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ABSTRACT The Internet of Things paradigm enables a new set of smart end-user applications. The Cloud-
Fog-Mist-Internet of Things infrastructure provides communication, compute, and storage support for these
applications. However, this complex, heterogeneous, and distributed landscape requires orchestration and
management mechanisms in order to guarantee their proper functioning. One particular factor to manage
is the capacity to provide service resilience even in the presence of failures in components of the substrate
infrastructure. This research proposes a set of mechanisms to formalize, orchestrate, and embed a batch
of service requests for chained Virtual Functions to fulfill the specific requirements of applications while
enhancing their availability and ultimately their resilience. In detail, this work introduces a formal grammar
to describe customized Service Chains, allowing the definition of replicas for different Virtual Functions, and
an Integer Linear Programming model for Virtual Function embedding that prioritizes the use of nodes with
higher availability. Additionally, an alternative heuristic is presented to handle more complex scenarios by
taking advantage of the multi-tier scenario comprising the Cloud-Fog-Mist-Internet of Things. Simulation
results for the embedding mechanisms show that it is possible to increase the resilience of chained Virtual
Functions, while balancing the load of the infrastructure nodes.

INDEX TERMS Cloud, fog, IoT, embedding, resilience, service chain.

I. INTRODUCTION
The Cloud computing paradigm adoption by network opera-
tors and service providers has been massive, given its benefits
in cost-savings, enhancement in work and management
response, business agility, and Quality of Service (QoS) [1].
Despite the initial success of Cloud adoption, in recent
years, there has been a tendency shift to bring computational
resources and services towards the edge of the network to
fulfill the requirements of emerging paradigms such as the
Internet of Things (IoT). In this scenario, there is a larger
scale of heterogeneous devices and lower latency that could
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represent a significant challenge for the traditional Cloud
environments [2].

The Fog emerges as a solution to improve Cloud-based
services by offering a distributed and federated compute
model to decentralize the deployment, management, and
orchestration of services and applications across the entire
network infrastructure. Thus, the Fog computing paradigm
lays on a tiered model that enables ubiquitous-access scalable
computing resources. This model aids the placement of
context-aware services and applications in computational
nodes, which are set between smart end-devices and cen-
tralized Cloud systems. As soon as the Fog computing
paradigm was adopted, the use of geographically dispersed,
low-latency computational resources increased the need for
more specialized and dedicated nodes closer to the end-users;
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thus, the concept of Mist nodes emerged. The Mist nodes are
deployed in the Mist computing layer which resides in the
peripheral of the network infrastructure, even closer to the
end-users [3].

The Cloud-Fog-Mist-IoT service infrastructure can be
represented as a set of hardware and software components
organized in tiers (i.e., from the Cloud in the top to the
IoT in the bottom going through the Fog and Mist tiers)
that enables the deployment and interconnection of smart
end-user applications and devices empowering low-latency
and context awareness data processing in a distributed way.
The capabilities, service types, and deployment models
available in the Cloud-Fog-Mist-IoT have been influenced by
virtualization techniques usually known as the softwarization
of the Cloud to IoT continuum [4]. Particularly, the network
softwarization [5] allows the design, development, test,
management, and deployment of services and applications
via Network Functions (NFs) using the available resources
(i.e., hardware or software components) in the infrastructure
to route the network flows through the right components [6].
This approach could be extrapolated along all the tiers in
the Cloud to IoT continuum in order to provide services and
applications to end-users via a chain of Virtual Functions
(VFs). Some examples of the softwarization approach on
this domain are Network Function Virtualization (NFV) [7],
Software-Defined Networking (SDN) [8], and Service Func-
tion Chaining (SFC) [9].

Services, such as video streaming, online gaming, mobile
connectivity, and IoT applications, are composed of different
software and hardware components usually hosted on top of
a network infrastructure organized according to the Cloud to
IoT continuum approach. Consequently, the network operator
is responsible for the embedding, management, and orches-
tration of a set of services that can be instantiated and used
by various service providers and their final users, frequently
applying softwarization techniques via VFswith the objective
of fulfilling service and application requirements [6], [9],
[10]. These VFs can be focused on different domains, such
as network infrastructures or computational activities. The
VFs are grouped in structures known as Service Chains
(SCs), which combine the specific functionality requirements
needed to fulfill more complex service and application
requirements.

The landscape, where the SCs are deployed, lies on
an extremely diverse substrate infrastructure1 composed
of information and communication devices (i.e., Cloud
nodes, Fog nodes, Sensors, Actuators) and links (i.e., wired
and wireless channels), which have to be orchestrated to
host a plethora of services and applications with different
performance as well as functional requirements. In such
a complex scenario, resilience becomes a key factor to
orchestrate and guarantee the continuity of the services and
applications even in the face of failures. One possibility to
increase the resilience level of the services is to use replicas,

1The physical nodes and links that are virtualized

such that, in the event of a node failure, the replica can be
activated and the service can maintain its availability [11].

End-to-End (E2E) services and applications in the Cloud
to IoT continuum can be described by a VF Forwarding
Graph that links the endpoints through a set of interconnected
VFs. Accordingly, the reliability and availability of the
E2E services/applications are based on the behavior of
their functional blocks (i.e., VFs and their communication
links) [12]. Therefore, when replicas are considered as a
resilience mechanism for Service Chains, it is possible to
apply two methods: 1) the replication is applied to the
entire chain, or 2) the replication is applied to one or more
VFs along the chain. Besides the method used during the
replication phase, it is also essential to consider where to
place the replicas (e.g., deploy the primary and backupVirtual
Function in different nodes to avoid such that in the case of
a failure in said node, the replica can be activated) and how
to formally represent the Service Chain requests considering
the possibility of having replicas.

This work presents an embedding framework for Service
Chains that includes the following contributions:

1) A formal grammar to verify the correctness of Service
Chains from Virtual Functions available via a catalog.
The VFs can be listed in a particular order or not, and
the number of replicas desired for each VF can be
specified;

2) A formal mechanism for embedding VFs in the
substrate network infrastructure based on a bi-level
Integer Linear Programming (ILP) model, aimed at
increasing the acceptance rate while maximizing the
resilience of the service by embedding the VFs in the
nodes with the highest availability factor;

3) A heuristic based on Fluid Communities for embedding
the VFs in the substrate network infrastructure, that
is less time and resource consuming than the formal
model, especially when handling larger scenarios; and

4) An evaluation of the proposed mechanisms using
simulation.

The proposed framework is designed for single service
provider scenarios, but could be adapted to a federated
environment with some modifications to fulfill the specific
requirements of that context. The paper is structured as
follows. Section II presents a review of the related work.
Section III describes a grammar that allows customized
and formal Service Chain definition. A bi-level ILP model
for Service Chain embedding and handling of the replicas
is introduced in Section IV. A heuristic based on fluid
communities is presented in Section V. The evaluation setup
is described in Section VI and the experimental results are
discussed in Section VII. Finally, conclusions are presented
in Section VIII.

II. RELATED WORK
There has been some work previously done in VFs embed-
ding; more specifically, concerning how to embed VFs
requested in the substrate communication topology, with the
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objective of increasing the resilience of the Service Chains.
This section presents some works on embedding in general
before introducing works focused on the area of resilient
embedding.

Chowdary et al. [13] propose two heuristics to increase the
acceptance ratio and revenue for virtual network embedding,
while decreasing cost for the substrate network. Resilience is
not considered in this work.

Beck and Botero [14] tackle the NFV resource allocation
problem by dividing it into two phases: service chain
composition and service chain embedding. Their algorithm
is not lead by any metric of the links or nodes in the substrate
network, thus finding the first available set of nodes in the
substrate network to embed the service chain without any
leverage in the selection process.

Three evolutionary algorithms for service embedding in
the Fog are proposed by Guerrero et al. [15], and three
objectives were drawn: minimizing latency; minimizing free
resources; and optimizing service spread (even distribution of
services). These proposals suffer from scalability and modu-
larity problems, like any other basic genetic algorithm [16].

Bays et al. [17] use knowledge of the substrate network
to create a virtual infrastructure abstraction allowing the
representation of Virtual Network requirements, while also
proposing an embedding model ensuring physical feasibility.
The solution is presented as an ILP problem, which as a
stand-alone solution could not be well suited for complex
scenarios.

Mehraghdam et al. [18] present a model to specify network
function chaining requests before introducing an embedding
solution. The resilient component of the NFs, as well as,
the tiered approach that drives the Cloud to IoT continuum
are not considered in the model.

So far, the works analyzed focus on VFs embedding,
without considering the availability of the Service Chains.
The following works are aimed at increasing the resilience
of the Service Chains.

Khan et al. [19] tackle the resilience VF embedding prob-
lem. They propose a multi-path link embedding mechanism
to maximize resiliency while minimizing resource wastage
with replicas. This solution relays on the existence of disjoint
paths in the substrate network in order to guarantee its
success.

Rahman and Boutaba [20] also analyze the survivable
virtual function embedding problem. They propose a hybrid
heuristic, as well as a baseline heuristic. The proposal is based
on single substrate link failures and does not deal with node
failures.

Proactive and reactive approaches are also studied by
Souza et al. [21], who model them as the well-known
multidimensional knapsack problem. This solution assigns
resources to each request, but even though there are
computational resources available to recover from the failure,
there is still the need to deploy the proper NF instance to said
resources to reactivate the service, particularly when using
the reactive approach.

Aidi et al. [22] propose the use of replicas to increase
the resilience of service chains. They also present two
heuristics for more complex scenarios. They aim to max-
imize the number of replicas and spread them as much
as possible. However, they only consider a single node
failure.

Lera et al. [23] introduce an embedding policy aimed
at increasing the service availability and the QoS. They
use communities to divide the network infrastructure. The
graph partition technique applied to create the communities
among the Fog nodes is based on the work of Newman
and Girvan [24]. This community creation mechanism could
result in un-even communities, having small communities
with saturated nodes, and monster communities with under-
used nodes.

From the reviewed literature, some observations arise.
First, simulation seems to be the main method for eval-
uation [13], [15], [19], [21]–[23], which is due to the
complex scenario comprised by the Cloud to IoT continuum.
Mathematical solutions are also broadly used, following ILP
or MILP models [13], [17], [19], [22]; even though these
models perform well in offline studies, they suffer from
time constraints when applied to online scenarios. Although
the embedding problem has been previously addressed, SCs
resiliency has been mostly overlooked [13]–[15], [17], [18].
The works considering resiliency can be grouped into
link failures [19], [20], and node failures via resource
allocation [21] or replication [22], [23].

Unlike the proposals analyzed in this section, this work
offers an embedding framework comprised by: 1) a method
to formalize customized Service Chain requests, taking into
consideration the communication between the comprising
Virtual Functions; 2) a formal mechanism for Virtual
Function embedding aimed at maximizing the availability;
and 3) a heuristic for Virtual Function embedding to
increase the resilience in more complex scenarios. Both the
formal mechanism, based on ILP, and the heuristic, take
into consideration information about the substrate network
(i.e., the availability factor of the nodes, and the tiered
infrastructure of the Cloud to IoT continuum) for the
embedding process.

III. FORMALIZING VIRTUAL FUNCTION CHAINS
For delivering services and applications in the Cloud to
IoT continuum, a set of VFs and infrastructure components
have to be instantiated or activated so the corresponding
communication flows can be routed between the endpoints.
Two challenges arise when the overall process of deploying
these services and applications is appraised: 1) how to
standardize and formalize a request of a service chain
considering the communication and dependencies between
the VFs?; and 2) how to embed the service chain and its
components efficiently into the substrate communication
infrastructure?

The embedding process considered in this research is
described in Figure 1. The service provider offers a set of

VOLUME 8, 2020 187023



D. Perez Abreu et al.: Resilient Service Chains through Smart Replication

FIGURE 1. Embedding framework.

VFs via a catalog, which is maintained by an instance of the
Management and Network Orchestrator (MANO) [6], from
where users can select them. Users form their requests by
grouping different VFs, forming an SC according to a set of
rules defined by a grammar (module Request Analysis).
The grammar verifies that the VFs are organized correctly

for each SC. In case that there is only one possible resulting
SC from the set of VFs selected by the user (i.e., the VFs
in the SC were declared as a fixed order), the resulting
SC goes to the Request Embedding module. If there are
different possible SCs generated by a given set of VFs,
a Pareto analysis is used to select the SC that fulfills the
user’s requirements, minimizing resource consumption (i.e.,
CPU, memory, and bandwidth). The SC selected by the
Pareto analysis goes to the next module in the framework.
The SC resulting from the Request Analysis module can be
represented by the grammar, by a simple Directed Acyclic
Graph (DAG), by a.xml/.json file, or by any other method
defined by the service provider. In the following module
(Request Embedding) the embedding mechanism selects the
nodes inside the substrate network to embed each of the VFs
from the SC. In this work, two different mechanisms are
proposed in Section IV and Section V respectively. Other
embeddingmechanismswith different optimization goals can
be instantiated in this module. The final step is the actual
embedding of the VFs in the substrate network, comprised of
the layered structure of the Cloud-Fog-Mist-IoT, according to
the directions from the Request Embedding module.

The rest of this section describes the solution designed to
tackle the first challenge previously mentioned, particularly,
a context-free grammar to deal with the representation of
the Service Chain requested, enabling the possibility to
specify replicas for the VFs. This corresponds to the first
module of the framework (Request Analysis). The resulting
Service Chains will be used as an input for the embedding
mechanisms presented in the following sections, which deal
with the second challenge and comprise the second module
of the framework (Request Embedding).

In the Cloud to IoT continuum considered for this research,
the substrate infrastructure where the VFs chains will be
instantiated and embedded is modeled as a graph denoted
by G = (N ,L), where N and L are the sets of nodes and
links of the communication infrastructure, respectively. Each

physical node n ∈ N has a computing capacity�n (i.e., CPU,
memory, storage); similarly, each physical link ` ∈ L has a
transmission capacity 0l (i.e., propagation rate, bandwidth).
The set of Virtual Functions V that could be instantiated in
the infrastructure is accessed via a catalog, maintained by an
instance of the MANO, made available by the infrastructure
provider. Detailed information about each virtual function
v ∈ V , such as their resource requirements ω, is also
accessible via the catalog. Service chains are deployed in the
infrastructure as a sequence of VFs, where a service s denotes
a chain of Virtual Functions vf1, vf2, . . . , vf|V | connected via
a set of virtual links E . The order of the VFs that compose
the service chain could be fixed or variable according to a
given criterion that represents the interaction between the
components; for example, in an IoT application that requires
sensing, analytics, and storage services, the order of the last
two components could swap depending on the application
domain or user.

An infrastructure provider receives requests to deploy
services, which are modeled as a graph S = (V ,E), where
V denotes the set of VFs, and E represents the set of
edges that connect the VFs. These requests specify particular
requirements that must be fulfilled, such as the number of
replicas of a particular VF to increase its resilience and
the order of a set of VFs inside a given chaining request.
Additionally, it is considered that a VF could favor a specific
tier (i.e., Cloud, Fog, Mist, IoT) for its embedding.

Besides of the assumptions already presented, some
additional considerations were taken into account to model
the Cloud to IoT environment: 1) all the nodes in the commu-
nication infrastructure have the capacity to execute network,
computational, storage, or even sensing functions (i.e., each
Virtual Function can be embedded in any node); 2) functions
and services are used interchangeably, considering that the
required functionalities to fulfill the desired actions can be
virtualized and executed across all the network infrastructure;
3) the amount of resources, as well as the availability per
node, decreases from the nodes in the Cloud to those in
the IoT in the hierarchical tiered infrastructure, taking into
account the constraints present in each tier; and 4) the Cloud
tier has infinite resources and its availability is not affected
by failures.

A context-free language was designed in order to have
a standard and formal method to represent and validate
application/user’s chaining requests.With this representation,
it is possible to build customized complex requests composed
by a set of ordered/un-ordered VFs to provide services. Each
chain request is formed by a different kind of modules.
Various of these modules can be placed in a chain request
to denote a particular set of requirements for a given
service. To process/recognize the Virtual Function - Chain
Composition (VF-CC) requests, the production rules of the
former mentioned grammar, in Backus–Naur Form (BNF),
are listed from (1) to (12).

The terminals of the grammar, plus the empty set, are
given in bold font. The grammar enables the definition
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of VF service chains. The chains can have a fixed order
(i.e., fix_order) defined by the user or not, giving the
service providers the possibility to rearrange the VFs to their
convenience (i.e., opt_order). This grammar also enables
the use of replicas for each VF in the chain, specifying
the number of copies desired. Furthermore, there is the
possibility to request the deployment of the VFs in a
particular tier of the infrastructure: cloud, fog, mist, or iot.

The proposed grammar allows a flexible description of the
service chains by enabling the possibility to define strict order
or not of the VFs inside the chain. Furthermore, the user can
specify the number of replicas for each VF in the chain and
the tier in the network infrastructure where the VF should
be deployed. This creates the possibility to define tailored
Service Chains according to the needs of the user. It is
important to notice that it is not restrictive to use the grammar
to define the service chains; it is possible to use another
method for the definition, such as a DAG, and only using the
grammar to check the correctness of the service chain. This
would offer the service provider more freedom to select the
method that is better suited for the description of their service
chains. The grammar described deals with the first challenge
introduced at the beginning of this section, specifically about
how to standardize and formalize a service chain request
with support of replication for the VFs. In the next section,
the embedding challenge of the requested service chain is
discussed.

〈start〉 |H service{〈chain〉} (1)

〈chain〉 |H 〈order〉 〈chain〉 |

〈modules〉 〈chain〉 |

〈order〉 | 〈modules〉 (2)

〈order〉 |H fix_order{〈modules〉} (3)

〈modules〉 |H 〈optorder〉 | 〈replica〉 | 〈term〉 (4)

〈optorder〉 |H opt_order{〈term〉 〈moreterm〉} (5)

〈replica〉 |H replica{〈chain〉 : 〈num〉} (6)

〈moreterm〉 |H , 〈term〉 〈moreterm〉 | ε (7)

〈moremod〉 |H , 〈chain〉 〈moremod〉 | ε (8)

〈term〉 |H 〈vf〉 〈tier〉 (9)

〈tier〉 |H cloud | fog | mist | iot | ε (10)

〈vf〉 |H vf1 | vf2 | . . . | vf|v| (11)

〈num〉 |H 1 | 2 | 3 | . . . | n (12)

IV. MANAGING REPLICAS IN VIRTUAL FUNCTION
CHAINS USING AN EXACT SOLUTION
The service chain embedding process requested via the
context-free grammar described previously is detailed in this
section. The main requirement considered for the embedding
method of the VFs in the substrate network is the resilience of
the Service Chains components (i.e., VFs) via the replication
of all or part of them in disjoint physical nodes of the substrate
infrastructure using an optimization approach. A bi-level
formulation of the optimization problem is considered. On the

first level, the goal is to maximize the acceptance rate of the
Service Chains; on the second level, the aim is to maximize
the availability of the Service Chains by placing the VFs in
the most reliable nodes.

TABLE 1. Parameters and variables for the ILP model.

Table 1 introduces the parameters and variables used in the
optimization solution. Service chains s ∈ S are composed
by virtual functions v ∈ V . Each virtual function can be
replicated up to R times. The virtual function instances are
to be deployed in nodes n ∈ N belonging to the physical
topology. For the feasibility restrictions, the abstraction of
resource unit is applied, where a resource unit reflects the
resources (i.e., CPU, memory, storage) of node n ∈ N ,
depicted in �; or the resource requirements (i.e., CPU,
memory, storage) of virtual function v ∈ V listed in ω.

A. MAXIMIZING ACCEPTANCE RATE
Equation (13) depicts the goal of the first optimization level,
which is maximizing the acceptance ratio. Vector A holds the
variables indicating the accepted service chains s ∈ S (i.e.,
A[s] equals 1 if s ∈ S is accepted). In case of shortage of
resources, it would lead to the prioritization of the chains that
request a lower amount of resource units; thus, it penalizes
the requests that include an excessive amount of replicas for
their virtual functions.

max
∑
s∈S

As (13)

The following constraint guarantees that only the replicas
requested are placed.∑

r∈R

∑
n∈N

Ps,vi,n ≤ Is,v ∀s ∈ S, ∀v ∈ V (14)
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The next constraint limits the placement of the replicas in
different nodes. In case of a failure in a node, the replica is
not affected and can be activated.∑

n∈N

Ps,vi,n ≤ 1 ∀s ∈ S, ∀v ∈ V , ∀r ∈ R (15)

Equations (16) and (17) are interdependent and ensure that
only the service chains placed are accepted for embedding.
M ∈ N is a constant with a large value usually called
‘‘big M".∑

n∈N

Ps,vr,n ≤ M × As ∀s ∈ S, ∀v ∈ V , ∀r ∈ R (16)

As ≤
∑
v∈V

∑
r∈R

∑
n∈N

Ps,vr,n ∀s ∈ S (17)

Equation (18) guarantees that all the replicas of the virtual
functions v ∈ V that belong to the accepted service chain
s ∈ S are placed.

As × Is,f =
∑
r∈R

∑
n∈N

Ps,vr,n ∀s ∈ S ∀v ∈ V (18)

Equation (19) enforces the feasibility constraints. It only
allows the placement of virtual functions v ∈ V when node
n ∈ N has enough resources to host them.∑

s∈S

∑
v∈V

∑
r∈R

Ps,vr,n × ωs ≤ �n ∀n ∈ N (19)

B. MAXIMIZING AVAILABILITY
The second level of the optimization problem aims to
maximize the availability of the Service Chains, and thus
their resilience. The idea is to recover from failures by
activating replicas of affected VFs which should be deployed
in disjoint nodes with higher availability. Fn holds the
availability indicator of each node n ∈ N in the physical
topology. This factor is periodically updated via orchestration
mechanisms executed by the MANO, that collects and
maintains information regarding the availability of the
infrastructure nodes. This information is used to calculate the
most recent availability values and update the value of Fn
periodically with the current state of the infrastructure.

The availability is computed as the ratio between the
uptime of the nodes and the aggregate of the expected values
of uptime and downtime. Equation (20) shows the calculation
for the availability.

Availability =
E[uptime]

E[uptime]+ E[downtime]
(20)

Equation (21) shows the formulation for the objective
function of this level of the optimization problem. Tn
indicates the tier in the network infrastructure to which node
n ∈ N belongs to; there are four possible tiers and their
associated values go from lower to higher as the tiers go
closer to the user. The tiers and their respective values are:
Cloud (0.6), Fog (0.8), Mist (0.9), and IoT (1). These values
represent a penalty associated to the propagation rate between
the nodes according to the tier where they belong, based on

previous work [25], [26]. Thus, this objective function tries to
balance the embedding in nodes with the highest availability
factor and also those nodes that are closer to the user,
hence taking advantage of the entire network infrastructure
by performing a vertical search (i.e., between all the tiers)
instead of focusing only in the Fog nodes.

max
∑
s∈S

∑
v∈V

∑
r∈R

∑
n∈N

Ps,vr,n × Fn × Tn (21)

Equation (22) is added to ensure that the results from the
first optimization problems are kept. This means, the service
chains s ∈ S that were accepted in the first step are fixed, and
the selection of the nodes n ∈ N can be changed in order to
satisfy the second optimization goal.

As × Is,v =
∑
r∈R

∑
n∈N

Pr,vs,n ∀s ∈ S, ∀v ∈ V (22)

In order to keep the results from the first level, the accep-
tance vector resulting from the first optimization level is fixed
and used as a parameter for the second optimization level.
Constraints depicted from (15) to (19) are kept at this stage
to guarantee feasibility.

V. AN HEURISTIC BASED ON FLUID
COMMUNITIES BY TIERS
The bi-level formulation presented for Service Chain
embedding is more suited for offline scenarios taking into
consideration the time required to get a solution in complex
online scenarios. Additionally, the optimal node(s) in the
topology to embed VFs end up being overloaded. Thus,
an alternative heuristic based on a graph and partition analysis
is presented in this section.

Graph theory is frequently used to tackle problems in a
vast range of engineering and computer science applications.
A graph usually allows representing almost any physical sit-
uation involving discrete objects and a relationship between
them (e.g., a communication network infrastructure) [27].
A relevant feature of performing graph representation is the
partition or community structure that allows the study of
edges and vertices that belong to a cluster with common
interests and/or metrics [28].

An approach that has proven to be useful to deal with
load balancing is building communities in the commu-
nication network topology [23], [29], [30]. Specifically,
Lera et al. [23] proposed a service placement policy focused
on enhancing the availability and QoS of applications
using graph partition. The community detection used for
the placement mechanisms was the method proposed by
Newman and Girvan [24], which progressively removes
edges from the original graph to identify the communities
on it. The method removes the most valuable edge, usually
the edge with the highest betweenness centrality, at each step.
Thus, the graph breaks down into pieces, and the tightly knit
community structure is exposed. In this research, we adopted
a different approach to build more reliable and balanced
communities using the Fluid Community method.
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FIGURE 2. Workflow of Communities for K = 2 communities and tiers = 2 (Adapted from [31]).

A. BUILDING FLUID COMMUNITIES
The Fluid Communities (FluidC) algorithm is a Community
Detection (CD) algorithm that could be applied to any
graph to create groups called communities as sets of vertices
densely interconnected that at the same time are sparsely
connected with the rest of the graph [31]. Particularly,
the FluidC algorithm creates the communities by mimicking
the behavior of several fluids, expanding and pushing one
another in the graph until an equilibrium is found. The
algorithm receives an input parameter K, which indicates
the number of fluids, i.e., communities, that are going to be
created. Given a graph G = (N ,L) with N the set of vertices
and L the set of edges, the algorithm will initialize K fluid
communities C = {c1, . . . , cK } with 0 < K ≤ |N |. Each
community c ∈ C is initialized with a distinct and randomly
selected vertex in N . The density d(c) of a community c ∈ C
is defined according to (23), as the inverse of the number of
nodes in the community c.

d(c) =
1
|c|

(23)

For a vertex n, the update rule returns the community or
communities with maximum aggregated density d within the
ego network 2 of n. This rule is formally defined by (24)
and (25), where n is the vertex being updated, C ′n is the
set of candidate communities, each of which could be the
new community for n, B(n) are the neighbours of n, d(c) is
the density of community c, c(z) is the community to which
vertex z belongs to, and δ(c(z), c) is the Kronecker delta.

C ′n = argmax
c∈C

∑
z∈{n}∪B(n)

d(c)× δ(c(z), c) (24)

δ(c(z), c) =

{
0 if c(z) 6= c
1 otherwise

(25)

Figure 2, adapted from Parés et al. [31], describes the pro-
cess of building the communities. Assume it selects the red
node and the green node shown in the topology in Figure 2.

2Ego networks consist of a main node ("ego") and the nodes directly
connected to it.

After the first iteration, the density of both communities
is 1, the maximum possible value for density. The node
highlighted in blue represents the vertexwhere the update rule
will be evaluated. For the following iterations, the algorithm
will randomly select a node from the neighbours of the
communities, which will be assigned to the community with
the highest density value. In the case that there are several
communities with the same density value, it will randomly
select one of those communities. For the example depicted on
Figure 2 the FluidC converges after one complete superstep .3

The last stage depicted in Figure 2 shows the final two
communities in a tiered environment with two tiers. The
tiered communities approach is used for the embedding
mechanism described in the next subsection.

The FluidC algorithm allows the definition of the desired
amount of communities and also that there will not be
a monster community ,4 in comparison with the rest of
communities in the graph. An adaptation from the original
Fluid Communities (FluidC) algorithm is used in this work
to partition the topology graph. Algorithm 1 describes the
process to build the communities.

Algorithm 1 Build Communities
Result: k communities for a given network infrastructure

1 topology← get_topology()
2 remove_node(topology, Cloud_node)
3 k← highest_modularity(topology)

4 for i = 1 to k do
5 communities[i]← FluidC(topology,k)
6 end

7 fcommunities← highest_performance(communities)

8 return fcommunities

The algorithm begins by collecting the network topology
information, in line 1, to organize the nodes by communities.

3An iteration over all the vertices of the graph.
4A community significantly larger than the rest.
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The Cloud node is an independent community, handled
differently considering the model assumption described in
Section III (i.e., infinite resources and absence of failures),
which is why it is not taken into consideration for this process
(line 2).

The highest modularity value for the topology given is
used to specify the value of k (see line 3), required as an
input value for the FluidC algorithm, following the approach
used by Pares et al. [31]. The modularity is a metric that
measures the strength of the division of a graph, often used
in optimization to detect community structure in a network.
As the modularity grows, the groups inside the topology have
denser connections between the nodes inside the groups, and
sparser with the nodes in other groups, enabling a resilient
communication between the nodes inside a community or
group [32].

Considering that the FluidC algorithm evaluates the update
rule using a random approach, the results of invoking
this algorithm are not deterministic. Thus, the algorithm is
invoked k times (lines 4 and 6) before choosing the final
community set that will be used for the embedding process.
The resulting communities set will be the one with the highest
performance, in line 7, where the performance measures
the ratio of the number of intra-community edges plus
inter-community non-edges with the total number of potential
edges [28]. Line 8 returns the final set of communities.

The communities created are balanced in the sense that
they all have a similar amount of nodes (i.e., the standard
deviation of the average community size is smaller than
other community-building processes), which is a desired
characteristic for an embedding process that takes into
account resilience and load balancing. The characteristics of
the communities created are discussed in Section VI.

B. EMBEDDING SERVICE CHAINS IN THE FLUID
COMMUNITIES
The Service Chains have to be embedded in the network
infrastructure considering the set of communities selected
after invoking Algorithm 1. This corresponds to the second
challenge described in Section III. Each sc will be embedded
in a single community, respecting the resource constraints
of the nodes and avoiding placing replicas of the same vf
in a single node (except in the case of embedding in the
Cloud node). The nodes in the community are also sorted
according to the tier to which they belong (i.e., Fog, Mist,
IoT); the Cloud node has its own community (see the last
stage depicted on Figure 2).

The embedding process, named Fluid Communities by
Tiers (FCT), and depicted in Algorithm 2, begins by
getting the information about the topology and its tiered
hierarchical structure, as seen in lines 1 and 2, respec-
tively. This information is provided via a catalog of the
network updated continuously by the MANO module of the
Cloud to IoT infrastructure manager. With this information,
the communities are built by invoking Algorithm 1 in
line 3. Line 4 obtains the values that correspond to the SCs

Algorithm 2 Fluid Communities by Tiers - FCT
Result: Embedding of SCs and their VFs

1 topology← get_topology()
2 ttiers← get_tiers(topology)
3 communities← build_communities()
4 SCs, VFs← get_service_chains()
5 tcomm← sort_communities(communities,ttiers)

6 foreach sc in SCs do
7 commp← commp mod size(communities)
8 foreach vf in VFs do
9 vf_deployed← False
10 tselect← highest_resource(tcomm,commp)
11 if get_resource(vf) ≤ max(tselect[0]) then
12 if embedded(vf,tselect[0]) then
13 vf_deployed← True
14 end
15 end
16 if vf_deployed = False then
17 if get_resource(vf) ≤ max(tselect[1]) then
18 if embedded(vf,tselect[1]) then
19 vf_deployed← True
20 end
21 end
22 end
23 if vf_deployed = False then
24 if get_resource(vf) ≤ max(tselect[2]) then
25 if embedded(vf,tselect[2]) then
26 vf_deployed← True
27 end
28 end
29 end
30 if vf_deployed = False then
31 embedded(vf,Cloud)
32 end
33 end
34 end

35 return final_embedding

and their constituent VFs, such as response time, resource
consumption, hardware and software specific requirements.
The tiered communities tcomm, initialized in line 5, contains
the list of nodes that belong to the communities sorted by
tiers.

The actual embedding process takes place between lines 6
and line 34, for each sc requested and their VFs. The sc
variable refers to a single Service Chain inside the set SCs.
The first step of the embedding is to initialize the community
pointer, commp, denoting the community where the vf is to be
embedded (line 7). For each vf, a flag variable (vf_deployed)
controls if the vf was successfully embedded in a substrate
node of a given community. The tiered communities are
sorted by their free computational resources, from highest to
lowest, in line 10. The tiered communities ordered, tselect,
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is an array of three elements that represents the nodes inside
the community that belong to the Fog, Mist, and IoT.

From line 11 to line 15, the algorithm verifies if the
given vf can be hosted by the node with highest available
resources in the previously selected tier (line 11). If the
embedding process is successful (line 12), which means that
the vf instance was deployed in a disjoint node from its
replicas, the flag variable vf_deployed is updated to True in
line 13. If the embedding process was not successful, two
new attempts are launched for the following two tiers with
more available resources, as seen in the blocks from line
16 to 22 and from line 23 to 29. If all previous attempts fail,
the embedding will take place in the Cloud, as depicted in
lines 30 and 31. The result from the embedding process is
returned in line 35.

In summary, the embedding process deploys a vf and their
replicas in disjoint nodes, prioritizing the tiers with more
available resources in order to balance the load between the
Fog, Mist, and IoT, and just considering the Cloud if all
previous attempts failed. Thus, the mechanism also promotes
the embedding of the VF in nodes with high availability but
also closer to the end-users in order to enhance the response
time of services and applications. These algorithms are the
core of the proposed embedding mechanism that is validated
in the next sections.

VI. EVALUATION
The proposed embedding mechanisms were validated using
YAFS simulator [33] given its strong support for Fog critical
features and its capacity to introduce failures during the
simulation [34], which allows evaluating the availability of
the Service Chains. The experiments were conducted on a PC
with 32GB 2400MHz DDR4 RAM and 2.80GHz Intel Core
i7-7700HQ with 4 cores and 8 threads (2 threads per core)
processor. The PC was running Microsoft Windows 10 Pro
(Build 18363) operating system. The IBMCPLEXOptimizer
version 12.9 [35] was used for the ILP model, and Python
2.7.16 was used for YAFS.

For this work, two partition graph methods (i.e., Fluid
Communities and Newman-Girvan) were initially consid-
ered. The main idea was selecting the graph partition
method that provides the best results regarding load balancing
and resilience for the communities building process. Both
partition methods were evaluated over different synthetic
random network topologies (i.e., Barabasi-Albert, Complete,
Lobster, PowerLaw, Star, and Tree), each with 50 nodes. The
validation process consisted of a batch of experiments to
compare metrics including performance 5 (higher values are
better), communities length, average and standard deviation
of the communities size; the number of communities for both
methods was 5. The target was building communities similar
in size so there were no tiny or monster communities as an
outcome.

5Ratio of the number of intra-community edges plus inter-community
non-edges with the total number of potential edges.

TABLE 2. Graph partition evaluation.

The results from this previous evaluation step are listed
in Table 2 and a visual representation is displayed in Figure 3.
Although the values are similar, FluidC shows a lower
standard deviation for the communities length. It is also
noticeable from the boxplots in Figure 3 that overall FluidC
creates communities more balanced regarding their size.
These observations led to the selection of FluidC for creating
the communities. The final topology selection was the
Barabasi-Albert since it has been used before in similar
studies [23], [29].

FIGURE 3. Comparison of the number of nodes per community for the
FluidC and Girvan-Newman methods for different communication
topologies.

After this analysis, a graph to model the substrate
communication network was generated following a random
Barabasi-Albert method, according to the complex network
theory [36]. 49 nodes are spread between the IoT, Mist,
and Fog, and an additional node (for a total of 50 nodes)
represents the Cloud. The Cloud node is the node connected
to the Fog nodes with the highest betweenness centrality
in the graph; on the other hand, the nodes with the lower
betweenness centrality correspond to the gateways in the IoT.
The nodes directly connected to the gateways belong to the
Mist, and the rest of the nodes constitute the Fog. In respect of
the failures, the simulation time was set to 50000 time units,
and there is a failure set for each 2500 time unit. Thus, there
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are 20 failures during the simulation. This represents 40% of
the nodes in the topology.

The availability factor for each node is assigned randomly
according to some ranges that correspond to the layer to
which the node belongs to. Thus, nodes closer to the edge
have a lower availability factor than nodes closer to the core.
This reflects the fact that nodes in the IoT have a higher
probability of failure while the nodes in the Cloud are less
prone to failure, and an availability uptime of 99.999% of the
times is required, following the five nines principle [37].
Simulation parameters are listed in Table 3. The tier weight

parameter guides the selection of the nodes in the embedding
process so that the search space is explored vertically (see
Tier set in Section IV). YAFS’ resource unit is used to specify
VFs demands. This unit is defined as a vector that contains
the capacity of different computational resources to be used
by the VFs (e.g., number of cores for CPU, GB for memory,
or TB for the hard disk). Regarding the node resources,
the amount is randomly selected between 10 and 25 resource
units for the Fog, Mist, and IoT tiers; however, this value is
weighted so that the IoT nodes are closer to 10 resource units
and the Fog nodes are closer to 25 resource units.

TABLE 3. Simulation parameters.

For the Service Chains, five different examples were used
based on typical Smart Cities and IoT services. These chains
are: 1) Web services, 2) Video streaming, 3) Voice-over-IP,
4) Online gaming, and 5) Generic IoT application. These
chains can be used as the foundation of more complex Smart
City-based applications, such as smart surveillance (which
could be based on video streaming) or smart lighting (that
can be based on a generic IoT for sensing and actuating
chain). The Service Chains used, and their belonging Virtual
Functions, are listed in Table 4. Similar base service chains
were used in other works [38]–[40].

Three different redundancymodels are used for the Service
Chains [12]: End2End, one replica for each VF in the chain;
vsReplicas, some of the VFs in the chain have replicas; and
NoReplicas, where no replica is used for any VF in the chain.

Four scenarios were defined by varying the network load
with regards of the Service Chains: 1) tiny: 5 SCs, 2) small:

TABLE 4. Service Chains.

10 SCs, 3) medium: 15 SCs, and 4) large: 20 SCs. Similar
loads were used in experimental cases before [29]. For
comparison purposes, the ILP model and the FCT heuristic
are validated against the well-known First-Fit (FF), as it
is done in other works [29], [30], [41]. All the scenario
setup, as well as the source code, is available via a GitLab
repository [42].

VII. RESULTS AND ANALYSIS
This section presents the results obtained from the simu-
lations.The failures in the nodes were randomly generated
before running the simulations to maintain the same scenario
between repeated simulations. Correspondingly, the place-
ment is statically executed before the simulations; hence
the VFs are placed in the same nodes during the different
simulations. This way, the reports presented in this section are
the average of 30 repeated simulations where the conditions
are kept the same to minimize any statistical error. This
section shows a subset of the results obtained, given that the
trend is the same for the scenarios, and the discussion can be
extrapolated to any of them. All the data and additional plots
are available for download via the GitLab repository [42].

The three replication strategies used follow the models of
redundancy discussed in Section VI: 1) noReplicas, where no
replicas are used for all the SCs; 2) vsReplicas, where some
of the VFs inside the SC have replicas (the replication ratio
is two VF replicas per chain); and 3) End2End, where all the
VFs in the SC have replicas.

An important factor to take into consideration is the
additional load added to the infrastructure with the dif-
ferent replication strategies (i.e., noReplicas, vsReplicas,
End2End). As more replicas are added, the resources of the
nodes are depleted sooner, thus forcing the embedding of the
VFs in different nodes (i.e., more nodes in the topology are
used), even though the embedding mechanism remains the
same. The fact that the embedding mechanisms try to find
disjoint nodes for different instances of a given VF magnifies
this behavior.

A. FAILURE RATIO
The first experiment is aimed at evaluating the resilience of
the Service Chains embedded in the network infrastructure.
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FIGURE 4. Service Chains failure ratio.

Three outcomes are possible: NoFail (no VFs from that SCs
are affected by the node failures), Recovered (some VFs are
affected but their replicas could be activated), and Failed
(one or more VFs are affected but there is no replica or the
replica(s) is also stricken by the failures). Figure 4 shows the
results regarding the failure ratio, where the rows represent
the embedding mechanisms and the columns the replication
methods. The failure ratio refers to a node failure that affected
a Service Chain, preventing a successful communication
among its VFs; because a VF was embedded in the failing
node, or because the failing node was a critical part of the
communication path. Figure 4a depicts the results for the
medium scenario, while Figure 4b does the same for the large
scenario. Results for all the scenarios are listed in Table 5.
As explained before, the load changes as more replicas
are added to the infrastructure, influencing the embedding
process.

As expected, the noReplicas method, for all mechanisms,
could not recover from failures since there were no replicas
to activate. It is also noticeable the trend that ILP showed the
lowest number of failures, followed by FCT and then FF. For
the vsReplicas, FF was not able to recover from failures in
both scenarios. For the large scenario, the ILP mechanism
was also unable to recover from failures, but the number of
failing SCs was significantly lower. FCT was able to recover
from some failures in both scenarios. Particularly, for the
large scenario (see Figure 4b) the amount of failing SCs is
lower for vsReplicas than noReplicas. This is due to some
replicas taking place in nodes with higher availability factor,
but that ultimately failed, and being placed in nodes with less
availability that turned out not failing during the simulation.

With End2End, since there are replicas for all theVF, all the
mechanisms were able to recover some SCs affected by the
failures. For ILP in the medium scenario, although all the SCs

were able to complete (i.e., recovered after node failures), it is
noticeable that for the End2Endmethod, 15% of the SCswere
affected by failures. This is caused by the extra load included
by the replicas. Using this method, more load is added to
the nodes, forcing the embedding of some VFs in different
nodes that were affected by failures. Nonetheless, the failing
SCs were able to activate the replicas for the corresponding
VFs. Using End2End, the amount of SC affected by failures
is more significant for all the mechanisms, given the higher
number of VF instances (i.e., primary and backup ones) that
are embedded.

From Figure 4, ILP was always the most effective mecha-
nism regarding the failures, having a higher success rate for
all the scenarios. In the case of FCT, it is noticeable that
there are fewer SC affected when using the End2End method.
For this case, it is important to remember that FCT bases its
embedding decision on the available resources by tier. Thus,
by changing the load on the network, the embedding decision
process is affected, thus changing the nodes selected for the
embedding. In any case, FCT showed a behavior close to
ILP, with only an additional of around 10% of failing SCs,
while being superior to FF which had 40% of SCs affected
by failures, when using the End2End method.

For all the methods and scenarios, FF was the mechanism
that showed more failures and less capacity to recover; ILP
was the mechanismwith better results. It is noteworthy that as
the load grows the number of failing Service Chains increase;
and the load also affects the embedding process, thus the same
VF instance can be embedded in different nodes even though
the same mechanism is used.

B. NODE UTILIZATION
The next experiment had the objective of evaluating the
load balancing of the different mechanisms. Figure 5 shows
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TABLE 5. Results - SC Failures (in percentage %).

the results for the noReplicas and End2End methods. For
each replication method, the top plot shows the number of
nodes used, while the bottom plot depicts the amount of VFs
embedded on the busiest node; this is, the node with more
VFs. The trend observed in these two figures is also present
for the vsReplicas method.

Since ILP seeks the optimal node, it will saturate it, thus
using fewer nodes overall, in spite of the replication method.
As the scenarios grow, the number of nodes used also grows,
showing an increasing trend; andmaintaining the fact that ILP
uses the lowest number of nodes between all the mechanisms.
However, for ILP the results regarding the VFs on the busiest
nodes are the highest among all the mechanisms, suggesting
a saturation on the nodes. This might lead to more failures,
both in the node as in the communication links.

With regards to the nodes with the highest load, there are
different trends among the mechanisms. In the case of FF,
all the nodes are treated equally (i.e., no node is prioritized).
The VFs are embedded in any case when there are enough
resources for it. On average, for these simulation parameters,
8 VFs will fill a node; thus, this is the value observed for
the busiest node in all the scenarios. On the contrary, ILP

and FCT prioritize the nodes according to their availability
factor and the tier to where they belong to. Furthermore,
the acceptance rate is also considered in the embedding
process. Thus, smaller VFs are prioritized, favoring them
during the embedding, resulting in smaller VFs grouped
in the same node, with the additional advantage of lower
internal fragmentation in the nodes. This behaviour leads to
an increasing trend for ILP, withmoreVFs in the busiest node.

FCT had a hybrid behavior by selecting a subset of can-
didates (i.e., communities) and balancing the load amongst
them. Hence, it shows a stable amount of VFs on the
busiest node in all the scenarios, getting to balance the load,
but also using more nodes than ILP to achieve this. This
also reinforces the hypothesis of using a mechanism for
load balancing during the embedding process, for instance,
using communities; particularly using communities similar
in size, while also considering the intra-community and
inter-community connectivity.

C. RESPONSE TIME
The following experiment was designed to evaluate the
performance of the SCs from an end-user perspective.
Figure 6 shows the results for this experiment for the medium
scenario. Figure 6a depicts the results for the vsReplicas
method, and Figure 6b for the End2End method. The plots
show the average response time (in milliseconds) from
successful end-to-end communications. The lack of a bar
indicates that there was a node failure during the simulation
that affected the corresponding Service Chain, preventing
any successful end-to-end communication (i.e., no data was
collected). The line on the top of the plot indicates the
deadline for each Service Chain (also in milliseconds).

The only mechanism that failed to fulfill a complete
successful end-to-end communication for at least one SC
was FF. This is due to FF suffering from more failures
than ILP and FCT (node failures that prevented a successful
communication, as seen in Figure 4); thus, there is a higher
probability that the failure that affects the SCs occurs at
the beginning of its workflow. Particularly, in Figure 6a is
noticeable that 3 SCs were not able to complete any end-
to-end communication (i.e., SCs 2, 3, 5), while in Figure 6b
2 SCs were affected (i.e., SCs 3, 10).

On average, all the chains were able to complete their end-
to-end communications within their deadline. In most cases,
FCT showed the best response times. FCT distributes the VFs
among the different tiers of the landscape, and by bringing
some VFs closer to the user, the response time is improved.
On the other hand, since ILP seeks the node with the highest
availability, and these nodes are on the highest tiers of the
infrastructure, the VFs are embedded farther away from the
user, impacting the response time.

D. DISCUSSION
Overall, ILP showed the best results regarding the resilience
and the number of nodes used. The outcomes on the resilience
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FIGURE 5. Node utilization.

FIGURE 6. Service Chains Response Time - Medium scenario.

experiment were expected, considering that the model finds
an optimal solution for the embedding of the VFs and their
replicas. However, this embedding mechanism requires more
time to reach a result; thus, it is not suitable for more
complex scenarios that demand quick response times for the
embedding. As for the number of nodes, the fact that the
ILP model concentrates the VFs in the same optimal nodes
leads to a bottleneck for these nodes and their respective
links, affecting the performance of the Service Chains that
go through them.

On the other hand, FCT achieved a better load balancing for
the nodes, by spreading the VFs along the different tier nodes
of the infrastructure, which are grouped into communities.
Furthermore, by implementing a vertical search inside the
communities considering the amount of resources available

by tier, and exploiting the possibility of embedding the VFs
closer to the edge of the network, FCT obtained better
response times, ultimately increasing the QoS for final users
while offering a close to the optimal ratio of recovery from
failures.

FFwas the least effectivemechanism of the group, showing
the lowest recovery rate from failures. Additionally, it was
the only mechanism where some of the Service Chains were
not able to complete a successful end-to-end communication.
This proves that even though this is a simple mechanism,
it is not necessarily adequate to be applied in the Cloud-Fog-
Mist-IoT service infrastructure.

Considering the results obtained in the experiments
performed and the discussion presented above, we con-
clude that FCT exhibits a balance between recovery from
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failures and response time of applications, making it
suitable for the Cloud to IoT landscape modeled in this
research.

VIII. CONCLUSIONS
The Cloud-Fog-Mist-IoT continuum offers the infrastructure
for virtualized network services, called Virtual Functions.
These VFs are grouped in a structure called Service Chains,
which are a set of VFs interconnected in order to fulfill
a set of specific service/application requirements. The
network operator has to provide the proper management
and orchestration for said SCs, offering certain availability
even in the face of failures. Replicating the VFs among the
network infrastructure allows the activation of replicas in case
of failures to increase the availability of the SCs. The VFs
and their replicas must be strategically embedded in order to
enhance resilience.

This work presents a formal grammar that allows the
customized specification of SC requests and the replicas
of their constituent VFs. Furthermore, two embedding
mechanisms for the VFs and their replicas are proposed, one
based on ILP and a heuristic based on Fluid Communities.
The bi-level ILP model proposed resulted in the embedding
of VFs in mostly Fog and Mist nodes, and also in the
saturation of nodes that were selected as optimal (based on
their availability factor). This saturation is counterproductive,
potentially causing more failures in both the nodes and their
communication links.

Since the ILP-based solutions are not suited for more com-
plex scenarios and trying to compensate for the drawbacks
found in the results, a complementing heuristic based on
Fluid Communities was also presented. The mechanism of
Fluid Communities by Tiers allowed the creation of balanced
communities with an equivalent number of nodes. This
heuristic, called FCT, takes advantage of the communities to
balance the load among the nodes.

Both mechanisms were evaluated using simulations. The
well-known FF approach was used for comparison pur-
poses. Three replication methods were used: no replicas
(noReplica), some VFs had replicas (vsReplicas), and all the
VFs had replicas (End2End). For all the analyzed scenarios,
FF showed less capacity to recover from failures. ILP was
the mechanism with less unrecovered failures, but also was
the mechanism that saturated the nodes the most. FCT got
to balance the load among the nodes, while also improving
the response time of the SCs and experiencing fewer failures
than FF.

Future work includes adding more dynamism to the
scenarios to study the impact of the changes in the availability
of the nodes for the embedding mechanisms. Additionally,
proposing a learning mechanism that allows taking into
consideration previous failures and updating the availability
factor of each node, and designing a solution to automatically
suggest which of the VFs in an SC should be repli-
cated considering a set of user requirements. Furthermore,
the adaptation and validation of the mechanisms for a

Cloud-Fog-Mist-IoT federate environment will be considered
for the following research.
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