canada, Czech Republic, 

Denmark, Finland, France, Germany, Greece, Hong Kong, Ireland, Italy, Japan, 

Netherlands, New Zealand, Norway, Portugal, Spain, Sweden, Switzerland, the UK, and 

the US. 

For the 44 stocks indexes, we used the Refinitiv Total Return Index, and for the 

33 bonds, we used the Thomson Reuters 10 Year Government Benchmark, except for 

India, Indonesia, Korea, Malaysia, Philippines, Singapore, Taiwan, and Thailand, for 

which we use the iBoxx Government 10 year. 

 
5 Missing observations are replaced with the immediately preceding value, so that the return in that day is 

equal to zero.  
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Table 3.1: Descriptive statistics of excess returns 

Panel A: European Union countries (EU) 

Country Mean Std           Min        Max        Skew         Kurt 𝝆(𝟏)           Q      
 Stocks Bonds Stocks Bonds Stocks Bonds Stocks Bonds Stocks Bonds Stocks Bonds Stocks Bonds Stocks Bonds 

Austria 0.01 0.02 1.32 0.67 -13.51 -3.01 10.89 3.55 -0.65 -0.03 13.73 4.77 0.08 0.00 0.00 0.72 

Belgium 0.02 0.03 1.38 0.70 -14.89 -3.95 9.98 4.25 -0.60 -0.01 11.28 5.24 0.06 0.02 0.00 0.37 

Czech Rep 0.04 0.03 1.55 0.83 -17.00 -5.74 18.31 4.85 -0.56 -0.22 19.04 6.77 0.06 0.03 0.00 0.05 

Denmark 0.04 0.02 1.35 0.65 -13.52 -3.26 10.94 3.50 -0.47 0.01 11.39 4.79 0.03 -0.01 0.00 0.86 

Finland 0.02 0.02 1.71 0.65 -11.23 -3.23 10.32 3.62 -0.21 -0.01 7.70 4.91 0.01 -0.02 0.00 0.72 

France 0.02 0.02 1.48 0.68 -13.75 -2.92 11.18 3.55 -0.28 -0.02 10.50 4.74 0.00 -0.01 0.00 0.53 

Germany 0.02 0.02 1.48 0.66 -13.85 -2.91 13.78 3.58 -0.16 0.02 11.56 4.89 0.02 -0.02 0.00 0.86 

Greece -0.03 0.03 2.17 1.69 -23.21 -27.93 16.22 34.89 -0.55 1.12 12.80 91.46 0.08 0.16 0.00 0.00 

Hungary 0.02 0.02 1.87 1.20 -21.46 -17.54 18.12 8.56 -0.29 -1.14 13.55 18.82 0.08 0.08 0.00 0.00 

Italy 0.01 0.03 1.63 0.80 -18.81 -6.55 12.05 5.39 -0.59 -0.12 13.13 7.26 -0.01 0.05 0.00 0.00 

Ireland 0.02 0.02 1.59 0.78 -16.63 -5.50 12.00 8.41 -0.70 0.12 12.43 10.95 0.04 0.09 0.00 0.00 

Netherlands 0.02 0.02 1.49 0.66 -19.70 -2.89 20.32 3.61 -0.27 -0.01 23.93 4.74 -0.05 -0.01 0.00 0.79 

Portugal 0.00 0.03 1.40 0.92 -13.00 -12.12 11.55 11.42 -0.33 -0.40 10.72 20.74 0.07 0.12 0.00 0.00 

Poland 0.03 0.03 1.67 1.02 -15.87 -6.33 12.08 8.89 -0.53 -0.21 9.79 7.44 0.08 0.06 0.00 0.00 

Spain 0.01 0.03 1.62 0.77 -15.80 -3.87 13.96 5.67 -0.35 0.06 11.91 5.98 0.02 0.08 0.00 0.00 

Sweden 0.03 0.02 1.70 0.77 -14.02 -4.58 14.40 5.63 -0.21 0.01 9.51 6.08 0.01 -0.04 0.00 0.07 

Mean 0.02 0.02 1.59 0.84 -16.02 -7.02 13.51 7.46 -0.42 -0.05 12.69 13.10 0.04 0.04 0.00 0.31 

Median 0.02 0.02 1.57 0.77 -15.35 -4.26 12.06 5.12 -0.41 -0.01 11.73 6.03 0.04 0.03 0.00 0.06 
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Notes: This table reports the summary statistics of daily excess log returns during the period from 01/08/2001 to 14/09/2020 (full sample), considering a risk-free rate proxied 

by the US 3 Month Treasury Bill obtained from Thomson Reuters. Panel A and Panel B show these statistics for 16 countries of the European Union (EU) and for 28 non-EU 

countries from different regions worldwide, respectively. The statistics are the mean, standard deviation (Std), maximum (Max) and minimum (Min) values, skewness (Skew), 

kurtosis (Kurt), first order autocorrelation (𝜌(1)), and the p-value Ljung-Box Q-test for the autocorrelations up to lag 20, (Q). The rows Mean and Median refer to the mean and 

median of the statistics across countries, respectively. The values of Mean, Std, Min and Max are in percentage.

Table 3.1: Descriptive statistics of excess returns (continued) 

Panel B: Non-EU countries 
Country Mean Std           Min        Max        Skew         Kurt 𝝆(𝟏)          Q     
 Stocks Bonds Stocks Bonds Stocks Bonds Stocks Bonds Stocks Bonds Stocks Bonds Stocks Bonds Stocks Bonds 

Australia 0.03 0.03 1.04 0.86 -10.12 -7.21 6.69 7.12 -0.70 -0.33 11.81 10.26 -0.06 -0.10 0.00 0.00 

Canada 0.03 0.02 1.37 0.60 -14.28 -3.56 11.48 3.57 -1.03 -0.05 17.01 5.45 -0.02 -0.05 0.00 0.00 

Hong Kong 0.03 0.01 1.29 0.16 -12.62 -1.19 11.44 1.02 -0.31 -0.16 10.87 7.37 0.01 0.09 0.00 0.00 

Israel 0.03 - 1.21 - -8.21 - 9.62 - -0.39 - 7.77 - 0.02 - 0.03 - 

Japan 0.01 0.01 1.35 0.66 -11.94 -6.61 12.42 4.33 -0.26 0.01 9.44 8.21 -0.10 0.01 0.00 0.10 

New Zealand 0.04 0.03 1.07 0.85 -7.68 -6.84 8.49 6.47 -0.60 -0.35 8.74 7.14 0.10 -0.01 0.00 0.00 

Norway 0.00 0.00 0.02 0.01 -0.14 -0.08 0.12 0.05 -0.76 -0.37 10.43 8.26 0.01 -0.01 0.00 0.44 

Singapore 0.02 0.02 1.11 0.59 -9.34 -4.10 7.79 5.48 -0.41 -0.11 10.36 7.39 0.04 0.09 0.00 0.00 

Switzerland 0.03 0.02 1.19 0.75 -10.27 -8.85 10.50 17.98 -0.11 2.46 10.28 74.31 -0.03 0.01 0.00 0.02 

UK 0.01 0.02 1.33 0.65 -13.32 -5.76 10.51 4.07 -0.52 -0.41 13.82 7.60 0.01 0.03 0.00 0.08 

US 0.02 0.02 1.22 0.47 -13.09 -2.83 10.84 4.05 -0.51 -0.05 15.59 6.18 -0.11 -0.01 0.00 0.13 

Argentina 0.00 - 2.28 - -59.32 - 17.47 - -5.86 - 138.61 - 0.05 - 0.00 - 

Brazil 0.03 - 2.26 - -17.48 - 19.88 - -0.48 - 11.85 - -0.04 - 0.00 - 

Chile 0.02 - 1.31 - -16.44 - 13.53 - -0.68 - 19.09 - 0.11 - 0.00 - 

China 0.01 - 1.53 - -9.67 - 9.53 - 0.02 - 7.68 - -0.01 - 0.00 - 

Egypt 0.02 - 1.64 - -46.06 - 9.30 - -5.02 - 132.28 - 0.13 - 0.00 - 

India 0.04 0.02 1.57 0.58 -14.78 -5.90 19.17 4.34 -0.49 -0.41 14.33 13.93 0.08 0.08 0.00 0.00 

Indonesia 0.03 0.02 1.68 1.72 -16.31 -22.32 13.93 11.78 -0.69 -0.18 12.53 24.14 0.12 -0.12 0.00 0.00 

Korea 0.03 0.02 1.37 0.98 -13.18 -28.10 11.44 11.95 -0.58 -4.76 10.95 147.71 0.01 -0.06 0.03 0.00 

Mexico 0.02 - 1.58 - -12.03 - 17.59 - -0.31 - 12.74 - 0.06 - 0.00 - 

Malaysia 0.03 - 0.92 - -10.60 - 6.28 - -0.74 - 12.39 - 0.12 - 0.00 - 

Pakistan 0.04 - 1.39 - -8.65 - 9.97 - -0.36 - 7.15 - 0.11 - 0.00 - 

Philippines 0.03 0.05 1.24 0.87 -13.20 -23.93 8.21 7.82 -0.98 -4.58 12.84 131.61 0.09 0.01 0.00 0.00 

Russia 0.04 - 2.13 - -20.91 - 23.70 - -0.59 - 15.99 - 0.04 - 0.00 - 

South Africa 0.03 0.02 1.78 1.43 -21.39 -16.21 10.31 16.63 -77.72 -0.63 11.29 15.64 0.04 0.05 0.00 0.00 

Taiwan 0.03 0.02 1.35 0.35 -7.06 -2.12 8.12 2.72 -26.09 -0.01 6.60 6.65 0.05 0.00 0.00 0.00 

Thailand 0.05 0.03 1.66 1.03 -16.93 -13.02 13.95 12.74 -42.17 0.09 18.19 66.45 -0.10 -0.27 0.00 0.00 

Turkey 0.02 - 2.22 - -17.28 - 14.79 - -0.53 - 9.20 - 0.04 - 0.00 - 

Mean 0.03 0.02 1.48 0.79 -16.00 -9.91 12.11 7.63 -6.23 -0.59 21.09 33.75 0.03 -0.02 0.00 0.02 

Median 0.03 0.02 1.37 0.71 -13.20 -6.72 11.44 5.98 -0.58 -0.17 12.39 11.07 0.04 0.00 0.00 0.00 
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Figure 3.1: Asset volatilities and correlations 

 
Notes: This figure shows the volatility (Exhibit A) and the correlations (Exhibit B) of daily excess log returns, for both stocks and bonds indexes, during the period from 

01/08/2001 to 14/09/2020 (full sample), grouped according to their geographical region. Europe refers to European countries independently of belonging to the EU or not. 

America considers both North and South America counties. On Exhibit B, on the right side, there is the correlation scales associated to each colour. The dark red corresponds 

to a correlation of 1.
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Table 3.1 contains the descriptive statistics of the stocks and bonds indexes daily 

log excess returns for EU markets (Panel A) and non-EU markets (Panel B) for the period 

from 01/08/2001 to 14/09/2020 (full sample). While there are significant cross-country 

variations, Table 3.1 shows that the mean and median returns in EU countries were the 

same for stocks and bonds, while they were higher for stocks than bonds in non-EU 

countries (plus 0.01%). Stock indexes present higher variability, measured by standard 

deviation and range (maximum minus minimum), than bond indexes in EU and non-EU 

countries. Also, on average, stocks are more negatively skewed than bonds, while bonds 

present higher excess kurtosis, especially for non-EU countries. First-order 

autocorrelations of EU countries and non-EU countries are most times positive (75% and 

approximately 65% of the series, respectively). The Ljung-Box test rejected the null of 

autocorrelations jointly equal to zero for all EU stock indexes, while 9 out of 16 EU bond 

indexes are not significant autocorrelated up to lag 20. For non-EU countries, the null is 

rejected for all stocks at a 5% significance level, while 4 out of 17 non-EU bond indexes 

show no significant autocorrelations at the 5% significance level. 

Figure 3.1 shows the full sample volatilities and correlations. As documented 

before, in general terms, the volatility of stock indexes is higher than the volatility of bond 

returns, although the variation of volatility across countries in the same geographic area 

are visible for stocks and bonds. The correlations map makes it possible to see a higher 

degree of correlation between stocks across all regions than bonds, except for some 

countries in the Middle East. European stock and bond indexes are more correlated than 

stock and bond indexes of non-European countries, which is not surprising as most of 

these countries belong to the Euro zone.   

 

 

3.4. Methodology 
 

 

This section presents the basic theoretical concepts and the specifications of the 

models used in the empirical application. Subsections 3.4.1. presents the Machine 

Learning techniques used to forecast the expected returns vector. Subsection 3.4.2 

explains the methods and procedures used to estimate the multivariate Asymmetric DCC 

model. Subsection 3.4.3 presents the research setup. Finally, Subsection 3.4.4 presents 
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the portfolio selection problem, the basic benchmark portfolios and the metrics used to 

assess the performance out-of-sample. 

 

 

3.4.1. Machine Learning Methods: Random Forests and Neural 

Networks 
 

This study employs Random Forests (RF) and Artificial Neural Networks (NN) 

to obtain the vector of expected excess return one-day ahead.  

A Random Forest is an ensemble learning technique with good performances in 

terms of generalization and overfitting avoidance. Random Forests were firstly proposed 

by Brieman (2001). In our study, we focus on Random Regression Forests, a combination 

of randomly trained regression trees that collectively are used to output a prediction. 

When “growing” each individual tree, we randomly choose a subset of the training data 

for training the individual regression tree, choose a random subset of features (predictors) 

at each node, and only consider splitting on these features. The prediction of the RF is the 

average of the predictions of all individual regression trees in the model. Because the 

baseline procedure draws different bootstrap data samples, individual predictions are 

uncorrelated.   

Arguably, Artificial Neural Networks (NN) are one of the most powerful 

modelling devices in Machine Learning. NNs have theoretical underpinnings as universal 

approximators for any smooth predictive association (Gu et al., 2018) and may 

incorporate a wide range of models. One of the simplest and broadly used models in 

predictive problems is the “feed-forward” network. These models consist of an input layer 

of raw predictors, one or more “hidden layers” that interact and nonlinearly transform the 

predictors, and an “output layer” that aggregates hidden layers into an ultimate outcome 

prediction. Equivalent to axons in the biological brain, layers of the network correspond 

to groups of “neurons”, with each layer linked by “synapses” that convey signals among 

neurons of different layers. The number of units in the input layer is equal to the 

dimension of the predictor space. Each predictor signal is amplified or attenuated based 

on a parameter vector that contains an intercept and one weight parameter per predictor. 

The output layer aggregate includes the weighted signals in the forecast.  
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3.4.2. The multivariate Asymmetric DCC Model  
 

Let 𝐫𝑡  =  (𝑟1,𝑡, . . . , 𝑟𝑁,𝑡)
′
 be the vector of excess log returns, such that 𝑟𝑖,𝑡 is the 

excess log return of the 𝑖-th asset at time 𝑡, for  𝑖 =  1, . . . , 𝑁, and 𝑡 =  1, . . . , 𝑇. 𝑁 is the 

number of assets under consideration to build the portfolio and 𝑇 indicates the sample 

size. For simplicity, let us consider that 𝔼(𝐫𝑡|ℱ𝑡−1)  =  𝟎, where ℱ𝑡−1 denotes the 

information available at time 𝑡 − 1. Let us consider that 𝐇𝑡  =  𝐶𝑜𝑣(𝐫𝑡|ℱ𝑡−1) is the 

conditional covariance matrix with elements ℎ𝑖,𝑘,𝑡 =  𝐶𝑜𝑣(𝑟𝑖,𝑡, 𝑟𝑘,𝑡|ℱ𝑡−1). At time 𝑡 −  1, 

the investor is interested in forecasting 𝐇𝑡 aiming to select a portfolio for period (𝑡 −

 1, 𝑡].  

The conditional covariance matrix is usually estimated in three stages: 

(1) Univariate GARCH-type models are fitted to each series.  

(2) The unconditional correlation matrix is estimated and an estimator of the 

correlation target matrix 𝐂 is selected using the devolatilised residuals.  

(3) The DCC model is estimated, and the conditional correlation and conditional 

covariance matrices are obtained.  

In the first stage of the covariance matrix estimation, we estimate an Asymmetric 

GARCH(1,1) for each return series individually.6 Engle et al. (2019) use a GARCH(1,1) 

model; however, this method cannot capture some important features of the data. For 

instance, it does not address the leverage or asymmetric effects reported by Black (1976). 

We introduce asymmetric effects in the innovations of the GARCH(1,1) model, as 

follows: 
 

 𝑑𝑖,𝑡
2 = 𝜔𝑖 + [𝑎𝑖 + 𝛾𝑖𝐼(𝜀𝑖,𝑡−1 > 0)]𝜀𝑖,𝑡−1

2 + 𝑏𝑖𝑑𝑖,𝑡−1
2 , 

 

(3.1) 

where 𝐼(𝜀𝑖,𝑡−1 > 0) is the indicator function that assumes the unity value if the lagged 

error term is positive. Hence, negative values of 𝛾𝑖, the asymmetry coefficient, implies 

that positive shocks result in smaller increases in future volatility than negative shocks of 

the same magnitude, all else being equal. 

 

The second stage consists in estimating the unconditional correlation matrix. 

Usually, this estimation is conducted using the sample correlation (and covariance) 

 
6 It is important to note that we introduce asymmetric effects in the innovations of the univariate GARCH 

model and not in the time-varying conditional correlations as it is the case of the Asymmetric Dynamic 

Conditional Correlations model of Cappiello et al. (2006).  
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matrix. However, if the number of parameters is large (it can have the same dimension of 

the series length), this method is prone to overfitting and thus is inefficient out-of-sample. 

Recent methodologies provide a solution to this problem, by correcting the in-sample bias 

of the correlation (or covariance) matrix. This correction uses the eigenvalues, namely by 

considering that small (large) sample eigenvalues are too small (large). Hence the 

shrinkage procedure consists in moving the small ones up and pull the large ones down. 

In our study, we use the nonlinear shrinkage method of Ledoit and Wolf (2012) and 

Ledoit and Wolf (2015).  

Consider that  𝐒 ∶=  [𝑠𝑖,𝑡 ] is the 𝑁 × 𝑇 matrix of devolatilized returns, 𝚺 is its 

population covariance matrix, and 𝐂̂ is its sample counterpart, which can be decomposed 

as: 

 
𝐂̂ =

1

𝑇
𝐒𝐒′ =∑ 𝜆𝑖

𝑁

𝑖=1
𝑢𝑖𝑢𝑖

′ , (3.2) 

 

where (𝜆1, . . . , 𝜆𝑁) is the set of eigenvalues, sorted in descending order, and (𝑢1, . . . , 𝑢𝑁) 

represents the corresponding eigenvectors. Following Engle et al. (2019), we estimate the 

population eigenvalues, 𝛌̃(𝜏̃) ≔ (𝜆̃1(𝜏̃),… , 𝜆̃𝑁(𝜏̃)), using the method proposed by Ledoit 

and Wolf (2015). Finally, we replace the sample eigenvalues by the shrunk eigenvalues 

in Equation (3.2), and rebuild the shrinkage estimator of the covariance matrix: 
   

 
𝐂̃: =∑ 𝜆̃𝑖(𝜏̃)

𝑁

𝑖=1
𝑢𝑖𝑢𝑖

′ . 
(3.3) 

 

The last stage is the estimation of the DCC model. The dynamics of the 

correlation matrix over time are modelled through the correlation targeting, as in Engle 

et al. (2019). Several different formulations of the DCC model are available, but a popular 

specification is due to Engle (2002) and Engle et al. (2019). The model is related to the 

Constant Conditional Correlation (CCC) formulation, but the correlations are allowed to 

vary over time. The formulation is as follows:  
 

 𝐐𝑡 = (1 − 𝑎 − 𝑏)𝐂 + 𝑎𝐬𝑡−1𝐬′𝑡−1 + 𝑏𝐐𝑡−1, 

 

(3.4) 

where  𝐬𝑡 = 𝐃𝑡
−1𝐫𝑡 is the vector of standardised residuals, such that 𝐃𝑡 denotes the 

diagonal matrix whose 𝑖-th diagonal element is 𝑑𝑖,𝑡, and 𝐂 = 𝐶𝑜𝑟𝑟(𝐫𝑡) = 𝐶𝑜𝑣(𝐬𝑡). The 

parameters 𝑎 and 𝑏 are non-negative, with 𝑎 + 𝑏 < 1, hence 𝐐𝑡 is an 𝑁 ×𝑁 symmetric 

positive definite conditional pseudo-correlation matrix. From this formulation we obtain 

the conditional correlation matrix and the conditional covariance matrix as:  
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 𝐑𝑡 = 𝑑𝑖𝑎𝑔{𝐐𝑡
∗}−1𝐐𝑡𝑑𝑖𝑎𝑔{𝐐𝑡

∗}−1. (3.5) 

and 

 𝐇𝑡 = 𝐃𝑡𝐑𝑡𝐃𝑡, (3.6) 

 

where 𝑑𝑖𝑎𝑔(·) denotes a resulting matrix comprising the main diagonal elements and 𝐐𝑡
∗ 

is a matrix that takes the square roots of each element in 𝐐𝑡. This operation divides the 

covariances in 𝐐𝑡 by the product of the appropriate standard deviations in 𝐐𝑡
∗ to create a 

matrix of correlations.  

Estimating DCC models with many assets is challenging. One of the difficulties 

is related to the inversion of the conditional covariance matrix 𝐇𝑡, for each 𝑡 =  1, . . . , 𝑇, 

to compute the (log)likelihood. One way to achieve this is by using the composite 

(log)likelihood method of Pakel et al. (2020). This method sums up the (log)likelihoods 

of each pair of assets instead of dealing with all assets at once. The authors proposed 

different methodologies, but the most used one is the “2MSCLE”, which only required 

the computation of 𝑁 − 1 bivariate (log)likelihoods. This method can be used to estimate 

models with large dimensions, nevertheless providing consistent estimators of 𝑎 and 𝑏, 

in Equation (3.4). 

 

3.4.3. Portfolio Performance Evaluation 
 

We assume that the investor has constant relative risk aversion (CRRA), such 

that her utility function is given by: 
 

 

𝑈(𝑊𝑡+1) = {
𝑊𝑡+1

1−𝛾

1 − 𝛾
          𝑖𝑓 𝛾 > 1 

log (𝑊𝑡+1) 𝑖𝑓 𝛾 = 1

, (3.7) 

 

where 𝑊𝑡+1 denotes the investor’s wealth at time 𝑡 + 1, and 𝛾 is the coefficient 

representing the investor’s degree of risk aversion. At each point in time, the investor 

chooses her optimal portfolio, i.e., band trades 𝑁 risky assets and a risk-free asset that 

maximizes her 1-period-ahead expected utility 𝔼𝑡[𝑈(𝑊𝑡+1)]. The portfolio is rebalanced 

each day. The optimal weights implied by model 𝑗 are given by the solution of the 

following constrained quadratic maximization problem: 
 

 
argmax

𝐱𝑗,𝑡
𝐱′𝑗,𝑡 (𝛍 ̂𝑗,𝑡+1|𝑡 +

1

2
𝑑𝑖𝑎𝑔𝚺̂𝑗,𝑡+1|𝑡) −

𝛾

2
𝐱′𝑗,𝑡 𝚺̂𝑗,𝑡+1|𝑡 𝐱𝑗,𝑡               (3.8) 
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           s.t.: (1) 𝐱′𝑗,𝑡 𝛊 = 1 and (2) 𝐱𝑗,𝑡 ≥ 𝟎 

 

where 𝛊 is a vector of ones with the same length as 𝐫𝑡+1. The vector 𝐱𝑗,𝑡 denotes the 

portfolio weights,  𝛍 ̂𝑗,𝑡+1|𝑡 = 𝔼(𝐫𝑡+1|ℳ𝑗 , ℱ𝑡) is the mean of the predictive density of the 

vector of risky asset 𝐫𝑡+1, computed using model 𝑗 on the information available at time 𝑡, 

and 𝚺 ̂𝑗,𝑡+1|𝑡 = 𝐶𝑜𝑣̂(𝐫𝑡+1|ℳ𝑖, ℱ𝑡) is the forecasted covariance matrix of risky assets at 

time 𝑡 based on the estimates given by model 𝑗, conditional on the information set at time 

𝑡. Following most of the asset allocation literature, we rule out short-selling (i.e., negative 

portfolio weights).  

If the excess returns of the 𝑁 risky assets are log-normal, the portfolio log return 

implied by model 𝑗 at time 𝑡 is defined as (Campbell et al., 2003 and Fisher et al. 2020):  
 

𝑟𝑝,𝑗,𝑡+1 = 𝑟𝑓,𝑡 + 𝐱
′
𝑗,𝑡(𝐫𝑡+1 − 𝑟𝑓,𝑡𝛊) +

1

2
𝐱′𝑗,𝑡𝑑𝑖𝑎𝑔𝚺̂𝑗,𝑡+1|𝑡 −

1

2
𝐱′𝑗,𝑡𝚺̂𝑗,𝑡+1|𝑡𝐱𝑗,𝑡. (3.9) 

 

where 𝑟𝑓,𝑡 represents the continuously compounded risk-free rate. 

 

In our comparative analysis, we use three basic benchmark portfolios: The 

equally weighted portfolio (1/N), the portfolio that replicates the Refinitiv Europe Total 

Return for stocks, and that replicates the iBoxx Eurozone index for bonds, which is an 

equally weighted combination of both for stocks and bonds (we denote this benchmark 

portfolio as European Index) and the Minimum Variance Portfolio (MVP).  

The excess return of any equally weighted portfolio is given by  

𝑟𝑝,𝑡+1 =
1

𝑁
𝛊′𝐫𝑡+1, where 𝑁 is the number of assets in the portfolio. The MVP (allowing 

for short selling), is the solution of the following problem: 
 

 min
𝐱𝑡
𝐱′𝑡 𝚺̂𝑡+1|𝑡 𝐱𝑡 

s.t: 𝐱′𝑡 𝛊 = 1 

(3.10) 

 

This problem has an analytical solution, given by: 
 

 

 
𝐱̂𝑡: =

𝚺̂𝑡+1|𝑡
−1 𝛊

𝛊′𝚺̂𝑡+1|𝑡
−1 𝛊

. 
(3.11) 

 

Where 𝚺̂𝑡+1|𝑡 is usually estimated using directly the historical covariance matrix. And the 

resulting portfolio excess returns are given by:  
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 𝑟𝑝,𝑡+1 = 𝐱̂
′
𝑡𝐫𝑡+1. (3.12) 

 

 

We now turn our attention to the metrics used to assess the performance of the 

portfolios. Besides the annualized mean and standard deviation of the excess returns, we 

compute the Certainty Equivalent Return (CER), which is the risk-free return that would 

make the investor indifferent between following a certain strategy or accepting this risk-

free return. The annualized CER, considering daily data, can be expressed as follows: 
 

 

𝐶𝐸𝑅𝑗 =

{
 
 
 

 
 
 

[
 
 
 
 

(
1

𝑇 − 𝑡0
∑ 𝑊̂𝑗,𝑡

1−𝛾

𝑇

𝑡=𝑡0+1

)

252
1−𝛾

− 1

]
 
 
 
 

𝑖𝑓 𝛾 ≠ 1

[
1

𝑇 − 𝑡0
∑ log (𝑊̂𝑗,𝑡)

𝑇

𝑡=𝑡0+1

] × 252 𝑖𝑓 𝛾 = 1

 (3.13) 

 

 

where 𝑊̂𝑗,𝑡 =  exp{𝑟𝑝,𝑗,𝑡} denotes the realized wealth at time 𝑡 as implied by model 𝑗. 

Another metric used is the annualized Sharpe ratio (SR), 
 

𝑆𝑅𝑗 =
√252𝜇 ̂𝑟𝑝,𝑗
𝜎 ̂𝑟𝑝,𝑗

, 
(3.14) 

 

where 𝜇 ̂𝑟𝑝,𝑗 and 𝜎 ̂𝑟𝑝,𝑗 denote the mean and standard deviation of the portfolio daily excess 

returns implied by model 𝑗, respectively. 

The annualized Sortino ratio (SOR), which only considers the negative 

deviations from a certain target, 𝐵, i.e., the “downside risk”. 
  

𝑆𝑂𝑅𝑗 =
√252 (𝜇 ̂𝑟𝑝,𝑗 − 𝐵)

√
1

𝑇 − 𝑡𝑜
∑ 𝑚𝑖𝑛[(𝑟𝑝,𝑗,𝑡 − 𝐵), 0]

2𝑇
𝑡=𝑡𝑜+1

, 

(3.15) 

 

where 𝐵 is the reference point that constitutes the minimum acceptable rate of return, T 

is the total number of periods, and 𝑡0 + 1 is the initial out-of-sample period. In the 

computation of SOR, we use 𝐵 = 0.  

The last metric is the annualized Expected Shortfall (ES) which assesses the 

average portfolio loss that happens with 𝛼 probability. The ES is defined as:  
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𝐸𝑆𝑗
𝛼(𝑟𝑝,𝑗,𝑡) = −√252𝔼[𝑟𝑝,𝑗,𝑡|𝑟𝑝,𝑗,𝑡 ≤ 𝐹𝑝,𝑗,𝑡

−1 (𝛼)]. 

 

(3.16) 

In the above expression, 𝐹𝑝,𝑗,𝑡
−1 (𝛼)  is the inverse cumulative distribution function of the 

returns of portfolio 𝑝 given by model 𝑗 at time 𝑡 assessed at a probability 𝛼 (commonly 

set to 1% or 5%). This last metric is only used to assess the benefits of international 

diversification across geographic and economic regions (Section 3.5.3.). 

 

 

3.4.4. Research Setup  
 

 

As referred in Subsection 3.4.1, we use two Machine Learning techniques to 

forecast the return vector, which then will be used as input of the portfolio selection 

problem. As usual in Machine Learning applications, we partitioned the data into training, 

validation, and test samples. Figure 3.2 presents the sample partition, using 

41%+15%+44% of the data.  

 

Figure 3.2: Partition of the data into training, validation, and testing samples 

 

The training sample begins on 01/08/2001 and ends on 22/03/2009. The training 

sample is used to compute the initial series of predictors associated with the initial series 

of the dependent variable (which are the daily returns), that is the first window. The 

predictor space has 14 variables: the previous day return, the previous business week 

return (5 days), the previous 1-month return (21 days), previous 2-months return (42 

days), previous 3-months return (63 days), and so on, until the previous 12-months returns 

(252 days). Because the initial 252 observations are needed to compute the initial 
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realizations of the vector of predictors, the training sample will have 1764 days. The 

validation sample has 756 days, from 23/04/2009 to 15/03/2012, and is used to choose 

the best models, that is, to choose the best combination of hyperparameters for the two 

Machine Learning techniques, Random Forests (RF) and Artificial Neural Networks 

(NN).7 The testing sample has 2217 days, from 16/03/2012 to 14/09/2020, and is used to 

compute the forecasts of daily returns using the best RF and NN models. In the 

terminology commonly used in portfolio selection literature, this testing period 

corresponds to the out-of-sample period.  

Model selection is performed using rolling windows with fixed length, equal to 

the number of days in the training sample, i.e., 1764 days. The criterium to choose the 

best model within each class for each asset is the minimization of the Mean Squared 

Forecasting Error.  

We proceed in the following manner to choose the best within-class model. We 

begin by using the information of the previous 1764 days of the dependent variable and 

predictor set (the information in the training sample), to forecast the first 21 days (a 

business month) of the validation sample, we make the forecasts for that month, and then 

move the window forward 21 days, and make forecasts for the second business month of 

the validation sample, and so on, until the returns of all days of the validation sample are 

forecasted. For each asset we only use its own returns (with different time scales) and 

make forecasts for each possible combination of hyperparameters.  

For the RF, we consider the following hyperparameter: (a) 500 or 1000 trees, (b) 

1/3 or 2/3 of predictors to sample, and (c) 3, 5, or 10 nodes. This implies testing 12 

possible combinations of hyperparameters. For NNs, we consider (a) 5 or 10 hidden layers 

and (b) learning rates of 0.01 or 0.001. This implies testing 4 possible combinations of 

hyperparameters. The specific hyperparameters tested are the most used in the literature 

and have usually produced good results in predicting asset returns (Ishwaran, 2015; Gu 

et al., 2018; Probst et al., 2019). For each asset, the sets of hyperparameters of RF and 

NN that lead to the best forecasting performances are chosen to forecast the daily returns 

in the testing sample.8  

 
7 RF and NN are implemented in MATLAB (R2020b), using the Machine Learning and Deep Learning 

Packages.  
8 We choose to move the window every 21 days instead of daily due to the huge computation time needed 

to perform the forecasts on a daily basis. That would imply running the models for 77 indexes, 16 

combinations of hyperparameters and 756 days, that is running 943,488 models. Moving the window every 

period of 21 days reduces the number of models to be estimated to 44,928. 



 

62 

 

In the testing sample, the best RF and NN models for each asset are used to 

forecast the daily returns, which are then used as inputs of the portfolio selection problem.  

These returns are also forecasted using rolling windows with a fixed length of 2520 days, 

therefore making use of all the information in the training (1764 days) and validation (756 

days) samples. The window is rolled forward every day.  

For the portfolio selection problems that do not use the vector of returns 

forecasted by RF and NN, (hereafter denoted by DCC and ADCC) we use the historical 

geometric averages of the previous 252 daily returns, excluding the 21 most recent ones, 

as in Engle et al. (2019) and Jegadeesh and Titman (1993). Thus, the historical means are 

computed using rolling windows with a fixed length of 231 days lagged 21 days. 

For all models, the dynamic conditional covariance matrixes, symmetric and 

asymmetric, are estimated using the most recent 1250 days, which roughly corresponds 

to using 5 years of past data, as in Engle et al. (2019). So, these matrixes are estimated 

using a rolling window with a fixed length of 1250 days. This is also the rolling window 

used to compute the historical covariance matrix in the Minimum Variance Portfolio 

(MVP) 

In sum, all portfolios resulting from the different models are updated on a daily 

basis but using sometimes different data sets. 

 

 

 

3.5. Empirical Results  
 

 

This section presents a comparative analysis of the out-of-sample performance 

of the portfolios derived from different benchmarks and models. It also reports some 

robustness checks, and an analysis on the potential of international diversification. 

 

 

3.5.1. Model Performances 
 

Besides the three benchmark portfolios already presented in Subsection 3.4.3., 

we consider ten more portfolios, based on Machine Learning and conditional covariances 

matrixes. Table 3.2 characterizes all models used in the comparative analysis.  These 
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models are applied to stock indexes (Panel A), bond indexes (Panel B), and to stock and 

bond indexes (Panel C). Table 3.3 presents the annualized out-of-sample performance 

metrics for a moderately risk-averse investor (𝛾 = 3).  

 

Table 3.2: Summary description of the models  

Model Acronym Expected returns Covariance Matrix Countries 

1/N -- -- All countries 

European index -- -- European countries 

MVP -- Historical 

Covariances 

All countries 

DCC Historical Means Dynamic Conditional 

Covariances 

forecasts 

All countries 

ADCC Historical Means Asymmetric 

Dynamic Conditional 

Covariances 

forecasts 

All countries 

RF-DCC Random Forest forecasts Dynamic Conditional 

Covariances 

forecasts 

All countries 

RF-ADCC Random Forest forecasts Asymmetric 

Dynamic Conditional 

Covariances 

forecasts 

All countries 

NN-DCC Artificial Neural 

Network forecasts 

Dynamic Conditional 

Covariances 

forecasts 

All countries 

NN-ADCC Artificial Neural 

Network forecasts 

Asymmetric 

Dynamic Conditional 

Covariances 

forecasts 

All countries 

EU RF-DCC Random Forest forecasts Dynamic Conditional 

Covariances 

forecasts 

European Union 

countries 

EU RF-ADCC Random Forest forecasts Asymmetric 

Dynamic Conditional 

Covariances 

forecasts 

European Union 

countries 

EU NN-DCC Artificial Neural 

Network forecasts 

Dynamic Conditional 

Covariances 

forecasts 

European Union 

countries 

EU NN-ADCC Artificial Neural 

Network forecasts 

Asymmetric 

Dynamic Conditional 

Covariances 

forecasts 

European Union 

countries 

 

 

The results show that for stocks, the NN-ADCC is the best model which 

consistently outperforms the benchmarks and alternative portfolios. For this model, the 
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mean excess return is 8.27%, the certainty equivalent return is 3.44%, the Sharpe ratio is 

43.12%, and the Sortino ratio is 61.17%. Considering just EU stock indexes reduces the 

performance of all model classes.  

The results show that for bonds, the DCC is the best model. For this model, the 

mean excess return is 13.29%, the certainty equivalent return is 11.09%, the Sharpe ratio 

is 87.89%, and the Sortino ratio is 130.22%. However, ADCC and RF-ADCC, and EU 

RF-ADCC have close results. Models based on NN do not perform well. The models for 

bonds do not show a significant performance reduction when the asset space is limited to 

EU bond indexes and, generally speaking, they present better results than the models for 

stock indexes.   
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Table 3.3: Portfolio performance out-of-sample 

  1/N 
 European 

Index  MVP DCC ADCC 
RF-

DCC 
RF-

ADCC 
NN-

DCC 
NN-

ADCC 

EU 

RF-

DCC 

EU 

RF-

ADCC 

EU 

NN-

DCC 

EU 

NN-

ADCC 
Panel A: Stocks 

Mean 5.03 6.27 1.77 -3.67 -3.53 5.70 5.42 8.11 8.27 2.12 2.72 7.82 7.94 
Std 12.98 16.89 4.57 22.19 22.12 18.21 18.28 19.32 19.18 16.06 15.98 21.82 21.83 
CER 3.16 2.60 2.13 -10.14 -9.97 1.30 0.98 3.21 3.44 -1.10 -0.46 1.51 1.63 
SR 38.77 37.11 38.62 -16.53 -15.96 31.28 29.64 41.98 43.12 13.20 17.06 35.84 36.40 
SOR 51.82 50.52 51.55 -21.46 -20.70 43.63 41.35 60.00 61.17 18.27 23.69 53.67 54.60 

Panel B: Bonds 

Mean 4.44 6.60 2.74 13.29 12.75 10.73 10.87 2.65 2.45 12.47 12.62 8.44 8.45 
Std 6.69 10.45 3.68 15.12 15.15 12.80 12.80 10.43 10.47 14.32 14.36 16.05 16.00 

CER 4.52 5.78 3.24 11.09 10.49 9.34 9.50 1.68 1.47 10.54 10.69 5.34 5.37 

SR 66.40 63.21 74.37 87.89 84.18 83.88 84.98 25.38 23.40 87.04 87.87 52.59 52.79 

SOR 94.42 90.47 105.73 130.22 125.19 123.43 125.46 35.67 32.90 123.45 125.52 73.79 74.01 

Panel C: Stocks & Bonds 

Mean 4.78 6.44 3.03 2.83 2.77 9.70 10.07 4.99 5.27 8.22 8.74 6.89 6.54 

Std 9.08 10.04 5.34 14.50 14.51 14.82 14.76 13.10 13.08 14.30 14.22 19.10 18.97 

CER 4.27 5.73 3.30 0.26 0.20 7.31 7.73 3.11 3.40 5.99 6.57 2.14 1.86 

SR 52.66 64.12 56.72 19.52 19.09 65.44 68.24 38.11 40.28 57.52 61.45 36.05 34.50 

SOR 72.26 89.19 77.56 25.67 25.12 94.84 98.70 53.66 56.87 83.67 89.73 52.59 50.05 

Notes: This table reports the out-of-sample performance of portfolios constructed according to several models. Table 3.2 provides a summary description of these models. 

These portfolios are constructed assuming a power utility function with a risk aversion coefficient 𝛾 = 3. The performance metrics are the mean and standard deviation 

(Std) of excess returns, the certainty equivalent return (CER), Sharpe ratio (SR), and Sortino ratio (SOR). The models are applied to just stock indexes (Panel A), just 

bond indexes (Panel B), and to stock and bond indexes (Panel C). EU refers to indexes from European Union countries only (Austria, Belgium, Czech Republic, Denmark, 

Finland, France, Germany, Greece, Hungary, Ireland, Italy, Netherlands, Poland, Portugal, Spain, and Sweden). The out-of-sample (testing sample) is from 16/03/2012 

to 14/09/2020. All measures are annualized and presented in percentage.  
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Panel C of Table 3.3 presents the results for portfolios constructed using stock 

and bond indexes. The performances of these portfolios are generally better than stock 

portfolios, but worse than bond portfolios. The best model is RF-ADCC, which achieves 

a mean excess return of 10.07%, a certainty equivalent return of 7.73%, a Sharpe ratio of 

68.24%, and a Sortino ratio of 98.70%. This model also produces a good performance for 

a portfolio with only EU indexes.  

In sum, the results shown in Table 3.3. allow us to retrieve the following overall 

conclusions: (1) Covariances matrixes forecasted by ADCC improve the portfolio 

performances, (2) Machine Learning technics are valuable in predicting the vector of 

mean returns, namely NN for stocks and RF for bonds, (3) including international assets 

in the portfolio (not only EU assets), improves the performance of the portfolios, not only 

by reducing the risk but also by increasing the mean return, rendering high CERs, SRs 

and SORs. If one had to choose just one model for all three asset spaces, the best candidate 

would be the RF-ADCC.  

 

Figure 3.3 shows the out-of-sample paths of the Sharpe ratios of RF-ADCC 

(Exhibit A) and NN-ADCC (Exhibit B) models and the benchmark 1/N (Exhibit C) 

considering stocks, bonds, and stocks and bonds for all countries. The main feature that 

we may observe from the figure is the variability of the moving averages of the Sharpe 

ratios. We highlight the significant drops in the Sharpe ratios in 2017-2018 due to the 

European sovereign crisis and in late 2019 until early 2020 due to the Covid-19 epidemic 

crisis. The worse performance for stocks using the RF-ADCC model in comparison with 

the NN-ADCC model seems to be related to the lower ability of the former model to 

accommodate the negative shocks resulting from the European sovereign crisis. 
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Figure 3.3: Moving averages of Sharpe ratios out-of-sample 

 

      Exhibit A: RF-ADCC 

       Exhibit B:  NN-ADCC   

        Exhibit C: 1/N  

   

Notes: This figure shows the out-of-sample paths of the Sharpe ratios of an investor with moderate risk 

aversion, 𝛾 = 3, that bases her portfolio strategy on RF-ADCC (Exhibit A) and NN-ADCC (Exhibit B) 

models and the benchmark 1/N (Exhibit C) considering stocks, bonds and stocks and bonds for all countries. 

The presented SR values are moving averages, with a length of 252 days (a business year) of annualized 

Sharpe ratios (in percentage).  Notice that the first reported value corresponds to the day after 252 days after 

the beginning of the period out-of-sample.  
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3.5.2. Sensitivity to the Risk Aversion Coefficient   
 

In this subsection, we perform a sensitivity analysis of the out-of-sample 

performance to the risk aversion coefficient. We analyse the portfolio out-of-sample 

performance measures for low, 𝛾 = 1, and highly, 𝛾 = 5, risk-averse investors.  Results 

are shown in Table 3.4. 

A lowly risk-averse investor (𝛾 = 1) would prefer to use a stock portfolio based 

on the NN-ADCC, a bond portfolio based on ADCC (closely followed by RF-ADCC), 

and a stock and bond portfolio based on RF-ADCC. So, for the lowly risk-averse investor, 

the optimal models are the same ones reported earlier for a moderately risk-averse 

investor (𝛾 = 3).  

An investor who is highly risk-averse (𝛾 = 5) would prefer to use a stock 

portfolio based on the NN-ADCC (but including only EU stocks), a bond portfolio based 

on RF-ADCC (but including only EU bonds), and an EU stock and bond portfolio based 

on RF-ADCC.  

The above portfolios beat the best benchmark portfolio for each category of 

assets at any metric, except in terms of CER, for a highly risk-averse investor. 

Therefore, the main conclusion to retain here is that although the models to be 

chosen are the same independently of the degree of risk-aversion, highly risk-averse EU 

investors are less keen to diversify internationally their portfolios.
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Table 3.4: Sensitivity of out-of-sample performance to the risk aversion coefficients (𝛾 = 1 and 𝛾 = 5) 

  𝜸 1/N ½ European  MVP DCC ADCC RF-DCC 

 

RF-ADCC NN-DCC 

NN- 

ADCC 

EU  

RF-DCC 

EU  

RF-ADCC 

EU  

NN-DCC 

EU  

NN-ADCC 

Panel A: Stocks 

Mean  
1 5.03 6.27 1.77 -3.82 -2.75 4.77 4.77 9.06 9.57 2.65 2.66 2.62 2.68 

5 5.03 6.27 1.77 -1.92 -1.95 3.68 3.90 6.97 6.95 2.47 3.39 9.07 9.04 

Std 
1 12.98 16.89 4.57 26.52 26.61 24.02 24.02 20.22 20.31 19.04 19.11 20.12 20.10 

5 12.98 16.89 4.57 18.67 18.73 16.33 16.42 18.73 18.53 13.91 13.90 20.91 20.82 

CER  
1 4.83 5.48 2.32 -6.79 -5.75 2.43 4.96 7.67 8.16 1.49 1.48 1.24 1.30 

5 1.37 -0.41 1.91 -9.81 -9.90 -2.44 -2.33 -1.22 -1.08 -1.72 -0.80 -0.86 -0.80 

SR  
1 38.77 37.11 38.62 -14.41 -10.34 19.86 19.86 44.82 47.10 13.93 13.93 13.04 13.32 

5 38.77 37.11 38.62 -10.26 -10.42 22.57 23.73 37.19 37.49 17.77 24.41 43.37 43.43 

SOR  
1 51.82 50.52 51.55 -18.63 -13.37 26.61 26.61 64.40 67.60 19.37 23.69 17.75 18.13 

5 51.82 50.52 51.55 -13.33 -13.56 31.23 32.75 52.35 52.28 24.61 33.98 65.36 65.42 

Panel B: Bonds 

Mean  
1 4.44 6.60 2.74 14.58 14.56 13.37 13.69 3.60 3.36 17.72 17.66 8.34 8.13 

5 4.44 6.60 2.74 12.94 12.49 10.63 10.46 2.04 1.86 11.94 12.06 8.52 8.40 

Std 
1 6.69 10.45 3.68 17.28 17.42 17.35 17.29 12.03 12.29 21.05 20.99 21.52 21.31 

5 6.69 10.45 3.68 14.22 14.22 11.45 11.42 10.08 10.09 12.59 12.60 15.14 15.09 

CER  
1 4.87 6.70 3.32 13.75 13.70 12.56 12.89 3.53 3.27 8.89 8.84 6.65 6.49 

5 4.05 4.62 3.10 8.92 8.43 8.32 8.16 0.14 -0.04 8.99 9.12 3.45 3.36 

SR  
1 66.40 63.21 74.37 84.41 83.59 77.05 79.20 29.88 27.37 84.17 84.11 38.75 38.16 

5 66.40 63.21 74.37 91.02 87.87 92.80 91.61 20.20 18.48 94.81 95.72 56.29 55.70 

SOR  
1 94.42 90.47 105.73 128.92 128.14 123.45 127.01 44.11 40.43 124.21 123.89 54.68 53.53 

5 94.42 90.47 105.73 134.98 130.51 135.81 133.88 28.18 25.76 137.24 139.05 79.34 78.26 

Panel C: Stock & Bonds 

Mean  
1 4.78 6.44 3.03 4.03 4.48 13.88 14.32 6.17 6.63 9.88 9.94 10.71 10.63 

5 4.78 6.44 3.03 3.26 3.27 8.42 8.15 4.96 5.06 8.87 8.89 5.40 5.36 

Std 
1 9.08 10.04 5.34 17.08 17.37 18.62 18.50 14.48 14.68 16.37 16.46 25.20 25.17 

5 9.08 10.04 5.34 13.43 13.39 13.44 13.41 12.59 12.57 12.49 12.46 17.43 17.25 

CER  
1 5.02 6.59 3.54 3.21 3.61 12.81 13.27 5.77 6.20 9.19 9.24 8.38 8.30 

5 3.40 4.65 3.01 -0.72 -0.69 4.64 4.39 1.64 1.76 5.78 5.82 -1.53 -1.41 

SR  
1 52.66 64.12 56.72 23.59 25.79 74.57 77.39 42.64 45.13 60.38 60.41 42.51 42.22 

5 52.66 64.12 56.72 24.31 24.42 62.65 60.81 39.37 40.24 70.99 71.32 31.00 31.10 

SOR  
1 72.26 89.19 77.56 31.72 34.84 114.18 118.68 59.97 63.99 87.49 87.62 70.68 70.35 

5 72.26 89.19 77.56 32.10 32.27 89.96 87.32 55.76 57.05 103.96 104.37 44.20 44.36 

Notes: This table reports the out-of-sample performance of portfolios constructed according to several models. Table 3.2 provides a summary description of these models. These portfolios are 

constructed assuming a power utility function with risk aversion coefficients 𝛾 = 1 and 𝛾 = 5. The performance metrics are the mean and standard deviation (Std) of excess returns, the 

certainty equivalent return (CER), Sharpe ratio (SR), and Sortino ratio (SOR). The models are applied to just stock indexes (Panel A), just bond indexes (Panel B), and to stock and bond 

indexes (Panel C). EU refers to indexes from European Union countries only (Austria, Belgium, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Ireland, Italy, 

Netherlands, Poland, Portugal, Spain, and Sweden). The out-of-sample (testing sample) is from 16/03/2012 to 14/09/2020. All measures are annualized and presented in percentage.  
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3.5.3. Gains of International Diversification  
 

This subsection examines whether investors from seven different regions, North 

America, South America, America, EU, Middle East, Asia, and Oceania, will profit from 

having an internationally worldwide diversified portfolio rather than only investing in 

their home region. We also analyse this issue by segmenting the 44 countries into 

emerging markets (EM) and developed markets (DM). This analysis is conducted 

considering that investors, with different risk aversion levels, choose their stock and bond 

portfolios based on RF-ADCC models, which, as reported previously, produced good 

results in terms of out-of-sample performance. Table 3.5 reports the results. 

North American portfolios stand out as the best ones in terms of several 

performance metrics, although American investors may improve the mean return by 

internationally diversifying their portfolios. In fact, North American portfolios achieve 

the best CER, SR, SOR and ES 5%, at any level of risk aversion (except the CER of a 

lowly risk-averse investor, which is lower than the corresponding figure of the portfolio 

with all countries). These good performances of North American portfolios have been 

duly documented in the literature over the last decade. Middle Eastern portfolios have the 

worst performance, implying that international diversification results in higher benefits 

for investors located in that region. 

The results show that for other regions, low or moderately risk-averse investors, 

i.e., with 𝛾 = 1 and 𝛾 = 3, benefit from international diversification, even sometimes at 

the expense of an increased risk (measured by the standard deviation and expected 

shortfall).  For regions other than North America, the portfolio “All countries” achieves 

the CER, SR and SOR. Precisely because of that increased risk, highly risk-averse 

investors may be less prone to diversify their portfolios worldwide, especially those 

investors from EU countries.  

Overall, low and moderately risk-averse investors from South America, Europe, 

the Middle East, Asia, and Oceania, who invest outside their regions, typically benefit 

from diversifying their portfolio. Notably, investors from emerging (developed) markets 

benefit from including in their portfolios, assets from developed (emerging) markets. 
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Table 3.5: Comparative analysis of portfolio performance by geographic and economic regions 

 𝜸 

North 

America 

South 

America 
America EU Middle East Asia Oceania EM DM 

All 

countries 

Mean 

1 11.26 6.29 5.56 9.94 -5.22 9.65 3.78 9.90 8.52 14.32 

3 9.14 -1.03 6.85 8.74 -4.93 6.35 1.78 6.42 6.47 10.07 

5 7.94 -1.05 6.32 8.89* -4.15 5.59 1.43 6.33 5.95 8.15 

Std 

1 12.70* 25.68 19.73 16.46* 23.45 13.34* 11.55* 18.28* 15.66* 18.50 

3 8.56* 19.42 11.81* 14.22* 17.45 10.37* 10.14* 13.46* 11.38* 14.76 

5 7.56* 16.92 10.02* 12.46* 13.92 9.32* 9.33* 12.02* 10.33* 13.41 

CER 

1 11,11 3.65 4.27 9.24 -7.60 9.41 3.77 8.88 7.96 13.27 

3 9.08* -5.86 5.56 6.57 -9.00 5.54 0.89 4.45 5.32 7.73 

5 7.43* -7.14 4.57* 5.82* -8.36 4.16 -0.10 3.41 4.01 4.39 

SR 

1 88.67* 24.50 28.18 60.41 -22.26 72.35 32.75 54.18 54.44 77.39 

3 106.82* -5.32 57.98 61.45 -28.23 61.25 17.57 47.72 56.82 68.24 

5 105.07* -6.20 63.08* 71.32* -29.83 60.01 15.35 52.67 57.57 60.81 

SOR 

1 128.38* 35.19 40.19 87.62 -26.82 107.91 45.55 76.08 82.24 118.68 

3 158.53* -7.55 85.69 89.73 -34.10 90.63 24.05 66.41 82.76 98.70 

5 156.30* -9.17 93.88* 104.37* -36.93 88.87* 21.21 74.08 83.65 87.32 

ES 5% 

1 14.94* 46.68 35.14 24.00 53.58 17.86* 20.04* 27.81 23.77* 23.85 

3 8.51* 41.09 17.51* 20.59 40.92 15.04* 19.13* 21.34 17.01* 20.38 

5 7.65* 35.95 14.35* 16.82* 32.87 13.63* 17.81* 18.46* 15.36* 19.50 
Notes: This table reports the out-of-sample performance of stock and bond portfolios constructed according to the RF-ADCC model for each geographic region and 

considering the grouping of countries into emerging markets (EM) and developed markets (DM). These portfolios are constructed assuming a power utility functions 

with risk aversion coefficients 𝛾 = 1, 𝛾 = 3 and 𝛾 = 5. The performance metrics are the mean and standard deviation (Std) of excess returns, the Certainty Equivalent 

Return (CER), Sharpe ratio (SR), Sortino ratio (SOR), and Expected Shortfall at 5% (ES 5%).  The geographic regions are: North America (Canada, Mexico, and the 

US), South America (Argentina, Brazil and Chile), America, which is the ensemble of North and South America countries, EU (Austria, Belgium, Czech Republic, 

Denmark, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Netherlands, Poland, Portugal, Spain, and Sweden), Middle East (Egypt, Israel, Pakistan, and 

Turkey, Asia (China, India, Indonesia, Korea, Singapore, Japan, Hong Kong, Malaysia, Philippines, Taiwan and Thailand), and Oceania (Australia and New Zealand 

(Oceania). All countries consider all 44 countries in the sample, on which overall international diversification is achieved. The distinction between EM and DM was done 

according to the Market classification MSCI (https://www.msci.com/our-solutions/indexes/market-classification). Values in Bold represent the best value of each statistic 

(maximum for Mean, CER, SR and SOR; minimum for Std and ES 5%). Values with an asterisk represent those statistics that are better than those of All countries. The 

out-of-sample (testing sample) is from 16/03/2012 to 14/09/2020. All measures are annualized and presented in percentage.  
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Figure 3.4 reports the out-of-sample annual moving averages of Expected 

Shortfall (ES) at 5% for nine different geographic regions, Emerging and Developed 

markets, and considering all countries (ES international). The ES were computed 

considering an investor with moderate risk aversion (𝛾 = 3), which bases her allocation 

strategy on the RF-ADCC model considering both stocks and bonds.   

Expected Shortfall (ES) is high, especially in South America and the Middle 

East, and varies substantially over time and across geographic regions. Some events may 

explain the differences between different regions. For instance, the 2013-2016 recession 

in the Latin American countries and the 2017 conflicts in Turkey and Egypt may justify 

the 30% increase in the ES for both regions. The 2015 sovereign crisis in Europe may 

explain the rise of 15% in the EU expected shortfall. And the outburst of Covid-19 almost 

surely justifies the high spike in the ES at the end of all series.  

The tail risk in America, especially in North America, is the lowest across all 

regions, varying between 10% and 20%, followed by Asia, and Oceania, where the values 

range between 10% and 30%. Hence, in terms of tail risk, an investor from the Middle 

East or South America would substantially benefit from diversifying her portfolio 

internationally, especially for 2016-2017. This is justified by the tail risk measure of the 

international portfolio trending downwards and reaching a value of 10% in this period.  

Lastly, emerging and developed markets ES present very interesting results. 

Both markets show similar trends at the beginning of the sample, suggesting an increase 

in country dependence when markets are experiencing extreme negative returns, possibly 

due to market integration or cross-country trade agreements. However, from 2016 to 

2019, the patterns have changed. The ES of DM declined more rapidly, from 30% to 10%, 

while the ES of EM varied from 30% to 20%. This suggests that the benefits of 

diversifying over EM have been diluted over time, while the benefits of investing in DM 

have grown from a portfolio tail-risk perspective.   
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Figure 3.4: Moving average of Expected Shortfall out-of-sample 

  

  

  

  

  

Notes: This figure presents the out-of-sample paths of Expected Shortfall (ES) at the 5% level of a 

moderately risk-averse risk aversion (𝛾 = 3) who based her asset allocation strategy on a RF-ADCC model. 

The geographic regions considered are North America, South America, America, EU, Middle East, Asia, 

Oceania, the segmentation into Emerging and Developed Markets, and for the overall diversified portfolio 

(ES international). The presented ES values are moving averages, with a length of 252 days (a business 

year) of annualized ES (in percentage). Notice that the first reported value corresponds to the day after 252 

days after the beginning of the period out-of-sample. 
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3.6. Conclusion 
 

 

This chapter assesses the performance of internationally diversified portfolios 

built on new estimation schemes for the vector of expected returns and covariance matrix 

in a large dimension asset space. Firstly, we use Machine Learning techniques, namely 

Random Forests and Artificial Neural Networks, to forecast daily excess stock and bond 

returns. Secondly, we generalize the DCC model by Engle et al. (2019) by allowing for 

asymmetric effects in innovations. We empirically test the roles played by these features 

when compared to simple benchmark portfolios, and other simpler models. We conclude 

that the proposed models (the Asymmetric DCC with Random Forests or Neural 

Networks) consistently outperform the benchmarks and other simple model 

constructions. We find that a power utility investor with moderate risk aversion that bases 

her allocation strategy on the proposed RF-ADCC model would experience a good 

performance. These good results may be attributed to the ability of the model to 

effectively capture nonlinearities in data.  

Further, we also study the international diversification potential under different 

portfolio performance measures. We rely on the proposed model to explore the benefits 

of holding an internationally diversified portfolio of 77 stocks and bonds indexes. We 

conclude that investors from South America, the EU, the Middle East, Asia, and Oceania 

would benefit from further diversifying their portfolios. Additionally, we observe a 

decrease in the benefits of diversifying over Emerging countries and a rise for Developed 

countries from March 2012 until September 2020.  
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Chapter 4 - Industry Lead-Lag 

Relationships Between the US and 

Other Developed Countries 

 

 

 
4.1. Introduction 
 

 

In a complete and frictionless market, conventional asset pricing theory assumes 

that information dissemination across related markets occurs immediately. In a 

frictionless market, with rational expectations, a shock in one asset can be rapidly 

recognized by investors in other related assets. Consequently, equity prices adjust 

promptly and completely to any information shock. However, there is compelling 

empirical evidence that investors face limitations in processing information and non-

trivial market frictions, therefore information does not spread across markets as assumed 

by the conventional theory (see, for instance, Shiller, 2000; Hong et al., 2007). In a more 

realistic framework, equity prices may adjust to new information with some delay. For 

instance, industry-specialized investors may fail to fully assimilate new information from 

shocks in other industries. Hence, at the industry level, this may imply the existence of 

significant lead-lag relationships between industry indexes, and, therefore, industry return 

predictability.  

This study analyses the interdependence between industry returns in an 

international context. To the best of our knowledge, this study is one of the firsts to 

directly examine lead-lag relationships across countries at the industry level. Previous 

research has mainly focused on firm-level or intra-industry information flows (see, for 

instance, Rapach et al., 2013; Bollerslev et al., 2013). However, as argued by Hou et al., 

2007, due to market segmentation, industry information only gradually spreads out over 

related industries, and thus returns of an industry can be predicted by returns of related 

industries.  

At the international level, the US fulfils a key role. According to the World Bank 

(2021), the US has the world’s largest national economy, accounting for almost a quarter 
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of global GDP; it is the most important export destination of most countries worldwide 

and represents more than one third of global stock market capitalization. Because of its 

size and interconnectivity, events in the US economy are likely to have a global impact. 

So, our main research hypothesis is that lagged returns of US industries may help predict 

returns of industries of other countries.  

We show that weekly lagged returns of US industries have a strong and 

significant causal relationship with most other countries considered in the study, while 

lagged returns of other countries have limited ability to predict US returns at industry 

levels. Notably, we highlight that lagged returns of US Basic Materials and Energy 

industries have strong and significant predictive power and causality to industries of other 

countries. This finding is highly plausible since firms in other industries rely heavily on 

commodities and fuels, and hence lagged returns of these later industries, which are 

placed earlier in the production chain, should impact the returns of industries positioned 

later in the production chain. 

The leading role of the US is even more pronounced during recession periods, 

when cross-country correlations are stronger. This implies that the ability of the US 

lagged returns to predict current returns of other countries is much greater when the US 

experienced a recession in the week before. Results also suggest that past values of US 

industries’ volatilities contain information that helps predict the volatility of other 

countries. Lastly, we analyse the Granger causality in distribution for returns and 

volatilities at the industry level. Our results suggest that other countries did not timely 

incorporate shocks affecting the US industries, meaning that countries react with a delay 

to news from the US.  

The remaining of this study is structured into five sections. Section 4.2 presents 

a brief literature review. Section 4.3 presents the data and provides some descriptive 

statistics. Section 4.4 outlines the basic theoretical concepts and presents the tests 

specifications. Section 4.5 shows the main results, and Section 4.6 concludes the study. 
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4.2. Literature Review 
 

 

The complexity of the relationships between asset prices has long been subject 

of analysis from many academics and practitioners. For instance, Lo and MacKinlay 

(1990) wrote one of the most influential and earliest works in the lead-lag literature. The 

authors showed that returns of large stocks led returns of small stocks in the US from 

1962 to 1987. In the early nineties, many studies analysed the lead-lag relationship 

between various asset prices and industries (see, e.g., Roll et al., 1992; Arshanapalli and 

Doukas, 1993; Brennan et al., 1993; Boudoukh et al., 1994; Jegadeesh et al., 1995; 

Copeland et al., 1998; Moskowitz and Grinblatt, 1999). For instance, Copeland et al. 

(1998) found that the US had a statistically significant one-day lead over markets in 

Europe and Asia in the early nineties. However, this lead did not extend over one day. 

The authors also found that internationalized industries (e.g., airlines) were significantly 

more sensitive to leads than local ones (e.g., casinos). Moskowitz and Grinblatt (1999) 

showed that cross-sectional industry momentum accounted for the cross-sectional 

momentum in individual firm returns, reinforcing the idea that industries had important 

interconnections with each other. 

In the mid-2000s, many other studies have analysed lead-lag relationships 

between various industries. However, they mainly focused on information flows at the 

firm level in the US market. For instance, Hou et al. (2007) studied the transmission of 

information between big and small firms. The authors identified a lead-lag effect between 

stock returns of these firms in the US between July 1963 and December 2001. According 

to the authors, this slow information transmission could result from many sources, 

including incomplete markets, limited stock market participation, asymmetric 

information, noise trading, limited investor attention, transaction costs, short-sale 

restrictions, legal constraints imposed to institutional investors, and other market 

frictions. Hong et al. (2007) investigated the transmission of information between US 

industries and the overall market from January 1946 to December 2002. They concluded 

that the US stock market reacted with a delay to the information contained in the industry 

returns about their fundamentals. As a result, industry returns that incorporated 

information on macroeconomic fundamentals tended to lead the aggregate market. Hence, 

a substantial number of US industries, such as retail services, commercial real estate, 

metal, and petroleum, could anticipate the stock market by up to two months.  
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Menzly and Ozbas (2010) have found economic links between certain specific 

firms and industries, which contributed significantly to cross-firm and cross-industry 

return predictability. In line with the work of Hong et al. (2007), the authors interpreted 

their findings as evidence of delayed information transmission across economically 

connected firms and industries. According to Rapach et al. (2015), an industry has an 

economic link to another if its returns can be predicted by the lagged returns of the other 

one. This suggests, for example, that shocks in the technology industry might impact 

returns in the manufacturing industry, even if these industries are not directly involved 

with each other. Industries can also be indirectly connected along the production chain, 

resulting in valuable economic connections that extend beyond the direct customer-

supplier link. The authors argued that complex industry interdependences increase the 

potential for delayed responses to information and produce cross-industry return 

predictability.  

Several studies have reported cross-industry linkages. For instance, Rapach et 

al. (2019) showed that lagged returns of financial and commodities industries had 

forecasting ability on most industries. Jacobsen et al. (2019) demonstrated that industrial 

metal returns led the stock market even after adjusting for other widely used predictors. 

Additionally, the authors showed that during recessions, there was a direct relationship 

between the stock market and past industrial metal returns and an inverse relationship 

during expansions. Khalfaoui et al. (2021) analysed the lead-lag relationships between oil 

and several metal prices and concluded that gold and platinum were highly connected 

with oil. They showed that these metals were strongly influenced by oil prices, especially 

during turmoil periods in global markets. Further, Jiang et al. (2020) verified that there 

was a lead-lag linkage implying that oil prices led six stock market indices (China, India, 

Japan, Saudi Arabia, Russia, and Canada) from 27 to 30 weeks.  

More broadly, Lee et al. (2019) studied the impact of technological proximity on 

the lead-lag relationship between stock returns. They showed that businesses with a 

positive peer group return in the previous month outperformed negative ones. Parsons et 

al. (2020) documented lead-lag effects on returns between cohead quartered firms in 

different industries and showed the existence of geographic lead-lags that imply a risk-

adjusted return of 5%-6% annually, which was half the value observed for industry lead-

lag effects. Whereas industry lead-lag effects were stronger among small, thinly traded 

stocks with low analyst coverage, geographic lead-lags were unrelated to these proxies 

for investor scrutiny. More recently, Zeng et al. (2021) reported that economic links such 
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as customer-supplier relationships and peer effects only accounted for a small share of 

the frequently observed cross-firm lead-lag relations. Instead, most of the cross-firm lead-

lag ties were driven by several classical factors. 

Although some studies have analysed lead-lag relationships across industries, 

they mainly focus on the US market, which is not surprising given that the US is the 

world's largest stock market. Most of these studies point out that, even for a highly liquid 

mark such as the US, the existence of lead-lag relationships can be interpreted as evidence 

of information frictions resulting from limited investor attention and limited information-

processing capabilities.  

An exception to this trend is Rapach et al. (2013), that besides the US also 

reported strong predictability of lagged US monthly index return over international 

markets from 1980 until 2010. Additionally, since the US is a large trading partner for 

many countries and has the world's largest stock market, investors are likely to focus more 

on the US. As a result, information on the US macroeconomic fundamentals is relevant 

to foreign stock markets. Rapach et al. (2013) also reported that Swedish returns showed 

in-sample predictability power on other foreign returns. This can be justified by the high 

institutional ownership of Sweden and the fact that institutional investors are more able 

to collect and process information, which contributes to a higher pricing efficiency in the 

Swedish market.  

Wen et al. (2015) also studied international markets and demonstrated that the 

US stock returns could predict South African returns from 1973 to 2014. Cambón et al. 

(2017) showed that Spanish industries, that provided valuable and important economic 

information, did not drive the equity market or economic activity. The hypothesis which 

Hong et al. (2007) presented, was not supported in the case of Spain, where company 

characteristics, especially size, may be more relevant in understanding lead-lag patterns. 

Sarwar et al. (2017) studied the impact of US stock market uncertainty (proxied by VIX) 

on Latin American and aggregate emerging markets before, during, and after the 2008 

crisis. The authors found that increases in VIX led to significant immediate and delayed 

declines in emerging market returns in all periods. Tse (2018) examined the lead-lag 

relationships between 11 industrialized countries using international futures prices. He 

concluded that the futures markets were more contemporaneously correlated in market 

downturns, while the lead-lag relationships were more significant in market upturns. 

These findings suggest that investors react quicker to negative than positive news. When 

one national stock market falls, investors in other countries sell their domestic stocks in 
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the same month. In contrast, investors are less likely to buy stocks from other countries 

when one market is performing well. 

Understanding whether one company or industry leads another has important 

implications for investment planning. Croce et al. (2019) showed that firms in leading 

industries (i.e., industries whose cash flows contained information relevant for future 

aggregate growth) pay a 4% higher average annualized return than firms in lagging 

industries. Rapach et al. (2019) reported that a long investment strategy in highly 

forecastable industries and a short position in the lowest forecastable ones would generate 

an annualized alpha of at least 8%.  

In sum, previous literature has focused mainly on firm-level returns or intra-

industry information flow. However, industry or firm information only gradually spreads 

out over the related firms and industries. Thus, returns of an industry can be predicted by 

its related industries (Hou et al., 2007). Also, studies primarily focus on the US market 

rather than having a global worldwide scope. And, as we know, international markets are 

now, more than ever, highly connected due to globalization, technological advances, and 

increasing market integration.  

 

 

 

4.3. Data Description and Preliminary Analysis 
 

 

The data consists of closing daily values of Total Return Equity Indexes, in US 

dollars,9 of eleven industries for seven countries, from 01/01/1973 to 17/05/2021, 

retrieved from the Thomson Reuters DataStream database. These industries, 

corresponding level 1 Industry Classification Benchmark (ICB), are: Basic Materials 

(BM), Consumer Discretionary (CD), Consumer Staples (CS), Energy (EN), Financials 

(FI), Health Care (HC), Industrials (IN), Real Estate (RE), Technology (TEC), 

Telecommunications (TEL), and Utilities (UT). We selected the top 7 countries according 

to the MSCI ACWI Country Index, namely Canada, France, Germany, Japan, China, the 

UK, and the US. Daily data was then converted into weekly data using Wednesday-to-

 
9 Series that were in the domestic currency were converted to US dollars using the series of exchange rates, 

also obtained from the Thomson Reuters DataStream database. 
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Wednesday values. We work with weekly data to avoid nonsynchronous trading due to 

different time zones, while using data from Wednesdays avoids eventual Monday effects.  

Table 4.1 shows the data availability, presenting the starting dates when the 

series do not cover the overall period. China has the shorter times series, as most of the 

series start after 1993, and, for the Technology sector, it started only in 2015. 

Nevertheless, we choose to include China in our study because it is the largest and one of 

the fastest-growing emerging economies worldwide. Germany also presents two series 

that begin quite late, but for the same reasons, we include this country in our study (the 

German market represents 2.5% of the world market value, according to the MSCI ACWI 

index, on May 14, 2021).  

 

Table 4.1: Data availability 

 BM CD CS EN FI HC IN RE TEC TEL UT 

Canada C C C C C C C 
01/07/ 

1985 
C 

05/02/ 

1976 
C 

France C C C C C C C C C 
17/10/ 

1997 

18/07/ 

2000 

Germany C C C 
03/05/ 

2006 
C C C 

23/09/ 

1993 

03/11/ 

1988 
C C 

Japan C C C C C C C C C C C 

China 26/07/1993 
26/07/ 

1993 

26/07/ 

1993 

02/12/ 

1994 

26/07/ 

1993 

27/02/ 

2004 

26/07/ 

1993 

26/07/ 

1993 

29/06/ 

2015 

15/11/ 

2002 

28/06/ 

1995 

UK C C C C C C C C C 
04/11/ 

1981 

05/12/ 

1986 

US C C C C C C C C C C C 

Notes: This table presents the availability of data for the 11 industries: Basic Materials (BM), Consumer 

Discretionary (CD), Consumer Staples (CS), Energy (EN), Financials (FI), Health Care (HC), Industrials 

(IN), Real Estate (RE), Technology (TEC), Telecommunications (TEL), and Utilities (UT). “C” indicates 

that the series is complete, for the overall sample (01/01/1973 to 17/05/2021). Dates indicate the beginning 

of the series if they are only available after 01/01/1973. 

 

Table 4.2 contains the descriptive statistics of weekly logarithmic returns of 11 

industries for seven countries. While cross-industry variations are large, the table shows 

that, on average, the US presents the highest mean (0.13%) and the lowest risk level 

(2.76%). France offers the second-highest mean return (0.12%); however, it has a 

relatively high risk (3.35%). Canada, Japan, and the UK have the same mean return 

(0.11%). The highest mean return is reported for the Canadian Consumer Staples (0.19%), 

and the lowest one corresponds to the German Energy sector (-0.05%). One should recall 

that data for this sector only starts in 2015. The two sectors that present the highest trade-

off between risk-return are the Consumer Staples (CS), with an average return of 0.15% 
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and a risk of 2.97%, and the Health Care (HC) sector, with an average of 0.15% and a 

risk of 2.90%.  

 

Table 4.2: Descriptive statistics of weekly returns 

  BM CD CS EN FI HC IN RE TEC TEL UT Average 

Mean 

Canada 0.07 0.10 0.19 0.08 0.14 0.14 0.14 0.07 0.11 0.12 0.09 0.11 

France 0.17 0.15 0.18 0.11 0.12 0.15 0.16 0.09 0.15 0.00 -0.01 0.12 

Germany 0.10 0.14 0.17 -0.05 0.08 0.12 0.10 0.10 0.20 0.02 0.07 0.09 

Japan 0.09 0.13 0.13 0.07 0.07 0.15 0.13 0.10 0.13 0.18 0.07 0.11 

China 0.07 0.16 0.10 0.05 0.10 0.18 0.06 0.18 -0.02 0.02 0.05 0.09 

UK 0.10 0.10 0.14 0.10 0.08 0.14 0.12 0.06 0.15 0.10 0.08 0.11 

US 0.13 0.15 0.16 0.10 0.14 0.18 0.16 0.13 0.17 0.08 0.07 0.13 

 Average 0.10 0.13 0.15 0.07 0.10 0.15 0.12 0.10 0.13 0.07 0.06 0.11 

Std 

Canada 3.66 2.81 2.29 3.65 2.69 4.13 3.35 2.71 4.31 2.56 2.21 3.12 

France 3.21 3.52 3.07 3.86 3.61 2.99 3.45 2.75 4.41 3.19 2.78 3.35 

Germany 2.95 3.86 2.96 3.25 3.24 2.37 3.07 2.77 3.82 3.71 2.56 3.14 

Japan 3.23 2.83 2.92 4.10 3.50 2.59 3.06 3.99 3.73 4.20 3.33 3.41 

China 4.43 4.62 4.75 3.91 3.79 3.12 3.96 4.90 1.72 2.68 3.61 3.77 

UK 3.94 3.28 2.70 3.65 3.39 2.81 3.30 3.85 4.18 3.37 2.29 3.34 

US 3.10 2.66 2.10 3.15 2.91 2.26 2.68 3.57 3.31 2.49 2.10 2.76 

 Average 3.50 3.37 2.97 3.65 3.30 2.90 3.27 3.51 3.64 3.17 2.70 3.27 

Skew 

Canada -0.58 -1.61 -0.30 -1.27 -0.49 -1.75 -0.52 -2.48 -0.81 -0.58 -1.01 -1.04 

France -0.47 0.04 0.91 -0.15 -0.41 -0.28 -1.07 -1.41 -0.27 -0.38 -1.79 -0.48 

Germany -0.63 3.25 7.69 -1.17 -0.76 -0.51 -0.88 -0.60 -0.39 -0.12 -0.71 0.47 

Japan -0.09 -0.12 -0.06 0.13 0.20 0.02 -0.21 0.07 -0.03 0.79 0.31 0.09 

China 0.10 0.41 1.60 0.24 0.40 0.17 0.39 0.07 -0.49 0.13 -0.74 0.21 

UK -0.49 -0.78 -0.18 -0.33 -0.45 -0.11 -0.68 -0.50 -0.24 0.05 -0.06 -0.34 

US -0.66 -0.59 -0.60 -1.11 -0.70 -0.48 -0.75 -0.43 -0.51 -0.42 -0.60 -0.62 

Kurt 

Canada 7.71 29.72 5.93 17.14 8.82 27.60 6.04 33.10 10.98 9.86 12.00 15.35 

France 5.79 11.86 19.65 13.10 9.07 4.78 13.82 25.91 6.89 13.42 26.16 13.68 

Germany 7.42 81.84 217.5 23.00 13.29 6.65 10.40 21.27 11.84 6.72 8.66 37.14 

Japan 6.40 5.45 5.63 5.51 7.18 5.01 5.18 6.90 5.41 7.43 7.77 6.17 

China 10.01 14.27 24.84 11.52 13.72 22.53 10.81 14.95 38.70 15.05 13.17 17.23 

UK 8.11 14.44 6.53 15.23 9.91 6.37 9.72 11.42 10.75 7.24 7.68 9.76 

US 7.82 7.00 6.34 17.06 10.26 5.83 7.64 9.58 6.14 7.85 9.05 8.60 

Notes: This table presents the mean, standard deviation (Std), skewness (Skew), and kurtosis (Kurt) of 

weekly logarithmic returns of the 11 industries (Basic Materials (BM), Consumer Discretionary (CD), 

Consumer Staples (CS), Energy (EN), Financials (FI), Health Care (HC), Industrials (IN), Real Estate (RE), 

Technology (TEC), Telecommunications (TEL), and Utilities (UT)) for Canada, France, Germany, Japan, 

China, the UK, and the US. Data covers the period from 03/01/1973 to 12/05/2021. Mean and standard 

deviation values are in percentage. 

 

On average, the skewness is moderate across all countries. Weekly returns are 

left-skewed for Canada, France, the UK, and the US. All countries present excess 

kurtosis, especially Germany, mainly due to Consumer Staples (CS) and Consumer 

Discretionary (CD) industries.  

Figure 4.1 shows the correlation maps for the series industry/country for the full 

sample period (Exhibit A), the expansion periods (Exhibit B), and the recession periods 

(Exhibit C). The partition of the data into expansion and recession periods is based on the 

NBER business cycle classification in the US. For all samples, we can observe high and 
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positive cross-country correlations between France and Germany, and between Canada 

and the US. Interestingly, most industries in China and Japan are negatively correlated to 

industries of other countries in the overall sample and during expansion periods. There 

are two main illations to withdraw from Figure 4.1: Firstly, as expected, correlations 

between industries of the same country present the higher correlations and, secondly, 

correlations increase significantly in recession periods, especially between European and 

American countries.  
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Figure 4.1:  Correlation maps  

 

 

 

 

 

Notes: This figure shows the correlation heat maps between the industries of 7 countries, for the full sample (Exhibit A), in expansion periods (Exhibit B), and in recession 

periods (Exhibit C) in the US according to the NBER (https://www.nber.org/research/data/us-business-cycle-expansions-and-contractions). The countries are Canada, France, 

Germany, Japan, the UK, and the US. The industries, from the left (top) to the right (bottom), are Basic Materials (BM), Consumer Discretionary (CD), Consumer Staples 

(CS), Energy (EN), Financials (FI), Health Care (HC), Industrials (IN), Real Estate (RE), Technology (TEC), Telecommunications (TEL), and Utilities (UT). On the right side 

of each panel, the table reports the correlation scales associated to each colour. The dark red corresponds to a correlation of 1.   
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4.4. Methodology 
 

 

In this section, we present the econometric tests implemented in the empirical 

application. Our analysis of the lead-lag relationships in international industries proceeds in 

the following way: First, we estimate bivariate VAR(1) for all the series (11 industries, 7 

countries). The use of VARs with just one lag was suggested by the Akaike and Schwartz 

information criteria (AIC and BIC). Using the estimated VAR(1) we compute pairwise 

Granger causality tests and feedback measures. Next, we partitioned the data into expansion 

and recession periods according to the business cycles classification for the US and conduct 

a similar analysis in these periods. Besides the analyses of causality and feedback in the 

mean, using the same methodology we also study causality and feedback in volatility for the 

overall sample, and the expansion and recession periods. Lastly, we also study Granger 

causality in distribution of returns and volatility. 

 

 

4.4.1. Granger Causality 
 

The lead-lag relationship is firstly identified via Granger causality tests (Granger, 

1969). To establish the general result, suppose that we have two time series of returns 𝑟1,𝑡 

and 𝑟2,𝑡. Supposing that their dynamics follow a bivariate VAR(1), then: 
 

[
 𝑟1,𝑡
𝑟2,𝑡
] = [

𝛼𝑦
𝛼𝑥
] + [

𝜙1 𝜙1,2
𝜙2,1 𝜙2

] [
 𝑟1,𝑡−1
 𝑟2,𝑡−1

] + [
𝜀𝑟1𝑡
𝜀𝑟2,𝑡

], (4.1) 

 

𝛀 = 𝐶𝑜𝑣 [
𝜀𝑟1𝑡
𝜀𝑟2,𝑡

] = [
𝜎𝑟1,𝑡
2 𝜎𝑟1,𝑡,𝑟2,𝑡

2

𝜎𝑟2,𝑡,𝑟1,𝑡
2 𝜎𝑟2,𝑡

2 ]. (4.2) 

 

where 𝛟 = [
𝜙1 𝜙1,2
𝜙2,1 𝜙2

] is the coefficient matrix. It is usual to assume that innovations are 

gaussian and serially uncorrelated.  

To assess the causality from 𝑟2 to 𝑟1 we test the hypothesis 𝜙1,2 = 0. Similarly, 𝑟1 

does not Granger cause 𝑟2 if 𝜙2,1 = 0. The absence of Granger causality in either direction 

implies the coefficient matrix 𝚽 is diagonal. Under this hypothesis, the VAR simplifies to: 
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[
 𝑟1,𝑡
𝑟2,𝑡
] = [

𝛼𝑦
𝛼𝑥
] + [

𝜙1 0
0 𝜙2

] [
 𝑟1,𝑡−1
 𝑟2,𝑡−1

] + [
𝜉𝑟1,𝑡
𝜉𝑟2,𝑡

]. 

 

(4.3) 

In the present case of a VAR(1), testing Granger causality from 𝑟2 to 𝑟1 requires 

computing the sum of squared residuals of the regression of 𝑟1,𝑡  on 𝑟1,𝑡−1 and 𝑟2,𝑡−1, 𝑅𝑆𝑆1, 

computing the sum of squared residuals of the regression of 𝑟1,𝑡 only on 𝑟1,𝑡−1, 𝑅𝑆𝑆0 and 

computing the test: 
 

𝑆 =
(𝑅𝑆𝑆1 − 𝑅𝑆𝑆0)

𝑅𝑆𝑆0/(𝑇 − 3)
. 

(4.4) 

 

The test 𝑆 follows a 𝐹 distribution with 1 and 𝑇 − 3 degrees of freedom, i.e., 𝐹(1, 𝑇 − 3). 

The Granger causality from 𝑟1 to 𝑟2 is tested analogously. 

 

 

4.4.2. Geweke Measures of Feedback 
 

To assess the information transmission between returns, we use the feedback 

measures of Geweke (1982). These measures are applied to each pair of industry/country 

returns. They can be used to test the degree of feedback in both directions, 

contemporaneously and overall linear dependence.  

 

Measure of lagged feedback from 𝑟1 to 𝑟2: 
 

𝐹𝑟1→𝑟2 = ln(
𝜎𝝃𝑟2
2  

𝜎𝜀𝑟2
2  
). 

 

(4.5) 

Measure of lagged feedback from 𝑟2 to 𝑟1: 
 

𝐹𝑟2→𝑟1 = ln (
𝜎𝝃𝑟1
2  

𝜎𝜀𝑟1
2  
). 

 

(4.6) 

Measure of contemporaneous feedback between 𝑟1 and 𝑟2: 
 

𝐹𝑟1↔𝑟2 = ln(
𝜎𝜀𝑟1
2 𝜎𝜀𝑟2

2

|𝛀|
). 

 

(4.7) 

Measure of total feedback (total linear dependence) between 𝑟1 and 𝑟2: 
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𝐹𝑟1.𝑟2 = ln (
𝜎𝝃𝑟1
2 𝜎𝝃𝑟2

2

|𝛀|
). 

 

(4.8) 

|𝛀| denotes the determinant of the innovations’ covariance matrix in the unrestricted model 

(Equation 4.2). Under the null hypotheses, these measures, multiplied by the number of 

observations, 𝑇, are asymptotically independent and follow chi-squared distributions with 

degrees of freedom 1, 1, 1 and 3, respectively. 

Because the feedback measures are just log-likelihood ratio statistics under the null 

hypotheses, their asymptotic distributions are well defined. Also under the alternative 

hypotheses, these measures, multiplied by the number of observations, follow 

asymptotically non-central chi-squared distributions. 
 

𝑇𝐹̂𝑟1→𝑟2~𝒳
′2(1, 𝑇𝐹𝑟1→𝑟2), 

(4.9) 

 

𝑇𝐹̂𝑟2→𝑟1~𝒳
′2(1, 𝑇𝐹𝑟2→𝑟1), 

(4.10) 

 

𝑇𝐹̂𝑟1↔𝑟2~𝒳
′2(1, 𝑇𝐹𝑟1↔𝑟2), and 

(4.11) 

 

𝑇𝐹̂𝑟1.𝑟2~𝒳
′2(3, 𝑇𝐹𝑟1.𝑟2). 

(4.12) 

  

The measures presented above are additive, that is 𝐹𝑟1.𝑟2 = 𝐹𝑟1→𝑟2 + 𝐹𝑟1↔𝑟2 + 𝐹𝑟2→𝑟1 . 

 

 

4.4.3. Granger Causality in Distribution 
 

This subsection presents the test of Granger causality in distribution proposed by 

Candelon and Tokpavi (2016), from which the description bellow is heavily drawn. This test 

is based on the Value-at-Risk (VaR), which is a measure often used to assess the extent of 

loss of an asset or portfolio over a specific time frame. Considering 𝑟𝑖 = 𝑟1, 𝑟2, the VaR at 

the 𝛼% confidence level is given by  
 

Pr [𝑟𝑖,𝑡 < 𝑉𝑎𝑅𝑡
𝑟𝑖(𝛉𝑟𝑖

0 )|ℱ𝑡−1
𝑟𝑖 ] = 𝛼. 

 

(4.13) 

𝑉𝑎𝑅𝑡
𝑟𝑖 is the Value-at-Risk of asset 𝑖 at time 𝑡, 𝛉𝑟𝑖

0  is the vector of true unknown finite-

dimensional parameters related to the specification of the Value-at-Risk models for 𝑟𝑖, and 

ℱ𝑡−1
𝑟𝑖  are the information sets at time 𝑡 − 1, defined as ℱ𝑡−1

𝑟𝑖 =  [𝑟𝑖,𝑙, 𝑙 ≤ 𝑡 − 1].  
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For each return series, a vector of VaRs at time 𝑡 based on the previous equation 

may be defined as follows: First, let 𝐴 be a set of risk levels, such that 𝐴 = {𝛼1, 𝛼2, … , 𝛼𝑚+1},  

for 0 < 𝛼1 < 𝛼2 <. . . 𝛼𝑚+1 < 1, hence 
  

𝑉𝑎𝑅𝑡,1
𝑟𝑖 (𝛉𝑟𝑖

0 , 𝛼1) < 𝑉𝑎𝑅𝑡,2
𝑟𝑖 (𝛉𝑟𝑖

0 , 𝛼2) < ⋯ < 𝑉𝑎𝑅𝑡,𝑚+1
𝑟𝑖 (𝛉𝑟𝑖

0 , 𝛼𝑚+1). (4.14) 

 

Next, the variables 𝑟𝑖,𝑡 are divided into 𝑚 disjoint regions according to indicator variables 

that identify the events covering two consecutive VaR levels.  
 

𝑍𝑡,𝑠
𝑟𝑖 (𝛉𝑟𝑖

0 ) = [
1  𝑖𝑓 𝑉𝑎𝑅𝑡,𝑠

𝑟𝑖 (𝛉𝑟𝑖
0 , 𝛼𝑠) ≤ 𝑟𝑖,𝑡 < 𝑉𝑎𝑅𝑡,𝑠+1

𝑟𝑖 (𝛉𝑟𝑖
0 , 𝛼𝑠+1)

0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 𝑓𝑜𝑟 𝑠

= 1, 2, …𝑚. 

(4.15) 

 

Hence, to test the Granger causality in distribution we first define 𝐇𝑡
𝑟𝑖  as the vector 

containing the 𝑚 indicator variables as defined in Equation (4.15).  
 

𝐇𝑡
𝑟𝑖(𝛉𝑟𝑖

0 ) = (𝑍𝑡,1
𝑟𝑖 (𝛉𝑟𝑖

0 ),  𝑍𝑡,2
𝑟𝑖 (𝛉𝑟𝑖

0 )… , 𝑍𝑡,𝑚
𝑟𝑖 (𝛉𝑟𝑖

0 ))
𝑇

 (4.16) 

 

Formally, 𝑟2,𝑡 does not Granger cause 𝑟1,𝑡 in distribution if the following hypothesis holds: 
 

ℍ0: 𝔼[𝐇𝑡
𝑟1(𝛉𝑟1

0 )|ℱ𝑡−1
𝑟1 & 𝑟2] = 𝔼[𝐇𝑡

𝑟1(𝛉𝑟1
0 )|ℱ𝑡−1

𝑟1 ] 

 

(4.17) 

where ℱ𝑡−1
𝑟1 & 𝑟2 = {(𝑟1,𝑙, 𝑟2,𝑙), 𝑙 ≤ 𝑡 − 1}. Under the null, the information set related to 

variable 𝑟2𝑡 does not provide any additional information to predict 𝐇𝑡
𝑟1(𝛉𝑟1

0 ), beyond the 

information present in the distribution support of 𝑟1,𝑡. 

To test the hypothesis presented in Equation (4.17), we estimate the conditional 

autoregressive Value-at-Risk (CAViaR) by Engle and Manganelli (2004) for each series and 

risk level, which is defined as follows: 
  

𝑉𝑎𝑅𝑡,𝑠
𝑟𝑖 (𝛉𝑟𝑖

0 , 𝛼𝑠) = 𝜃𝑠0
𝑟𝑖 + 𝜃𝑠1

𝑟𝑖 𝑉𝑎𝑅𝑡−1
𝑟𝑖 (𝛉𝑟𝑖

0 ) + 𝜃𝑠2
𝑟𝑖 𝑟𝑖,𝑡−1

+ + 𝜃𝑠3
𝑟𝑖 𝑟𝑖,𝑡−1

− + 𝜀𝑡,𝑠 

 

(4.18) 

 

for which 𝑟𝑖,𝑡−1
+ = max (𝑟𝑖,𝑡−1, 0), 𝑟𝑖,𝑡−1

− = −min (𝑟𝑖,𝑡−1, 0), for 𝑠 levels of risk. The error 

terms, 𝜀𝑡,𝑠, conditional on all past information form a stationary process, with continuous 

conditional density. The parameters of these CAViaR models are estimated by quantile 

regression. Using the estimated VaRs, next the empirical counterparts of 𝐇𝑡
𝑟𝑖 can be 

computed, obtaining 𝐇̂𝑡
𝑟𝑖 ≡ 𝐻𝑡

𝑟𝑖(𝜃̂1
𝑟𝑖 , … , 𝜃𝑚

𝑟𝑖). 

The test statistic is obtained through the following 4 steps: 

First, the sample cross-correlation matrix between 𝐇̂𝑡
𝑟1 and 𝐇̂𝑡

𝑟2 is computed as: 
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𝚲̂(𝑗) ≡

[
 
 
 
 
 
𝑇−1 ∑ (𝐇̂𝑡

𝑟1 − 𝚷̂𝑟1)(𝐇̂𝑡−1
𝑟2 − 𝚷̂𝑟2)

𝑇
𝑇

𝑡=1+𝑗

    0 ≤ 𝑗 ≤ 𝑇 − 1

𝑇−1 ∑ (𝐇̂𝑡+𝑗
𝑟1 − 𝚷̂𝑟1)(𝐇̂𝑡

𝑟2 − 𝚷̂𝑟2)
𝑇

𝑇

𝑡=1−𝑗

 1 − 𝑇 ≤ 𝑗 ≤ 0 

, 

 

(4.19) 

 

 
 

where 𝚷̂𝑟1 and 𝚷̂𝑟2  represent the sample means of 𝐇̂𝑡
𝑟1 and 𝐇̂𝑡

𝑟2, respectively. Second, the 

corresponding sample cross-correlation matrix is computed as: 
 

𝐑̂(𝑗) = 𝑑𝑖𝑎𝑔(𝚺̂𝑟1)
−
1
2𝚲̂(𝑗)𝑑𝑖𝑎𝑔(Σ̂𝑟2)

−1 2⁄ , 

 

(4.20) 

where 𝑑𝑖𝑎𝑔(. ) is the diagonal form of a matrix, and 𝚺̂𝑟1and 𝚺̂𝑟2 are the sample covariance 

matrices of 𝐇̂𝑡
𝑟1 and 𝐇̂𝑡

𝑟2, respectively. Third, quadratic form that accounts for the 

dependence between current values of 𝐇̂𝑡
𝑟1 and the lagged values of 𝐇̂𝑡

𝑟2 is calculated by: 
 

𝒯̂ = ∑𝜅2 (
𝑗

𝑀
)

𝑇−1

𝑗=1

𝑄̂(𝑗), (4.21) 

 

where 𝜅 is a kernel function, 𝑀 is a truncation parameter and 𝑄̂(𝑗) is defined as: 
 

𝑄̂(𝑗) = 𝑇𝑣𝑒𝑐(𝐑̂(𝑗))𝑇(𝚪̂𝑟1
−1⨂ 𝚪̂𝑟2

−1)𝑣𝑒𝑐 (𝐑̂(𝑗)), (4.22) 

 

where 𝚪̂𝑟1 and 𝚪̂𝑟2 represent the sample correlation matrices of  𝐇̂𝑡
𝑟1 and 𝐇̂𝑡

𝑟2, respectively. 

Lastly, the test statistic - a centred and scaled version of the quadratic form 𝒯̂ - is given by: 
 

𝑉𝑌→𝑋 =
𝒯̂ − 𝑚2𝐶𝑇(𝑀)

(𝑚2𝐷𝑇(𝑀))
1
2

𝑑
→𝒩(0,1) (4.23) 

 

where 𝐶𝑇(𝑀) and 𝐷𝑇(𝑀) are defined as: 
 

𝐶𝑇(𝑀)  = ∑(1 −
𝑗

𝑇
)𝜅2 (

𝑗

𝑀
) ,

𝑇−1

𝑗=1

 

 

(4.24) 

𝐷𝑇(𝑀) = 2∑(1 −
𝑗

𝑇
)(1 −

𝑗 + 1

𝑇
)𝜅4 (

𝑗

𝑀
)

𝑇−1

𝑗=1

. (4.25) 

In the empirical application we use 𝑀 = 𝑙𝑛(𝑇) and the Barlett kernel.10  

 
10 As suggested in Candelon and Tokpavi (2016), we have tested the sensitivity of the results using 𝑀 = 𝑙𝑛(𝑇), 

𝑀 = 1.5𝑇0.3, and 𝑀 = 2𝑇0.3, and different kernels functions (Bartlett, Daniell, and Parzen). Results remained 
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4.5. Empirical Results  
 

 

This section presents the results on the relationship between industry returns from 

and to the US and other countries.  

 

 

4.5.1. Causality and Feedback in the Mean 
 

Table 4.3 shows the p-values of the Granger causality bivariate tests on returns 

considering unrestricted and restricted VAR(1) models. 

 

Table 4.3: Granger causality in the mean 

 BM CD CS EN FI HC IN RE TEC TEL UT 

𝑼𝑺 → 𝑪𝑵 0.001* 0.000* 0.005* 0.004* 0.009* 0.009* 0.059 0.002* 0.888 0.001* 0.000* 

𝑪𝑵 → 𝑼𝑺 0.071 0.290 0.063 0.195 0.885 0.142 0.807 0.527 0.001* 0.006* 0.025 

𝑼𝑺 → 𝑭𝑹 0.000* 0.043 0.246 0.000* 0.048 0.411 0.269 0.008* 0.285 0.991 0.000* 

𝑭𝑹 → 𝑼𝑺 0.397 0.139 0.229 0.428 0.068 0.173 0.632 0.554 0.003* 0.216 0.127 

𝑼𝑺 → 𝑮𝑬 0.000* 0.000* 0.017 0.001* 0.026 0.001* 0.013 0.291 0.487 0.411 0.008* 

𝑮𝑬 → 𝑼𝑺 0.947 0.334 0.143 0.652 0.119 0.174 0.482 0.936 0.001* 0.590 0.973 

𝑼𝑺 → 𝑱𝑷 0.000* 0.000* 0.001* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.001* 0.001* 

𝑱𝑷 → 𝑼𝑺 0.349 0.010 0.381 0.167 0.035 0.340 0.306 0.939 0.504 0.055 0.316 

𝑼𝑺 → 𝑪𝑯 0.000* 0.329 0.460 0.000* 0.057 0.046 0.059 0.385 0.676 0.007* 0.627 

𝑪𝑯 → 𝑼𝑺 0.259 0.441 0.761 0.156 0.001* 0.133 0.061 0.095 0.299 0.500 0.794 

𝑼𝑺 → 𝑼𝑲 0.000* 0.000* 0.001* 0.000* 0.002* 0.006* 0.001* 0.000* 0.000* 0.043 0.049 

𝑼𝑲 → 𝑼𝑺 0.783 0.860 0.000* 0.001* 0.130 0.010 0.499 0.379 0.441 0.063 0.563 

Notes: This table presents the p-values of the Granger causality test resulting from a bivariate VAR(1) applied 

to returns using data from 03/01/1973 to 12/05/2021. The tests are conducted pairwise between the US and 

other six developed countries (Canada (CN), France (FR), Germany (GE), Japan (JP), China CH), and the UK) 

for 11 industries (Basic Materials (BM), Consumer Discretionary (CD), Consumer Staples (CS), Energy (EN), 

Financials (FI), Health Care (HC), Industrials (IN), Real Estate (RE), Technology (TEC), Telecommunications 

(TEL), and Utilities (UT)). 𝑈𝑆 → 𝑘 indicates Granger causality from the US to the returns of country 𝑘, and 

𝑘 → 𝑈𝑆 indicates Granger causality from country 𝑘 to the US, for each industry. Numbers in bold indicate the 

rejection of the null hypothesis of no Granger causality at the 5% level. One asterisk, “*”, denotes significance 

at the 1% level.  

 

Results in Table 4.3 show that the US exhibit the leading role within each industry. 

From 66 causality tests 𝑈𝑆 → 𝑘, 49 are significant at the 5% level, from which 41 present a 

p-value less than 1%; while from the other 66 causality tests 𝑘 → 𝑈𝑆, only 11 are significant 

 
broadly unchanged, hence we used 𝑀 = 𝑙𝑛(𝑇) and the Barlett kernel as these are the specifications usually 

used in the literature. 
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at the 5% level. This suggests that lagged returns in the US industries may contain relevant 

information to predict the returns of industries of other countries. This is especially visible 

for Japan, the UK, and Canada. 

At the industry level, US Basic Materials (BM) and Energy (EN) show causality to 

all countries at the 1% significance level. This is possibly justified by the type of 

commodities produced by these industries, such as oil, metals, and coal which are highly 

export-oriented and whose shocks have historically led the global economy into a downturn 

(Venditti et al., 2020). The lagged US returns also contain relevant information to predict 

returns of non-US countries for Financials (FI), except for China. This is expected due to the 

high degree of financial sector integration worldwide and the fact that firms in many 

industries rely heavily on financial services and financial intermediaries, therefore, it is 

expected that they have a large impact on companies around the world (Rapach et al., 2015). 

Table 4.4 reports the estimated pairwise Geweke feedback measures within each 

industry. Results indicate that there is a linear dependence between the US and the other 

countries for all the industries. The contemporaneous feedback is the major contributor to 

the total feedback, where the percentages range from 72%, for Utilities (UT) in Japan, to 

99.5%, for Industrials (IN) in France, with an overall average value of 94.1%. These results 

suggest that most markets are highly integrated and that, on average, 94.1% of the return 

variability is transmitted within one week. The level of integration is weaker in Asian 

markets, which present the lowest values for the contemporaneous feedback. 

For all industries the percentage of lagged feedback from the US to non-US 

countries is substantially higher than the feedback in the opposite direction. Therefore, the 

lagged feedback is asymmetrical and runs dominantly from the US to other countries, and 

in most cases is even unidirectional. We highlight the results for the lagged feedbacks from 

the US to Japan, which are significant at a 1% level and show high weights for all industries. 

The lagged feedback to Japan in Utilities, 26%, presents the highest value of lagged feedback 

across all countries and industries. In the opposite direction, the lagged feedbacks from non-

US countries to the US are very marginal and, in most cases, not significant at a 5% level. 

We report a maximum significant relative value of 8.6% (0.005 in absolute terms) from 

China for the Financials Industry (FI).  
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Table 4.4: Geweke feedback measures in the mean 

  BM CD CS EN FI HC IN RE TEC TEL UT 

𝑭𝑼𝑺→𝒌 

CN 0.007* 0.016* 0.004* 0.003 0.003 0.005* 0.004* 0.005* 0.000 0.004* 0.008* 

 1.0% 3.8% 1.9% 0.5% 0.5% 2.7% 0.6% 2.4% 0.0% 3.2% 3.8% 

FR 0.007* 0.003 0.002 0.009* 0.002 0.002 0.001 0.003 0.001 0.000 0.006* 

 2.0% 1.2% 1.5% 2.4% 0.6% 0.9% 0.3% 3.3% 0.2% 0.0% 4.2% 

GE 0.009* 0.009* 0.004* 0.005* 0.002 0.009* 0.003 0.001 0.000 0.001 0.003 

 2.5% 5.1% 6.6% 3.9% 0.7% 5.2% 1.0% 0.9% 0.1% 0.6% 3.3% 

JP 0.012* 0.015* 0.005* 0.012* 0.007* 0.014* 0.020* 0.008* 0.020* 0.005* 0.006* 

 9.7% 10.1% 7.7% 10.4% 7.0% 19.2% 12.1% 15.9% 12.4% 13.9% 26.0% 

CH 0.016* 0.000 0.000 0.009* 0.002 0.002 0.001 0.000 0.000 0.003 0.000 

 12.9% 1.2% 4.2% 10.1% 3.0% 7.4% 3.2% 4.1% 0.8% 8.5% 1.3% 

UK 0.009* 0.008* 0.005* 0.011* 0.005* 0.004* 0.007* 0.009* 0.008* 0.002 0.003 

 1.9% 3.3% 2.5% 1.9% 1.2% 1.5% 2.2% 8.4% 3.9% 1.4% 2.6% 

𝑭𝒌→𝑼𝑺 

CN 0.001 0.001 0.001 0.001 0.000 0.001 0.001 0.000 0.005* 0.003 0.002 

 0.2% 0.2% 0.6% 0.2% 0.0% 0.7% 0.2% 0.1% 1.2% 2.0% 1.1% 

FR 0.000 0.001 0.002 0.000 0.001 0.001 0.000 0.000 0.004* 0.001 0.001 

 0.1% 0.5% 1.1% 0.1% 0.4% 0.4% 0.1% 0.1% 1.6% 0.6% 0.7% 

GE 0.000 0.001 0.002 0.000 0.001 0.001 0.000 0.001 0.004* 0.000 0.000 

 0.0% 0.3% 2.8% 0.4% 0.4% 0.4% 0.1% 0.8% 2.0% 0.2% 0.2% 

JP 0.000 0.003 0.000 0.001 0.002 0.000 0.001 0.001 0.000 0.002 0.000 

 0.2% 1.9% 0.6% 1.0% 1.8% 0.6% 0.4% 1.9% 0.2% 4.5% 2.0% 

CH 0.001 0.000 0.001 0.001 0.005* 0.001 0.001 0.001 0.001 0.001 0.000 

 0.7% 1.5% 6.2% 1.5% 8.6% 5.9% 3.2% 11.1% 5.2% 3.6% 0.6% 

UK 0.000 0.001 0.006* 0.005* 0.002 0.003 0.000 0.000 0.000 0.002 0.000 

 0.0% 0.4% 3.2% 0.9% 0.4% 1.3% 0.2% 0.4% 0.3% 1.1% 0.4% 

𝑭𝑼𝑺⟷𝒌 

CN 0.729* 0.407* 0.195* 0.729* 0.591* 0.170* 0.584* 0.219* 0.397* 0.134* 0.207* 

 98.8% 95.9% 97.5% 99.3% 99.5% 96.6% 99.2% 97.5% 98.8% 94.8% 95.1% 

FR 0.325* 0.259* 0.141* 0.367* 0.354* 0.194* 0.304* 0.095* 0.251* 0.110* 0.142* 

 97.9% 98.3% 97.4% 97.5% 99.0% 98.7% 99.5% 96.5% 98.2% 99.4% 95.1% 

GE 0.366* 0.166* 0.055* 0.122* 0.327* 0.167* 0.339* 0.068* 0.219* 0.115* 0.083* 

 97.5% 94.6% 90.7% 95.7% 98.9% 94.4% 99.0% 98.3% 97.9% 99.2% 96.5% 

JP 0.110* 0.130* 0.064* 0.099* 0.093* 0.059* 0.142* 0.041* 0.140* 0.029* 0.017* 

 90.1% 88.1% 91.7% 88.6% 91.2% 80.2% 87.5% 82.2% 87.4% 81.6% 72.0% 

CH 0.105* 0.033* 0.008* 0.078* 0.052* 0.020* 0.041* 0.009* 0.020* 0.030* 0.025* 

 86.3% 97.4% 89.6% 88.4% 88.4% 86.8% 93.6% 84.7% 94.0% 87.9% 98.1% 

UK 0.451* 0.238* 0.189* 0.569* 0.408* 0.242* 0.292* 0.099* 0.184* 0.162* 0.097* 

 98.0% 96.4% 94.3% 97.2% 98.4% 97.2% 97.7% 91.3% 95.8% 97.6% 97.0% 

𝑭𝑼𝑺,𝒌 

CN 0.738* 0.424* 0.200* 0.734* 0.594* 0.176* 0.589* 0.225* 0.402* 0.141* 0.218* 

FR 0.332* 0.264* 0.145* 0.376* 0.358* 0.196* 0.306* 0.099* 0.256* 0.110* 0.149* 

GE 0.375* 0.175* 0.061* 0.128* 0.330* 0.177* 0.343* 0.069* 0.223* 0.116* 0.086* 

JP 0.122* 0.148* 0.070* 0.111* 0.102* 0.074* 0.162* 0.050* 0.160* 0.036* 0.024* 

CH 0.122* 0.033* 0.009* 0.088* 0.059* 0.023* 0.044* 0.011* 0.022* 0.034* 0.026* 

UK 0.460* 0.247* 0.201* 0.586* 0.415* 0.249* 0.299* 0.109* 0.192* 0.166* 0.100* 

Notes: This table presents the Geweke feedback measures resulting from a bivariate VAR(1) using data from 

03/01/1973 to 12/05/2021. The tests are conducted pairwise between the US and other six developed countries 

(Canada (CN), France (FR), Germany (GE), Japan (JP), China CH), and the UK) for 11 industries (Basic 

Materials (BM), Consumer Discretionary (CD), Consumer Staples (CS), Energy (EN), Financials (FI), Health 

Care (HC), Industrials (IN), Real Estate (RE), Technology (TEC), Telecommunications (TEL) and Utilities 

(UT)). 𝑭𝑼𝑺→𝒌 is the measure of lagged feedback from the US to country 𝑘, 𝑭𝒌→𝑼𝑺 is the measure of lagged 

feedback from country 𝑘 to the US, 𝑭𝑼𝑺⟷𝒌 is the measure of contemporaneous feedback, and 𝑭𝑼𝑺,𝒌 is the 

measure of total feedback. Numbers in bold indicate the rejection of the null of no feedback at the 5% level. 

One asterisk, “*”, denotes significance at the 1% level. Numbers in italic represent the weight of the lagged 

and contemporaneous feedbacks to the total feedback. 
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Given the relevance of US Basic Materials (BM) and Energy (EN) industries 

reported in Table 4.3, we present in Table 4.5 the cross-industry Granger causality tests 

between these two US industries and all industries of other countries.11  

 

Table 4.5: Cross-industry Granger causality in the mean from the US to other countries 

 BM CD CS EN FI HC IN RE TEC TEL UT 

BM 0.001* 0.000* 0.197 0.000* 0.001* 0.004* 0.023 0.000* 0.882 0.000* 0.000* 

EN 0.478 0.000* 0.340 0.004* 0.045 0.020 0.143 0.001* 0.872 0.010* 0.003* 

BM 0.000* 0.080 0.773 0.024 0.007* 0.203 0.020 0.001* 0.412 0.010 0.000* 

EN 0.001* 0.912 0.305 0.000* 0.002* 0.369 0.097 0.001* 0.229 0.213 0.000* 

BM 0.000* 0.000* 0.117 0.001* 0.003* 0.001* 0.000* 0.055 0.510 0.787 0.001* 

EN 0.000* 0.000* 0.083 0.001* 0.008* 0.000* 0.002* 0.199 0.912 0.926 0.003* 

BM 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.001* 0.000* 0.207 0.220 

EN 0.000* 0.011 0.014 0.000* 0.004* 0.001* 0.000* 0.011 0.000* 0.043 0.284 

BM 0.000* 0.006* 0.473 0.000* 0.000* 0.000* 0.000* 0.001* 0.094 0.000* 0.053 

EN 0.000* 0.052 0.531 0.000* 0.000* 0.000* 0.001* 0.000* 0.159 0.000* 0.003* 

BM 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.028 0.130 0.015 

EN 0.008* 0.001* 0.000* 0.000* 0.000* 0.001* 0.000* 0.001* 0.025 0.001* 0.002* 

Notes: This table presents the p-values of the Granger causality test resulting from a bivariate VAR(1) using 

data from 03/01/1973 to 12/05/2021. The tests are conducted pairwise considering the causality from the US 

Basic Materials (BM) and Energy (EN) industries to the industries of other six developed countries (Canada 

(CN), France (FR), Germany (GE), Japan (JP), China CH), and the UK). There are 11 industries of the other 

countries: Basic Materials (BM), Consumer Discretionary (CD), Consumer Staples (CS), Energy (EN), 

Financials (FI), Health Care (HC), Industrials (IN), Real Estate (RE), Technology (TEC), Telecommunications 

(TEL), and Utilities (UT). Numbers in bold indicate the rejection of the null hypothesis of no Granger causality 

at the 5% level. One asterisk, “*”, denotes significance at the 1% level.  

 

From Table 4.5, we can observe that the US returns of Basic Materials (BM) 

Granger cause 50 out of 66 series industry/country series, i.e., causality runs in more than 

75%, while the US returns of Energy (EN) Granger cause 48 series, corresponding to more 

than 72% of the times. These findings are highly plausible since firms in other industries 

rely heavily on commodities and fuels (Venditti et al., 2020; Khalfaoui et al., 2021). Further, 

the lagged returns for commodity- and material-producing sectors placed earlier in the 

production chain are frequently strongly connected to returns of industries positioned later 

in the production chain (Rapach et al., 2015). This outcome is consistent with commodity 

positive price shocks increasing product prices and returns for industries in earlier stages of 

production while reducing profit margins and dropping returns for industries positioned in 

later production phases. Due to the overall economic interdependence, a positive cash flow 

shock in one industry has implications on cash flows in other industries. However, 

 
11 We have verified if, in fact, these two industries presented the most important results for cross-industry 

causality, which was confirmed. For example, the lagged US returns in the US Financial or the Technology 

industry only Granger cause, on average, 5 out of 11 industries. 
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information-processing limitations inhibit investors in other industries from quickly 

adjusting equity prices to the full impact of the cash flows, leading to cross-industry return 

predictability.  

In sum, our findings suggest that the US is the dominant market in terms of 

transmission of information in most industries, except for China. The leading role of the US 

is justified by the US economy being the world’s largest in terms of GDP and an important 

trading partner for many countries. Also, the US financial market exhibits the world’s largest 

market capitalization. According to data from the World Bank (2021), in 2019, the market 

capitalization of listed domestic companies was 33.890 trillion dollars, around 41% of the 

worldwide total. Furthermore, the US market is scrutinized by investors worldwide. For 

instance, the US indexes are often used as a benchmark in the fixed income markets since 

they offer both great breadths of coverage and length of historical data. These high coverage 

and attention from investors and analysts make the macroeconomic fundamentals from the 

US market to impact gradually across international markets (Rizova et al., 2010, and Rapach 

et al., 2013).  

Other possible explanations to the key role of US industries may relate to 

institutional holdings, market share, and trading volume.  

Badrinath et al. (1995) have found that institutional ownership of firms influences 

the lead-lag role of a firm. This relates to the “prudent man” rule that governs the investment 

behaviour of institutional portfolio managers. According to this rule, portfolio managers are 

required to make “prudent” investments. As a result, institutional investors are compelled to 

invest in just a subset of tradable assets. Badrinath et al. (1995) found that when firms are 

owned by institutions, they normally have a leading role over non-institutional firms. 

According to the World Bank (2021), in 2019, in the US market, most firms are 

institutionally owned, which may influence the leading role of this country. 

Generally, new information has a greater influence on industry leaders with a large 

market share. Because of market frictions, this information may not be immediately 

incorporated into the prices of other firms. As a result, there is a lead-lag relationship 

between industry leaders and followers. According to Lo and MacKinlay (1990), Brennan 

et al. (1993), and Hou et al. (2007), this slow transmission of information can be attributed 

to a variety of factors, such as incomplete markets and constrained stock market 

participation, information asymmetries, noise traders, limited investor attention, transaction 

costs, short-sale constraints, legal constraints faced by institutional investors, and other 

forms of market frictions and institutional constraints. 
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Finally, Chordia and Swaminathan (2000) argued that the trading volume is a key 

driver of the lead-lag pattern detected in stock markets, as low-volume stocks tend to adjust 

more slowly to information than high-volume stocks. According to the World Bank (2021), 

the US reported in 2019 a stock trading volume of around 23.192 trillion dollars (the highest 

national value), while China reported 18.248 trillion dollars, Japan 5.097 trillion dollars, the 

UK 2.357 trillion dollars, Canada 1.432 trillion dollars, Germany 1.350 trillion dollars, and 

France, 1.168 trillion dollars. 

 

 

 

4.5.2. Causality and Feedback in Volatility  
 
 

This subsection examines the causal and lead-lag relationships between the 

volatilities of industries from and to the US and other countries (Canada, France, Germany, 

Japan, China, and the UK). The weekly series of volatilities are constructed using the 

standard deviation of daily returns within a week. The metrics are obtained from unrestricted 

and restricted VAR(1).  

 

Table 4.6: Granger causality in volatility 

 BM CD CS EN FI HC IN RE TEC TEL UT 

𝑼𝑺 → 𝑪𝑵 0,000* 0.000* 0.000* 0.000* 0.000* 0.004* 0.000* 0.000* 0.000* 0.000* 0.000* 

𝑪𝑵 → 𝑼𝑺 0.000* 0.000* 0.000* 0.000* 0.000* 0.012 0.000* 0.060 0.000* 0.000* 0.000* 

𝑼𝑺 → 𝑭𝑹 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 

𝑭𝑹 → 𝑼𝑺 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 

𝑼𝑺 → 𝑮𝑬 0.000* 0.000* 0.000* 0.038 0.000* 0.000* 0.000* 0.465 0.000* 0.000* 0.000* 

𝑮𝑬 → 𝑼𝑺 0.000* 0.001* 0.000* 0.000* 0.000* 0.000* 0.000* 0.367 0.000* 0.000* 0.000* 

𝑼𝑺 → 𝑱𝑷 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.002* 

𝑱𝑷 → 𝑼𝑺 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.003* 0.000* 0.001* 0.640 

𝑼𝑺 → 𝑪𝑯 0.000* 0.001* 0.056 0.000* 0.000* 0.881 0.001* 0.494 0.037 0.094 0.000* 

𝑪𝑯 → 𝑼𝑺 0.000* 0.000* 0.256 0.000* 0.000* 0.843 0.000* 0.423 0.432 0.000* 0.000* 

𝑼𝑺 → 𝑼𝑲 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 

𝑼𝑲 → 𝑼𝑺 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 

Notes: This table presents the p-values of the Granger causality test resulting from a bivariate VAR(1) applied 

to weekly volatilities using data from 03/01/1973 to 12/05/2021. The tests are conducted pairwise between the 

US and other six developed countries (Canada (CN), France (FR), Germany (GE), Japan (JP), China CH), and 

the UK) for 11 industries (Basic Materials (BM), Consumer Discretionary (CD), Consumer Staples (CS), 

Energy (EN), Financials (FI), Health Care (HC), Industrials (IN), Real Estate (RE), Technology (TEC), 

Telecommunications (TEL), and Utilities (UT)). 𝑈𝑆 → 𝑘 indicates Granger causality from the US to the returns 

of country 𝑘, and 𝑘 → 𝑈𝑆 indicates Granger causality from country 𝑘 to the US, for each industry. Numbers 

in bold indicate the rejection of the null hypothesis of no Granger causality at the 5% level. One asterisk, “*”, 

denotes significance at the 1% level. 
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Table 4.6 reports the p-values of the Granger causality tests for bivariate VAR(1) 

applied to weekly standard deviations of eleven industries. As expected, causality in 

volatility is more pronounced than causality in the mean. Only 12 out of 132 tests are not 

significant at the 5% level, and for the 𝑈𝑆 → 𝑘 tests only 5 are not statistically significant at 

the 5% level. Hence, the causal relationship from the US is very strong, with most statistics 

showing a p-value lower than 1%. Thus, the US volatility is an important leading indicator 

of the industry volatility in other countries. However, the causal relationship is less 

asymmetric than in the mean. For instance, for France and the UK, there is causality in both 

directions for all industries with a significance level of 1%. Also, Canadian and Japanese 

volatilities cause the US volatilities, except for Real Estate (RE) and Utilities (UT). In 

Germany, there is causality from and to the US except for Real Estate (RE). Once again, 

China is the country that presents the lowest number of significant causal relationships (in 

both directions), nevertheless, the volatility in the US Granger causes 7 out of 11 Chinese 

industries. 

The pairwise relations in volatility between the US and non-US countries are further 

analysed by the Geweke feedback measures reported in Table 4.7.  

As expected, feedback measures applied to volatilities are more significant than the 

correspondent figures for returns (see Table 4.4). But once again, the percentage lagged 

feedback in the volatility from the US to the other six countries is, in general, higher than 

the feedback in the opposite direction. The only exception is China, where the lagged 

feedback is higher for most industries than the feedback from the US, with an average value 

of 21%, in relative terms (average value across Chinese industries). This suggests that 

information on volatility flows mainly from the Chinese market to the US market. This 

situation also appears in some industries for France, Germany, and the UK. Nevertheless, 

results show that lagged feedback in volatility is globally asymmetric and predominantly 

dominated by the US.  
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Table 4.7: Geweke feedback measures in volatility 

  BM CD CS EN FI HC IN RE TEC TEL UT 

𝑭𝑼𝑺→𝒌 

CN 0.039* 0.090* 0.068* 0.031* 0.086* 0.003* 0.064* 0.010* 0.033* 0.043* 0.068* 

 8.8% 27.4% 26.9% 5.3% 17.1% 3.6% 14.4% 13.5% 11.7% 24.2% 27.9% 

FR 0.093* 0.075* 0.054* 0.063* 0.084* 0.059* 0.079* 0.052* 0.064* 0.007* 0.014* 

 36.4% 35.3% 39.1% 24.3% 31.0% 33.5% 33.2% 46.4% 37.4% 7.6% 10.0% 

GE 0.084* 0.060* 0.029* 0.002 0.079* 0.047* 0.060* 0.000 0.007* 0.058* 0.038* 

 28.6% 49.1% 38.9% 2.0% 29.3% 23.5% 21.8% 2.9% 6.8% 30.3% 30.6% 

JP 0.042* 0.038* 0.029* 0.034* 0.030* 0.030* 0.041* 0.014* 0.041* 0.013* 0.004* 

 26.8% 26.0% 24.9% 37.8% 28.6% 23.3% 26.1% 33.6% 31.7% 35.4% 9.0% 

CH 0.011* 0.004* 0.001 0.011* 0.016* 0.000 0.004* 0.000 0.002 0.001 0.017* 

 14.9% 14.7% 14.1% 21.7% 31.4% 0.1% 12.5% 7.7% 13.8% 5.0% 27.5% 

UK 0.037* 0.042* 0.035* 0.067* 0.101* 0.046* 0.062* 0.084* 0.035* 0.040* 0.039* 

 12.6% 22.1% 17.9% 18.8% 31.9% 22.7% 31.1% 41.0% 29.6% 21.6% 28.0% 

𝑭𝒌→𝑼𝑺 

CN 0.034* 0.012* 0.007* 0.026* 0.010* 0.003* 0.014* 0.001 0.017* 0.022* 0.017* 

 7.7% 3.6% 2.6% 4.4% 2.0% 2.8% 3.3% 1.9% 5.9% 12.8% 7.0% 

FR 0.022* 0.025* 0.012* 0.027* 0.018* 0.018* 0.014* 0.005* 0.026* 0.035* 0.056* 

 8.5% 11.7% 9.0% 10.2% 6.6% 10.1% 6.0% 4.3% 15.2% 37.5% 40.7% 

GE 0.018* 0.004* 0.007* 0.028* 0.013* 0.013* 0.024* 0.000 0.026* 0.037* 0.013* 

 6.2% 3.4% 9.0% 33.5% 4.9% 6.5% 8.8% 4.5% 25.0% 19.4% 10.6% 

JP 0.009* 0.015* 0.012* 0.009* 0.006* 0.007* 0.014* 0.004* 0.023* 0.004* 0.000 

 5.9% 10.5% 10.0% 10.2% 5.5% 5.5% 8.7% 8.4% 17.7% 10.9% 0.2% 

CH 0.015* 0.006* 0.001 0.016* 0.015* 0.000 0.013* 0.000 0.000 0.010* 0.022* 

 18.8% 20.9% 5.0% 31.2% 29.4% 0.1% 37.0% 10.5% 2.0% 43.2% 36.8% 

UK 0.033* 0.024* 0.016* 0.043* 0.023* 0.018* 0.007* 0.049* 0.021* 0.041* 0.028* 

 11.3% 12.3% 8.3% 12.0% 7.2% 9.2% 3.3% 23.8% 17.5% 22.1% 19.9% 

𝑭𝑼𝑺⟷𝒌 

CN 0.371* 0.228* 0.179* 0.521* 0.407* 0.084* 0.365* 0.063* 0.234* 0.111* 0.158* 

 83.5% 69.0% 70.5% 90.2% 80.9% 93.6% 82.3% 84.6% 82.5% 63.0% 65.2% 

FR 0.141* 0.112* 0.072* 0.171* 0.169* 0.099* 0.144* 0.056* 0.081* 0.051* 0.067* 

 55.1% 53.0% 51.9% 65.5% 62.4% 56.4% 60.9% 49.3% 47.4% 54.9% 49.3% 

GE 0.192* 0.058* 0.038* 0.055* 0.179* 0.140* 0.190* 0.007* 0.071* 0.097* 0.072* 

 65.1% 47.5% 52.1% 64.4% 65.9% 70.0% 69.4% 92.6% 68.2% 50.4% 58.8% 

JP 0.105* 0.093* 0.077* 0.047* 0.070* 0.093* 0.103* 0.025* 0.065* 0.020* 0.039* 

 67.2% 63.5% 65.1% 52.0% 65.9% 71.2% 65.2% 58.0% 50.6% 53.7% 90.8% 

CH 0.051* 0.019* 0.008* 0.024* 0.020* 0.017* 0.018* 0.002 0.011* 0.012* 0.021* 

 66.3% 64.4% 80.9% 47.2% 39.3% 99.9% 50.5% 81.8% 84.3% 51.8% 35.7% 

UK 0.223* 0.126* 0.145* 0.245* 0.192* 0.137* 0.130* 0.072* 0.062* 0.104* 0.073* 

 76.1% 65.6% 73.8% 69.2% 60.9% 68.2% 65.6% 35.2% 52.9% 56.3% 52.1% 

𝑭𝑼𝑺,𝒌 

CN 0.445* 0.330* 0.254* 0.577* 0.503* 0.090* 0.443* 0.075* 0.283* 0.176* 0.242* 

FR 0.257* 0.211* 0.138* 0.261* 0.272* 0.176* 0.237* 0.113* 0.170* 0.093* 0.137* 

GE 0.295* 0.122* 0.073* 0.085* 0.271* 0.200* 0.274* 0.007* 0.104* 0.192* 0.123* 

JP 0.156* 0.147* 0.118* 0.091* 0.106* 0.130* 0.158* 0.043* 0.128* 0.037* 0.043* 

CH 0.077* 0.029* 0.010* 0.050* 0.050* 0.017* 0.036* 0.002 0.013* 0.022* 0.060* 

UK 0.294* 0.192* 0.196* 0.354* 0.316* 0.201* 0.199* 0.206* 0.117* 0.185* 0.141* 

Notes: This table presents the Geweke feedback measures resulting from a bivariate VAR(1) applied to weekly 

volatilities using data from 03/01/1973 to 12/05/2021. The tests are conducted pairwise between the US and 

other six developed countries (Canada (CN), France (FR), Germany (GE), Japan (JP), China CH), and the UK) 

for 11 industries (Basic Materials (BM), Consumer Discretionary (CD), Consumer Staples (CS), Energy (EN), 

Financials (FI), Health Care (HC), Industrials (IN), Real Estate (RE), Technology (TEC), Telecommunications 

(TEL) and Utilities (UT)). 𝑭𝑼𝑺→𝒌 is the measure of lagged feedback from the US to country 𝑘, 𝑭𝒌→𝑼𝑺 is the 

measure of lagged feedback from country 𝑘 to the US, 𝑭𝑼𝑺⟷𝒌 is the measure of contemporaneous feedback, 
and 𝑭𝑼𝑺,𝒌 is the measure of total feedback. Numbers in bold indicate the rejection of the null of no feedback at 

the 5% level. One asterisk, “*”, denotes significance at the 1% level. Numbers in italic represent the weight of 

the lagged and contemporaneous feedbacks to the total feedback. 
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The contemporaneous feedback is the main contributor to the total feedback, where 

percentages range from 35.2%, for the Real Estate (RE) in the UK, to 99.9%, for the Health 

Care (HC) in China, with a global average value of 65%. These results suggest that most 

markets are integrated and that, on average, 65% of the volatility is communicated within 

one week.  

At the industry level, we highlight that the Basic Materials (BM), Energy (EN), and 

Financials (FI) industries report high levels of feedback transmission. This is justified by 

these industries containing the largest companies in the world where volatility shocks are 

more rapidly spread out (World Bank, 2021). 

 

 

4.5.3. Causality and Feedback during Expansions and Recessions  
 

 

This subsection performs an analysis on causality and feedback during expansion 

and recession periods in the US. These periods are identified using the NBER business cycle 

classification. Table 4.8 reports the p-values of Granger causality tests. 

The transmission of information mainly flows from the US to other countries during 

expansion and recession periods, but it is visibly less pronounced during expansion periods, 

although the US continues to dominate other countries during expansionary periods. The 

decrease in causality extends across all countries. For instance, the US returns only Granger 

cause the Canadian returns in less than half of the industries, while, for the full sample, 

Granger cause Canadian returns in 10 out of 11 industries. A similar situation occurs for 

Germany and the UK, where the US returns only Granger cause 3 and 6 industries, 

respectively. The exception to this pattern is Japan, for which the US returns Granger cause 

most industry returns in expansion and recession periods. The differences in the causal 

relationships between countries during expansions and recessions are notorious, implying 

that more information transmission occurs during recession periods.  
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Table 4.8: Granger causality in the mean during expansions and recessions 

 BM CD CS EN FI HC IN RE TEC TEL UT 

Expansions 

𝑼𝑺 → 𝑪𝑵 0.059 0.000* 0.060 0.556 0.422 0.312 0.756 0.054 0.754 0.021 0.059 
𝑪𝑵 → 𝑼𝑺 0.648 0.347 0.982 0.041 0.731 0.034 0.381 0.781 0.133 0.014 0.648 

𝑼𝑺 → 𝑭𝑹 0.072 0.502 0.627 0.004* 0.255 0.805 0.547 0.645 0.884 0.844 0.072 

𝑭𝑹 → 𝑼𝑺 0.239 0.964 0.588 0.261 0.208 0.784 0.768 0.869 0.004* 0.424 0.239 

𝑼𝑺 → 𝑮𝑬 0.006* 0.301 0.042 0.937 0.948 0.057 0.252 0.926 0.488 0.498 0.006* 
𝑮𝑬 → 𝑼𝑺 0.320 0.185 0.393 0.437 0.093 0.310 0.373 0.592 0.000* 0.246 0.320 

𝑼𝑺 → 𝑱𝑷 0.001* 0.000* 0.032 0.000* 0.028 0.000* 0.000* 0.024* 0.000* 0.016 0.001* 

𝑱𝑷 → 𝑼𝑺 0.122 0.002* 0.038 0.007* 0.553 0.162 0.369 0.764 0.917 0.114 0.122 

𝑼𝑺 → 𝑪𝑯 0.000* 0.830 0.703 0.001* 0.114 0.222 0.324 0.712 0.674 0.058 0.000* 

𝑪𝑯 → 𝑼𝑺 0.617 0.534 0.424 0.020 0.051 0.171 0.752 0.555 0.189 0.801 0.617 

𝑼𝑺 → 𝑼𝑲 0.010 0.009* 0.031 0.000* 0.234 0.118 0.138 0.091 0.000* 0.487 0.010 

𝑼𝑲 → 𝑼𝑺 0.369 0.811 0.193 0.001* 0.441 0.408 0.859 0.130 0.275 0.276 0.369 

Recessions 

𝑼𝑺 → 𝑪𝑵 0,020 0,000* 0,069 0.022 0.056 0.005* 0.017 0.101 0.894 0.034 0.037 

𝑪𝑵 → 𝑼𝑺 0.071 0.568 0.000* 0.641 0.408 0.364 0.680 0.360 0.013 0.227 0.172 

𝑼𝑺 → 𝑭𝑹 0.001* 0.095 0.642 0.016 0.001* 0.674 0.087 0.002* 0.208 0.970 0.003* 

𝑭𝑹 → 𝑼𝑺 0.768 0.017 0.002* 0.929 0.279 0.033 0.604 0.873 0.318 0.441 0.167 

𝑼𝑺 → 𝑮𝑬 0.001* 0.000* 0.372 0.001* 0.005* 0.006* 0.098 0.203 0.977 0.013 0.017 
𝑮𝑬 → 𝑼𝑺 0.428 0.941 0.073 0.569 0.967 0.260 0.957 0.759 0.554 0.849 0.551 

𝑼𝑺 → 𝑱𝑷 0.000* 0.000* 0.027 0.001* 0.000* 0.000* 0.000* 0.000* 0.000* 0.008* 0.050 

𝑱𝑷 → 𝑼𝑺 0.477 0.795 0.353 0.329 0.018 0.618 0.837 0.678 0.529 0.284 0.800 

𝑼𝑺 → 𝑪𝑯 0.000* 0.279 0.397 0.004* 0.197 0.131 0.106 0.110 0.816 0.047 0.917 

𝑪𝑯 → 𝑼𝑺 0.030 0.569 0.308 0.782 0.006* 0.692 0.037 0.005* 0.758 0.116 0.104 

𝑼𝑺 → 𝑼𝑲 0.003* 0.009* 0.047 0.015 0.024 0.040 0.014 0.000* 0.058 0.012 0.126 

𝑼𝑲 → 𝑼𝑺 0.590 0.989 0.001* 0.346 0.274 0.007* 0.922 0.689 0.605 0.101 0.660 

Notes: This table presents the p-values of the Granger causality test resulting from a bivariate VAR(1) applied 

to weekly returns using data in periods identified as expansions and recessions in the US according to the 

NBER business cycle classification (https://www.nber.org/research/data/us-business-cycle-expansions-and-

contractions). The tests are conducted pairwise between the US and other six developed countries (Canada 

(CN), France (FR), Germany (GE), Japan (JP), China CH), and the UK) for 11 industries (Basic Materials 

(BM), Consumer Discretionary (CD), Consumer Staples (CS), Energy (EN), Financials (FI), Health Care (HC), 

Industrials (IN), Real Estate (RE), Technology (TEC), Telecommunications (TEL) and Utilities (UT)). 𝑈𝑆 →
𝑘 indicates Granger causality from the US to the returns of country 𝑘, and 𝑘 → 𝑈𝑆 indicates Granger causality 

from country 𝑘 to the US, for each industry. Numbers in bold indicate the rejection of the null hypothesis of 

no Granger causality at the 5% level. One asterisk, “*”, denotes significance at the 1% level.  

 
Table 4.9 and Table 4.10 show the feedback measures during expansion and 

recession periods, respectively.  Total feedback is lower during expansions periods. The total 

feedback during expansions is on average 0.166, while during recessions, it is on average 

0.316. During recessions, the average unidirectional feedback is also higher than during 

expansions (5.57% and 2.02%, respectively). However, there is a different pattern in the 

contemporaneous feedback. Despite remaining the dominant contributor to the total 

feedback, we observe that this feedback is higher during expansions than during recessions, 

in relative terms. The average relative contemporaneous feedback during expansions is 96%. 

It is 89% during recessions and 94% for the full sample period. This indicates that during an 
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expansionary period, there is an increase of 2% in the transmission of information 

communicated between markets within one week in relation to a recession period.  

In conclusion, we observe that, during a recession, the linear dependence increases 

but the time that countries take to adjust to new information is higher than during an 

expansion, suggesting that investors react with a larger delay. Arguably, during a recession, 

the levels of uncertainty tend to be higher, and the confidence of investors on the information 

signals tends to decrease. 
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Table 4.9: Geweke feedback measures in the mean during expansions 

  BM CD CS EN FI HC IN RE TEC TEL UT 

𝑭𝑼𝑺→𝒌 

CN 0.002 0.007* 0.002 0.000 0.000 0.000 0.000 0.002 0.000 0.002 0.005* 

 0.2% 1.9% 0.8% 0.0% 0.1% 0.3% 0.0% 1.0% 0.0% 2.0% 3.9% 

FR 0.002 0.000 0.000 0.004* 0.001 0.000 0.000 0.000 0.000 0.000 0.001 

 0.5% 0.1% 0.1% 1.3% 0.2% 0.0% 0.1% 0.2% 0.0% 0.0% 1.1% 

GE 0.004* 0.000 0.002 0.000 0.000 0.002 0.001 0.000 0.000 0.000 0.000 

 1.2% 0.3% 3.6% 0.0% 0.0% 1.0% 0.2% 0.0% 0.1% 0.2% 0.9% 

JP 0.005* 0.006* 0.002 0.008* 0.002 0.009* 0.011* 0.002 0.014* 0.003 0.004 

 5.2% 5.6% 4.1% 9.7% 3.5% 14.8% 8.6% 9.7% 9.6% 8.6% 18.0% 

CH 0.010* 0.000 0.000 0.006* 0.001 0.001 0.000 0.000 0.000 0.002 0.000 

 11.4% 0.1% 1.0% 7.7% 4.3% 5.1% 1.6% 1.5% 0.7% 10.4% 1.3% 

UK 0.003* 0.003* 0.002* 0.006 0.001 0.001 0.001 0.001 0.007* 0.000 0.000 

 0.9% 1.9% 1.3% 1.3% 0.2% 0.5% 0.5% 2.5% 4.6% 0.2% 0.5% 

𝑭𝒌→𝑼𝑺 

CN 0.000 0.000 0.000 0.002 0.000 0.002 0.000 0.000 0.001 0.003 0.001 

 0.0% 0.1% 0.0% 0.3% 0.0% 1.2% 0.1% 0.0% 0.3% 2.3% 0.4% 

FR 0.001 0.000 0.000 0.001 0.001 0.000 0.000 0.000 0.004 0.000 0.008* 

 0.2% 0.0% 0.1% 0.2% 0.3% 0.0% 0.0% 0.0% 1.9% 0.3% 7.2% 

GE 0.000 0.001 0.000 0.000 0.001 0.000 0.000 0.000 0.006* 0.001 0.000 

 0.2% 0.5% 0.6% 0.5% 0.5% 0.3% 0.1% 0.4% 3.6% 0.6% 0.5% 

JP 0.001 0.004* 0.002 0.003* 0.000 0.001 0.000 0.000 0.000 0.001 0.000 

 1.2% 3.8% 3.8% 4.3% 0.3% 1.6% 0.3% 0.2% 0.0% 3.7% 2.1% 

CH 0.000 0.000 0.000 0.003 0.002 0.001 0.000 0.000 0.001 0.000 0.001 

 0.1% 0.8% 4.3% 3.5% 6.5% 6.4% 0.2% 3.8% 6.4% 0.2% 7.2% 

UK 0.000 0.000 0.001 0.005* 0.000 0.000 0.000 0.001 0.001 0.001 0.000 

 0.1% 0.0% 0.5% 1.0% 0.1% 0.1% 0.0% 2.0% 0.4% 0.4% 0.0% 

𝑭𝑼𝑺⟷𝒌 

CN 0.680* 0.374* 0.192* 0.577* 0.494* 0.167* 0.502* 0.176* 0.398* 0.118* 0.126* 

 99.7% 98.0% 99.2% 99.6% 99.9% 98.5% 99.9% 99.0% 99.7% 95.7% 95.7% 

FR 0.279* 0.213* 0.122* 0.279* 0.268* 0.180* 0.228* 0.049* 0.202* 0.101* 0.102* 

 99.2% 99.9% 99.8% 98.5% 99.5% 100% 99.9% 99.8% 98.1% 99.7% 91.7% 

GE 0.289* 0.150* 0.052* 0.062* 0.248* 0.168* 0.261* 0.035* 0.165* 0.104* 0.045* 

 98.6% 99.1% 95.8% 99.5% 99.5% 98.7% 99.6% 99.6% 96.3% 99.2% 98.7% 

JP 0.089* 0.103* 0.049* 0.067* 0.061* 0.049* 0.121* 0.022* 0.133* 0.028* 0.017* 

 93.7% 90.6% 92.1% 86.0% 96.2% 83.6% 91.1% 90.2% 90.3% 87.7% 79.9% 

CH 0.077* 0.024* 0.007* 0.064* 0.024* 0.012* 0.027* 0.004* 0.012* 0.014* 0.017* 

 88.5% 99.2% 94.8% 88.8% 89.3% 88.4% 98.2% 94.8% 92.9% 89.4% 91.5% 

UK 0.349* 0.167* 0.169* 0.460* 0.313* 0.231* 0.206* 0.051* 0.139* 0.138* 0.069* 

 99.0% 98.1% 98.3% 97.6% 99.7% 99.4% 99.5% 95.5% 95.0% 99.4% 99.5% 

𝑭𝑼𝑺,𝒌 

CN 0.682* 0.382* 0.194* 0.580* 0.495* 0.170* 0.503* 0.178* 0.399* 0.124* 0.131* 

FR 0.281* 0.213* 0.122* 0.284* 0.270* 0.181* 0.228* 0.049* 0.206* 0.101* 0.111* 

GE 0.293* 0.152* 0.054* 0.062* 0.249* 0.170* 0.262* 0.035* 0.172* 0.105* 0.046* 

JP 0.095* 0.114* 0.053* 0.078* 0.063* 0.058* 0.132* 0.025* 0.147* 0.032* 0.022* 

CH 0.087* 0.024* 0.007* 0.072* 0.027* 0.014* 0.028* 0.004* 0.013* 0.016* 0.019* 

UK 0.352* 0.170* 0.171* 0.472* 0.314* 0.232* 0.207* 0.053* 0.146* 0.139* 0.070* 

Notes: This table presents the Geweke feedback measures resulting from a bivariate VAR(1) applied to weekly 
returns using data in periods identified as expansions in the US according to the NBER business cycle 
classification (https://www.nber.org/research/data/us-business-cycle-expansions-and-contractions). The tests 
are conducted pairwise between the US and other six developed countries (Canada (CN), France (FR), 
Germany (GE), Japan (JP), China CH), and the UK) for 11 industries (Basic Materials (BM), Consumer 
Discretionary (CD), Consumer Staples (CS), Energy (EN), Financials (FI), Health Care (HC), Industrials (IN), 
Real Estate (RE), Technology (TEC), Telecommunications (TEL) and Utilities (UT)). 𝑭𝑼𝑺→𝒌 is the measure 
of lagged feedback from the US to country 𝑘, 𝑭𝒌→𝑼𝑺 is the measure of lagged feedback from country 𝑘 to the 
US, 𝑭𝑼𝑺⟷𝒌 is the measure of contemporaneous feedback, and 𝑭𝑼𝑺,𝒌 is the measure of total feedback. Numbers 
in bold indicate the rejection of the null of no feedback at the 5% level. One asterisk, “*”, denotes significance 
at the 1% level. Numbers in italic represent the weight of the lagged and contemporaneous feedbacks to the 
total feedback. 
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Table 4.10: Geweke feedback measures in the mean during recessions 

  BM CD CS EN FI HC IN RE TEC TEL UT 

𝑭𝑼𝑺→𝒌 

CN 0.015 0.039* 0.009 0.014 0.010 0.021* 0.015 0.007 0.000 0.012 0.012 

 1.8% 7.7% 3.8% 1.4% 1.3% 10.9% 1.9% 2.3% 0.0% 5.9% 2.7% 

FR 0.030* 0.008 0.001 0.016 0.030* 0.000 0.008 0.026* 0.004 0.000 0.024 

 6.6% 2.0% 0.3% 2.7% 5.0% 0.2% 1.6% 11.9% 1.1% 0.0% 9.8% 

GE 0.028* 0.040* 0.002 0.030* 0.022* 0.020* 0.007 0.004 0.000 0.017 0.016 

 4.6% 17.1% 2.9% 10.3% 4.0% 12.1% 1.4% 2.5% 0.0% 11.3% 7.1% 

JP 0.050* 0.038* 0.013 0.028* 0.043* 0.035* 0.038* 0.033* 0.039* 0.019* 0.010 

 22.4% 15.6% 10.6% 13.1% 16.0% 25.6% 16.8% 22.3% 20.7% 37.6% 31.2% 

CH 0.039* 0.003 0.002 0.022* 0.005 0.006 0.007 0.007 0.000 0.011 0.000 

 17.3% 4.8% 10.9% 15.8% 2.1% 12.4% 6.6% 11.6% 0.2% 10.7% 0.0% 

UK 0.023* 0.019* 0.011 0.016 0.014 0.011 0.016 0.040* 0.010 0.017 0.006 

 3.3% 4.3% 3.8% 2.1% 2.3% 3.9% 2.8% 16.3% 2.6% 6.4% 2.9% 

𝑭𝒌→𝑼𝑺 

CN 0.009 0.001 0.036* 0.001 0.002 0.002 0.000 0.002 0.017 0.004 0.005 

 1.1% 0.2% 15.2% 0.1% 0.2% 1.2% 0.1% 0.7% 4.1% 1.9% 1.2% 

FR 0.000 0.015 0.026* 0.000 0.003 0.012 0.001 0.000 0.003 0.002 0.005 

 0.1% 4.1% 12.2% 0.0% 0.5% 5.6% 0.1% 0.0% 0.7% 1.0% 2.1% 

GE 0.002 0.000 0.009 0.001 0.000 0.003 0.000 0.000 0.001 0.000 0.001 

 0.3% 0.0% 11.7% 0.3% 0.0% 2.1% 0.0% 0.1% 0.2% 0.1% 0.4% 

JP 0.001 0.000 0.002 0.003 0.015 0.001 0.000 0.000 0.001 0.003 0.000 

 0.6% 0.1% 1.9% 1.2% 5.6% 0.5% 0.1% 0.3% 0.6% 6.1% 0.5% 

CH 0.013 0.001 0.003 0.000 0.021* 0.000 0.012 0.022* 0.000 0.007 0.007 

 5.7% 1.3% 15.8% 0.1% 9.6% 0.9% 11.1% 35.7% 0.4% 6.7% 11.9% 

UK 0.001 0.000 0.031* 0.002 0.003 0.020* 0.000 0.000 0.001 0.007 0.001 

 0.1% 0.0% 10.9% 0.3% 0.5% 6.9% 0.0% 0.2% 0.2% 2.8% 0.2% 

𝑭𝑼𝑺⟷𝒌 

CN 0.800* 0.474* 0.190* 0.974* 0.774* 0.170* 0.772* 0.316* 0.385* 0.190* 0.423* 

 97.2% 92.2% 81.0% 98.5% 98.5% 87.9% 98.0% 97.0% 95.9% 92.2% 96.2% 

FR 0.432* 0.353* 0.188* 0.554* 0.565* 0.210* 0.500* 0.194* 0.403* 0.154* 0.214* 

 93.4% 93.9% 87.6% 97.3% 94.4% 94.2% 98.3% 88.1% 98.3% 99.0% 88.0% 

GE 0.567* 0.194* 0.064* 0.256* 0.523* 0.143* 0.524* 0.171* 0.479* 0.131* 0.201* 

 95.1% 82.9% 85.4% 89.4% 96.0% 85.8% 98.6% 97.3% 99.8% 88.6% 92.4% 

JP 0.174* 0.207* 0.109* 0.179* 0.213* 0.102* 0.188* 0.115* 0.147* 0.029* 0.023* 

 77.0% 84.3% 87.5% 85.6% 78.4% 73.9% 83.2% 77.4% 78.7% 56.3% 68.3% 

CH 0.174* 0.062* 0.013* 0.119* 0.189* 0.043* 0.088* 0.032* 0.063* 0.083* 0.054* 

 77.0% 93.9% 73.3% 84.1% 88.3% 86.8% 82.3% 52.7% 99.4% 82.6% 88.1% 

UK 0.670* 0.413* 0.242* 0.735* 0.594* 0.259* 0.562* 0.208* 0.363* 0.241* 0.212* 

 96.5% 95.7% 85.3% 97.6% 97.2% 89.2% 97.2% 83.6% 97.2% 90.8% 96.8% 

𝑭𝑼𝑺,𝒌 

CN 0.824* 0.515* 0.235* 0.989* 0.786* 0.194* 0.788* 0.326* 0.402* 0.207* 0.440* 

FR 0.463* 0.376* 0.215* 0.569* 0.599* 0.223* 0.509* 0.220* 0.410* 0.156* 0.244* 

GE 0.596* 0.234* 0.075* 0.287* 0.544* 0.167* 0.531* 0.176* 0.480* 0.147* 0.217* 

JP 0.225* 0.245* 0.124* 0.210* 0.271* 0.138* 0.227* 0.149* 0.187* 0.051* 0.033* 

CH 0.226* 0.066* 0.018* 0.142* 0.214* 0.050* 0.107* 0.060* 0.063* 0.100* 0.061* 

UK 0.694* 0.431* 0.283* 0.753* 0.611* 0.290* 0.578* 0.249* 0.374* 0.265* 0.218* 

Notes: This table presents the Geweke feedback measures resulting from a bivariate VAR(1) applied to weekly 
returns using data in periods identified as recessions in the US according to the NBER business cycle 
classification (https://www.nber.org/research/data/us-business-cycle-expansions-and-contractions). The tests 
are conducted pairwise between the US and other six developed countries (Canada (CN), France (FR), 
Germany (GE), Japan (JP), China CH), and the UK) for 11 industries (Basic Materials (BM), Consumer 
Discretionary (CD), Consumer Staples (CS), Energy (EN), Financials (FI), Health Care (HC), Industrials (IN), 
Real Estate (RE), Technology (TEC), Telecommunications (TEL) and Utilities (UT)). 𝑭𝑼𝑺→𝒌 is the measure 
of lagged feedback from the US to country 𝑘, 𝑭𝒌→𝑼𝑺 is the measure of lagged feedback from country 𝑘 to the 
US, 𝑭𝑼𝑺⟷𝒌 is the measure of contemporaneous feedback, and 𝑭𝑼𝑺,𝒌 is the measure of total feedback. Numbers 
in bold indicate the rejection of the null of no feedback at the 5% level. One asterisk, “*”, denotes significance 
at the 1% level. Numbers in italic represent the weight of the lagged and contemporaneous feedbacks to the 
total feedback. 
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4.5.4. Causality in Distribution 
 
 

This subsection examines Granger causality in distribution, using the procedures 

proposed by Candelon and Tokpavi (2016).  

Table 4.11 shows the p-values for the tests applied to the left and right tails of the 

distribution of returns. The tests in the left tail are conducted considering 𝛼 = 1%, 5% and 

10%, while the tests in the right tail consider  𝛼 = 90%, 95% and 99%. 

For the left-tail of the distribution, there is causality from US industries to other 

countries, at a 5% significance level, in 32 industries, while causality from other countries 

to the US happens in 22 industries. Japan is the country that exhibits the highest level of 

reaction to information coming from the US (7 Japanese industries are Granger caused by 

the corresponding US industries, at a 1% significance level). For the other countries, the 

number of industries that cause and are caused by US returns are almost always not very 

different.  At the industry level, the Technology (TEC) industry is the one that presents more 

significant causalities between the US and other countries 

Results on the causality in the right tail reveal less causality. Japan and Canada are 

the countries that exhibit the highest number of significant causalities from and to the US.   

Table 4.12 reports the p-values for the left and right tails of the distribution in the 

volatilities. Generally speaking, in the left tail of the distribution causality is low, mainly 

coming from the US to the other countries. On average, the US leads 2 out of 11 industries 

for each country. This evidence suggests a small information transmission when volatility is 

low across economies. However, causality is higher in the right tail of the distribution, and 

mainly flows from the US to other countries. For instance, in France and Germany, 8 out of 

11 industries react significantly to high volatilities in the US industries. In the case of Canada 

and the UK, these results also show that other countries do not timely incorporate high 

volatility shocks that affect the US industries. 
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Table 4.11: Granger causality in distribution of returns  

 BM CD CS EN FI HC IN RE TEC TEL UT 

Left tail 

𝑼𝑺 → 𝑪𝑵 0.000* 0.794 0.776 0.002* 0.373 0.581 0.225 0.563 0.036 0.022 0.027 

 𝑪𝑵 → 𝑼𝑺 0.121 0.736 0.063 0.972 0.002* 0.032 0.359 0.001* 0.000* 0.684 0.172 

𝑼𝑺 → 𝑭𝑹 0.855 0.005* 0.376 0.005* 0.692 0.000* 0.000* 0.835 0.000* 0.547 0.521 

𝑭𝑹 → 𝑼𝑺 0.084 0.000* 0.014 0.365 0.785 0.628 0.006* 0.000* 0.047 0.969 0.653 

𝑼𝑺 → 𝑮𝑬 0.000* 0.000* 0.701 0.542 0.219 0.000* 0.000* 0.686 0.192 0.525 0.035 

𝑮𝑬 → 𝑼𝑺 0.000* 0.058 0.000* 0.329 0.751 0.059 0.744 0.175 0.000* 0.000* 0.362 

𝑼𝑺 → 𝑱𝑷 0.009* 0.774 0.180 0.000* 0.001* 0.000* 0.112 0.011 0.001* 0.709 0.001* 

𝑱𝑷 → 𝑼𝑺 0.575 0.287 0.149 0.816 0.145 0.676 0.065 0.001* 0.000* 0.200 0.690 

𝑼𝑺 → 𝑪𝑯 0.000* 0.031 0.461 0.045 0.001* 0.027 0.721 0.704 0.555 0.213 0.902 

𝑪𝑯 → 𝑼𝑺 0.256 0.441 0.541 0.167 0.524 0.021 0.996 0.169 0.660 0.393 0.811 

𝑼𝑺 → 𝑼𝑲 0.059 0.253 0.002* 0.077 0.083 0.000* 0.266 0.001* 0.045 0.248 0.043 

𝑼𝑲 → 𝑼𝑺 0.079 0.019 0.000* 0.001* 0.057 0.182 0.045 0.343 0.000* 0.777 0.045 

Right tail 

𝑼𝑺 → 𝑪𝑵 0.000* 0.482 0.420 0.367 0.842 0.890 0.003* 0.433 0.554 0.000* 0.543 

𝑪𝑵 → 𝑼𝑺 0.018 0.435 0.191 0.244 0.470 0.001* 0.230 0.660 0.251 0.282 0.011 

𝑼𝑺 → 𝑭𝑹 0.040 0.988 0.073 0.148 0.979 0.148 0.730 0.265 0.022 0.969 0.694 

𝑭𝑹 → 𝑼𝑺 0.440 0.134 0.797 0.781 0.850 0.239 0.307 0.434 0.790 0.547 0.693 

𝑼𝑺 → 𝑮𝑬 0.255 0.412 0.076 0.960 0.563 0.253 0.327 0.675 0.287 0.080 0.712 

𝑮𝑬 → 𝑼𝑺 0.045 0.464 0.332 0.477 0.466 0.168 0.077 0.211 0.001* 0.001* 0.731 

𝑼𝑺 → 𝑱𝑷 0.619 0.000* 0.139 0.993 0.913 0.000* 0.009* 0.778 0.116 0.659 0.231 

𝑱𝑷 → 𝑼𝑺 0.042 0.958 0.672 0.147 0.741 0.016 0.000* 0.833 0.594 0.312 0.302 

𝑼𝑺 → 𝑪𝑯 0.411 0.861 0.278 0.055 0.957 0.025 0.145 0.855 0.999 0.000* 0.820 

𝑪𝑯 → 𝑼𝑺 0.717 0.159 0.944 0.049 0.376 0.135 0.874 0.303 0.110 0.147 0.087 

𝑼𝑺 → 𝑼𝑲 0.117 0.280 0.529 0.018 0.174 0.086 0.761 0.366 0.814 0.660 0.345 

𝑼𝑲 → 𝑼𝑺 0.335 0.777 0.845 0.395 0.795 0.618 0.217 0.750 0.159 0.996 0.346 

Notes: This table presents the p-values of the Granger causality in distribution of returns using data from 

03/01/1973 to 12/05/2021. The tests in the left tail are conducted considering 𝛼 = 1%, 5% and 10%, while the 

tests in the right tail consider  𝛼 = 90%, 95% and 99%. The tests are conducted pairwise between the US and 

other six developed countries (Canada (CN), France (FR), Germany (GE), Japan (JP), China CH), and the UK) 

for 11 industries (Basic Materials (BM), Consumer Discretionary (CD), Consumer Staples (CS), Energy (EN), 

Financials (FI), Health Care (HC), Industrials (IN), Real Estate (RE), Technology (TEC), Telecommunications 

(TEL), and Utilities (UT)). 𝑈𝑆 → 𝑘 indicates Granger causality from the US to the returns of country 𝑘, and 

𝑘 → 𝑈𝑆 indicates Granger causality from country 𝑘 to the US, for each industry. Numbers in bold indicate the 

rejection of the null hypothesis of no Granger causality at the 5% level. One asterisk, “*”, denotes significance 

at the 1% level.  
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Table 4.12: Granger causality in distribution of the volatility  
 BM CD CS EN FI HC IN RE TEC TEL UT 

Left tail 

𝑼𝑺 → 𝑪𝑵 0.220 0.243 0.922 0.000* 0.178 0.609 0.332 0.346 0.223 0.601 0.020 

𝑪𝑵 → 𝑼𝑺 0.176 0.157 0.061 0.041 0.161 0.366 0.098 0.731 0.766 0.621 0.046 

𝑼𝑺 → 𝑭𝑹 0.022 0.912 0.019 0.059 0.133 0.562 0.648 0.050 0.323 0.094 0.000* 

𝑭𝑹 → 𝑼𝑺 0.794 0.702 0.034 0.066 0.633 0.875 0.404 0.044 0.773 0.351 0.001* 

𝑼𝑺 → 𝑮𝑬 0.117 0.846 0.010 - 0.543 0.364 0.083 0.933 0.579 0.001* 0.000* 

𝑮𝑬 → 𝑼𝑺 0.794 0.778 0.859 - 0.285 0.174 0.212 0.467 0.078 0.102 0.878 

𝑼𝑺 → 𝑱𝑷 0.125 0.533 0.124 0.668 0.119 0.307 0.546 0.233 0.883 0.001* 0.782 

𝑱𝑷 → 𝑼𝑺 0.289 0.537 0.007* 0.504 0.598 0.812 0.455 0.018 0.495 0.001* 0.469 

𝑼𝑺 → 𝑪𝑯 0.579 0.044 0.773 0.000* 0.052 - 0.323 0.288 - - 0.212 

𝑪𝑯 → 𝑼𝑺 0.018 0.420 0.178 0.415 0.156 - 0.768 0.611 - - 0.057 

𝑼𝑺 → 𝑼𝑲 0.209 0.720 0.782 0.581 0.016 0.036 0.172 0.160 0.428 0.352 0.047 

𝑼𝑲 → 𝑼𝑺 0.036 0.314 0.747 0.169 0.003* 0.024 0.085 0.117 0.490 0.018 0.108 

Right tail 

𝑼𝑺 → 𝑪𝑵 0.000* 0.083 0.000* 0.785 0.000* 0.000* 0.000* 0.291 0.191 0.993 0.046 

𝑪𝑵 → 𝑼𝑺 0.097 0.361 0.396 0.750 0.667 0.853 0.069 0.062 0.007* 0.027 0.407 

𝑼𝑺 → 𝑭𝑹 0.000* 0.030 0.003* 0.036 0.021 0.210 0.469 0.000* 0.000* 0.002* 0.232 

𝑭𝑹 → 𝑼𝑺 0.798 0.637 0.134 0.148 0.026 0.322 0.151 0.033 0.179 0.001* 0.002* 

𝑼𝑺 → 𝑮𝑬 0.000* 0.000* 0.002* - 0.000* 0.299 0.000* 0.000* 0.955 0.000* 0.000* 

𝑮𝑬 → 𝑼𝑺 0.950 0.146 0.843 - 0.148 0.471 0.251 0.778 0.012 0.014 0.118 

𝑼𝑺 → 𝑱𝑷 0.804 0.000* 0.001* 0.648 0.676 0.024 0.632 0.479 0.000* 0.612 0.687 

𝑱𝑷 → 𝑼𝑺 0.250 0.006* 0.451 0.941 0.882 0.058 0.784 0.000* 0.532 0.121 0.223 

𝑼𝑺 → 𝑪𝑯 0.055 0.001* 0.000* 0.331 0.000* - 0.046 0.000* - - 0.187 

𝑪𝑯 → 𝑼𝑺 0.317 0.039 0.445 0.120 0.000* - 0.598 0.001* - - 0.367 

𝑼𝑺 → 𝑼𝑲 0.859 0.010* 0.009* 0.659 0.006* 0.028 0.000* 0.834 0.027 0.532 0.626 

𝑼𝑲 → 𝑼𝑺 0.951 0.298 0.569 0.903 0.786 0.535 0.471 0.805 0.089 0.720 0.317 

Notes: This table presents the p-values of the Granger causality in distribution of volatility using data from 

03/01/1973 to 12/05/2021. The tests in the left tail are conducted considering 𝛼 = 1%, 5% and 10%, while the 

tests in the right tail consider  𝛼 = 90%, 95% and 99%. The tests are conducted pairwise between the US and 

other six developed countries (Canada (CN), France (FR), Germany (GE), Japan (JP), China CH), and the UK) 

for 11 industries (Basic Materials (BM), Consumer Discretionary (CD), Consumer Staples (CS), Energy (EN), 

Financials (FI), Health Care (HC), Industrials (IN), Real Estate (RE), Technology (TEC), Telecommunications 

(TEL), and Utilities (UT)). 𝑈𝑆 → 𝑘 indicates Granger causality from the US to the returns of country 𝑘, and 

𝑘 → 𝑈𝑆 indicates Granger causality from country 𝑘 to the US, for each industry. Numbers in bold indicate the 

rejection of the null of no Granger causality at the 5% level. One asterisk, “*”, denotes significance at the 1% 

level. “-” indicates that it was not possible to obtain reliable estimates of the Conditional Autoregressive Value-

at-Risk (CAViaR) due to small sample size. 

 
 

 

 

4.5.5. Robustness Checks 
 

To assess the sensitivity of our results to different model specifications and to the 

data, we performed several robustness checks.  

First, we derive the causality and feedback statistics from VAR(2). Causality results 

were not significantly different from the ones obtained with a VAR(1), except that fewer 

countries showed a lower relationship with the US. The Geweke feedback measures remain 

almost the same up to the last significant digit. 
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Since some series start later than others, we also analysed the sensitivity of our 

results to the inclusion of only complete series for each industry. For instance, in the case of 

the Basic Materials (BM) industry, we had complete data for all countries after 1993. 

Therefore, we excluded 20 years of data for some countries, which forced us to discard a 

significant part of the series that potentially contains relevant information for our study. 

Results showed some differences in the Geweke feedback measures. For instance, the US 

reported a smaller percentage of unilateral feedback than before, while France, Germany, 

Canada, and the UK reported larger percentages. This is possibly justified by their level of 

integration which was larger in recent years. Naturally, there were no significant differences 

for countries that had small data availability before (for example, China).   

Lastly, we performed an analysis using daily and monthly data. There was a more 

and less pronounced causality for daily and weekly data between the US and most countries 

respectively, than for weekly data. This pattern also exists considering data partition into 

expansion and recession periods.  
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4.6. Conclusion 
 

 

This chapter examines the linear interdependences between international industries, 

with a focus on the relationships between the US and other 6 countries (Canada, France, 

Germany, Japan, China, and the UK). This work differs from previous research, which 

mainly focused on international stock indexes or firm-level returns, ignoring international 

inter-industry information transmission. 

Our results based on the bivariate Granger causality test show that the weekly 

returns of US industries have a strong and significant causal relationship with most of the 

countries under scrutiny. The only exception is China, possibly due to international trading 

constraints. We also find that returns of non-US countries have limited predictive ability 

over the returns of US industries, implying that the causal relationship is mainly asymmetric. 

This asymmetry is also supported by the feedback measures. Furthermore, contemporaneous 

feedback is the major contributor to the total feedback, with an average weight of 94%. 

These results imply that most markets are highly integrated and that, on average, most of the 

information transmission occurs within one week. Causality in volatility is stronger and less 

asymmetric. 

US Basic Materials and Energy industries have the strongest and significant 

causality to industries of other countries. This finding is highly plausible since firms in other 

industries rely heavily on commodities and fuels. Additionally, returns of commodity- and 

material-producing industries, placed earlier in the production chain, are frequently strongly 

connected to returns of industries positioned later in the production chain.  

During expansionary periods, the US dominates other countries, but there is less 

causality than in recession periods. During recessions, there is a high linear dependence 

between countries. However, they react with a larger delay to information in the other 

market. This is possible due to the high levels of uncertainty reported during recessions. To 

the best of our knowledge, this is the first study to directly document international evidence 

supporting asymmetric reactions to the US industries, during recessions.   

Lastly, we analyse the Granger causality in distribution for both industry returns 

and volatilities. Our results reveal that other countries do not timely incorporate US 

industries shocks. In particular, countries react with a delay to news from the US, especially 

in the left tail of the distribution of returns and the right tail of the distribution of volatilities. 
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In sum, we may conclude that the US plays a leadership role in international 

markets. This is justified by the US being the world’s largest economy largest in terms of 

GDP and an important trading partner for many countries. Also, the US market is analysed 

and scrutinized by investors worldwide. This deep analyst coverage and investors’ attention 

increases the impact of US macroeconomic fundamentals on other international markets.  

Some possible extensions to this work could be the inclusion of exogenous 

variables in the VAR models, such as proxies of specific industry characteristics (e.g., 

institutional holdings, market share, firm size, and trading volume). 
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5. Final Conclusions 

 
 
 

In this thesis, we investigated asset return predictability and its implications for 

portfolio selection. We have pursued this global aim by analysing several modelling 

frameworks applied to different datasets. These datasets differ on the asset spaces, predictor 

spaces, and data frequency. We assessed the effect of predictability on the portfolios of 

Constant Relative Risk-Averse (CRRA) investors.  

We begin our study by looking at how different Vector Autoregressions (VARs) 

and Time-Varying Parameter – Vector Autoregressions (TVP-VARs), used in different 

dynamic forecasting schemes, namely Bayesian approaches such Dynamic Model Selection 

(DMS) and Dynamic Model Averaging (DMA), performed in forecasting weekly excess 

returns of US stocks, bonds, and REITs indexes in the period from January 1976 to 

December 2017. These approaches allow the integration of several useful features into a 

flexible predictive system, namely model and parameter uncertainty, time-varying 

parameters, combinations of predictors, and time-varying covariance matrices.  

Bayesian DMS and DMA combinations of TVP-VAR(1) presented the best results, 

in statistical terms, but also produced significant benefits measured by out-of-sample 

pseudo-R2. We also show that a CRRA investor would benefit from using these frameworks, 

instead of using other simpler models proposed in the literature, such as equally weighted 

portfolios based on historical mean returns.  Notably, the results, in terms of Certainty 

Equivalents, Sharpe ratios and Sortino ratios, were quite promising for different risk aversion 

coefficients, when the investor used DMS or DMA in a predictor space only formed by the 

first-order lags of the excess returns, and most especially if that predictor space is enlarged 

by including more three exogenous variables for each asset. 

Additionally, we also argue that Bayesian portfolios could better accommodate 

market instability in their specifications and, hence, can be seen as more robust forecasting 

methods. This conclusion is backed up by the examination of the performance of different 

portfolios based on VARs and Bayesian models before and after January 2008, i.e., the 

beginning of the subprime crisis.  
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The results presented above provide empirical evidence on the importance of the 

relationship between asset prediction and portfolio selection. Accordingly, we proceed to 

analyse the benefits of using more recent methodologies to forecast returns and covariances 

matrixes, the inputs to the portfolio optimization problem. Firstly, we use two Machine 

Learning techniques, Random Forests (RF) and Artificial Neural Networks (NN), to forecast 

daily excess stock and bond returns. Secondly, we introduce more flexibility to the Dynamic 

Conditional Correlations (DCC) model of Engle et al. (2019) by allowing for asymmetric 

effects in innovations. This is a relevant issue due to the compelling evidence on the 

nonlinearities that characterizes asset returns.  

We applied this framework to the daily returns of 77 national stock and bond 

indexes from 44 countries for the period from August 2001 to September 2020. The results 

show that NN-ADCC for stock indexes, and most especially RF-ADCC models for bond 

indexes and for both stock and bond indexes, consistently outperformed the benchmarks and 

models that do not make use of Machine Learning techniques, namely 1/N, MVP, the 

European index Portfolio, DCC, and ADCC. In particular, we found that a CRRA investor 

with moderate risk aversion using the proposed RF-ADCC would have experienced a 

substantial increase in the economic performance of her portfolio. The good performance of 

this model could be attributed to its ability to capture nonlinearities in data and suitability to 

deal with large datasets.  

Additionally, considering the best model, RF-ADCC, we analyse the benefits of 

international diversification. We showed that investors from South America, European 

Union (EU), the Middle East, Asia, and Oceania would benefit from amplifying the 

geographical scope of their portfolios. From another perspective, we also show that investors 

from emerging (developed) markets benefit from including in their portfolios assets from 

developed (emerging) markets, especially in the former case.   

Given the evidence on return predictability at an aggregate level (US asset classes 

and stock and bond international indexes), we continue our study by examining how 

international markets transmitted information at an industry level. The focus was on the 

expected key role of the US, as it is the world’s biggest economy and an important 

commercial partner for many countries around the world. Knowing what the leading 

industries are, allows investors to act on that knowledge, improving the forecastability of the 

vector of returns, hence increasing the performance of their portfolios.  

Accordingly, we studied the interdependences (Granger causality and Geweke 

feedback measures) within and across international eleven industries between the US and a 
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group of 6 countries (Canada, France, Germany, Japan, China, and the UK) using weekly 

returns from January 1973 to May 2021.  

Our results showed that weekly lagged returns of US industries significantly 

Granger cause most industries of the other countries, while the reverse causality was far less 

important. The analysis of the pairwise Geweke feedback measures reinforced that, although 

most industry variability was transmitted within a week (the contemporaneous feedback 

accounted, on average, to 94% of the total linear feedback), the lead-lag relationship between 

the US and other countries was asymmetrical, and information mainly flowed from the US 

to other countries. The same conclusions were obtained for causality and feedback in the 

volatility.   

Additionally, we identified that returns of US Basic Materials and Energy industries 

significantly caused the returns of other industries and were the main leading international 

industries. This finding is highly plausible since firms in other industries rely heavily on 

commodities, especially fuels. Industries that produce these commodities are situated at the 

beginning of the production chain, hence price shocks tend to be communicated to other 

industries situated later in that chain.  

After analysing the role played by the US internationally, we assessed whether US 

dominance prevailed during the country’s expansion and recession periods. The US still 

dominated other countries during expansionary periods, but there was less causal relation 

than in the full sample or the recession periods. During recession periods, the high linear 

dependence between countries is higher, but the returns of the industries of other countries 

reacted with a larger delay to US information. This was possible due to the high levels of 

uncertainty reported during recessions. To the best of our knowledge, this is the first study 

to directly document empirical evidence supporting asymmetric reactions to the US 

industries in the different stages of the business cycle.   

Finally, we analysed the Granger causality in distribution for both returns and 

volatilities. Our results revealed that causality mainly flowed from the US in the left tail of 

the returns’ distribution and in the right tail of the volatility’s distribution, meaning that non-

US countries did not timely incorporate US industries shocks.  

 

Overall, our thesis supports the main conclusion that, if one does not a priori 

preclude the existence of return predictability, then its consideration in the selection of well-

diversified portfolios may result in important performance gains for international investors.  
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Understanding how information is transmitted across markets and what are the best and more 

robust methodologies to forecast returns are crucial.  

Nevertheless, all the suggested methodologies present limitations and can be 

improved in future works. For instance, instead of modelling conditional covariance 

matrixes, we can use realized co-volatilities to forecast risk within and across markets, use 

other Machine Learning models to produce forecasts or base forecasts on ensembles of these 

models, introduce exogenous variables in the lead-lag regressions, etc.   

Also, one should keep in mind that we have not proven the profitability of 

investment strategies based on the predictability of returns. The latter does not necessarily 

imply the former, as implicit and explicit transaction costs were not taking into account when 

measuring the portfolios performances. It might be the case that the costs of rebalancing the 

portfolios, at least on a daily or weekly basis, dilute the potential profitability assessed before 

transaction costs.  

Finally, a word of caution when interpreting these results. We do not claim that we 

found the best models. Our main objective is to contribute to the literature by highlighting 

several relevant insights that can be used holistically in the design of a good investment 

strategy.  
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Appendix  

 

Table A1: Description of Stocks predictors 

Variable Description Source Transformation 

DP Dividend Price ratio Goyal and Welch (2008)  -- 

Inf Inflation Goyal and Welch (2008)  -- 

Tbl  Treasury Bills Goyal and Welch (2008)  -- 

Lty  Long Term Yield Goyal and Welch (2008)  -- 

Tms Term Spread Goyal and Welch (2008)  -- 

Rf Risk free rate Goyal and Welch (2008)  -- 

b/m Book to Market Value Goyal and Welch (2008)  -- 

EP Ratio   Earning Price Ratio Goyal and Welch (2008)  -- 

DP Ratio Dividend Payout Ratio Goyal and Welch (2008)  -- 

Svar  Stock Variance Goyal and Welch (2008)  -- 

D/y Dividend yield Goyal and Welch (2008)  -- 

Dfy Default yield spread Goyal and Welch (2008)  -- 

CAPE Cyclically Adjusted 

Price-to-earnings ratio 

Robert Shiller Database -- 

Factors: SMB Small minus Big factor Fama and French (2018)  -- 

Factors: HML High Minus Low factor Fama and French (2018)  -- 

Factors: RMW Robust Minus Weak Fama and French (2018)  -- 

Factors: CMA Conservative Minus 

Aggressive 

Fama and French (2018)  -- 

Ntis  Net Equity Expansion Goyal and Welch (2008)  -- 

Ltr   Long Term Rate Goyal and Welch (2008)  -- 

Notes: In this table it is presented the 19 variables used to predict stock returns and their sources. We do not 

transform the data (to correct stationarity) as it is common practice for the predictors considered. “--” indicates 

no transformations. Goyal and Welch (2008) database is available on the website: 

https://sites.google.com/view/agoyal145, Robert Shiller database is available on: 

http://www.econ.yale.edu/~shiller/data.htm, Fama and French (2018) database is available on: 
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. 
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Table A2: Description of Bonds predictors 

Variable Description Source Transformation 

Piy  Personal Income Ludvigson and Ng (2009)  ∆ln 

Piless transfers  Personal Income minus Transfers Ludvigson and Ng (2009)  ∆ln 

RealConsumption 

expensures 

Real Consumption Expensures Ludvigson and Ng (2009)  ∆ln 

M&Tsales  Manufacturing and Trade Sales Ludvigson and Ng (2009)  ∆ln 

Retail sales Retail sales Ludvigson and Ng (2009)  ∆ln 

IP:total  Industrial Total Production Index Ludvigson and Ng (2009)  ∆ln 

IP:products  Industrial Production Index Ludvigson and Ng (2009)  ∆ln 

IP:final products  Industrial Final Production Index Ludvigson and Ng (2009)  ∆ln 

IP:cons goods  Industrial Consumption 

Production Index 

Ludvigson and Ng (2009)  ∆ln 

IP:cons durable 

goods  

Industrial Consumption Durables 

Production Index 

Ludvigson and Ng (2009)  ∆ln 

IP:cons non-

durable goods  

Industrial Consumption non-

Durables Production Index 

Ludvigson and Ng (2009)  ∆ln 

IP:bus equipament  Industrial Bus equipament 

Production Index 

Ludvigson and Ng (2009)  ∆ln 

IP:matls  Industrial Materials Production 

Index 

Ludvigson and Ng (2009)  ∆ln 

IP:dble material  Industrial Durable materials 

Production Index 

Ludvigson and Ng (2009)  ∆ln 

IP:nondble 

materials  

Industrial non-Durable materials 

Production Index 

Ludvigson and Ng (2009)  ∆ln 

IP:mfg 

manufacturing  

Industrial manufacturing 

Production Index 

Ludvigson and Ng (2009)  ∆ln 

IP:residental 

utilitites  

Industrial residental utilitites 

Production Index 

Ludvigson and Ng (2009)  ∆ln 

IP:fuels  Industrial fuels Production Index Ludvigson and Ng (2009)  ∆ln 

Caputil  Capacity Utilization Ludvigson and Ng (2009)  ∆  

Helpwanted  Index Of Help-Wanted 

Advertising In Newspapers 

Ludvigson and Ng (2009)  ∆  

Helpwanted/emp  Employment Ratio Ludvigson and Ng (2009)  ∆ln 

EmpCPS total Civilian Labor Force: Employed, 

Total 

Ludvigson and Ng (2009)  ∆ln 

EmpCPS  Civilian Labor Force: Employed Ludvigson and Ng (2009)  ∆ln 

wps1  PPI Finish Goods Ludvigson and Ng (2009) ∆2ln 

wps2  PPI Finish Consumer Goods Ludvigson and Ng (2009) ∆2ln 

wps3  PPI Intermediate Goods Ludvigson and Ng (2009) ∆2ln 

wps4  PPI Crude Price Ludvigson and Ng (2009) ∆2ln 

NAPMempl  Employment Index Ludvigson and Ng (2009) -- 

inflation Inflation Goyal and Welch (2008) -- 

Macro Factors 8 Macro Factors Ludvigson and Ng (2009) -- 
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Table A2: Description of Bonds predictors (continued) 

Variable Description Source Transformation 

U:all  Unemployment rate Ludvigson and Ng (2009)  ∆ 

U:mean  Mean Unemployment duration Ludvigson and Ng (2009)  ∆ 

U<5  Less than 5 years 

Unemployment 

Ludvigson and Ng (2009)  ∆ln 

U5-4  5 to 4 years Unemployment Ludvigson and Ng (2009)  ∆ln 

U15+  More than 15 years 

Unemployment 

Ludvigson and Ng (2009)  ∆ln 

U15-26  15 to 26 years Unemployment Ludvigson and Ng (2009)  ∆ln 

U27+  More than 27 years 

Unemployment 

Ludvigson and Ng (2009)  ∆ln 

UIclaims  Average Weekly Initial 

Claims 

Ludvigson and Ng (2009)  ∆ln 

Emp:total  Total Employees on Nonfarm 

Payrolls  

Ludvigson and Ng (2009)  ∆ln 

Emp:gds  Employees on Goods sector Ludvigson and Ng (2009)  ∆ln 

Emp:mining  Employees on Mining sector Ludvigson and Ng (2009)  ∆ln 

Emp:const  Employees on Construction 

sector 

Ludvigson and Ng (2009)  ∆ln 

Emp:mfg  Employees on manufacturing 

goods sector 

Ludvigson and Ng (2009)  ∆ln 

Emp:dble  Employees on durables goods 

sector 

Ludvigson and Ng (2009)  ∆ln 

Emp:nondbles  Employees on non durables 

goods sector 

Ludvigson and Ng (2009)  ∆ln 

Emp:services  Employees on services sector Ludvigson and Ng (2009)  ∆ln 

Emp:TTU  Employees on transports 

sector 

Ludvigson and Ng (2009)  ∆ln 

Emp:wholesale  Employees on wholesale 

sector 

Ludvigson and Ng (2009)  ∆ln 

Emp:retail  Employees on retail sector Ludvigson and Ng (2009)  ∆ln 

Emp:FIRE  Employees on financial sector Ludvigson and Ng (2009)  ∆ln 

Emp:Govt  Employees on government 

sector 

Ludvigson and Ng (2009)  ∆ln 

Avghrs  Average Weekly Hours of 

Production 

Ludvigson and Ng (2009)  -- 

Overtime:mfg  Overtime: Average Weekly 

Hourrs of Production on 

manufactory goods 

Ludvigson and Ng (2009)  ∆  

Avghrs: mfg  Average Weekly Hourrs of 

Production on manufactory 

goods 

Ludvigson and Ng (2009)  -- 

1-Year Forward 

Rate  

1-Year Forward Rate  US Department of the 

Treasury  

-- 

2-Year Forward 

Rate  

2-Year Forward Rate  US Department of the 

Treasury  

-- 

5-Year Forward 

Rate  

5-Year Forward Rate  US Department of the 

Treasury  

-- 

10-Year Forward 

Rate 

10-Year Forward Rate US Department of the 

Treasury 

-- 

T10Y2YM 10-Year Treasury Constant 

Maturity Minus 2-Month 

Treasury Constant Maturity 

FRED -- 

T10Y3YM 10-Year Treasury Constant 

Maturity Minus 3-Month 

Treasury Constant Maturity 

FRED -- 
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Table A2: Description of Bonds predictors (continued) 

Variable Description Source Transformation 

Permit  New House Permits Ludvigson and Ng (2009) ln 

Permitne  New House Permits, northeast Ludvigson and Ng (2009) ln 

permitmw New House Permits, midwest Ludvigson and Ng (2009) ln 

permits New House Permits, south Ludvigson and Ng (2009) ln 

permitw  New House Permits, west Ludvigson and Ng (2009) ln 

amd New Order for Consumer goods Ludvigson and Ng (2009) ∆ln 

and New Order for Durable goods Ludvigson and Ng (2009) ∆ln 

amdmu  

New Order for Non defense capital 

goods 

Ludvigson and Ng (2009) ∆ln 

Businv  Total Business Inventories Ludvigson and Ng (2009) ∆ln 

isratio  Inventories to Sales Ratio Ludvigson and Ng (2009) ∆ 

m1  M1 Money Stock Ludvigson and Ng (2009) ∆2ln 

m2 M2 Money Stock Ludvigson and Ng (2009) ∆2ln 

m2real M2 Real Money Stock Ludvigson and Ng (2009) ∆2ln 

Amb St luis Adjusted Monetary Base Ludvigson and Ng (2009) ∆2ln 

Totresns Total Reserves Ludvigson and Ng (2009) ∆2ln 

nonborr  Reserves of Depository Institutions Ludvigson and Ng (2009) ∆ 

busloans  Commercial and Industrial Loans Ludvigson and Ng (2009) ∆2ln 

Realln  Real Estate Loans Ludvigson and Ng (2009) ∆ln 

nonrev Nonrevolving Credit Ludvigson and Ng (2009) ∆2ln 

conspi  Consumer Credit to Personal Income Ludvigson and Ng (2009) ln 

Ff  Federal Fund rate Ludvigson and Ng (2009) ln 

cp3m  Commercial Paper rate Ludvigson and Ng (2009) ln 

tb3m  3-month Treasury Bill Ludvigson and Ng (2009) ln 

tb6m  6-month Treasury Bill Ludvigson and Ng (2009) ln 

gs1  1-year Treasury rate Ludvigson and Ng (2009) ln 

gs5  5-years Treasury rate Ludvigson and Ng (2009) ln 

gs10 10-years Treasury rate Ludvigson and Ng (2009) ln 

Aaa  Aaa Bond Yield Ludvigson and Ng (2009) ln 

Baa  Baa Bond Yield Ludvigson and Ng (2009) ln 

Comp  Composite Federal Fund spread Ludvigson and Ng (2009) -- 

tb3  3-month Federal Fund spread Ludvigson and Ng (2009) -- 

tb6  6-month Federal Fund spread Ludvigson and Ng (2009) -- 

t1yffm  1-year Federal Fund spread Ludvigson and Ng (2009) -- 

t5yffm  5-year Federal Fund spread Ludvigson and Ng (2009) -- 

t10yffm 10-year Federal Fund spread Ludvigson and Ng (2009) -- 

Aaaf  Aaa Federal Fund spread Ludvigson and Ng (2009) -- 

baaf   Bbb Federal Fund spread Ludvigson and Ng (2009) -- 

tw  Trade Weight for Us Dollar Ludvigson and Ng (2009) ∆ln 

Exs Exchange rate Switzland Ludvigson and Ng (2009) ∆ln 

Exj Exchange rate Japan Ludvigson and Ng (2009) ∆ln 

Exu Exchange rate UK Ludvigson and Ng (2009) ∆ln 

Exc Exchange rate Canada Ludvigson and Ng (2009) ∆ln 

 

 

 

 

 

 

 



 

128 

 

 

Table A2: Description of Bonds predictors (continued) 

Variable Description Source Transformation 

oil  Crude oil Ludvigson and Ng (2009)  ∆2ln 

Ppic PPI Metals Ludvigson and Ng (2009)  ∆2ln 

Cpiau  CPI all Items Ludvigson and Ng (2009)  ∆2ln 

Cpiap  CPI Apparel Ludvigson and Ng (2009)  ∆2ln 

Cpitr  CPI Transports Ludvigson and Ng (2009)  ∆2ln 

Cpimed CPI Medical Care Ludvigson and Ng (2009)  ∆2ln 

cus1  CPI Commodities Ludvigson and Ng (2009)  ∆2ln 

cus2  CPI Durables Ludvigson and Ng (2009)  ∆2ln 

cus3  CPI services Ludvigson and Ng (2009)  ∆2ln 

Cpiul CPI all but Food Ludvigson and Ng (2009)  ∆2ln 

cus4  CPI all but Shelter Ludvigson and Ng (2009)  ∆2ln 

cus5            

CPI all but Medical 

Care                     

Ludvigson and Ng (2009)  ∆2ln 

Pcepi Personal Consumption 

Chain 

Ludvigson and Ng (2009)  ∆2ln 

ddur  

Personal Consuption 

Durable 

Ludvigson and Ng (2009)  ∆2ln 

Dnd  

Personal Consuption 

Non Durable 

Ludvigson and Ng (2009)  ∆2ln 

dse  

Personal Consuption 

Services 

Ludvigson and Ng (2009)  ∆2ln 

ces7 

Average Hours of 

Earnings in Goods 

sector 

Ludvigson and Ng (2009)  ∆2ln 

ces8 

Average Hours of 

Earnings in 

Construction sector 

Ludvigson and Ng (2009)  ∆2ln 

ces9 

Average Hours of 

Earnings in 

Manufacturing sector 

Ludvigson and Ng (2009)  ∆2ln 

Mzms Money Stock Ludvigson and Ng (2009)  ∆2ln 

Invest 

Securities in Bank 

Credit 

Ludvigson and Ng (2009)  ∆2ln 

vxocls           VXO’s                          Ludvigson and Ng (2009) -- 

CP Forward Rate Factor 

Cochrane and Piazzesi 

(2009) 

-- 

Notes: In this table it is presented the 125 variables used to predict bond returns, the sources, the 

transformations made in Excel or MATLAB to obtain the format used in the literature and to correct non 

stationarity series (“∆” is the first difference, “∆ln” is the first log difference, “∆2ln” is the second log 

difference, “ln” is the log transformation, “--” indicates no transformations). Ludvigson and Ng (2009) 

database is available on: https://www.sydneyludvigson.com/data-and-appendixes, Cochrane and Piazzesi 

(2009) database is available on:  https://www.aeaweb.org/articles?id=10.1257/0002828053828581, US 

Department of the Treasury database is available on: https://home.treasury.gov/data/treasury-open-data, 

Federal Reserve Bank of St. Louis (FRED) database is available on: 

http://research.stlouisfed.org/fred2/categories/22, Goyal and Welch (2008) database is available on the 

website: https://sites.google.com/view/agoyal145. 
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Table A3: Description of REITs Predictors 

Variable Description Source Transformation 

Dividend Price ratio Dividend Price ratio Goyal and Welch (2008) -- 

inflation inflation Goyal and Welch (2008) -- 

Tms Term Spread Goyal and Welch (2008) -- 

Dfy Default yield spread Goyal and Welch (2008) -- 

chng income change in income FRED -- 

chng adult population change in adult 

population  

FRED ∆ln 

chng employment change in employment  FRED -- 

housing starts Rate of growth of 

housing units 

Federal Housing Finance 

Agency 

%∆ 

mortgage loan amount Amount of mortgage 

loan  

Federal Housing Finance 

Agency 

%∆ 

purchase price Houses purchase price Federal Housing Finance 

Agency 

%∆ 

loan to price ratio loan to price ratio Federal Housing Finance 

Agency 

∆ln 

 

rent vacancy rate rent vacancy rate Federal Housing Finance 

Agency 

ln 

change in mortgage loan percentage change 

mortgage loan 

Federal Housing Finance 

Agency 

-- 

30-Year Conventional 

Mortgage Rate   

30-Year Conventional 

Mortgage  

Federal Housing Finance 

Agency 

∆ln 

Notes: In this table it is presented the 14 variables used to predict REITs returns, the sources, the 

transformations made in excel or MATLAB to obtain the format used in the literature and to correct non 

stationarity series (“%∆” is the first difference, “∆ln” is the first log difference, “ln” is the log transformation, 

“--” indicates no transformations). Goyal and Welch (2008) database is available on 

https://sites.google.com/view/agoyal145 and  Federal Reserve Bank of St. Louis (FRED) database is available 

on: http://research.stlouisfed.org/fred2/categories/22, Federal Housing Finance Agency:   

https://www.fhfa.gov/DataTools/Downloads/Pages/National-Mortgage-Database-Aggregate-Data.aspx and 

http://www.freddiemac.com/pmms/pmms30.html. 
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