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Abstract

In the domain of Industrial Automation and Control Systems (IACS), security was tradi-
tionally downplayed to a certain extent, as it was originally deemed as an exclusive concern
of Information and Communications Technology (ICT) systems. But things were about to
change.

Relying on air-gaping to ensure IACS security has proven to be unrealistic and, ultimately,
irresponsible. The myth of the air-gap, as well as other preconceived notions about implicit
IACS security, constituted dangerous fallacies that were debunked once successful attacks
become known. Ultimately, the industry started shifting away from this dangerous mindset,
discussing how to properly secure those systems.

In many ways, IACS security should not be treated differently from modern ICT security.
For sure, IACS have distinct characteristics, assets, protocols and even priorities that should
be considered – but security should never an optional concern. There is an established idea
that, given the sensitive nature of such environments, extra care should be taken when
adding security controls or changing anything else, for that purpose – the old if it works
don’t touch it mindset. Together with economic reasons, this has been one of the main
causes for the proliferation of insecure, outdated and legacy systems in sensitive production
environments.

With cyberattacks becoming increasingly commonplace, IACS often constitute desirable
targets, for many reasons. Practices such as the continuous disregard for secure protocols
in mission-critical systems, the systematic deferral of crucial updates or the delay in the
implementation of proper security mechanisms are just making things worse. This calls for a
suitable approach to IACS protection, encompassing: (1) the development of proper security
assessment mechanisms/techniques; and (2), the means to mitigate and fix existing security
issues. This dissertation is mainly focused on the first aspect, even though it also provides
contributions to the second.

This dissertation proposes an holistic and data-driven framework capable of leveraging
distinct techniques to increase the situational awareness and provide continuous and near
real-time monitoring of Industrial Control Systems (ICS) infrastructures. For such purposes,
this thesis proposes an evolution of the Security Information and Event Management (SIEM)
concept, geared towards providing a unified security data monitoring solution by leveraging re-
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cent advances in the field of real-time Big Data analytics. This evolved SIEM relies on a wide
range of open-source components which, despite being presumed to be a good match for the
Supervisory Control And Data Acquisition (SCADA) security monitoring needs, are yet not
widely explored in the literature. In the same way, the most recent machine-learning-based
anomaly-detection techniques (which are becoming increasingly prominent in the cybersecu-
rity field) were also analyzed and studied, in order to understand their benefits for developing
and advancing IACS cyber-intrusion detection processes. The proposed mechanisms were
developed and validated in the scope of the CockpitCI FP7 and ATENA H2020 projects.

Keywords: Industrial Automation and Control Systems; Cybersecurity; Intrusion Detection;
Real-Time Big Data Analytics; SCADA Networks.
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Resumo

No domínio dos Sistemas de Automação e Controle Industrial (IACS) a segurança foi
tradicionalmente descurada, sendo considerada como uma preocupação exclusiva dos sistemas
de Tecnologia da Informação e Comunicação (TIC). Mas as coisas estavam prestes a mudar.

Depender do air-gap para garantir a segurança de um IACS provou ser irrealista e, em
última circunstância, irresponsável. Esse mito, bem como outras noções preconcebidas sobre
segurança implícita, constituíram falácias perigosas que foram desmascaradas assim que
ataques bem-sucedidos foram conhecidos. Por fim, a indústria começou a afastar-se dessa
mentalidade perigosa, passando a empenhar-se em proteger efectivamente esses sistemas.

Na verdade, de muitas maneiras, a segurança dos IACS não deve ser tratada de forma
diferente da segurança de um sistema de TIC moderno. De facto, os IACS têm características,
componentes, protocolos e mesmo prioridades distintas que devem ser consideradas – mas a
segurança nunca deve ser uma preocupação opcional. Há uma ideia pré-estabelecida de que,
dada a natureza sensível de tais ambientes, devem ser tomados cuidados extras ao introduzir
mecanismos de segurança ou alterar qualquer outra coisa – o chavão de se funciona, não
mexer. No entanto, juntamente com razões económicas, essa tem sido uma das principais
causas para a proliferação de sistemas inseguros, desatualizados e legados em ambientes de
produção.

À medida que os ciberataques se têm tornado cada vez mais comuns, os IACS são frequente-
mente alvos desejáveis, por variadas razões. Práticas como o uso de protocolos inseguros
em sistemas críticos, o adiamento sistemático atualizações críticas ou o protelamento da
implementação de mecanismos de segurança, são práticas que agravam esta situação. É
pois necessária uma abordagem adequada para a proteção dos IACS, abrangendo: (1) o
desenvolvimento de mecanismos / técnicas de avaliação de segurança adequados; e (2), meios
para mitigar e corrigir os problemas de segurança existentes. Esta dissertação está focada
principalmente no primeiro aspeto, ainda que soluções, medidas de mitigação e medidas
reativas sejam igualmente propostas ao longo do texto.

Esta dissertação propõe uma abordagem holística e orientada a dados capaz de alavancar
diferentes técnicas por forma a reforçar a consciência situacional e fornecer uma monitor-
ização contínua (e quase em tempo real) de um determinado IACS. Para tal, e tendo em
conta os recentes avanços na área das ferramentas de análise de dados em tempo real e Big
Data, é proposta uma evolução do conceito de Security Information and Event Management
(SIEM), focada no fornecimento de uma solução unificada de monitorização de dados de
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segurança. Este conceito de SIEM melhorado baseia-se numa ampla gama de componentes
de código aberto que, apesar de presumivelmente formarem uma boa combinação para
suprir as necessidades de monitorização da segurança dos IACS, ainda não são amplamente
explorados na literatura. Da mesma forma, as mais recentes técnicas de deteção de anomalias
baseadas em Machine Learning (ML) (cada vez mais proeminentes no campo da cibersegu-
rança) são também analisadas e estudadas, a fim de compreender os seus benefícios para
o desenvolvimento dos processos de deteção de intrusão em IACS. Os mecanismos propos-
tos foram desenvolvidos e validados no âmbito dos projectos CockpitCI FP7 e ATENA H2020.

Palavras-Chave: Sistemas de Automação e Controle Industrial; Cibersegurança; Detecção
de Intrusões; Análise de Big Data em tempo real, Redes SCADA
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projects but are not directly related with the core of this dissertation. Within this research,
we leveraged a hybrid testbed developed at the Israel Electric Corporation premisses for
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CHAPTER 1. INTRODUCTION

This thesis addresses the cybersecurity of Industrial Automation and Control Systems
(IACS), a subset of Industrial Systems used to manage Essential Services (ES) and Critical
Infrastructures (CIs) such as insdustrial plants and electricity, water, oil and gas production
and distribution networks. More specifically, among other contributions, this thesis covers
aspects such as the security analysis of Supervisory Control And Data Acquisition (SCADA)
protocols and the conceptualization and design of advanced intrusion and anomaly detection
solutions for such environments.

The motivation and problem statement are discussed next, followed by the presentation
of the specific research question addressed by this work and its objectives. Next, the key
contributions that resulted from this work are identified, followed by a description of the
structure of the remainder of this thesis.

1.1 Motivation and Problem Statement

A successful cyber-attack against mission-critical IACS can lead to massive financial losses,
damage of physical equipment or even human safety hazards. Often, these attacks are also
used to conduct industrial cyber-espionage as a modern cyber-warfare weapon. This situation
is continuously recalled by incidents such as the famous Stuxnet attack in 2010 [Langner,
2013] or the BlackEnergy attack which left hundreds of thousands of peoples without
energy [E-ISAC, SANS, 2016]. The cybersecurity of IACS, sometimes overlooked in the past,
is now paramount.

IACS traditionally relied on air-gapped SCADA systems using proprietary protocols and
technologies, which provided a false sense of security through physical isolation and obscurity.
However, the typical industrial system is no longer a siloed environment, confined to a
physically or logically isolated domain.

The increased interconnection paths, the Operational Technology (OT) / Information
Technology (IT) convergence and the gradual adoption of Ethernet- and TCP/IP-based
networks in IACS faded the perimeter lines between what was assumed to be secure and the
outside world. This introduced new attack vectors and amplified the security vulnerabilities
from the past, exposing all the insecure protocols and components before hid behind physical
barriers.

The majority of SCADA communication protocols still lack proper security enforcing mecha-
nisms, despite the gradual introduction of some level of security support in new versions
of some protocols and components. Moreover, many legacy systems without proper secu-

2



1.1. MOTIVATION AND PROBLEM STATEMENT

rity support are still expected to operate for a long time before being replaced (due to
economical and technical reasons). This problem is further aggravated because the current
IACS / SCADA market fragmentation makes it difficult to assess all the security needs
of each vendor’s device and communication protocol – protocols found in the field are
often vendor-specific and different domains (e.g. electricity distribution, railways) often use
domain-specific solutions.

There is now extensive literature devoted to the security of SCADA communication protocols,
but it clusters around a very small subset of the most used and well-known protocols. The
security enforcing mechanisms of other protocols still lack research and validation, especially
for closed or not properly documented protocols.

It should also be noted that secure protocols and components are just one of the building
blocks of IACS security. Other key security components are required, such as monitoring
tools and intrusion and anomaly detection mechanisms.

Classical tools such as rule-based Network Intrusion Detection System (NIDS) and Host
Intrusion Detection System (HIDS) are useful to detect specific and known treats. Neverthe-
less, and contrary to what could be expected, their support for SCADA is limited. Even
the most popular NIDS are often limited to ad-hoc rules for SCADA traffic, lacking the
appropriate protocol decoding capabilities, richer signatures or stateful protocol decoding
for the different protocols.

A large part of the literature addressing IACS security focuses on network anomaly detection,
detecting anomalies such as network-based cyber-attacks or physical faults by looking either
at physical process properties, SCADA network communications or a combination of both.
Other potentially relevant features, such as diversified log sources and host-based events, are
typically overlooked, therefore missing the opportunity to develop a more comprehensive
approach against a broader spectrum of attacks.

Anomaly detection based on Machine-Learning (ML) techniques, increasingly prominent in
other domains, are also expected to bring numerous benefits to IACS, including efficient
classification of large amounts of heterogeneous data for spotting anomalies. Nevertheless,
they are still presented in the literature as theoretical and isolated works, focused mostly on
the applied algorithms.

This gap creates the opportunity to introduce evolved Security Information and Event
Management (SIEM) systems – a concept further discussed in Chapter 2 – as a good
match for monitoring and integrating a wide range of additional security mechanisms. More
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CHAPTER 1. INTRODUCTION

than a single Intrusion Detection System (IDS) or a single ML-based anomaly detection
algorithm, SIEM systems are expected to bring a global, aggregated and valuable insight
into the security state of the infrastructure – taking into consideration a wide number of
different data-sources, which can feed multiple anomaly detection mechanisms. Nevertheless,
the applicability of SIEMs in SCADA environments is still in its early stages. There are
still several open challenges, such as the data formats, integration/interoperability between
components or overall platform orchestration, which need to be addressed to achieve practical
and complete solutions.

This scenario is further aggravated by the digital transformation we are witnessing, as we
move towards the Industry 4.0 and the Industrial Internet of Things (IIoT) paradigms. There
is an increased business demand for more distributed and collaborative models which can
improve productivity, the decision-making process and, ultimately, maintenance costs. Such
rapid expansion, observed in the last years, also represents new challenges and an evolved
cyber threat landscape. The advances in technologies such as Artificial Intelligence (AI),
edge/cloud computing and 5G foster remarkable technological and business opportunities for
those environments, but also pose numerous security challenges. The next-generation IACS
are expected to be highly distributed, capillary and, in some cases, multi-tenant, which will
require an extremely elastic and flexible security platform that can cope with the increasing
volume of data produced by heterogeneous data sources.

This calls for new security approaches, specifically tailored for IACS systems, that can not
only help covering classic security flaws associated with IACS but also accommodate the
new architectural challenges imposed by the ongoing IACS transformation.

1.2 Research Question and Objectives

Taking into consideration the problems identified in the previous section, this thesis addresses
the following research question: How to improve the security of next-generation
IACS through a holistic data-driven framework ?

The aforementioned research question was addressed by exploring and intersecting several
topics, such as IACS cybersecurity, SIEM systems, anomaly detection mechanisms and Big
Data analytics.

The work started with a literature review, focused mainly on anomaly-detection approaches
and event-processing techniques that (1) address the detection of cyber-physical attacks in the
context of IACS systems and (2) could later integrate the proposed framework. Afterwards,
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different SCADA protocols and cyber-attack scenarios were explored and assessed, to better
understand the IACS security landscape. Finally, the SIEM concept was leveraged to provide
a unified and distributed holistic, data-driven framework to monitor the cyber-security of
IACS, based on state-of-the-art components tailored for SCADA systems. This framework
includes the aggregation of multiple data sources, an efficient event-processing layer and
anomaly detection capabilities based on AI, ML algorithms and open-source components.

This approach led to three key objectives:

• Objective 1. To review, identify and assess intrusion and anomaly detection algorithms
and techniques potentially suitable for IACS, so that they could be later incorporated
into the aforementioned holistic framework.

• Objective 2. To explore different cyber-security scenarios and IACS protocols, in order
to better understand the dynamics of cyber-attacks and the vulnerabilities of SCADA
tools and protocols.

• Objective 3. To devise a holistic data-driven framework, to build a proof-of-concept
prototype for demonstration and evaluation purposes, and to validate it in typical
IACS scenarios.

1.3 Contributions

This thesis lead to several contributions, of which we emphasize the following:

• Contribution 1. Security analysis of SCADA protocols in the scope of practical
attack scenarios. Among other specific results, we point out the definition and
exploration of practical attack scenarios, often from the attackers’ perspective (less
used in the literature) and based on testbeds representative of real IACS operated by
energy utilities. Regarding the security analysis of SCADA equipment and protocols,
besides some initial work focused on the well-known Modbus protocol, a detailed
security analysis of PCOM protocol was conducted. This protocol was chosen because
it was still not extensively discussed in the literature (from a security standpoint)
and was one of the protocols used in the CockpitCI and ATENA testbeds, which
made it possible to reproduce various representative use cases and to develop several
open-source contributions to widely used tools (as mentioned in the Foreword section).
This contribution is reflected mainly in the contents of Chapter 4.
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• Contribution 2. Conceptualization and design of holistic data-driven frame-
work for intrusion and anomaly detection in IACS scenarios. Leveraging the
SIEM and lambda architecture concepts (cf. Chapter 2), this conceptualization and
design work addresses challenges such as the integration of multiple, disperse and
heterogeneous data-sources, platform elasticity and scalability (for being able to ingest
large amounts of disperse data while keeping time-boundaries for data processing within
required levels, for streaming and batch processing), and to flexibly accommodate and
combine different anomaly detection mechanisms in a neutral fashion. The concepts of
this holistic framework are introduced in Chapter 3, while Chapters 5 and 6 further
detail the framework’s approach to, respectively, streaming processing and anomaly
detection.

• Contribution 3. Integration and evaluation of different mechanisms for classi-
fying network traffic. As part of the demonstration and validation of the aforemen-
tioned framework, several network traffic classification mechanisms were integrated
into the framework and evaluated considering various representative scenarios, both
for near real-time detection (based on stream processing) and for batch processing.
This contribution reflects mainly in the contents of Chapters 5 and 6.

1.4 Structure of the Thesis

The rest of this thesis is organised as follows (cf. Figure 1.1).

• Chapter 2 Cyber-security in the Scope of IACS
Provides a review of the literature, including the current status of IACS cyber-security,
IACS-specific ML-based anomaly detection approaches, stream processing techniques
and practical framework implementations focused on IACS domains.

• Chapter 3 A Holistic Intrusion and Anomaly Detection System for IACS
After describing the reference architectures adopted by the CockpitCI and the ATENA
projects, this chapter introduces the main concepts and building blocks of the proposed
holistic Intrusion and Anomaly Detection System (IADS) framework.

• Chapter 4 Exploratory Analysis of the Security of SCADA Protocols
This chapter presents a practical exploratory analysis of different SCADA protocols,
tools and attack scenarios, including the attacker’s perspective and a more extensive

6



1.4. STRUCTURE OF THE THESIS

Cyber-security in IACS

C
h
a
p
te

r 
2

IACS, SCADA Systems 
and Security

Event Processing and 
Evolved SIEM

Intrusion and Anomaly 
Detection in IACS

Cyber-security in IACS

C
h
a
p
te

r 
2

IACS, SCADA Systems 
and Security

Event Processing and 
Evolved SIEM

Intrusion and Anomaly 
Detection in IACS

Introduction

C
h
a
p
te

r 
1

Motivation and Problem 
Statement

Contributions

Research Question and 
Objectives

A holistic approach to assess 
the cyber-security of IACS

C
h
a
p
te

r 
3

Key Driving 
Characteristics of IACS

IADS, Stream Processing 
and Data Analytics Layers

CockpitCI, ATENA and 
HEDVa Testbed

A holistic approach to assess 
the cyber-security of IACS

C
h
a
p
te

r 
3

Key Driving 
Characteristics of IACS

IADS, Stream Processing 
and Data Analytics Layers

CockpitCI, ATENA and 
HEDVa Testbed

SCADA exploratory analysis

C
h
a
p
te

r 
4

Attacking SCADA systems

Mitigation Strategies

Security Analysis of 
PCOM

SCADA exploratory analysis

C
h
a
p
te

r 
4

Attacking SCADA systems

Mitigation Strategies

Security Analysis of 
PCOM

Event Streaming Layer

C
h
a
p
te

r 
5

Data-driven workflow 
Probes and Datamodel

Evaluation

Messaging System and 
Domain Processors

Event Streaming Layer

C
h
a
p
te

r 
5

Data-driven workflow 
Probes and Datamodel

Evaluation

Messaging System and 
Domain Processors

Data Analytics Layer

C
h
a
p
te

r 
6

Reference Architecture and 
Proof-of-Concept

Data Exfiltration and 
Evaluation

Anomaly Detection on top 
of Data Analytics Layer

Data Analytics Layer

C
h
a
p
te

r 
6

Reference Architecture and 
Proof-of-Concept

Data Exfiltration and 
Evaluation

Anomaly Detection on top 
of Data Analytics Layer

Event Streaming Layer

C
h
a
p
te

r 
5

Data-driven workflow 
Probes and Datamodel

Evaluation

Messaging System and 
Domain Processors

Data Analytics Layer

C
h
a
p
te

r 
6

Reference Architecture and 
Proof-of-Concept

Data Exfiltration and 
Evaluation

Anomaly Detection on top 
of Data Analytics Layer

Conclusions

C
h
a
p
te

r 
7

Synthesis

Future Work

Main Contributions

Conclusions

C
h
a
p
te

r 
7

Synthesis

Future Work

Main Contributions

SCADA exploratory analysis

C
h
a
p
te

r 
4

Attacking SCADA systems

Mitigation Strategies

Security Analysis of 
PCOM

Event Streaming Layer

C
h
a
p
te

r 
5

Data-driven workflow 
Probes and Datamodel

Evaluation

Messaging System and 
Domain Processors

Data Analytics Layer

C
h
a
p
te

r 
6

Reference Architecture and 
Proof-of-Concept

Data Exfiltration and 
Evaluation

Anomaly Detection on top 
of Data Analytics Layer

Conclusions

C
h
a
p
te

r 
7

Synthesis

Future Work

Main Contributions

Figure 1.1: Structure of this Thesis

analysis of the PCOM protocol.

• Chapter 5 Event Streaming Layer
This chapter discusses the framework’s event streaming layer that supports efficient
intercommunication and enables per-domain processing capabilities. The way stream
processing techniques were integrated into the platform and used in the overall network
traffic classification mechanisms is also discussed in this chapter, as well as the validation
work related with the streaming layer and those processing techniques.

• Chapter 6 Data Analytics Layer
This chapter details the framework’s analytics layer used to support different types of
processing mechanisms and combine various types of supervised ML-based techniques.
It also presents the validation work related with the data analytics layer and the
evaluation of the mechanisms for network traffic classification.

• Chapter 7 Conclusions
Concluding remarks and future research directions.
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CHAPTER 2. CYBER-SECURITY IN THE SCOPE OF INDUSTRIAL AUTOMATION
AND CONTROL SYSTEMS

This chapter introduces the topic of cyber-security in the scope of Industrial Automation
and Control Systems (IACS).

First, a brief overview of IACS and Supervisory Control And Data Acquisition (SCADA)
systems is presented, intended mostly for readers not familiar with this domain (Section 2.1).
Then, in Section 2.2, an enlarged discussion of the current status and challenges related
with the cyber-security of such systems is provided, encompassing for instance usual threats
and vulnerabilities, the typical anatomy of attacks targeting SCADA protocols, and the
discussion of defense models, tools and mitigation strategies.

This introduction is followed by an analysis of intrusion and anomaly detection techniques
for IACS, focused mostly on a survey of the more relevant advances in this field in the last
years (Section 2.3).

Next, we move to the more general problem of correlating and processing events in the
IACS cyber-security domain. First, classic correlation tools are analysed, followed by the
introduction of more powerful approaches, such as those derived from Big Data event
processing architectures (Section 2.4).

Finally, in Section 2.5, the concept of Security Information and Event Management (SIEM)
is introduced, as a more unified and holistic approach to monitoring the security of IACS.
Relevant related works are discussed and a reference taxonomy for SIEM systems is proposed
– centered on the most relevant and envisioned features of the next generation SIEM systems.

It should be noted that this chapter includes content that has already been published ( [Rosa
et al., 2021] [Rosa et al., 2019] [Rosa et al., 2015]).

2.1 IACS and SCADA Systems

According to the International Electrotechnical Commission (IEC) 62443 standard [Interna-
tional Electrotechnical Commission, 2018], IACS can be defined as a collection of personnel,
hardware, and software that can affect or influence the safe, secure, and reliable operation of
an industrial process. Often, the term Industrial Control Systems (ICS) is also used inter-
changeably, which as stated by the National Institute of Standards and Technology [Stouffer
et al., 2015], encompasses several types of control systems, including supervisory control
and data acquisition (SCADA) systems, Distributed Control Systems (DCS), and other
control system configurations such as Programmable Logic Controller (PLC) often found in
the industrial sectors and Critical Infrastructures (CIs). Additional terms, such as CI and
Essential Services (ES), are also used, usually to refer to a broader class of domains and
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services playing a vital role in our modern society, such as energy grids, water distribution
systems or transportation systems.

IACS systems have undergone a long evolution since the 1st generation monolithic and
isolated systems, progressively becoming more distributed (2nd generation) and networked
(3rd generation) [Ujvarosi, 2016]. Today, we are witnessing their fourth revolution, with the
adoption of the Industry 4.0 concept.

According to the IEC 62443 definition [ISA, 2007] (Figure 2.1), SCADA systems can be
organised into five distinct levels: level 0, reserved for the equipment under control; level
1, containing the local control devices such as Programmable Logic Controller (PLC)s and
Remote Terminal Units (RTUs); level 2, for the local supervisory control equipment such
as Human-Machine Interface (HMI) devices; level 3, for the global operation management
and control center; and level 4, for the remaining business-related systems. The IEC 62443
standard [International Electrotechnical Commission, 2018] also specifies the concept of
zones as a physical or logical way of segregating the network and assets and the concept of
conduit to enforce security mechanisms across zones. In distributed industries such as Smart
Grids, they are structured as a central control center (Level 3) and multiple remote sites
(Levels 0, 1 and 2) spanning across a large geographic area, as depicted in Figure 2.1.
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Figure 2.1: ISA99, SCADA and Industrial IoT reference models (adapted from [ISA,
2007] [McLaughlin and McAdam, 2016]).
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The PLCs (level 1) are specialized industrial controllers and key components in modern
automation, used to replace hard-wired electromechanical relay control systems. They offer
a more flexible and cost-effective approach to implement the process and Input/Output logic
(Figure 2.2). Contrary to the hard-wiring approach, a PLC can be reprogrammed. This way,
a malicious actor can leverage that to easily modify the program logic, which can lead to
destructive impact, including physical damage. The majority of SCADA research focuses on
classical SCADA communication protocols (e.g. Modbus [Modbus Organization, Inc, 2006])
and does not extensively discuss the capability of remotely reprogramming a PLC (often
through proprietary and closed protocols).

Outputs
(actuators)

Inputs
(sensors)

CPU

Memory

Optical 
Isolation

Optical 
Isolation

Programming Devices Instrumentation Devices 
and other PLCs

Start Scan

Internal checks

Scan Inputs

Execute Program Logic

Update Outputs

Scan-based executionPLC System

Figure 2.2: PLC architecture and execution overview (adapted from [Gonzalez, 2015]).

Critical Infrastructures (CI)s such as Smart Grids – which can be defined as an improved
electricity network with two-way digital communications between suppliers and consumers,
composed of an enhanced metering and monitoring infrastructure [Egozcue et al., 2012] –
are a common example pointed out in the literature of how the latest technology advances
and the Operational Technology (OT) / Information Technology (IT) convergence introduce
new security challenges. For Smart Grids, it is also common to refer to the Smart Grid
Architecture Model (SGAM), a joint work of CEN, CENELEC and ESTI [Smart Grid
Coordination Group, 2012]. On the top of the zones (similar to the levels in the ISA
definition), SGAM includes a three-dimensional view of the complete electrical energy
conversion chain (from generation to customer premises) and a set of interoperability layers.
This is a more complete domain-specific view, that helps to better understand how the
different components and layers relate.
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IACS systems differ from IT systems [Iturbe et al., 2017]. Their primary focus is on
safety, availability and service continuity, rather than confidentiality – as in IT networks.
Longer lifetime cycles (to avoid service interruptions or unexpected behaviors) expose them
to known vulnerabilities. Industrial physical processes are typically more complex and
heterogeneous. Contrary to current IT networks, IACS network communications, depending
on the actual use case and components, might range from deterministic and periodic traffic
to non-deterministic and aperiodic [5G-ACIA, 2019]. Such network traffic periodicity, when
applicable, is often argued to be a useful feature in the context of anomaly detection and
network traffic classification.

The next-generation of IACS is expected to be increasingly more distributed and capillary,
given the growing number of interconnected devices, in line with the Industrial Internet
of Things (IIoT) concept. It is also expected to start adopting cloud-based architectures,
shifting the need to maintain a complex infrastructure on-premises to a edge/cloud mix
architecture, motivated by cost, reliability and functionality.

According to a 2019 survey of the Capgemini Research Institute to more than 500 executives,
intelligence automation (e.g. process automation and Artificial Intelligence (AI)-based
technologies) in the energy and utilities market at scale can allow outsized benefits and cost
savings from 237 to 813 billions of USD [Capgemini Research Institute, 2019a]. Similarly,
Gartner rates hyperautomation (including AI and Machine-Learning (ML)-based automation)
as the top 2020 technology trend that will transform industries and enterprises in the
following years [Gartner, 2020]. As we rapidly advance in the technology, in the near future,
what can be seen as Industry 5.0, we can also expect an unprecedented level of automation
and AI-based processes, which further increases the complexity of security monitoring (e.g.
AI-powered cyber-attacks and the emergence of adversarial attacks – cf. Section 2.2).

Moreover, this shift suggests that security monitoring of such distributed and complex
infrastructures might evolve into a Big Data problem. While this may be debatable, since it
is still not clear how big is the data (or how big it needs to be to become Big Data), using
a data-centric and Big Data like approach helps to cope with (1) volume – the amount
of information produced by all the interconnected devices; (2) velocity – how to handle
real-time information from the physical processes; and (3) variety – how to handle all the
heterogeneous information (e.g. sensors data, network traffic, logs).
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2.2 Cyber-Security for IACS

In this section we overview the topic of cyber-security for IACS, including the discussion of
most relevant threats and vulnerabilities, the analysis of the anatomy of attacks targeting
SCADA protocols, and the identification of main defense models and mitigation strategies.

In the last years, IACS security has been extensively discussed [Leszczyna, 2019] [Nazir
et al., 2017] [Humayed et al., 2017] [Antón et al., 2017] [Knapp and Langill, 2014] and
security practitioners have been rather vocal about its numerous design flaws. The lack
of authorization, authentication and encryption in popular SCADA protocols such as
Modbus [Modbus Organization, Inc, 2006], Distributed Network Protocol 3 (DNP3) [DNP
Users Group, 2005], EthernetIP/Common Industrial Protocol (CIP) [Schiffer, 2016] or
IEC 61850 [International Electrotechnical Commission, 2020b] have been dominating this
discussion. The literature has mentioned several distinct network-based attacks [Zhu et al.,
2011], debating the intelligence-gathering process, the network reconnaissance, how to access
and manipulate classified process parameters and, ultimately, how to disrupt the physical
processes under control (with the inherent consequences).

Since most of the protocols are based on plain-text communications without any security
enforcing mechanisms, as soon as the attacker is able to breach the security perimeter, it
becomes a matter of using the right function codes and either directly connecting to field
devices or hijacking Transmission Control Protocol (TCP)/Internet Protocol (IP) sessions
on-the-fly. Fortunately, the industry is finally starting to move away from such completely
insecure protocols. For instance, in October 2018 the Modbus Organization released a
new Modbus/TCP Security protocol specification [Modbus Organization, Inc, 2018]. New
Modbus conforming devices must use Transport Layer Security (TLS) 1.2 or better to achieve
confidentiality and data integrity on the top of TCP sessions (thus avoiding replay and
Man-in-the-middle (MitM) attacks), while the authentication and authorization of requested
Modbus function codes rely on x.509v3 certificates and a combination of an AuthZ function
and a Roles-to-Rights Rules Database (cf. [Modbus Organization, Inc, 2018]). Yet, both
authorization and database implementation details were left outside of specification, leaving
room for vendor-specific implementations.

From a standardization point-of-view, there are dozens of standards, guidelines and best
practices recommendations [ENISA, 2011] [Ghosh and Sampalli, 2019]. This creates a
fragmentation problem and a challenge to implement them consistently across the entire
heterogeneous IACS ecosystem, from energy-related systems (e.g. Smart Grids) to Manufac-
turing Execution Systems (MES).
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The attack-surface of IACS has also grown significantly over the past years, as a result of all
the aforementioned paradigm changes. Several large incidents, from Stuxnet [Langner, 2013]
to Lockergoga [Manuel and Salvio, 2019], keep showing their vulnerabilities, including the lack
of security of SCADA communication protocols, the internal actors (even when unintentional)
or the importance of adequate software/firmware security updates and maintenance.

Various incidents, malware examples and Advanced Persistent Threat (APT) campaigns
targeting Critical Infrastructures (CI)s and IACS (summarized in Figure 2.3) are described
in the literature [Anton et al., 2017] [Hemsley and Fisher, 2018] [Al-Hawawreh et al.,
2019]. For instance, Win32/Industroyer, one of the major publicly-disclosed real-world
malware [Cherepanov, 2017] targeting SCADA systems, provides a good example of how
recent malware can use multiple protocols in a coordinated campaign. Win32/Industroyer
was specifically conceived for targeting SCADA protocols and affecting electric power systems.
It used a modular design to accommodate four different protocols: IEC 60870-5-101 for
serial connections [International Electrotechnical Commission, 2020a]; IEC 60870-5-104 for
TCP/IP connections; IEC 61850 [International Electrotechnical Commission, 2020b]; and
Open Platform Communications (OPC) protocol [OPC Foundation, 2020]. Three SCADA-
specific features should also be highlighted in the scope of that malware: the network device
enumeration capability, by parsing device responses of different protocols; the capability
of accessing field values leveraging SCADA protocols (which, again, do not enforce proper
security mechanisms); and, finally, a Denial of Service (DoS) tool to send specifically-crafted
malicious network packets to a specific family of Siemens devices.
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Figure 2.4: Major ICS Vulnerabilities between 2017 and 2019 by component and type
(compiled from [Kasperky, 2017] [Kasperky, 2018] [Kasperky, 2019])

2.2.1 Threats and Vulnerabilities

Figure 2.4 provides a compilation of the latest disclosed vulnerabilities, per year, per
component and per type, based on publicly available databases [Kasperky, 2017] [Kasperky,
2018] [Kasperky, 2019]. It not only shows increased interest in IACS security, but also
exposes the naked reality of the number of vulnerabilities in different components. As
expected, those numbers highlight the fact that security problems derive from more than
just insecure network communication protocols. A high number of disclosed vulnerabilities
refer to software or specific components, such as the HMIs. Worst, in the IACS these
vulnerabilities take greater importance, since due to the update policies, assets might be
exposed for longer periods of time – a device may be required to run uninterruptedly for
years before being patched.

From a different perspective, Table 2.1 summarizes the outcomes of a 2019 survey to more
than 300 IACS professionals [Filkins, 2019], providing a breakdown of the perceived risk
and impact in OT/Control system components. According to this survey, outdated server
assets present the highest risk, whereas compromised network connections were rated to have
the greatest impact. This survey also highlights a rather focused IT monitoring strategy,
opposed to more ambitious comprehensive OT/IT approaches. While the reason of such
limited IT focus is not clear in the survey, this could be a consequence of the (lack of) OT
technology maturity, complexity or even cost-benefit. It should also be noted that the notion
of risk and perceived impact are tied to the complexity of the attacks and the assumption
of different types of actors with different skills levels. Unfortunately, based on the major
publicly reported incidents, even the most high-profile and less likely attacks are becoming
more frequent and should not be disregarded.
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Table 2.1: Perceived risk and impact by component, according to [Filkins, 2019]

OT/ICS Control System Capabilities Risk Impact

Connections to the field control networks 36.10% 34.10%
Embedded controllers or components 22.90% 33.20%
Server assets running commercial OS 57.60% 32.70%
Connections to other internal systems 42.00% 31.20%
Network devices 30.20% 30.20%
Engineering workstations 38.00% 29.30%
Operator workstations 33.20% 28.80%
Control system communication protocols 23.90% 20.50%
Process control application 16.10% 20.00%
Field devices 19.50% 19.00%
Remote access appliances 25.40% 18.50%
Physical access systems 22.40% 16.60%
Wireless communication devices and protocols 27.80% 13.20%
Plant historian 14.60% 13.20%
Mobile devices 36.10% 12.20%
Analog modems 12.20% 6.30%
Other 5.90% 2.00%

Figure 2.5 pinpoints the numerous threats that might be present within a complex and
distributed Smart Grid [Suleiman et al., 2015]. As depicted in the figure, there are many
types of specific devices and communications, from smart home devices and grid-specific
elements (e.g. substations assets) up to the control center. Most of the mentioned threats
leverage insecure communications to disrupt, intercept, change or spoof all the different
process values and configuration settings.

2.2.2 Anatomy of Attacks Taking Advantage of SCADA Protocols

The ICS Cyber Kill Chain [Assante and Lee, 2015] was defined as a two-stage ICS attack
model, extending the original concept of Cyber Kill Chain [Martin, 2014] – a framework
for identification and prevention of cyber intrusion proposed by Lockheed. A first stage
refers to the initial process of gaining access to the ICS Infrastructure and components (e.g.
via internet-facing devices), and a second stage refers to when the attacker leverages the
outcomes from first stage to actively explore the OT domain. Such a detailed view is useful
to understand, structure and address the specific challenges of each step (cf. Figure 2.6).

One of the first steps performed during a typical IACS cyber-attack is intelligence gathering
– collecting as much detail as possible for each asset in the target system. For networks in
general, and more specifically for IACS systems, this means discovering and enumerating
involved devices and collecting their specific characteristics (manufacturer, model, firmware
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version, etc.), to look for known vulnerabilities. A classic network scan is useful to find
responding IPs and open ports, but collecting details about PLC models and versions
requires additional investigation. In SCADA systems, a PLC might be configured to bridge
serial segments which may hide additional PLCs that will not be disclosed, for instance, by
common TCP SYN Scans.

Each SCADA protocol typically requires a different approach. In [Rudakov, 2010], a Nmap
NSE script is used to identify and enumerate Modbus devices, including Modbus slaves
(please note that multiple Modbus slaves may be behind a single IP address). For the
EtherNet/IP protocol, another Nmap NSE script, from [Hilt, 2014a], explores the lack of
authentication and, by sending a Request Identification packet, is capable of retrieving
multiple information from a device, such as the model, firmware, OS and hardware versions
and serial numbers. Other examples, such as those found in [Deneut, 2017] and [Hilt, 2014b],
may be used to find and identify specific details for various Siemens models.

After the enumeration phase, since many SCADA protocols still use unencrypted TCP
connections, it becomes possible to hijack TCP sessions or to simply establish new connections
to PLCs, in order to access or modify sensitive data. For instance, a metasploit module
available in [EsMnemon et al., 2018] allows reading and writing different types of registers
using standard Modbus functions.

In addition to reading and writing registers, a PLC may sometimes be remotely shut down,
either by sending a valid command (from a malicious actor) or by exploring vulnerabilities in
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the PLC input validation. A metasploit module for Modbus [Wightman, 2018b], for instance,
allows remotely starting and stopping a PLC using Modbus requests. For Ethernet/IP CIP,
there are also several modules [Santamarta et al., 2012] [Monteiro et al., 2019] that explore
application layer issues in the packet handling, eventually leading to Denial-of-Service (DoS)
conditions.

Finally, reprogramming the entire logic of a PLC is also possible, as demonstrated by
[Wightman, 2018a], a metasploit module that allows downloading and uploading ladder logic
code from/to Schneider Modicon PLCs.

Based on the observed pieces of evidence and publicly disclosed information, Figure 2.7 shows
the main steps of the real-world Industroyer attack mapped into the ICS Cyber Kill Chain
and IACS levels. Again, this stresses the notion that a complete IACS attack or campaign is
more than just exploiting a SCADA protocol. Most of the time, other vulnerabilities, not
necessarily SCADA-specific (e.g. a phishing campaign or a compromised supply-chain), are
the pivot for accessing the SCADA components. Similarly, protocols such as Domain Name
System (DNS) or HTTP Secure (HTTPS) are commonly used to exfiltrate sensitive data or
to Command & Control (C2) a compromised device. On the other side (often overlooked),
several incidents described in the literature as targeting SCADA environments did not end
up reaching low level controls, but only the IT network – nevertheless, a breach in the IT
or higher OT network levels, for example, in a large electrical system company, is still a
significant event.

The variety of different SCADA communication protocols demands a huge effort, not just
to somehow accommodate them all, but also to design unified solutions able to fit such an
heterogeneous SCADA ecosystem. For instance, PCOM – a SCADA protocol that enables
applications to communicate with devices – suffers from the same security issues previously
discussed. Nevertheless, perhaps due to its relatively smaller market penetration, when
compared with the couple of more popular protocols, it is not widely discussed in available
literature. Since in this dissertation PCOM is extensively used to discuss a set of scenarios
and tools developed as part of the SCADA exploratory analysis (cf. Chapter 4), we introduce
it in Section 4.2.1.

2.2.3 Defense Models and Mitigation Strategies

The Defense-in-Depth (DiD) strategies from the past are no longer enough to address the new
physical and logical boundaries of IACS. The attack threats are highly heterogeneous and
complex, which demands more collaborative and orchestrated anomaly detection techniques.
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Figure 2.7: Mapping of Industroyer attack steps with ICS Cyber Kill Chain and SCADA
levels (based on [SANS, 2017] [Cherepanov, 2017] [Slowik, 2018]).

Recognizing those specificities, as well as the tremendous impact they can have on SCADA-
based IACS, there is a strong investment in research towards enhancing the security of (both
legacy and more recent) SCADA systems.

Network Intrusion Detection System (NIDS) are among the most effective tools when it
comes to dealing with the security issues of legacy or insecure protocols (as Modbus or
PCOM). The role of a NIDS is to distinguish legitimate traffic patterns from malicious ones,
offering a complementary approach to traditional firewalls.

Firewalls are helpful to shield the trusted perimeter and block the traffic based on TCP/IP
header fields, such as an IP address or a TCP port, mostly playing a preventive role.
Nevertheless, a fine control based on protocol features (e.g. determine which SCADA
functions should be blocked and which ones are allowed) would require Deep Packet Inspection
(DPI) and custom SCADA parsing. However, even when supporting DPI, classic firewalls
often fall short when it comes to offering comprehensive protection against more sophisticated
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attacks. For instance, because protocols such as Modbus and PCOM are vulnerable to
spoofing attacks, the single reliance on classic firewalls for protection is insufficient, requiring
complementary solutions (e.g. ARP monitoring solutions such as Snort’s ARP preprocessor,
to detect ARP poisoning attacks [Diogo, 2018]). Moreover, because of the specific nature of
the SCADA ecosystem, where availability has been traditionally favored over confidentially
and integrity, the decision to specify traffic blocking or throttling reactions for specific rules
is often questioned, due to the potentially negative impact in terms of operational and safety
levels, often leading instead to simple event logging.

A NIDS such as Snort might be used to detect and report unwanted communications, but to
be able to effectively block them it must be deployed in the middle of the communications
path, providing intrusion prevention capabilities – this is referred to as the inline mode
in Snort documentation. The inline mode has its own fair share of issues, which makes
it unpopular among IACS operators – besides introducing a single point of failure in the
communications path (by placing the Snort host in a traffic mediation point), there is also the
possibility that a knowledgeable attacker may try to abuse it to deliberately drop legitimate
traffic. On the other hand, if the NIDS deployment is only passive (offering pure detection
capabilities, by just reporting alarms), specific attacks that only require a single SCADA
packet to go through (like the remote shutdown of a PLC) might be successful, despite being
detected and reported. In the end, it all comes down to a trade-off between prioritizing
availability (passive mode) or having effective reaction capabilities (inline mode).

Besides the traditional strategies recommending the introduction of segregated network
domains with disallow-by-default traffic control policies, or the use of bump-in-the-wire
Virtual Private Networks to provide encryption with role-based access-control, there are
other alternatives for which this research may also be relevant, namely the implementation
of SCADA-aware data diodes and honeypots.

Data diodes [Borges de Freitas et al., 2018], also known as unidirectional gateways, allow
to enforce strict one-way communication between different components. For instance, they
allow to limit the network traffic from a restricted domain to a less secure network segment
(but not in the opposite direction). Such gateways require the use of additional software
components in each side of the unidirectional link in order to support the conversion of
TCP/IP SCADA protocol requests into unidirectional data streams – since protocols such
as Modbus/TCP or DNP3 were conceived for bidirectional operation, relying on a three-way
handshake and continuous acknowledgments between peers.

SCADA honeypots such as conpot [Rist et al., 2013] or the one proposed by [Simões et al.,
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2015] are used to replicate the behavior of a given protocol or asset. While such a honeypot
would hardly constitute an attack deterrent, it could play a relevant role in disclosing
attackers at early phases, providing a means not only to detect them but also to profile their
strategy.

Based on a collaborative effort involving industry, academia, and government, the National
Institute of Standards and Technology (NIST) proposed a reference framework for improving
critical infrastructure cyber-security (Figure 2.8). This framework includes a description
of core security-related functions (i.e. Identify, Protect, Detect, Respond, and Recover)
and maps to additional informative references. With particular relevance to this work (and
sharing some of the goals of this research), the detection function (Table 2.2) details several
recommended activities, such as continuous monitoring, event collection and aggregation
from different data sources (e.g. network, connections, devices, personnel and software).

Figure 2.8: NIST Critical Infrastructure Cybersecurity Framework Version 1.1 (adapted
from [NIST, 2018])

AI-enhanced security mechanisms are increasingly playing a key role in the cyber-security
of both IT/OT environments, being used to support different types of analytics. A survey
to more than 800 senior executives from IT Information Security, Cyber-security and IT
Operations, covering the IT, Internet of Things (IoT) and OT domains [Capgemini Research
Institute, 2019b], highlights the importance and the need of AI capabilities in cyber-security
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Table 2.2: Overview of Detect function of NIST Cybersecurity Framework.

Category Sub-Category

Anomalies and Events (DE.AE):
Anomalous activity is detected

DE.AE-1: A baseline of network operations and expected data flows
for users and systems is established and
DE.AE-2: Detected events are analyzed to understand attack targets
and methods
DE.AE-3: Event data are collected and correlated from multiple
sources and
DE.AE-4: Impact of events is determined
DE.AE-5: Incident alert thresholds are established

Monitoring (DE.CM): The infor-
mation system and assets are
monitored to identify cybersecu-
rity events and verify

DE.CM-1: The network is monitored to detect potential cybersecurity
events
DE.CM-2: The physical environment is monitored to detect potential
cyber security
DE.CM-3: Personnel activity is monitored to detect potential cyberse-
curity events
DE.CM-4: Malicious code is detected
DE.CM-S: Unauthorized mobile code is detected
DE.CM-6: External service provider activity is monitored to detect
potential cybersecurity events
DE.CM-7: Monitoring for unauthorized personnel, connections, de-
vices, and software is performed
DE.CM-7: Vulnerability Scans are performed

Detection Processes (DE.DP):
Detection processes and proce-
dures are maintained and tested
to ensure awareness of anomalous
events.

DE.DP-1: Roles and responsibilities for detection are well defined to
ensure accountability
DE.DP-2: Detection activities comply with all applicable requirements
DE.DP-3: Detection processes are tested
DE.DP-4: Event detection information is communicated
DE.DP-5: Detection processes are continuously improved

– with more than half of the respondents saying they make extensive use of AI for cyber-
detection. The importance of correctly identifying data sources and creating data platforms
to operationalize AI as one of the first steps in the road-map to implement AI in cyber-
security is also one of the key points from this survey. This is aligned with the strategy of
supporting multiple anomaly detection techniques based on various ML algorithms, pursued
in this thesis.

Since the aforementioned attack steps require access to the SCADA process control network,
it makes sense to consider the protection of the communications infrastructure as part of a
mitigation strategy. One of the possible solutions for detecting, alerting or blocking such
attacks is to use NIDS or firewalls. Nevertheless, in order to have a perspective of what is
going on in the network, such solutions must be able to perform Deep Packet Inspection
(DPI). For instance, read operations might be allowed but write and administrative operations
might be blocked and reported. Repositories such as [Hilt, 2015] contain collections of Snort
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rules for a few SCADA protocols (Modbus, DNP3 and S7, among others) that might be
used for detecting several types of operations, including network scans and Modicon PLC
reprogramming attempts.

For more complex protocols or interactions, it is recommended to have specific preprocessors
able to decode specific protocol values that may happen to be not always at the same
offset. For instance, Jordan [Jordan, 2012] details how specific preprocessors for Modbus and
DNP3 protocols allow creating syntax-richer rules by providing an extended list of keywords.
Furthermore, a set of Ethernet/IP rules to be used with Suricata Intrusion Detection System
(IDS) [Open Information Security Foundation, 2020] is described in [Digital Bond, Inc. and
N-Dimension Solutions, Solana Networks, 2011].

Another key tool in this quest for secure IACS is the availability of good quality datasets of
realistic SCADA traffic. These datasets are useful both for training AI-based systems and for
assessing the effectiveness of security tools in general. Table 2.3 provides a non-exhaustive
list of the most relevant publicly available SCADA datasets. This table shows that, despite
a few datasets that appeared in recent years, there is still a lack of more and better datasets,
covering different scenarios, protocols and specific equipment. The majority of existing
datasets refer to small to medium testbeds or initiatives, which might be explained by
the complexity, time and monetary resources needed to reassemble a larger scale testbed.
Richer and more realistic environments containing more use cases would definitely help the
community researching for better detection mechanisms.

Table 2.3: Publicly available IACS and SCADA datasets

Description Reference

Datasets from various tesbeds of power systems, gas pipelines and water
storage tanks

[Morris and Gao, 2014]

Miscellaneous ICS lab with s, RTUs, servers, industrial network equipment
(switches, firewalls, etc) (4SICS)

[NETRESEC, 2015]

Scaled-down testbed of a water treatment plant (SWaT) [Goh et al., 2016]
Water distribution tesbed (WADI) [Ahmed et al., 2017]
Power grid testbed including Generation, Transmission, Micro-grid, and
Smart Home (EPIC)

[Adepu et al., 2018]

Water storage tank’s control emulated testbed [Teixeira et al., 2018]
A real-world, medium-sized water distribution system (BATADAL) [Taormina et al., 2018]
Small simulated electric network testbed [Lemay and Fernandez, 2016]
Miscellaneous SCADA network packet captures [NETRESEC, 2020]
Collection of different SCADA network packet captures [Hink, 2020]
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2.3 Intrusion and Anomaly Detection Techniques for IACS

Intrusion and anomaly detection is one of the key capabilities in the cyber-security monitoring
field. Intrusion detection is traditionally defined as the process of monitoring a given system
to detect potential malicious behaviors, whereas anomaly detection can be defined as the
process of searching for deviant patterns over complex datasets – often relying on AI and
ML algorithms. In the last years, both have attracted considerable attention. In the IACS
domain, such techniques make it possible to spot deviant patterns and identify anomalies
(e.g. created by cyber-attacks or physical process anomalies) based on the processing of
large amounts of data.

Two main approaches can be found in the literature: signature-based Network Intrusion
Detection Systems focused on mainstream SCADA communication protocols (e.g. Modbus,
DNP3, CIP) and anomaly detection based on machine learning algorithms.

Signature-based approaches are able to detect abnormal communications patterns based on
known packet signatures. They are often not aware of the physical process and are likely
to fail against unknown vulnerabilities. On the other hand, anomaly detection based on
supervised ML models require previous training and are usually tuned for a single scenario,
either for a specific process or for a single communication protocol. Finally, unsupervised
approaches are typically less accurate, which might lead to huge amount of false positives
that overwhelm the operator.

As already mentioned, multiple open-source NIDS, like Snort, Suricata or Bro, have been the
focus of several attempts to improve their support for SCADA protocols, either by dedicated
preprocessors or by specific rules [Wong et al., 2017] [Udd et al., 2016] [Vávra and Hromada,
2016] [Lin et al., 2013] [Rosa et al., 2020]. Such signature-based approaches represent a
simple but somehow limited solution for detecting and enforcing communication policies at
the network level.

The remaining of this section presents a literature review focused on anomaly-based detection
techniques for IACS proposed in the literature in the last years, thus complementing
earlier surveys in the topics of SCADA-anomaly detection [Ding et al., 2018] [Nazir et al.,
2017] [Iturbe et al., 2017] and cyber-security scenarios [Handa et al., 2019] [Nisioti et al.,
2018] [Terzi et al., 2017] [Dewa and Maglaras, 2016] [Agrawal and Agrawal, 2015].

Phillips et al. [Phillips et al., 2020] presented four different anomaly detection approaches –
Support Vector Machine (SVM), Decision trees, K-nearest Neighbor (KNN), and k-means
– to classify SCADA network traffic, having obtained better results with the supervised
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methods. Similarly to others, their evaluation was based on a public dataset from a gas
pipeline [Morris and Gao, 2014]. Nevertheless, no details were provided regarding the
algorithms implementations nor how such approach could be deployed on real systems to
detect attacks on real-time.

McKinnon et al. [McKinnon et al., 2020] provided a comparison of three algorithms – One
Class Support Vector Machine (OCSVM), Isolation Forests (IF) and Elliptical Envelope (EE)
– for wind turbine fault diagnosis, based on real historical turbines data in Europe. They
have obtained the best results (82% of accuracy) with the first two methods. Nevertheless,
again, no details were provided regarding the algorithm implementations or the used tools.
Moreover, no dataset was available to reproduce the results.

Gao et al. [Gao et al., 2019] presented an ensemble approach of Feedforward Neural Network
(FNN) and Long short-term memory (LSTM), having obtained better results to detect
temporally uncorrelated attacks with FNN and temporally correlated attacks with LSTM.
Among the list of used features, the authors included several Modbus-specific fields, thus
limiting their approach to scenarios based on this protocol. Moreover, the authors conducted
their experiments within a simulated SCADA environment and no datasets are available.

Similarly to [Gao et al., 2019], in [Yang et al., 2019] the features are extracted from network
packets into a 25-tuple for DNP3 [DNP Users Group, 2005] communications. The authors
used a Convolutional Neural Network (CNN) to classify different types of network-based
anomalies into several classes. This has the advantage of not only reporting the anomalies
but also classifying them into more specific type of attacks. Even though some of the classes
were misclassified, they obtained an overall accuracy of 99.38% and a low number of false
positives related to the normal class. The authors assessed their model against two different
testbeds, but none of them is available.

A comparison between SVM and Random Forests based on two datasets – Modbus and
OPC UA [OPC Foundation, 2020] communications respectively – is presented in [Anton
et al., 2019]. The authors identified the most relevant features in the first dataset as a
combination of process specific values (e.g. pressure) and packet related features (e.g. packet
length). Random forests consistently outperformed the SVM approach. Similarly to most of
the SCADA datasets, they started with an unbalanced dataset (i.e. the number of normal
values is significantly superior to the anomalies) and a large percentage of missing values.
To overcome this, the authors used Principal Component Analysis (PCA) as a preprocessing
means for Random Forests and a zero mean scaling for the SVM case.

The performance of two Recurrent Neural Network (RNN) architectures (Gated Recurrent
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Unit (GRU) and LSTM) is analysed in [Sokolov et al., 2019], arguing their benefits when
predicting unseen anomalies, compared to traditional supervised classifiers more suited to
detect known anomalies. Similarly to other research works, the authors used a public gas
pipeline dataset [Morris and Gao, 2014] and a combination of packet and process features.
While the authors suggest there is room for improvement regarding the obtained results,
the accuracy around 90% for both methods is smaller than other classification approaches.
Although more computing-intensive, they obtained slightly better results as the number of
epochs increases using LSTM, suggesting it is more suitable than GRU for larger datasets
and unlimited computation resources.

Another study [Ramotsoela et al., 2019], follows a different approach, adopting an ensemble
technique using a Quadratic Discriminant Analysis (QDA) to combine two density-based
estimation algorithms (Local Outlier Factor (LOF) and Subspace Outlier Degree (SOD)).
Such combination avoids the traditional classification path and does not make an assumption
about the distribution of the data (as opposed to other parametric methods). Combining both
methods, their approach was able to cope with both local and global outlier detection, leading
to an overall good performance without penalty for high dimensional data. Nevertheless, this
is a computationally expensive method and might not be as accurate as other parametric
approaches if the data distribution is known. The authors run their model against the
BATADAL dataset [Taormina et al., 2018], allowing to perform comparisons with publicly
available results using the same data. The ensemble approach does not always outperform
their counterparts and, therefore, one cannot conclude it would always be a better option.
Nevertheless, it would be interesting to see how such a technique performs with other datasets
and IACS domains.

In another study [Khan et al., 2019], the authors used a two-level approach by first applying
a Blooming Filter and, afterwards, a KNN classifier for network anomaly detection. Each
packet needs to pass both algorithms to be considered as normal. They used a public SCADA
dataset [Morris and Gao, 2014] referring to Modbus communications within a gas pipeline
facility. The authors handle the unbalanced dataset problem by under-sampling using an
AllKNN algorithm. The authors also highlight the importance of a feature preprocessing
step, having used three different algorithms for that purpose: PCA, Canonical Correlation
Analysis (CCA), and Independent Component Analysis (ICA). Nevertheless, and despite
their interesting 97% of accuracy, they obtained significantly different results (from 68% to
100%) depending on the class of anomalies. Moreover, since they depart from Modbus-related
features, it would be interesting to understand how they perform on different protocols and
feature spaces.
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Another interesting approach with 98% of accuracy combined Online Sequential Extreme
Learning Machine (OS-ELM) with a set of Restricted Boltzmann machine (RBM) to classify
network flows into several classes of attacks [Demertzis et al., 2019]. It also used the public
dataset of a Gas pipeline [Morris and Gao, 2014] but does not specify whether the entire
feature space is used or not, only mentioning that the data is grouped into sliding windows
of 100 samples with overlapping of 400 instances. OS-ELM is used as a first step to classify
the flow as normal or in one of the known classes. Whenever an anomaly is detected, it is
forwarded to one of the RBMs. Then, each RBM, trained for a single class of anomalies
using a unary classification method, is responsible for deciding whether the anomaly matches
its class or not. If there is no match it will sequentially test the remaining RBMs. Such
extra step might be valuable to improve the correct class classification since its RBMs can
be highly specialized. Nevertheless, it is important to acknowledge that the OS-ELMs are
susceptible to produce false negatives. In that case, the flow is marked as normal and never
reaches any of the RBMs. Moreover, this approach depends on the previous knowledge of
each class and might not be suitable for unknown types of attacks.

A three-stacked LSTM approach to predict anomalies in time series windows against different
types of datasets, including one power demand dataset, is proposed in [Nguyen et al., 2018].
Despite claiming 92% of precision, no details are provided about the used features or the
used datasets (which are not publicly available).

An approach to predict cyber-attacks by analysing different combinations of CNNs is
presented in [Kravchik and Shabtai, 2018]. It successfully detected 32 out of 36 attacks in
a public industrial water treatment dataset [Goh et al., 2016], processing physical process
parameters in time windows of 200 seconds. Nevertheless, using only physical process
parameters means this approach will not detect layer 2/3 attacks without direct impact on
the physical process (e.g. network scans).

Intrusion Weighted Particle based Cuckoo Search Optimization (IWP-CSP) and Hierarchical
Neuron Neuron Architecture based Neural Network (HNA-NN) are used to classify SCADA
network data into nine different classes, in [Shitharth and Prince Winston, 2017]. The
authors mention an experimental evaluation using a simulated environment, with 100 nodes
and two process level features (humidity and temperature). However, there is no information
on how such a small number of features are related with their feature optimization layer,
how they relate with all the categories of attacks, or whether an additional set of features
were used but not referred.

The authors of [Keliris et al., 2017] present an anomaly detection solution capable of detecting
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attacks against managed physical processes based on: 1) a first stage using a SVM model to
detect whether there is an anomaly and 2) and a second set of SVMs specifically trained to
classify the anomaly into a known category. They evaluate their model against a Human in
the Loop (HITL) testbed, using a hybrid combination of a simulated process (Tennessee
Eastman chemical process) and a real (Wago 750-881). Time windows are used to minimize
data noise and to reduce the number of false positives. The model was able to detect the
two injected payloads. Nevertheless, it requires training and it will likely fail to detect other
categories of attacks that do not interfere with process values.

Table 2.4 presents a summary of the surveyed literature. Since each research work might
contain multiple experiment variants, the presented performance indicators refer to the best
results (scenarios) found for each work. Similarly, since multiple distinct datasets are often
used during the evaluation step, the presented results prioritize SCADA-based validations.
As already mentioned, additional surveys in the topic of SCADA-anomaly detection, covering
earlier works, can be found in [Ding et al., 2018] [Nazir et al., 2017] [Iturbe et al., 2017].
Additional anomaly detection literature focused on more general cyber-security scenarios can
be found in [Handa et al., 2019] [Nisioti et al., 2018] [Terzi et al., 2017] [Dewa and Maglaras,
2016] [Agrawal and Agrawal, 2015].

Table 2.4: Summary of the latest literature contributions of SCADA Anomaly Detection
Algorithms
Focus Method Dataset Features Anomalies Indicators Reference

Gas Pipeline

SVM,
Decision
trees, KNN,
and k-means

Public
Dataset

Process and
network
related

L7
Attacks ACC=99.99

[Phillips et al.,
2020]

Wind Turbine
Systems

OCSVM, IF
and EE

Custom
Dataset

19 Turbine
features

Historical
turbine
faults

ACC=82
[McKinnon et al.,
2020]

Industrial
Control network
data (Modbus
related)

FNN and
LSTM

Custom
Modbus
Related

19 Network
Packet
Features

Layer
2/3/7
attacks

P=99.76
R=99.57
F1=99.68

[Gao et al., 2019]

Industrial
Control network
data (DNP3
related)

CNN
2 private
testbeds

25 Packet
Based

Layer
2/3/7
attacks

ACC=99.38
[Yang et al., 2019]

Precision (P), Recall (R), F-Score (F), Accuracy (ACC), Not Available (N.A.)
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Table 2.4: Summary of the latest literature contributions of SCADA Anomaly Detection
Algorithms (continued)

Focus Method Dataset Features Anomalies Indicators Reference

Industrial
Control network
data

AMPSO-
SVM-K-
means++ /
GSA-AFSA-
ELM

N.A.

4 Network
packet
related
Features

N.A.
DR=95
FA=0.02

[Chen et al., 2019]

Gas pipeline
(Modbus and
OPC-UA
related)

SVM and
Random
Forests

2 Public
data sets

Network
packet and
application
based

Layer
2/3/7
attacks

ACC=99.98
[Anton et al., 2019]

Gas Pipeline
RNN
(LSTM and
GRU)

Public
Dataset

N.A.
35 applica-
tion level
attacks

P=0.92
R=0.92
ACC=0.92

[Sokolov et al.,
2019]

Electric Power
Systems

CNN
Simulated
IEEE-Bus
systems

N.A.

Power
related
faults and
Data
injection

ACC=98.67
[Basumallik et al.,
2019]

Water
distribution

SOD / LOF
/ QDA

BATADAL N.A.

Applica-
tion Level
Anomalies
and
Replay
attacks

P=0.88
R=0.94
F=0.91

[Ramotsoela et al.,
2019]

Gas Pipeline
Bloom Filter
and KNN

Public
Dataset

20 Network
Packet
Features

Layer 3/7
Attacks

ACC=0.97
P=0.98
R=0.92
F=0.95

[Khan et al., 2019]

Gas Pipeline
OS-ELM
and RBM

Private
dataset

26 attributes
Layer 3/7
attacks

P=0.99
R=0.99
F=0.99

[Demertzis et al.,
2019]

Water
treatment
system

CNN and
LSTM

SWaT 51 attributes
36 applica-
tion level
attacks

P=1
R=0.85
F1=0.92

[Kravchik and
Shabtai, 2018]

Power Demand LSTM N.A. N.A.
Power
Demand
faults

P=0.92
R=0.14
F1=0.87

[Nguyen et al.,
2018]

Electric Power
Systems

SVM / ANN

Transmis-
sion &
Distribu-
tion
datasets

5 PMU
correlation
Features

Replay
Attacks

ACC=98.47
P=99.54
F1=0.92

[Jiang et al., 2017]

Precision (P), Recall (R), F-Score (F), Accuracy (ACC), Not Available (N.A.)
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Table 2.4: Summary of the latest literature contributions of SCADA Anomaly Detection
Algorithms (continued)

Focus Method Dataset Features Anomalies Indicators Reference

Sensors Data HNA-NN
100 nodes
simulated
in NS-2

2 Features
(humidity
and temper-
ature)

DoS and
Spoofing
attacks

P=72
R=100
ACC=95

[Shitharth and
Prince Winston,
2017]

TE Chemical
Process

SVM
Simulated
TE process

12 sensors
measure-
ments

Ladder
Logic
Injection

Graphic
only

[Keliris et al., 2017]

Precision (P), Recall (R), F-Score (F), Accuracy (ACC), Not Available (N.A.)

2.4 Event Processing and Correlation

The previous section overviews intrusion and anomaly detection techniques for IACS. However,
it is not enough to look at the algorithms as isolated components, since it is necessary to have
a broader framework for efficiently handling large amounts of events collected from multiple
sources and different heterogeneous domains, able to feed multiple detection algorithms.

This section is focused on event processing and correlation frameworks. First, classic event
correlation tools will be introduced and analysed. Next, based on the conclusion that those
classic tools are no longer able to handle the requirements of modern IACS, event processing
architectures originated in the Big Data domain will be discussed.

The term event is used within this thesis to refer to a generic occurrence collected within the
system (i.e. IACS infrastructure). Thus, it can represent almost any kind of information (e.g
a particular security incident alert, log messages, network trace data, field process values,
a group of other events). This way, event correlation can be generically defined as a way
of analyzing events to identify potential relationships. Rule-based correlation employs a
set of rules to represent all the event processing logic. Each event, which might undergo a
previous normalization stage, is compared against a ruleset and, in case there is a match, a
predefined action is triggered (such as an alarm or the activation of an automatic reaction).

2.4.1 Classic Event Correlation Tools

This subsection introduces five rule-based event correlations tools (Esper, SEC, Drools,
Nodebrain and Prelude), selected based on our empirical experience and available literature.
This analysis was undertaken in an early stage of this thesis work, in the scope of the design
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of the CockpitCI detection layer. A more detailed comparison work, including performance
tests, can be found in [Rosa et al., 2015].

Esper is a correlation framework capable of analyzing streams of events, constituting a
Complex Event Processing (CEP) engine [EsperTech Inc., 2014]. There is an open-source
version with a limited number of components and two full-featured commercial versions:
Esper Enterprise Edition and EsperHA. In the open-source category, two distinct distributions
are available: a Java version, evaluated in the scope of this study, and a .NET based version
designated as Nesper. The Java-based variant is available as a set of Java packages that can
be integrated into a full solution using their Java APIs.

In the literature, there are references to the usage of Esper to detect inter-domain stealthy
port scans [Aniello et al., 2011], analyzing the establishment of TCP connections and applying
a rank-based algorithm to classify the scans. Another usage of Esper [Dunkel et al., 2011]
refers to event processing of road traffic information produced by a group of sensors (such
as the average speed, occupancy or number of vehicles) to support decisions on the traffic
management system. Esper uses a Structured Query Language (SQL)-like approach for rule
description, designated as Event Processing Language (EPL), that provides pattern-matching
mechanisms via state machines. Esper loads the EPL query set and performs matching
within the incoming stream of events, implicitly incorporating a time-based correlation logic
that accounts for ordering and sequencing, within a time-window. Events can be represented
in Java structures like Plain Old Java Objects (POJO) or in a more abstract way using
Extensible Markup Language (XML). The insertion and handling operations need to be
developed on top of the Esper library and input/output adapter APIs.

Simple Event Correlator (SEC) is a lightweight event correlation engine [Vaarandi, 2014].
It is written in Perl and distributed under an open-source license with ports for multiple
operating systems, being also easy to integrate as a component of a full-featured correlation
or SIEM framework. SEC has been used for event reduction within distributed scenarios,
helping to reduce the amount of information transmitted between log-producing/generating
agents and the central servers [Myers et al., 2011], and also implementing different operation
modes to define the level and type of information that is passed between the logger systems.
SEC has also been integrated into a generic intrusion detection architecture [Ficco and
Romano, 2011], where it was used to diagnose whether a previously detected attack was
successful or did not lead to an intrusion.

SEC rules follow a text-based approach, with matching conditions being defined as string
occurrences, regular expressions or Perl subroutines. Input data can be read from text files,

33



CHAPTER 2. CYBER-SECURITY IN THE SCOPE OF INDUSTRIAL AUTOMATION
AND CONTROL SYSTEMS

named pipes, or using the standard output descriptor. Output actions can be defined as the
execution of a shell command or the creation of a context to use as a matching condition in
other rules (therefore allowing second-order correlation). SEC sequentially tests all the rules
found inside a text configuration file but can perform parallel analysis if the rules spread
over multiple files.

Drools is constituted by a suite of tools classified as a Business Rules Management System
(BRMS) [Red-hat, 2014]. The correlation rule engine-referred in this survey is part of the
complete suite, being designated as Drools Fusion (simply referred to as Drools in this
document). It is deployed as a set of Java libraries that can run on multiple operating
system environments.

There is a documented use case explaining how to integrate Drools in a platform to filter
and aggregate Radio-frequency identification (RFID) information in a "smart" hospital
environment [Yao et al., 2011], using RFID sensors distributed all over the hospital to collect
information about doctors, patients and objects, which is correlated to detect time-critical
emergencies, based on a set of policies. Another literature reference to Drools describes the
use of its complex event processing capabilities to track and trace an object on a large-scale
environment, once again using RFID information from a large number of customers spread
along different physical locations to trace and follow logistics operations [Wu et al., 2012].

Drools has two operation modes: cloud mode, without a time notion; and stream mode,
where events are processed using time notion as they are inserted in the correlation engine.
Events are defined as Java classes. Rules are defined in a custom expression-based format
that may contain Java code to express the actions to perform. For rule processing, Drools
uses an adapted version of the Rete [Liu et al., 2010] algorithm, which was designed to
sacrifice memory for increased speed.

Nodebrain is described by its authors as a lightweight event monitoring agent [Node-
Brain.org, 2014]. It has the capability of applying a set of rules to a stream of events in
order to correlate them. Nodebrain is available under an open-source license, also including
a set of scripts and a C-based API designed to extend its features.

A documented use case describes the use of Nodebrain to control the policy rules of a military
ad-hoc network in a lightweight management system [Jormakka et al., 2007]. To configure a
remote network element, each element can trigger an action/command in another one, based
on a set of policies (Nodebrain rules). Nodebrain events are based on text inputs, while the
rules use a custom declarative format. It supports several operation modes, including: (i)
a daemon mode to continuously execute in the background; (ii) a batch mode to process
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and terminate execution; and (iii) an interactive mode for debugging purposes. Input and
output options vary from simple named pipes, secure TCP/IP communications between
multiple nodes or custom and specific modules like remote Syslog communication. Custom
shell commands can be defined as actions.

The Prelude tool provides additional features besides the rule engine component [Lang,
2014]. Two versions are available: a full-featured commercial version and a more limited
open-source version, based on Python and with substantially lower performance and less
features.

There are several use cases for Prelude, mostly related to its use in event normalization and
correlation for intrusion detection. For instance, [Ficco et al., 2013] proposes a Prelude-based
distributed architecture for Cloud Computing with multiple instances of correlation engines
collecting information at several levels, together with the use of Bayesian Networks to detect
sequences of unauthorized activities. Another scenario [Petri et al., 2013] describes the use of
Prelude for reduction, normalization and aggregation of events produced by different NIDS,
deployed in a university computer network.

The design of Prelude is based on a modular approach, encompassing components such as
the correlation engine (Prelude-Correlator) or the log analysis (Prelude-LML) tool. Prelude
provides native support to handle and create Intrusion Detection Message Exchange Format
(IDMEF) [Feinstein et al., 2007] events. The rules are defined using Python code, also being
able to handle text-based logs using regular expressions. The Prelude-Manager module
provides input via Unix sockets or TCP/IP communications and outputs via different
adaptors like a database or text-based adaptors.

Esper and Drools are both released as platform-independent Java-based libraries, already
providing several internal components and APIs such as input/output adaptors. On the
other hand, Nodebrain and SEC are standalone applications developed for GNU/Linux
environments, which rely on a scripting-oriented approach to execute actions, handle inter-
process communication and integration with other components. The simplistic approach
of SEC may be adequate for small environments, or in situations where the correlation
overhead must be minimal (e.g., in embedded systems).

2.4.2 Event Processing Architectures for Big Data

Classic correlation tools such as those aforementioned are no longer able to cope with the
requirements of current IACS, especially in the highly distributed and capillary scenarios
of modern industrial systems, and in terms of capacity for flexibly processing very large
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volumes of data. On the other hand, in the generic field of Big Data several architectures
and tools have been recently proposed to address such limitations.

Since the "three V’s" (Volume, Velocity and Variety) discussion in 2001 [Laney, 2001], the
concept of Big Data has been successively refined and revised, raising increasing interest
in the past few years. It is often linked to a multitude of dedicated and highly efficient
tools addressing the problem of acquiring, processing and presenting data in their different
shapes [Saggi and Jain, 2018] [Mohamed et al., 2020].

Notably, in 2014, the Lambda Architecture concept was formalized, encompassing two distinct
data processing schemes into a unified framework: batch and stream processing [Marz and
Warren, 2015]. Later, the Kappa architecture was introduced, containing only the stream
processing path [Kreps, 2014b] (Figure 2.9).
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Figure 2.9: Lambda Architecture (left), Kappa Architecture (right) (adapted from [Forgeat,
2015])

Both approaches have advantages and disadvantages [Forgeat, 2015] [Feick et al., 2018]. The
two processing paths considered by the lambda architecture are often considered as useful
to cope with heterogeneous processing needs (heavy processing algorithms vs. low-latency
computations). This way, both paths can be further and independently optimized, leveraging
specialized tools for each processing scheme.

The batch layer addresses slow algorithms (which do not produce immediate results), being
also considered useful in the re-computation of historical data – opposed to the focus
on real-time within the stream processing. On the other hand, the need to support two
separate pipelines, often using distinct tools, is argued to make the batch layer more complex.
Currently, such a constraint is less relevant. For instance, unified APIs such as the Apache
Spark dataset Application programming interface (API) can already be used to abstract
and express an either bounded (batch) or unbounded (stream) dataset [Apache Software
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Foundation, 2020d]. Hence, the processing logic becomes simplified.

In the Kappa architecture, all the data is considered as an append-only log (the data stream).
The processing logic uses an incremental strategy, where each streaming job can theoretically
provide faster outputs by processing each new record at a time – as opposed to waiting for
the batch interval. The re-computation of historical data, a selling point in the lambda
concept, leverages the data immutability concept to reconstruct the original stream using
independent jobs. Note, however, that such re-construction is constrained by the retention
period of each stream, whereas in batch mode data storage is typically used to persist
historical data.

More recently, the Delta architecture [Databricks, 2019] was proposed to truly merge batch
and stream processing paths into a single pipeline (opposed to one architecture supporting
two different pipelines). The Delta architecture (and Delta Lake [Linux Foundation, 2019]
– a Delta architecture implementation) takes a different direction. Instead of considering
data immutability, it uses a multi-hop strategy where data tables are successively computed,
refined and updated.

All these architectural concepts have been applied into a wide range of domains, such as
the cyber-security field. Figure 2.10 provides a list of open-source tools and libraries that
emerged in the last years, to support the development of this concept of real-time Big Data
processing. This is not intended to be an exhaustive list, just a high-level timeline of several
tools relevant and further explored in the context of this thesis. A more detailed analysis
about the evolution of such tools can be found in [Casado and Younas, 2015] [Saggi and
Jain, 2018].

2.5 The Concept of SIEM as a Unified and Holistic Approach

The last sections discussed anomaly detection algorithms and event processing and correla-
tions tools. This section introduces the concept of SIEM, as a more complete and holistic
approach to security monitoring.

The SIEM term was originally coined by Gartner [Williams and Nicolett, 2005], to name
systems able to aggregate different types of events from multiple sources. While SIEMs were
originally associated to log data, currently they cover a much broader set of application
domains and focus not only on simple event correlation, but on the entire incident detection
and response process. Within this document, the term SIEM will refer to the concept of a
full-featured SIEM, sometimes referred to as the next-generation SIEM or evolved SIEM, that
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Figure 2.10: Timeline of Open-source Real-time Big Data and event processing tools

allows fulfilling the continually changing needs of modern security monitoring. Related and
somehow competing concepts have also emerged, such as Security Operations and Analytics
Platform (SOAPA) (which, on top of log aggregation, comprises an analytics layer and AI
capabilities), Security Orchestration, Automation and Response (SOAR) (focused on security
orchestration and response) and Extended Detection and Response (XDR) (aggregating
both detection and response).

In IACS, similarly to other domains, the myriad of process-related data sources can easily
overwhelm the most experienced security operator. From a security standpoint, a full-
featured SIEM is a step towards the so-called IT/OT convergence, providing a global outlook
of each IACS domain. Another key aspect, often overlooked in the literature, is how to
characterize events in such a way that they can be understood by all the actors (either
the different software components, security practitioners or third-party entities). Table 2.5
provides a compilation of different event formats and tools sorted by categories that can be
used to represent security events.

When it comes to security management of infrastructures and services, a SIEM system has
quickly become a mandatory component, as demonstrated for instance by: the Sarbanes-
Oxley Act of 2002, Sec 103 (Auditing, Quality Control, and Independence Standards and
Rules), which regulates the use of log collection, processing and retention for any traded
company in the USA [Sarbanes, 2002]; the Payment Card Industry (PCI) council requisites
for Data Security Standards (as stated by Requirement 10 "Track and monitor all access to
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Table 2.5: Event formats and tools (compiled from [Pawlinski et al., 2014] [Roth and Patzke,
2019] [The MITRE Corporation, 2020])

Formats for
low-level data

Actionable ob-
servables

Enumerations Scoring and
measurement
frameworks

Reporting
Formats

NetFlow cybox CAPEC CCSS ARE
IPFIX MAEC CPE CVSS CVRF
PCAP MM DEF CVE CWSS IODEF
PcapNG OpenIOC CWE XCCDF IODEF-SCI
CEF Snort rules ISI IDMEF

YARA rules OSVD3 MARF
SWID Tags OVAL
TLP STIX 2
WASC TC VERIS

X-ARF
ATT&CK
Sigma

network resources and cardholder data") [Payment Card Industry, 2002]; the North American
Electric Reliability Corporation (NERC) CIP-009-2 Critical Infrastructure Protection [North
American Electric Reliability Corporation, 2009]; or the Information Technology Infrastruc-
ture Library (ITIL) framework [Steinberg et al., 2011], which encompasses components for
incident response in line with the role of the SIEM concept.

Following such trends, leading commercial SIEM solutions such as IBM QRadar, Splunk,
Exabeam, Rapid7, LogRhythm, Securonix or Dell RSA [Kavanagh et al., 2020] are no longer
solely focused on event aggregation but also support a wide range of features, from detection
to incident response. Nevertheless, commercial SIEM systems are typically provided as
generic appliances, software or managed services, lacking specific support for specialized
application domains such as IACS.

2.5.1 SIEM-inspired Frameworks for IACS

This subsection surveys SIEM-inspired frameworks proposed in the literature for the domain
of IACS cyber-security. These frameworks are generally characterized by three key func-
tionalities: collection of information from several sources in real-time; pre-processing and
aggregation of those events; and processing of those events in order to determine if they
correspond to anomalies.

A tri-modular platform to support existing cyber-security tools at Smart Grid Control Centers,
composed of a data module, a classification module and an action module, is presented
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in [Sundararajan et al., 2018]. This approach explores the advantages of having several types
of data sources and a data layer that implements several types of data preprocessing and
data ingestion. Nevertheless, the analytic component is limited by a single classification
approach (i.e. LSTM), which might be not sufficient to cope with all types of anomalies.
Moreover, details about the internal parts of the framework are not provided. This raises
multiple questions, such as: How are the outputs of several heterogeneous sources jointly
processed? Which data format is used? Which feature space is used in the classification
module?

Similarly, the authors of [Khodabakhsh et al., 2017] proposed a framework for fault detection,
targeting oil and gas industries. This framework uses a lambda architecture based on widely
used open-source tools (i.e. Apache Kafka, Spark and Cassandra). Nevertheless, few details
about the implementation and obtained results are provided.

The authors of [Yang et al., 2017] focused on time-series analysis within an industrial field
environment, presenting a Big Data framework that encompasses several layers: acquisition,
transmission, data processing and visualisation. All components were based on widely used
open-source tools such as Message Queuing Telemetry Transport (MQTT), Apache Kafka,
Spark, InfluxDB and Grafana. A custom JSON-based message format was used for seamless
communication between the components. Despite the potential value of such a platform,
there are no implementation details or more practical evaluation results.

A SCADA honeypot environment, together with a SIEM system for cyber-attack profiling, is
presented in [Lee et al., 2016]. Although the platform was not developed for detecting cyber-
attacks within a real SCADA environment, it provides some related functionalities, such as
log processing capabilities, a real-time processing approach and a dedicated visualization
interface. Similarly to others, the authors designed the platform based on open-source
software such as an Elasticsearch stack [Elasticsearch B.V., 2020] and Suricata [Open
Information Security Foundation, 2020]. Nevertheless, no details were provided about the
used visualization techniques, the evaluated processing algorithms or the adopted message
formats.

In [Kang et al., 2016], the authors explored the Suricata detection plugin functionality to
perform an additional packet inspection to recreate a stateful analysis of the IEC 61850
[International Electrotechnical Commission, 2020b] protocol family. This is an interesting
approach to complement single packet signature matching, especially for complex protocols.

The challenges and the desired features of a policy-based SIEM are analysed in [Gao et al.,
2016]. This is a different but interesting approach, focused on the correlation of general
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business policies rather than on physical process values or network traffic. The authors
describe the classic example of a logon into a system event, detected after a leaving event.
Individually, each of the events could be regarded as normal, but when considering their
sequential order they reveal an anomalous pattern.

A framework focused on EtherNet/IP and CIP [Schiffer, 2016] protocols is presented in
[Ghaeini and Tippenhauer, 2016]. The authors extended the functionality of Bro, an open-
source NIDS, and proposed a hierarchical deployment of several instances (based on IEC
62443 SCADA reference architecture levels [International Electrotechnical Commission,
2018]). All the Bro logs were aggregated using ElasticSearch and visualized using a dedicated
web interface. While this approach can successfully detect several types of attacks, few
implementation details were provided regarding the framework itself.

Table 2.6 presents a summary of the surveyed frameworks. Most of them were designed
to address a single specific problem or a single protocol. The ability to combine multiple
sources, techniques and protocols into a comprehensive framework for supporting SCADA
operators’ decisions seems to remain a challenge.

Table 2.6: Summary of the latest literature contributions of SIEM-related Frameworks

Focus Data Sources Data Format Messaging Analytics References

Smart Grid Logs and Sensor
data N.A. Kafka Spark, R and

TensorFlow
[Sundararajan et al.,
2018]

Oil and Gas
Industry

Logs and Sensor
data N.A. Kafka

Fault detection
using Esper and
Spark

[Khodabakhsh
et al., 2017]

Industry 4.0 OPC / Network
Data

Custom JSON
based

MQTT /
Kafka Storm [Yang et al., 2017]

SCADA network
traffic

Public exposed
SCADA Honeypot Suricata alarms N.A. Profiling analysis

using ELK stack [Lee et al., 2016]

Smart Grid IEC 61850
Network Traffic Suricata alarms N.A.

IEC 61850
Stateful protocol
analysis based on
Suricata Plugins

[Kang et al., 2016]

Policy
Monitoring

Security Control
Logs

Custom
Structured Logs
messages

N.A Log Correlation [Gao et al., 2016]

Water Treatment CIP/EthernetIP
traffic Bro alarms N.A.

Log aggregation
from multiple
domains with
ELK

[Ghaeini and
Tippenhauer, 2016]

2.5.2 A Taxonomy for Evolved SIEMs

In the course of the aforementioned survey, no specific SIEM taxonomies were found. In
order to fill this gap, this subsection proposes a taxonomy that captures and organizes the

41



CHAPTER 2. CYBER-SECURITY IN THE SCOPE OF INDUSTRIAL AUTOMATION
AND CONTROL SYSTEMS

main concepts and features of evolved SIEMs, from key capabilities to processing models
(Figure 2.11). This taxonomy considers ten different characteristics, as detailed below. Apart
from the specific data feeds, most of those features are not restricted to the IACS domain,
since they applicable to many other domains. Next, each of those features is individually
discussed.

• Key capabilities. Refers to the supported security-related capabilities, including classic
event correlation techniques such as event suppression, compression, generalization
and root cause analysis [Jakobson and Weissman, 1995]. Event correlation, one
of the original key capabilities associated with a SIEM, can be further organized
according to the specific clustering approach: tuple-based, feature-based, or time-based.
For instance, an event might be filtered according to a predefined threshold, event
characteristic or timestamp. Time-based aggregation is typically divided into hopping
windows or tumbling windows [Lal and Suman, 2020]. Incident detection capability is
also one of the key SIEM features, and be further split into categories such as signature
and ML-based anomaly detection techniques. A more detailed view of specific types
of anomaly detection methods can be found in [Hindy et al., 2018]. Moreover, the
taxonomy also includes the latest security capabilities envisioned to be part of a
full-featured SIEM: incident response, security orchestration, security automation,
user-behavior, analytics and regulatory compliance.

• Data feeds and Threat Indicators. Different types of data sources and other threats
indicators are paramount for a comprehensive monitoring strategy. Among others,
in the SCADA domain it is critical to monitor all the network traffic in all segments
(both OT-specific and remote connections) and the network infrastructure itself (e.g.
routers, switches, gateways), all the different types of logs (e.g. HMIs, engineering
stations, historians), access controls (e.g physical controls to enter in a substation,
logon attempts), the output of other security-specific endpoints (e.g. firewalls, NIDS,
Host Intrusion Detection System (HIDS), honeypots, data diodes) and the physical
process values through the usage of specialized physical probes. Other data sources,
such as business policies or external threat intelligence feeds (e.g. vulnerability alerts
correlated with existing infrastructure assets), might also be relevant.

• Key Layers. A complete SIEM should encompass at least the following key layers: data
ingestion, referring how the events are ingested in the overall SIEM; data streaming,
which includes how the inter component communication is performed (critical for
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distributed systems); and data analytics, where different types of analytics (with differ-
ent levels of autonomy and complexity) can be included (e.g. descriptive, diagnostic,
predictive and prescriptive [Pathak et al., 2018]).

• Scope. IACS rely on a wide range of interconnected physical assets. This way, a SIEM
can be used to handle physical, cyber or both domains (e.g. compare network-based
traffic with physical access controls to spot anomalous patterns). This might be useful
for instance to correlate maintenance operations with anomalous traffic patterns or
security access controls.

• Data Structure. Three major types of data structure were identified: structured (all the
fields of each event follow a rigid semantic structure); semi-structured (containing a
hybrid between a rigid structure and flexible fields); and unstructured (not structured
at all). Whereas in theory more structure means more fine control about the event
contents, in practice this can also bring an increased complexity to map and describe
all the inner details of each potential event.

• Processing Model. Two major types of event processing are commonly referred. Event
Stream Processing, where the processing logic is applied in near real-time to a un-
bounded stream of data (e.g. events generated from field sensors), and batch processing,
where the processing is applied to bounded batch of events. In batch processing, for
smaller batch sizes (i.e. processing less events but at a more frequent rate) we might
also refer to micro-batch processing.

• Programming Paradigm. Batch processing is typically time-driven (e.g. count every 2
minutes) or event-driven (e.g. average every 10 records). Stream Processing is often
tied to an event-driven strategy since the processing is applied on-the-fly to a stream
of data (i.e. events). Regardless, in the Stream Processing, the windowing can be both
time-driven or event-driven (i.e. using a global time-scheduler or relying on the event
time).

• Messaging Pattern. The messaging pattern can range from a queue where each message
is consumed by a single consumer, a publish-subscribe model were each message can
be consumed by more than one consumer, or a hybrid approach such as the one used
by Apache Kafka, were each message can be consumed multiple times by different
consumer groups and, at the same time, load-balanced across each consumer member
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within the same group.

• Architecture. The evolved SIEM architecture can range from a centralized and mono-
lithic application to a distributed and micro-service based architecture. Whereas
monolithic applications are typically simpler, a distributed architecture can be lever-
aged to load-balance for instance the messaging and analytics layers or to reassemble
fail-over strategies.

• Deployment Strategy. Last, but not least, the deployment strategy might vary from
the classical on-premises deployment up to cloud-based deployment in different levels
(i.e. Software as a Service (SaaS), Plataform as a Service (PaaS) and Infrastructure
as a Service (IaaS)). Whereas the security and privacy aspects should be taken into
consideration, the multiple cloud-based strategies can represent a cost-effective solutions
with shared responsibilities. For instance, an Essential Service provider might require
a large computation infrastructure but it might not want to own or manage it.

2.6 Summary

Anomaly detection based on ML techniques is increasingly used in different fields, including
IACS, and is expected to bring valuable improvements to support (albeit not replace) the
overall intrusion detection process. Nevertheless, applied research towards practical IACS
solutions is still in its early stages.

The majority of the reviewed literature focused on detecting anomalies such as network-based
cyber-attacks or physical faults by looking either at physical process properties, network
SCADA communications or a combination of both. Other potentially relevant features, such
as diversified log sources and host-based events, are commonly ignored, therefore missing
an important opportunity to develop a more comprehensive approach covering a broader
spectrum of attacks.

For instance, a model that only takes process features into consideration will simply fail to
detect an important range of attacks that do not have a direct impact on the process, such
as network scans or brute force login attempts. If we look at the example of recent APT
campaigns targeting IACS [Kasperky, 2019], they typically start by collecting information
from the environment over long periods of time – a latent stage during which the threat may
go undetected for months if one just looks at physical process values. A NIDS (with support
for SCADA protocols) is still a valuable source for detecting such kind of unauthorized
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communications – one of the most referred SCADA security issues. Nevertheless, since a
NIDS is limited to network traffic, it is clearly insufficient to address all the security needs.
This suggests that including more data sources is a better strategy.

On the other hand, the complexity of a SCADA environment is one of the biggest challenges
for anomaly detection based on ML approaches. The amount of different types of potential
features can severely affect the performance of the model, and should be carefully selected.
Another frequently observed problem is the lack of datasets. Given the cost and the
complexity of recreating an industrial control system, most surveyed works focused either
on small scenarios or in the few publicly available datasets. Moreover, some of them lack
a diversity of anomalies, resulting on imbalanced datasets that might lead to inaccurate
or biased classification issues. Intuition also suggests that a better approach is to take
into consideration both supervised (more apt at detecting known issues) and unsupervised
techniques (more suitable to detect unknown anomalies).

Similarly, by combining several different approaches, it is possible to infer both local and
global anomalies (e.g. a single component fault on a given domain might not have immediate
effects on the overall process). Additionally, other techniques such as stream processing
(especially windowing) might help reducing the number of false positives, since the analysis
is performed on the top of a group of events, rather than on a single event. Finally, as we
are moving towards a Big Data problem, in order to avoid scaling issues it is critical that the
chosen approaches can fit into scalable, distributed and parallel computation environments.

Taking all of that into consideration, in the next chapter, we propose a comprehensive and
holistic data-driven framework for intrusion and anomaly detection in IACS environments.
Such framework follows an evolved SIEM-like approach leveraging various types of data
sources and ML-based techniques to detect potential intrusions and anomalies.
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CHAPTER 3. A HOLISTIC INTRUSION AND ANOMALY DETECTION SYSTEM
FOR IACS

This chapter introduces the proposed holistic framework for intrusion and anomaly detection
in Industrial Automation and Control Systems (IACS) scenarios. This framework was
built upon the idea of having an evolved Big Data-like Security Information and Event
Management (SIEM) system capable of detecting in (near) real-time the occurrence of
cyber-physical attacks in such complex environments. By contrast to other works surveyed
in the previous chapter, this research focused on the concept of having a holistic framework
capable of supporting different scenarios and techniques. Thus, such a Big Data-like SIEM
was designed to be able to integrate different Machine-Learning (ML)-based mechanisms,
which in turn can be used to detect different types of anomalies on top of large amounts of
heterogeneous data produced by all devices, sensors and actuators. Moreover, the proposed
framework was also inspired upon the idea of a Lambda Architecture (cf. Section 2.4.2),
taking into consideration both Batch and Stream Processing techniques.

This chapter starts by enumerating and discussing the key driving characteristics of IACS
that motivated and influenced the design of the proposed holistic intrusion and detection
framework (Section 3.1).

Next, for sake of context, the main ideas behind the CockpitCI and ATENA projects and the
related Hybrid Environment for Development and Validation (HEDVa) testbed are presented.
As already mentioned, this work was performed in the scope of those two projects – it was
initially conceived within the CockpitCI project and, later on, extensively redesigned in the
ATENA project.

In the CockpitCI project (Section 3.2), the author of this thesis contributed to the state-of-
the-art analysis of intrusion and anomaly detection techniques, the research and development
of the event correlation components and overall intrusion detection architecture.

In the scope of CockpitCI and ATENA, Israel Electric Corporation designed and implemented
the HEDVa testbed, which was essential for the work conducted in this thesis, both for early
exploratory work and for defining and evaluating the validation scenarios of the framework
components. This testbed is briefly presented in Section 3.3.

Later, in the ATENA project (Section 3.4), the author of this thesis was one of the key
contributors to the overall detection architecture and was directly responsible for the
conception and development of the streaming processing and data analytics layers (cf.
Chapters 5 and 6). Furthermore, in ATENA, the author of this thesis was responsible for
the research and development of a proof-of-concept ML-based mechanism to aggregate and
classify network traffic. Finally, in both projects, the author of this thesis was also the main
contributor to the development of different validation scenarios in the form of practical attack
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scenarios to support the functional validation of the different components (cf. Chapter 4).

The proposed overall framework for the holistic Intrusion and Anomaly Detection System
(IADS) is presented in Section 3.4, since in practice it was adopted as reference architecture
for the ATENA IADS. Section 3.5 discusses the stream processing and data analytics layers,
which are key contributions from this thesis and will be further detailed in the next chapters.

3.1 Key Driving Characteristics of IACS

This section overviews the key characteristics of IACS that directly influenced the design
of the proposed framework. Those characteristics were identified based on the literature
reviewed in the previous chapter, the work conducted in the scope of the CockpitCI and
ATENA projects, and on what we envision for the next generation of IACS (e.g. the Smart
Grids of the future).

First of all, it is important to acknowledge that, contrary to common Information Technology
(IT) networks, an incident on IACS can have an immediate catastrophic economic impact
and, ultimately, threaten human-lives (e.g. environmental disaster in a nuclear power plant,
energy blackout on an electrical grid, or water poisoning in a water-distribution system). As
an example, according to [Maynard and Beecroft, 2015], an unlikely but plausible coordinated
attack against the USA power grid, hypothetically damaging between 50 and 100 power
generators across 15 States, was estimated to cause a total of $243bn up to $1trn of direct
and indirect costs. Such values were considered based on an average power outage from 3
days up to weeks of rolling blackouts having an impact on 93 million people, which already
gives a clear indication of how serious this can escalate. Despite of all the countless benefits
provided by the recent advances in industrial automation (e.g. more intelligent and connected
processes, the Operational Technology (OT)/IT convergence), there is the side effect of
increasing dependency on the technology, which in the case of a cyber attack can turn into
huge losses. Thus, IACS must be considered as mission-critical and their cyber-security
is of utmost importance.

Similarly, IACS and Supervisory Control And Data Acquisition (SCADA) systems tradition-
ally relied on data collected from field (e.g. sensors values) and components such as data
historians to remotely supervise and control different parts of the system (e.g. open/close
a circuit breaker in a electrical grid based on field measurements). As we move into more
intelligent and advanced systems, data assumes an even more relevant role. For instance,
in Smart Grids, Energy Management Systems (EMS) strongly rely on the valuable data
collected across the different domains to understand, model and forecast energy consumption
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patterns, monitor the grid stability or implement advanced self-healing mechanisms. This
way, data is already a central piece in modern automation and should be considered as one
of main pillars of next-generation IACS – expected to be increasingly data-centric. From
a security standpoint, such data is also valuable to monitor and timely detect potential
anomalies (e.g. to detect a cyber-attack based on anomalous data patterns) – thus the
emphasis on the data-driven nature of the proposed approach.

The next-generation IACS are also expected to be highly distributed. In fact, in numerous
domains, IACS already span across larger geographical areas. For instance, a Smart Grid
encompasses a distributed smart metering infrastructure, the centralized energy production
facilities, the high/medium/low voltage transmission/distribution infrastructure, and the
Distributed Energy Resources (DER) up to the customer premisses. Moreover, as postulated
before, the leaning towards hybrid edge/cloud architectures (where non-critical components
can be, for instance, deployed on a third-party cloud facility) and the exponential growth of
connected assets (with their ramifications) are blurring and eroding the physical boundaries of
IACS environment. This way, even more distributed and capillary IACS architectures
are expected in a foreseeable future. Therefore monitoring framework solutions should also
be be able to collect and cover such distributed environments.

Finally, the intrinsic characteristics of the IACS physical processes are substantially different
from one domain to another (e.g. the underlying processes within a Smart Grid are quite
different than those within a nuclear power plant). Worst, the wide range of assets, technolo-
gies and protocols used in such distinct systems demands an extra effort to accommodate
them all. This is not expected to change in the near future. Moreover, the ongoing usage
of undocumented or proprietary protocols from the past poses additional barriers to the
cyber-security monitoring process. Likewise, network communications, depending on if
we are referring to time-sensitive operations such as real-time remote I/O or non-critical
telemetry pulls, are quite different (e.g. different levels of network periodicity, determinism or
priority). As an example, in the Common Industrial Protocol (CIP) protocol, there are two
messaging modes: explicit for non-time-critical messages and implicit for real-time I/O data).
This way, IACS are highly heterogeneous environments, where different components
and protocols require different monitoring approaches and security solutions.

3.2 CockpitCI - Towards Cyber-Security Awareness

In 2010, Stuxnet was considered by many as the tipping point from which IACS security,
frequently neglected in the past, started to get the deserved attention. Thenceforth, seemly
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far-fetched threats started to get widely discussed and researched.

The CockpitCI project (2012-2014) focused, among other objectives, on developing a frame-
work to monitor and evaluate the cyber-security of a Critical Infrastructure (CI). The
CockpitCI detection subsystem was designed as a Dynamic Perimeter Intrusion Detection
System (DPIDS) to continuously assess the electronic security perimeter of a SCADA system.

This DPIDS was designed to collect information from the environment in (near) real-time
and, afterwards, analyse the probability of the occurrence of a cyber-attack. The DPIDS,
built upon the idea that the whole is greater than the sum of the parts [Cruz et al., 2016],
encompassed a combination of diversified and innovative security probes, together with
hybrid and multi-level correlation capabilities. Its design already considered the benefits
of having a unified framework across multiple domains, along with the benefits of having
distinct intrusion detection techniques. These two ideas were the initial inspiration and the
main precursor of the remaining work developed within this thesis.

Figure 3.1 provides a high-level view of the DPIDS architecture, which was composed of the
following main components [Cruz et al., 2016]:

• Event Correlators. A two-level approach was used to filter and aggregate the security
events originated from the different segments. Based on an early comparative analysis
[Rosa et al., 2015], Esper was used for both local and global correlation.

• Network Intrusion Detection System (NIDS). Three distinct NIDS instances were
used to cover each network segment, each configured to monitor all the local network
traffic of each domain. Snort [Cisco, 2020] was used for this purpose.

• Host IDS. Host Intrusion Detection System (HIDS)s were deployed in the SCADA
stations and servers to provide host-level anomalous behaviour detection capabilities.
OSSEC [OSSEC, 2016] was adopted for this purpose.

• Honeypots. Three types of honeypots were used to cover each segment. Each acted
as a decoy by simulating different types of SCADA devices (e.g. a Modbus-based
Programmable Logic Controller (PLC)), detecting suspicious activity [Simões et al.,
2015].

• Shadow Security Unit. A security and safety device attached in parallel with a PLC
or Remote Terminal Unit (RTU), to continuously evaluate and compare the SCADA
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communications content with the actual physical state of I/O [Cruz et al., 2015].

• Exec Checker. A component capable of reconstructing and analysing suspicious binary
files from network communications.

• Configuration Checker. A component used to check for unauthorized modifications of
configuration files.

• OCSVM. An One Class Support Vector Machine (OCSVM)-based mechanism capable
of performing outlier detection with high accuracy and low overhead, on the top of
unlabeled network traffic data [Stewart et al., 2017].
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Figure 3.1: High-level view of the CockpitCI PIDS architecture ( [Cruz et al., 2016]).

In a nutshell, distinct and domain-specific security probes were used to collect and report
telemetry data and security-related events using the Intrusion Detection Message Exchange
Format (IDMEF) format [Feinstein et al., 2007] – a vendor and component-neutral format.
IDMEF allowed all the heterogeneous components to communicate the incidents in a more
structured and standardized manner. Moreover, the security probes were deployed across
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three domains (control, process control and IT), corresponding respectively to: the field
domain (SCADA levels 0, 1 and 2); the remote supervisory control (level 3); and the
remaining enterprise IT domain (level 4).

In a first stage, those events were pushed to a local event correlator and to a OCSVM
component used for initial filtering, aggregation and outlier detection. After this first pre-
processing, events were routed to a global correlator which, based on a set of pre-defined rules,
was able to classify them as potential cyber-physical incidents. Both correlator components
used a rule-based approach to match and correlate events.

It should be noted that the CockpitCI detection layer was conceived by all the University of
Coimbra members that participated in the CockpitCI project and not only by the author of
this thesis. As mentioned before, the author of this thesis contributed to the state-of-the-art
analysis of intrusion and anomaly detection techniques and to the overall intrusion detection
architecture. Moreover, the author of this thesis was also the key contributor to the research
and development of the event correlation components and to the development of different
validation scenarios in the form of practical attack scenarios to support the functional
validation of the different components (cf. Chapter 4).

3.3 The HEDVa Testbed

The HEDVa testbed, designed and implemented by the Israeli Electric Corporation, emerged
in the CockpitCI project and was extended later in the ATENA project. It supported the
research, development and validation of both projects. HEDVa followed a hybrid approach
combining both real and physical SCADA components into an electrical process simulation
(natively implemented in the ladder logic of additional PLC devices). For this work, such an
highly complex environment allowed to recreate different attack scenarios, and to assess the
cyber-security of different physical devices. Last but not least, it allowed to conduct all the
PCOM-related security research (cf. Chapter 4).

Figure 3.2 shows the networking view of the HEDVa testbed, highlighting its different
domains, organized into different Virtual Local Area Network (VLAN)s along with a central
gateway, simultaneously connected to all the network segments and providing remote access
through a Virtual Private Network (VPN) connection. The testbed was physically deployed
in Israel and the different project members needed to remotely access it. Moreover, as shown
in the figure, all the CockpitCI components were setup in an additional and separate VLAN,
to avoid any interference with the process-related network segments while still allowing to
remotely manage them. Likewise, the NIDS instances were setup with an extra link for
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the sole purpose of mirroring all the network traffic for Deep Packet Inspection (DPI) and
further analysis.
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Figure 3.2: HEDVa networking architecture ( [Cruz et al., 2016])

Eleven Unitronics PLCs were used in CockpitCI to emulate the behavior of a Medium/Low
voltage energy distribution scenario with two redundant energy supply links. Different
"points" of the electrical grid were emulated by those PLCs, including, as later detailed, the
current, voltage and the state of electric circuit breakers (Figure 3.3). Part of the overall
project evaluation, the HEDVa testbed also allowed to simulate different grid failure scenarios
and to execute the respective recovering procedures. Thus, among others, one of the goals
of the practical scenarios explored in this thesis (cf. Chapter 4) was to prevent the SCADA
operator from noticing a failure in the grid and/or to interfere with recovery procedures.

Fast-forward to ATENA, the HEDVa testbed was significantly enriched with high-fidelity
simulations such as energy production systems, energy transmission links, smart homes and
different energy consumption profile simulations – representing the different domains of a
Smart Grid. Moreover, it also included the deployment of additional SCADA-specific assets
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Figure 3.3: HEDVa grid scenario, with circuit breakers and two energy paths ( [Cruz et al.,
2016])

and protocols. Figure 3.4 shows the mapping between the Smart Grid domains and the
PLC models used in each domain. Figure 3.5 provides various examples of Human-Machine
Interface (HMI) interfaces developed by the Israel Electric Corporation to remotely control
the environment, such as the diesel generators simulation interfaces, additional substations
and the High/Medium/Low grid infrastructure.,

HEDVa and the different domains it emulates already hint at how complex and heterogeneous
an IACS can be. This further reinforces the importance of having a holistic approach to
collect evidences and monitor the entire infrastructure. For this thesis, such additional
domains and the increased assets coverage were also decisive to explore additional practical
scenarios.

3.4 ATENA – a More Scalable Architecture

Instead of replicating the recipe of CockpitCI, in the ATENA project (2016-2019) the
entire detection layer was redesigned, taking into consideration the aforementioned key
characteristics of IACS.

While CockpitCI was based on the underlying idea of monitoring a single infrastructure,

55



CHAPTER 3. A HOLISTIC INTRUSION AND ANOMALY DETECTION SYSTEM
FOR IACS

Physical Processes Emulators

Power Distribution

Schneider 
M221

Schneider 
M221

Unitronics
V130

Unitronics
V130

Allen Bradley
MicroLogix11

00

Allen Bradley
MicroLogix11

00

Siemens
S7-1200
Siemens
S7-1200

Power Distribution

Schneider 
M221

Unitronics
V130

Allen Bradley
MicroLogix11

00

Siemens
S7-1200

Power Generation + 
Transmission

ABB PM583

General 
Electric RXi

Allen Bradley
CompactLogi
x L36ERM

General 
Electric RXi

Allen Bradley
CompactLogi
x L36ERM

Proficy/HMI 
SCADA - 
Cimplicity 

9.50

SCADA Servers Power Consumption 

RaspberryPI
 2B

RaspberryPI
 2B

Real Houses
In Israel

Real Houses
In Israel

RaspberryPI
 2B

Real Houses
In Israel

Power Consumption 

RaspberryPI
 2B

Real Houses
In Israel

Figure 3.4: Smart Grid domains emulation in HEDVa / ATENA

Figure 3.5: The many HEDVa scenarios in ATENA

ATENA focused on highly distributed, capillary and heterogeneous IACS. Moreover, ATENA
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leveraged on the integration of new open-source tools and on a major leap in Big Data-
oriented approaches. Eventually, this led to the design of the ATENA detection layer
(designated as IADS) as a Big Data-like architecture, truly data-driven, distributed and
scalable.

The ATENA IADS decoupled the evidence-gathering, event transport and processing com-
ponents by using a multi-layer approach (Figure 3.6) composed of the following compo-
nents [Rosa et al., 2020]:

• Management. The management module was designed as a multi-tenant graphical in-
terface to easily visualize all the security events and remotely reconfigure the IADS
components, as well as to monitor and visualize the health state of the platform.

• Probes. Representing the eyes of the platform, a set of domain-specific probes were
developed to collect all kinds of data (e.g. process values, network traffic data, security
events), from classical NIDS up to SCADA specific probes.

• Messaging system. A dedicated event bus, following a hybrid approach between queuing
and publish-subscribe mechanisms to support all the inter-component communication.

• Domain Processors. Such components, ideally deployed near the collection points, were
used as mechanism to pre-process the events coming from the probes. More than just
filtering and routing, such components were also used as a way of aggregating different
events and extracting additional statistic features (e.g. average and standard deviation
of different features per time windows).

• Big Data-like SIEM. Designed as a scalable and distributed computation framework,
it was used to implement the ML-based anomaly detection mechanisms of the IADS.
Those mechanisms used a set of features extracted from the stream of events to classify
and to detect cyber-attacks, as detailed in Chapter 6.

• Forensics and Compliance Auditing. A semi-automatic feature identification and
extraction component designed to support the forensics and post-mortem analysis of
different types of data sources (e.g. Authentication, Authorization and Accounting
(AAA) sessions, physical access control systems), as well as for policy conformity
checks.
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Figure 3.6: Intrusion and Anomaly Detection System architecture

As in CockpitCI, multiple probes were developed to collect evidence from the field. Moreover,
as detailed in Chapter 5, in ATENA those probes used a custom and predefined format to
report the events. The local event correlators and event bus from CockpitCI were replaced
by a full-featured event streaming layer, which comprises the messaging system and a set
of domain processors. The global event correlator was replaced by a Big Data-like SIEM
(depicted in Figure 3.6) which was no longer limited to a single anomaly detection mechanism
or rule-based event correlation. Instead, it incorporated the concept of a Lambda Pattern
(cf. Section 2.4.2) with two main types of processing: Stream and Batch Processing. A
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distributed computation framework was used to support the simultaneous deployment of
different ML-based mechanisms capable of running in parallel and on top of a horizontally
scalable infrastructure.

As in CockpitCI, the overall IADS architecture was conceived by the University of Coimbra
team participating in ATENA project, with a key contribution from the author of this
thesis. The author of this thesis was also responsible for the streaming processing and data
analytics layers (cf. Chapters 5 and 6), as well as for the research and development of a
proof-of-concept ML-based mechanism to aggregate and classify network traffic. Finally, the
author of this thesis also the main contributor to the development of different validation
scenarios in the form of practical attack scenarios to support the functional validation of the
different components (cf. Chapter 4).

3.5 Stream Processing and Data Analytics Layers

The previous section provided a first look at the proposed holistic IADS, in the scope of the
ATENA project. This section specifically introduces the two key layers addressed in this
thesis: the Streaming Processing layer (i.e. the messaging system and the domain processors)
and the Data analytics layer (i.e. Big Data-like SIEM), which will be further detailed in
Chapters 5 and 6.
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Figure 3.7: Stream processing and Data Analytics layers – the proposed approach.

The streaming layer, opposed to the somehow limited event correlation approach of CockpitCI,
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is composed of multiple domain processors per domain. Each one, designed as a lightweight
event-driven streaming processing task, has its own topology (i.e. a chain of small processing
steps). Multiple domain processors and individual tasks such as routing, filtering, time-
window processing and aggregation can also be composed into complex and per domain
processing schemes (e.g. a chain of small domain processors where the output of each one is
processed by the next) – thus enabling virtually unlimited event processing capabilities. This
way, new domain processing tasks can be seamless incorporated, on-demand, to accommodate
future changes.

The messaging system decouples the communication between the different components.
Spread across the multiple domains, different clusters of event brokers are used to persist
and serve the events (as detailed in Chapter 5). This allows to have multiple and distributed
producers (e.g. probes) reporting events to distinct topics of interest and, later, various
consumers cooperatively consuming them in parallel (e.g. processing tasks). Likewise,
different anomaly detection mechanisms, which can be seen as both consumers and producers,
can also report their outputs in parallel.

The global correlator concept from CockpitCI was also replaced by a full-featured data
analytics layer (Figure 3.7), designed as a Big Data-like SIEM which, as mentioned before,
was used to run different anomaly detection mechanisms (i.e. ML-based pipelines) on top
of all the data collected by probes and domain processors. As detailed in Chapter 6, each
pipeline is composed of a set of steps, from feature extraction, transformation, up to the
actual detection of the probability of the occurrence of a cyber-attack based on previously
trained ML-models. Such a generic computation framework fed by multiple domains, together
with the possibility of running different ML-based mechanisms, is expected to increase overall
efficacy in the intrusion detection process as well as to support the handling of different
types of cyber-security issues (e.g. computing-intensive algorithms, global deviant patterns,
cross-domain incidents, network-based attacks, physical-based attacks hidden from the
network).

The proposed approach was designed taking into consideration the following principles:

• Fault-Tolerance. IACS are designed from the ground up to be fault-tolerant and
resilient to different kinds of adverse scenarios. The proposed solution must go along
with such a design. First, it is imperative to ensure that none of the components
harms the availability of the IACS (e.g. by avoiding active security mechanisms in
the loop, which might fail and/or become themselves a target). A Single Point of
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Failure (SPOF), which, in the case of compromise might affect the entire intrusion
and anomaly detection process, should be avoided. While ideally no SPOF should
ever exist, in practice it depends on the specific deployment scenario. For instance, by
considering cost-benefit ratios, one might accept a higher downtime of a non-critical
telemetry component but require strong fault-tolerant guarantees in a core component.

• Effectiveness and Efficiency. The proposed approach should be able to effectively
detect intrusions and anomalies as well as report them within a reasonable time-frame,
ideally in near real-time. No objective metrics were predetermined on purpose – it is
almost impossible or unrealistic to devise a single number for all scenarios. Instead, the
focus and all the design decisions privileged the state-of-the-art techniques, algorithms
and tools, in the attempt to obtain the most performant and adequate way of detecting
anomalies.

• Scalability. By acknowledging the inherent heterogeneity and the different needs
of data processing, another pursued requirement refers to scalability. The proposed
approach should scale to different scenarios, from very small to very large deployments.
A small country like Portugal already has more than 6.5 million electricity metering
points [European Commission, 2014] – which does not account for all the other data
sources or security-related probes. This means we can easily scale from a few events up
to millions of events per second in different scenarios (e.g. small electricity substation
monitoring up to a national level distribution network control center).

• Flexibility. The proposed approach should not only accommodate different scenario
dimensions, but also support different types of processing and techniques. It is also
important to be capable of keeping up with new vulnerabilities and models.

• Security. Deploying such a complex monitoring framework introduces new elements
within an already complex and mission-critical environment. In fact, vulnerable and
insecure monitoring components might represent new potential attack vectors and
be the target of cyber-attacks. The idea of compromising a SCADA system through
them is a valid concern. Therefore, it should be possible to ensure the security of new
components and all their communications, for instance by means of authentication,
authorization and accounting.

• Distributed computation, messaging and storage. The proposed distributed
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architecture is designed from the beginning to horizontally scale in its various layers.
Performance-wise, the computation layer is used to efficiently distribute the analytics
workload for each node in each scenario, the resilient messaging layer to abstract and
support all the inter-component communication, and the distributed storage to ensure
high scalability and availability without sacrificing performance.

• Node redundancy and strong processing semantics. Likewise, such a dis-
tributed architecture can also be used to implement fail-over mechanisms with node
redundancy, to ultimately ensure an uninterrupted security monitoring process. More-
over, strong processing semantics (e.g. exactly-once processing guarantees) should be
privileged, to properly handle different types of failures.

• Multiple detection and analytics techniques. From the surveyed literature, it is
clear that each detection technique has each own merits. This way, multiple detection
and analytics techniques should be considered (e.g. local and smart probes deployed
on the field as well as global analytics combining different techniques and capable of
correlation inputs from multiple domains).

• Stream and Batch Processing. Finally, in line with the previous topic, the proposed
framework adopts a combination of both Batch and Stream Processing. The main idea
is not to limit the nature of processing techniques but rather to embrace a holistic
approach where different types of processing techniques could be deployed on-demand
on different scenarios, without being constrained by the underlying computation
framework.

3.6 Summary

By contrast to the majority of the surveyed research on IACS security, mainly narrowed to
theoretical mechanisms or specific algorithms, the proposed approach widens the discussion
towards effective strategies and approaches to materialize and combine different components,
mechanisms and tools, in the form of a highly flexible and scalable framework.

This chapter presented the main building blocks of the proposed approach, emerged in
the context of the CockpitCI and ATENA projects. After presenting the overall IADS
architecture proposed by the Coimbra team working in those projects, the two main layers
addressed in this thesis (Stream Processing Layer and Data Analytics Layer) were presented.
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Before a more detailed discussion of those two layers (Chapters 5 and 6), the next chapter
presents the practical analysis of different SCADA protocols, tools and attack scenarios
(including the attacker’s perspective and a more extensive analysis of the PCOM protocol)
that were performed as exploratory work.
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PROTOCOLS

The previous chapter introduced the main building-blocks of the proposed approach, along
with the discussion of related context – the CockpitCI and ATENA projects and the HEDVa
testbed.

This chapter presents an exploratory analysis of the security of Supervisory Control And
Data Acquisition (SCADA) protocols. This work was originally conducted on the Hybrid
Environment for Development and Validation (HEDVa) testbed, as an essential part of the
evaluation activities of CockpitCI and ATENA, and encompassed a large range of attack
scenarios and different types of SCADA equipment and applications. Nevertheless, for sake
of readability and conciseness, the content provided in this chapter is mostly focused on the
electricity distribution grid (as detailed next) and on the Modbus and PCOM protocols.

In addition to the contributions to various project deliverables and internal reports, this
work directly led to two research papers where the author of this thesis is the first and main
contributor [Rosa et al., 2019] [Rosa et al., 2017] and to several open-source contributions,
as enumerated in the Foreword of this thesis.

When it comes to the intrusion and anomaly detection process, data can be seen as the most
significant component – thus, the importance of the data-driven focus within the proposed
approach. For Industrial Automation and Control Systems (IACS), network communication
protocols are one the most valuable data sources. SCADA protocols are used, for instance,
to: actively control components from a local / remote site; continuously poll values of an
autonomous process (to monitor its correct behavior); and connect different controllers and
assets (e.g. PLCs and RTUs).

In that sense, this chapter focuses on network-based scenarios. More specifically, leveraging
the HEDVa testbed, it starts by exploring the Modbus protocol – one of the SCADA protocols
most commonly referred in the literature. Rather than exclusively describing its widely
known vulnerabilities, in this thesis Modbus is analysed from a different perspective: how
SCADA systems can be effectively exploited from a practical standpoint, to create incidents
on electrical grid scenarios.

The second part of this chapter is devoted to the security of the PCOM protocol – as an
example of a SCADA protocol found in many IACS but almost not covered in the literature
from a security point of view. The choice of PCOM is opportunistic: it was used in the
HEDVa testbed for some ancillary functions and accidentally discovered in network traffic
captures, in the course of the exploratory work conducted from the attacker’s perspective
(originally focused on Modbus). After discovering PCOM traffic, the author of this thesis
concluded that there were almost no previous analyses about the security of this SCADA
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protocol. Furthermore, only a couple of tools supported PCOM, making it difficult to
understand what was transmitted over the network (Wireshark, for instance, did not support
PCOM at all).

This motivated the author of this thesis to conduct a detailed assessment of PCOM, from a
security standpoint, eventually also leading to several contributions to open source tools
such as Wireshark, Snort, Metasploit, Nmap and Scapy. This assessment holds value by
itself, but also as an example of how a motivated attacker can take advantage of less known
SCADA protocols to conduct attacks on IACS.

Last but not least, this chapter extends the discussion of possible mitigation strategies for
cyber-attacks taking advantage of SCADA protocols such as Modbus or PCOM, already
started in Section 2.2, with a more detailed description of how to create protocol-specific
rulesets for Network Intrusion Detection System (NIDS).

4.1 Attacking SCADA Systems: a Practical Perspective

The hereby presented attack experiments were based on a grey box penetration testing
approach (i.e. the attacker knows a few, but not all the details of the target environment).
With no surprise, due to the natural developments of CockpitCI and ATENA projects, the
author of this thesis had some insights about the environment and the emulated processes,
but was not aware of all the details (e.g. the usage of PCOM). Such grey box testing
approach had the benefits of narrowing the scope of the experiments to the existing SCADA
assets and vulnerabilities, rather than blindly explore other types of attack vectors (e.g.
social engineering techniques, phishing campaigns, vulnerable internet-faced services and
devices). Additionally, the pursued approach was also based on the Penetration Testing
Execution Standard (PTES) methodology [Penetration Testing Execution Standard Group,
2019], which describes the penetration assessing activities as a set of incremental stages such
as intelligence gathering, vulnerability analysis or the exploitation itself.

In this line, the attacker was granted access to the process control network (e.g. as a result of
a compromised host), intentionally omitting the initial attack steps – since such initial steps,
as discussed in Chapter 2, might result from all sorts of vulnerabilities and not necessarily a
SCADA-specific issue (e.g. it might result from a thumb drive containing malware being
inserted in the wrong device or from a compromised supply-chain [FireEye, 2020]). For
practical purposes, and to represent the attacker (i.e. the compromised component), a
dedicated host was deployed on HEDVa.
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A three-stage attack strategy was devised, with the following phases: monitor the process
values (to gain knowledge about the nature and characteristics of the controlled process),
change them without being noticed in the SCADA Human-Machine Interface (HMI) consoles
and, finally, induce service disruption on the electrical grid. This strategy resulted from
the project objectives of showcasing how different types of detection mechanisms could
be integrated within the energy grid use case. Moreover, these three stages represent
the main steps an attacker can perform at process level (i.e. acquire field information,
manipulate it and finally disrupt the service). Such strategy, primarily focused on network
communications, also covers a large subset of SCADA specific cyber-attack scenarios –
including, amongst others, TCP/IP network scans, Modbus specific scans, different variants
of Denial of Service (DoS) attacks, and a SCADA-specific Man-in-the-middle (MitM) attack
specifically customized for this process environment.

The remaining of this section is organized as follows. First, the HEDVa scenario is described
in some detail. Next, the network reconnaissance experiments (i.e. discover assets and
services) are discussed. Finally, an Address Resolution Protocol (ARP)-based MitM attack
that fulfills the aforementioned goals of gaining knowledge about the process and inducing
service disruption by means of intercepting and diverting the normal communication between
SCADA servers and PLC devices is presented.

4.1.1 The HEDVa Use Case Scenario for Attack Implementation

The HEDVa distribution grid scenario, depicted in Figure 4.1, represented a medium/low
voltage energy distribution scenario. Two energy feeders (reproducing the behavior and role
of two redundant energy substations) and different points of the energy grid were emulated
by a set of real Unitronics V130 PLCs. Each PLC corresponded to a given link/point of
the grid (as illustrated in Figure 4.1) and was used to reproduce the real behavior of the
electrical links (e.g. in the event of a failure in a given energy line, all the next PLCs in the
same line would run out of power).

Moreover, each PLC offered the possibility of controlling the state of a circuit-breaker and
exposed different emulated values, such as the current and voltage as measured in a real
scenario. Those circuit breakers were used to connect/disconnect a given path from the
remaining grid (e.g. due to maintenance operations or to restore the power supply from a
backup supply line). Finally, through the usage of an HMI, the SCADA operators were able
to monitor all the grid state, the values exposed by the PLCs and perform remote operations
such as changing the state of the circuit-breakers.
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Figure 4.1: Conceptual view of the electrical distribution grid scenario.

Several HEDVa assets, including services, equipment (e.g. network switches, PLCs), servers
(both physical and virtualized) and networks were also part of this use case. The PLCs and
the remaining elements of the SCADA infrastructure in charge of the emulated grid were
connected using an Ethernet LAN infrastructure (using VLAN segmentation for domain
separation). Nevertheless, the attacks hereby described focus on a subset of HEDVa (cf.
Figure 4.2) which includes two HMI hosts used for controlling and supervising the PLCs, an
OPC SCADA server, a dedicated database for past events and offline analysis, and a NIDS
offered means to detect the implemented attacks and offered the opportunity to analyse all
the involved network traffic.
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Figure 4.2: Network view of the components of the electrical distribution grid scenario.

69



CHAPTER 4. EXPLORATORY ANALYSIS OF THE SECURITY OF SCADA
PROTOCOLS

4.1.2 Network Reconnaissance

Network scouting is one of the first steps of an attack, meant to gather information about
all the components of the target environment, and to discover and identify topologies, hosts
and services. For instance, traditional network components such as HMIs are identified by
Internet Protocol (IP) and Medium Access Control (MAC) addresses, operating system
versions and a set of services. In a first phase (cf. Figure 4.3, stage A), traditional network
scanning techniques (e.g. FIN scans) are useful to identify specific components or software
implementations and provide specific service footprints, together with TCP fingerprinting
data.

2 2

1

Stage A: Network scan to 
discover devices and services

HMI1 PLCAttacker

Switch

Scanning 
Requests

Port StatePort State Port StatePort State

Stage B: Modbus Device 
Enumeration
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Modbus 
(Malformed)
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Modbus 
(Malformed)

Requests

Modbus 
(Error) Reply

Figure 4.3: Conceptual view of Network/Modbus scan with device enumeration.

For Modbus-based scenarios, each PLC is also identifiable and addressable by the unitID

field, part of the Modbus frame (cf. Figure 4.3, stage B). For simple scenarios where one
IP address corresponds to a single PLC, the unitID can be set to a fixed known value
(typically "1") or may be "ignored" by the Modbus implementation. Nevertheless, a Modbus
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gateway, behind a single IP address, may hide several PLCs with different unitIDs. As
part of an attack, a Modbus request with a wrong unitID, blindly used by an attacker,
may be discarded or easily flagged with proper security mechanisms. Thus, for Modbus
over TCP, it is critical to perform a Modbus enumeration on top of the traditional TCP/IP
scans. Such scan consists of sending malformed Modbus packets for each open Modbus port,
varying the value of the unitID. According to the standard behavior, this operation should
get a return error message for each valid unitID, indicating the sent request was invalid.
Note that, similar to the fingerprint methods, even if we don’t have additional Modbus
devices, this might be used to distinguish specific Modbus implementations that do not
follow the standard. As other scanning techniques, Modbus scans need to be performed
slowly, otherwise they can be easily flagged by any mechanism which spots abrupt deviations
from the normal traffic flows.

Both types of scans are relevant and were used not only to discover devices and types of
services, but also to perform fingerprinting and discovery of PLCs behind gateways. Figure
4.4 details the sequence diagram of both stages that were used in the HEDVa testbed
for network reconnaissance, taking into consideration a FIN-based network scan and an
additional Modbus enumeration stage.
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Figure 4.4: Sequence diagram of complete Network/Modbus scan with device enumeration
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Network scouting provides a perspective on the target infrastructure from the network
point-of-view, corresponding to the layers 2-4 of the Open Systems Interconnection (OSI)
model. Despite its usefulness as a tool to identify and enumerate devices and services, it
doesn’t provide the process-level information required to implement process-level attacks.
The next subsection presents one of the techniques that were used to obtain such information.

4.1.3 Using ARP poisoning to implement a MitM attack

The concept of a ARP poisoning MitM attack usually comprises two parts: ARP spoofing
and communication hijacking. In the first stage, the goal is to spoof the ARP cache of both
target devices, belonging to the same link, by sending malicious and unsolicited ARP "is-at"
messages to the network to force both devices to send the packets through the attacker
MAC address (cf. Figure 4.5, Stage A). This requires the attacker to know at least the IP
and MAC addresses of the victims and the link they are connected to. As soon as the ARP
cache of each victim is spoofed, the traffic gets redirected through the attacker.

In the second phase, when the traffic is already being redirected, the attacker can just read
the messages and forward them (to acquire further process-level knowledge), or actively
change them (cf. Figure 4.5, Stage B). Depending on the type of TCP connection, their
payload and the actual data the attacker is interested in, the process may get complex. For
persistent TCP connections, as opposed to one TCP connection per data request (Modbus
can be implemented using both models), the attacker will need to keep the TCP fields
consistent (e.g. sequence and acknowledgment numbers) and the connection open (e.g. TCP
keep-alive packets). Moreover, in the case of Modbus, the requested values typically change
in real-time and some of them are directly changed by the SCADA operator (e.g. Modbus
writes). This means the attacker needs to not only keep track of all the interactions, but
also compute and reproduce the effects in the physical process (e.g closing a circuit breaker
in the electric path may change physical values such as current and voltage in other parts
of the circuit). The complexity of this increases as the number of elements, relations and
interdependencies increases.

For the implemented MitM scenario experiment, the objective of the attacker can be
summarized as such: hijack the entire grid in such a way that the main HMI (HMI1) has no
clue about the ongoing attack. Moreover, the attack objective should be accomplished by
the attacker while going unnoticed. The sequence diagram of all involved steps is depicted in
Figure 4.6. One of the first challenges faced by the attacker has to do with understanding the
network topology and communication flows. For instance, the HMI1 host (one of the victims)
is not part of the same network link as the PLCs, requiring the attacker to implement an
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Figure 4.5: Conceptual view of a Modbus-based MitM using ARP poisoning

ARP spoof targeting the gateway interface of the network link where the attacker is placed,
instead of the HMI1 (cf. Figure 4.6).

HMI1 uses TCP persistent connections to control several PLCs (11, to be more precise).
Thus, the attacker needs to know how to handle or forward any spoofed packets in real-time,
while avoiding TCP connection drops, to prevent any suspicious behaviour on the HMI
console that could unveil his presence (cf. Figure 4.6). Packet drops automatically raise
an alarm and change the view of the HMI for the corresponding PLC after a couple of
seconds, indicating a potential issue. A TCP connection lost or a lack of a Modbus reply
from the PLC is also visible from the HMI console. The second HMI did not use persistent
connections. Later, during the trials, it was discovered that each PLC only supported a
maximum of two simultaneous TCP connections. This may limit the way TCP connections
are handled and redirected by the attacker.
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Figure 4.6: Sequence diagram of a Modbus-based MitM using ARP poisoning.

At first, the main concern was to place the attacker in the middle of the communication
between the HMI1 and the PLCs to capture and analyze relevant process information. This
allowed the attacker to gather more detailed information about the communications and the
controlled process, learning how each Modbus register value affected the others (e.g. circuit
breakers, current and voltage ranges).

Once the attacker was able to figure out the basic behavior of the controlled process, it
was time to step up the challenge and hijack the entire process. This required forging the
entire grid state in such a way that any HMI interaction produces a realistic state update,
while decoupling HMI-PLC interactions. For this purpose, the attacker needs to reply to
the Modbus requests in real-time. Moreover, TCP session hijacking requires the attacker to
maintain the integrity of the TCP connection (such as TCP sequence numbers) to avoid
connection drops.

The next task was crafting the Modbus frames and creating a fake view of the entire
scenario in real-time. An application was developed for this purpose, on the top of Scapy
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framework [Biondi, 2020] – since common open-source tools normally used for this sort of
attacks were not SCADA/Modbus-aware and did not fulfill the project needs, either not
offering an integrated solution for all the steps or lacking the flexibility to adjust settings
to the HEDVa scenario. After the ARP spoofing, the attacker first starts by capturing the
current state of the grid. This is achieved by dumping and decoding one complete interaction
cycle (i.e. the set of Modbus request-reply transactions) between the HMI1 and all PLCs.
This represents the initial state of the simulated view and allows to restore the previous grid
state after stopping the attack (in case the attacker wants to do so). The attacker must also
perform deep inspection of each packet and selectively intercept all the TCP connections
from HMI1 to the PLCs, while forwarding the others.

When requests from HMI1 are received, the attacker must compute the responses (based on
its own replica of the model, obtained during the process analysis stage). This effectively
decouples the HMI1 from the PLCs, creating two distinct communication flows: one between
the HMI1 and the attacker and the other between the attacker and each PLC. This allows
not only to hijack the data exchanged between them, but also to trigger any kind of service
disruption against the PLCs compromising the physical process behind them.

Since the true state of the PLCs is hidden from HMI1, the attacker is free to do whatever he
wants without the knowledge of the SCADA operator. Moreover, all the changes performed
by the SCADA operator (such as opening or closing a breaker) are properly intercepted
and handled by the attacker. Finally, whenever the attacker decides to stop the attack, he
only needs to perform the inverse of the first steps, dumping the values of the simulated
HMI1 view to the PLCs and restoring the ARP caches by sending additional unsolicited
ARP replies with the correct associations between MAC and IP addresses.

4.2 A Security Analysis of the PCOM Protocol

The previous section described attack scenarios focused on the Modbus protocol. This
section provides a more detailed analysis of the PCOM protocol. As already mentioned,
PCOM was chosen both due to opportunistic reasons (it was available in the HEDVa testbed)
and because it provides a good example of the security vulnerabilities of SCADA protocols
used in many IACS but still not well known from a security point of view.

This is relevant because there are many real-world IACS using protocols like PCOM (for
the whole process management or just for ancillary functions), not well known and not
supported by security tools such as NIDS but still relatively easy to take advantage of to
conduct attacks, as shown in the section.
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The remaining of this section is organized as follows. First, it provides a brief description
of the PCOM protocol (Subsection 4.2.1). Then, it discusses how to build a dissector for
PCOM messages, an indispensable step for interpreting the PCOM messages captured from
the network (Subsection 4.2.2). Next, the scenario used to conduct the PCOM experiments
is presented (Subsection 4.2.3), followed by the discussion of various PCOM-based attacks
– network scouting, accessing sensitive data, DoS attacks, rogue PLC reprogramming and
protocol fuzzing (Subsections 4.2.4-8). Finally, the generated PCOM datasets are presented
(Subsection 4.2.9).

4.2.1 PCOM Primer

There are few applications that support the PCOM protocol, with the two most notable
exceptions being Visilogic [Unitronics, Inc, 2019b] and Crimson [Red Lion, 2019], both
for Microsoft Windows. Crimson only allows reading/writing registers from/to PCOM-
enabled devices. Visilogic allows additional administrative remote operations such as
starting/stopping PLCs, but is not suitable for discovering devices on the network and
cannot be used for detecting or blocking PCOM traffic in the network. A .Net driver that
implements some additional internal functions, which are not part of the original PCOM
specification [Unitronics, Inc, 2014], is also available [Unitronics, Inc, 2019a]. However,
it lacks functions such as downloading/uploading ladder logic to/from PLCs or device
enumeration. More recently, a basic Python implementation of PCOM for supporting the
development of PCOM-enabled applications has been released [Theriault, 2019].

PCOM is based on requests and responses using command codes. Such codes identify the
type of operation (e.g. reading a Memory Integer (MI) operand). This way, it can be used
to continuously poll (or change) the values of a given set of PLC registers (e.g. process
monitoring values), as well as for implementing other remote administrative interfaces.

PCOM communications may take place on top of different physical layers and field buses,
including Controller Area Network (CAN) bus, RS-485 or Ethernet. It is also possible to
have inter-PLC communication in master-slave schemes, where the master PLC acts as a
bridge, forwarding all the requests and replies to/from the slave PLCs. A Unit ID field is
used to uniquely identify a device on a network. For Ethernet networks, a special zero Unit
ID value indicates a direct connection. Moreover, in such Ethernet networks, PCOM works
on top of Transmission Control Protocol (TCP) sessions by adding an extra 6 bytes header
between the TCP header and the original PCOM messages (PCOM/TCP). The protocol
also supports two different modes, ASCII and Binary, hereafter referred to as PCOM/ASCII
or PCOM/Binary. Figure 4.7 illustrates the structure of both modes. In PCOM/TCP, the

76



4.2. A SECURITY ANALYSIS OF THE PCOM PROTOCOL

communication socket in the PLC side defaults to TCP port 20256.

PCOM/ASCII allows reading and writing not just memory addresses (which are usually
mapped from inputs and outputs), but also other types of operands and reserved values,
such as System Bits (SB), System Integers (SI) and System Longs (SL). PCOM/Binary
allows composed requests such as querying more than one type of operand in the same
packet, using multiple data request blocks – opposed to only one type of operand per request
in PCOM/ASCII. It also allows reading and writing PLC Data Tables – an operation not
supported in the PCOM/ASCII mode.

PCOM capabilities go beyond reading and writing values. Remote administrative operations
via specific command codes and parameters (e.g. reset a PLC, set the Real-time Clock
(RTC) value) are also possible and can even be used to reprogram the entire ladder logic
of a PLC. Nevertheless, not all PLC models support PCOM/Binary or even PCOM/TCP.
Specialized applications such as Visilogic use PCOM to access and manage field devices such
as PLCs.
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Figure 4.7: PCOM/TCP, PCOM/ASCII and PCOM/Binary protocol structure (based
on [Unitronics, Inc, 2014])
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4.2.2 Building a Dissector for PCOM Messages

In order to develop an application, troubleshoot an erroneous behavior or even reverse-
engineer the PCOM protocol to better understand the underlying communication, it is
necessary to have a way of quickly parsing and analyzing PCOM messages. This dissection
is typically done using a network packet analyser such as Wireshark. Since there were no
publicly available tools able to perform the dissection of PCOM messages, in the scope of
this thesis a Wireshark built-in PCOM/TCP dissector was developed – and later used to
support the development and validation steps by helping to flag malformed packets and
revealing undocumented features. Next, some details of the implementation of this PCOM
dissector are discussed.

As already mentioned, PCOM supports two modes: ASCII and Binary. These modes are
distinguished based on the value of the third byte of the PCOM message. Distinguishing
between PCOM/ASCII and PCOM/Binary is necessary to automatically handle and decode
different field formats and endianness (e.g. the same Unit ID value is specified differently in
PCOM/ASCII and PCOM/Binary) or to compute and validate checksums (since requests
containing a bad checksum are automatically discarded by the PLC). Another example: in
PCOM/ASCII the command code of PCOM responses is truncated to the first two chars,
whereas in PCOM/Binary the same operation uses a different code, depending on whether
it is a request or a response – the \x80 value is added to the command code value in replies.

A PCOM dissector may also help to detect hidden features. For instance, based on the analysis
of captured PCOM messages, it was observed that the 9th to 11th bytes of PCOM/Binary
messages, which according to the specification [Unitronics, Inc, 2014] should always be zero,
are in fact not always zero. In PCOM/Binary messages with command code 41 (a request to
a PLC, part of a multi-message operation, cf. Section 4.2.3) those bytes start from zero but
are incremented by one at each message. Conducted observations also showed that other
reserved fields from the PCOM/Binary structure are sometimes used to specify data and
not always contain the values described in the specification.

The PCOM dissector can interpret the PCOM/TCP header, as well as the header structure
for both PCOM/ASCII and PCOM/Binary modes. It can also translate over 25 PCOM
command codes into meaningful descriptions and dissect the details of PCOM/ASCII read
and write contents of different operands (i.e. the PLC registers). Some dissector fields
were also defined as expert fields [Wireshark Foundation, 2019], in order to easily spot
protocol violations, based on the same concept Wireshark uses for flagging TCP anomalies
by analysing sequence and acknowledgment numbers. The code of this dissector has been
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integrated into the upstream Wireshark repository [Rosa, 2019f] [Rosa, 2019e] [Rosa, 2019g].

Developing this built-in dissector for Wireshark provided an interface to visualize the flows
of PCOM messages, their structure and their content. Figure 4.8 provides a snapshot of a
PCOM packet dissection based on this tool.

Figure 4.8: Snapshot of a PCOM command packet using the Wireshark

From a security perspective, a protocol dissector helps understanding policy violations such
as abnormal and unauthorized messages (e.g. reflecting malicious network scouting or even
PLC reprogramming attempts). It also becomes possible to use specific PCOM filters, such
as pcomascii.command == "RC", to search and narrow the flow of PCOM communications.

In the field of forensics, such a dissector helps gathering, filtering and reconstructing evidence
from network attacks. For instance, when programming a PLC, a set of specific PCOM
commands (as described with detail in Section 4.2.3) is used to transfer files between an
application and the PLC. The PCOM dissector enables quick detection by searching for file
signatures, using Wireshark filters (e.g. pcombinary.data contains "\x50\x4b\x03\x04"

for a PKZIP file format) and then reconstructing the file by looking at the content between
the signature and the end of file. Generic tools to recover files from network traces, using
TCP or Hypertext Transfer Protocol (HTTP) payloads, would fail, since the final file results
from a concatenation of the bytes of a specific PCOM field of a specific PCOM operation
across multiple packets rather the entire TCP or HTTP payload.
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4.2.3 Reference Scenario Used for PCOM-based Experiments

Real-world attacks often depend on specific details of the target system. For the sake of
simplicity, this section adopts a reference validation scenario which is simple enough to
be quickly understood, while still being fairly representative of larger and more complex
scenarios.

Rather than focusing on a particular SCADA process, as the Modbus scenario, the scenario
adopted for discussing PCOM security intends to demonstrate specific attack use cases which
take advantage of PCOM’s characteristics, including for instance device scanning techniques,
the possibility of accessing all the PLC data using unauthorized requests, how to disrupt
the physical process under control via remote commands, or how to reprogram the PLC to
introduce subtle changes that might only be perceived in the long term.

Figure 4.9 illustrates the reference scenario used to analyse attacks, to develop the ancillary
tools, and to collect the respective datasets. Two different physical layers are used: an
Ethernet segment and a CAN [Bosch et al., 1991] bus. The scenario is composed of two
Unitronics V130 PLCs, one of them connected only in the CAN bus and the other deployed
in both segments, acting as a bridge. An HMI with Visilogic 9.8.65 plays the role of
an authorized device/operator. Finally, it is assumed that the attacker has access to a
compromised device in the same network of the HMI and the PLC Master – for instance,
an operator workstation, a historian database or a network printer able to reach the field
network segment.

AttackerAttacker

SwitchHMI
PLC

Master

Unit ID = 110

PLC
Slave

Unit ID = 120

Ethernet

CanBus

Ethernet

CanBus

Figure 4.9: PCOM reference scenario for the validation tests.

This scenario is focused only on PCOM network communications between HMIs and PLCs
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(i.e. corresponding to levels 0, 1 and 2, according to IEC 62443 standard), and no other
protocol or service vulnerabilities are addressed. Therefore, no assumptions are made on
how the attacker compromised that device. Incident records show that getting control of
such devices is fairly common as an intermediate step of successful attacks.

The Master PLC runs a minimal working ladder logic example where two sockets were
initialized, one for PCOM/TCP and the other for Modbus. A single ladder OR element (cf.
Figure 4.10), representing the process logic, was used to compute the input of two MIs (MI1

and MI2), into a third one MI3, representing the field data.

Memory 
Integer 1 

Memory 
Integer 2 

Memory 
Integer 3 

Normally Open 
Contact

Normally 
Closed Contact

Normally Open 
Contact

Normally 
Closed Contact

Figure 4.10: Ladder Logic encoding/representation of the logical process for the PCOM
scenario.

In a real SCADA system, such PLC registers may have different interpretations, from
circuit switch states on an electrical distribution grid to reservoir levels in water treatment
systems. Even though in real SCADA environments the number of used registers is larger and
significantly more complex functional logic is expected to be found, this reference scenario
is representative enough to verify whether we can access and/or change register values or
change process logic.

Given the lack of authentication, authorization and encryption, PCOM-based systems are
vulnerable at least to two main classes of attacks: direct connection and session hijacking
attacks. The following subsections discuss how each of the security issues of PCOM might
be explored by a malicious attacker in the context of a SCADA system.

4.2.4 Network Scouting

As mentioned before, information gathering is one of the first steps for understanding the
environment. Structured cyber-attacks usually start by collecting as much information
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as possible about target systems. Typical network scans such as SYN Scans are good at
identifying hosts on a network, but they fail to identify specific host details. Therefore, they
must be complemented with fingerprinting checks and additional scripts to collect specific
host characteristics.

The PCOM protocol allows unauthenticated queries to PLCs that can be used to retrieve,
among others, the PLC model, the hardware version, the Operating System (OS) build and
OS version, the PLC name and the UnitID value. In the scope of this research, a Nmap
Scripting Engine (NSE) script to collect such detailed information using PCOM/ASCII and
PCOM/Binary commands was developed [Rosa, 2019i]. Using a Nmap script eliminates the
need for developing and packaging an entire application from scratch. Moreover, using Nmap
brings convenient added features such as portability, a powerful command-line interface and
the possibility of integration with other tool-chains, on a single, well maintained open-source
tool that can be used to assess multiple SCADA devices from different vendors, regardless of
the communication protocol.

Algorithm 1 PCOM/TCP Network Scan
1: unitId← 0
2: mastert ← getUnitID(unitId) . PCOM/ASCII
3: mastert ← getID(unitId) . PCOM/ASCII
4: mastert ← getPlcName(unitId) . PCOM/Binary
5: if aggressiveMode then
6: for unitId← 1, 127 do
7: if unitID 6= masterid then
8: slavest ← getID(unitId)
9: slavest ← getPlcName(unitId)

10: end if
11: end for
12: end if

Figure 4.11 shows the output of a scan using the aforementioned PCOM Nmap NSE script
on the reference scenario. The script sends PCOM requests with command code ID and
the UnitID field set to 00, exploring two weaknesses: (1) no authentication is required to
communicate with a PLC and, (2) the use of UnitID 00 will make any connected PLC
respond, no matter with which UnitID it was configured. The PCOM/ASCII command
code UG is then used to retrieve the actual PLC Unit ID, and PCOM/Binary command
value 0x0C is used to retrieve the PLC name. Algorithm 1 shows the simplified pseudo-code
behind the aforementioned scan script.

As a technical remark, it should be noted that, at each step of the loop, the script needs
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Figure 4.11: Snapshot of the Nmap output using the PCOM Nmap NSE script

to adjust to the fact that even though the PLC replies with a TCP acknowledgment to all
received requests (including those for non-existent UnitID’s), it does not send any PCOM
reply if it doesn’t hold the matching UnitID. It is therefore necessary to iterate across the
whole range of possible UnitID values, which is fairly short anyway (1 to 127). Moreover,
if several requests are sent in a burst they might be rejected, therefore it is convenient to
adjust the rate of this interaction.

The information gathered this way allows an attacker to lookup for potential vulnerabilities
and exploits applicable only to certain models or firmware versions. It may be used, for
instance, to identify which commands a specific PLC may accept – according to the PCOM
specification [Unitronics, Inc, 2014] not all models support all PCOM modes or operands.

The approach for developing the aforementioned script can be replicated for other protocols.
For instance, following a similar approach, a Nmap NSE script [Rosa, 2019h] was developed
to collect information from Allen-Bradley Logix 5000 controllers (part of the HEDVa testbed
– cf. Chapter 3). Such script relies on the Common Industrial Protocol (CIP) protocol and a
known CIP service code (0x55), part of the official documentation [Allen-Bradley, 2018], to
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retrieve a list of service tags stored in the PLC. Opposed to other protocols, where the data
is queried through a memory address (e.g. Modbus), using these service tags (which can be
seen as a list of variables names) can provide additional hints about the nature of the PLC
process. This scan script was also submitted to the upstream Nmap code repository.

4.2.5 Accessing Sensitive Data

PCOM is vulnerable to all sorts of layer 2 and layer 3 attacks, and such vulnerabilities can
be used to access all the sensitive data held by a PLC. Figure 4.12 illustrates two possible
classes of attacks against PCOM, discussed next.
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Figure 4.12: Direct TCP Connection and Session Hijacking Attacks

Direct TCP connections can be used to query not only process-related values but also all
types of operands, without restriction, including inputs, outputs, System Bits (SIs), Memory
Integers (MIs), etc. This allows to access values that are related to the process under control,
to change configuration parameters (such as the network settings, in SI[101-148], or the
info mode password, in SI[253]), or even to disrupt the PLC operation by setting system
registers (e.g. SB[314] which can be used to block the communications between legitimate

84



4.2. A SECURITY ANALYSIS OF THE PCOM PROTOCOL

nodes and the PLC.

Complex main-in-the-middle (MITM) scenarios where a PCOM/TCP session is intercepted
and redirected via an attacker-compromised device are also possible, for instance, by means
of an ARP poisoning attack against the communication endpoints. Such attacks are not
specifically related to PCOM, but can be used against PCOM communications due to their
lack of confidentially and integrity protection.

Moreover, and similarly to what was discussed in the network scouting section, an attacker
positioned in an Ethernet segment can also reach the PLC in the CAN bus via the master
PLC, simply by specifying its Unit ID in the PCOM/TCP requests.

In the course of this work, a Metasploit auxiliary module was developed for reading and
writing PLC registers by selecting the Unit ID, the operand type, the address and the
number of values to read (or by providing the values to write) [Rosa, 2019a]. This module
supports the operands inputs, outputs, SBs, MBs, MIs, SIs, MDW, SDW, MLs and SLs. Other
commands are also supported by providing the raw hexadecimal of the PCOM/ASCII data
payload, with the other fields being automatically computed – including the PCOM/ASCII
checksum and the PCOM/TCP header. Figure 4.13 shows the main options of the Metasploit
PCOM module.

Figure 4.13: Snapshot of metasploit auxiliary pcom client options

Figure 4.14 and Figure 4.15 illustrate the usage of the module to write (and, later, to
read) the process values of the reference scenario via PCOM/ASCII requests. In the write
operation it is necessary to specify the operand type, the starting address and the values for
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the first two registers (the third one is always rewritten according to the OR operation). In
the read mode it is necessary to specify the number of registers to read from the starting
address.

Figure 4.14: Writing registers of the reference scenario PLC using Metasploit PCOM client

Figure 4.15: Reading registers of the reference scenario PLC using Metasploit PCOM client

Figure 4.16 depicts the PCOM/ASCII request and reply messages used to read the three MI

PLC operands of the reference scenario.

4.2.6 Denial of Service (DoS) attacks

Responsible pentesting procedures for IACS [Stouffer et al., 2015] often recommend special
caution when handling PLCs. This is due to the fact that it is not uncommon to find devices
which are vulnerable against situations that may or not be intentionally triggered, such as
single packets triggering input handling bugs (eventually generated by device fingerprinting
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Figure 4.16: Example of PCOM/ASCII request and reply in the reference scenario

procedures) or brute force attacks causing resource exhaustion (such as SYN floods). This
may lead to DoS scenarios.

Such DoS attacks are especially relevant in the Critical Infrastructure domain, due to their
potential impact. An IACS-targeted DoS may have disastrous consequences, ranging from
service or production interruptions (availability is considered a topmost priority for most
automation infrastructures) to physical damage or even loss of human life [Cruz et al., 2016].

By analysing the network traffic generated by PCOM applications such as [Unitronics, Inc,
2019b] [Red Lion, 2019], it was possible to identify a series of reserved commands used for
PLC administrative purposes, which are not part of the publicly documented command
set [Unitronics, Inc, 2014]. When used for their legitimate purpose, these commands provide
a convenient way to remotely control a PLC, allowing an operator to recover it from a failure
or to reset the device after a reprogramming operation.

However, due to the lack of authentication and authorization mechanisms, an attacker can
abuse administrative commands for malicious purposes. In particular, the STOP or the RESET

commands can be used to prevent a PLC from communicating with the HMI or other PLCs.
Other attacks are also possible. For instance, an attacker may hijack a TCP connection to
block RESET or START operations triggered by the legitimate operator. In this case, on top
of traditional ARP poisoning, the attacker should acknowledge such PCOM/TCP requests
so the sender believes they were successful while preventing them from reaching the PLC.
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In order to study these vulnerabilities, another Metasploit auxiliary module was developed
to send PCOM/ASCII administrative commands such as start, stop and reset operations
[Rosa, 2019b]. While these non-documented commands were discovered and explored in
PCOM/ASCII mode, research showed no evidence of similar commands in the PCOM/Binary
mode.

4.2.7 Reprogramming the PLC

Another attack strategy is to reprogram the PLC, in order to modify its behaviour, for
instance to induce permanent damage to the physical equipment or process under control.
A skilled attacker may use this technique as part of a long-term strategy, by introducing
subtle changes to the process control tasks that can go unnoticed for a long time, eventually
being detected only when permanent damage is already unavoidable (as demonstrated by the
well-known Stuxnet incident [Langner, 2013]). This is in sharp contrast with the immediately
noticeable effects of attacks such as DoS.

PCOM supports several options for pushing the ladder logic project to the PLC RAM or
flash memory. Although actively used by applications [Unitronics, Inc, 2019b] [Red Lion,
2019], such options and their specifications in terms of the PCOM packet structure are not
publicly documented.

Nevertheless, there is an option that allows pushing (and, later, recovering) the PLC project,
which is used by [Unitronics, Inc, 2019b]. If the PLC was programmed with that option, the
lack of authentication and authorization makes it possible to use a rogue setup to retrieve
the original project, change it as desired, and download it again to the PLC. Moreover, since
no encryption is used, it is also possible to reconstruct the entire packet sequence or even to
change such packets on-the-fly to recreate a MITM attack.

Observed network traffic showed that a multi-part PCOM/Binary operation (with command
code 0x41) was used to transfer a relatively large data block to the PLC. Moreover, it was
possible to group all the message parts, contained in the PCOM/Binary data field, since
each one is identified by little-endian sequential value (starting from 0 and incremented by
1) at bytes 16th to 18th. Additionally, it was also possible to identify the data format – a
plain PKZIP file – by looking for its signature. Similarly, when uploading the PLC project
to Visilogic, a PKZIP file is also transferred from the PLC. Since PCOM communications
are not encrypted, as long as the malicious attacker is able to access the communication he
should be able to reconstruct this file.

Moreover, the PKZIP file, not encrypted, contains a single file inside, a Microsoft Jet4
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Database. The database is protected by a master password. Nevertheless, Jet4 databases
are known to obfuscate the password in the file header, so the database password can be
easily guessed. In the aforementioned scenario, as an example, it was possible to change
the XOR ladder element to an AND element simply by updating its element type within the
database, after guessing the database password. This required experimentation with several
undocumented functions and values. A simpler path, in some scenarios, would be to use a
rogue application deployment to retrieve and reprogram the PLC ladder logic.

4.2.8 Fuzzing the PCOM Protocol

In the previous subsections several attack cases were discussed, using the reference PCOM
scenario to illustrate their fundamental operation and deployment procedures. It was possible
to perform these attacks after conducting an investigation about the inner workings of the
PCOM protocol, based on publicly available documentation and analysis of network traffic.

In order to go beyond, a network fuzzer can be used. Network fuzzers are tools that automate
and test different types of input conditions by generating random or semi-randomized values.
For the PCOM protocol, known functions could be validated, for instance, against malformed
packets such as protocol violations, bad check-sums and unexpected fields values.

Fuzzing the PCOM protocol might also be useful to explore undocumented functions,
protocol vulnerabilities or simply to discover specific inputs that might crash a PLC (e.g. a
buffer overflow), using an automated procedure. This automation is also valuable to assess
how different PLC models handle exceptional conditions or to discover supported PCOM
functions in each model. Although outside the scope of this thesis, those vulnerabilities
might apply not only to PCOM PLCs but also to software applications used in the HMI
side.

A PCOM fuzzer was developed in the form of a Metasploit auxiliary module, to send
PCOM-specific packets and evaluate the behavior of the PLC. This module allows specific
testing options such as sending randomized values of some specific protocol fields (e.g.
PCOM/ASCII command codes) or completely random messages.

Table 4.1 provides a brief summary of the tests and results performed during the conducted
experiments. Non-conclusive results were observed, as the tested PLCs sometimes do not
reply or reply with invalid or empty results. Nevertheless, none of the tried combinations
resulted in PLC DoS conditions – which is positive from a security point-of-view. Based on
Test 1, it was observed that tested PLCs accept and reply to malformed-packets containing
invalid PCOM/TCP length values. Nevertheless, based on Tests 3 and 4, it appears that the
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tested PCOM PLCs acknowledge all the TCP requests but do not respond to bad PCOM
requests (e.g. they do not respond to packets with bad checksums or non-existent Unit IDs).
Opposed to other protocols, PCOM does not seem to return any exception or code to invalid
requests. This makes it harder to identify all the hidden functions and features of a given
PLC – which is positive from a security point-of-view. Moreover, the tested PCOM PLCs
seem to reject consecutive connections if they are sent too fast (Test 2), forcing scouting
processes to slow down.

Table 4.1: Summary of the results of the PCOM fuzzing tests

Test ID Mode Description Result

1 Both Invalid PCOM/TCP Length PLC accept requests
2 ASCII Consecutive connections PLC rejects too fast connections
3 Both Bad check-sum No reply from PLC
4 ASCII Non-existent Unit IDs No reply from PLC
5 ASCII Random command codes No reply
6 ASCII R&W with random params No reply or invalid

4.2.9 PCOM Datasets - a Manifold Contribution

Datasets are vital to study and understand how protocols work, as well as for the development
and validation of security tools, being used for model training and validation (e.g. in the
case of Machine Learning classifiers) or for establishing nominal parameters for statistical
analysis. As far as the author of this thesis knows, when it comes to the PCOM protocol,
there were no publicly available datasets.

In the particular case of the research effort hereby documented, a PCOM dataset was
fundamental to support the tools development process and to validate their behavior.
Moreover, the author of this thesis believes there might be several undocumented and
undiscovered PCOM/Binary functions used during the reprogramming step – having a
dataset would be instrumental to verify their existence, semantics and structure.

In order to help bridge this gap, a set of labeled individual PCOM/TCP captures in libpcap
format was publicly released [Rosa, 2019d], each associated to a single PCOM operation.

4.3 Mitigation Strategies

The two previous sections focused on the security of SCADA protocols. First, with a
discussion on how SCADA systems can be attacked, from a practical standpoint, and
then with a more extensive analysis of the security of the PCOM protocol. This Section
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complements the general discussion of mitigation strategies already provided in Section 2.2
with the presentation of a Snort ruleset specifically developed for the PCOM protocol.

Several strategies might be pursued to address the security shortcomings of protocols such
as Modbus or PCOM. One of the first approaches, if not the most obvious, would imply
a complete redesign of the protocol to add missing security features. For instance, as
already mentioned in Section 2.2, the Modbus Organization released in October 2018 a new
Modbus/TCP Security protocol specification [Modbus Organization, Inc, 2018] with enhanced
support for confidentiality, data integrity, authentication and access control. However, the
majority of the huge amount of already installed Modbus devices will not be able to upgrade
to this new, more secure version. For other protocols, such as PCOM, the situation is even
worse, since there is no evidence pointing towards ongoing security-focused improvements.

Considering this situation, several strategies may be considered to mitigate the aforemen-
tioned issues, as described next. Rather than definitive solutions (something that would
imply revising the protocol), these proposals intend to provide the means to detect and block
potentially unwanted communications in existing IACS for which it will be still necessary to
keep legacy devices and protocols for a long period of time.

A NIDS instance (e.g. Snort) can only be effective for a specific environment as long as it
is loaded with an adequate ruleset covering the protocol mix being used, such as the set
of Snort Rules to handle PCOM/TCP traffic [Rosa, 2019c] created by the authors of this
thesis, derived from the work presented in the previous section. Next, some details of this
ruleset are briefly presented, as an example of how to build such rulesets in general.

Each rule was designed to match a single PCOM command code, so that it is possible to
distinguish not only administrative remote commands, but also reads and writes of different
types of operands. For instance, one might want to block system related operands (i.e.
SB, SI, SL) and allow the access to other operands. One might also want to distinguish
between read and writes in some of the operations. Each rule searches for specific byte
values corresponding to the command codes by using hard-coded positions (according to the
protocol specification). To improve readability, those command values were specified using
their ASCII representation for PCOM/ASCII and hexadecimal values for PCOM/Binary
rules. Figure 4.17 shows an excerpt of those rules. Such rules specify portions of the TCP
payload (based on the offset and depth Snort keywords) and match them to hard-coded
values (i.e. the signatures of each protocol).

In ASCII mode, the command code of a request may have 2 or 3 bytes, whereas the replies
will always have only 2 bytes. In the reply, the command code appears at a different offset.
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Figure 4.17: Excerpt of PCOM rules for Snort NIDS

Such variations in PCOM/ASCII can be also accommodated by using Snort offset and
depth keywords. In both modes, the keyword byte_test was used to verify whether the
payload is encoded in PCOM/ASCII or PCOM/Binary mode, based on the value of the
third byte.

Nevertheless, in PCOM/Binary mode such hard-coded rules might only be able to detect
the operation type (e.g. 12th byte at 77 for reading operands), being unable to distinguish
the operand types and addresses (which are structured in data blocks with variable size),
because in this mode a single packet might request more than one operand type. This calls
for a dedicated PCOM Snort preprocessor, not only to unlock more complex Deep Packet
Inspection (DPI) logic but also to improve the range of available keyword options to further
improve the readability of such rules.

Finally, as already discussed in Section 2.2, other approaches could also be used to further
improve the detection capabilities within a given IACS environment, such as specialized
data diodes and honeypots. Nevertheless, the availability of such tools is still rather limited,
especially outside the couple of more popular SCADA protocols. For PCOM, for instance,
there are no data diodes or specialized honeypots available.

4.4 Summary

The first part of this chapter described the sequence of attacks involved in an intrusion
process, in the scope of a specific IACS. In a SCADA environment, the reconnaissance step it
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is often similar to other Information Technology (IT) network scans, with the main difference
being the additional PLC enumeration (e.g. through the usage of the Modbus unitID field).
Specific network segmentation and setups might also pose additional barriers and further
difficulties for the attacker at this stage.

Simple service disruption was straightforward, since after the attacker has access to the
network it is a matter of redirecting Modbus traffic (causing the disruption) or even flooding
the PLCs, as they typically have limited resources. The communication hijacking attack
that was implemented was more complex and tightly coupled to the field processes of the
victim IACS. This complexity derived from several factors, such as the need to stealthly
mimic part of the physical process behavior to deceive the system operators.

These experiments, conducted from the attacker’s perspective, allowed to dig into technical
details of involved protocols and, ultimately, to understand how to design and implement
appropriate countermeasures. By no means this work covered all the potential attack
scenarios within a SCADA environment – it was intended as a more practical approach to
some of attacks scenarios described in the literature in an abstract manner.

The second part of this chapter presented a security analysis of the PCOM protocol. In
contrast with the more usual approach to this type of analysis, often based on ad-hoc
procedures mostly focused on filling a CVE report, the work hereby documented goes
full-circle, providing several public contributions that are instrumental for infrastructure
operators, security pentesters, auditors and researchers alike.

Starting from a purpose-built research testbed and following the PTES methodology, several
vulnerabilities of the PCOM protocol were scouted, pinpointed, identified and explored to
implement and test distinct use cases. Together with an effective Open-source intelligence
(OSINT) effort, which provided information about the core PCOM functions, a security
analysis procedure was pursued to showcase how valid PCOM messages can be leveraged by
a malicious actor to ultimately gain full control over a controlled process. Finally, several
mitigation strategies were proposed, albeit a more definitive solution would imply an entire
redesign of the protocol.

Like other contemporary SCADA protocols, it was found that PCOM lacks security features
such as confidentiality or integrity, being vulnerable to several types of network attacks that
might be used to disclose information about the process under control, affect the integrity of
inflight data, manipulate runtime device registers or even disrupt the process. Nevertheless,
despite the importance of such issues, it must be clearly stated that PCOM is no worse than
its contemporary counterparts. As discussed in Chapter 2, IACS were originally designed
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based on the preconceived notion of air-gaped systems and focused mainly considered on
the functional aspects of communications. Today, given all the discussed security concerns,
it became necessary to have the means to monitor, assess and enforce the security of such
protocols, especially in mission-critical environments. Among other approaches, this implies
creating protocol-aware modules for NIDS, honeypots or data-diodes. Section 4.3 presented
some details about how to create such modules, based on the example of a NIDS ruleset for
PCOM.

As already mentioned in the beginning of this chapter, the work hereby described directly
resulted in two research papers and a several open-source contributions to widely used tools
such as Snort, Wireshark, Nmap, Metasploit and Scapy.
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CHAPTER 5. EVENT STREAMING LAYER

The previous chapter presented the exploratory analysis of the security of Supervisory
Control And Data Acquisition (SCADA) protocols, to better understand how cyber-attacks
on Industrial Automation and Control Systems (IACS) can be performed. Isolated detection
mechanisms, such as SCADA-aware rulesets for Network Intrusion Detection System (NIDS),
were also discussed. Nevertheless, such isolated mechanisms are not enough. As already
discussed, more flexible and comprehensive solutions are necessary, such as the holistic
data-driven framework introduced in Chapter 3.

This Chapter is devoted to the Event Streaming Layer, one of the core modules of the
proposed framework. The event streaming layer fulfills two main purposes: (1) to provide
an efficient, distributed and decoupled mechanism for inter-component communication with
exactly-once processing guarantees; and (2), to provide domain-level processing capabilities.
The idea is that different (and heterogeneous) security probes can leverage the event streaming
layer to push their outputs and evidences (i.e. events) to a highly flexible messaging system.
Moreover, as discussed in Chapter 2, such stream of events can represent not only reports of
security incidents but also other types of information, such as application logs, network traffic
or telemetry data. Therefore, as part of the event streaming layer, domain processors are
used to deploy stream processing mechanisms at domain level. Those mechanisms, following
the hybrid edge/cloud paradigm mindset, enable a preprocessing (and decentralized) stage
near the collection points – optimizing the amount of unstructured data pushed to the
upper layers (i.e. the data analytics layer). Moreover, such preprocessing stage is also
strategical to support the correlation of events from different components, aggregate and
filter different types of events, or even extract additional aggregated features to use as input
of Machine-Learning (ML)-based anomaly detection mechanisms.

This chapter starts with the description of the overall proposed data-driven workflow and the
proposed event format – a custom data model to exchange and describe all the cyber-physical
events (Section 5.1). The details of the event streaming layer (i.e. the messaging system and
the domain processors) are discussed in Sections 5.2 and 5.3, respectively. Section 5.3 also
presents a reference use case which puts in evidence the benefits of using the intermediary
preprocessing stage (more specifically, a time-windowed feature aggregation scenario to
extract a set of additional network based features is described). Those features were later
leveraged to implement an anomaly detection scenario based on network aggregated statistics
(cf. Chapter 6).

Finally, an evaluation of the messaging system itself is presented in Section 5.4. Rather than
focusing only on raw performance numbers (which might differ in different deployments), this

96



5.1. DATA-DRIVEN WORKFLOW AND EVENT DATAMODEL

evaluation discusses how the different settings can be adjusted to achieve different service
goals and distinct deployment needs.

Part of the work presented in this chapter has also been published in [Rosa et al., 2021].

5.1 Data-driven Workflow and Event Datamodel

The specification of the full event datamodel results from joint work of the University of
Coimbra team involved in the ATENA project, where the author of this thesis had a key
role.

As mentioned before, the Intrusion Detection Message Exchange Format (IDMEF) format
[Feinstein et al., 2007] was adopted in CockpitCI to represent security incidents using
Extensible Markup Language (XML) notation in a semi-structured way, useful in the
processing at upper layers. Nevertheless, since then, alternative formats were proposed
(cf. Section 2.5). For instance, the Incident Object Description Exchange Format (IODEF)
[Kampanakis and Suzuki, 2017], which is upward compatible with IDMEF, was proposed as
a more generic way of exchanging information between Computer Security Incidents teams.
Still, both formats were designed on top of a XML structure. Thus, they were not optimized
for on-disk storage, long-term archiving or in-memory processing [Kampanakis and Suzuki,
2017].

Taking the inspiration from IDMEF, a custom datamodel (designated as Intrusion and
Anomaly Detection System (IADS) datamodel) was specifically proposed in the scope of
ATENA. This datamodel could simultaneously be used to represent a generic event (i.e. not
only a security event but also events such as telemetry data), avoid the complexity of other
existing formats and fit into the increasingly demanding (Big Data) IACS environments.

Ultimately, the idea was to use a vendor-agnostic format with a balance between flexibility
(to represent highly heterogeneous events), syntax and performance. The performance side,
often overlooked in security-related formats, is an increasingly important factor as we move
towards distributed data-driven architectures.

According to this datamodel, each IADS message has three main parts:

• An Universal Unique Identifier (UUID), type 4 (RFC 4122 [Leach et al., 2005]) –
a random-generated 128-bit number that uniquely identifies the event in the entire
distributed IADS architecture;
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• A metadata block holding a list of elements that the event has gone through (origins)
and a SHA-256 checksum of the remaining payload;

• And the payload itself, encompassing an unbounded typed list of events (events) –
since one event might hold and represent several particular occurrences, for instance
as a result of a previous aggregation step.

Each origin, starting by the component where the event was generated, contains: a Uniform

Resource Identifier (URI) (following the RFC 3986 syntax [Berners-Lee et al., 2005]),
a UserAgent (RFC 7231 [Fielding and Reschke, 2014]) and a Timestamp of nanosecond
precision (RFC 3339/ ISO 8601 [Zopf, 2002]).

Each event is composed of: a type, a URIofType, a Severity (following the eight levels
as described in RFC 5424 [Gerhards, 2009]) and the data itself. Five types were initially
specified (Application, Network, Host, CyberPhysical, Other). This gives the flexibility
of either specifying a new specific event type through the URIofType field or using the
generic Other type containing only a list of meaning and content pairs.

On top of this syntax, Apache Avro [Apache Software Foundation, 2020e] was used for data
serialization, due to its suitability for Big Data and heterogeneous environments. Avro
supports rich data structures, binary data formats (as well as human-readable JavaScript
Object Notation (JSON) representations), multi-language, dynamic typing and optional
static code generation. Figure 5.1 shows an example of an event using the IADS datamodel
to represent an ARP-based MITM, generated by a NIDS.

This datamodel is used to exchange messages between the different IADS components (e.g.
it is used to push network-related metrics to the messaging system and by domain processors
to describe the computed aggregated metrics). Likewise, as later described (cf. Section 5.4),
it is also used in the evaluation of the messaging system itself.

Figure 5.2 illustrates the overall data-driven workflow. Probes are components strategically
deployed to collect data. Each probe, besides the sensor logic itself, is composed of a
management adapter and an event adapter. For sake of clarity, even though these two
internal probe components were not designed by the author of this thesis, they are briefly
mentioned here. The event adaptor, a custom YAML Ain’t Markup Language (YAML)
configuration file and a set of regular expressions, was used to map different output formats
(e.g. syslog) into a unified data format, as well as to push them into the streaming layer.
The event management adapter, using a configuration file and a custom protocol on top of
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Figure 5.1: Example of a event represented with the proposed datamodel.

99



CHAPTER 5. EVENT STREAMING LAYER

the Message Queuing Telemetry Transport (MQTT), was used for remote management of
the probe.

Each probe is responsible for formatting events into the proposed datamodel and for pushing
them to preconfigured topics of the messaging system (as detailed bellow). Next, for each
domain, according to the specific deployment, different domain processor tasks are used to
consume, preprocess and push the events to one or more output topics. Later, those events
are consumed and processed by different tasks, part of the global analytics layer. The final
outcomes from the data analytics layer (i.e. the alarms resulted from the analytics tasks,
as discussed in Chapter 6) are then pushed to another topic and/or consumed by a web
interface which exposes events to the SCADA operator.
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Figure 5.2: Event data-driven workflow.

5.2 Messaging System

This section focuses on the messaging system, a key part of the event streaming layer, as
highlighted in Figure 5.3.

The messaging system is composed of the messaging nodes, each containing a message broker,
and arranged in clusters to store and serve the events generated by the distinct components.
Messaging clusters and brokers can scale-in/-out and spread geographically to meet the
different service goals of different deployment scenarios. Moreover, the messages can also be
replicated across multiple topics, and each topic can be partitioned across several message
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brokers. This flexibility constitutes a key advantage for supporting different messaging
requirements within the same deployment (e.g. high-severity messages vs. low-priority
telemetry data).

Similarly to probes, each messaging node also includes a management adapter (to remotely
control the broker settings) and an instrumentation exporter – that exposes the instrumen-
tation metrics from the messaging node through a instrumentation backend and a HTTP
endpoint [Linux Foundation, 2018]. Such metrics are a fundamental part of the monitoring
process, in order to monitor the behavior of each broker (e.g. plot the number of messages
per node or per topic).

Finally, the messaging system also includes a schema registry, used to store and serve
the proposed datamodel (and future versions) to all the components (e.g. probes and
processing tasks) through a common endpoint, as well as a connector API that allows
seamless integration of third-party producers and consumers through dedicated connectors.
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Figure 5.3: Event Streaming Layer Reference Architecture.

Apache Kafka [Apache Software Foundation, 2020b] was used to implement the proposed
messaging system (i.e. the messaging brokers, schema registry and connectors API), since it
is a distributed messaging system capable of achieving high message throughput without
sacrificing latency – potentially supporting millions of messages per second, as required by
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larger IACS. Moreover, it fits the idea of supporting different types of message priorities
and service goals. Each message, a key-value abstraction, is always persisted to disk – thus
durable. Kafka also has multiple fault-tolerance and durability capabilities (as later detailed).

The Kafka connector API [Shapira et al., 2017] was used for seamless integration of multiple
connectors through a common interface. Such connectors easily ingest and export data to
additional third-party components (e.g. a database). Moreover, they rely on the built-in
Kafka messaging system to support efficient, distributed and fault-tolerant operations.

The Confluent Schema Registry [Confluent, 2020] was used for schema management. It
natively supports the Avro format (used in the datamodel) and leverages the Kafka messaging
system to provide a decoupled way of serving different versions of message schemas.

Security-wise, Kafka natively supports Secure Sockets Layer (SSL) encryption on the fly
between broker and clients, authentication through SSL certificates or Simple Authentication
and Security Layer (SASL), and Access-control list (ACL)-based authorization. Thus, Kafka
can support the needs of secure inter-component communication in the proposed IADS.

Another useful Kafka feature, opposed to pure queuing mechanisms, is that the messages
are not deleted after being consumed. Instead, Kafka uses a sequential offset to identify
each record within a partition and has the notion of consumer groups. Moreover, a message
can be load-balanced across different consumer members, and multiple consumer groups
can consume the same message. For instance, within a IACS environment, an off-the-path
task can persist all the events (e.g. via Kafka Connect API to the Data Lake) along with
multiple tasks cooperatively aggregating the same events – further supporting the concept
of flexible processing schemes and topologies.

Finally, the Kafka ecosystem is widely used (including more than 80% of all Fortune 100
companies [Apache Software Foundation, 2020b]), has an active community and considerable
third-party integration and built-in stream processing capabilities, which were also decisive
factors to choose this framework.

As discussed before, regardless of the physical setup, for smaller scenarios a single cluster
can support all the IADS operations, whereas a local messaging cluster per domain can be
used to take advantage of data locality.

Figure 5.4 illustrates a scenario where the messaging system is deployed with two Kafka
clusters (one local and one global). The figure also shows how different topics can be
partitioned and replicated across multiple brokers. In the presented scenario, two topics
are depicted: a priority topic with only two partitions but replicated three times, and a
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telemetry topic with four partitions but only replicated two times. Such an overly simplified
setup is shown as an example of how different events can be grouped in different topics
of interest with distinct service goals. In this example, even if any two brokers fail, the
previously committed priority messages would still be available (due to the replication factor
of 3). The same two failures would result in data loss in the telemetry messages topic –
which, in the presented scenario, only tolerates one broker failure.

The specific setup, topics, and partitions of each broker heavily depend on each deployment’s
needs, being unrealistic to define them a priori. Even so, the proposed messaging system
provides a flexible approach to accommodate different deployment scenarios.
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Figure 5.4: Base messaging system scenario with two Kafka clusters and different topics
settings
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5.3 Domain Processors

As discussed earlier, virtually, there are no limits to the amount of security probes. Multiple
probes may report the same occurrence or attack (e.g. a network scan can be detected,
for instance, by a NIDS and a honeypot). Moreover, the same attack may be successively
reported by the same probe (e.g. long network-based attacks may get reported multiple times
by the same NIDS instance). Some anomaly detection algorithms may not need the output
of all probes – probes can simply generate more data than needed (or irrelevant data) for the
anomaly detection task. On the other hand, simpler probes may lack contextual information
or fail to comply with the event format (e.g. third-party probes hard to customize). In
summary, there are several reasons why we need to optimize event flows by grouping them
(e.g. fewer events containing the information from multiple occurrences). Many of these
scenarios imply the need for some sort of preprocessing.

To address this need, domain processors are part of the proposed event streaming layer,
being responsible for implementing the first-preprocessing step. Moreover, domain processors
decouple this preprocessing stage from the remaining components (e.g. a given security
probe), enabling a more modular design where different domain processors can be dynamically
deployed, on-demand, to support different preprocessing requirements (e.g. different message
priorities). In that sense, domain processors are responsible for correlating, transforming or
enriching event messages on a per (logical and/or physical) domain basis. Domain processors
may also implement all sorts of messaging and routing patterns, such as those commonly
found in enterprise applications (e.g. Content-Based Router, Recipient List, Routing slip,
Resequencer) [Hohpe and Woolf, 2004].

Anomaly detection algorithms often rely on aggregated features (e.g. averages, sums).
For instance, network aggregated statistics can be seen as a valuable indicator of the
behaviour of SCADA environment. For static environments, where the number of hosts and
communications remains constant over the time, a small variation on the network traffic
might indicate an anomaly or a normal but unusual event. The usage of domain processors
enables the efficient computation of those features at domain level, thus optimizing the entire
processing pipeline. This enables a balance between computing those statistics locally at the
probe, on resource-constrained environments and devices, or pushing everything to a global
data analytics layer which might run on a distant location or even on a third-party cloud
provider.

An early assessment of how classic event correlation tools could (Esper, SEC, Nodebrain
and Prelude) fulfil the event processing and correlation needs [Rosa et al., 2015] was
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already summarized in Section 2.4.1. Nevertheless, as referred before, those tools are mostly
focused on rule-based event correlation and not oriented towards distributed and Big Data
environments – thus, they were not included in the final design of the proposed approach.

Instead, the proposed approach uses domain processors, built on top of the Apache Kafka
Streams Domain Specific Language (DSL) API [Apache Software Foundation, 2020c]. Despite
being different components, the tight integration between the messaging nodes (based on
Kafka brokers) and domain processors (Kafka Streams-based applications) simplifies the
platform design. Moreover, in this way no additional processing framework is required to
implement the preprocessing tasks – Streams-based applications can run as independent
applications (e.g. a microservice) on top of the Kafka Streams API. Stateful streaming
operations leverage Kafka’s topics as a persistent storage layer. Likewise, multiple instances
or threads of the same application can be deployed to work collaboratively and support
application-level failures – natively supported by the Kafka Streams API by automatically
restarting the same task in a different instance.

It should be noted that while there is no limit to the number of different applications
(domain processors) in the proposed design, the number of instances of the same application
is bounded by the number of partitions. In the previous example (cf. Figure 5.4) this means
two and four instances for the priority and telemetry topics, respectively.

Each domain processor is composed of the Kafka Streams API itself, the management
adapter (similar to the management adapter of probes and messaging nodes) and a topology.
The topology includes a source (the topics where the probes produce) and a sink (the input
topics of the SIEM layer). Additional intermediate topics can also be used for supporting
stateful operations (e.g aggregations), in contrast to stateless operations (please refer to
Kafka documentation [Apache Software Foundation, 2020c] for such distinction).

Figure 5.5 shows an example of how Kafka Streams DSL [Apache Software Foundation,
2020c] are leveraged to implement a feature aggregation task. Such tasks are the foundation
of the domain processor concept. In the presented example, the domain processor extracts
additional aggregated features grouped by time windows, on top of a stream of individual
network packet features.

In this example, the initial KStream <K, V> is instantiated from one or more input topics,
where V refers to the IADS messages. Next, all the messages are mapped to a common key,
to perform a global aggregation. This is followed by a further split of the aggregated stream
(a KGroupedStream) into a feed of time windows (a TimeWindowedKStream). Additional
aggregation scenarios are possible by using a different K mapping in the previous step (e.g.
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using the uuid field of the proposed event datamodel for unique counts, the origin field
for further aggregation by message sources or the severity field to distinguish between
different message priorities). Similarly, different types of time windows are supported (e.g.
tumbling, hopping, sliding).

Afterwards, each individual feature, encoded within the IADS message using a list of meaning,
content field pairs, is extracted into a new aggregated message. The output (the computed
result of the aggregation) is continuously stored on a per-event basis. The presented example
uses one-pass algorithms (e.g. Weldford’s algorithm for computing the variance) to optimize
the computation of the aggregated features. Like the original messages, the aggregated
messages contain the aggregated features encoded using a list of meaning and content field
pairs.

Finally, the aggregation result is transformed back to a plain KStream<K, V> (containing
the final aggregated stream of messages) and ultimately pushed to the sink topic. It should
be noted that the Kafka Streams API supports different types of window behaviors. For
instance, each message in the input topic might turn into an output message, where each
output message represents an intermediate result of the aggregation (default behavior).
This example uses the suppress option to produce a single message, containing the final
aggregation per time window. Moreover, these time windows might be event-driven, either
using the event time of each message or triggered by the wall-clock time (using schedulers).
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Figure 5.5: Example of a feature aggregation by time windows using Kafka Streams DSL
API.
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5.4 Evaluation of the Event Messaging System

As mentioned before, the event messaging layer plays an important role on how components
communicate with each other. Therefore, it is important to understand how its settings can
be used to tune the platform to meet the requirements for next-generation IACS, such as
event processing capacity and scalability.

For such purpose, a set of practical experiments was conducted using a Kafka cluster with
three brokers – allowing to explore different replication and partition settings. Each broker
was running on a different virtual machine with 8 vCPUs, 32GB RAM and 850GB of disk.
All the tests were conducted in a Dell PowerEdge R440 host with a Intel(R) Xeon(R) Gold
5120 CPU (28 vCPUs), 256GB RAM and 3.2TB datastore (4x 10K RPM SAS HDD in
RAID6 via PERC H740P controller), running an ESXi 6.7 hypervisor instance. An additional
virtual machine (with 8 vCPUs, 8GB RAM and 20GB) was setup to work as a Kafka client
(both producer and consumer). All the virtual machines, attached to the same vSwitch
(with traffic shaping disabled), run CentOS 7.3 x64 with XFS. The broker instances were
based on Confluent Docker images 4.0.0 (Apache Kafka 1.0.0).

Apache Kafka can be configured and optimized for different service goals, such as throughput,
latency, durability or availability [Byzek, 2019]. Within a SCADA environment, we expect
to handle at least two different types of messages: 1) high-priority alarms, as a result of the
output of specialized detection probes, and 2) low-priority events such as telemetry data.
Such distinction is important to fine-tune the platform for each use case. In the first case, it
is critical to ensure low latency, meaning that the event should be forwarded and processed
as soon as it is received, while in the second scenario it is more important to maximize the
throughput by optimizing the number of events and the network overhead. For instance, a
Kafka producer might be configured with the batch-size and linger.ms options to control
whether the messages are sent as soon as they are ready or add a delay based on size or
time respectively. Moreover, producers can send events using different levels of acknowledg-
ments: asynchronous (i.e. without waiting for broker acknowledgments), synchronous with
asynchronous replication (i.e. waits for an acknowledgment after the leader commit) or syn-
chronous with synchronous replication, meaning the producer waits for the acknowledgment
after an adjustable (min.insync.replicas) number of replica acknowledgments.

Since there are too many alternative factors to explore in such a scenario, a previous
literature review [Kreps, 2014a] was used to filter out less relevant factors, in order to
produce a manageable set of factors to consider in the experiments: the message size, the
acknowledgment level, the buffer size, the number of partitions and the replication factor.
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On the side of the messaging broker, different settings impact the overall performance,
at both cluster and topic levels. Different topics can have different levels of replication
and partitioning. The replication factor increases availability, critical for scenarios with
strict fault-tolerance requirements (e.g. a topic with a replication number of 3 tolerates 2
broker failures). The partition number, on the other hand, is used as a parallel approach
to improve both broker and client performance. Different partitions from the same topic
can spread among different brokers and, in the same way, each partition can be assigned to
different consumers. Nevertheless, a high number of partitions might lead to an increase of
downtime in the case of a broker failure, due to the partition reassignment process. Regarding
the message size, no limit is enforced by the message data model. Based on conducted
experiments, a typical message containing all the mandatory fields varies between 2-5KB
before Avro encoding and between 500-1000 bytes after encoding.

This test consisted of sending 1 million raw messages using the native Kafka client tool
kafka-producer-perf-test, with different configurations for the client and broker. The following
results summarize the obtained values in terms of the number of messages per second,
throughput and latency. All the tests were repeated 10 times, with the confidence interval
being computed using a Student’s T distribution with a confidence level of 95%.

Figure 5.6 shows how the message size negatively impacts the rate of processed messages for
different acknowledgement levels. The rate sharply dropped from over 100,000 messages per
second (messages with 1 KByte) to 20,000 messages per second (7 KByte). This is an expected
behaviour, since Kafka is optimized for small message sizes [Cloudera, 2019]. Likewise, the
measured difference between full acknowledgement (acks = all) and no acknowledgement
(acks = 0) also decreased as the message size grows.

Figure 5.7 shows how message size affects performance. For 1KB messages, more than 80,000
records per second were measured, a value that decreased sharply for larger sizes. A similar
trend is observed for throughput.

Figure 5.8 shows the effect of different topic configurations, namely the number of partitions
and the replication factor. For fully synchronous producers the replication factor imposes a
severe negative impact, as each message needs to be committed by all the replicas before
being acknowledged to the producer.

Overall, the practical experiments presented in the section provide a better understanding
of how the proposed approach fits into the goal of providing a flexible framework, able to fit
different scale, latency, distribution and resilience requirements. Obtained results show that
the design of the event streaming layer, based on Apache Kafka, is not only flexible enough
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Figure 5.6: Average records / s using different acknowledgment levels and the message sizes
for a 1 Million messages production test. Three brokers, 3 partitions, replication factor 3.
Error bars shows the 95% Confidence Interval

Figure 5.7: Average records / s, latency and throughput for different message sizes, Batch
Size 16384 bytes, Replication Factor 3, Number of partitions 1.

to meet different deployment scenarios, but also able to be used as an efficient messaging
broker mechanism capable of coping with the large number of events envisioned on more
complex IACS environments.
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Figure 5.8: Average records / s based for different partition and replication values, 3KB
message size, batch Size = 16384, acknowledgments = all.

5.5 Summary

The holistic intrusion and anomaly detection approach proposed in this thesis heavily relies
on the idea of monitoring multiple and heterogeneous types of data sources. In that sense,
this chapter presented the proposed data-driven workflow (i.e. how the different components
communicate to each other) and the event datamodel (i.e. the schema used to describe the
collected data). These two concepts are the foundation for leveraging the inputs from a wide
range of heterogeneous components.

This chapter also described the event streaming layer (i.e. the messaging system and the
domain processors). This layer provides an efficient, distributed and decoupled mechanism for
inter-component communication, along with a way of filtering, aggregating and preprocesssing
all sorts of events. This intermediate processing layer represents a step towards optimizing
what is pushed to the upper layers. Moreover, this chapter detailed how to use Apache Kafka
and Kafka Streams to design the proposed event streaming layer. By using Kafka for both
messaging and preprocessing, it becomes easier to deal with different scenario requirements,
such as low-latency, high-throughput or durability, while keeping adequate performance
levels. As an example, a time-windowed feature aggregation scenario for extracting additional
aggregated network statistics was presented.

A series of practical experiments was conducted to better assess the flexibility of the proposed
approach, in terms of performance, scalability, resilience and distribution. Obtained results

110



5.5. SUMMARY

highlight the flexibility, which allows the framework to be deployed in (and optimized for)
IACS scenarios with a wide range of requirements.

The next chapter describes the data analytics layer, which supports the deployment of
different types of anomaly detection mechanisms, as part of the overall intrusion detection
process. The next chapter will also explore the additional aggregated features extracted
at the preprocessing stage, that will be used as input for various ML-based classification
algorithms.
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The event streaming layer was discussed in the previous chapter, detailing how distinct
components communicate with each other to address the processing needs at domain/edge
levels. This chapter describes the data analytics layer, discussing how it enables global
situational awareness, based on the previously collected data.

Contrary to the local security components (e.g. honeypots, HIDS) and domain-level pro-
cessing mechanisms previously discussed, the hereby proposed data analytics layer provides
a global insight of the entire Industrial Automation and Control Systems (IACS) environ-
ment. For instance, ML-based classification algorithms running at global level can infer the
probability of a cyber-security attack, based on processing of events and features extracted
from each individual domain. This layer builds upon a distributed computation framework
capable of efficiently running different types of algorithms, along with the concept of lambda
architecture (cf. Section 2.4), which supports both Stream Processing (fast path) and Batch
Processing (slow path) mechanisms.

This chapter starts by introducing the proposed data analytics layer (Section 6.1), including
the presentation of the reference architecture and the proof of concept implementation. Next,
it is discussed how this layer can be used to flexibly support different anomaly detection
techniques and deployment scenarios (Section 6.2).

Section 6.3 presents a practical use case based on a data exfiltration attack scenario, showing
how the proposed framework can be used to accommodate various Machine-Learning (ML)-
based techniques. This scenario is a good example of a situation where relying solely on
rule-based Network Intrusion Detection System (NIDS) would not feasible – since it would
require predefined rules with known rogue servers or pre-established threshold-like strategies
(e.g. based on "large" network packet lengths) which could be easily bypassed by skilled
attackers. Instead, supervised ML-based algorithms are proposed and extensively evaluated,
not to decide which one is better but to showcase the flexibility of the proposed framework
in supporting and combining multiple algorithms.

Based on that use case, Section 6.4 presents the results of a more extensive evaluation study
addressing the performance of those techniques, on top of the proposed framework. Finally,
Section 6.5 provides a closing summary.

Part of the work presented in this chapter has been published in [Rosa et al., 2021].

114



6.1. REFERENCE ARCHITECTURE AND PROOF-OF-CONCEPT
IMPLEMENTATION

6.1 Reference Architecture and Proof-of-Concept Implemen-
tation

When considering a Smart Grid (cf. Section 2.2), multiple security probes are expected
to be deployed across the entire infrastructure. Nevertheless, each probe is focused on its
own scope and specific tasks (e.g. analyse energy-related measurements; collect network
traffic from a specific link; monitor suspicious events within a SCADA server). On the
other hand, at global level, the deployment of additional anomaly detection mechanisms
can help understanding the environment as a whole. As discussed in Section 2.3, ML-based
algorithms are often proposed in the literature to detect deviant behaviors based on physical
process values in IACS environments. Moreover, network-based indicators are often used
to spot network traffic deviations (e.g. a sudden spike in the amount of traffic, deviant
connections patterns, uncommon payload values). In the proposed approach, such inputs
can be combined and analysed from a global standpoint at the data analytics layer.

The data analytics layer serves as an aggregation point for all the events originated from
the multiple domains and components (the fast path). Additionally, it also supports
computationally intensive processing tasks (the slow path) in a more efficient, flexible and
scalable manner – opposed to requiring local components to have the computational resources
required to run those tasks.

6.1.1 Reference Architecture

Figure 6.1 shows the reference architecture of the proposed data analytics layer, which is
composed of processing nodes (i.e. the nodes used to run the algorithms) and the data lake
(used to persist all the events, as discussed in the next section).

The underlying idea is to have an elastic approach where multiple computation nodes,
arranged into a cluster, can cooperatively and dynamically work and scale-in/-out according
to requirements. A master node (the cluster manager) orchestrates the cluster, being
responsible for assigning and allocating resources on a set of additional slave nodes (the
workers). For each application, the master node elects one of the slave nodes to run the main()
application function (the driver program) and distribute the workload to the remaining
nodes. Finally, each of those workers, containing a set of executors, is used to run the
processing tasks.

These processing tasks, which can be both slow or fast processing mechanisms, consume
the previously collected events and, by leveraging a cluster of distributed processing nodes,
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Figure 6.1: Reference Architecture of the Data Analytics Layer.

may for instance implement multiple ML-based anomaly detection algorithms. Moreover,
this approach allows to combine different anomaly detection approaches (e.g. using different
ML-algorithms, different processing schemes or even different types of features) to cope with
a wide-range of different cyber-attacks and other types of anomalies.

Another key component of the analytics layer is the data lake, which has the function of
persisting generated events. As previously discussed, an IACS can encompass a multitude of
assets and protocols, spread along different logical and physical locations. Similarly to the
messaging system and processing nodes, a distributed data storage approach is proposed for
the data lake. This way, the proposed data lake accommodates a wide range of requirements,
including complex scenarios involving massive amounts of events with strong scalability and
availability needs.

In the proposed data-driven workflow, events are first pushed (and persisted) to a topic and
messaging node. However, the main goal of the streaming layer is not the long term storage,
but rather to support the intercommunication between all the components. This need of
long term persistent storage is fulfilled by the proposed data lake.

This approach allows to retain events at scale, which is particularly relevant for IACS
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environments. Rather than relying on the storage from the messaging system, those persisted
events can later be directly retrieved and used, for instance for offline processing analysis for
forensics and compliance auditing purposes.

6.1.2 Proof of Concept Implementation

The remaining of this section provides some details about the proof-of-concept implementation
of the data analytics layer.

Instead of using the popular TensorFlow [Abadi et al., 2015] or Scikit-learn [Pedregosa et al.,
2011] frameworks – which are mainly focused on ML – Apache Spark [Apache Software
Foundation, 2020d] was selected as the underlying computation platform. Spark is a general-
purpose computation framework with native support of both streaming and batch processing,
which provides additional flexibility to implement different types of intrusion and anomaly
detection tasks.

Moreover, Spark supports the proposed distributed data processing approach, where a
scalable number of processing nodes may cooperatively distribute the workload of different
processing tasks. Spark also provides significant improvements over traditional map-reduce
alternatives, by using an in-memory approach and an efficient Directed Acyclic Graph (DAG)
scheduler [Hazarika et al., 2017].

Having said that, it is important to mention that Spark was not truly designed with stream
processing in mind. Instead, a micro-batching approach is used as a low-latency processing
mechanism. The latest versions include an experimental feature (continuous processing)
that supposedly enables processing of each record as soon as it becomes available, claiming
latencies around 1ms – however, this feature was not used in the scope of this thesis.

Feature-wise, Spark also supports a set of APIs for Streaming Processing, machine learning
and dataframe manipulation. Notably, the newest Structured Streaming API [Apache
Software Foundation, 2020d] allows to further unify, abstract and simplify the way both
bounded and unbounded datasets are manipulated.

Finally, features such as the native Kafka integration (allowing the usage of Kafka as
source/sink data sources), the built-in Avro support and a wide range of implementations
and libraries of ML algorithms were also decisive factors to the choice of Apache Spark.

Regarding the proof-of-concept implementation of the Data Lake, Apache Cassandra was
used. Cassandra is a distributed NoSQL row-based database that supports continuous
availability (with eventual consistency), high-performance and linear scalability [Apache
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Software Foundation, 2020a]. It is capable of seamless scale-in/-out and tolerates failures
by using a shared-nothing principle. Each row supports from basic types to composed
collections (e.g. lists, sets, maps) and allows to store both structured and unstructured data.

Figure 6.2 provides an overview of how Kafka Connect API was used to interface the event
streaming layer and the data lake. As discussed in Chapter 5, Kafka Connect, part of the
overall Kafka framework, allows to set up a set of connectors (both sinks and sources) to
consume and produce from/to a topic. Such connectors can be used together with the schema
registry for schema management and additional converters (e.g. to unlock the mapping of
complex fields).

Message 
Cluster

Data Lake

Connector
API

Schema 
Registry

Event Sink Connector

Query Language

Cassandra Query 

(structured data)

Figure 6.2: Messaging system and Data integration pipeline.

Rather than requiring additional libraries and code, the usage of such connectors, based on
configuration files (as exemplified in Figure 6.3), offers a more simple, flexible and decoupled
approach to ingest and export data from/to the messaging system.

In the proposed architecture, a Cassandra Connector from Landoop [Landoop, 2018] was
used to convert on-the-fly between events (in Avro format) and Cassandra rows and columns.
As reference, Figure 6.4 shows an excerpt of how event data fields might map into Cassandra
data types.

6.2 Anomaly Detection on Top of the Data Analytics Layer

As already discussed, the vast majority of the surveyed IACS literature addresses either
generic layer 2/3 attacks (e.g. network scans or ARP-based attacks) or specific application
layer attacks leveraging Supervisory Control And Data Acquisition (SCADA) protocols.
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Figure 6.3: Cassandra sink connector configuration for Kafka Connect.

Figure 6.4: Excerpt of Cassandra User-defined Type (UDT) fields used to represent the
events.
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Some of those attacks can be detected and mitigated using signature-based mechanisms (e.g.
a NIDS with SCADA-specific rules) or additional SCADA-specific probes and components
(cf. Section 2.2.3), while other attacks require anomaly-based detection techniques, such
as those based on ML. Other approaches, such as leveraging the analysis of the physical
IACS process values to detect subtle variations in the behaviour of the SCADA process (cf.
Section 2.2), also rely on anomaly detection techniques.

Contrary to other researches, instead of focusing on a particular ML-algorithm, this thesis
proposes a data-driven anomaly detection strategy that is not tied to a single protocol, a
single attack scenario or a single detection technique. The proposed framework is able to
collect data from all sorts of probes, to flexibly and dynamically support a wide range of
deployment scenarios (local processing vs. global processing, resilience, scalability, etc.) and
to integrate multiple detection techniques. Within this framework, the data analytics layer
provides the support for integrating e combining those data-driven detection techniques.

Among such techniques, ML-based detection algorithms seem to be especially interesting for
the proposed platform, due to their ability to detect anomalies based on large amounts of
data without requiring specific rulesets defined in advance. This fits particularly well into
the vision of a framework able to capture and process large amounts of data from various
domains and geographic locations.

ML-based techniques have the advantage of not being tied to network-based scenarios –
they mainly depend on the features and the algorithm itself. Thus, they can be applied
to a wide range of scenarios. Such approaches follow a standard procedure of collecting
and preprocessing a set of features and, later, using those features as the input of a given
algorithm. Such algorithms are then used to predict the probability of the occurrence of
anomalies.

The proposed framework supports those techniques by using the concept of a common
ML-based pipeline that can be easily extended and applied to multiple anomaly detection
tasks. The proposed anomaly detection approach (described below) uses the messaging
system and the data analytics layer to create a complete pipeline for ML-based algorithms.

Figure 6.5 provides an overview of the proposed ML pipeline. The first step, referring to the
training stage, starts by loading a previously acquired dataset (containing a list of features).
The initial dataset is then split into two additional datasets (for training and validating).
Moreover, an optional GridSearch step can be used to optimize the ML model parameters.
Later, using the training dataset and leveraging the Spark ML API, the classification model
is fitted (trained).
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Figure 6.5: Proposed ML-based anomaly detection pipeline based on Spark APIs.

For the prediction step (i.e. the classification of the events as normal or anomalous), a Kafka
Source is configured to subscribe to multiple domain level topics, using the Spark Structured
Streaming API (that supports different types of input sources). Each Kafka message (K V

pair) coming from the domain processors is directly mapped into a Row of an unbounded
Spark Dataset<Row>. The Row contains a list of columns including, amongst others, both K

and V encoded as binary values, as well as the topic and partition metadata.

Plain Avro messages can be directly decoded at this step to primitive and complex Spark
column types, based on the Avro schema. For a common Avro variant used by Confluent
Kafka Registry [Confluent, 2020], where each message contains also the schema management
information, an extra conversion step was necessary. Additionally, a custom lookup function
is also used for converting known feature pairs (based on meaning / content field entries)
and saving them as an additional Vector column of the initial Dataset<Row>.

Then, by leveraging the Spark ML API, each feature vector goes through a pipeline, meaning
a chain of transformers (e.g. one-hot-encoding) and an estimator (a previously trained
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classification algorithm). The classification result is also stored into a label column. Finally,
for each detected anomaly, a new message is derived and pushed back to a Kafka topic using
a Kafka sink.

One of the main advantages of such a ML pipeline is that it can be reused in the context of
different types of features and ML algorithms. The next section presents and discusses a
concrete use case based on a scenario of data exfiltration to show how to leverage such a ML
pipeline concept for anomaly detection.

6.3 The Use Case of Data Exfiltration

The use case presented next details a data exfiltration scenario based on Domain Name
System (DNS) tunnels. In SCADA systems, data-exfiltration techniques are relevant because
they allow the attacker to stealthily exfiltrate confidential data such as PLC’s ladder logic,
process data or operators credentials.

Whereas DNS is not a SCADA-specific protocol, it is a real threat to IACS. This generic
protocol is used to map domain names into IP addresses, and is generally present in SCADA
networks. Moreover, being a fundamental network protocol used by several services, it is
often not blocked by firewalls. DNS tunnels are one of the more typical data exfiltration
techniques, not just in IACS domains but also in general [Alcaraz et al., 2019].

Such data exfiltration techniques are difficult to detect by signature-based mechanisms. For
this reason, they constitute a good reference use case to showcase and explore the benefits
of ML-based techniques in the overall proposed framework.

Data exfiltration techniques typically rely on the establishment of side channels to Command
and Control servers (C&C). Later, these channels are used to remotely manage the compro-
mised hosts and to exfiltrate sensitive data. DNS tunneling is one of the techniques that
allow creating a two-way communication channel by encoding data on both DNS queries (as
part of the queried domain name) and DNS responses (in the resource record data). Various
ML-based approaches have been proposed in the literature for detecting DNS tunneling,
mainly using payload analysis (based on packet header fields) or traffic analysis (based on
DNS session metrics) [Yassine et al., 2018] [Nadler et al., 2019] [Nuojua et al., 2017] [Yu
et al., 2016]. The remaining of this section discusses how those techniques can be leveraged
in the proposed framework.

Figure 6.6 illustrates the setup used to recreate a data exfiltration scenario using DNS
tunnels. On the attacker’s side, a server was setup in the cloud to behave as an authoritative
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DNS server for two previously registered domains. Then, two popular DNS tunneling tools
(dnscat2 [Bowes, 2019] and iodine [Ekman and Andersson, 2019]) were used to produce 23
scenario variations, including simple tunnel handshakes using different DNS record types to
encrypted sessions, interactive shells, and the exfiltration of a complete PLC project.
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Figure 6.6: DNS tunneling scenario

On the detection side, to showcase the different anomaly detection capabilities, a DNS probe
was used for extracting packet-specific features (as described below) from the DNS network
traffic (this DNS probe, conceived in the context of the ATENA project, was not developed
by the author of this thesis). Then, a domain processor capable of extracting additional
features, based on the aggregation of the messages into time windows, was created. Finally,
an anomaly detection pipeline was created for training/classifying DNS traffic as normal or
abnormal (i.e. a possible attempt of DNS tunneling).
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Three datasets resulted from the experiments (cf. Table 6.1). Dataset DS1 contains over
15,000 records (one per each DNS packet), including all the anomalous and normal DNS
traffic related with software updates, network services and arbitrary DNS requests. Dataset
DS2 contains the aggregated features – one record per each time-based window – using
hopping windows of 30 seconds with 5 seconds hops. Dataset DS3 contains 25 features
derived from DS1, including the average and the standard deviation for each feature on DS1,
as well as the number of packets per window.

Table 6.1: DNS tunneling datasets

Number of Records

Class DS1 DS2* DS3*

Normal 8458 868 868
Anomaly 7410 276 276

Total 15868 1144 1144

*Original data before oversampling using SMOTE technique.
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Figure 6.7: Distribution of network packets over time

In order to ensure a more balanced distribution between the number of normal and anomalous
events, the datasets ds2 and ds3 were oversampled using the SMOTE technique [Chawla
et al., 2002],

Despite being originated from the same scenario, the three datasets are fundamentally
different and were used to feed different anomaly detection approaches. There are trade-offs
between them. DS1 derives from a larger dataset where each record, containing individual
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features of a single network packet, can be processed in near real-time. This means less
computation on the preprocessing step but more at the classification algorithm. In DS2, only
aggregated events are used to train the anomaly detection system, meaning more computation
at the domain processing but fewer events to classify in the upper layers. Moreover, there is
a distinction between DS2 and DS3. DS3 uses DNS-specific aggregated features, whereas
DS2 pursues a more generic approach (that can be applied to other protocols, including
SCADA protocols) by using only generic network-level features. Whereas the final accuracy
in both cases is totally dependent on the chosen features, a single packet might be insufficient
to represent a cyber-attack. On the other hand, an aggregated record might be enough to
flag an unusually large amount of network flows but might hide information behind all the
underlying aggregation statistics for slow, low-intensity attacks. Both DS2 and DS3 used
overlapping time windows to reduce the latency between each new record, while maintaining
larger aggregation time windows.

For anomaly detection, a machine learning approach was used to evaluate the performance of
several supervised algorithms for binary classification, namely plain Decision Trees, Random
Forests, Gradient-boosted trees (GBT)s, Multilayer Perceptron classifier (MLPC), linear
Support Vector Machine (SVM), Naiver Bayes, Logistic Regression, all natively supported
by Spark ML API [Apache Spark, 2019], as well as two additional ML techniques more
recently referred in the literature: XGBoost [Chen and Guestrin, 2016] and LightGBM [Ke
et al., 2017].

Each record was labeled and marked as anomalous if either the request or response contains
one of the malicious domain names – therefore, this feature was not considered for any
algorithm. The full list of used features, in line with previous works [Yassine et al., 2018]
[Nadler et al., 2019] [Nuojua et al., 2017] [Yu et al., 2016], is enumerated in Table 6.2. Their
feature histograms, depicted in Figures 6.8, 6.9 and 6.10, show their pairwise distribution.

The chosen features are mainly focused on: (1) the size of both request and response packets
– DNS tunnelling packets are typically larger because they carry extra information; and
(2) how different the domain names are from normal DNS requests – since they are used
to encode data, they are typically less natural than words used in normal DNS requests.
Additionally, a binary feature was also included to indicate if the domain is listed in the Alexa
top sites list [Alexa Internet, Inc, 2020], as an indicator of whether this is a common DNS
name. Other common features, such as layer 2/3 fields or time-related measurements, were
explicitly not used. This means this approach is not constrained to specific network details
or limited to high-throughout attacks. Opposed to other research works, it was decided to
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Table 6.2: Features list by dataset

DS1 DS2 DS3

Frame Size Count Count
Query length Frame Size Mean Mean of each feature of DS1
Query Shannon entropy Frame Size Std Std of each feature of DS1
Query char percentage Frame Size Var PIT Mean
Query non hex percentage PIT Mean PIT Std
Query Alexa top 1M PIT Std
Reply length PIT Var
Reply Shannon entropy
Reply char percentage
Reply non hex percentage
Reply Alexa top 1M

Packet Inter-arrival Time (PIT), Standard Deviation (Std), Variance (Var).

leave out the DNS record type. Although some record types are preferred over others for
data exfiltration, using this feature for training purposes can result in inefficient models for
classification of all DNS tunnel variants – the collected datasets contain a combination of
several tunnelling samples using different record types. Features extracted from both queries
and replies were included. Although there are some correlations between these features,
since we might have data encoded on both directions or only one way, it was decided to
not perform any feature reduction, due to the reduced number of items. Figures 6.11, 6.12
and 6.13 show the heat maps of the Pearson correlation coefficients between the features
for each dataset, whereas Figures 6.14, 6.15 and 6.16 show the mutual information between
each feature.

As described earlier in this chapter, the pipeline was developed on top of the dataframe-based
Spark ML API. This allows a more user-friendly approach, by introducing the notion of
pipelines, a set of transformers and estimators that can be applied directly to a dataframe to
reassemble a complete workflow. For all the aforementioned algorithms, a random 70/30 split
was adopted (where 70% of the dataset was used for training, validation and hyper-parameter
tuning and the remaining 30% was used for the final testing). Depending on the specific
algorithms (as detailed below), the first step of the pipeline is the feature transformation
(e.g. scaling, one-hot encoding, etc.). The next step consisted of a 10 k-fold cross-validation
combined with a grid parameter search where the best model of each algorithm was chosen,
to maximize the area under the ROC curve (AUC). Finally, each model was tested using the
remaining 30% of the dataset.

The performance of several tree-based approaches was evaluated, including plain Decision
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Figure 6.8: Features Histogram for Dataset DS1

Trees, Random Forests,Gradient-boosted trees (GBT) [Apache Spark, 2019], XGBoost
[Chen and Guestrin, 2016] and LightGBM [Ke et al., 2017]. They are known to produce
acceptable results without requiring a lot of feature engineering. Moreover, since the used
implementations can already handle categorical features, no feature transformation was
applied for those approaches.

For plain Decision Trees and Random Forests, the split was chosen to maximize the Infor-
mation Gain (IG), according to Equation 6.1 [Apache Spark, 2019], where D represents the
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Figure 6.9: Features Histogram for Dataset DS2

dataset, s a split, and N the size of the dataset. The Impurity in each node was calculated
using the Gini impurity Equation [Apache Spark, 2019]. Random forests, composed of
several independent decision trees built from a random subset of data and features, are a
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Figure 6.10: Feature Histogram for Dataset DS3

popular choice that typically helps reducing variance and over-fitting.

IG(D, s) = Impurity(D)

−Nleft

N
Impurity(Dleft)

−Nright

N
Impurity(Dright)

(6.1)
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Figure 6.11: Pearson Correlation for DS1 Features

Opposed to random forests, GBTs use a sequential process where at each interaction they try
to improve their result by incorporating the knowledge from the previous steps. The native
Spark implementation was evaluated using a loss function according to equation 6.2 [Apache
Spark, 2019]. For XGBoost and LightGBM, despite none of them being natively supported
by Spark, both offer an easy integration path by using Spark ML Dataframe APIs. For
XGBoost, the binary:logistic objective option [Chen and Guestrin, 2016] was used. For
LightGBM, the gbdt boosting setting [Ke et al., 2017] was used.

2
N∑

i=1
log(1 + exp(−2yiF (xi))) (6.2)
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Figure 6.12: Pearson Correlation for DS2 Features

Feedforward artificial neural networks, based on the native Spark MLPC [Apache Spark,
2019], were also evaluated. Different network architectures were assessed, depending on the
dataset. For DS1, 11, 7 and 2 were set as the number of nodes in the input, hidden and
output layers, respectively. For DS2, the 7, 5 and 2 combination was used. Finally, for DS3,
25, 14 and 2 were used. The number of nodes within the hidden layer was chosen based on
the average of the number of nodes in the input and output layers. The hidden layer uses
the sigmoid activation function, while the output layer uses the softmax function [Apache
Spark, 2019]. For the case of Naive Bayes, a feature scaler was used to transform the features
between 0 and 1.
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Figure 6.13: Pearson Correlation for DS3 Features

6.4 Evaluation and Performance Indicators

This section provides an overview of the performance indicators of each method against the
different datasets, according to the following equations, where TP, TN, FP and FN stand
for True Positives, True Negatives, False Positives and False Negatives, respectively:

Precision = TP

TP + FN
(6.3)

Recall = TP

TP + FP
(6.4)
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Figure 6.14: DS1 Feature Pairwise Mutual Information

Accuracy = TP + TN

TP + TN + FP + FN
(6.5)

F1 = 2 ∗ (Precision ∗Recall)
Precision + Recall

(6.6)

Table 6.3 shows the results of the various machine learning algorithms assessed using DS1.
All the methods yield results above 90% of accuracy. Whereas no algorithm outperforms the
remaining in all the measured indicators, Gradient Boosting trees (namely XGboost and
LightGBM) provided the best results. XGboost achieved a perfect precision score.
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Figure 6.15: DS2 Feature Pairwise Mutual Information

Table 6.4 shows the results of the several machine learning algorithms assessed using DS2.
As expected, the overall results were lower when compared to DS1. This can be explained by
the reduced number of features and records of DS2. It is a trade-off between a less accurate
but faster and more generic model. Since application layer-related features were not used,
this approach remains valid for detecting large deviations in the traffic patterns of other
protocols. Several methods surpass the 90% accuracy level. Tree-based methods obtained,
once again, more consistent values – with an advantage for the Random Forests approach. In
this low traffic scenario, a large amount of packets can be easily spotted. In larger networks,
this might be less accurate or require additional fine-tuning of the time windows.
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Figure 6.16: DS3 Feature Pairwise Mutual Information

Table 6.5 shows the results of the various machine learning algorithms assessed with DS3.
By using a large number of features, including DNS-specific ones, there was an improvement
when compared with DS2 results. As before, tree-based approaches show a slight overall
advantage, with XGBoost reaching an Area under ROC Curve (AUC) of 0.986. Similarly to
the DS1 results, it is also remarkable that all the algorithms obtained an AUC score above
0.9.

Figure 6.17 shows the average impact of each feature value (using the SHapley Additive
exPlanation (SHAP) [Lundberg and Lee, 2017]) on the XGboost model using the DS3
dataset. As expected, the presence of the DNS name in the Alexa top sites list was among
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Table 6.3: Summary of the key performance indicators for the DNS tunneling Detection
using DS1

Technique Accuracy Precision Recall F1 AUC

Decision Tree 0.9914 0.9945 0.9872 0.9909 0.9912
Random Forests 0.9925 0.9982 0.9859 0.992 0.9921
GBT 0.9914 0.9945 0.9872 0.9909 0.9912
XGBoost 0.9989 1.0 0.9977 0.9989 0.9989
LightGBM 0.9989 0.9995 0.9982 0.9989 0.9989
Linear SVM 0.9776 0.9772 0.9754 0.9763 0.9775
MLPC 0.9895 0.9909 0.9868 0.9888 0.9893
NaiveBayes 0.9215 0.9115 0.9235 0.9174 0.9216
Logistic Regression 0.9202 0.9061 0.9271 0.9165 0.9206

Area under ROC (UAC).

Table 6.4: Summary of the key performance indicators for the DNS tunneling Detection
using DS2

Technique Accuracy Precision Recall F1 AUC

Decision Tree 0.8955 0.8776 0.5811 0.6992 0.7798
Random Forests 0.9237 0.8615 0.7568 0.8058 0.8623
GBT 0.9068 0.7887 0.7568 0.7724 0.8516
XGBoost 0.9124 0.8525 0.7027 0.7704 0.8353
LightGBM 0.8983 0.8276 0.6486 0.7273 0.8065
Linear SVM 0.8927 0.95 0.5135 0.6667 0.7532
MLPC 0.8909 0.8909 0.6203 0.7313 0.7982
Naive Bayes 0.8079 1.0 0.0811 0.15 0.5405
Logistic Regression 0.8898 0.8302 0.5946 0.6929 0.7812

Area under ROC (UAC).

the most significant features. DNS exfiltration attacks mostly use dedicated DNS records
that are unlikely to appear in a list of popular domains. Similarly, the average length of DNS
responses also played a significant role in the classification. This depends on the underlying
network traffic, since networks with more traffic might benefit the attacker by smoothing
such values.

The training times are another important indicator to understand how the different algorithms
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Table 6.5: Summary of the key performance indicators for the DNS tunneling Detection
using DS3

Technique Accuracy Precision Recall F1 AUC

Decision Tree 0.9753 0.981 0.9699 0.9754 0.9753
Random Forests 0.9867 0.9887 0.985 0.9868 0.9867
GBT 0.981 0.9848 0.9774 0.9811 0.981
XGBoost 0.9886 0.9924 0.985 0.9887 0.9886
LightGBM 0.9734 0.9737 0.9737 0.9737 0.9734
Linear SVM 0.981 0.9923 0.9699 0.981 0.9811
MLPC 0.9867 0.9924 0.9812 0.9868 0.9868
Naive Bayes 0.9411 0.9916 0.891 0.9386 0.9416
Logistic Regression 0.981 0.9812 0.9812 0.9812 0.981

Area under ROC (UAC).

Figure 6.17: Feature impact (based on the SHAP value) for XGBoost Model using DS3
dataset

perform within the distributed computation platform. Such times are mainly influenced by
the number of records, the algorithm itself, its parameters and the capacity of distributing
the workload and run tasks on parallel, the computational resources available (e.g. Central
Processing Unit (CPU), Graphics Processing Unit (GPU), Field-programmable gate array
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(FPGA)) and the Spark cluster deployment setup (e.g. the number of Spark workers, the
number of executors, number of cores per executor).

Table 6.6 represents the wall-clock time spent to train 70% of the original dataset (the
training data) without any grid parameter search. These experiments were conducted using
a 3-worker Spark cluster, each one running on a different virtual machine with 8 cores and
16GB RAM each, on a Dell PowerEdge R440 host with an Intel(R) Xeon(R) Gold 5120
CPU (28 vCPUs), 256GB RAM and 3.2TB datastore (4x10K RPM SAS HDD in RAID6
via PERC H740P controller), running an ESXi 6.7 hypervisor instance. For experimental
purposes, the Spark deployment runs on the top of a Docker container based on official
NVIDIA/CUDA images. This allowed keeping the results consistent across all the tests,
including a GPU-based approach comparison.

Table 6.6: Summary of the training times (s)

Technique DS1 DS2 DS3

Decision Tree 25.03 10.97 12.15
Random Forests 25.86 11.04 11.68
GBT 78.00 54.32 61.34
XGBoost 29.26 18.26 17.68
LightGBM 18.81 6.94 7.83
Linear SVM 173.84 56.18 52.60
MLPC 52.33 31.30 41.22
Naive Bayes 6.56 2.62 2.92
Logistic Regression 9.73 17.74 19.09

Given its greater number of records, training times with DS1 were generally longer than with
DS2 and DS3. Such differences are expected to increase even more with larger datasets, and
might become a deciding factor when selecting the most appropriate algorithms for a given
use case. For the same number of records, in general DS2 lead to shorter training times,
when compared with DS3, since it holds a significantly shorter number of features (25 for
DS3 versus 7 for DS2). Naive Bayes and Logistic regression were among the fastest methods,
but also the most inaccurate. Linear SVM was significantly slower without any meaningful
advantage when compared to tree-based approaches. On the other hand, LightGBM obtained
a good balance between the training times and classification performance.

A further experiment assessed the impact of available computational resources on the
training time for larger datasets (using synthetic data generated from DS1). Figure 6.18
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shows training times for XGBoost, considering datasets with different sizes. Two different
CPU models (Intel Core i7-6700HQ and Intel Xeon Gold 5120, both using the hist XGBoost
tree method) and a NVIDIA GeForce GTX 1060 using gpu_hist were considered.

Figure 6.18: Comparison between CPU and GPU for XGBoost training times using synthetic
data derived from DS1

For the Intel Core i7-6700HQ and NVIDIA GeForce GTX 1060 scenarios, tests were performed
using a single worker and a single executor with 7 cores, plus one additional core for the
driver. For the Intel Xeon Gold 5120 CPU, two scenarios were used: a single worker scenario
with one executor; and a scenario with a 3 workers cluster with one executor per worker, in
a total of 23 cores (plus one additional core for the driver).

For the smaller datasets, the Intel Xeon Gold 5120 CPU executing a single worker (thus
avoiding additional synchronization overhead) provided the best results. As expected, as the
number of records increases there is a clear advantage of pursuing a distributed approach
with multiple workers or using a GPU-based approach. In our setup, after 5 million records,
the NVIDIA GeForce GTX 1060 outperformed all the remaining approaches.

More than trying to determine what are the most appropriated algorithms for each of the
possible types of of anomaly and cyber-attacks within a IACS environment, the conducted
experiments show the benefits of the proposed approach in terms of easily integrating different
computation and anomaly detection techniques, its flexibility in supporting different distri-
bution models (edge/domain processing vs. global processing), and different performance
and scalability requirements.
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6.5 Summary

The proposed data analytics layer was inspired by the concept of an evolved Security
Information and Event Management (SIEM), more geared towards Big Data and ML-based
anomaly detection mechanisms. Within a highly distributed IACS environment, such a
layer can be used to efficiently process cyber-physical events at a global level, as well as to
detect anomalies that cannot be easily spotted by signature or threshold-based mechanisms.
Moreover, as discussed before, the proposed approach mainly relies on the usage of general-
purpose distributed computation frameworks which, from a security standpoint, can be
leveraged to implement all sorts of anomaly detection algorithms in a more efficient and
flexible manner.

As a reference, the entire process of detecting a data ex-filtration operation – a real threat
for IACS environments – was discussed. This use case highlights the benefits of the analytics
layer to detect complex threats, and demonstrates the flexibility of the proposed approach
in what relates with incorporating and combining different types of algorithms. The focus
was not on the specific algorithms, but on understanding how distinct mechanisms could be
integrated in the proposed framework.

Regarding the proof-of-concept implementation, Apache Spark has proven to be a good
match for developing such an analytics layer, enabling efficient and distributed computation
capabilities. Besides performance, the Spark rich feature set and its APIs for third-party
integration have also proven to be a good choice, supporting the idea of a unified approach
for both streaming and batch processing.
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7.1 Synthesis

The main objectives of this thesis were introduced in Chapter 1 and are shortly revisited in
this section.

The underlying research question of this thesis was how to improve the security of next-
generation of Industrial Automation and Control Systems (IACS) through a holistic data-
driven framework.

First, an analysis of related works addressing the cyber-security of IACS was provided
(cf. Chapter 2). The biggest perceived gap in the literature relates with the challenge
of combining the wide array of data sources, probes, security components and intrusion
detection systems that characterize the next generation of IACS. To fulfill that gap, recent
advances on the fields of Big Data and event processing were analysed, with the purpose
of assessing their suitability to IACS security. This work is aligned with the first objective
of this thesis, as stated in Section 1.2: review, identify and assess intrusion and anomaly
detection algorithms and techniques potentially suitable for IACS.

Next, several practical experiments and attack scenarios were devised and implemented
in the testbed of an energy operator, to explore different cyber-security scenarios and
IACS protocols, in order to better understand the dynamics of cyber-attacks and the
vulnerabilities of Supervisory Control And Data Acquisition (SCADA) tools and protocols.
These experiments were also used as part of the evaluation and demonstration activities of
two European research projects. Overall, this work, described in Chapter 4, aligns with the
second objective of this thesis: explore different cyber-security scenarios and IACS protocols.

Finally, as part of the third objective ("the design and evaluation of a holistic data-driven
framework"), a data-driven and holistic framework was proposed for monitoring the cyber-
security of next-generation IACS. The various threats surrounding the complexities of a
IACS system demand a more comprehensive, modular, flexible and distributed approach,
able to combine multiple techniques and deployment scenarios, according to the specific
needs of each IACS. The concept of a data-driven and holistic monitoring framework was
proposed (cf. Chapter 3) and its two key components (the streaming layer and the data
analytics layer) were presented and evaluated in more detail (Chapter 5 and Chapter 6,
respectively). This framework provides a powerful way of decoupling data collection from data
processing, domain-wise and location-wise, while still enabling local and global processing
(which complement each other) and supporting a wide range of distribution, scalability and
performance requirements. Moreover, as shown in Chapter 6, different anomaly detection
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techniques can be easily integrated into this framework, making it possible to select the best
sets of techniques for each specific IACS and each use case.

7.2 Main Contributions

The work conducted in this thesis has resulted in the following contributions.

• Contribution 1. Security analysis of SCADA protocols in the scope of practical
attack scenarios. This contribution, reflected mostly in Chapter 4, focused first on the
practical exploration of attack scenarios using the Modbus protocol to create disruption
in the target IACS (an electrical grid). Based on widely known vulnerabilities, this line
of work focused on discovering, from the attackers perspective, how SCADA systems
can be effectively exploited from a practical standpoint, to create incidents on electrical
grid scenarios.

Next, a detailed assessment of PCOM was conducted, from a security standpoint. The
lack of previous literature about the security of PCOM motivated a more ambitious
analysis, from both the attacker’s and the defendant’s points of view, in order to raise
awareness and show how less known SCADA protocols can be used to conduct attacks
in IACS. This work eventually led to several contributions to open source tools such as
Wireshark, Snort, Metasploit, Nmap and Scapy, which can be useful to infrastructure
operators, security pentesters, auditors and researchers alike.

• Contribution 2. Conceptualization and design of an holistic data-driven frame-
work for intrusion and anomaly detection in IACS scenarios. The second
contribution provided by this thesis refers to the conceptualization and the design of
a data-driven, holistic framework framework for Intrusion and Anomaly Detection
System (IADS). By contrast to other works, this thesis focuses on the strategy for
combining the data and the knowledge from different sources into a more comprehensive
IADS approach. The advantage of having different types of specific security mecha-
nisms, at both local and global levels, is a key driving motivation for this work. The
proposed framework combines local security probes, event pre-processing mechanisms
and anomaly detection techniques which, altogether, enable a broader situational
awareness of the security of the IACS and support its monitoring as a whole. This
is a particular relevant aspect in the context of next-generation IACS. As we rapidly
move into more distributed and highly complex environments, it is important to have
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the means to understand and verify the correct behavior of the entire infrastructure
Moreover, the proposed approach also supports early detection of different types of
cyber-physical anomalies, by supporting (near) real-time collection and processing of
events. This contribution is presented in Chapter 3, Chapter 5 and Chapter 6.

• Contribution 3. Integration and evaluation of different mechanisms for classi-
fying network traffic. The third main contribution of this thesis is the integration
and evaluation of different Machine-Learning (ML)-based mechanisms to detect anoma-
lies in IACS environments. Part of this work is reflected in the domain processors (cf.
Section 5.3), which support the preprocessing of events generated from the probes and
extract additional statistics on a time-windows fashion – therefore enabling efficient
processing at edge or domain level, limiting the amount of data that needs to be pushed
to the (global) data analytic layer.

The other part of this contribution relates with the integration and evaluation of
different ML-based techniques, in the scope of the data exfiltration use case (cf.
Sections 6.3 and 6.4). Previously produced statistics per time windows (coming from
the edge/domain processors) were processed at a global level to detect potential
deviations in network traffic. This processing was made by using a pipeline for
streamlining the integration of different anomaly techniques for detecting anomalies.
An evaluation of those techniques was performed, based on the data exfiltration use
case. This evaluation highlights the benefits of the proposed approach in terms of
easily integrating different computation and anomaly detection techniques.

7.3 Future Work

This thesis focused on the design of the data-driven IADS. Still, the complexity of a IACS
environment is one of the biggest challenges for the anomaly detection process. The feasibility
and practical evaluation of additional SCADA-specific algorithms proposed in the literature is
something that needs further work. A commercial product based on the proposed framework
would be useless without a proper set of algorithms suitable for different domains and
different deployment scenarios.

Moreover, even though this thesis argues that SCADA security is not only about network
communication protocols, most of the evaluation work focused on network-based scenarios –
due to logistic and practical reasons. Nevertheless, it would be interesting to explore other
types of data sources, such as host-based events, useful for instance to monitor HMIs and
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other SCADA workstations. It would also be interesting to explore more process-specific
data, as well as other protocols from the field network (similarly to what was made with
PCOM).

Finally, there are additional security trends which are getting more popular now and might
be worth exploring. The Zero Trust model [Greenwood, 2021] [Rose et al., 2019] for the
security of the infrastructure is a promising approach, but it remains to be seen how it holds
in a SCADA domain. Likewise, the advances in privacy-preserving mechanisms such as Fully
Homomorphic Encryption [Pulido-Gaytan et al., 2020] can be increasingly relevant in the
future to ensure the privacy of external data computation (e.g. to allow the execution of
anomaly detection tasks on the top of sensitive data on a third-party provider). The MLOps
concept, intended to provide more agile approaches to the ML-based life cycle, also deserves
further research in the specific domain of IACS.
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