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ABSTRACT Esophageal cancer is a disease with a high prevalence that can be evaluated by a variety
of imaging modalities, including endoscopy, computed tomography, and positron emission tomography.
Computer-aided techniques could provide a valuable help in the analysis of these images, decreasing the
medical workflow time and human errors. The goal of this paper is to review the existing literature on the
application of computer vision techniques in the domain of esophageal cancer. After an initial phase where a
set of keywords was chosen, the selected terms were used to retrieve papers from four well-known databases:
Web of Science, Scopus, PubMed, and Springer. The results were scanned by merging identical entries, and
eliminating the out of scope works, resulting in 47 selected papers. These were organized according to the
image modality. Major results were then summarized and compared, and main shortcomings were identified.
It could be concluded that, even though the scientific community has already paid attention to the esophageal
cancer problem, there are still several open issues. Two major findings of this review are the nonexistence of
works on MRI data and the under-exploration of recent techniques using deep learning strategies, showing
the need for further investigation.

INDEX TERMS Computed tomography, computer vision, computer aided analysis, endoscopy, esophageal
cancer, positron emission tomography.

I. INTRODUCTION
Esophageal Cancer (EC) is, globally, one of the most fre-
quently reported malignancies [1], [2]. This disease ranks
seventh in terms of incidence (572,000 new cases) and sixth
in general mortality (509,000 deaths), the latter meaning that
esophageal cancer will account for an estimated one in every
20 deaths from cancer in 2018 [3].

As for other types of cancer, a multimodality approach
is presently used to treat EC (including different combina-
tions of endoscopic therapies, chemotherapy, radiotherapy,
and surgery) [4]. The Tumour-Node-Metastasis (TNM) stag-
ing system for EC provided by the American Joint Com-
mittee on Cancer (AJCC) [5] and Union for International
Cancer Control (UICC) [6] is generally used, considering the
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characteristics of the primary tumor, regional nodal metas-
tases, and distant metastases (Table 1) [7].

Radiotherapy (RT) is an important component in the multi-
modal treatment of EC. For its planning, it is crucial not only
to accurately delineate the tumor in order to ensure adequate
coverage of the target, but also to identify critical organs such
as the lungs and heart in order to limit the dose applied to
these organs.

As with other diseases of the upper GastroIntestinal (GI)
tract, EC can be evaluated by a variety of imaging
modalities [9], including:

• Endoscopy

– Application: endoscopy with biopsy is used to diag-
nose EC [10], [11].

– Main advantages: permits direct inspection and
biopsy of the esophageal mucosa for histologic
diagnosis.

103080 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0002-2334-7280
https://orcid.org/0000-0003-2465-5143


I. Domingues et al.: Computer Vision in Esophageal Cancer: A Literature Review

TABLE 1. TNM staging for esophageal cancer [5], [8].

– Main disadvantages: it is an invasive technique [11]
and operator dependent [9], [11], [12].

• Computed Tomography (CT)
– Application: useful in distinguishing between

patients with early cancer (T1a/T1b and T2) who
need further evaluation with Endoscopy and those
with T3 and T4 disease [4]; used for tumor delin-
eation during radiotherapy planning [11].

– Main advantages: reliable in determining resectabil-
ity [9], [11].

– Main disadvantages: CT is unable to distinguish the
esophageal wall layers to determine the depth of
tumor infiltration [11].

• Positron Emission Tomography (PET)
– Application: Fluorodesoxiglicose (FDG)-PET is

a well-established imaging technique for staging
EC [13], being the most important role of this
modality the detection of distant metastases [11].

– Main advantages: assessing of metabolic func-
tion, high sensibility, high reproducibility (when
complying with the acquisition standards), and
existence of quantitative measurements such as
SUV [7].

– Main disadvantages: low spatial resolution when
compared with other imaging techniques, low
specificity of 18F-FDG-PET, and still a lack of
commercial availability of other pharmaceuticals
beyond F-18:FDG [14].

A summary of the different imaging techniques in EC used
in clinical practice for diagnosis, TNM-staging, tumor delin-
eation for RT, and treatment response assessment, is given
in Table 2.

The role of MRI in the management of EC is still unclear
and poorly studied. Although recent technical advances sug-
gest that MRI may become a powerful technique not only
for the initial evaluation of esophageal cancer but also for
the evaluation of the response to neoadjuvant treatment prior
to surgery [15], no work of computational vision for this

TABLE 2. Imaging techniques in esophageal cancer used for diagnosis,
TNM-staging, tumor delineation for RT, and treatment response
assessment.

modality was found. The clinical trial with the identifier
NCT033476301 aims to evaluate the accuracy of the MRI
to visualize esophageal tumors, identify tumor burden and
potential contact with adjacent structures, as well as the asso-
ciated lymph nodes, and also if the MRI helps in the better
evaluation of the response to the treatment. We anticipate that
if this clinical trial (and possibly others) prove the importance
of MRI, computer vision techniques will emerge for this
modality.

To achieve the main goal of this paper, which is to draw
a global picture of the computer vision state of the art in
Esophageal Cancer, a systematic literature search was first
performed. Four well established search engines were used,
and the results were merged and pruned, resulting in a total
of 47 papers. The search engine results were then organized
accordingly to the image modality studied. A first observa-
tion, as stated above, is that no works using MRI have yet
been performed. Endoscopy and PET have been gathering
most of the attention of the community. In relation to the com-
puter vision techniques used, there is still a high prevalence of
traditional techniques based on hand-crafted features. Deep
learning is still in the early stages of adoption and further
work and evaluation needs to be performed.

The present work reviews computer vision works with
application in EC and is organized by image modality. In this
way, we start in Section II by explaining the methodology
used to select the reviewed works. Next, the main body
of the paper is given in Section III and is organized by
image modality used, namely, Endoscopy (Section III-A),
CT (Section III-B), and PET (Section III-C). In each section,
an introductory paragraph is given, followed by a summary
table with all of the works found for that modality and
then a paragraph per work, briefly describing their purpose.
Section IV presents a discussion organized into a section on
Deep Learning (DL) methods and a section on the publicly
available databases. The paper finishes with some conclu-
sions in Section V.

II. METHODOLOGY
Studies were identified through a systematic electronic search
of several databases on May 9th, 2018, with keywords cho-
sen by the multidisciplinary authors (specialized in areas
from applied mathematics, medical doctors, physics, and

1https://clinicaltrials.gov/ct2/show/NCT03347630
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FIGURE 1. Number of publications per year (top), per topic (bottom-left)
and per data type (bottom-right).

engineering). The following bullet point list summarizes the
performed search:
• Web of Science with the topic ‘‘oesophagus’’ or
‘‘esophagus’’, refined by the categories Computer
science artificial intelligence, Computer science infor-
mation systems, Computer science interdisciplinary
applications, Computer science theory methods, Engi-
neering biomedical, Engineering electrical electronic,
Nuclear science technology

• Scopus with the string: ABS ( esophagus OR oesoph-
agus ) AND ( LIMIT-TO ( SUBJAREA, ‘‘ENGI’’ )
OR LIMIT-TO ( SUBJAREA, ‘‘COMP’’ ) OR
LIMIT-TO ( SUBJAREA, ‘‘DECI’’ ) OR LIMIT-TO
( SUBJAREA, ‘‘Undefined’’ ) ) AND ( LIMIT-TO
( LANGUAGE, ‘‘English’’ ) )

• PubMed with the string (‘‘oesophagus’’ [All Fields]
OR ‘‘esophagus’’ [All Fields]) AND (‘‘radiomic’’ [All
Fields] OR ‘‘radiomics’’ [All Fields])

• Springer with the keyword string ‘‘esophageal cancer’’
and selecting the Discipline ‘‘Computer Science’’

The returned results were merged and screened first with
basis on the titles and then the abstracts. The selection criteria
was to retrieve works that used computer vision techniques
to analyze esophagus image data. When pertinent, citations
within the articles were added to the pool of papers. Works
that cite the ones already in the pool were also verified.

Only works written in English were considered. This
resulted in 47 papers. Distributions by year, subject, and
type of exam are given in Fig. 1. It is clear that the inter-
est in the field has been growing (we note that the search
was performed in early 2018 and thus the apparent decay
in 2018, which we believe will not be true once the year ends).
Moreover, the topic that raised most interest was diagnosis,
followed by treatment response evaluation, while other appli-
cations are still under-studied. Concerning the type of exam,
PET and Endoscopy are used in most computer vision works,
while CT has been the subject of less studies.

III. LITERATURE REVIEW
Rossum, in the fourth chapter of his Ph.D. thesis in 2016 [11],
made a literature review of radiomic applications in patients
with EC. The author concludes that since the first publi-
cation on analysis of image texture characteristics in the

year 2011 [16],2 the quantity of work in this scenario has
been growing, suggesting incremental value in the automatic
assessment of staging, prediction of response to treatment and
survival forecast.

Here, we update and complement Rossum’s review [11],
the only existing survey on this subject that we are aware of.
The works are organized, in the next subsections, by imag-
ing technique. In each subsection, a brief description of the
reviewed papers is provided along with a summary Table.

A. ENDOSCOPY
Munzer et al. [17] survey the state of the art on content-based
processing and analysis of endoscopic images and videos,
pointing out that ‘‘digital endoscopy has established as key
technology for medical screenings and minimally invasive
surgery’’. When zooming on EC works, as summarized
in Table 3, the same pattern emerges. The interest in
the field is also shown by the emergence of challenges
in conferences such as ‘‘EndoVis’’3 in MICCAI 2015,
‘‘AIDA-E’’4 in ISBI 2016, and ‘‘EAD’’5 in ISBI 2019.
Techniques employed range fromMosaicing [18], supervised
classification with hand-crafted features [12], [19]–[30] or
DL [31]–[34], tracking [35]. These are described in the next
paragraphs.

Saraf et al. [19], propose an Artificial Neural Network
for the classification of esophagitis into four classes. The
network receives as input characteristics based on the colour
and texture of images captured during endoscopy. The Hue,
Saturation and Intensity models are adapted. Statistics drawn
from Hue and Saturation are used as color characteristics and
the coefficients of the Discrete Cosine Transform are used
as texture characteristics. The classification efficiency in a
balanced data set of 30 images for each category ranges from
80% to 96%, with the sensitivity ranging from 0.8 to 0.97 and
the specificity between 0.94 and 0.98.

Carroll and Seitz [18] try to capture an entire scene in a
single image, through a process called Mosaicing. Having as
input a video captured by a camera moving through a tube or
other surface, the method returns an image representing the
texture of the unfolded surface. One of the motivations of this
work is to create a screening tool and in the paper an example
made from 220 frames of esophageal endoscopy is presented.

Sommen et al. [20] propose an algorithm to identify irreg-
ularities in the esophagus. In order for the system to both
detect if an endoscopic image contains early cancer, and also
locate it, tile based processing is employed. Performance is
evaluated in the RGB, HSI and YCbCr color spaces using as
features color Histogram and Gabor filters and as classifier
Support Vector Machines (SVM). In the experiments with
images from 66 patients (the total number of images used

2Note that in the present review we consider earlier works, possible
unknown to Rossum

3Available at endovis.grand-challenge.org
4Available at isbi-aida.grand-challenge.org
5Available at ead2019.grand-challenge.org
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TABLE 3. Works on endoscopic images. [p] indicates private databases, while [o] indicates open ones.
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is not mentioned), the system reaches an accuracy of 95.9%
with an area under the ROC curve of AUC = 0.990.
The same team continues this line of work and develops

an algorithm based on the original and filtered image [21],
by using custom filters. After classification with an SVM,
post-processing techniques are applied to annotate the region
of the image containing the cancer. For 7 patients, 32 anno-
tations made by the algorithm are compared with the cor-
responding delineations done by a gastroenterologist. The
system was able to detect 36 of the 38 lesions, with a recall
of 0.95 and an accuracy of 0.75. The same system was then
evaluated [22] in 100 images from 44 patients identifying
early neoplastic lesions with a sensitivity and specificity
of 0.83 at the image level and sensitivity and specificity
of 0.86 and 0.87 respectively, at the patient level.

Continuing with the tasks of detection and segmentation,
[23] argue in [23] that the detection of cancerous tissue
in the gastrointestinal tract should not be approached as a
binary problem, but that several specialists should segment
the lesions. A ‘‘sweet spot’’ metric is proposed for the training
phase (Sweet Spot Training - SST) and the Jaccard Golden
Standard (JIGS) a metric able to handle multiple annotations
is also proposed. Results on 100 endoscopic images from
39 patients show that, in this way, the performance of a
detection algorithm can be increased by up to 10% of F1.

Graph theory is used to analyze Endoscopic Ultrasonogra-
phy (EUS) by Zhang et al. [36]. Points of interest calculated
by Scale-Invariant Feature Transform (SIFT) are used as
nodes and the similarity between the grey level or other local
characteristics of the image is used to derive the weights of
the edges. A refined SVM model, with a new kernel based
on graphics matching for EUS images, is designed to predict
three classes, normal, leiomyoma of the esophagus and early
EC. The overall accuracy was 93%. For the diagnosis of early
EC, the accuracy, sensitivity, specificity, positive predictive
value and negative predictive value were 89%, 94%, 95%, 89
and 97%, respectively. The authors note that the false alarm
rate is small; however, failure to detect (patient with early EC
signs confused with healthy) poses a risk.

Matsunaga et al. [24] propose a method to detect early EC
from Flexible spectral Imaging Color Enhancement (FICE)
images. The image is first converted to the CIEL*a*b*
color space, and then only the a* component is used.
The Daubechies Wavelet Transform (DWT) is calculated
in non-overlapping blocks with a size of 64 × 64 pixels.
Detection is then performed by applying a threshold to the
histogram. The results are illustrated in five images from
three patients with EC, but no quantification of the results
is performed.

A computer-aided detection system for the identification
of early cancer is improved in [25] by including a Random
Forest (RF), and thereby introducing a measure of confi-
dence for the detected regions. The method consists of the
following steps: Region of Interest (ROI) detection, feature
extraction, classification, and annotation. The system is vali-
dated on 100 static High Definition (HD) endoscopic images

of 39 patients, manually annotated by 5 gastroenterologists.
A 75% accuracy and 90% recall were achieved, improving
the original system results by 11 and 6 percentage points,
respectively.

Ohura et al. [12] propose a method to diagnose early EC
from endoscopic images using the DYadic Wavelet Trans-
form (DYWT) and the fractal dimension. Endoscopic images
of 23 patients with EC were used. The authors claim that
the method is capable of providing diagnostic information
that may assist medical specialists, but no quantitative data
is provided.

Barrett’s esophagus (BE) is a precancerous condition
that may progress to become Esophageal AdenoCarcinoma
(EAC). Shin et al. [26] describe an approach for the analy-
sis of microendoscopic images with the aim of identifying
neoplastic lesions in patients with BE. Features extracted
from High-Resolution MicroEndoscope (HRME) images are
used to develop a classification algorithm between neoplastic
(HGD or cancer) or non-neoplastic tissue (normal squamous
mucosa, gastric cardia, Barrett’s metaplasia or LGD). Linear
discriminant analysis of two classes is used, where the image
characteristics are added one at a time until the classification
performance stops improving. Images were acquired from
230 sites in 58 patients, achieving a sensitivity and specificity
of 88% and 85% for the 5-class problem.

The work in [31] classifies microvascular morphological
types to aid EC detection. They develop a model in Caffe
where patches are greedily generated, feature extraction is
performed with a Convolution Neural Network (CNN), and
classification is made with an SVM. They use a NarrowBand
Imaging with Magnified Endoscopy (NBI-ME) dataset com-
posed of 261 images from 67 patients, achieving a 92.74%
recognition rate.

Esophageal surveillance usually involves obtaining biop-
sies in different regions along the oesophagus. Identification
of these biopsy sites between operations presents a challenge.
The doctoral thesis of Vemuri [35] describes a navigational
system for endoluminal surgery, not resorting to the use of
a preoperative model. An intervention is recorded and later
used to provide guidance to the specialist, assisting in the
re-positioning of the endoscope at previously studied sites.
This is achieved by using video synchronization between
operations. The quantitative evaluation of the system is per-
formed with synthetic and real data (porcine). The results
show an improvement in the relocation rate from 47.5% to
94.0%.

In [27], an automatic BE classification system is intro-
duced. Several features are extracted from an image of Confo-
cal Laser Endomicroscopy (CLE), filtered at different levels.
SVMs are then applied in a multi-stage fashion in order to
obtain a classification into three classes. The approach is
validated on a dataset of 32 patients with 262 images of
different histological grades. The three target classes are:
Gastric Metaplasia (GMP), Intestinal Metaplasia (IM) and
NeoPlasia (NPL). A general accuracy of 90.5%was achieved,
with binary results reaching 98.8% to discriminate between
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NPL and other images and 96.7% to separate IM from GMP.
For a survey on automated detection of BE Using Endoscopic
Images, we refer to the review by the same authors in [37].

Swager et al. [28] also focus on the detection of early Bar-
rett’s NPL using Volumetric Laser Endomicroscopy (VLE).
The authors use 4 generic features, (1) GLCMs, (2) Local
Binary Patterns, (3) Histogram of Oriented Gradients, and
(4) Wavelet transform, and also propose 3 new features
that they name (1) Layering, (2) Signal Intensity Distribu-
tion, (3) Layering and Signal Decay Statistics. Each set of
features is tested in combination with several supervised
machine learningmethods, namely SVM,Discriminant Anal-
ysis, AdaBoost, RF, K-Nearest Neighbor classifier (k-NN),
Naive Bayes, Linear Regression, and Logistic Regression.
In a database of 60 ex vivo VLE images, an AUC of 0.91 was
achieved when using Layering and Signal Decay Statistics
with the AdaBoost classifier.

VLE is also used in [29], where three contributions are
made, (1) benchmarking of machine learning and feature
extraction techniques, (2) proposal of three new features, (3)
evaluation through automated adjustment of parameters by
applying feature selection methods and grid searching. The
results are evaluated in clinically validated data with 30 dys-
plastic and 30 non-dysplastic images. The best classification
accuracy is obtained by applying an SVM as classifier and
using modified Haralick characteristics and optimized image
cropping, obtaining an AUC of 0.95.

Souza et al. [30] introduce the Optimum-Path Forest (OPF)
classifier for the BE identification task. Descriptors based
on key-points, such as Speeded Up Robust Features (SURF)
and SIFT, are extracted in order to create a bag-of-visual-
words. The OPF was compared with an SVM in a set
of 100 endoscopic images of the lower esophagus captured
from 39 patients, 17 of whom were diagnosed in the initial
stage of Barrett and 22 showed signs of EAC, provided by
the EndoVis MICCAI 2015 Challenge. The best results were
obtained by OPF, with values of sensitivity, specificity, and
accuracy of 0.732, 0.782 and 0.738 when using SURF and
0.735, 0.806 and 0.732 when using SIFT.

Hong et al. [32] built a CNN to distinguish between
IM, GMP and NPL. The architecture is composed of four
convolutional layers, two max-pooling layers and two Fully
Connected layers (FC). Image distortion was employed for
data augmentation. 262 BE endomicroscopy images were
obtained from the ISBI 2016 ‘‘AIDA-E’’ challenge, achieving
a classification accuracy of 80.77%.

Motivated by the existence of few annotated data,
Riel et al. [33] present an approach for the early detection of
EC using Transfer Learning of CNNs. Intermediate layers of
the network are used as features in traditional classifiers. Slid-
ing windows are applied to obtain the approximate location of
possible cancerous regions. The experiments are performed
with the Early Barrett’s Cancer Detection Challenge dataset,
an EndoVis sub-challenge. The approach achieves an AUC
of 0.92, allowing detection and annotation at two frames
per second (fps).

The work of Garcia-Peraza-Herrera et al. [34] deals with
the interpretability of classification results coming from a
CNN. They present a new dataset composed of 7,046 frames
from 17 patients, and a novel DL method with deep supervi-
sion and an embedded Class Activation Map (eCAM). The
approach aims at directing the attention to those areas of
the esophageal tissue that lead the network to conclude that
the images belong to a particular class, in particular for the
case of IntraPapillary Capillary Loops (IPCL). In comparison
with a method that does not do feature deep supervision,
but provides attention by grafting Class Activation Maps, the
F1-score is improved from 87.3% to 92.7%. The authors
provide more detailed attention maps.

B. COMPUTED TOMOGRAPHY
CT volumes (Table 4) have been analyzed mostly with
traditional hand-crafted features [38]–[40]. Two exceptions
are [41], [42] where DL techniques are used. One particular
feature of the work [42] is the use of convolutions in 3D,
fully using the volumetric information, while most methods
use 2D or 2.5D techniques, even when the input is 3D [43].
Another interesting aspect of this work is the use of a publicly
accessible database, made available in 2015 at the Workshop
and Challenge of MICCAI - Multi-Atlas Labelling Beyond
the Cranial Vault.

The authors of [38] analyzed the association between
tumor heterogeneity, morphological tumor response, and
Overall Survival (OS) in primary EC treated with chemother-
apy and RT. The dataset consisted of 36 patients with stage
T2 or worse, who underwent contrast-enhanced CT before
and after ChemoRadioTherapy (CRT). Entropy, uniformity,
mean intensity, kurtosis, histogram standard deviation and
skewness were extracted after the application of filters
1.0-2.5. It is concluded that post-treatment texture features
are associated with survival time, and the combination of
pre-treatment texture features with maximum wall thickness
showed better performance in survivalmodels thanwhen only
using the morphological tumor response.

A different goal is the focus of the work in [39], where
the authors evaluate the relationship between radiation dose
and evolution in patients who received RT for EC to identify
patients who develop Radiation Pneumonitis (RP). Pre and
Post RT CT scans were acquired, and a CT treatment plan
with an associated dose map was designed for 106 patients.
Non-overlapping ROIs of size 32× 32 pixels were randomly
drawn from the lungs region in the pre-treatment scans. The
ROIs were then aligned to both the scan after the treatment
and the planning scan using deformable image registration.
Texture and intensity features, including first order, fractal,
Laws’ filter and Gray-Level Co-Occurrence matrix (GLCM)
were extracted. The absolute value of the difference between
pre and post treatment images, 1VF , was then calculated.
Logistic Regression (LR) was used to study if the combi-
nation of features improves the identification of patients on
stage ≥ 2. 1VF was significant for all 20 features, with
increasing radiation dose; while for patients with RP, only
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TABLE 4. Works on CT images. [p] indicates private databases, while [o] indicates open ones.

12 features were statistically significant. Discrimination of
patients with and without RP when using a single feature
achieves AUCs between 0.49 and 0.78, while when combin-
ing features, the same metric increases from 0.59 to 0.84.

Yip et al. [40] assess the impact of neoadjuvant chemother-
apy on tumor heterogeneity. Image texture parameters (mean
grey level, entropy, uniformity, kurtosis, skewness, histogram
standard deviation) are extracted from both staging and
post-chemotherapy exams for thirty-one patients. Propor-
tional changes in each parameter were then calculated. It was
been found that the texture of the tumor becomes more
homogeneous after treatment with a significant decrease in
entropy and increase in uniformity. The standard deviation
of the histogram showed a borderline association with the
tumor response. A proportional change in skewness smaller
than 0.39 was associated with improved survival.
The paper [41] concentrates on the segmentation of the

oesophagus. This is a challenging problem given that the
walls of the oesophagus have a low CT contrast. The authors
propose a two-step approach: (1) gross segmentation where
multiple organs are identified; (2) finer segmentation, focused
on a smaller region identified in step (1), but large enough
to contain context information. The Sharpmask architecture
is used in both steps. Performance is assessed in 30 CTs of
patients which have lung cancer or Hodgkin’s lymphoma,
obtaining a Dice score of 0.72± 0.07.
3D CNNs are used in [42] to locate the oesophagus in

CT images. The results are refined through a random walker
approach in order to achieve the segmentation of the oesoph-
agus. More specifically, the pipeline is as follows: (1) a 3D
CNN is used to generate a smooth probability map, (2) an
Active Contour Model - ACM - is fitted to the probability
map in order to obtain a rough estimate of the location of the
oesophagus, (3) a random walker is applied on the combina-
tion of a probability model based onHounsfield CT units with
the outputs of the previous steps. The training and assessment
were done on 50 CTs from two different data sets, one private
with 20 scans, and one public with 30 scans from the ‘‘Multi-
Atlas Labelling Beyond the Cranial Vault - Workshop and
Challenge’’ (synapse dataset). Evaluation using Dice coeffi-
cient and symmetric square distance achieved average values
of of 0.76 and 1.36 mm, respectively.

C. POSITRON EMISSION TOMOGRAPHY
PET data has been automatically processed since 2011,
as shown in Table 5. The focus has been on the selection of the
best hand-crafted features [16], [44]–[63], with the exception
of the work in [64] where response to treatment is predicted
using a three-slice CNN (3S-CNN). Although having the
advantage of not using hand-crafted features, the proposed
3S-CNN, is not volumetric, and thus not having the potential
advantages described in the beginning of Section III-B for
the work of Fechter et al. [42]. More details on each work are
given next.

The predictive value of FDG uptake heterogeneity, quan-
tified using texture analysis, in 41 patients with locally
advanced EC treated by concomitant CRT is studied in [16].
SUVmax , SUVpeak , SUVmean, and 38 texture features were
extracted from tumor regions of pre-treatment PET scans.
Patients were divided into NR, Partial-Respondent (PR) or
Complete-Respondent (CR) according to RECIST criteria.
The Kruskal-Wallis test (p-value < 0.05) was used to verify
the ability of each parameter to classify patients in rela-
tion to response to therapy. It was observed that the rela-
tionships between pairs of voxels are able to characterize
the non-uniformities of metabolism of the local tumor and
thus to significantly differentiate all three groups of patients.
Regionalmeasures, such as the size of non-uniformmetabolic
regions and non-uniformity of intensity within these regions,
were also significant factors. ROC analysis showed that tex-
tural analysis of the tumor can provide identification of NR,
PR and CR patients with greater sensitivity (76%−92%) than
any of the measures of SUV.

Tixier et al. [44] evaluate the reproducibility of texture fea-
tures. In their method, 3D segmentation is made by a Fuzzy
Locally Adaptive Bayesian (FLAB) algorithm. Extracted
parameters are: 8 features based on intensity histogram,
11 based on Grey-Level Size Zone Matrix (GLSZM), and
6 based on the GLCM. On double baseline PET scans for
16 patients, they concluded that local homogeneity, entropy,
dissimilarity, Intensity Variability (IV) and Size-Zone Vari-
ability (SZV) are parameters with high reproducibility.

New methods of risk stratification can lead to the opti-
mization of management strategies leading to better results.
In this way, in [45] the potential of CT texture analysis to
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TABLE 5. Works on PET images. [p] indicates private databases, while [o] indicates open ones.
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contribute to risk stratification is investigated. The texture
features are extracted from un-enhanced CT and compared
with SUV (from PET/CT) and patient survival. The exper-
imental database consisted of baseline PET/CT data from
21 patients. Tumor heterogeneity was found to correlate
with the adverse biological characteristics of high tumor
metabolism, advanced stage, and patient survival.

In [46], it was noted that although the heterogeneity of
intra-tumor uptake quantifiedwith textural characteristics has
been thoroughly investigated, an evaluation of the impact of
the pre-processing steps in the resulting quantification had
not yet been performed. They thus perform that study with
respect to the functional volume segmentation and Partial
Volume Effect (PVE) Correction (PVC). Fixed Threshold
(FT), Adaptive Threshold (AT) and FLAB are used for tumor
identification. Local and regional textural features are then
extracted. In a population of 50 patients, it was observed
that, although there are differences in the absolute values of
the parameters, these differences do not always translate into
a significant impact. Features such as local entropy, local
homogeneity, and regional Zone Percentage (ZP) should be
preferred as they achieve not only a high differentiation power
in terms of predicting patient response, but are also robust in
relation to the segmentation method and PVE.

Dong et al. [47], propose a new texture PET image fea-
ture, named uptake heterogeneity. The heterogeneity of intra-
tumoural 18F-FDG uptake is assessed by the entropy and
energy of the volumes and their correlation with SUVmax ,
histological grade, tumor location, and the TNM stage is
analyzed. They observe that: (1) tumors with higher SUVmax
are more heterogeneous; (2) significant correlations exist
between T stage and both entropy and energy; (3) corre-
lations were also found between N stage and both entropy
and energy. Thresholding the entropy at 4.699, detection of
tumors above stage IIb achieve an AUC of 0.789 (p < 0.001).
They conclude that the proposed uptake heterogeneity may
complement the SUV and tumor stage in the staging and
prognosis of squamous cell carcinoma of the oesophagus.

Tan et al. [48] propose a family of characteristics based on
distances from the histogram to predict tumor pathological
response to neoadjuvant CRT (nCRT). These characteristics
describe the longitudinal alteration of the distribution of
FDG in the tumor. The tumor is manually delineated in the
pre-treatment scans. Subsequently, the pre and post treatment
exams are rigidly registered and two histograms are calcu-
lated in the delimited region, one from the pre and the other
from the post scans. A total of 19 histograms are examined
and compared with traditional measures such as Haralick’s
texture features. The results obtained with data from 20 EC
patients treated with CRT and surgery showed that 7 bin-bin
and 7 crossbin distances exceeded traditional measures, such
as SUVmax and Total Lesion Glycolysis (TLG). In addition,
the 7 crossbin distances showed higher accuracy of prediction
than the texture characteristics on post-treatment scans.

The same group, using the same database, analyze a set
of features in the characterization of the SUV intensity

distribution, spatial patterns (texture), tumour geometry,
and changes resulting from CRT [49]. The same rigid
registration method was applied, but two VOIs are now
semi-automatically delineated, the original tumor in the
pre-CRT scans and the residual tumor in the post-CRT scans.
The authors conclude that the best traditional measure is the
decline in SUVmax . In addition, two intensity characteristics
(decline in SUVmean and skewness) and three texture charac-
teristics (inertia, correlation, and prominence of the cluster)
were considered to be significant predictors. Regarding SUV
intensity and tumor size, the changes in these parameters were
found to bemore predictive than when using either pre or post
measures by themselves.

Zhang et al. [50] construct predictive models for the evalu-
ation of tumor response to nCRT. The study included PET/CT
scans before and after CRT of 20 patients submitted to tri-
modality therapy (CRT + surgery). Three groups of tumor
characteristics were examined: (1) conventional response
measures (SUVmax , tumor diameter, etc); (2) clinical param-
eters (TNM stage, histology, etc) and demographic informa-
tion; (3) spatial-temporal features from [49]. Each group of
characteristics was analyzed individually and also in combi-
nation. Feature selection was performed recursively, and as
classifiers SVM and LR were used. The SVM model with
all features combined achieved an AUC of 1.00 (with no
misclassifications).

Hatt et al. [51] assemble a database of 555 pre-treatment
scans (158 breast, 45 cervix, 112 esophageal, 139 head
and neck and 101 lung tumors). Four textural features are
then extracted: (1) entropy of GLCM, (2) dissimilarity of
GLCM, (3) High-Intensity Large Area Emphasis, and (4) ZP.
The correlation between Metabolically Active Tumour Vol-
ume (MATV) and textural characteristics varied, with cor-
relation inversely proportional to volume. In the esophageal
cohort, only the volumetric dissimilarity of GLCM was a
prognostic factor, probably due to small global volumes.
General results indicate that heterogeneity and volume may
provide supplemental information for volumes > 10cm3.
In [64], the response to chemotherapy is predicted from a

single PET scan made prior to treatment. The authors com-
pare the performance of two different strategies: an approach
based on statistical classifiers (LR, gradient, RF and SVMs)
using more than 100 image descriptors, and an approach
based on CNNs, trained directly on the PET scans. The CNN
method is named 3S-CNN since it takes sets of three adjacent
intra-tumor slices. It is concluded that 3S-CNN exceeds the
classical radiomic characteristics in patients with EC. In a
data set of 107 patients, the sensitivity and specificity of the
3S-CNN reaches on average, 80.7% and 81.6%, respectively.

Lian et al. [52] propose an Evidential Feature Selec-
tion (EFS) method, a wrapper feature selection technique
based on the Dempster-Shafer Theory (DST). A modified
EK-NN (mEK-NN) is also designed. Thirty-six patients
with esophageal squamous cell carcinomas were studied.
13 patients were labeled disease free when neither regional
or distant tumor recurrence was detected, while the remaining
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23 patients were labeled as positive for the disease. Among
the pool of features, three were robustly selected: TLG and
two clinical features (not specified). The authors conclude
that EFS improves classifier performance and achieves the
highest accuracy (among the performed experiments) of 89%
when combined with mEK-NN.

In a subsequent work [53], the authors improve EFS by
creating iEFS (improved EFS). The improvements include:
(1) addition of a data balancing methodology, (2) feature
selection guided by prior knowledge, and (3) reduction of
complexity by modifying the oss function. A classification
method based on DS, the Evidential K-NN (EK-NN) rule,
is used with subsets of selected features to generate prediction
results. The most stable subset of features found is: TLG,
tumor staging as II, and patient gender.

In [54] the utility of contour propagation in the context of
predicting pathological response is investigated. Tumor ROIs
defined by a physician in pre-treatment scans were propa-
gated to the post-treatment PET using rigid and deformable
registration algorithms. It was observed that the contours
propagated by the inverse consistency Horn-Schunck optical
flow algorithm surround the totality of the region of high
tumor FDG uptake. Then, GLCM, Grey-Level Run Length
matrix (GLRL) and GLSZM textures were computed on all
ROIs. The relative difference of each texture at different
time points (1) were used as predictors. The 1 Short Zone
High Gray Emphasis computed with 256 discrete values,
led to a significant separation with AUC = 0.78 (q-value =
0.0005). The authors conclude that the ROIs propagated using
deformable registration can lead to an accurate prediction of
the pathological response, potentially accelerating the texture
analysis process.

The same authors, in [55], compare the relationship
between characteristics based on PET and pathological
response and OS with the measures of SUV. Forty-five
patients who underwent surgery were divided into CR,
RP and NB to preoperative chemoradiotherapy. SUVmax
and SUVmean, two GLCM (Entropy and Homogeneity), two
GLRL (high-grey-run emphasis and short-run high-grey-run
emphasis), and two GLSZM (high-grey-zone emphasis and
short-zone high-grey emphasis) features were extracted. The
relationship between the relative difference of each measure
at different time points of treatment and the pathological
response andOSwere evaluated. The authors note that all tex-
tures, except Homogeneity, were more related to pathological
response than either SUV measure. Entropy can distinguish
NRs from CRs and PRs, while median entropy and GLRL
textures can distinguish patients with good from patients with
poor survival.

Rossum et al. [56] note that a trustworthy prediction of
CR, done prior to surgery, would allow the specialists to
attempt to plan a strategy where the organ is preserved. In an
effort to achieve this information pre and post-treatment from
217 patients with EAC was gathered, including 18F-FDG
PET, subjective assessments, and quantitative parameters.
A clinical prediction model was improved in a step-wise

manner by adding: (a) subjective assessment of response,
(b) TLG after treatment, and (c) four texture/geometry fea-
tures (baseline cluster shade, 1GLRL percentage, 1GLCM
entropy, and post-chemoradiation roundness). The authors
warn, however, that the improvement obtained does not con-
vert into a clinically relevant gain that can change decision
making.

In [57], RFs were investigated to select the best texture
features for predictive and prognostic studies. The dataset
consisted of 65 EC patients retrospectivelly collected whose
protocol included a pre-treatment full-body scan, treatment
with a combined CRT, response assessment 1 month after
termination of therapy, follow-up for 3 years after the end
of treatment. Patients were divided into CR and non-CR
and both medical records and PET images were used for
feature extraction, followed by their reduction through Spear-
man’s analysis. This process reduces the initial 61 features
to 28. The best prediction subset identified by using RFs
is composed of two characteristics: Metabolic Tumor Vol-
ume (MTV) and GLCM homogeneity; while the best subset
for prognosis was composed of three characteristics: MTV
and two clinical characteristics (WHO status and nutritional
risk index). The predictive value (AUC = 0.836, Se = 82%,
Sp = 91%) was higher than using Mann-Whitney (AUC =
0.810, Se = 66% = 88%) and the prognostic achieved
(AUC = 0.822, Se = 79%, Sp = 954%.
Nakajo et al., do a retrospective study on the use of

SUV and texture features, both individually and in combina-
tion, to differentiate between benign and Metastatic Adrenal
Tumor (MAT). The used database contains 13 BATs and
22 MATs of each 3 are EC. PET/CT was used to extract
SUVmax , MTV, TLG and four texture features (entropy,
homogeneity, IV and SZV). SUVmax , entropy and IV were
significantly higher in MATs than in BATs; conversely,
homogeneity was significantly lower. Accuracy for both
SUVmax and entropy is 82.9%; slightly lower for IV at 85.7%
and the lowest value of accuracy was observed for homogene-
ity at 71.4%. Binarizing each parameter’s result, summing the
results and thresholding at 2.5, the sensitivity, specificity and
precision were 100%, 84.6% and 94.3%, respectively, with
0.97 of the AUC.

Foley et al. [59] develop a prognostic model that incor-
porates PET texture analysis. PET images segmentation
is performed with the Automatic decision Tree Learning
Algorithm for Advanced Segmentation (ATLAAS) tool [65]
initialized with a manually defined bounding box. Age, radi-
ological stage, treatment and 16 texture features are included
in a Cox regression model designed to predict OS. Results
in 403 patients, found 6 variables to be both significantly and
independently associated with OS: age, radiological stage,
treatment, log(TLG), log(Energy Histogram) and Kurtosis
histogram. The authors conclude that PET texture analysis
adds prognostic value to EC staging and that texture metrics
are associated with OS.

Nakajo et al. [60] address the prediction of response
to treatment and prognosis based on the heterogeneity of
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TABLE 6. Deep learning techniques.

the primary tumor in patients treated with CRT. Using
(18)F-FDG, several characteristics are extracted, including
SUVmax , SUVmean, MTV, TLG and 6 texture features. The
authors conclude that tumor response can be predicted using
two of the six texture features (IV and SZV) and two volu-
metric parameters (MTV and TLG). For the prognosis task,
it was found that all of the studied parameters have a very
limited value.

With the goal of improving the prediction of response,
a model was constructed in [61] designed to predict the exis-
tence of a complete response to nCRT in patients with EC
based on pre-treatment clinical parameters and textural fea-
tures. 97 patients treated with nCRT followed by esophagec-
tomy were considered. Both 18F-FDG PET and CT were
used to derive clinical, geometrical and texture features. The
prediction models were trained with Least Absolute Shrink-
age and Selection Operator regularized LR. The pathological
response was defined as Complete vs. Incomplete (Standard
Tumour Regression Degree - TRG - system 1 vs. 2-5). The
characteristics selected by the regularization include: histo-
logical type and clinical T-stage, long run low grey level
emphasis extracted from PET, and run percentage extracted
from CT. LR results with the selected variables achieved an
AUC of 0.74, while an SUVmax model only reached 0.54.

In [62], sixty-four scans were processed using 5 differ-
ent levels of Gaussian smoothing, 4 SUVmax segmentation
thresholds and 5 different quantization levels. Heterogene-
ity parameters based on GLCM, GLRL, Gray Tone Neigh-
borhood Matrix (NGTDM), GLSZM and fractal analysis
methods were then extracted. Most parameters showed low
agreement between different widths of quantization bins,
while segmentation and smoothing have a smaller impact on
precision.

Anthony et al. [63] examine the link between the devel-
opment of symptomatic RP in patients with EC after RT

using LR. Twenty texture features (first order, fractal, Laws’
filter and GLCM) were extracted from diagnostic CT scans
in anatomically corresponding regions of the lung. Mean
change in the value of each texture feature and the standard
deviation of pre-therapy SUV (SUVSD) were then calculated.
Although the clinical parameters (mean lung dose, smok-
ing history, tumor location) were not significantly different
between patients with and without symptomatic RP; SUV
and texture parameters were significantly associated with
RP status. When training the LR model with a single tex-
ture feature, AUC values ranged from 0.58 to 0.81. Using
SUVSD alone, achieves an AUC of 0.69. Combining SUVSD
with each one of the texture features increases the AUC
by 0.04-0.08.

IV. DISCUSSION
As seen in the above section, independent of the type of
image, the techniques used are mostly based on hand-crafted
features or DL techniques. Since there are already several
state of the art reviews on traditional pipelines, of which we
highlight [66], [67], we will here provide a brief summary
on DL techniques only (Section IV-A). This section also
includes a summary of existing publicly available databases
(Section IV-B).

A. DEEP LEARNING TECHNIQUES
The performance of CNNs has been shown to be close to that
of humans in computer vision tasks such as on the ImageNet
tests [68]. It is thus not surprising that they are the natural
choice when dealing with other computer vision tasks, such
as the ones on esophagus cancer. As can be seen in Table 6,
Endoscopy is the imaging type with more published DL
works; while CT and PET have been used in one work each.

In summary, DL works all use CNNs to process
imaging data. However, the chosen CNN architecture is
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TABLE 7. Publicly available databases.

typically customised, while well-known architectures such as
AlexNet, VGG, and GoogLeNet are only used in a Transfer
Learning Context [33]. To cope with the well known need of
DL techniques for a lot of training data [69], several works
use data augmentation techniques [31], [32], [64], while [33]
uses Transfer Learning.

B. PUBLICLY AVAILABLE DATABASES
A list of publicly available datasets can be found in Table 7.
It is clear that endoscopy is the modality that has raised most
interest in the community, followed by CT. To the best of
our knowledge, there are no publicly available databases for
PET. Another characteristic of the available datasets it their
reduced size, with typically fewer than 50 patients.

V. CONCLUSION
Esophageal cancer is a disease with a high prevalence which
can be evaluated by a variety of imagingmodalities, including
Endoscopy, CT, and PET. Computer vision (artificial intelli-
gence, machine learning, classification using deep learning,
among others) techniques could provide valuable help in the
analysis of these images decreasing the medical workflow
time and enhancing diagnostic and staging accuracy. Current
guidelines for esophageal treatment typically include neoad-
juvant radiochemotherapy followed by surgery. In some cases
however it is known, from post surgery anatomopathologic
data, that surgery could be avoided in some patients. Com-
puter vision could present solutions aiming to find criteria
for the clear separation between surgical and non-surgical
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candidates, avoiding the loss of quality of life and surgery
associated comorbilities. In this work, an extensive litera-
ture review on computer vision applied to esophageal can-
cer is presented. Major results are summarized, compared,
and main shortcomings are identified. Forty seven works are
reviewed in this survey, covering different image modalities.
It was observed that, although with different end goals, most
of the existing works use similar techniques, based on tra-
ditional machine learning with handcrafted-features. Even
though the computer vision scientific community has already
paid attention to the esophageal cancer problem, there are still
several open issues that can be further developed and solved
in the future.
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