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RESUMO 

 

Os receptores do glutamato são os principais mediadores da 

neurotransmissão excitatória no cérebro e também intervêm na sua 

modulação. Enquanto que a localização e mecanismos de acção de 

receptores pós-sinápticos do tipo AMPA e NMDA, que suportam a 

neurotransmissão, são bem conhecidos muito resta a saber acerca da 

existência, função e mecanismos de acção de receptores que actuam a 

nível pré-sináptico. A este respeito, muito resta a saber acerca da 

localização dos receptores de cainato e o seu papel na neurotransmissão. 

Com o presente trabalho procurámos responder a algumas 

questões relacionadas com a localização sináptica e função de receptores 

do glutamato. Na primeira parte do trabalho descrevemos a optimização de 

uma metodologia bioquímica que permite a obtenção de preparações 

purificadas de proteínas da zona activa pré-sináptica e da densidade pós-

sináptica. O processo consiste na solubilização sequencial das proteínas 

não sinápticas em 1% de Triton X-100 a pH 6.0, seguida da solubilização 

das proteínas pré-sinápticas e sua separação das densidades pós-

sinápticas por aumento do pH para 8.0. Experiências de Western blot 

usando anticorpos contra proteínas tipicamente pré-sinápticas (SNAP-25 e 

sintaxina), pós-sinápticas (PSD-95) e não sinápticas (sinaptofisina e 

NCAM) permitiram verificar a eficiência da separação de proteínas destes 

compartimentos celulares. 

De seguida, investigámos a localização subsináptica de diversas 

subunidades de receptores ionotrópicos e metabotrópicos do glutamato. 

Observámos que, no caso dos receptores metabotrópicos do glutamato, a 

subunidade mGluR7 estava localizada maioritariamente na fracção de 

proteínas da zona activa pré-sináptica. A distribuição subsináptica das 

outras subunidades estudadas, mGluR1, mGluR2, mGluR4a e mGluR5 foi 

mais difícil de reconciliar com os resultados de microscopia electrónica 
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existentes na literatura revelando, provavelmente, a limitação do uso da 

técnica no estudo da localização de receptores que apresentam 

distribuições particulares, como é o caso de receptores perisinápticos, que 

não estão localizados nem na zona activa pré-sináptica, nem na densidade 

pós-sináptica.  

No caso dos receptores do tipo AMPA, observámos que estes 

apresentavam uma distribuição subsináptica peculiar, com elevados níveis 

de imunoreactividade para os anticorpos dirigidos contra as subunidades 

GluR1, GluR2 e GluR2/3 nas fracções de proteínas da zona activa pré-

sináptica, da densidade pós-sináptica e de proteínas não sinápticas. A 

subunidade GluR4 foi detectada em níveis muito mais modestos e parece 

predominar pós-sinapticamente. 

Quanto aos receptores do tipo NMDA, apesar dos vários estudos 

relatando acções destes receptores ao nível pré-sináptico, detectámos 

apenas marcação residual para as subunidades NR1, e NR2A-C na zona 

activa pré-sináptica. A imunoreactividade para todas as subunidades 

estudadas estava concentrada essencialmente nas densidades pós-

sinápicas e ausente da fracção de proteínas não sinápticas. 

 

A pequena amplitude e cinética lenta das correntes sinápticas 

mediadas por receptores de cainato parecem sugerir uma localização 

extrasináptica destes receptores, que seriam activados por glutamato 

difundido para fora da fenda sináptica. No entanto, a manipulação da 

concentração extracelular de glutamato não altera estas propriedades. 

Procurámos, portanto, contribuir para o esclarecimento desta aparente 

discrepância, estudando a localização subsináptica destes receptores. Em 

estudos funcionais, utilizando sinaptossomas, observámos que a activação 

de receptores de cainato com baixas concentrações de agonistas aumenta 

a libertação exocitótica de glutamato tritiado, num processo dependente de 

Ca2+. Este efeito foi insensível ao antagonista dos receptores AMPA, 
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LY303070 (10 µM), mas foi prevenido pelo antagonista misto para 

receptores do tipo AMPA e cainato, CNQX (30 µM). Verificámos ainda que 

a eficiência de modulação da libertação de glutamato por receptores de 

cainato é superior à conseguida pela simples despolarização da membrana 

através da elevação da concentração extracelular de KCl apesar do último 

fenómeno ser mais eficiente em aumentar a [Ca2+]i. Por outro lado, 

verificámos que o aumento da [Ca2+]i induzido por activação de receptores 

de cainato (cainato 100 µM) foi só parcialmente inibido pela exposição a 

bloqueadores de canais de Ca2+ sensíveis à voltagem. Este resultados 

sugerem fortemente que os receptores pré-sinápticos de cainato estão 

localizados dentro da zona activa, próximo dos locais de libertação de 

glutamato sendo, provavelmente, directamente permeáveis a Ca2+. Para 

comprovar os resultados dos estudos funcionais investigámos a 

distribuição subsináptica das várias subunidades de receptores de cainato. 

Estas experiências mostraram que todas as subunidades de receptores de 

cainato estão localizadas na zona activa pré-sináptica e na densidade pós-

sináptica. A subunidade KA1 mostrou uma localização preferencialmente 

pós-sináptica.  

 

A subunidade GluR7 é uma subunidade dos receptores de cainato 

cuja função no cérebro é essencialmente desconhecida. A distribuição de 

mRNA para esta subunidade permite antever uma possível participação 

em receptores pré-sinápticos nas sinapses das fibras musgosas no 

hipocampo, pelo que decidimos estudar um possível papel fisiológico de 

GluR7 ao nível destas sinapses. Através do registo de correntes 

excitatórias pós-sinápticas, no modo de voltagem imposta, em células 

piramidais da área CA3 em fatias de cérebro de animais de fenótipo 

selvagem e animais deficientes para a subunidade GluR7 (GluR7-/-) 

estudámos uma possível participação desta subunidade em receptores 

pós-sinápticos de cainato. Observámos que nem a amplitude da resposta 
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dos receptores de cainato nos potenciais excitatórios pós-sinápticos nem a 

sua cinética estavam alterados em animais GluR7-/-. Assim, sugerimos que 

esta subunidade não contribui para receptores de cainato a nível pós-

sináptico nas sinapses das fibras musgosas com as células piramidais da 

área CA3. 

De seguida, estudámos fenómenos de modulação pré-sináptica 

através de protocolos de plasticidade de curta e longa duração. Em 

animais GluR7-/- observámos que a facilitação sináptica devida à aplicação 

seguida de dois pulsos de estimulação estava significativamente reduzida 

para intervalos de 10-40 ms entre os pulsos de estimulação, mas 

apresentava-se normal para intervalos de 100 ms ou superiores, sugerindo 

uma acção rápida dos receptores de apenas alguns milisegundos. A 

elevada facilitação observada normalmente nesta sinapse em resposta a 

um conjunto de 5 estimulações com uma frequência de 20 Hz estava 

também fortemente reduzida, mostrando que receptores contendo a 

subunidade GluR7 contribuem para a facilitação sináptica em resposta a 

estímulos repetidos. Uma outra forma de plasticidade, a facilitação em 

frequência, que se desenvolve mais lentamente na gama de frequências 

baixas com estimulação repetitiva, embora não estivesse alterada para 

frequências mais baixas (0.2 Hz), apresentava-se significativamente 

reduzida para frequências de estimulação de 0.5 Hz e superiores. 

 

A potenciação de longa duração (LTP) observada nas sinapses das 

fibras musgosas é induzida e expressa a nível pré-sináptico e os 

receptores pré-sinápticos de cainato, embora inicialmente considerados 

essenciais para este tipo de plasticidade, desempenham um papel 

permissivo reduzindo o limiar para a sua indução. Investigámos, por isso, 

se a subunidade GluR7 teria também um papel preponderante neste tipo 

de plasticidade sináptica. En animais GluR7-/- a LTP das fibras musgosas 

estava consideravelmente reduzida, mas não completamente ausente. 
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Adicionalmente, a potenciação pós-tetânica (PTP) estava também 

severamente reduzida em animais GluR7-/- sem que, no entanto, nenhuma 

diferença tenha sido observada entre os dois genótipos na potenciação 

das respostas sinápticas por aplicação de forscolina, indicando que o 

mecanismo de expressão deste tipo de plasticidade estava intacto. Quer a 

LTP quer a PTP foram, no entanto, recuperadas para níveis semelhantes 

aos níveis controlo após elevação da concentração de KCl no meio 

extracelular ou fornecendo estímulos eléctricos adicionais durante a fase 

de indução. 

Embora não tenhamos observado uma facilitação das respostas 

das sinapses das fibras musgosas pela aplicação de baixas concentrações 

de cainato (50 nM) a sua inibição foi consistentemente observada em 

animais de ambos os genótipos pela aplicação de concentrações de 

cainato superiores a 100 nM. Esta experiência mostrou que a facilitação e 

inibição das respostas sinápticas pelos receptores de cainato 

provavelmente não são mediadas pelos mesmos receptores. Mostrámos 

ainda que não só a subunidade GluR7 tem uma localização sináptica na 

ausência da subunidade GluR6, e vice versa, mas também que estas duas 

entidades co-imunoprecipitam em lisados de cérebro, sugerindo a 

existência de receptores heteroméricos contendo GluR6 e GluR7.  

Estudos em células HEK transfectadas com GluR6 e GluR7 

mostraram que estes receptores heteroméricos são bloqueados pelo 

antagonista misto de receptores AMPA/cainato, CNQX, e, 

surpreendentemente, também pelo GYKI 53655, um antagonista 

considerado selectivo para receptores AMPA. Estabelecemos que estes 

compostos reduzem a facilitação em frequência em animais controlo mas 

não em animais GluR7-/-. Adicionalmente, os níveis de facilitação em 

animais GluR7-/- eram os mesmos observados em animais controlo na 

presença dos antagonistas, dando um suporte farmacológico aos dados 

obtidos com a estratégia de delecção genética. 
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Os nossos resultados reforçam o papel dos receptores de cainato 

como entidades fundamentais no controlo das sinapses glutamatérgicas. A 

nível pré-sináptico, verificámos que a subunidade GluR7 desempenha um 

papel fulcral em fenómenos de plasticidade sináptica de curta e longa 

duração no hipocampo, levantando importantes questões acerca do 

possível papel deste receptor em outras zonas cerebrais onde a 

plasticidade sináptica é semelhante à observada nas sinapses das fibras 

musgosas. 
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SUMMARY 

 

Glutamate receptors play a central role in excitatory 

neurotransmission in the brain and also in synaptic modulation. Whereas 

the localization and mechanisms of action of postsynaptic AMPA and 

NMDA receptors, that support neurotransmission, are more or less well 

understood, much remains to be studied regarding the existence, function 

and mechanisms of action of receptors that act at the presynaptic level. 

With this regard, the synaptic localization of kainate receptors and their role 

in neurotransmission is one of the most poorly comprehended. 

With the present effort we sought to answer some of the unresolved 

issues regarding glutamate receptor localization and function. In the first 

part of this work we used a new biochemical technique to allow us to obtain 

purified preparations of proteins from the presynaptic active zone, the 

postsynaptic density and from non-synaptic pools. This was achieved by 

the sequential solubilization of non-synaptic proteins in 1% Triton X-100 at 

pH 6.0, followed by solubilization of presynaptic proteins from the 

postsynaptic densities by increasing the pH to 8.0. Antibodies directed 

against typically presynaptic (SNAP-25 and syntaxin), postsynaptic 

(PSD95) and non-synaptic (synaptophysin and NCAM) proteins allowed us 

to verify that the methodology yielded preparations of these protein pools 

with high purity.  

We next investigated the subsynaptic localization of several 

subunits of ionotropic and metabotropic glutamate receptors. We found 

that, for metabotropic glutamate receptors, the mGluR7 subunit was found 

mainly on the presynaptic active zone, as previously described. The 

subsynaptic distribution of the other subunits studied, mGluR1, mGluR2, 

mGluR4a and mGluR5 was more difficult to reconcile with the results from 

previous immunogold electron microscopy studies, revealing a possible 

limitation of the solubilization technique in resolving receptors that present 
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particular distributions, such as perisynaptic receptors, that are neither 

localized in the presynaptic active zone nor in the postsynaptic density.  

AMPA receptors were found to have a striking subsynaptic 

distribution, with high amounts of immunoreactivity for GluR1, GluR2 and 

GluR2/3 in the presynaptic active zone fraction of proteins, in the 

postsynaptic density and in the non-synaptic pool of proteins. Although 

there is some evidence that these receptors may be differentially attached 

to the postsynaptic density, they should not be behaving differently to the 

solubilization procedure and contribute significantly for the observed 

presynaptic labbelling. Furthermore, proof for their existence at presynaptic 

sites is increasingly growing.  

Despite numerous evidences for actions of NMDA receptors at the 

presynaptic level, we found only residual labelling for the NR1 and NR2A-C 

subunits in the pool of proteins from the presynaptic active zone, with the 

majority of immunoreactivity concentrated at postsynaptic densities. The 

small labelling of this fraction of proteins for PSD-95 may indicate that 

labelling at such sites may, in fact, result from slight contamination of the 

presynaptic active zone faction with proteins from the postsynaptic density. 

 

Electrophysiological responses mediated by kainate receptors show 

small amplitude and slow kinetics that may suggest an extrasynaptic 

localization and activation by low concentrations of glutamate spilling over 

from the synaptic cleft. However, manipulating the extracellular glutamate 

concentration does not change these parameters. Therefore, we sought to 

add some clarity to this question by investigating the subsynaptic 

localization of these receptors. In functional studies, using synaptosomes, 

we observed that activation of kainate receptors with low concentrations of 

agonists increased the exocytotic release of [3H]glutamate in a Ca2+-

dependent manner. This effect was insensitive to the AMPA receptor 

antagonist, LY303070 (10 µM), but was blocked by the general 
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AMPA/kainate receptor antagonist, CNQX (30 µM). Furthermore, we also 

observed that kainate (1 µM), although inducing a much more modest 

increase in the intracellular Ca2+ concentration, was able to significantly 

modify the release of [3H]glutamate, contrarily to what was observed in a 

situation of elevated extracellular KCl. These results, together with the fact 

that the Ca2+ signal was only partially reduced by blockers of voltage-

sensitive Ca2+ channels, at the supramaximal concentration of 100 µM 

kainate, suggest that presynaptic kainate receptors are localized close to 

glutamate release sites, within the active zone, and are probably directly 

permeable to Ca2+. To look further into the synaptic localization of kainate 

receptors we performed Western blot experiments in the subsynaptic 

fractions. This showed that, not only all kainate receptor subunits are 

localized both in the presynaptic active zone and postsynaptic density but 

also that they appear to be restricted to these sites of synaptic contact, as 

shown by the very faint labelling in the non-synaptic pool of proteins. The 

KA1 subunit revealed to be preferentially localized at the postsynaptic level. 

 

Although we showed the subsynaptic localization of kainate 

receptors and a functional role at the presynaptic level, it is important to 

understand these parameters at individual synapses and the subunits that 

are important for synaptic modulation in a more intact system. GluR7 is one 

subunit of kainate receptors whose function in the brain is unknown. The 

distribution of mRNA predicts the possibility of its participation to 

presynaptic kainate receptors at hippocampal mossy fiber synapses and, 

therefore, we decided to study its possible role at this synapse. By 

performing whole-cell voltage-clamp recordings from CA3 pyramidal cells in 

brain slices from wildtype mice and mice lacking GluR7 (GluR7-/-) we first 

studied the possible contribution of this subunit for postsynaptic receptors. 

We found that neither receptor kinetics nor the percent contribution of pure 

kainate receptor-mediated responses to mossy fiber EPSCs were changed 
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in GluR7-/- mice suggesting that, in consistency with anatomical data, 

GluR7 does not contribute to postsynaptic receptors at mossy fiber-CA3 

pyramidal cell synapses.  

We then turned to presynaptic modulation by using protocols that 

lead to presynaptic forms of short- and long-term plasticity, which have 

been shown to be dependent on or modulated by kainate receptors. In 

animals lacking GluR7 we showed that paired pulse facilitation was 

significantly impaired at short intervals between stimuli, but normal for 

intervals of 100 ms or greater, suggesting a fast action of these receptors  

of only a few milliseconds. The prominent facilitation of mossy fiber 

responses to a train of 5 stimuli, delivered at a frequency of 20 Hz, was 

also greatly reduced in GluR7-/- animals, showing that kainate receptors 

containing this subunit contribute to the facilitation of responses to 

repetitive stimuli. Frequency facilitation, another form of presynaptic 

plasticity that develops over a slower time scale with repetitive stimulation 

in the low frequency range, although not altered at low (0.2 Hz) rates of 

stimulation, was significantly reduced for stimulation frequencies of 0.5 Hz 

and higher in the absence of GluR7.   

Mossy fiber LTP is both induced and expressed presynaptically and 

presynaptic kainate receptors, although initially thought to be crucial for this 

process, are now known to have a permissive role by lowering the induction 

threshold. Therefore, we investigated whether GluR7 had any participation 

in this form of long-term synaptic plasticity. In animals lacking the GluR7 

subunit mossy fiber LTP was strikingly reduced, but not completely absent, 

when compared to wildtype animals. Furthermore, PTP was also severely 

impaired in GluR7-/- mice but no difference was found in the forskolin-

induced potentiation of mossy fiber responses, indicating an intact 

expression mechanism. Mossy fiber LTP and PTP could, however, be 

rescued to control levels by either slightly increasing the extracellular KCl 

concentration or by supplying additional stimuli during induction.  
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Although we were not able to record a facilitation of mossy fiber 

synaptic responses by the application of low (50 nM) concentrations of 

kainate, inhibition was always observed in both genotypes for 

concentrations of kainate above 100 nM, in parallel with the activation of an 

inward current in the postsynaptic neurons. This shows that facilitation and 

inhibition are probably not mediated by the same receptors. We further 

show, using isolated synaptic junctions, that not only GluR7 is localized 

within synapses in the absence of GluR6, and vice versa, but also that 

GluR6 and GluR7 co-immunoprecipitate from lysates of mouse brain, 

suggesting the existence of heteromeric kainate receptors containing both 

subunits.  

Studies in transfected HEK cells established that CNQX and, 

surprisingly, the AMPA receptor selective antagonist, GYKI 53655, acted as 

antagonists on GluR6/GluR7 heteromeric receptors. These compounds 

were shown to reduce mossy fiber low frequency facilitation in wildtype but 

not GluR7-/- mice. Furthermore, the levels of facilitation in GluR7-/- animals 

were the same as the ones observed in wildtype animals in the presence of 

the antagonists, lending pharmacological support to the data obtained with 

the genetic deletion approach. 

Our results not only show the subsynaptic localization of glutamate 

receptor subunits in the hippocampus, but also that kainate receptors are 

localized within the active zone of synapses, and almost completely absent 

from extrasynaptic locations. More importantly, they allow establishing, for 

the first time, a physiological role for the GluR7 subunit of kainate receptors 

in the brain, and pose pertinent questions about the possible role of these 

receptors in other brain areas expressing forms of presynaptic plasticity 

similar to those of the hippocampal mossy fiber synapses. 
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1.1. The hippocampus 

 

The hippocampus is perhaps the most intensively studied structure 

in the brain, forming, together with the amygdala, the central axis of the 

limbic system. It is made up by two interlocking sheets of cortex and, in 

cross-section, has a well defined laminar structure with layers visible where 

rows of pyramidal cells are arranged. Within the hippocampus, several 

regions can be identified, namely the subiculum, the dentate gyrus and the 

cornu Ammonis (CA1, CA2 and CA3 subregions; Figure 1.1). The 

connections within the hippocampal formation generally follow the laminar 

arrangement and are, until present, thought to be unidirectional, forming the 

so-called tri-synaptic circuit. The connection of the entorhinal cortex to the 

hippocampus is made through the perforant path that crosses the 

subiculum to make synapses with dentate gyrus granule cells. The 

perforant path is the major input pathway to the hippocampus and its fibers 

originate mostly from layers II and III of the entorhinal cortex, with minor 

contributions from the deeper layers IV and V.  Axons from cortical layers 

II/IV project to granule cells of the dentate gyrus but also to CA3 pyramidal 

cells, while those arising from layers III/V project to pyramidal cells of the 

CA1 subregion and to the subiculum. The major input to CA3 pyramidal 

cells comes from the mossy fibers, the axons of dentate gyrus granule 

cells. Mossy fiber synapses are made en passant onto the proximal 

dendrites of CA3 pyramidal neurons and are formed by large, complex 

termini containing multiple neurotransmitter release sites and postsynaptic 

densities. CA3 pyramidal cells, in turn, are connected to CA1 pyramidal 

cells through the Schaffer Collateral/Associational Commissural pathway. 

Axons can either originate from CA3 neurons in the same (ipsilateral) 

hippocampus or from CA3 neurons of the contralateral hippocampus 

(commissural fibers). CA1 pyramidal neurons then project back to the 

subiculum and on to the entorhinal cortex. This connection is, however, not 
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a straightforward unidirectional pathway, forming two closed loop networks 

(Figure 1.1).  

 

 

1.2. Glutamatergic neurotransmission in the hippocampus 

 

The hippocampal formation plays an important role in learning and 

processing of memory in primates (Zola-Moran and Squire, 1990). The 

repeated electrical stimulation of several pathways within the hippocampus 

can lead to a long-term enhancement of synaptic responses (LTP) or to a 

long-term depression of these responses (LTD) which may be brought 

Figure 1.1 – The hippocampal network. The hippocampus forms a mainly uni-directional network, with 

the input from the entorhinal cortex (EC) connecting to the dentate gyrus (DG) granule cells and CA3 

pyramidal cells through the perforant path (PP; split into lateral, LPP and medial, MPP). CA3 pyramidal 

neurons receive massive input from the DG via the mossy fibers (MF) which in turn project to CA1 

pyramidal cells via the Schaffer Collateral Pathway (SC) and to CA1 pyramidal cells of the contralateral 

hippocampus via the Associational Commissural pathway (AC). CA1 neurons also receive direct input 

from the PP and send axons to the subiculum. Subicular neurons send the major hippocampal output 

back to the EC, forming a loop. LEC and MEC, lateral and medial entorhinal cortex, respectively. 

Adapted from http://www.bris.ac.uk/Depts/Synaptic/info/pathway/hippocampal.htm 
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about by different mechanisms. These phenomena are thought to be the 

cellular correlates of learning and memory formation (Baudry and 

Massicotte, 1992; Bliss and Collingridge, 1993) and critically involve the 

neurotransmitter L-glutamate. In addition to its well recognized role in 

synaptic plasticity processes (Bliss and Collingridge, 1993), 

neurodevelopment and synaptogenesis (McDonald and Johnston, 1990), 

glutamate is also known to potentially act as a potent endogenous 

neurotoxic agent, playing a critical role in the development and/or 

progression of diverse neurological disorders (Meldrum and Garthwait, 

1990; Beal, 1992). 

 

 

1.3. Glutamate receptors 

 

Historically, the notion that L-glutamate functions as a 

neurotransmitter came from the observation that at low concentrations it 

excites virtually every neuron in the CNS (Curtis et al., 1959; Curtis and 

Watson; 1960). Early studies also demonstrated that glutamate depolarized 

membranes as a result of increased conductance to Na+ ions (Curtis et al., 

1972; Zieglgansberger and Puil, 1973). This neurotransmitter is released in 

a Ca2+-dependent manner involving N- and P/Q-type voltage-sensitive 

calcium channels (Birnbaumer et al., 1994) and has powerful excitatory 

actions on neurons when iontophoresed in vivo. Glutamate may also be 

“released” by the reverse operation of glutamate transporters. This situation 

may occur when the electrochemical gradient of Na+ and K+ is strongly 

reduced by energy depletion during cerebral ischemia (Levy et al., 1998; 

Obrenovitch and Urenjak, 1997).  

It is now known that L-glutamate is the major excitatory 

neurotransmitter in the mammalian brain and exerts its functions through a 

multitude of receptors. Glutamate receptors are distinguished on the basis 
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of their mode of signal transduction into ionotropic glutamate receptors l    

Figure 1.2 – Overview of the glutamate receptor family. (A) Illustrates the various groups and subunits 

that compose both ionotropic and metabotropic glutamate receptors and their main signal transduction 

mechanisms. Glutamate gates cation-permeable ionotropic receptors and can also activate 

metabotropic receptors coupled via G-proteins to the activation of phospholipase C (PLC) or the 

inhibition of adenylate cyclase (AC). (B and C) Sequence similarity of ionotropic and metabotropic 

glutamate receptor subunits. The pharmacological characterization of ionotropic glutamate receptors 

into AMPA, NMDA and kainate is well reflected in the similarity of their sequences (B). The same is 

also apparent for the various groups of metabotropic glutamate receptors (C). The bar indicates the 

normalized distance score derived from the pairwise sequence similarity scores (Feng and Doolittle, 

1987). A distance of 0 means identical sequences and a distance of 1 means infinite distance between 

sequences. Recreated from Kew and Kemp, 2005. 
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of their signal transduction mechanisms into ionotropic glutamate receptors 

(iGluRs) and metabotropic glutamate receptors (mGluRs). Moreover, 

several pharmacological differences allow the distinction of different 

families of receptors within each group (Figure 1.2). The two classes of 

excitatory amino acid receptors interact in the fine-tuning of neuronal 

responses under different conditions. The first subunit of ionotropic 

glutamate receptors was cloned in 1989 (Hollmann et al., 1989) and cloning 

and identification of other subunits continued until 1992 (reviewed by 

Hollmann and Heinemann, 1994), when the first subunit of metabotropic 

glutamate receptors was also cloned (Nakanishi, 1992). Glutamate 

receptors are expressed mainly in the central nervous system but they can 

also be found in the periphery. Noteworthy examples are their localization 

in pancreatic islet cells (Inagaki et al., 1995; Weaver et al., 1996, 1998) and 

in osteoclasts and osteoblasts (Chenu et al., 1998; Patton et al., 1998). 

Glutamate signalling in non-neuronal tissue is out of the scope of this work 

and has been reviewed elsewhere (Skerry and Genever, 2001). The 

present studies focus more on iGluRs and this chapter will be oriented 

accordingly. 

 

 

1.3.1. Metabotropic glutamate receptors 

 

Metabotropic glutamate receptors are transmembrane receptors 

coupled to heterotrimeric G-proteins. Structurally, mGluRs are formed by a 

large extracellular bi-lobed N-terminal domain that contains the ligand-

binding site and that is connected to the transmembrane domain, which is 

formed by seven α-helices, by a cysteine-rich domain (Figure 1.3). They 

also possess an intracellular C-terminal domain whose size is variable 

depending on alternative splicing (De Blasi et al., 2001. The most 

conserved domains between the different mGluRs are the sites involved in 
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coupling to G-proteins and the glutamate binding site (Pin and Duvoisin, 

1995). Functional mGluRs are thought to comprise homodimers stabilized 

by both an inter-subunit disulphide bond and hydrophobic interactions 

(Romano et al., 1996; Kunishima et al., 2000; Tsuji et al., 2000; Tsuchiya et 

al., 2002).  

Up to date, eight different receptors were cloned (mGluR1-8) that 

are classified into three groups according to their sequence homology, 

pharmacological properties and intracellular signal transduction pathways 

used (Figure 1.2A, C). Group I mGluRs include mGluR1 and mGluR5 

receptors that are positively coupled to phosphoinositide-specific 

phospholipase C through G-proteins of the Gq/G11 type. Activation of these 

receptors leads to activation of phospholipase C, production of IP3, release 

of Ca2+ from intracellular stores and also production of diacylglycerol, which 

in turn activates PKC, and are activated by quisqualate as their most potent 

agonist (Masu et al., 1991; Abe et al., 1992; Aramori and Nakanishi, 1992; 

reviewed by Kew and Kemp, 2005). Group II mGluRs include mGluR2 and 

mGluR3 and are coupled to the inhibition of adenylyl cyclase activity 

Figure 1.3 – Structure of metabotropic 

glutamate receptors. mGluRs are 

characterized by their association to G-

proteins and the presence of seven 

transmembrane segments. The 

extracellular N-terminus is much larger 

than that of other G-protein coupled 

receptors and contains the ligand binding 

domain. The intracellular C-terminus can 

undergo extensive alternative splicing.  

Adapted from: 

http://www.bris.ac.uk/Depts/Synaptic/info/

glutamate.html 
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through G-proteins of the Gi/G0 type. A number of potent Group II agonists 

have been described. These include DCG-IV, LY354740, LY379268 and 

MGS0028. Finally, group III mGluRs are composed of mGluR4, mGluR6, 

mGluR7 and mGluR8 and have the same mode of signalling as group II 

mGluRs. Group III mGluRs are potently activated by (S)-AP4 (for a review 

of mGluR pharmacology see Kew and Kemp, 2005). Although members of 

the mGluR family can mediate synaptic transmission via activation of slow 

postsynaptic potentials (Glaum and Miller, 1992) they generally exert a 

more modulatory role. This is achieved through the activation of 

intracellular second messenger pathways as already mentioned, but also 

through the direct action of the βγ subunits of the heterotrimeric G-proteins 

in modulating, for example, the activity of ion channels (reviewed by Anwyl, 

1999). The members of each group of mGluRs share ~70% sequence 

homology and about 45% homology between classes. Alternatively spliced 

variants have been described for mGluR1, mGluR4, mGluR5 and mGluR7. 

Figure 1.2 summarizes the organization and sequence similarity of 

glutamate receptors. 

 

 

1.3.2. Ionotropic glutamate receptors 

 

Glutamate is thought to be an ancestral signalling molecule. The 

proof for this comes from the cloning of ionotropic glutamate receptors in 

organisms such as Caenorhabditis elegans (Hart et al., 1995), the plant 

Arabidopsis thaliana (Lam et al., 1998) and even in the bacteria 

Cyanobacterium cynechocystis (Chen et al., 1999). iGluRs are subdivided, 

based on pharmacological dissimilarities, into three distinct groups: NMDA, 

AMPA and kainate receptors (Figure 1.2A, B). All ionotropic glutamate 

receptors share common structural features, being characterized by the 

presence of a large extracellular N-terminal domain (S1 domain; that 



 
 
 
 
 
 
Chapter 1 

26 

 

 

 

 

 

 

exhibits homology with the mGluRs’ agonist binding domain) followed by a 

first transmembrane domain and a pore forming, membrane-residing 

domain that does not cross the membrane but forms a reentrant loop 

entering from and exiting to the cytoplasm. The third and fourth 

transmembrane domains are linked by a large extracellular loop (S2 

domain) and the fourth transmembrane domain is followed by an 

intracellular C-terminus (Dingledine et al., 1999; Mayer and Armstrong, 

2004) (Figure 1.4). Native iGluRs are likely organized as tetrameric 

assemblies, comprising more than one type of subunit, where each subunit 

contributes with an agonist binding site, a part of the ion permeable pore 

and also with a cytosolic C terminus that can interact with intracellular 

proteins and thus modulate receptor properties. Subunits from the different 

classes of iGluRs do not associate to form receptors. 

 

 

 

Figure 1.4 – Structure of the ionotropic 

glutamate receptors. Shown is a representation 

of the structure of the GluR5 subunit of kainate 

receptors to illustrate the general receptor 

topology. Like the other ionotropic glutamate 

receptors the N-terminus is extracellular and the 

C-terminus is intracellular. The C-terminus 

undergoes extensive splice variation and there 

are also editing sites at the first and, additionally, 

at the second transmembrane domains (see text 

for more details). Adapted from: 

http://www.bris.ac.uk/Depts/Synaptic/info/glutam

ate.html 
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1.3.2.1. NMDA receptors 

 

NMDA was the first synthetic agonist for iGluRs (Watkins, 1962) 

and allowed to establish glutamate as an excitatory neurotransmitter. The 

NMDA receptor family is composed of seven subunits: NR1, NR2A-D and 

NR3A and B (Figure 1.2) that are all products of separate genes and have 

the typical topology of iGluRs (Figure 1.4). The NR1 subunit is critical for 

NMDA receptor function, with receptors being comprised of NR1 and at 

least one NR2 subunit (Cull-Candy et al., 2001). NR3 subunits can 

assemble with NR1-NR2 complexes to depress NMDA receptor responses 

(Ciabarra et al., 1995; Das et al., 1998), and can also assemble with the 

NR1 subunit alone to form a glycine receptor, that is unaffected by 

glutamate or NMDA, and whose role in the central nervous system is still 

not clear (Chatterton et al., 2002). The NR1 subunit has eight different 

functional variants and one truncated, nonfunctional variant generated by 

alternative splicing at three sites within the protein, one in the N-terminus 

and two in the C-terminus (Carrol and Zukin, 2002; see also Dingledine et 

al., 1999) (Figure 1.5). In the N-terminus splicing occurs in exon 5 (also 

called the N1 cassette) and in the C-terminus in exons 21 and 22 (also 

called the C1 and C2 cassettes). Exon 22 (C2) contains an alternate 

acceptor splice site that, when used, splices out part of exon 22 including 

the stop codon and engages a new reading frame that encodes an 

alternative cassette C2’ (Figure 1.5). Alternatively spliced forms of NR1 

subunits have different regional and developmental expression profiles 

(Zukin and Bennett, 1995) and are regulated by neuronal activity (Mu et al., 

2003), generating channel diversity. The various splice variants also differ 

considerably in their properties and are differentially localized in the 

developing and adult animal (e.g., Laurie and Seeburg, 1994; Laurie et al., 

1995; Nash et al., 1997; Paupard et al., 1997; Weiss et al., 1998). 

Recombinant NR2 and NR3 subunits do not form functional homomeric 
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receptors (Cull-Candy et al., 2001; Carroll and Zukin, 2002). The NR2 

subunits share 38-53% amino acid sequence identity amongst themselves 

and about 27% homology with NR1 (Monyer et al., 1992; Ikeda et al., 1992; 

Kutsuwada et al., 1992; Meguro et al., 1992; Ishii et al., 1993). The NR3 

subunits share about 50% sequence homology and about 27% with NR1 

and NR2 subunits (Ciabarra et al., 1995). 

The NMDA receptor is unique amongst ligand-gated ion channels in 

its requirement for two obligatory co-agonists; functional NMDA receptors 

contain at least two glutamate-binding sites and two glycine-binding sites, 

implying a minimum of four subunits within the functional channel (Cull-

Candy et al., 2001). At the neuron’s resting membrane potential, binding of 

glutamate to the NMDA receptor complex is not sufficient for its gating and 

subsequent passage of ions through the receptor channel; previous 

depolarization of the membrane above -40 mV is a requisite to remove the 

Figure 1.5 – Alternative splicing of NMDA receptor subunits. The different splice variants of the NR1 

subunit arise from alternative splicing of exons 5, 21 and 22, giving rise to the cassettes N1, C1, C2 

and C2’. TMI to TMIV represent the transmembrane regions of the proteins. Recreated from Dingledine 

et al., 1999. 
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channel block by magnesium ions (Nowak et al., 1984, Mayer et al., 1984). 

This property renders Ca2+ flux through NMDA receptors a coincidence 

detector for the release of glutamate and activation of AMPA receptors in 

the postsynaptic membrane; NMDA receptors are functionally active only 

when sufficient depolarization through activation of AMPA receptors is 

achieved. 

 

 

1.3.2.2. AMPA receptors 

 

AMPA receptors are the major mediators of fast glutamatergic 

neurotransmission. They were originally named quisqualate receptors but 

renamed AMPA receptors since quisqualate acted also on mGluRs while 

AMPA acted more selectively on this group of proteins. The family 

comprises four subunits (GluR1-4) that are products of distinct genes 

(Figure 1.2B). The various subunits were cloned and expressed in 

recombinant systems in the late 1980’s and were later shown to share 70% 

of mutual sequence homology (see Nakanishi and Masu, 1994). They were 

initially though to form pentameric heteromeric assemblies, like nicotinic 

acetylcholine receptors (Ferrer-Montiel and Montal, 1996), but are now 

believed to form functional tetramers (Mano and Teichberg, 1998; 

Rosenmund et al., 1998). Like NMDA receptors, they are likely of 

heteromeric composition, although homomeric channels are also formed in 

recombinant expression systems (Boulter et al., 1990; Keinänen et al., 

1990). All mRNAs encoding AMPA receptor subunits may suffer alternative 

splicing in the region coding for the extracellular S2 loop (Flip-Flop variants) 

but only GluR2 and GluR4 are alternatively spliced in the C-terminal 

domain, giving rise to a short and a long form (Figures 1.6).  

The GluR2 subunit plays a critical role in determining the 

permeability of heteromeric AMPA receptors to Ca2+ and receptors that do 
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not contain GluR2 are highly Ca2+-permeable, showing a marked inward 

rectification as the result of a voltage-dependent block of the outward 

channel conduction by intracellular polyamines (Bowie and Mayer, 1995). 

In the presence of GluR2, AMPA receptors are rather impermeable to Ca2+ 

and display linear or outwardly rectifying current-voltage relationships. The 

molecular determinant conferring Ca2+ impermeability to GluR2-containing 

receptors has been identified as an arginine (R) in a critical position in the 

pore loop (TMII domain), which is a glutamine (Q) at the corresponding site 

in the other subunits (see Dingledine et al., 1999; Seeburg and Hartner, 

2003). This Q/R site is submitted to RNA editing and the edited form of 

GluR2 has low Ca2+ permeability (Hume et al., 1991), low single-channel 

conductance (Swanson et al., 1996) and an almost linear current-voltage 

relationship, even in heteromeric receptors (Verdoorn et al., 1991; Hume et 

al., 1991). The vast majority of GluR2 in the adult is edited to encode an 

arginine and this is even required for survival (Brusa et al., 1995). GluR2-4 

subunits contain an additional editing site in the extracellular region, 

between the third and fourth membrane domains, where an arginine is 

edited to a glycine (R/G site), and editing at this site can modulate receptor 

desensitization kinetics (Lomeli et al., 1994). 

 

Figure 1.6 – Alternative splicing and editing of AMPA receptors (see text for details). Homologous C-

termini are represented by a similar shading pattern and TMI to TMIV represent the transmembrane 

segments of the proteins. Recreated from Dingledine et al., 1999. 
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1.3.2.3. Glutamate receptors with unknown function 

 

Besides the cDNAs cloned by functional expression of their 

transcripts, other CNS proteins with some characteristics of glutamate 

receptors have been cloned following their biochemical isolation and 

characterization. Delta (δ) receptors are a class of ionotropic glutamate 

receptors often referred to as “orphan” glutamate receptors because they 

do not form functional assemblies. They are composed of GluRδ1 and 

GluRδ2 subunits with very local distribution in the cerebellar Purkinje cells 

and in the ear, respectively. The role of these receptors in synaptic 

transmission is unknown but they may function as accessory subunits of 

other iGluRs or bind some neurotransmitter or modulator other than 

glutamate (Yuzaki, 2003).  

Another glutamate receptor, a kainate-binding protein (KABP), with 

homology to iGluRs but lacking approximately the first 400 residues, was 

discovered in the avian and frog brain (Gregor et al., 1989; Wada et al., 

1989; Hollmann and Heinemann, 1994). KABPs have four putative 

transmembrane domains but do not appear to form homomeric or 

heteromeric assemblies, although they seem to be associated to G-proteins 

(Willard et al., 1991; Ziegra et al., 1992).  

A glutamate-binding protein (GBP) and a glycine-binding protein 

(GlyBP), that are part of a complex of four proteins, were purified from rat 

brain synaptic membranes (Ly and Michaelis, 1991; Kumar et al., 1994). 

Their cDNAs do not have significant homology to the other cloned 

glutamate receptors (Kumar et al., 1991, 1995), although short stretches of 

amino acids show high homology to the glycine-binding domains of the 

NR1 subunit of NMDA receptors (Kumar et al., 1995). Reconstitution of the 

proteins that form this complex into planar bilayer lipid membranes leads to 

the formation of glutamate and NMDA activated ion channels whose activity 

is dependent on the presence of glycine (Aistrup et al., 1996) and is 
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blocked by MK-801 and ketamine, indicating that they may form NMDA 

receptor-like channels with the same characteristics as neuronal NMDA 

receptors.  

A 51.6 kDa protein that has high affinity binding sites for both 

[3H]kainate and [3H]AMPA was also cloned from Xenopus laevis (Ishimaru 

et al., 1996) and denominated XenU1. Upon reconstitution, the protein 

forms channels that are activated by AMPA, kainate and NMDA (Kerry et 

al., 1993). The XenU1 protein has four hydrophobic domains that may form 

transmembrane domains but shares only 36-40% homology with rat non-

NMDA receptors.  

 

 

1.3.2.4. Kainate receptors 

 

Among iGluRs, kainate receptors constitute the main focus of the 

present work and, hence, this section will be given more attention.  

 

Discovery, cloning and structure 

 

Kainic acid was first isolated from seaweed more than 50 years ago 

and was known, together with domoic acid, for causing amnesic shellfish 

poisoning. By the mid-1970s the excitatory and neurotoxic actions of 

kainate were well known and the hypothesis that this compound acted on a 

specific subset of receptors was formulated (Davies et al., 1979; Watkins 

and Evans, 1981). This was supported by the demonstration of high-affinity 

binding sites for [3H]kainate in the rat brain (London and Coyle, 1979) and 

that kainate produced distinct depolarizing and desensitizing responses in 

C-fibers in the dorsal root ganglia (Agrawal and Evans, 1986; Huettner, 

1990).  
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The cloning of cDNAs coding for the various subunits of kainate 

receptors started in the early 1990s. Two proteins that show high-affinity 

[3H]kainate binding, with dissociation constants in the range of 5-15 nM 

(KA1 and KA2 subunits), were cloned (Werner et al., 1991; Herb et al., 

1992; Kamboj et al., 1994). Three other kainate receptor subtypes (GluR5, 

GluR6 and GluR7) were also cloned and expressed as a result of screening 

with low stringency hybridization probes to GluR1-4 AMPA receptors 

(Bettler et al., 1990; Egebjerg et al., 1991; Lomeli et al., 1992; Sommer et 

al., 1992). These receptor subunits show a lower affinity for [3H]kainate 

than KA1 or KA2, with dissociation constants in the range of 50-100 nM, 

but comparable to the affinity of a population of binding sites in the rat brain 

(London and Coyle, 1979; Unnerstall and Wamsley, 1983; Hampson et al., 

1987).  

The GluR5-7 subunits are capable of forming functional homomeric 

receptors when recombinantly expressed (Egebjerg et al., 1991; Bettler et 

al., 1992; Sommer et al., 1992; Schiffer et al., 1997). GluR5 and GluR6 

were also found to associate in vivo (Paternain et al., 2000; Christensen et 

al., 2004). The high-affinity subunits KA1 and KA2 do not form functional 

homomeric receptors but do originate high-affinity kainate binding sites and 

can combine with GluR5-7 subunits to form functional receptors with 

modified pharmacological properties (Werner et al., 1991; Herb et al., 1992; 

Sakimura et al., 1992; Schiffer et al., 1997; Cui and Mayer, 1999). Evidence 

also suggests that in the absence of GluR5-7 subunits KA2 cannot achieve 

cell surface expression, being retained in the endoplasmic reticulum 

(Gallyas et al., 2003). The GluR5-7 receptors share 75-80% homology and 

the KA1 and KA2 receptors are 68% homologous (but less than 40% 

homologous with the AMPA receptor subunits GluR1-4), whereas 

homology between the two subclasses of kainate receptors is just 45%. 

Kainate receptor subunits have a similar structure to the other 

iGluRs (Figure 1.4). They are transmembrane proteins with an extracellular 
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N-terminal domain followed by a first transmembrane domain (TMI) and a 

“p-loop” that dips into the lipid bilayer and forms the pore (TMII). Two 

successive transmembrane domains (TMIII and TMIV) are connected by an 

extracellular loop and are followed by an intracellular sequence containing 

the C-terminus. Recent crystallographic data has also revealed the ligand 

bind cores of the GluR5 and GluR6 subunits in conjugation with several 

agonists (Mayer, 2005; Nanao et al., 2005; Naur et al., 2005). The study by 

Mayer (2005) also led to the conclusion that the GluR7 subunit contains a 

mixture of the side chains that differ between GluR5 and GluR6, suggesting 

the possibility of developing pharmacological agents that bind selectively to 

this receptor. 

 

Generation of diversity 

 

Like in AMPA receptors, the mRNAs encoding for kainate receptors 

also suffer post-translational modifications of editing or alternative splicing 

(Bettler and Mulle, 1995; Dingledine et al., 1999; Lerma et al., 2001) 

(Figure 1.7). All splice variants of kainate receptors, with the exception of 

an alternative 15 amino acid exon in the N-terminal domain of GluR5, differ 

in their C-terminal domain (Figure 1.7). The GluR5 subunit presents four 

alternative splicing variants, GluR5a-d, but the last one was only found in 

humans (Gregor et al., 1993). The insertion of the 15 amino acid cassette 

gives rise to GluR5-1 while the originally discovered subunit is termed 

GluR5-2. Alternative splicing of the originally cloned GluR5 gene (GluR5-

2b) in the C-terminus gives origin to a longer variant by insertion of new 

amino acids (GluR5-2c) or a shorter variant by insertion of a stop codon 

(GluR5-2a). 

 For GluR6, there are two described splice variants, GluR6a and 

GluR6b. A third variant, GluR6c contains an insertion of the 15ter exon and 

has only been described in humans. As for the GluR7 subunit, two splice 
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variants were cloned; the originally discovered GluR7a and GluR7b, where 

almost the entire C-terminus is replaced by an unrelated 55 amino acid-

long sequence (Bettler et al., 1992; Schiffer et al., 1997). The physiological 

relevance of alternative splicing of kainate receptors remains somewhat 

obscure. Certain modifications to the C-terminus can impact the trafficking 

processes of the receptors through the cell and also change or abolish sites 

of interaction with intracellular partner or regulatory proteins (Jaskolski et 

al., 2005).  

The GluR5 and GluR6 subunits of kainate receptors can also be 

edited at a Q/R site in the second transmembrane domain that also 

determines the ability of the receptors to permeate Ca2+ ions. In analogy 

with the GluR2 AMPA receptor, the presence of an arginine residue results 

in a subunit that has low permeability to Ca2+ whereas the presence of a 

glutamine residue leads to subunits with higher Ca2+ permeability (Egebjerg 

and Heinemann, 1993; Burnashev et al., 1992, 1996), with a concomitant 

increase in the permeability to chloride ions. Like in AMPA receptors, this is 

also reflected in the electrophysiological properties of kainate receptors; 

Figure 1.7 – Alternative splicing and editing of kainate receptor subunits. The diagram shows the basic 

structures of rat (r) and human (h) subunits with the alternative splice cassettes and editing sites (see 

text for more details). Homologous C-termini are represented by a similar shading pattern and TMI to 

TMIV represent the transmembrane portions of the proteins. Recreated from Dingledine et al., 1999. 
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mature receptors comprised of non-edited subunits display inwardly 

rectifying current-voltage relationships owing to the block of outward current 

by intracellular polyamines, whereas receptors containing edited subunits 

resist polyamine block and have linear current-voltage relations (Bowie and 

Mayer, 1995; Donevan and Rogawski, 1995; Isa et al., 1995; Kamboj et al., 

1995; Koh et al., 1995; Bähring et al., 1997). In the GluR6 subunit, in 

addition to the Q/R site, Ca2+ permeability is also dependent on the edited 

state of two other codons in the first transmembrane domain: the I/V 

(isoleucine/valine) and the Y/C (tyrosine/cysteine) sites (Köhler et al., 

1993). Fully edited GluR6 subunits at both TMI and TMII are essentially 

impermeable to Ca2+. Fully unedited receptors also exhibit a higher unitary 

conductance as compared to receptors that include one or more edited 

subunits (Howe, 1996; Swanson et al., 1996). RNA editing in kainate 

receptors is developmentally regulated and, in the adult, up to 95% of 

GluR6 may exist in the edited form, against only 50-60% for GluR5.  

The cytoplasmic C-terminus can be a target for phosphorylation 

(Dingledine et al., 1999) that may serve to regulate channel function 

(Raymond et al., 1993; Wang et al., 1993; Ghetti and Heinemann, 2000). 

GluR6 can also be palmitoylated in the C-terminus (Pickering et al., 1995) 

and, as well as other subunits, can interact with other proteins that contain 

specific PDZ domains (Garcia et al., 1998; Hirbec et al., 2003).  

 

Kainate receptor pharmacology 

 

 In a recent past the study of kainate receptor physiology has been 

hampered by the lack of selective ligands and also because both AMPA 

and kainate receptors display a similar affinity for glutamate (EC50 ~300 µM; 

Paternain et al., 1996). In addition to glutamate, both native and 

recombinant kainate receptors are also activated by exogenous agonists 

that include kainate and domoate. However, these compounds also 



 
 
 
 
 
 

Introduction 

 37 

 

 

 

 

 

 

activate AMPA receptors inducing large sustained currents and the 

selectivity towards kainate receptors is rather modest (Kiskin et al., 1986; 

Keinänen et al., 1990; Patneau and Mayer, 1991). In this respect 

exceptions exist; the GluR7 subunit not only displays a low affinity for 

glutamate and kainate, as compared to GluR5 or GluR6, but is also 

insensitive to domoate, which in fact appears to act as a high-affinity 

antagonist (Schiffer et al., 1997). The potential heterogeneity of kainate 

receptors, given the innumerous possible assemblies between the various 

subunits and their variants, complicates the assessment of pharmacological 

properties within the family. 

Several kainate receptor-selective agonists have now been 

identified (Figure 1.8A). These include ATPA, (S)-5-iodowillardiine, 

SYM2081 and LY339434. ATPA, which is a substituted analog of AMPA, 

and (S)-5-iodowillardiine are potent, selective GluR5 agonists and display 

low affinity for AMPA and GluR6 or GluR7-containing receptors (Clarke et 

al., 1997; Swanson et al., 1998; Alt el al., 2004). GluR5 can also be 

activated by AMPA but ATPA and AMPA can, however, also activate 

heteromeric receptors composed of GluR6 and KA2 subunits. The gamma 

substituted glutamate analogs SYM2081 and LY339434 are also selective 

for kainate over AMPA receptors (Figure 1.8A). While the first displays 

selectivity for GluR5 and GluR6-containing kainate receptors, the later 

seems more selective for GluR5 over GluR6 and GluR7 (Small et al., 1998; 

Pedregal et al., 2000; Alt et al., 2004). Another recently isolated, naturally 

occurring marine toxin, dysiherbaine, also acts as a potent kainate receptor 

agonist (Sakai et al., 2001; Swanson et al., 2002) and has allowed to 

demonstrate that activation of the GluR5 subunit within a GluR5/KA2 

heteromer suffices to allow the opening of the receptor channel (Swanson 

et al., 2002).  

 Compounds of the quinoxalinedione family, including CNQX and 

NBQX, act as competitive antagonists at native and recombinant kainate 
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receptors (Figure 1.8B). However, they exhibit little selectivity for kainate 

over AMPA receptors. New compounds were synthesized that display more 

selectivity towards kainate receptors and act as potent antagonists at 

certain subunits. This is the case for LY382884, a compound derived from 

the AMPA receptor non-competitive antagonist, LY293558 that displays 

selectivity towards the GluR5 subunit (Bortolotto et al., 1999; Bleakman et 

al., 2002; Alt et al., 2004). Recently, the willardiine derivative UBP296 has 

been reported as the most potent and selective antagonist at GluR5-

containing kainate receptors, with activity residing in the S enantiomer, 

UBP302 (More et al., 2004). Another compound, NS3763, was also 

 

Figure 1.10 – Chemical structures of a few selective kainate receptor agonists (A) and antagonists (B). 

See text for more details. Adapted from Kew and Kemp, 2005. 
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recently shown to be a non-competitive antagonist that exhibits selectivity 

for GluR5-containing receptors (Christensen et al., 2004). 

 

Kainate receptor physiology 

 

Kainate receptors can play diverse roles in glutamatergic synaptic 

transmission. The actions of kainate receptors at the postsynaptic level 

have only recently begun to be unraveled due to the synthesis of GYKI 

53655 that blocks AMPA receptor mediated responses. Kainate receptor-

mediated EPSCs were first described at the synapses between mossy 

fibers and CA3 pyramidal cells in the hippocampus (Castillo et al., 1997; 

Vignes and Collingridge, 1997; Mulle et al., 1998) and at excitatory 

synapses onto interneurons (Cossart et al., 1998; Frerking et al., 1998), 

and were later described at other synapses of the nervous system 

(reviewed by Huettner, 2003). Kainate receptor-mediated responses are 

much smaller and slower than AMPA receptor-mediated responses, 

allowing for their summation upon repetitive stimulation. These 

characteristics have led to the hypothesis that kainate receptors have an 

extrasynaptic localization, where they sense low concentrations of 

glutamate spilling over from the synaptic cleft (Lerma, 1997). However, the 

demonstration that these receptors can be activated by single quanta of 

glutamate (Cossart et al., 2002) and that manipulating the extracellular 

concentration of glutamate does not change the properties of kainate 

receptor-mediated responses (Bureau et al., 2000; Kidd and Isaac, 2001) 

have argued against this idea. 

Kainate receptors can also be found at the presynaptic level where 

they can be activated by endogenous glutamate. They were first described 

in synaptosomal preparations (Malva et al., 1995, 1996; Chittajallu et al., 

1996; Malva et al., 1998; Perkinton and Sihra, 1999) and found to modulate 

the intraterminal calcium concentration ([Ca2+]i) (Malva et al., 1995), to 
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regulate glutamate release (Chittajallu et al., 1996; Malva et al., 1996; 

Perkinton and Sihra, 1999), and synaptic activity at both excitatory and 

inhibitory synapses in the hippocampus (Clarke et al., 1997; Rodriguez-

Moreno et al., 1997) and at inhibitory synapses in the hypothalamus (Liu et 

al., 1999).  

Several plasticity phenomena at the hippocampal mossy fiber-CA3 

pyramidal cell synapses seem to be due to the activation of presynaptic 

kainate receptors. The activation of these receptors by synaptically 

released glutamate, in response to successive stimuli, contributes to the 

unusually large frequency facilitation and paired pulse facilitation observed 

at this synapse (Contractor et al., 2001; Lauri et al., 2001; Schmitz et al., 

2001). Presynaptic kainate receptors also have a permissive role in the 

induction of a presynaptically expressed, PKA-dependent form of LTP 

found at the mossy fiber synapse (Contractor et al., 2001; Schmitz et al., 

2003; present work) and also contribute to a pronounced post-

depolarization and Ca2+ rise in the presynaptic bouton (Kamiya et al., 

2002). Kainate receptors also seem to increase axonal excitability through 

a direct depolarization of the membrane (Kamiya and Ozawa, 2000; 

Contractor et al., 2001) and are involved in the modulation of GABA release 

form interneurons in the CA1 subregion of the hippocampus (Mulle et al., 

2000; Cossart et al., 2001).  

The notion that kainate receptors are ionotropic glutamate receptors 

cannot be taken in the strict sense of an ionotropic action. It was suggested 

that kainate receptors on presynaptic GABAergic terminals reduce 

neurotransmitter release by a G-protein-mediated activation of 

phospholipase C and PKC (Rodriguez-Moreno et al., 1997) and it has been 

later shown that these receptors can be directly coupled to G-proteins 

(Cunha et al., 1999). In synaptosomes, kainate receptors modulate 

glutamate release in a PKA-dependent manner (Rodriguez-Moreno and 

Sihra, 2004) and modulate increases in intracellular Ca2+ in a G-protein-
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dependent manner in dorsal root ganglion neurons (Rozas et al., 2003). 

Kainate receptors also regulate a slow after-hyperpolarization of CA1 

pyramidal neurons through a pertussis toxin-sensitive metabotropic action 

(Melyan et al., 2002).  

 

Distribution of transcripts in the hippocampus 

 

In the hippocampal formation mRNA encoding for all the subunits of 

kainate receptors can be found in the main cell types, whereas the 

expression in interneurons is somewhat less known (see Figure 1.9). The 

expression of the KA1 subunit mRNA is restricted to the CA3 pyramidal 

cells and dentate granule cells, with virtually no expression in CA1 

pyramidal cells (Werner et al., 1991; Hikiji et al., 1993; Wisden and 

Seeburg, 1993; Bahn et al., 1994). Although this distribution overlaps more 

or less with [3H]kainate binding sites (Monaghan and Cotman, 1982) the 

distribution of transcripts for kainate receptors is more widespread. The 

KA2 subunit mRNA is abundant in all main cell types, whereas the GluR5 

subunit appears to be virtually absent from the hippocampus, with only 

some punctate labelling in interneurons (Bettler et al., 1990; Wisden and 

Seeburg, 1993; Bahn et al., 1994). Labelling of transcripts for the GluR6 

subunit are found in all main cells from CA1, CA3 and the dentate gyrus, 

being higher in the later and lower in the first (Egebjerg et al., 1991; Wisden 

and Seeburg, 1993), and can also be found in interneurons. mRNA for the 

GluR7 subunit is found in dentate gyrus granule cells but appears to be 

absent from pyramidal cells (Bettler et al., 1992; Lomeli et al., 1992; 

Wisden and Seeburg, 1993; Bureau et al., 1999). This subunit also appears 

to be expressed in some interneurons of areas CA1 and CA3. This pattern 

of expression of the different subunits leads to the prediction that CA1 

pyramidal cells may have GluR6/KA2 receptors; CA3 pyramidal cells may 

have GluR6/KA1, GluR6/KA2 or GluR6/KA1/KA2 receptors; dentate 
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granule cells may, in turn, have any number of receptors derived of various 

combinations of KA1, KA2, GluR6 and GluR7. 

 

Synaptic localization and function: lessons from mutant mice 

 

Mutant mice technology has allowed for substantial developments in 

the knowledge of the subunit composition and function of native kainate 

receptors at certain synapses. To date, global mutants for the GluR5 (Mulle 

et al., 2000), GluR6 (Mulle et al., 1998) and KA2 (Contractor et al., 2003) 

subunits have been generated. Mutant mice lacking both the GluR5 and 

GluR6 subunits, mutants for the GluR5 and GluR6 Q/R editing site and a 

myc-GluR6 knock-in are also available.  

Mice lacking the GluR5 subunit were generated by homologous 

recombination is ES cells and display normal overall anatomy and health 

status. In the CA1 subregion of the hippocampus there are no changes in 

kainate receptor-mediated increase in IPSC frequency, no change in 

kainate receptor-mediated whole-cell currents from interneurons in the 

Figure 1.9 – Distribution of mRNA 

encoding for the five different kainate 

receptor subunits in the mouse 

hippocampus using 35
S
-labelled 

riboprobes. The first panel (A) 

represents a Nissl-stained section.  

Adapted from: Bureau et al., 1999 
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stratum radiatum and no change in kainate receptor-mediated reduction of 

IPSC amplitude but these are all abolished if the GluR6 subunit is also 

removed (Mulle et al., 2000). In the CA3 subregion these mice present no 

changes in kainate receptor-mediated depression of evoked excitatory 

synaptic transmission of mossy fiber and associational commissural inputs 

to CA3 pyramidal cells. They do present, however, loss of kainate receptor-

mediated potentiation of evoked excitatory synaptic transmission in 

perforant path inputs to CA3 neurons and loss of kainate-induced 

enhancement of mEPSC frequency in mossy fiber synapses (Contractor et 

al., 2000; Mulle et al., 2000; Contractor et al., 2001). These changes 

probably reflect expression of GluR5 in interneurons since plasticity 

phenomena that depend upon the direct activation of mossy fibers seem 

intact, although pharmacological data point to GluR5 as a presynaptic 

subunit at the mossy fiber synapse (Bortolotto e al., 1999; More et al., 

2004; but see Breustedt and Schmitz, 2004). 

Removal of the GluR6 subunit has more dramatic effects in the 

hippocampal formation and, although overall neuroanatomy is normal, 

these animals are less active than wildtypes. They don’t show any changes 

in motor learning or special learning but are much more resistant to kainate 

excitotoxicity. At the cellular level there is a complete loss of kainate 

receptor-mediated depression of synaptic transmission both in mossy fiber 

and in associational-commissural inputs to CA3 neurons. In addition, 

kainate receptor-mediated potentiation of evoked excitatory synaptic 

transmission in perforant path inputs to CA3 neurons is also lost. At the 

mossy fiber synapse striking changes are observed; short-term synaptic 

plasticity is greatly reduced and LTP is nearly abolished, although PKA-

dependent potentiation of mossy fiber synaptic transmission is intact (Mulle 

et al., 1998; Bureau et al., 1999; Contractor et al., 2000; Contractor et al., 

2001). Additionally, there are no postsynaptic kainate receptor-mediated 

currents at this synapse (Mulle et al., 1998) and this is also observed in 
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cerebellar Golgi cells (Bureau et al., 2000). Therefore, at the mossy fiber 

synapse GluR6 appears to be a critical subunit at both pre- and 

postsynaptic kainate receptors. 

Mice lacking the KA2 subunit do not differ from their littermates in 

general health status, breeding or behavior and display more subtle 

changes at the mossy fiber-CA3 synapse. The facilitatory effect of low 

concentrations of kainate is lost and the inhibition is observed at lower 

concentrations of agonist. The contribution of kainate receptors to the 

postsynaptic current is not changed, although receptor kinetics are faster. A 

loss of heterosynaptic facilitation is also observed, although this 

interpretation of the data is not very clear. Presynaptic forms of short- and 

long-term synaptic plasticity were not changed neither was the overall 

immunoreactivity for GluR5 and GluR6 subunits of kainate receptors 

(Contractor et al., 2003). These results reveal that KA2 seems to be part of 

kainate receptors on both sides of the mossy fiber synapse. 

Besides the changes already referred when describing GluR5-/- 

mice, data from cultured transfected neurons of GluR5-/-/GluR6-/- double 

mutants indicates that surface expression of GluR6b and all GluR5 splice 

variants is reduced but can be rescued by co-transfection with GluR6a 

(Jaskolski et al, 2004). Regarding the remaining kainate receptors subunits, 

whereas no mutant mouse lacking the KA1 subunit has been reported yet, 

a mouse lacking the GluR7 subunit has been generated and is subject for 

chapter 5 of the present report.  

 

 

1.4. Objectives 

 

The role and mechanisms of action of certain glutamate receptors in 

synaptic transmission are still a matter of much debate. In this respect, it is 

also important to understand their synaptic localizations. In the present 
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report we sought to answer several questions specifically regarding the 

synaptic localization of glutamate receptors. At present, the existence of 

presynaptic ionotropic and metabotropic glutamate receptors is well 

established, but knowledge about the subunit composition of such 

receptors is, in some cases, still lacking. Furthermore, an in the specific 

case of kainate receptors, their role in modulating presynaptic phenomena 

at some synapses has been documented, but the molecular identity and 

modes of action of such receptors are not known.  

In the present work, in order to look at the subsynaptic distribution 

of the various glutamate receptors, in Chapter 3 we first sought to optimize 

a biochemical technique that allows for the selective solubilization and 

separation of proteins form the presynaptic active zone, postsynaptic 

density and of non-synaptic localizations.  

We then tried to study the distribution of several metabotropic, 

AMPA and NMDA receptor subunits. Regarding kainate receptors, we were 

particularly interested in investigating their role in modifying the release of 

glutamate and in the correlation of such properties with their localization at 

the presynaptic level. For this, in Chapter 4, we investigated the modulation 

of [3H]glutamate release and of changes in the [Ca2+]i in nerve terminals 

from the hippocampal CA3 subregion, coupled to the use of Ca2+ channel 

blockers. We also correlated the distribution of the various kainate receptor 

subunits in the subsynaptic protein fractions with the data from the 

functional studies.  

In order to be more specific in addressing the issue of kainate 

receptor-dependent modulation of synaptic phenomena we went on to 

analyze, on Chapter 5, the possible role of a kainate receptor subunit with 

unknown function in the brain: the GluR7 subunit. For this, we used GluR7-/- 

mice and investigated a possible participation of GluR7-containing kainate 

receptors in short- and long-term plasticity phenomena. We also sought to 

find ways to pharmacologically interfere with presynaptic kainate receptors 
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in order to show their presynaptic function, as an alternative to the genetic 

deletion model. 
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2.1. Solubilization of synaptic proteins 

 

2.1.1. Preparation of synaptosomes 

 

Synaptosomes were prepared based on the method described by 

Phillips and collaborators (2001), with modifications. The hippocampi from 

8-12 animals were quickly dissected out and homogenized at 4ºC with a 

Teflon-glass homogenizer in 15 mL of isolation solution [0.32 M sucrose, 

0.1 mM CaCl2, 1 mM MgCl2, 0.1 mM phenylmethylsulfonyl fluoride (PMSF; 

Sigma)]. The concentration of sucrose was raised to 1.25 M by addition of 

70 mL of 2 M sucrose and 30 mL of 1 mM CaCl2, and the suspension was 

divided into ultracentrifuge tubes. The homogenate was overlaid with 8 mL 

of 1.0 M sucrose, 0.1 mM CaCl2 and with 5 mL of homogenization solution 

and centrifuged at 100,000 × gmax for 3h at 4ºC. Synaptosomes were gently 

collected at the 1.25/1.0 M sucrose interface, diluted 1:10 in cold 0.32 M 

sucrose with 0.1 mM CaCl2 and pelleted by centrifugation at 15,000 × gmax 

during 30 min at 4ºC. The synaptosome pellets were ressuspended in a 

small volume of 0.32 M sucrose with 0.1 mM CaCl2 and a small sample 

was taken for gel electrophoresis. Synaptosomes were either used 

immediately or stored frozen at -70 ºC. 

 

 

2.1.2. Solubilization of non-synaptic and presynaptic proteins 

 

The solubilization procedure was modified from the one decribed by 

Phillips and colleagues (2001). Synaptosomes were diluted 1:10 in cold 0.1 

mM CaCl2 and an equal volume of 2× solubilization buffer (2% Triton X-

100, 40 mM Tris, pH 6.0) was added to the suspension. The membranes 

were incubated for 30 min on ice with mild agitation and the insoluble 

material (synaptic junctions) pelleted by centrifugation at 40,000 × gmax for 
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30 min at 4ºC. Proteins in the supernatant (non-synaptic fraction) were 

precipitated with 6 volumes acetone at –20ºC and recovered by 

centrifugation at 18,000× gmax for 30 min and at -10ºC. The synaptic 

junctions pellet was washed twice in pH 6.0 solubilization buffer and 

mechanically ressuspended with a small Teflon-glass homogenizer in pH 

8.0 solubilization buffer (1% Triton X-100, 20 mM Tris, pH 8.0, using 10 

volumes of the initial synaptosome suspension), incubated for 30 min on 

ice with mild agitation and centrifuged at 40,000 × gmax for 30 min and 4ºC 

(Figure 2.1). The increase in pH from 6.0 to 8.0 disrupts the extracellular 

matrix that holds the presynaptic active zone tightly bound to the 

postsynaptic density, which results in the solubilization of presynaptic 

proteins, leaving the postsynaptic densities essentially preserved (Phillips 

et al., 2001). For maximum recovery of presynaptic proteins a second or 

Figure 2.1 – Schematic representation of the major procedures in the method used to isolate 

presynaptic active zone, postsynaptic density and non-synaptic proteins from nerve terminals. Pictures 

adapted from Phillips et al., 2001. 
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even third (depending on the amount of material available) solubilization 

step at pH 8.0 was performed from the pelleted insoluble material. The 

supernatants were pooled (presynaptic fraction) and processed as above 

for recovery of the solubilized proteins. PMSF (1 mM) was added to the 

suspensions in all extraction steps. The proteins recovered from the 

supernatants and from the final insoluble pellet (postsynaptic fraction) were 

solubilized in 5% SDS. Samples were further treated with SDS-PAGE 

sample buffer [6x concentrated; 350 mM Tris, 10% (w/v) SDS, 0.6 M DTT, 

30% (v/v) glycerol, 0.06% (w/v) bromophenol blue], boiled (5 min at 98ºC) 

and stored at -20ºC. For some experiments the procedure was terminated 

before solubilizing the presynaptic active zone proteins and the synaptic 

junctions were treated as described for using in Western blotting. 

 

 

2.1.3. Protein quantification 

 

The protein concentration in the various samples was determined 

using the bicinchoninic acid (BCA) method (Pierce) and bovine serum 

albumin as a standard. 

 

 

2.1.4. Western blot 

 

Extracts from immunoprecipitation experiments (section 2.6) or ten 

to twenty five micrograms of protein from the different subsynaptic fractions 

were separated by SDS-PAGE on 7.5% acrylamide/bisacrilamide gels, 

using a Bicine/SDS-based electrophoresis buffer (pH 8.3), and transferred 

onto PVDF membranes (750 mA, 50 min at 4ºC in a solution containing 10 

mM CAPS and 10% methanol, pH 11.0). Membrane blocking was 

performed for 1h at room temperature in Tris-buffered saline containing 5% 
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low-fat milk and 0.1% Tween 20. Primary antibodies raised against typically 

presynaptic (syntaxin, SNAP-25), postsynaptic (PSD-95, NMDA R1) and 

non-synaptic (synaptophysin, NCAM) proteins, and glutamate receptor 

subunits (see Table 1) were applied overnight at 4ºC and were detected 

using alkaline phosphatase conjugated secondary antibodies. Immunoblots 

were visualized using the Enhanced ChemiFluorescence detection reagent 

and a Versa Doc 3000 imaging system (BioRad). Broad range molecular 

weight standards (BioRad) were always included in each gel to allow 

estimation of the relative molecular weight of immunoreactive protein 

bands. 

 

 

2.2. Measurements of [[[[Ca
2+

]]]]i in hippocampal synaptosomes 

 

2.2.1. Preparation of synaptosomes 

 

A partially purified synaptosomal fraction (P2) was isolated from the 

rat hippocampus, essentially as described previously (Malva et al., 1996). 

The CA3 subregion of the hippocampi of each rat was micro-dissected (see 

Silva et al., 2001 for details), homogenized in 0.32 M sucrose, 10 mM 

HEPES-Na, pH 7.4, and centrifuged at 3,000 × gmax for 2 min. The resulting 

pellet was ressuspended, followed by sedimentation at the same speed. 

The combined supernatants were centrifuged for 12 min at 14,600 × gmax, 

and a P2 pellet was obtained. This pellet was ressuspended in buffered 

sucrose medium, divided into 4 equal aliquots and the synaptosomes 

stored as drained pellets (Malva et al., 1996). All procedures were 

performed at 4ºC. 
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2.2.2. Ratiometric [[[[Ca2+]]]]i measurements 

 

The evaluation of changes in the [Ca2+]i was performed by 

ratiometric Fura-2 fluorescence analysis. Synaptosomes were loaded with 

5 µM Fura-2/AM (Molecular Probes) in a solution containing 132 mM NaCl, 

1 mM KCl, 1 mM MgCl2, 0.1 mM CaCl2, 1.2 mM H3PO4, 10 mM glucose, 10 

mM HEPES-Na and 0.02% Pluronic F-127, pH 7.4 with 0.1% fatty acid-free 

bovine serum albumin for 20 min at 25ºC. After this loading period, 

synaptosomes were pelleted and the extracellular probe was removed. The 

synaptosomal pellet was ressuspended in 2 mL of assay medium 

containing  132 mM NaCl, 1 mM KCl, 1 mM MgCl2, 2 mM CaCl2, 10 mM 

glucose and 10 mM HEPES-Na, pH 7.4, incubated for 10 min at 37ºC for 

complete hydrolysis of Fura-2/AM to Fura-2 and transferred into an acrylic 

cuvette. The fluorescence of Fura-2-loaded synaptosomes was monitored 

at 510 nm using a computer-assisted Spex Fluoromax spectrofluorometer, 

with double-wavelength excitation at 340 nm and 380 nm, using 5 nm slits. 

The calibration was made in the presence of 2.5 µM ionomycin (Rmax) 

followed by 25 mM EGTA (Rmin). The fluorescence ratios were converted 

into [Ca2+]i values by using the calibration equation for measurements with 

double-wavelength excitation and considering the dissociation constant of 

the Fura-2/Ca2+ complex as 224 nM (Grynkiewicz et al., 1985). 

 

 

2.3. [3H]Glutamate release from hippocampal synaptosomes 

 

The method to monitor the release of [3H]glutamate was adapted 

from the methodology already described (Lopes et al., 2002). Briefly, 

synaptosomes prepared from micro-dissected CA3 subregion slices (P2 

pellet, prepared as described for [Ca2+]i measurements) were loaded with 

[3H]glutamate (2 µM) during 5 min at 37ºC, layered at the surface of 
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Whatman GF/C glass microfiber filters and superfused at a flow rate of 0.8 

mL/min with a solution containing 120 mM NaCl, 3 mM KCl, 26 mM 

NaHCO3, 1.25 mM NaH2PO4, 1 mM MgSO4, 2 mM CaCl2 and 10 mM 

glucose, saturated with a 95% O2/ 5% CO2 mixture for 20 min before the 

beginning of each experiment. Agonists were generally applied after 7 min 

of sample collection and kept until the end of the experiment (total of 15 

min), unless otherwise stated. Whenever receptor antagonists were used 

they were applied 10 min before starting sample collection and kept during 

the whole experiment. Higher potassium concentrations used in certain 

experiments were achieved by isosmotic substitution of NaCl by KCl in the 

superfusion medium. Sample collection was performed every minute and 

0.5 mL of each sample was added to 5 mL of a liquid scintillation cocktail. 

Radioactivity was measured using a Packard Tri-Carb 2000 CA liquid 

scintillation counter with quench correction. 

 

 

2.4. Generation of GluR7 mutant mice 

 

  GluR7-/- mice were generated by homologous recombination in ES 

cells. The targeting construct consisted of a 12 kb BamHI/BamHI fragment 

from 129Sv mouse gene in which a PGK-neoR cassette replaced a 3.9 kb 

fragment overlapping the second membrane domain of GluR7 (exon 12 in 

grik1 or grik2 genes). Transfection and selection procedures into W9.5 ES 

cells were as previously described (Vetter et al., 1996). Positive clones 

(2/360) were identified by Southern blotting and injected into C57BL/6 

blastocysts. One chimera transmitted the mutation through the germline 

and was backcrossed to C57BL/6; the resulting C57BL/6x129Sv mice were 

intercrossed to produce GluR7-/- mice. The GluR7-/- mice used in the 

present study were backcrossed with C57BL/6 mice for 5 generations 

(>90% C57BL/6 background). GluR7-/- mice did not differ from control mice 
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in breeding or general health status, and did not show any overt behavioral 

phenotype.  

 

Note: GluR7-/- mice were generated at The Salk Institute, in Dr. Stephen 

Heinemann’s laboratory, by Drs. Christophe Mulle, Bernhard Bettler and 

Jacques Barhanin and data about the methodologies was included due to 

the fact that it has not been published before. 

 

 

2.5. Electrophysiology 

 

2.5.1. Slice preparation 

 

Paraggital hippocampal slices were prepared from postnatal day 14 

to 22 C57BL/6 wildtype, or mutant mice lacking specific kainate receptor 

subunits, using standard techniques (Marchal and Mulle, 2004). The mice 

were decapitated and the brain rapidly removed under ice-cold artificial 

cerebrospinal fluid (ACSF) containing 120 mM NaCl, 2.5 mM KCl, 2.3 mM 

CaCl2, 1.3 mM MgCl2, 26 mM NaHCO3 and 10-25 mM glucose. Slices were 

cut at a thickness of 320-350 µm using a Leica VT 1000 S vibroslicer and 

placed in a submerged chamber containing ACSF at room temperature for 

at least one hour before starting the recordings. The ACSF was saturated 

with a mixture of 95% O2/5%CO2 at all times.  

 

 

2.5.2. Electrophysiological recordings in slices 

 

Individual slices were transferred to a recording chamber and 

bathed continuously with ACSF saturated with a mixture of 95% O2/5%CO2 

at a flow rate of 1-2 mL/min. Whole-cell voltage-clamp recordings were 
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made at room temperature (22-25ºC) on pyramidal cells of the hippocampal 

CA3 field, visualized by infrared video microscopy, under a Zeiss Axioskop 

upright microscope equipped with a 63x magnification water immersion 

objective. Patch pipettes were pulled from borosilicate capillaries to have a 

resistance of 3-4 MΩ when filled with a solution containing 122 mM CsCl, 2 

mM NaCl, 2 mM MgCl2, 0.5 mM EGTA, 10 mM HEPES, pH adjusted to 8.0 

with CsOH. This solution was added 4 mM of Na2ATP reconstituted in 

water before starting the recordings, which would also set the pH of the 

intracellular medium at 7.3. Cells were voltage-clamped at -70 mV and 

minimal intensities of stimulation, provided by a constant current isolated 

stimulator (Digitimer), were used to limit polysynaptic activity and the 

recruitment of non-mossy fiber circuits. Bicuculline (10 µM) was kept in the 

bathing solution at all times during recordings to block GABAA receptors. 

Excitatory postsynaptic currents were evoked in CA3 pyramidal cells by 

stimulation of the mossy fibers with a monopolar glass electrode, filled with 

a HEPES-based extracellular solution, placed in the dentate gyrus or in the 

stratum lucidum in the vicinity of the recorded cell. To confirm that mossy 

fiber responses were being recorded it was routinely verified after the 

experimental procedure that the group II mGluR agonist L-CCG-I, applied 

at a concentration of 10 µM, inhibited the EPSC amplitude by a large extent 

(>70%). Recordings were made using an EPC9 amplifier (HEKA), at a 

sample rate of 10 KHz, and analyzed using PulseFit (HEKA) and IGOR Pro 

programs (WaveMetrics).  

 

Short-term synaptic plasticity 

 

For short-term plasticity experiments, AMPA receptor-mediated 

EPSCs were recorded in the presence of 10 µM bicuculline and kainate 

receptor-mediated EPSCs were recorded in the same conditions after the 

application of the AMPA receptor antagonist, GYKI 53655, at a 
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concentration of 50 µM. In some experiments mossy fiber EPSCs were 

recorded in cells held at +40 mV to remove the magnesium block of NMDA 

receptors and allow for the simultaneous monitoring of the AMPA and the 

NMDA component of synaptic responses. Several protocols were used to 

compare short-term plasticity at the mossy fiber synapses between wildtype 

and GluR7-/- mice. Frequency facilitation was calculated by comparing the 

mean EPSC peak amplitude of 20 cycles of stimulation at a frequency of 

0.1 Hz to that obtained for 30 cycles at 0.2 Hz, 60 cycles at 0.5 Hz, 60 

cycles at 1 Hz and 100 cycles at 3 Hz. EPSC amplitude was allowed to 

return to the initial level between the test frequencies by repeating the basal 

0.1 Hz stimulation paradigm. Paired pulse ratio was calculated from the 

mean peak EPSC amplitude of two pulses of stimulation given at intervals 

of 10 ms, 20 ms, 40 ms, 100 ms and 200 ms. To study the summation 

property of mossy fiber synapses a train of 5 stimuli at a frequency of 20 Hz 

was applied 20 times every 20 seconds at normal stimulation intensity and 

the mean peak EPSC amplitude obtained at each stimulation was 

normalized to the amplitude of the first EPSC in the series. 

 

Long-term synaptic plasticity 

 

Long-term synaptic plasticity was studied by following the induction 

and expression of long-term potentiation (LTP). LTP was induced, unless 

otherwise stated, by a long high frequency stimulation (L-HFS) protocol, 

consisting of 100 stimulations at a frequency of 100 Hz, repeated 3 times 

with a 10 second interval between trains, in the presence of 10 µM 

bicuculline and 50 µM of the NMDA receptor antagonist D-AP5. Baseline 

stimulation was done at a frequency of 0.05 Hz and the same intensity of 

stimulation was used for baseline recording and for the high-frequency 

train. Mossy fiber responses were monitored for an additional 40-50 min 

following the induction protocol and L-CCG-I was applied at the end of the 
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experiment. In some experiments a modified induction protocol or slightly 

different ionic conditions were used and these are indicated where 

appropriate. 

 

 

2.5.3. Electrophysiological recordings of glutamate-evoked currents in 

HEK 293 cells 

 

HEK 293 cells were co-transfected with GluR1, GluR6a or GluR7a 

subunits and GFP at a cDNA ratio of 2:1. To study heteromeric receptors, 

GluR7a and the edited form of GluR6a (GluR6aR) were co-transfected with 

GFP at a ratio of 1:3:2. Six to eight hours after transfection cells were re-

plated on glass coverslips and recorded the following day. For recordings, 

cells were placed at room temperature in a HEPES buffered solution (HBS) 

containing  145 mM NaCl, 2 mM KCl, 2 mM MgCl2  2 mM CaCl2, 10 mM 

glucose and 10 mM HEPES, adjusted to 320 mOsm/L, and to pH 7.4 with 

NaOH. Cells were observed with fluorescent illumination and isolated, 

brightly fluorescent cells were chosen. Recordings were made with 

borosilicate glass pipettes filled with a solution containing 122 mM CsCl, 2 

mM NaCl, 2 mM MgCl2, 10 mM EGTA, 10 mM HEPES, 4 mM Na2ATP and 

0.06 mM spermine, adjusted to 310 mOsm/L, and pH 7.2 with CsOH. 

Pipette resistance was 2-4 MΩ. After the whole-cell configuration was 

achieved, the cell was gently pulled and lifted off the coverslip, and placed 

under the flow of a theta tube containing HBS, with the other barrel 

containing HBS, 30 mM glutamate and 30 mM sucrose to clearly see the 

interface between the two flows. Fast application was achieved by moving 

the theta tube laterally with a piezoelectric device (Burleigh) and application 

of glutamate was made every 20 s. Only minimal rundown of the responses 

was observed over 30 min, and was not corrected for. Series resistance 

was less than 20 MΩ, and compensated by 70 % or more. Cells were held 
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at –80 to –40 mV, except for current-voltage (I-V) curves where membrane 

voltage was held between -80 and +80 mV in 10 mV steps and voltage 

stepping was performed 100 ms before the glutamate application. 

Antagonists were applied by exchanging the flowing solutions with manual 

4-way valves for at least 3 minutes and exchange between the solutions 

took about 1 minute. To measure the effect of antagonists at a given 

concentration, averages of 5 traces were taken and the ratio of their 

amplitude to the amplitude of traces in the control situation calculated. 1-3 

concentrations of antagonist were applied for each cell. Concentration-

response curves were fitted with the Hill equation, i.e. fraction = 1 - 1/(1 + 

(IC50/C)
h), with C being the antagonist concentration. Least square fit was 

performed with Igor Pro. 

 

 

2.6. Co-immunoprecipitation experiments 

 

To determine if the GluR6 and GluR7 subunits of kainate receptors 

were associated in vivo, and in the absence of a suitable specific anti-

GluR7 antibody, we used the following experimental approach; we 

immunoprecipitated kainate receptors from transgenic mice expressing 

myc-GluR6 from brain extracts after crossing of these mice with a GluR6-/- 

background (myc-GluR6xGluR6-/- mice; Coussen et al., 2002). Myc-GluR6 

is detected either with an anti-GluR6/7 antibody or with an anti-myc 

antibody as a 135 kDa band, whereas the band labeled by the anti-GluR6/7 

antibody at 115 kDa corresponded to GluR7. For each immunoprecipitation 

one brain was homogenized in 6 mL of homogenization solution containing 

20 mM HEPES, 0.15 mM EDTA and 10 mM KCl, pH 7.5, supplemented 

with a cocktail of protease inhibitors (aprotinin, leupeptin, pepstatin-A and 

pefabloc, 10 µg/mL), and centrifuged for 10 min at 520 x gmax. The 

supernatant was further centrifuged for 30 min at 18,000 x gmax, the 
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resulting pellet homogenized with 20 strokes in 15 mL of the same solution 

containing 15% sucrose and centrifuged at 520 x gmax for 10 min to remove 

genomic DNA. The supernatant containing the membranes was centrifuged 

again for 30 min at 18,000 x gmax. Brain membranes were solubilized in a 

solution containing 20 mM HEPES, 1% Triton X-100, 150 mM NaCl and 

0.15 mM EDTA, with the same protease inhibitor cocktail and pH 7.5 with 

20 strokes, incubated for 1 h, and samples were centrifuged for 45 min at 

18,000 x gmax. All steps were performed at 4ºC. The solubilized fraction was 

cleared of non specific binding with protein-G Sepharose for one hour at 

4°C. This Triton X-100 supernatant, containing 100% of kainate receptors, 

was then incubated with 5 µg of anti-myc antibody (Table 1) for one hour at 

4°C. Then, 30 µL of protein-G Sepharose (Sigma) were added and 

incubated over night at 4°C. The resin was washed four times with 1 mL of 

loading buffer and four times with 1 mL of the same solution containing 500 

mM NaCl. Beads were ressuspended in 80 µL of loading buffer and used 

for Western blot. 

 

 

2.7. Antibodies 

 

All antibodies used in this work are commercially available and are 

listed in table 1. 

 

 

2.8. Animal care and maintenance 

 

Animals used in the present studies were housed in standard 

conditions with a 12h light/12h dark cycle and food and water were supplied 

ad libitum. Killing of the animals was performed by decapitation and all 
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efforts were made to reduce animal suffering and the number of animals 

used to a minimum. 

 

 

Table 1: Primary and secondary antibodies used for Western blot 

 

Primary 

antibody 
Dilution Origin 

Secondary 

antibody  
Dilution Origin 

Rabbit anti-GluR1 1:400 Upstate Goat anti-rabbit 1:20,000 Amersham  

Rabbit anti-GluR2 1:400 Chemicon Goat anti-rabbit 1:20,000 Amersham  

Rabbit anti-GluR2/3 1:400 Pharmingen Goat anti-rabbit 1:20,000 Amersham  

Rabbit anti-GluR4 1:400 Upstate Goat anti-rabbit 1:20,000 Amersham  

Rabbit anti-GluR5 1:500 Upstate Goat anti-rabbit 1:20,000 Amersham  

Rabbit anti-GluR6/7 1:600 Upstate Goat anti-rabbit 1:20,000 Amersham  

Goat anti-KA1 1:100 Santa Cruz Rabbit anti-goat 1:10,000 Zymed 

Rabbit anti-KA2 1:600 Upstate Goat anti-rabbit 1:20,000 Amersham 

Rabbit anti-NMDA R1 1:400 Chemicon Goat anti-rabbit 1:20,000 Amersham 

Rabbit anti-NMDA R2A 1:800 Chemicon Goat anti-rabbit 1:20,000 Amersham 

Rabbit anti-NMDA R2B 1:200 
Molecular 

Probes 
Goat anti-rabbit 1:20,000 Amersham 

Rabbit anti-NMDA R2C 1:800 
Molecular 

Probes 
Goat anti-rabbit 1:20,000 Amersham 

Rabbit anti-mGluR1 1:1000 Upstate Goat anti-rabbit 1:20,000 Amersham 

Rabbit anti-mGluR2 1:1000 Upstate Goat anti-rabbit 1:20,000 Amersham 

Rabbit anti-mGluR4a 1:1000 Upstate Goat anti-rabbit 1:20,000 Amersham 

Rabbit anti-mGluR5 1:1000 Upstate Goat anti-rabbit 1:20,000 Amersham 

Rabbit anti-mGluR7 1:1000 Upstate Goat anti-rabbit 1:20,000 Amersham 

Mouse anti-Syntaxin 1:3000 Sigma Goat anti-mouse 1:20,000 Amersham 

Mouse anti-SNAP-25 1:3000 Sigma Goat anti-mouse 1:20,000 Amersham 

Mouse anti-Synaptophysin 1:3000 Sigma Goat anti-mouse 1:20,000 Amersham 

Rat anti-NCAM 1:250 Pharmingen Goat anti-rat 1:5,000 
Santa 

Cruz 

Mouse anti-PSD-95 1:50,000 Upstate Goat anti-mouse 1:20,000 Amersham 

Mouse anti-myc IP Roche - - - 

Rabbit anti-mycTag 1:1500 Upstate Goat anti-rabbit 1:20,000 Amersham 

 

IP: immunoprecipitation 
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3.1. Introduction 

  

The study of the localization of synaptic receptors has ever been 

hampered by technical difficulties, mostly imposed by epitope accessibility 

due to the complex nature of synaptic structures (Chatha et al., 2000). 

Even in ultra-thin sections used for immunogold electron microscopy many 

antibodies prove to be ineffective at labelling proteins that sometimes are 

present in obvious amounts.  

The concept of the synapse was originally defined in functional 

terms but the need for the existence of a stable physical location was also 

realized. The synapse, put in simple terms, is the macromolecular structure 

that connects neurons with each other. More elaborately, we can define it 

as a highly specialized junction between two neurons, or between a neuron 

and an effector cell (e.g., muscle or gland cell), at which electrical and/or 

chemical signals are passed from one cell to another. The majority of 

synapses in the CNS are chemical synapses; they are formed by a 

presynaptic element separated from the postsynaptic neuron by the 

synaptic cleft. In the presynaptic bouton, vesicles filled with 

neurotransmitters release their contents into the synaptic cleft which will 

activate receptors in the postsynaptic element. The pre- and postsynaptic 

elements are strongly bond to each other and, once formed, this connection 

is very resistant to physical separation. The postsynaptic element exhibits a 

continuous, electron dense thickening below its membrane, the so-called 

postsynaptic density or PSD. On the presynaptic side a grid or web of 

electron dense particles, arranged in a regular network, has been observed 

(Bloom and Aghajanian, 1968; Pfenninger et al., 1972).  

A recent study showed that through selective changes in pH, during 

a gentle solubilization process, it was possible to more or less selectively 

solubilize proteins from different synaptic compartments (Phillips et al., 

2001). In this chapter we describe the improvement of a simple but 
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powerful way to separate non-synaptic, presynaptic active zone and 

postsynaptic density proteins based on the original report, but with some 

modifications. This methodology yields highly purified fractions of these 

proteins and was also used in the present chapter to study the subsynaptic 

localization of AMPA, NMDA and various mGluRs. Kainate receptors are 

given more attention in the following chapters.  

 

 

3.2. Results 

 

Distribution of synaptic markers in the protein fractions  

 

As originally described (Phillips et al., 2001), starting with 

hippocampal synaptosomes, non-synaptic proteins are solubilized in 1% 

Triton X-100 at pH 6.0, leaving the synaptic junctions (formed by the 

presynaptic and the postsynaptic elements still attached together) intact. 

Figure 3.1 – Typical Western 
blot analysis of the synaptic 
fractions to verify the efficiency 
of the solubilization process. 
Shown are representative 
Western blots for proteins 
characteristic of the postsynaptic 
density (PSD-95), of non-
synaptic localization 
(synaptophysin, NCAM) and of 
the presynaptic active zone 
(SNAP-25, Syntaxin) in the 
fractions derived from rat 
hippocampal nerve terminals.  
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Solubilization of the synaptic junctions in 1% Triton X-100 at pH 8.0 

selectively strips away the presynaptic web from the insoluble postsynaptic 

densities by disrupting the extracellular matrix that holds these structures 

tightly bound. This is shown in figure 3.1 where non-synaptic proteins such 

as synaptophysin and NCAM are present in the non-synaptic (pH 6.0-

soluble) fraction, being completely or almost completely excluded from the 

postsynaptic density or presynaptic active zone protein fractions. 

Presynaptic proteins, such as syntaxin and SNAP-25, were, to a large 

extent, recovered in the presynaptic active zone (pH 8.0-soluble) fraction, 

with little immunoreactivity in the pH 8.0-insoluble collection of proteins. On 

the other hand PSD-95, a typically postsynaptic protein, was greatly 

enriched in the insoluble postsynaptic density fraction and almost 

completely excluded (less than 5%) from the presynaptic active zone and 

non-synaptic fractions (Figure 3.1). 

 

Subsynaptic distribution of metabotropic glutamate receptors  

 

Metabotropic glutamate receptors act essentially as modulators of 

neurotransmission and their localization in both glutamatergic and 

GABAergic neurons suggests a role in modulating excitatory and inhibitory 

neurotransmission. The pattern of synaptic distribution of the various 

mGluRs has been studied using pre- and/or postembedding immunogold 

electron microscopy and here we studied their localization in the 

presynaptic, postsynaptic and non-synaptic protein fractions to compare it 

with the data existing in the literature. Using this methodology, 

immunoreactivity for mGluR1 was found, to a large extent, to be localized 

within the synapse, with more prominent labelling in the postsynaptic 

collection of proteins. Immunoreactivity for this receptor was also important 

in the pool of non-synaptic proteins (Figure 3.2). A very similar pattern of 

distribution was observed for the mGluR2 receptor (Figure 3.2). The 
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labelling for mGluR4a was more prominent in the postsynaptic fraction with 

less important labelling at both the presynaptic active zone and non-

synaptic collections of proteins, and mGluR5 presented a similar 

subsynaptic distribution (Figure 3.2). As for the mGluR7 receptor, the only 

Group III receptor studied in the present work, its subsynaptic distribution 

was in striking contrast with that seen for the other receptors since 

immunoreactivity was mostly present in the presynaptic active zone protein 

fraction. Furthermore, some immunoreactivity was also found at the 

postsynaptic density but was mostly absent from the non-synaptic pool of 

proteins. As expected, all subunits were detected in the starting 

synaptosome fraction. 

 

Subsynaptic distribution of NMDA receptors 

 

NMDA receptors are important modulators of synaptic transmission 

and were initially believed to be localized exclusively on the postsynaptic 

side of the synapse. However, initial observations that these receptors were 

Figure 3.2 – Representative 
Western blots of 
immunoreactivity for mGluRs in 
the subsynaptic fractions. High 
Immunoreactivity for mGluR1 
and mGluR2 was found in the 
postsynaptic density fraction but 
important levels were also 
localized in the presynaptic 
active zone and non-synaptic 
pools of proteins. mGluR4a and 
mGluR5 also presented a 
preferential postsynaptic 
localization and less labelling 
was observed for the other pools 
of proteins. In contrast, mGluR7 
was found mostly in the 
presynaptic fraction and absent 
from the non-synaptic sites. 
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localized presynaptically, for example in the spinal cord dorsal horn (Liu et 

al., 1994), started changing this view. The ultrastructural localization of 

NMDA receptors is fairly well documented. Here we also studied the 

subsynaptic distribution of some of the more well known subunits 

composing the NMDA family of ionotropic glutamate receptors to assess 

the usefulness of the technique to investigate the synaptic distribution of 

ionotropic receptors. The distribution of the NR1, NR2A, NR2B and NR2C 

subunits of NMDA receptors in the various protein fractions was very 

similar (Figure 3.3). Some faint labelling was observed, in all cases, in the 

pool of proteins from the presynaptic active zone and no immunoreactivity 

was present in the non-synaptic pool of proteins. Most of the 

immunoreactivity for these receptors (>95%, compared to the other 

fractionated material) was concentrated in the fraction containing the 

postsynaptic densities. 

 

Subsynaptic distribution of AMPA receptors 

 

AMPA receptors are the main mediators of glutamatergic synaptic 

transmission. As such they were, together with the NMDA receptors, 

Figure 3.3 – Representative 
Western blots of immunoreactivity 
for NR1 and NR2A, B and C 
subunits of NMDA receptors across 
the subsynaptic fractions isolated 
by differential solubilization of 
synaptic proteins. All subunits are 
mainly found in the pool of proteins 
from postsynaptic densities, with 
very faint immunoreactivity labelling 
the presynaptic active zone. No 
immunoreactivity was found in the 
non-synaptic collection of proteins 
for any of the antibodies used.  
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thought to be restricted to the postsynaptic side of the synapse, opposed to 

neurotransmitter release sites. However, growing evidence suggests that 

these receptors are also localized presynaptically. A possible role for AMPA 

receptors in modulating the release of catecholamines (Desce et al., 1991; 

Malva et al., 1994; Pittaluga and Raiteri, 1992; Wang et al., 1991), 

glutamate (Barnes et al., 1994; Patel and Croucher, 1997) and GABA 

(Satake et al., 2000) has been proposed. However, postembedding 

immunogold electron microscopy studies report that AMPA receptors are 

located exclusively on the postsynaptic specialization (reviewed by 

Ottersen and Landsend, 1997). Western blotting analysis of the solubilized 

fractions using antibodies directed against AMPA receptor subunits 

revealed considerably high levels of immunoreactivity in the presynaptic 

fraction of synaptic junctions (Figure 3.4). Immunoreactivity for the GluR1 

subunit was very abundant in all three fractions; presynaptic active zone, 

postsynaptic density and non-synaptic. The GluR2 subunit was detected in 

high levels in the postsynaptic density fraction and, as occurred for the 

Figure 3.4 – Representative 
Western blots of the distribution of 
immunoreactivity for AMPA 
receptors across the subsynaptic 
fraction of hippocampal synapses. 
All subunits were found, as 
expected, in the postsynaptic 
fraction of proteins but, additionally, 
high levels of immunoreactivity 
were found in the presynaptic 
active zone and non-synaptic 
fractions for GluR1, GluR2 and 
GluR2/3. GluR4 was harder to 
detect and showed a preferential 
localization in the fraction of 
postsynaptic densities.  
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GluR1 subunit, strong immunoreactivity was also seen in both the 

presynaptic active zone and non-synaptic collections of proteins. The use 

of an anti-GluR2/3 antibody revealed a distribution of immunoreactivity 

similar to that of the GluR2 subunit across all fractions. However, since the 

GluR3 subunit seems to be present in the hippocampus in very modest 

levels (Tsuzuki et al., 2001) the strong immunoreactivity we observed may 

be due to the GluR2 subunit alone, since the antibody detects both. 

Labelling for the GluR4 subunit, as expected for the hippocampal formation 

(Boulter et al., 1990; Keinänen et al., 1990), was much less abundant than 

for the other AMPA receptor subunits, but still immunoreactivity for GluR4 

was detected in all three fractions. However, unlike the other subunits, 

immunoreactivity for GluR4 had a preferential localization in the 

postsynaptic density fraction. 

 

 

3.3. Discussion 

 

An alternative and powerful way to study synaptic receptors 

 

Starting with hippocampal nerve terminals we selectively solubilized 

non-synaptic proteins and presynaptic active zone proteins from the 

postsynaptic densities. The original method aimed at studying the structure 

and organization of the presynaptic web (Phillips et al., 2001). We now 

introduced slight modifications in order to make this method as efficient as 

possible in producing enriched preparations of synaptic proteins and to 

optimize the procedure. For this, synaptosomes were concentrated at the 

end of the isolation step, allowing for smaller reaction volumes to be used. 

This procedure also constitutes another purification step since non-synaptic 

membranes, that could contaminate the synaptosome fraction during its 

collection from the sucrose gradient, are further excluded.  
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We also realized that a single solubilization step was often not 

sufficient for maximum recovery of presynaptic proteins and that these 

frequently contaminated the postsynaptic density proteins in high amounts. 

Therefore, we began to perform two to three solubilization steps at pH 8.0 

and introduced pellet washes. In these conditions we were able to obtain 

highly purified preparations of proteins from the presynaptic active zone, 

from the postsynaptic density and also from non-synaptic pools of proteins. 

Even so, labelling in the postsynaptic fraction for typical presynaptic 

proteins was evident. This may not result from contamination or incomplete 

solubilization since it has been previously suggested that typically 

presynaptic, exocytosis-related proteins may be involved in the active 

insertion and recycling of AMPA receptors in the postsynaptic specialization 

(Luscher et al., 1999). A significant proportion of these two proteins was 

solubilized at pH 6.0, probably reflecting synaptic and non-synaptic pools, 

as also discussed by Phillips and collaborators (2001).  

On the other hand, a faint labelling for PSD-95 in the presynaptic 

fraction was also perceptible. This is probably due to a slight contamination 

of the presynaptic fraction, since this protein is characteristically localized 

within the postsynaptic density. Furthermore, the vesicle protein 

synaptophysin was found in minor amounts in the presynaptic active zone, 

likely reflecting a pool of vesicles already docked to the anchoring proteins 

in the presynaptic active zone. This simple technique, with the limitations in 

discriminating certain pools of receptors as discussed bellow, may thus 

prove to be a powerful tool for the research on synaptic receptors. Because 

the dense synaptic protein matrix has been detergent-disrupted, it 

circumvents the problems of epitope accessibility that may be imposed in 

tissue sections.  
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Diverse localizations of mGluRs at hippocampal synapses 

 

In recent years it has become evident that, besides activating 

ionotropic receptors that mediate synaptic transmission, glutamate can also 

activate G-protein linked receptors, suggesting that this neurotransmitter 

can modulate transmission and neuronal excitability at the same synapses 

at which it elicits fast excitatory responses. (Pin and Duvoisin, 1995; Conn 

and Pin, 1997). A great deal of progress was made in defining various 

presynaptic and postsynaptic effects of mGluR agonists in the 

hippocampus (reviewed by Conn and Pin, 1997) when little was still known 

about their synaptic localization. In the rat brain, the activation of mGluRs 

contributes to both presynaptic and postsynaptic responses (Miles and 

Poncer, 1993; Gereau and Conn, 1995; Sánchez-Prieto et al., 1996; refer 

to Anwyl, 1999 for an extensive review on the actions of mGluRs).  

Immunocytochemical studies have established that mGluR1 and 

mGluR5 are exclusively postsynaptic in the hippocampus (Martin et al., 

1992; Shigemoto et al., 1993; Lujan et al., 1996). mGluR5 was also found 

both perisynaptically and extrasynaptically on postsynaptic spines (Lujan et 

al., 1996, 1997). In our study most of the immunoreactivity for mGluR1 and 

mGluR5 was also found in the postsynaptic fraction of proteins, with the 

fraction of proteins from the presynaptic web showing, nevertheless, 

obvious labelling. This may be due to the inability of the technique in 

distinguishing receptors with particular localizations, such as perisynaptic 

receptors. In this context, it is impossible to state if postsynaptic labelling 

comes mainly from the perisynaptic pool of receptors that may be attached 

to the structure of the PSD or if these receptors contribute to the labeling 

observed in the fraction of proteins from the presynaptic active zone. 

Nevertheless, one study localized important levels of mGluR5 in 

presynaptic axon terminals (Romano et al., 1995) and this receptor was 

also found to co-localize with adenosine A2A receptors in more than half of 
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striatal glutamatergic nerve terminals and to be involved in the modulation 

of glutamate release (Rodrigues et al., 2005). Also, it is impossible to 

clearly identify whether labelling in the non-synaptic pool of proteins could 

be due to perisynaptic receptors that where solubilized at pH 6.0, receptors 

that have an extrasynaptic localization or receptors contained in vesicles in 

process of recycling.  

In contrast to Group I mGluRs, mGluR2 and mGluR3 are mainly 

found at presynaptic sites in the hippocampus (Petralia et al., 1996; 

Shigemoto et al., 1997), although in other brain structures such as the 

olfactory bulb (Hayashi et al., 1993) and in cerebellar Golgi cells (Ohishi et 

al., 1994; Neki et al., 1996, 1996b) they are found at both presynaptic and 

postsynaptic sites. In the present study mGluR2 was found to be present 

mostly in the collection of proteins containing postsynaptic densities, but 

important levels of immunoreactivity were also found in the fraction of 

proteins from the presynaptic active zone and from non-synaptic sites. This, 

once again, is most probably due to a limitation of the technique in 

discriminating pools of receptors that have perisynaptic localization and, 

furthermore, non-synaptic labelling can be contributed from non-synaptic 

membrane from both the presynaptic and the postsynaptic elements.  

In the hippocampus, the selective group III mGluR agonist, L-AP4, 

reduces synaptic transmission at several excitatory pathways (Koerner and 

Cotman, 1981; Lanthorn et al., 1984; Cotman et al., 1986). Group III 

mGluRs were postulated to serve as presynaptic autoreceptors involved in 

reducing glutamate release from presynaptic terminals (Glaum and Miller, 

1993) and these receptors were subsequently found to be mainly or 

exclusively presynaptic in the hippocampus (Bradley et al., 1996; 

Shigemoto et al., 1996, 1997; Kinoshita et al., 1998; Dalezios et al., 2002; 

Somogyi et al., 2003). Furthermore, mGluR7 was shown not only to be 

localized on the presynaptic membrane specialization (Shigemoto et al., 

1996), within the presynaptic active zone (Dalezios et al., 2002; Somogyi et 
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al., 2003), but also to be mostly restricted to glutamatergic terminals. 

Consistent with these previous reports, our study shows that mGluR7 is 

mostly present in the fraction of proteins from the presynaptic active zone, 

with much less immunoreactivity in postsynaptic densities and no labelling 

in the non-synaptic pool of proteins. The result obtained for the mGluR7 

receptor shows, in a simple way, the usefulness of the technique to 

investigate the distribution of receptors localized within the synapse, both 

pre- and postsynaptically. 

 

NMDA receptors are essentially concentrated at postsynaptic densities of 

hippocampal synapses 

 

Neurotransmission involving NMDA receptors has been implicated 

in a variety of unique roles: NMDA receptor activation is associated with 

long-lasting changes in synaptic strength (Ali and Salter, 2001), 

organization of afferent fibers with respect to target neurons during 

development (Collingridge and Singer, 1990) and may be a trigger for 

glutamate neurotoxicity (Choi and Rothman, 1990). Although NMDA 

receptors were initially described as having an exclusively postsynaptic 

localization (Petralia et al., 1994, 1994b), some studies showed presynaptic 

labelling for these receptors (Liu et al., 1994; Paquet and Smith, 2000) and 

accumulating evidence shows that they exert important modulatory actions 

at the presynaptic level. They were shown to increase the size of 

GABAergic terminals and enhance GABA release in cerebellar cultures 

(Fiszman et al., 2005) and cerebellar interneuron-Purkinje cell synapses 

(Duguid and Smart, 2004), to facilitate axonal excitability (Suárez et al., 

2005), to modulate glutamate release from sensory neurons in the spinal 

cord dorsal horn (Bardoni et al., 2004), and provide a mechanism for 

coincidence detection in the induction of timing-dependent LTD (Sjöström 

et al., 2003), to cite a few examples.  
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Despite numerous evidences for the presence and function of these 

receptors at the presynaptic level, we detected only residual (less than 5%) 

labelling in the fraction of proteins from the presynaptic active zone for all 

the NMDA receptor subunits studied. This, together with the fact that a 

more or less similar amount of immunoreactivity for PSD-95 was also found 

in the same collection of proteins, suggests that even the small presynaptic 

signal for NMDA receptor subunits might be due to slight contamination of 

this fraction with material originating from the PSD. One possible 

explanation is that the presynaptic effects of NMDA receptor activation are 

mediated by receptors localized at dendritic or axonal compartments 

outside of and away from the areas of synaptic contact, being excluded 

from our preparation. Some presynaptic effects of NMDA receptors were 

also reported to be mediated by nitric oxide (NO; Sandor et al., 1995; 

Sequeira et al., 2001). NO is a diffusible messenger that can hypothetically 

be produced at postsynaptic sites and exert its actions presynaptically, 

which would serve as an alternative explanation to our present results. 

 

A large pool of presynaptic AMPA receptors? 

 

 AMPA receptors are considered the most important receptors for 

fast excitatory neurotransmission and are of paramount importance for the 

postsynaptic modulation of synaptic strength (Malinow and Malenka, 2002). 

The existence of presynaptic AMPA receptors was suggested some years 

ago, but the lack of definite evidence for such receptors contributed to 

considerable skepticism. In the past few years, a number of reports have 

supported the notion of their existence, which is now bordering on general 

acceptance. Initially, AMPA receptors were described on the basis of their 

role in modulating the release of catecholamines from synaptosomes and 

brain slices (Desce et al., 1991; Malva et al., 1994; Pittaluga and Raiteri 

1992). Also, in the hippocampus, these receptors were proposed to 
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modulate the exocytotic release of glutamate (Barnes et al., 1994; Patel 

and Croucher, 1997) and GABA (Satake et al., 2000; Patel et al., 2001).  

Postembedding immunogold electron microscopy studies on AMPA 

receptor expression and localization on hippocampal synapses refer to 

these receptors as exclusively postsynaptic, with little or no importance 

being given to some presynaptic labelling (Nusser et al., 1998; Takumi et 

al., 1999). Nevertheless, in the developing striatum, GluR1 

immunoreactivity was observed in presynaptic neurites forming synapses 

(Martin et al., 1998). GluR2 and GluR2/3 immunoreactive gold particles 

were also detected at some presynaptic sites in organotypic hippocampal 

slices (Fabian-Fine et al., 2000). Additionally, in the retrochiasmatic area 

and bed nucleus of the stria terminalis, GluR3 immunoreactive axon 

terminals of oxytocin-containing hypothalamic magnocellular neurons were 

found in synaptic contact with unlabeled dendrites (Ginsberg et al., 1995). 

Our data clearly support these previous functional and biochemical 

evidences for the existence of presynaptic AMPA receptors. Moreover, the 

data in the present study is indicative of considerably high abundance of 

GluR1 and GluR2/3 subunits at the presynaptic membrane. Although the 

levels of immunoreactivity for presynaptic AMPA receptors reported in the 

present work are particularly high, especially when compared to the 

postsynaptic fraction, these may reflect, in part, an overestimation due to 

the method used for the separation. Because of differences in protein 

composition between the presynaptic web and the postsynaptic density, a 

slightly higher protein yield is obtained for the postsynaptic density fraction. 

Therefore, the relative levels of AMPA receptor immunoreactivity in the 

presynaptic fraction are likely being slightly overestimated when the same 

amount of protein from each fraction is probed by Western blotting. This 

rationale holds true for every other protein analyzed.  

Given the data obtained not only for synaptic marker proteins but 

also the diverse subsynaptic distributions of the other structurally related 
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glutamate receptors (see below), it seems unlikely that AMPA receptors 

could be behaving differently to the solubilization procedure. In fact, AMPA 

receptors are found anchored to the PSD in association with NMDA 

receptors (Lisman and Zhabotinsky, 2001). More recently, El-Husseini and 

colleagues reported that the dispersion of synaptic clusters of PSD-95 by 

acute blockade of palmitoylation causes a selective loss of synaptic AMPA 

receptors (El-Husseini et al., 2002), further suggesting a tight association of 

these receptors to the postsynaptic density. Nevertheless, these receptors 

were also reported to be more loosely bound to the postsynaptic density 

(Malenka and Nicoll, 1999) and to be stabilized and solubilized, although in 

cultured neurons, in a differential way when compared to NMDA receptors 

(Allison et al., 1998), raising the possibility that part of the high 

immunoreactivity observed for the presynaptic active zone fraction may 

indeed result from receptors stripped from the PSD. As expected, AMPA 

receptor subunits were found to be very abundant in the fraction of 

postsynaptic densities, since these receptors are the main mediators of fast 

excitatory synaptic transmission (Collingridge et al., 1983). Standard 

protocols for electrophysiological recordings are based on postsynaptic 

AMPA receptor activity, and this may be the reason for the lack of 

electrophysiological evidences for presynaptic AMPA receptor activity. But 

recently, electrophysiological recordings of GABAA receptor-mediated 

IPSC’s, allowed the detection of a presynaptic AMPA receptor-mediated 

inhibition of GABA release (Satake et al., 2000). These receptors were also 

recently found, using a variation of the postembedding method, at 

presynaptic locations in corticostriatal and thalamostriatal synapses 

(Fujiyama et al., 2004).  

Presynaptic activation of AMPA receptors, besides its role in 

modulating the release of neurotransmitters (Reviewed by Schenk and 

Matteoli, 2004), has also been implicated in regulating the motility of axonal 

filopodia (Chang and De Camilli, 2001; Tashiro et al., 2003). These 



 
 
 
 
 
 

Subsynaptic localization of glutamate receptor subunits 

 79 

 

 

 

 

 

 

receptors also display metabotropic activity by coupling to the activation of 

MAPK independently of ion influx (Schenk et al., 2005). These diverse and 

widespread actions of presynaptic AMPA receptors further support the 

results reported in the present study. 

  We also observed that immunoreactivity for all the AMPA receptor 

subunits was found in significant levels in the non-synaptic fraction. This 

pool of proteins is formed by synaptosomal contents that are released after 

lysis and by vesicle and cellular membranes physically excluded from the 

synaptic junctions, as shown by the labelling for synaptophysin and NCAM 

(Figure 3.1). Therefore, intracellular membranes and the receptors 

associated with them in the normal intracellular traffic and recycling are 

likely present in this fraction. The high density of labelling in the non-

synaptic pool of proteins is, however, not outstanding since it is known that 

in the hippocampus and cerebral cortex a major pool of these receptors 

resides on synaptic vesicles, so that functional receptors can be inserted 

into the synapses in response to neuronal activity. This is also true for 

presynaptic pools of AMPA receptors (Schenk et al., 2003). Labelling in this 

protein fraction most probably also includes receptors diffusing laterally in 

the membrane that can then be inserted and stabilized within synapses 

(Groc et al., 2004).  

 

In summary, in this chapter we describe a technique which allowed 

us to show that metabotropic, AMPA and NMDA glutamate receptors have 

diverse, and sometimes distinct subsynaptic localizations hippocampal 

synapses. Our data supports some of the early anatomical and functional 

observations regarding AMPA and NMDA receptors and mGluRs.  
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Presynaptic kainate receptors are localized close  

to release sites in rat hippocampal synapses 

 





 
 
 
 
 
 

Kainate receptors within the presynaptic active zone 

 83 

 

 

 

 

 

 

4.1. Introduction 

 

Kainate receptors have been shown to be present at both 

presynaptic and postsynaptic sites. Postsynaptically, the activation of 

kainate receptors by endogenously released glutamate gives rise to EPSCs 

of small amplitude and slow kinetics when compared to AMPA receptor-

mediated EPSCs (Castillo et al., 1997; Vignes and Collingridge 1997). 

Accumulating evidence seems to show that these properties of kainate 

receptors are due to intrinsic receptor properties (Bureau et al., 2000; 

Castillo et al., 1997; Cossart et al., 2002; Kidd and Isaac, 2001) rather than 

to an extrasynaptic or non-synaptic localization, as initially suggested 

(Lerma 1997). Kainate receptors can also be activated presynaptically by 

endogenous glutamate. The activation of kainate autoreceptors has been 

shown to modulate the [Ca2+]i (Malva et al., 1995), to regulate 

neurotransmitter release at both excitatory and inhibitory synapses in the 

hippocampus (Malva et al., 1996; Malva et al., 1998; Chittajallu et al., 1996; 

Clarke et al., 1997; Rodriguez-Moreno et al., 1997) and at inhibitory 

synapses in the hypothalamus (Liu et al., 1999). Some studies have 

pointed to GluR5 (Vignes et al., 1998; Bortolotto et al., 1999; More at al., 

2004; but see Breustedt and Schmitz., 2004), GluR6 (Mulle et al., 2000; 

Contractor et al., 2001; Schmitz et al., 2003) and KA2 (Contractor et al., 

2003) as presumed presynaptic kainate receptor subunits at certain 

synapses. At the electron microscopy level KA1 was found to be localized 

pre- and postsynaptically at mossy fiber synapses in the hippocampus, 

whereas KA2 was found to be mostly postsynaptic (Darstein et al., 2003). 

However, no clear consensus seems to exist as to whether all subunits can 

contribute to presynaptic and postsynaptic receptors and whether or not the 

subunit composition of kainate receptors can be different at the two sides of 

the synaptic cleft. 
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Presynaptic kainate receptors mediate some of the unusual short-

term plasticity properties observed at mossy fiber terminals in the 

hippocampus (Contractor et al., 2001; Lauri et al., 2001; Schmitz et al., 

2001) and they are required for the effective establishment of mossy fiber 

LTP (Bortolotto et al., 1999; Contractor et al., 2001; Lauri et al., 2001), by 

lowering the threshold for its induction (Schmitz et al., 2003). The 

presynaptic modulation of short-term plasticity by kainate receptors is a fast 

phenomenon; presynaptic kainate receptors can sense glutamate released 

by a single stimulus and contribute to the large facilitation of release to a 

subsequent stimulus given in a time-window of a few milliseconds, 

suggesting that these receptors should be localized very close to release 

sites. However, the demonstration of their presence at such sites is 

missing. In the present chapter, using data from functional and molecular 

studies in isolated hippocampal nerve terminals, we sought to show the 

subsynaptic localization of the various kainate receptor subunits. We 

studied the efficiency of modulation of [3H]glutamate release and of [Ca2+]i 

by activation of kainate receptors as an indirect approach and we also used 

purified presynaptic, postsynaptic and non-synaptic protein extracts, 

obtained from nerve terminals, for the direct immunological identification of 

the various subunits and their subsynaptic distribution. 

 

 

4.2. Results 

 

Activation of presynaptic kainate receptors modulates the release of 

[3H]glutamate 

 

Previous studies on the modulation of glutamate release by 

presynaptic kainate receptors generally used high concentrations of 

agonists (e.g., Perkinton and Sihra 1999; Rodriguez-Moreno and Sihra 



 
 
 
 
 
 

Kainate receptors within the presynaptic active zone 

 85 

 

 

 

 

 

 

2004) that may cause unpredicted or uncontrolled effects. An earlier study 

in our laboratory (Malva et al., 1995) showed that activation of presynaptic 

kainate receptors in nerve terminals from the CA3 subregion caused an 

increase in [Ca2+]i, in a dose-dependent manner, with an EC50 of 

approximately 0.81 µM kainate. We wondered, therefore, whether kainate 

at concentrations considerably lower than the ones used in other studies 

would be efficient at modulating the release of glutamate. In synaptosomes 

prepared from the CA3 subregion (reportedly where the highest density of 

kainate binding sites resides; Monaghan and Cotman 1982; Represa et al., 

1987) 100 nM kainate did not significantly alter the basal release of 

[3H]glutamate (106.6 ± 2.8% of control; n = 4; p > 0.05; unpaired t test) 

(Figure 4.1). However, we observed that 1 µM kainate was the lowest 

concentration of agonist that caused a significant increase in the basal 

release of [3H]glutamate in the absence of any additional depolarizing 

stimulus (117.0 ± 1.4% of control; n = 8; P < 0.001; unpaired t test) and this 

concentration was used for further studies (Figure 4.1). The release of 

[3H]glutamate induced by the application of 1 µM kainate was not 

significantly different from the respective control in the presence of the 

Figure 4.1 – Activation of presynaptic 
kainate receptors increases the basal 
release of [

3
H]glutamate. In synaptosomes 

isolated from the rat hippocampal CA3 
subregion activation of presynaptic 
kainate receptors with 1 µM kainate (KA), 
1 µM MGA or 10 µM iodowilardiine (Iodo) 
causes a significant increase in the basal 

release of [
3
H]glutamate (117.0 ± 1.39%, 

119.3 ± 2.0% and 116.1 ± 2.6% of control, 
respectively). CNQX (30 µM), but not 
LY303070 (10 µM), significantly reduced 

the effect of 1 µM kainate (106.1 ± 3.6% 

and 116.2 ± 1.8% of control, respectively). 
At a concentration of 100 nM, kainate did 
not significantly alter the basal release of 

[
3
H]glutamate (106.6 ± 2.8% of control). 

+ P < 0.005 and # P < 0.001, in relation to 
the respective controls, Mann-Whitney 
test; * P < 0.05, Mann-Whitney test. 
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AMPA/kainate receptor antagonist CNQX (30 µM; 106.1 ± 3.6% of control, 

n = 4, P > 0.05; unpaired t test) or when the extracellular medium had 

virtually no calcium. Contrarily, kainate-induced glutamate release was 

unchanged in the presence of the AMPA receptor-selective, non-

competitive antagonist, LY303070 (10 µM; 116.2 ± 1.8% of control; n = 8; P 

< 0.001; unpaired t test) (Figure 4.1), indicating the selective involvement of 

kainate receptors in this process. Other agonists, such as (S)-5-

iodowillardiine (10 µM) and (2S,4R)-4-methyl glutamic acid (MGA; 1 µM) 

were also able to significantly modify the basal release of [3H]glutamate 

(116.1 ± 2.6% of control; n = 8; P < 0.005 and 119.3 ± 2.0% of control; n = 

8; P < 0.001, respectively; unpaired t test).  

Since the increased release of [3H]glutamate could be simply due to 

a kainate receptor-mediated direct depolarization of nerve terminals 

(Kamiya and Ozawa 2000; Schmitz et al., 2000) or, alternatively, to direct 

Ca2+ influx through the receptor channel, we compared the efficiency of 1 

µM kainate to cause a rise in [Ca2+]i with that of depolarizing nerve 

terminals by changing the extracellular potassium concentration. We found 

that, in synaptosomes isolated from the CA3 subregion, 1 µM kainate 

caused a batch increase in the [Ca2+]i of 32.8 ± 4.5 nM (n = 6) whereas 

increasing by 2 mM the extracellular KCl concentration augmented the 

batch [Ca2+]i by 74.7 ± 5.7 nM (n = 5) (Figure 4.2A). Depolarization of the 

synaptosomes with 20 mM KCl caused a very large increase in the [Ca2+]i 

(926.9 ± 25.4 nM; n = 3) (Figure 4.2A). We next tested both situations (1 

µM kainate and 2 mM KCl) in parallel in [3H]glutamate release experiments 

and, interestingly, kainate proved to be more efficient at modifying the 

release of [3H]glutamate (114.5 ± 2.9% of control; n = 8) than an elevation 

by 2 mM in the extracellular KCl concentration (96.9 ± 2.4% of control; n=8) 

which caused a more than two-fold greater elevation in [Ca2+]i (Figure 4.2B, 

C). In order to determine if differences in the efficiency of the response 



 
 
 
 
 
 

Kainate receptors within the presynaptic active zone 

 87 

 

 

 

 

 

 

following kainate receptor activation could depend on their synaptic 

localization and permeability to calcium we decided to use Ca2+ channel 

blockers as research tools. At the supra maximal concentration of 100 µM 

kainate, but still kainate receptor-selective in this preparation (Malva et al., 

1995; Malva et al., 1996; Rodriguez-Moreno and Sihra, 2004), ω-

CgTxGVIA (500 nM) plus ω-CgTxMVIIC (500 nM) reduced the calcium 

Figure 4.2 – Modulation of [
3
H]glutamate release by kainate receptors involves a very small increase in 

the [Ca
2+
]i. (A) Activation of presynaptic kainate receptors present in CA3 subregion nerve terminals 

with kainate (1 µM) causes an increase in the [Ca
2+
]i (32.8 ± 4.5 nM) that is much smaller than that 

caused by a 2 mM potassium-induced depolarization (74.7 ± 5.7 nM), whereas a 20 mM potassium 

depolarization causes massive calcium entry into nerve terminals (926.9 ± 25.4 nM). (B) Depolarization 

of nerve terminals with 2 mM potassium fails to change the basal release of [
3
H]glutamate (96.9 ± 2.4% 

of control versus 114.5 ± 2.9% of control for 1 µM KA). (C) Representative experiment of the data 
shown in B, averaged from the area defined by the rectangle. # P < 0.005 in relation to the respective 
control, Mann Whitney test; ** P < 0.005 and *** P < 0.001, Mann-Whitney test. 
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signal to 49.2 ± 5.9% (n = 5; P < 0.005 in relation to kainate alone; unpaired 

t test) (Figure 4.3), indicating that this remaining calcium should be entering 

directly through the receptor channel. These results strongly suggest that 

kainate receptors localized very close to release sites, within the 

presynaptic active zone, are mediating the release of [3H]glutamate 

probably by direct permeation of Ca2+ through the receptor.  

 

Presynaptic kainate receptors are localized within the active zone 

 

It is pertinent the idea that the small calcium rise attained with low 

kainate concentrations could in fact be a large, localized increase in the 

concentration of this ion in the vicinity of kainate receptors localized within 

the presynaptic active zone, and this idea may help to explain its efficiency 

in triggering the release of glutamate. Therefore, starting with hippocampal 

nerve terminals we selectively solubilized non-synaptic, presynaptic active 

zone and postsynaptic density proteins to try to investigate the subsynaptic 

distribution of kainate receptor subunits, as performed in the previous 

chapter for other glutamate receptors. After evaluating the purity of the 

fractions using marker proteins (see chapter 3 for details) we next sought to 

study the presence of kainate receptor subunits in the presynaptic active 

zone. For this purpose the various fractions of synaptic material were 

 

Figure 4.3 – Blocking voltage-
gated calcium channels with 500 
nM ω-CgTxGVIA + 500 nM ω-
CgTxMVIIC reduces calcium influx 
upon activation of kainate receptors 

(100 µM KA) to 49.2 ± 5.9%. ** P < 
0.005, Mann-Whitney test. 
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probed by Western blot with commercially available antibodies against 

kainate receptor subunits (Table 1).  

Strong immunoreactivity was found for all subunits on the 

postsynaptic density and, with exception of the KA1 subunit, strong 

immunoreactivity was also found in the collection of proteins from the 

presynaptic active zone (Figure 4.4). Interestingly, the labelling for kainate 

receptor subunits in the non-synaptic fraction of proteins was always barely 

above background staining. These results strongly suggest that, in rat 

hippocampal nerve terminals, kainate receptors are localized within the 

sites of synaptic contact (the presynaptic active zone and the postsynaptic 

density) since they almost completely withstood solubilization at pH 6.0. 

This distribution is somewhat similar to the distribution of adenosine A3 

receptors in the rat hippocampus (Lopes et al., 2003) but is in striking 

contrast to what we previously reported for AMPA receptors (Pinheiro et al., 

2003) or adenosine A1 receptors (Rebola et al., 2003).  

 

 

Figure 4.4 – Representative 
Western blots of GluR5, 
GluR6/7, KA1 and KA2 
immunoreactivity in the 
subsynaptic fractions isolated by 
differential solubilization of 
synaptic proteins. All subunits 
are present in the collection of 
proteins from the presynaptic 
active zone and the postsynaptic 
density, with very faint or no 
labelling at all in the collection of 
non-synaptic proteins. The KA1 
subunit predominates in the 
postsynaptic density when 
compared with the other 
subunits. 
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4.3. Discussion 

 

The subsynaptic localization of neurotransmitter receptors is 

important in determining their synaptic functions and the outcome of their 

activation. Electrophysiology gives very precise results regarding response 

timing, duration and intensity, and data obtained with this technique 

suggests that presynaptic kainate receptors should be localized close to 

glutamate release sites, probably within the presynaptic active zone, due to 

their fast activation following single stimuli, as already suggested (Jaskolski 

et al., 2005). We show here that the activation of presynaptic kainate 

receptors, present at nerve terminals of the hippocampal CA3 subregion, 

with various kainate receptor agonists causes an increase in the basal 

release of [3H]glutamate, an effect that has been observed previously in 

hippocampal CA1 subregion synaptosomes challenged with 3 µM domoic 

acid (Cunha et al., 2004). This effect was shown to be calcium-dependent 

and sensitive to the AMPA/kainate receptor antagonist, CNQX, while 

insensitive to the AMPA receptor-selective antagonist, LY303070. In 

contrast to our data, an effect over the basal release of glutamate from 

cerebrocortical synaptosomes was not observed in studies performed using 

a fluorimetric assay (Perkinton and Sihra 1999, Rodriguez-Moreno and 

Sihra 2004) but was previously reported by our group, using the same 

technique, in synaptosomes isolated from the hippocampal CA3 subregion 

(Malva et al., 1996). Additionally, the increase in [Ca2+]i in synaptosomes 

isolated from the CA3 subregion of the rat hippocampus, through the 

activation of kainate receptors, is much larger than that observed in the 

other subregions (Malva et al., 1995), probably reflecting either a higher 

density of kainate receptors, or receptors that are more permeable to Ca2+ 

than those found in CA1 or the dentate gyrus. 

We also investigated the efficiency of kainate in modulating 

glutamate release versus the rise in calcium needed to do so. The 
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reasoning behind these experiments was to study if a potassium-induced 

depolarization would mimic the effects of kainate (Schmitz et al., 2000) in 

terms of intraterminal calcium elevation and of modification of glutamate 

release. The stimulation of hippocampal CA3 subregion synaptosomes with 

2 mM KCl caused a more than two-fold augmentation in the [Ca2+]i 

compared to that achieved with 1 µM kainate; however it did not cause any 

change in the basal release of [3H]glutamate. Our interpretation of this data 

is that presynaptic kainate receptors are localized within the presynaptic 

active zone, very close to release sites. Entry of calcium directly through 

the receptors, but also in part through voltage sensitive calcium channels 

(Figure 4.3) that we have previously shown to be localized within the 

presynaptic active zone and postsynaptic density but absent from non-

synaptic sites (Rebola et al., 2003), may cause very confined “calcium 

hotspots”, just beneath the membrane. This would cause vesicle fusion and 

glutamate release without the need of a pronounced depolarization of the 

nerve terminals. In fact, the GluR7 subunit of kainate receptors, that plays a 

crucial role for the function of presynaptic receptors at mossy fiber 

synapses onto CA3 pyramidal cells (see chapter 5), exists only in the non-

edited form and displays electrophysiological properties compatible with a 

high permeability to Ca2+ ions (Schiffer et al., 1997).  

Another hypothesis to explain our results is that there is a massive 

depolarization of nerve terminals and massive calcium entry upon kainate 

receptor activation that would trigger the release of large amounts of 

glutamate. This would only occur at a very restricted population of nerve 

terminals containing kainate receptors and would explain the low calcium 

rise in the large volume where the experiment is carried out, but the 

comparatively high levels of glutamate that is released. This, however, 

does not seem likely given the very high density of labelling and binding for 

kainate receptors in this region (Monaghan et al., 1986; Represa et al., 

1987; Darstein et al., 2003; Yoneyama et al., 2004). To further support our 
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conclusions, Pastuszko and colleagues have shown that application of 

kainate to synaptosomes causes only minor changes in transmembrane 

electrical potential and only when very high concentrations of this agonist 

are used (in the millimolar range). They also show that the minor 

depolarization observed was insensitive to tetradotoxin (Pastuszko et al., 

1984). 

To further show that kainate receptors are localized within the active 

zone of hippocampal synapses we used a biochemical procedure for the 

selective and sequential solubilization of non-synaptic and presynaptic 

proteins from synaptic junctions, obtaining purified preparations of these 

proteins, as well as a purified preparation of postsynaptic densities (chapter 

3). This simple method is very powerful since it circumvents the problems 

of epitope accessibility that one often encounters when using other 

methods, because the synaptic scaffold has been detergent-disrupted, and 

has allowed the study of the subsynaptic localization of other receptors 

(Lopes et al., 2003; Pinheiro et al., 2003; Rebola et al., 2003).  

An earlier study (Henley, 1995) showed, through sub-cellular 

fractionation techniques, that in the rat hippocampus almost all [3H]kainate 

binding sites are found in the synaptosomal fraction with almost no binding 

to the microsomal fraction, where most [3H]AMPA binding was located, 

suggesting the localization of kainate receptors within the synapse. The fact 

that presynaptic kainate receptors are localized within the active zone as 

we show here is further supported by the labelling for mGluR7 (Chapter 3), 

that was repeatedly reported as a presynaptic receptor and already shown 

to be mainly localized within the active zone of GABAergic and non-

GABAergic terminals by immunogold labelling (Dalezios et al., 2002; 

Somogyi et al., 2003; see also chapter 3). Furthermore, in our preparation, 

it seems that kainate receptors are not only localized within the active zone 

and postsynaptic density, but they are also mostly restricted to these areas 

of synaptic contact. This is revealed by the immunoreactivity pattern of 
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synaptophysin and NCAM (see chapter 3), excluding kainate receptors 

from non-synaptic sites (either vesicular or non-synaptic membrane). In 

further support of our data, the KA1 subunit was found, using a selective 

antibody not available commercially, to be localized mainly in postsynaptic 

structures (Fogarty et al., 2000). 

In conclusion, in this chapter we show two main findings; not only 

our data demonstrates that presynaptic kainate receptors are localized 

within the active zone, close to glutamate release sites, where they are in a 

privileged location for a fast modulation of presynaptic events, but also that 

all kainate receptor subunits are able to exist pre- and postsynaptically in 

rat hippocampal nerve terminals, not implying that they do so in the same 

synapses. It also adds to the notion that kainate receptors are not 

significantly localized at extrasynaptic sites, at least in cellular membranes 

included in our preparation. These results may help in understanding some 

of the apparently complex processes by which kainate receptors arbitrate 

synaptic modulation, especially at the presynaptic level. 
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GluR7 is a presynaptic kainate receptor subunit 

involved in facilitation of synaptic transmission 
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5.1. Introduction 

 

It has recently become evident that, besides their role in mediating 

fast glutamatergic neurotransmission, ionotropic glutamate receptors are 

also localized in presynaptic/axonal compartments where they can regulate 

axonal excitability or neurotransmitter release by acting as heteroreceptors 

or autoreceptors (reviewed by Engelman and MacDermott, 2004). Among 

these, glutamate receptors of the kainate type play a most prominent role in 

the regulation of synaptic transmission at the presynaptic level. 

Pharmacological activation of kainate receptors either facilitates or 

depresses GABAergic or glutamatergic synaptic transmission in several 

brain regions (Huettner, 2003; Jaskolski et al., 2005a; Lerma, 2003). A 

variety of possible mechanisms may account for these pharmacological 

effects, that can be due to either Ca2+ entry through presynaptic kainate 

receptors, direct depolarization of the nerve terminal or metabotropic 

regulation of voltage-gated Ca2+ channels (Engelman and MacDermott, 

2004 ; Huettner, 2003; Lerma, 2003). There are, in comparison, relatively 

few reports that describe a presynaptic role for kainate receptors activated 

by endogenous sources of glutamate. The most compelling evidence for a 

physiological function of presynaptic kainate receptors is found at the 

synapses between mossy fibers and CA3 pyramidal cells, where they 

participate in short- and long-term synaptic plasticity (Bortolotto et al., 1999; 

Contractor et al., 2001; Lauri et al., 2001; Schmitz et al., 2000; Schmitz et 

al., 2001).  

To understand the precise molecular and biophysical mechanisms 

by which kainate receptors facilitate synaptic transmission and plasticity it is 

crucial to identify the subunit composition of the receptors involved. To 

date, the molecular identity of presynaptic kainate receptors at the mossy 

fiber synapse is a matter of much debate where the use of molecular, 

genetic and pharmacological tools has given conflicting results. Antagonists 
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for the GluR5 subunit block the presynaptic action of kainate receptors 

(More et al., 2004; Lauri et al., 2001; but see Breustedt and Schmitz, 2004), 

leaving postsynaptic kainate receptor-mediated EPSCs unaffected. 

Although these compounds clearly point to a pharmacological difference 

between pre and postsynaptic receptors, these data are at odds with the 

analysis of GluR5-/- and GluR6-/- mice, as only the latter show significant 

differences when compared with wildtype mice (Contractor et al., 2001). In 

addition, the expression of GluR5 mRNA cannot be detected by in situ 

hybridization in the rat (Wisden and Seeburg, 1993) or mouse (Bureau et 

al., 1999) dentate gyrus granule cell layer, where mossy fibers originate. 

CA3 pyramidal cells express GluR6, KA1 and KA2 subunits whereas 

dentate granule cells express GluR6, GluR7, KA1 and KA2 subunits. Thus, 

receptors comprising the GluR7 subunit are possible candidates for 

presynaptic kainate receptors at the mossy fiber-CA3 pyramidal cell 

synapse.  

The GluR7 subunit of kainate receptors has been cloned more than 

10 years ago and shares 75% amino acid identity with GluR5 and GluR6 

and about 40% with GluR1-4 and KA1 (Bettler et al., 1992).The isolated 

GluR7 cDNAs encode for a predicted mature protein of 888 amino acids 

and a calculated molecular mass of ~100 kDa. GluR7 does not appear to 

be edited at the Q/R site and a glutamine is always found in this position. 

The pattern of GluR7 expression in the brain is widespread, being most 

prominently seen in the deep cortical layers, hippocampal dentate gyrus, 

reticular thalamic nucleus, mammilary bodies, pons and cerebellum (Bettler 

et al., 1992; Lomeli et al., 1992). Recombinant GluR7 receptors expressed 

in HEK 293 cells form functional ion channels that only respond to high 

concentrations of glutamate and kainate (EC50 = 6 mM for glutamate) 

(Schiffer et al., 1997). Strikingly, not only GluR7 is insensitive to the potent 

kainate receptor agonist, domoate, but it seems that this compound in fact 

acts as a high affinity antagonist at these receptors (Schiffer et al., 1997). 
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GluR7 exists in two different C-terminal splice variants (GluR7a and 

GluR7b; section 1.3.2.4.) which were shown to exhibit differential trafficking 

to the plasma membrane (Jaskolsky et al., 2005b). The GluR7 subunit can 

also co-assemble with GluR5, GluR6, KA1 and KA2 to form heteromeric 

receptor channels in heterologous expression systems (Schiffer et al., 

1997; Cui and Mayer, 1999). The co-expression of GluR7 with GluR6 

markedly reduces the responses to agonists (Cui and Mayer, 1999). 

Although GluR7 is expressed at high levels in various neuronal populations, 

its physiological role in the brain is unknown. By analyzing GluR7 deficient 

mice (GluR7-/-) we demonstrate that GluR7 is a presynaptic kainate 

receptor that facilitates synaptic transmission, and plays a permissive role 

in short- and long-term synaptic plasticity, at the hippocampal mossy fiber 

synapse. This shows, for the first time, a physiological function for the 

GluR7 subunit of kainate receptors in the brain. 

 

 

5.2. Results 

 

Generation of GluR7-/- mice 

 

The GluR7 gene (grik3) was disrupted by insertion of a neoR 

cassette that replaced genomic sequences including the entire exon coding 

for membrane domain 2 (TMII) necessary for receptor function. GluR7-/- 

mice did not differ from their littermates in breeding and general health 

status, and did not display any overt phenotype. In the absence of a 

selective anti-GluR7 antibody that would allow to directly test for the loss of 

the GluR7 protein, we sequenced the RT-PCR product obtained with the 

polyA+ mRNA from wildtype and GluR7-/- mouse brains amplified with 

primers in TMI and in TMIV. We verified the loss of the sequence 

corresponding to TMII and the insertion of a stop codon (see Figure 5.1).  
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Note: this part of the work was previously performed at Dr. Steve  

wild-type PCR product 896bp

GluR7-/- PCR product 835bp
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9 kb
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6.5 kb
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Homologous recombination

frequency: 2 out of 360
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HindIII BamHI

MD1

MD2

stop

                                        G   T   N   P   S   V   F   S   F     110 

                                       GGC ACC AAC CCC AGT GTC TTC TCC TTC    466 

  

    L   N   P   L   S   P   D   I   W   M   Y   V   L   L   A   Y   L   G     128 

   CTC AAC CCC CTG TCC CCG GAC ATC TGG ATG TAC GTG CTC CTT GCC TAC CTG GGT    520 

  

    V   S   C   V   L   F   V   I   A   R   F   S   P   Y   E   W   Y   D     146 

   GTC AGC TGT GTC CTC TTC GTC ATC GCC AGA TTC AGC CCT TAC GAG TGG TAT GAT    574 

  

    A   H   P   C   N   P   G   S   E   V   V   E   N   N   F   T   L   L     164 

   GCT CAT CCC TGC AAC CCC GGC TCA GAG GTG GTG GAG AAT AAC TTC ACA CTG CTC    628 

  

    N   S   F   W   F   G   M   G   S   L   M   Q   Q   G   S   E   L   M     182 

   AAC AGC TTC TGG TTT GGA ATG GGC TCC CTG ATG CAG CAA GGA TCT GAA CTG ATG    682 

                                        G   T   N   P   S   V   F   S   F     110 

                                       GGC ACC AAC CCC AGT GTC TTC TCC TTC    466 

  

    L   N   P   L   S   P   D   I   W   M   Y   V   L   L   A   Y   L   G     128 

   CTC AAC CCC CTG TCC CCG GAC ATC TGG ATG TAC GTG CTC CTT GCC TAC CTG GGT    520 

  

    V   S   C   V   L   F   V   I   A   R   I   *   T   D   A   Q   S   S     146 

   GTC AGC TGT GTC CTC TTC GTC ATC GCC AGG ATC TGA ACT GAT GCC CAA AGC TCT    574 
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                                        G   T   N   P   S   V   F   S   F     110 

                                       GGC ACC AAC CCC AGT GTC TTC TCC TTC    466 

  

    L   N   P   L   S   P   D   I   W   M   Y   V   L   L   A   Y   L   G     128 

   CTC AAC CCC CTG TCC CCG GAC ATC TGG ATG TAC GTG CTC CTT GCC TAC CTG GGT    520 

  

    V   S   C   V   L   F   V   I   A   R   F   S   P   Y   E   W   Y   D     146 

   GTC AGC TGT GTC CTC TTC GTC ATC GCC AGA TTC AGC CCT TAC GAG TGG TAT GAT    574 

  

    A   H   P   C   N   P   G   S   E   V   V   E   N   N   F   T   L   L     164 

   GCT CAT CCC TGC AAC CCC GGC TCA GAG GTG GTG GAG AAT AAC TTC ACA CTG CTC    628 

  

    N   S   F   W   F   G   M   G   S   L   M   Q   Q   G   S   E   L   M     182 

   AAC AGC TTC TGG TTT GGA ATG GGC TCC CTG ATG CAG CAA GGA TCT GAA CTG ATG    682 

                                        G   T   N   P   S   V   F   S   F     110 

                                       GGC ACC AAC CCC AGT GTC TTC TCC TTC    466 

  

    L   N   P   L   S   P   D   I   W   M   Y   V   L   L   A   Y   L   G     128 

   CTC AAC CCC CTG TCC CCG GAC ATC TGG ATG TAC GTG CTC CTT GCC TAC CTG GGT    520 

  

    V   S   C   V   L   F   V   I   A   R   I   *   T   D   A   Q   S   S     146 

   GTC AGC TGT GTC CTC TTC GTC ATC GCC AGG ATC TGA ACT GAT GCC CAA AGC TCT    574 

Figure 5.1 – Strategy used in the generation of mutant mice for the GluR7 subunit. (A) Top line: 
genomic map of the GluR7 locus around the exon coding for the TMII domain. Middle line: the targeting 
vector containing a neomycin resistance marker under the control of a phosphoglycerate kinase 
promoter (pgkneo). Bottom line: an illustration of the GluR7 locus after homologous recombination. 
Abbreviations for restriction sites are: E, EcoRI; B, BamHI; N, NotI ; H, HindIII. (B) Southern blot 
hybridization analysis of ES cells genomic DNA using a probe on HindIII digested DNA (left), and a 
neomycin probe on BamHI digested DNA (right). (C) Sequences of the RT-PCR product obtained with 
the polyA+ mRNA from wildtype (top) and GluR7

-/-
 (bottom) mouse brains amplified with two primers in 

TMI and in TMIV. In the absence of a selective GluR7 antibody, the sequencing allows to verify the loss 
of the sequence corresponding to TMII and the insertion of a stop codon. 
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Note: Generation of GluR7
-/-

 mice was achieved by Drs. Christophe Mulle, Bernhard Bettler 

and Jacques Barhanin at Dr. Steve Heinemann’s laboratory, but was included here since it 

was not published before and is part of a scientific report in revision for publication. 

 

GluR7 does not contribute to postsynaptic kainate receptors in CA3 

pyramidal cells 

 

We have used GluR7-/- mice to explore the potential contribution of 

this subunit at the synapses between mossy fibers and CA3 pyramidal cells 

in hippocampal slices. Mossy fiber synaptic responses were recorded in the 

whole-cell voltage-clamp mode in CA3 pyramidal cells, in the presence of 

bicuculline (10 µM) to block GABAA receptors. Mossy fiber synaptic 

responses were evoked at minimal stimulation intensity at a rate of 0.05-0.1 

Hz. They were characterized by large paired pulse facilitation, pronounced 

frequency facilitation when shifting stimulation frequency to 1 Hz, and 

inhibition by L-CCG-I (10 µM), an agonist of group II mGluRs present on 

mossy fiber terminals.  

To test whether deletion of the GluR7 gene altered the properties of 

postsynaptic kainate receptors, we isolated kainate receptor-mediated 

EPSCs by inhibiting AMPA receptors with the non-competitive antagonist 

GYKI 53655 (50 µM). As previously described, the mossy fiber EPSC 

mediated by these receptors displayed small amplitude as compared to the 

mixed AMPA/kainate mediated-EPSC (Figure 5.2A), as well as a slow 

onset and decay time (Castillo et al., 1997; Vignes and Collingridge, 1997) 

(Figure 5.2B). The proportion of the mossy-fiber EPSC mediated by kainate 

receptors was not significantly altered in GluR7-/- mice (5.8 ± 1.3 %; n = 8 

for wildtype and 5.6 ± 0.9 %; n = 8 for GluR7-/-; P = 0.94, unpaired t test) 

(Figure 5.2A, B). A change in decay time constant, such as that observed in 

KA2-/- mice (Contractor et al., 2003), was also not found for GluR7-/- mice 

(48.1 ± 4 .6 ms; n = 7 for wildtype and 44.6 ± 3.4 ms; n = 8 for GluR7-/-; P = 

0.54, unpaired t test) (Figure 5.2C, D). These results indicate that 



 
 
 
 
 
 
Chapter 5 

102 

 

 

 

 

 

 

postsynaptic kainate receptors at the mossy fiber synapse do not comprise 

GluR7, which is consistent with the lack of expression of GluR7 mRNA in 

CA3 pyramidal cells (Bureau et al., 1999; Wisden and Seeburg, 1993).  

   

GluR7 contributes to short-term synaptic plasticity at mossy fiber synapses 

 

Presynaptic kainate receptors are involved in short- and long-term 

synaptic plasticity at the mossy fiber synapse (Bortolotto et al., 1999; 

Contractor et al., 2003; Schmitz et al., 2001). Pharmacological studies have 

pointed to GluR5 as a key presynaptic subunit (Bortolotto et al., 1999; Lauri 

et al., 2001; More et al., 2004) but, in apparent contradiction with these 

results, electrophysiological analysis of GluR5, GluR6 and KA2 mutant 

mice have so far identified kainate receptors containing the GluR6, but not 

the GluR5 nor the KA2 subunits, as important modulators of mossy fiber 

synaptic strength during synaptic plasticity (Contractor et al., 2003; 

Figure 5.2 – Postsynaptic kainate 
receptor properties are not changed in 
GluR7

-/-
 mice. (A) Sample traces of mossy 

fiber EPSCs (MF-EPSCs) showing the 
mixed AMPA/kainate receptor-mediated 
component and the isolated kainate 
receptor-mediated component in the 
presence of GYKI 53655, recorded from 
slices of wildtype and GluR7

-/-
 mice and 

evoked at a stimulation frequency of 1 Hz. 
Scale bar: y axis, 50 pA for wildtype and 
40 pA for GluR7

-/-
; x axis, 25 ms. (B) 

Sample traces of pure kainate receptor-
EPSCs from wildtype (grey trace) and 
GluR7

-/-
 (black trace) mice. Scale bar: y 

axis, 1.9 pA for wildtype and 2 pA for 
GluR7

-/-
; x axis, 20 ms. (C) The 

contribution of KAR-mediated responses 
for MF-EPSCs, expressed as the ratio of 
kainate receptor-mediated postsynaptic 
current in the presence of GYKI 53655 to 
the total AMPA/kainate receptor-mediated 
current, is not changed in GluR7

-/-
 mice. 

(D) The decay kinetics of pure kainate 
receptor-EPSCs, obtained by a single 
exponential fit to the decay phase of the 
synaptic current, are not different between 
wildtype and GluR7

-/-
 mice. 
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Contractor et al., 2001; Schmitz et al., 2003). GluR6 is also the key subunit 

for postsynaptic kainate receptors at the mossy fiber synapse (Mulle et al., 

1998). The question arises as to whether presynaptic and postsynaptic 

kainate receptors are composed of different combinations of kainate 

receptor subunits, with GluR6 being part of pre and postsynaptic kainate 

receptors. The marked expression of GluR7 mRNA in the dentate gyrus 

granule cells (Wisden and Seeburg, 1993; Bureau et al., 1999) prompted 

us to examine the contribution of GluR7 to presynaptic kainate receptors. 

We thus studied several forms of short-term synaptic plasticity by looking at 

paired pulse facilitation, high frequency facilitation and low frequency 

facilitation that were shown to depend on presynaptic kainate receptors 

containing the GluR6 subunit (Contractor et al., 2001). We first compared 

paired pulse facilitation in the two genotypes (Figure 5.3A). When paired 

mossy fiber EPSCs were evoked at intervals ranging from 10 to 40 ms, the 

paired pulse ratio was markedly smaller in GluR7-/- mice (for 40 ms interval, 

4.3 ± 0.3; n = 14 for wildtype and 2.5 ± 0.2; n = 10 for GluR7-/-; P = 0.0002,  

unpaired t test). However, at inter-stimulus intervals of 100-200 ms, no 

significant difference was observed between the two genotypes.  

Mossy fiber synaptic transmission displays prominent facilitation in 

response to a short train of stimuli applied at a high frequency (20 Hz). High 

frequency facilitation has been shown to be inhibited by the AMPA/kainate 

antagonist CNQX (Schmitz et al., 2001) and the GluR5 selective antagonist 

LY382884 (Lauri et al., 2001). We studied whether high frequency 

facilitation was also impaired in GluR7-/- mice by applying a train of 5 stimuli 

at 20 Hz every 10 seconds, and normalized the five EPSCs to the 

amplitude of the first event in the train (Figure 5.3B). In keeping with results 

described above for paired pulse facilitation, a marked difference in high 

frequency facilitation was observed between the two genotypes (for the fifth 

EPSC, 690 ± 106 %; n = 12 for wildtype and 356 ± 52; n = 13 for GluR7-/-; P 

= 0.008, unpaired t test). These results suggest that GluR7-containing 
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kainate receptors    test). These results suggest that GluR7-containing 
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Figure 5.3 – Mossy fiber short-term synaptic plasticity is impaired in GluR7
-/-
 mice. (A) Left panel: 

representative traces of averaged mossy fiber EPSCs evoked by paired stimuli delivered at intervals of 
20 ms, 40 ms and 200 ms for wildtype and GluR7

-/-
 mice. Scale bars: y axis, 60 pA for wildtype and 50 

pA for GluR7
-/-
; x axis, 50 ms. Right panel: summary graph of paired-pulse ratios at intervals ranging 

from 10 ms to 200 ms. Significant differences between wildtype and GluR7
-/-
 mice were found for inter-

stimulus intervals of 20 and 40 ms. ** P < 0.01; *** P < 0.001. (B) Left panel: Representative traces of 
averaged mossy fiber EPSCs evoked by a train of 5 stimuli delivered at a frequency of 20 Hz in slices 
from wildtype and GluR7

-/-
 mice. Scale bars: y axis, 100 pA; x axis, 50 ms. Right panel: Summary graph 

of mossy fiber EPSC amplitudes in response to the 20 Hz train normalized to the amplitude of the first 
EPSC in the series. Significant differences were found between both genotypes for all the subsequent 
EPSCs in the series. * P < 0.05; ** P < 0.01. (C) Left panel: representative traces of averaged mossy 
fiber EPSCs at stimulation frequencies of 0.1-3 Hz for wildtype and GluR7

-/-
 mice. Scale bars: 100 pA 

for wildtype and 50 pA for GluR7
-/-
; x axis, 25 ms. Right panel: Summary graph of mossy fiber EPSC 

amplitudes for stimulation frequencies of 0.2-3 Hz normalized to the amplitude of the responses at 0.1 
Hz. Significant differences between wildtype and GluR7

-/-
 mice were found for stimulation frequencies 

of 0.5 Hz, 1 Hz and 3 Hz. * P < 0.05; *** P < 0.001. 
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kainate receptors facilitate mossy fiber synaptic transmission when 

repetitive stimuli occur within short intervals. These forms of short-term 

plasticity mainly occur because residual Ca2+ in the presynaptic terminal 

increases the release probability for subsequent EPSCs (Kamiya et al., 

2002), suggesting a rapid action of GluR7-containing receptors (probably 

less than 10 ms) on the entry of Ca2+.  

Mossy fiber synaptic transmission displays another form of short-

term plasticity, low frequency facilitation, that develops over a slower time 

scale with repetitive stimulation in the low frequency range (0.05 to 5 Hz), 

and that requires activation of CaMKII (Salin et al., 1996). We tested mossy 

fiber low frequency facilitation in GluR7-/- by increasing the stimulation 

frequency from 0.1 Hz to 4 different rates (0.2 Hz; 0.5 Hz; 1Hz; 3Hz). At low 

rates (0.2 Hz), low frequency facilitation was not different between the two 

genotypes. However, it was markedly impaired in GluR7-/- mice for the 

higher rates of stimulation (767 ± 75 %; n = 8 vs. 356 ± 15 %; n = 8 at 3 Hz 

for wildtype and GluR7-/-, respectively; P = 0.0001, unpaired t test) (Figure 

5.3C), indicating a role for GluR7 in this form of plasticity. The expression of 

low frequency facilitation does not require the presence of presynaptic 

kainate receptors, but GluR7-containing receptors markedly facilitate this 

form of short-term plasticity. Similar data were obtained with GluR6-/- mice 

but not GluR5-/- mice (Contractor et al., 2001), suggesting that both 
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Figure 5.4 – Summary graph of mossy fiber EPSC 
amplitudes obtained at a frequency of stimulation of 1 
Hz and normalized to the amplitude of the responses 
obtained at 0.1 Hz. Mossy fiber frequency facilitation is 
markedly reduced in GluR6

-/-
 and GluR7

-/-
 mice as 

compared to wild-type mice. However, no changes are 
observed in GluR5

-/-
 mice. Data for wild-type and GluR7

-

/-
 mice is the same as in figure 5.3C. 
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subunits are necessary for the facilitatory effect of presynaptic kainate 

receptors on mossy fiber synaptic transmission. These results were 

reproduced in the present study and are shown for comparative purposes 

(Figure 5.4). 

 

GluR7 contributes to long-term synaptic plasticity at mossy fiber synapses 

 

Kainate receptors play an important role in mossy fiber LTP 

(Bortolotto et al., 1999; Contractor et al., 2001; Lauri et al., 2001). Mossy 

fiber LTP is a cAMP-dependent presynaptic form of synaptic plasticity that 

does not require activation of NMDA receptors, but depends upon Ca2+ 

entry in the mossy fiber nerve terminal and subsequent activation of  a 

Ca2+-stimulated adenylyl cyclase AC8 (Henze et al., 2000; Wang et al., 

2003). As for short-term plasticity, the identity of kainate receptors involved 

in mossy fiber LTP is controversial, since genetic manipulations point to 

GluR6 as the major subunit whereas pharmacological studies identify the 

GluR5 subunit. Here we also examined the potential contribution of GluR7 

to mossy fiber LTP. Mossy fiber LTP was induced in wildtype and GluR7-/- 

mice using a high frequency stimulation (HFS) protocol, consisting of 100 

stimulations at a frequency of 100 Hz, repeated 3 times with a 10 second 

interval between trains, in the presence of bicuculline (10 µM) and the 

NMDA receptor antagonist D-AP5 (50 µM). In the first minute after the last 

tetanic burst mossy fiber EPSCs showed a marked post-tetanic potentiation 

(PTP) (Figure 5.5A). A significant difference in the magnitude of PTP was 

observed between the two genotypes (941 ± 121 %; n = 8 for wildtype and 

534 ± 86 %; n = 9 for GluR7-/-; P = 0.014, unpaired t test) (Figure 5.5A, B).  

This sharp increase was transient and was followed by a sustained 

enhancement of synaptic transmission that lasted over 40 minutes (Figure 

5.5A). The percent increase in EPSC amplitude, averaged between 20 and 

30 minutes after the tetani, was markedly decreased in GluR7-/- mice (181 ± 
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8 %; n = 8 for wildtype and 119 ± 6; n = 9 for GluR7-/-; P < 0.0001, unpaired 

t test) (Figure 5.5C). Mossy fiber LTP critically depends on the stimulation 

of adenylyl cyclase and subsequent activation of a cAMP-dependent 

Figure 5.5 – Mossy fiber PTP and LTP are impaired in the absence of the GluR7 subunit. (A) Time 
course of mossy LTP in wildtype and GluR7

-/-
 mice. LTP was induced by a high frequency stimulation 

protocol consisting of a 1 s duration 100 Hz train repeated 3 times with 10 s intervals in the presence of 
bicuculline and D-AP5. The trains were delivered at the moment indicated by the arrow and at the end 
of each experiment the group II mGluR agonist L-CCG-I (10 µM) was applied to confirm that the 
responses were indeed originating from mossy fibers. Sample traces from recordings in wildtype and 
GluR7

-/-
 mice are shown to the right for the time points indicated in the graph. Basal stimulation was 

performed at 0.05 Hz. Scale bars: y axis, 50 pA; x axis, 20 ms. (B) Summary graph of mossy fiber PTP, 
calculated as the percent increase in mean EPSC amplitude averaged in the first minute following the 
induction protocol. PTP was observed in both genotypes but was significantly reduced in slices from 
GluR7

-/-
 mice. * P < 0.05. (C) Summary graph of mossy fiber LTP, calculated as the percent increase in 

mean EPSC amplitude averaged between 20-30 min after the induction protocol. LTP was significantly 
reduced, but not completely abolished, in GluR7

-/-
 mice. *** P < 0.001. (D) Time course showing that 

PKA-dependent enhancement of mossy fiber synaptic transmission by forskolin is not changed in 
GluR7-/- mice. Forskolin (10 µM) was applied for 15 min and mossy fibers EPSCs monitored for an 
additional 30 min. Sample traces for slices from wildtype and GluR7

-/-
 mice are shown for the indicated 

time points in the time course plot. Scale bars: y axis, 50 pA for wildtype and 25 pA for GluR7
-/-
; x axis, 

20 ms. 
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protein kinase. Forskolin, an activator of adenylyl cyclases, induces a long-

lasting enhancement of mossy fiber EPSCs and occludes burst induced 

mossy fiber LTP (reviewed by Malenka and Bear, 2004). Application of 

forskolin (10 µM, 15 minutes) increased mossy fiber EPSCs to the same 

extent in both genotypes (177 ± 39 %; n = 5 for wildtype and 184 ± 29 %; n 

= 8 for GluR7-/- ; P = 0.89, unpaired t test) (Figure 5.5D). These data 

indicate that the impairment of mossy fiber LTP in GluR7-/- mice occurred 

upstream of PKA in the signalling cascades, and might therefore be linked 

to changes in Ca2+ entry and subsequent activation of adenylyl cyclase. 

These results are again closely similar to what was observed with GluR6-/- 

mice (Contractor et al., 2001). 

 

Rescue of mossy fiber LTP in GluR7-/- mice 

 

Mossy fiber LTP was not completely abolished in GluR7-/- mice (119 

± 6 %; n = 9; P = 0.007 in relation to baseline, unpaired t test), adding to 

the notion that kainate receptors play a facilitating or permissive rather than 

an inducting role in mossy fiber LTP (Schmitz et al., 2003). We thus 

examined whether LTP could be rescued in GluR7-/- mice with experimental 

conditions that enhance presynaptic excitability during the induction 

protocol, and convert a subthreshold LTP tetanus into an effective one 

(Schmitz et al., 2003). To depolarize the nerve terminal and therefore 

facilitate LTP induction, we increased the concentration of extracellular KCl 

to 5 mM during a short period before and during the induction protocol. The 

KCl concentration was returned to normal just after the induction protocol. 

The amplitude of mossy fiber EPSCs slightly increased upon  application of 

5 mM KCl (151 ± 35 %; n = 7) in GluR7-/- mice and the tetanus that only 

induced limited LTP in these mice in normal (2.5 mM) extracellular KCl 

concentration, now induced a large and sustained increase in mossy fiber 

EPSC amplitude (172 ± 39 %; n = 7) (Figure 5.6A, C). LTP was also 
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rescued in GluR7-/- mice with a more robust tetanus protocol consisting of 9 

bursts of 100 Hz trains instead of 3 (Figure 5.6B, C). In these conditions, a 

sustained enhancement of mossy fiber EPSC amplitude was observed to a 
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Figure 5.6 – Mossy fiber LPT can be 
restored by protocols that increase 
excitability. (A) Time course of mossy 
fiber LTP in slices of GluR7

-/-
 mice 

where 5 mM K
+
 was applied for 5 min 

before and during the normal 
induction protocol, that was performed 
at the time point indicated by the 
arrow. Mossy fiber responses were 
monitored for an additional 40 min 
after the tetanic stimulation, at which 
point L-CCG-I was applied. In these 
conditions PTP and LTP were 
restored. K

+
 by itself slightly increased 

mossy fiber responses. Sample traces 
for the indicated time points in the 
graph are also shown. Basal 
stimulation was performed at 0.05 Hz. 
Scale bars: y axis, 20 pA; x axis, 20 
ms. (B) Time course of mossy fiber 
LTP in slices of GluR7

-/-
 mice where 

the normal induction protocol was 
repeated 3 times at 10 s intervals in 
the presence of bicuculline and D-
AP5 at the time point indicated by the 
arrow. In these conditions PTP and 
LTP were also restored. Sample 
traces for the indicated time points are 
shown. Basal stimulation was 
performed at 0.05 Hz. Scale bars: y 
axis, 40 pA; x axis, 20 ms. (C) 
Summary graph of mossy fiber PTP, 
calculated as the percent increase in 
mean EPSC amplitude averaged in 
the first minute after the induction 
protocol. Impaired PTP observed in 
GluR7

-/-
 mice can be restored to the 

levels found in wildtype mice by 
increasing the extracellular K

+
 

concentration or by providing 
additional stimuli for the induction 
protocol. (D) Summary graph of 
mossy fiber LTP, calculated as the 
percent increase in mean EPSC 
amplitude averaged between 20-30 
min after the induction protocol. 
Reduced LTP in slices from GluR7

-/-
 

mice can be restored to levels similar 
to those found in slices from wildtype 
animals by the same experimental 
protocols that restore PTP.  
 



 
 
 
 
 
 
Chapter 5 

110 

 

 

 

 

 

 

magnitude similar to control conditions in wildtype mice (177 ± 19 %; n = 5). 

In parallel, both protocols also lead to restored PTP in GluR7-/- mice (Figure 

5.6D). Similar results were obtained with GluR6-/- mice in a previous study 

(Schmitz et al., 2003) suggesting that kainate receptors containing both 

GluR6 and GluR7 facilitate the induction of mossy fiber LTP either by 

depolarizing the nerve terminal or by directly mediating Ca2+ entry into the 

presynaptic boutons. 

 

GluR7-containing receptors are not involved in the inhibitory action of 

kainate on mossy fiber EPSCs 

 

At the mossy fiber synapse, activation of kainate receptors by the 

endogenous release of glutamate is involved in the facilitation of mossy 

fiber synaptic responses. However, at this synapse, pharmacological 

activation of kainate receptors by the exogenous agonist kainate modulates 

the release of glutamate in a bidirectional manner depending on the 

concentration that is used; low concentrations seem to facilitate release 

whereas high concentrations cause its inhibition. The most commonly 

accepted interpretation for this phenomenon is that a small depolarization 

of the nerve terminal in response to low concentrations of kainate might be 

enough to facilitate glutamate release, whereas a larger depolarization 

might lead to inactivation of Na+ or Ca2+ channels and subsequently inhibit 

neurotransmitter release (see Lerma, 2003). However, this interpretation is 

not fully satisfactory and does not take into account the possibility that 

different receptor subtypes might be involved in each action. Analysis of 

mutant mice revealed that GluR6 containing receptors are involved in both 

the facilitatory (Contractor et al., 2003) and the inhibitory (Contractor et al., 

2000) actions of kainate. We examined whether GluR7 was similarly 

involved in both actions. In our hands, the application of 50 nM kainate did 

not cause any change in the amplitude of mossy fiber EPSCs (93 ± 11%; n 
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= 6 for wildtype and 95 ± 7%; n = 9 for GluR7-/-; basal stimulation rate at 

0.05Hz) (Figure 5.7A, C). Since the sensitivity to kainate was reported to be 

dependent on the extracellular concentration of Ca2+ (Lauri et al., 2003), we 

repeated the experiment with 4 mM Ca2+ and 4 mM Mg2+ in the extracellular 

medium. Even under these conditions, we could not find a concentration of 

kainate that lead to a significant increase in the amplitude of mossy fiber 

Figure 5.7 – GluR7-containing kainate receptors are not involved in the inhibitory action of kainate on 
mossy fiber responses. (A) Time course of mossy fiber EPSCs during the application of 50 nM kainate 
in the extracellular medium. At this concentration, and in our experimental conditions, kainate applied 
for 10 min has no enhancing effect on mossy fiber synaptic transmission in slices from wildtype or 
GluR7

-/-
 mice. Basal stimulation was performed at 0.05 Hz. (B) Time course of mossy fiber EPSCs 

during the application of 200 nM kainate in the extracellular medium. When kainate is applied for 10 
min a marked decrease in mossy fiber EPSC amplitude is observed. The degree of inhibition of 
synaptic transmission is similar in slices from both wildtype and GluR7

-/-
 mice and responses are 

recovered upon washout. Basal stimulation was performed at 0.05 Hz. (C) Summary graph for the 
changes in mossy fiber synaptic transmission upon application of low (50 nM) or high (200 nM) 
concentrations of kainate. In either case no differences between genotypes are observed and the 
enhancing effect of kainate is not apparent even in the presence of higher concentrations of divalent 
cations (4 mM Ca

2+
 and 4 mM Mg

2+
). (D) Bath application of 200 nM kainate causes the activation of a 

postsynaptic inward current, with similar average amplitude, in neurons recorded in slices of wildtype 
and GluR7

-/-
 mice. 
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EPSCs (98 ± 8% for wildtype, n = 10; 114 ± 11% for GluR7-/-; n = 8, for 50 

nM kainate) (Figure 5.7C). The reason for this is unclear, but it may be in 

part due to a species or a genetic background difference. In fact, it has 

been shown that not only different strains of mice have different 

susceptibility to kainate induced seizures and neuronal damage (Golden et 

al., 1991; Ferraro et al., 1995; McKhann et al., 2003; Schauwecker, 2003; 

Schauwecker et al., 2004) but also show marked dissimilarities in calcium 

signalling at distal dendrites (Shuttleworth and Connor, 2001). 

Nevertheless, at concentrations higher than 100 nM, kainate consistently 

induced a similar decrease in synaptic transmission in both wildtype and 

GluR7-/- mice (inhibition to 57 ± 8 % of control; n = 6 for wildtype and to 53 

± 9% of control; n = 8 for GluR7-/-; P = 0.74 between genotypes at 200 nM 

kainate, unpaired t test) (Figure 5.7B, C), in parallel with the activation of an 

inward current in the postsynaptic neuron (199 ± 25 pA; n = 6 for wildtype 

and 247 ± 55pA; n = 8 for GluR7-/-; P = 0.40 at 200 nM kainate, unpaired t 

test) (Figure 5.7D). In contrast with what was observed with GluR6-/- mice 

(Contractor et al., 2000), the inhibitory action of high concentrations of 

kainate on synaptic transmission was thus preserved in GluR7-/- mice. 

These results indicate that GluR7 contributes to the facilitation of mossy 

fiber synaptic transmission (in short-term synaptic plasticity protocols) but 

not its depression, suggesting that two different populations of kainate 

receptors are involved in the bi-directional regulation of glutamate release. 

 

Co-assembly and sub-cellular localization of GluR6 and GluR7 in vivo  

 

The facilitatory function of presynaptic kainate receptors during 

short and long-term synaptic plasticity is similarly impaired in both GluR6-/- 

and GluR7-/- mice. The fact that both subunits seem necessary for the 

facilitation of synaptic transmission suggests that they might co-assemble 

to form presynaptic heteromeric kainate receptors at the mossy fiber 
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synapse. It is already known that GluR6 and GluR7 readily co-assemble to 

form functional heteromeric receptors in recombinant systems (Cui and 

Mayer, 1999; Jaskolski et al., 2005b). We examined whether the two 

subunits also co-assembled in vivo using a biochemical assay. In the 

absence of a suitable anti-GluR7 antibody, we used the following 

experimental approach. We prepared Western blots from hippocampal 

extracts of knock-in transgenic mice expressing myc-GluR6a under the 

control of the α-CAMKII promoter on a GluR6-/- background (myc-

GluR6xGluR6-/- mice) (Coussen et al., 2002). In these conditions myc-

GluR6 is detected either with an anti-GluR6/7 antibody or with an anti-myc 

antibody as a 135 kDa band, whereas the band labeled by the anti-GluR6/7 

antibody at 115 kDa corresponds to GluR7 alone (Figure 5.8A). 

Immunoprecipitation with an anti-myc antibody yielded two bands 

corresponding to myc-GluR6 and GluR7 (Figure 5.8A) indicating that myc-

GluR6 and GluR7 were associated within a heteromeric complex in the 

hippocampus.  

The impaired presynaptic function in knock-out mice could be due to 

miss-targeting of kainate receptor subunits to presynaptic sites if either 

GluR6 or GluR7 is absent. To test this hypothesis, we used a biochemical 

procedure similar to the one described in chapter 3 to separate non-

synaptic proteins from synaptic junctions. The separation procedure was 

not carried further due to the scarceness of material and to the fact that 

preliminary experiments showed a less efficient separation of presynaptic 

proteins from the postsynaptic densities in material from the mouse brain. 

We also analyzed the enrichment of synaptic markers in these two different 

fractions isolated from hippocampi of wildtype, GluR6-/- and GluR7-/- mice 

(Figure 5.8B). PSD95, a characteristic protein of the postsynaptic density, 

is present in the synaptic junctions but is excluded from the non-synaptic 

collection of proteins. The same separation occurs with the metabotropic 

receptor mGluR7 which is known to be present very close to synaptic 
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release sites at the presynaptic level (Somogyi et al., 2003). On the  

Figure 5.8 – Co-assembly of GluR6 and GluR7 subunits in the brain, and subcellular localization. 
(A) Kainate receptors were purified by immunoprecipitation from the mouse brains of different 
genotypes (wildtype, mycGluR6 and mycGluR6 x GluR6

-/-
), with an anti-myc antibody. Western 

blots were probed with an anti-GluR6/7 antibody. In brains from mycGluR6 x GluR6
-/-
 mice, the 

upper band (135 kD) corresponded to the immunoprecipitated transgene product (myc-GluR6a) and 
the lower band (115 kD) to GluR7. (B) Starting with hippocampal nerve terminals form wildtype, 
GluR6

-/-
 and GluR7

-/-
 mice we selectively solubilized non-synaptic proteins from synaptic junctions.  

Proteins typically excluded from the zone of synaptic contact such as NCAM and synaptophysin are 
exclusively localized in the solubilized non-synaptic fraction. On the other hand, proteins known to 
be localized at areas of synaptic contact, such as PSD-95 at the postsynaptic level and mGluR7 at 
the presynaptic level, were found exclusively in the synaptic junctions fraction.  Analysis of the 
protein fractions with an anti-GluR6/7 antibody revealed that, in the absence of the GluR6 subunit, 
GluR7 is nevertheless found at synapses. Similarly, in the absence the GluR7 subunit GluR6 is also 
found at synapses. 
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release sites at the presynaptic level (Somogyi et al., 2003). On the 

contrary, the adhesion molecule NCAM and the synaptic vesicle protein 

synaptophysin are only detected in the non-synaptic fraction of proteins 

(Figure 5.8B). The anti-GluR6/7 antibody labeled the synaptic junctions 

fraction in wildtype, GluR6-/- (labelling of GluR7) and GluR7-/- (labelling of 

GluR6) mice. Altogether, these results provide strong evidence that GluR6 

and GluR7 can co-assemble in native kainate receptors and are likely 

localized in the active zone near vesicular release sites. 

 

Pharmacological evidence for presynaptic GluR7-containing kainate 

receptors 

 

The data using a genetic deletion approach provide powerful 

arguments in favor of GluR7 as a presynaptic kainate receptor at the mossy 

fiber synapse. However, potential unknown compensatory mechanisms 

might also explain the impairment of short and long-term synaptic plasticity 

at the mossy fiber synapse in GluR7-/- as well as GluR6-/- mice. To directly 

test for the presence of a presynaptic GluR7 subunit, a selective antagonist 

would prove very useful. We thus sought to antagonize the facilitatory 

effects of presynaptic kainate receptors with pharmacological agents in 

wildtype mice, and to further check that the antagonists were not operant in 

GluR7-/- mice. There is yet no report of a selective GluR7 (or GluR6/GluR7) 

antagonist. We thus performed pharmacological experiments on 

recombinant kainate receptors comprising the GluR7 subunit. We 

expressed the non-edited variants (Q forms) of GluR1, GluR6a and GluR7a 

individually in HEK 293 cells. Since the genetic and biochemical data point 

to a heteromeric GluR6/GluR7 kainate receptor responsible for presynaptic 

facilitation we also co-transfected GluR6a and GluR7a which readily co-

assemble as heteromers in heterologous cells (Cui and Mayer, 1999; 

Jaskolski et al., 2005b). To ascertain that a heteromeric receptor was 
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indeed formed, we used an excess of GluR7a cDNA (3 times) and the 

edited (R form) of GluR6a that, once incorporated into a receptor, yields a 

Figure 5.9 – Effect of AMPA/kainate receptor antagonists on recombinant GluR6/GluR7 receptors. (A) 
Currents evoked by applications of 30 mM glutamate for 100 ms on lifted HEK 293 cells expressing 
GluR6, GluR7a, alone or in combination. Black lines indicate the time of glutamate application. Varying 
concentrations of CNQX reversibly decreased the amplitude of the evoked currents. Scale bars: x axis, 
50 ms; y axis, 2nA (GluR6), 400 pA (GluR7), 200 pA (GluR6/7). (B) Concentration-dependent effect of 
CNQX on current amplitude for GluR6, GluR7 and GluR6/GluR7 receptors. (C) Currents evoked at 
different potentials in cells expressing GluR6 and GluR7 were normalized on their amplitude at –80 mV, 
and averaged (n = 8). The IV curve is linear, showing that GluR6R is incorporated into receptors. (D) 
Effect of GYKI 53655 on currents evoked by 30 mM glutamate, presented as in A. Scale bars: x axis, 
50 ms; y axis, 2 nA (GluR6), 50 pA (GluR7), 200 pA (GluR6/7). (E) Concentration-dependent effect of 
GYKI 53655 on current amplitude. Data points were fit with the Hill equation to calculate IC50 values for 
each GluR subunit combination (see text). 
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non rectifying I-V curve (Cui and Mayer, 1999) (Figure 5.9C). Since GluR7 

is activated only by high concentrations of glutamate (Schiffer et al., 1997) 

we applied 30 mM glutamate for 100 ms to activate kainate and AMPA 

receptors using a fast piezoelectric application device on lifted transfected 

cells (Figure 5.9A). We first tested the effects of CNQX, which binds to 

GluR7 with a slightly better affinity than to GluR6 on recombinant kainate 

receptors (Bettler et al., 1992). CNQX, at a concentration used to inhibit 

short-term plasticity at the mossy fiber synapse (10 µM; Schmitz et al., 

2001), completely blocked GluR7 and GluR6/GluR7 containing kainate 

receptors activated by 30 mM glutamate (Figure 5.9A, B). Currents 

mediated by homomeric GluR6 receptors were not completely abolished 

even at the highest CNQX concentration tested (100 µM), probably 

because of the high glutamate concentration used here (30 mM), that will 

compete with CNQX for the binding site. This competition is reflected by a 

change in current kinetics observed for higher concentrations of CNQX 

(Figure 5.9A).  

A recent study in the mouse hippocampus intriguingly revealed that 

the extent of synaptic plasticity of kainate receptor-mediated EPSCs at 

mossy fiber synapses was attenuated as compared to AMPA receptor 

mediated EPSCs (Ito et al., 2004). We reasoned that this difference might 

lie in the use of GYKI 53655 to unmask postsynaptic kainate receptor-

mediated EPSCs that might influence facilitatory kainate receptors at the 

presynaptic level. Therefore, we also examined whether GYKI 53655 

antagonized recombinant GluR6 and GluR7 receptors expressed in HEK 

293 cells. As expected, GluR1 was very sensitive to GYKI 53655 (IC50 = 2.2 

± 0.4 µM; n = 3). Both GluR6 and GluR7 homomeric receptors appeared 

sensitive to GYKI 53655 with IC50 values of 198 ± 53 µM and 63 ± 10 µM (n 

= 3 to 8), respectively. Thus, at the concentration of 50 µM GYKI used to 

block AMPA receptor mediated EPSCs, GluR7 mediated currents are 

inhibited by about 50 %. Heteromeric GluR6/GluR7 receptors were found to 
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be as about 50 %. Heteromeric GluR6/GluR7 receptors were found to be 

Figure 5.10 – Facilitatory GluR7-containing presynaptic kainate receptors are blocked by CNQX and 
GYKI 53655. (A) Top panel: representative traces of mossy fiber EPSCs from slices of wildtype mice 
recorded at +40 mV in control conditions or in the presence of 50 µM CNQX when shifting stimulation 
from 0.1 Hz to 1 Hz. In the presence of CNQX the fast AMPA component is abolished. Scale bars: y 
axis, 10 pA; x axis, 40 ms. Bottom panel: summary graph of the average percent facilitation of mossy 
fiber EPSCs when shifting stimulation from 0.1 Hz to 1 Hz showing that facilitation is significantly 
reduced in the presence of CNQX. (B) Top panel: representative traces of mossy fiber EPSCs from 
slices of GluR7

-/-
 mice recorded at +40 mV in control conditions or in the presence of 50 µM CNQX 

when shifting stimulation from 0.1 Hz to 1 Hz. Scale bars: y axis, 33 pA; x axis, 40 ms. Bottom panel: 
summary graph of the average percent facilitation of mossy fiber EPSCs when shifting stimulation from 
0.1 Hz to 1 Hz showing that not only facilitation is not changed in the presence of CNQX in GluR7

-/-
 

mice but also that its levels are similar to those of wildtype mice when in the presence of CNQX. (C) 
and (D) Representation of similar experiments as in (A) and (B) showing that in the presence of 50 µM 
GYKI frequency facilitation, when shifting the stimulation frequency from 0.1 Hz to 1 Hz, is significantly 
reduced in slices from wildtype mice [shown in (C); scale bars: 25 pA x 40 ms] but is not changed in 
slices from GluR7

-/-
 mice [shown in (D); scale bars: 22 pA x 40 ms]. Furthermore, in GluR7

-/-
 mice the 

levels of facilitation are similar to those of wildtype mice in the presence of GYKI. 
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as sensitive as homomeric GluR7 receptors (IC50 = 74 ± 26 µM; n = 4) 

(Figure 5.9D, E). Therefore, GYKI 53655, usually considered as a selective 

AMPA receptor antagonist, also inhibits GluR6/GluR7 recombinant 

receptors and can thus affect synaptic transmission at the presynaptic level 

at mossy fiber synapses. 

To test whether presynaptic kainate receptors were inhibited by 

agents that block GluR6/GluR7 recombinant receptors, we compared the 

effects of CNQX and GYKI 53655 on short-term plasticity at the mossy fiber 

synapse of wildtype and GluR7-/- mice. In the impossibility to record AMPA 

receptor-mediated EPSCs we recorded mossy fiber EPSCs at +40 mV to 

remove the Mg2+ block from NMDA receptors and we evaluated the extent 

of low frequency facilitation (shift in tonic frequency from 0.1Hz to 1Hz) in 

the absence of any antagonist of AMPA/kainate receptors. Application of 

CNQX (50 µM) fully blocked the fast AMPA component, and significantly 

decreased the magnitude of low frequency facilitation from 488 ± 42% to 

406 ± 39% (P = 0.02 compared to control, paired t test; n = 7) (Figure 
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Figure 5.11 – The AMPA and the NMDA component of mossy fiber EPSCs show the same frequency 
facilitation. (A) Left panel: sample traces showing mossy fiber EPSCs recorded at +40 mV only in the 
presence of bicuculline (AMPA+NMDA) and the pure AMPA receptor-mediated EPSCs isolated by 
application of the NMDA receptor antagonist D-AP5 (50 µM). Dashed lines represent, from left to right, 
the time points of 30, 35 and 40 ms from the peak AMPA+NMDA EPSC. Scale bars: y axis, 20 pA; x 
axis, 20 ms. Right panel: percentage of pure AMPA receptor-mediated current relative to the peak 
response for the time points indicated. At 40 ms from the peak mossy fiber response only 4.1 ± 0.4% of 
the AMPA receptor mediated component is left. (B) Mossy fiber frequency facilitation, when measured 
at +40 mV, is the same when monitoring either the peak AMPA response or the NMDA component at 
40 ms from the peak response, indicating that both display a similar degree of plasticity. 
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5.10A), a value close to that observed in control conditions in GluR7-/- mice. 

In addition, the inhibition of low frequency facilitation by CNQX was not 

observed in GluR7-/- mice (402 ± 34% for control and 423 ± 61% for CNQX; 

n = 7; P = 0.89, paired t test) (Figure 5.10B). Similarly, GYKI 53655 (50µM) 

inhibited low frequency facilitation in wildtype mice from 585 ± 100% to 391 

± 55 % (n = 7; p = 0.01 as compared to control, paired t test) (Figure 

5.10C), but no inhibition was observed in GluR7-/- mice (400 ± 71% in 

control conditions, and 411 ± 74%, in the presence of GYKI 53655; n = 7; P 

= 0.90, paired t test) (Figure 5.10D). We also verified whether the 

magnitude of facilitation was similar for the AMPA component (measured at 

the peak of the EPSC), and for the NMDA component (measured 40 ms 

after the peak, when only 4.1 ± 0.4 % of the AMPA component is left in the 

presence of D-AP5; n = 3) and found no significant differences (Figure 

5.11A, B). Overall, these experiments strongly suggest that both CNQX and 

GYKI 53655 attenuate short-term synaptic plasticity by acting on 

presynaptic kainate receptors containing the GluR7 subunit.  

  

 

5.3. Discussion 

 

The evidence presented in this chapter of our study sheds light, for 

the first time, on the role for the GluR7 subunit in synaptic transmission, 

and also impacts the current view of the way these receptors act in the 

modulation of synaptic transmission. This kainate receptor subunit was 

cloned more than a decade ago (Bettler et al., 1992), but has received little 

attention. Due to the lack of specific pharmacological tools for GluR7, the 

physiological function of kainate receptors comprising this subunit has 

never been addressed before. Using a combination of electrophysiological, 

pharmacological and biochemical analysis of wildtype and GluR7-deficient 

mice, we show that GluR7 is a key subunit of presynaptic kainate receptors 



 
 
 
 
 
 

Presynaptic GluR7 controls synaptic plasticity 

 121 

 

 

 

 

 

 

at the mossy fiber synapse. Our results also confirm that presynaptic 

kainate receptors at the mossy fiber synapse are fast-acting facilitatory 

autoreceptors accounting for a permissive role in short- and long-term 

synaptic plasticity. We propose that this action is mediated by GluR6/GluR7 

heteromers localized very close to glutamate release sites, where the low 

affinity GluR7 subunit can sense the expected millimolar concentrations of 

glutamate necessary for its activation. We further propose that the 

facilitatory and inhibitory actions of kainate at the mossy fiber synapse are 

mediated by kainate receptors with distinct molecular composition, and 

probably distinct localization. Finally, our data provide directions that should 

help to clarify the discrepancies raised by using different pharmacological 

tools or knock-out mice.  

 

A physiological function for the GluR7 subunit 

 

GluR7 forms functional homomeric receptor channels with a 10-fold 

higher EC50 for glutamate as compared to other kainate or AMPA receptor 

subtypes (Schiffer et al., 1997), suggesting that the GluR7 subunit may play 

a unique role in synaptic transmission. We show here that GluR7 is a key 

component of presynaptic autoreceptors at the mossy fiber synapse and is 

involved in several forms of short and long-term synaptic plasticity. In 

GluR7-/- mice, paired pulse facilitation was markedly reduced for 

interstimulus intervals as small as 20 ms, in conditions of minimal 

stimulation intensity, suggesting that presynaptic GluR7-containing kainate 

receptors can be activated by a single glutamate release event. The 

involvement of kainate autoreceptors in this form of plasticity takes place 

only within short intervals, since no impairment is observed at intervals of 

100 ms or greater. Consistent with a fast action of presynaptic kainate 

receptors our data show that GluR7 is present in the presynaptic web 

(Figure 5.8) and, as already suggested by the results presented in chapter 
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4, they imply that presynaptic kainate receptors are localized close to the 

site of glutamate exocytosis. This localization helps to understand how the 

synaptic concentration of glutamate can reach levels sufficient to activate 

GluR7 receptors, which display a very low affinity for this agonist. Estimates 

of the concentration of glutamate in vesicles range from 60 to 210 mM 

(Clements, 1996). The closer GluR7 containing receptors are localized to 

the vesicle release sites, the higher the glutamate concentration they will 

sense during release.  

Frequency facilitation, another form of short-term plasticity, 

develops more slowly upon repeated stimulations at low frequencies, and 

depends on a rise in intraterminal Ca2+ and activation of Ca2+/calmodulin-

dependent kinase II (Salin et al., 1996). The extent of frequency facilitation 

was markedly decreased in GluR7-/- mice. Moreover, frequency facilitation 

of mossy fiber EPSCs recorded at +40 mV was inhibited by CNQX and 

GYKI 53655 in wildtype mice but not in GluR7-/- mice. These results 

demonstrate the contribution of the GluR7 subunit to this different form of 

short-term synaptic plasticity, probably by contributing to a sustained 

enhancement of Ca2+ in the mossy fiber terminal. 

Finally, the presynaptic form of LTP typical of mossy fiber synapses 

was clearly impaired in GluR7-/- mice but could be rescued by either 

increasing excitability during the induction protocol or by using a more 

robust induction protocol. Thus, presynaptic kainate receptors containing 

GluR7 play a facilitatory role in short and long-term synaptic plasticity, 

rather than an inducing role (Contractor et al., 2001; Lauri et al., 2001; Lauri 

et al., 2003; Schmitz et al., 2001). A very similar presynaptic phenotype has 

been described in GluR6-/- mice (Contractor et al., 2001; Schmitz et al., 

2003), suggesting that both subunits partially play the same role and/or co-

assemble together to form functional receptors (see below). However, 

unlike GluR6, GluR7 is a purely presynaptic kainate receptor subunit at the 
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mossy fiber synapse, and is not involved in the inhibition of synaptic 

transmission by kainate (Contractor et al., 2000). 

 

Mechanisms of synaptic facilitation by kainate autoreceptors 

 

The fast-acting effect of GluR7-containing kainate receptors on 

release probability, as judged by the extent of paired pulse facilitation, 

favors a presynaptic mechanism relying on the activation of the receptor 

channel, triggering depolarization of the nerve terminal membrane or direct 

Ca2+ influx. A rather direct evaluation of the role of presynaptic kainate 

receptors was recently given by imaging presynaptic Ca2+ and 

depolarization of the nerve terminal during short-term synaptic plasticity 

(Kamiya et al., 2002). These results are in favor of a depolarizing effect that 

thereby augments the action potential-dependent activation of voltage-

gated Ca2+ channels. Presynaptic ionotropic receptors might enhance 

neurotransmitter release owing to Ca2+ entry through the receptor itself, by 

summating with Ca2+ entering through voltage-gated Ca2+ channels or 

triggering Ca2+ release from intracellular stores (Lauri et al., 2003). Given 

the non-editing and strong inward rectification of GluR7 receptors (Schiffer 

et al., 1997) direct permeation of Ca2+ through the receptor channels is a 

possibility. In fact, given the suggested proximity of GluR6/GluR7 receptors 

in relation to release sites, direct Ca2+ permeation through the receptors 

may predominate (Engelman and MacDermott, 2004). Additionally, mossy 

fiber synaptic plasticity is markedly reduced by philanthotoxin (Lauri et al., 

2003), a compound that blocks unedited Ca2+-permeable glutamate 

receptors (see Fletcher and Lodge, 1996), further arguing in favor of direct 

permeation of Ca2+ through GluR7 kainate receptors, that only exist in the 

unedited form. In favor of a depolarizing action of presynaptic kainate 

receptors, a slight elevation in the extracellular KCl concentration increases 

mossy fiber EPSCs and rescues mossy fiber LTP in GluR6-/- (Schmitz et al., 
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2003) and GluR7-/- mice (this study). However, a KCl-induced 

depolarization involves different routes that account for Ca2+ entry and most 

probably simply mimics the outcome of activating presynaptic kainate 

receptors when these are not operating. In summary, it appears that 

presynaptic GluR7-containing kainate receptors facilitate neurotransmitter 

release probably through an ionotropic receptor action.  

It is commonly proposed that the concentration of agonist activating 

presynaptic kainate receptors determines the outcome on neurotransmitter 

release; a small depolarization might enhance evoked release by bringing 

the membrane potential closer to threshold, while a larger depolarization 

might shunt or depress action potential amplitude to decrease release 

(Engelman and MacDermott, 2004). Such a dual mechanism has been 

postulated for presynaptic kainate receptors at the mossy fiber synapse 

(Lauri et al., 2001; Schmitz et al., 2001), implying that the same receptors 

could operate bi-directionally. Our data provide clear evidence that 

inhibition of glutamate release at mossy fiber synapses is not mediated by 

the same kainate receptors that contribute to enhancement of release, 

since inhibition of glutamate release by concentrations of kainate above 

100 nM is lost in GluR6-/- mice but is not affected in GluR7-/- mice. It should 

be stressed that inhibition of glutamate release is observed at 

concentrations that also evoke consistent inward currents in postsynaptic 

CA3 pyramidal cells, raising the possibility that inhibition is indirectly 

dependent on the large change in network activity in response to kainate. It 

is interesting to point out that endogenous glutamate increases the efficacy 

of GABAergic synapses in CA1 pyramidal cells, whereas depression is only 

observed with high concentrations of kainate (Jiang et al., 2001), 

suggesting again in another system that the facilitatory and the inhibitory 

actions of kainate receptors might be mediated by distinct entities. 
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Subunit composition of presynaptic kainate receptors  

 

Our results provide strong evidence that GluR7 is a presynaptic 

kainate receptor subunit at hippocampal mossy fiber synapses. However, 

the question still remains as to the full subunit composition of native kainate 

receptors at this synapse, which are probably heterotetrameric proteins. 

We propose that the presynaptic function at the mossy fiber synapse is 

mediated by heteromeric GluR6/GluR7 receptors. First, as mentioned 

above, the presynaptic phenotype of GluR6-/- mice and GluR7-/- mice are 

very similar. In contrast, no impairment of synaptic plasticity was observed 

in GluR5-/- mice (Contractor et al., 2001) and KA2-/- mice (apart from a 

change in heterosynaptic facilitation; Contractor et al., 2003). Second, both 

GluR6 and GluR7 are detected in preparations of synaptic junctions, a sub-

fractionation of synaptosomes that comprise the postsynaptic density and 

the presynaptic web (Phillips et al., 2001). Due to the lack of specific anti-

GluR6 and anti-GluR7 antibodies, we could not directly test if GluR6 and 

GluR7 readily associate in the brain. However, using transgenic mice 

expressing myc-GluR6a under the control of the α-CAMKII promoter on a 

GluR6-/- background (Coussen et al., 2002), we show that myc-GluR6 and 

GluR7 do co-immunoprecipitate. Finally, studies on recombinant kainate 

receptors have shown that GluR6 and GluR7 can co-assemble into 

heteromeric functional channels (Cui and Mayer, 1999), as also shown in 

the present study. In addition, immunoprecipitation experiments from 

transfected cells demonstrate a high degree of co-assembly of GluR6a and 

GluR7a (Jaskolski et al., 2005b).  

If we assume that presynaptic kainate receptors contain both GluR6 

and GluR7, we need to understand why the presynaptic function of these 

receptors as autoreceptors is abolished in mice with a gene deletion of one 

or the other subunit. The loss of presynaptic kainate receptor function in 

mice with a gene deletion of one or the other subunit might be due to miss-
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targeting of GluR7 in the absence of GluR6 as its protein partner. Against 

this hypothesis, our biochemical experiments indicate that GluR7 is present 

in the synaptic junctions in the absence of GluR6. However, we did not 

show that GluR6 is correctly driven to the presynaptic active zone in the 

absence of GluR7, since the labelling seen for synaptic junctions in GluR7-/- 

mouse preparations might correspond to postsynaptic GluR6 subunits. We 

also do not know what the specific properties of the heteromeric kainate 

receptor combination that makes it a regulator of synaptic transmission are. 

One point that needs to be addressed is the Ca2+ permeability of 

GluR6/GluR7 receptors. Since GluR7 only exists in the non-edited Q form 

(Lomeli et al., 1992), Ca2+ permeability will depend on whether or not 

GluR6 is edited. Homomeric GluR6aR receptors are expected to have a 

low permeability to Ca2+; however, the insertion of GluR7a subunits may 

confer some permeability to this cation. The presynaptic action of 

GluR6/GluR7 heteromers might also depend on specific interactions with 

presynaptic proteins that would require both subunits. For instance, a close 

interaction with the protein complexes involved in synaptic release might be 

required. Finally, presynaptic GluR6/GluR7 receptors may also combine 

with other kainate receptor subunits. An interesting third partner would be 

KA1, since ultrastructural immunogold staining for KA1 was observed at or 

near the active zones of mossy fiber terminals (Darstein et al., 2003). 

  

Pharmacology of presynaptic kainate receptors 

 

In order to determine a role for presynaptic kainate receptors in 

regulating mossy fiber synaptic transmission, several studies have 

monitored the amplitude of NMDAR-EPSCs. Our data show that the use of 

GYKI 53655 to inhibit AMPAR-EPSCs and reveal the NMDA component is 

problematic since this compound antagonizes GluR6/GluR7 receptors. 

GYKI 53655 inhibits short-term synaptic plasticity in wildtype but not GluR7-
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/- mice, providing strong evidence that GYKI 53655 is an antagonist of 

presynaptic GluR7-containing kainate receptors. CNQX binds to GluR7 with 

a slightly higher affinity than to GluR6 (Bettler et al., 1992) and, at the 

mossy fiber synapse, CNQX and NBQX have been reported to inhibit the 

presynaptic facilitation of the NMDA receptor-mediated EPSC in response 

to a short train of stimuli applied at 25 Hz and at 100 Hz (Schmitz et al., 

2001). In these experiments, AMPA receptors were blocked with GYKI 

53655 in order to record pure NMDA receptor EPSCs. In a set of 

preliminary experiments we tried to replicate this data by recording NMDA 

receptor EPSCs at +40 mV in the presence of bicuculline and GYKI 53655. 

We were unable to detect any changes in either high frequency facilitation 

(5 stimuli at 20 Hz) or low frequency facilitation (shift in tonic frequency 

from 0.1Hz to 1Hz) with CNQX. The reason for this discrepancy is unclear 

since experimental conditions did not appear very different, apart from 

species differences (rat versus mouse), and it is possible that presynaptic 

receptors have a different subunit composition or pharmacology between 

the mouse and the rat. Nevertheless, the fact that GYKI 53655 inhibits 

presynaptic kainate receptors likely explains the differences in the extent of 

synaptic plasticity when monitoring either AMPA receptor EPSCs or kainate 

receptor EPSCs at mossy fiber synapses (Ito et al., 2004). 

The present work also supports the notion that the concentration of 

glutamate sensed by presynaptic kainate receptors is higher than that 

sensed by postsynaptic receptors, since GluR7 containing-kainate 

receptors are probably localized close to synaptic release sites. This could 

explain the relative insensitivity of LTP induction to competitive antagonists 

such as kynurenate (effective at 10 mM, but not 3 mM; Bortolotto et al., 

1999). In other studies, LTP was not affected by 10-20 mM kynurenate 

(Castillo et al., 1994; Yeckel et al., 1999), raising the possibility that in these 

experiments, an increased level of excitability or stronger LTP inducing 

protocols can bypass the permissive function of kainate receptors (Schmitz 
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et al., 2003) by promoting Ca2+ entry through alternative routes such as L-

type Ca2+ channels (Lauri et al., 2003). 

Another recurrent controversy lies in the use of antagonists directed 

at GluR5 receptors, such as LY382884 and UBP296. Because these 

antagonists attenuate short and long-term synaptic plasticity in the rat 

hippocampus (Bortolotto et al., 1999; Lauri et al., 2001; More et al., 2004), 

GluR5 was claimed to be the key subunit underlying the presynaptic 

actions of kainate receptors. However, a role for presynaptic GluR5 kainate 

receptors at the mossy fiber synapse has been disputed (Nicoll et al., 2000; 

Breustedt and Schmitz, 2004) since broad spectrum glutamate receptor 

antagonists have been reported not to block the induction of mossy fiber 

LTP (Ito and Sugiyama, 1991; Castillo et al., 1994; Weisskopf and Nicoll, 

1995; Yeckel et al., 1999). Also, pharmacological studies with GluR5 

receptor antagonists contradict the electrophysiological analysis of mutant 

mice (Contractor et al., 2001) and a likely explanation to reconcile the 

currently available data is that GluR5 antagonists may also be effective on 

kainate receptors containing the GluR7 subunit. This would be consistent 

with a selective presynaptic action of the antagonists at the mossy fiber 

synapse, since GluR7 was shown here to be active exclusively at 

presynaptic sites. 

In conclusion, our data demonstrate a physiological function for the 

GluR7 subunit of kainate receptors. Given the high expression of GluR7 in 

the deep layers of the neocortex, the role of this subunit will likely extend to 

several efferent systems originating in this structure. GluR7 also seems to 

be expressed in populations of interneurons in the cerebellum or 

hippocampus. It will be interesting to determine for instance if GluR7 is 

involved in the presynaptic facilitatory actions of kainate receptors on 

GABAergic afferents (Jiang et al., 2001). Previous work has shown that the 

other kainate receptor subunits GluR5, GluR6 and KA2 play a role at both 

somatodendritic and axonal/presynaptic levels and it remains to be shown 
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whether GluR7 is, in contrast, a pure presynaptic subunit given its particular 

properties. Whereas the expression of GluR6 has a widespread distribution 

throughout the brain, that of GluR7 is more restricted. GluR7 is highly 

expressed in the deep layers of the neocortex (Bettler et al., 1992) which 

contain neurons that project to subcortical structures such as the thalamus 

or the striatum and it might be reasonable to think that presynaptic GluR7-

containing kainate receptors may be present in the synaptic terminals of 

corticostriatal or corticothalamic afferents. Interestingly, a form of LTP 

described at the corticothalamic synapse shares a number of similarities 

with mossy fiber LTP; corticothalamic LTP is input-specific, NMDA 

receptor-independent, its induction is entirely presynaptic and Ca2+-

dependent and blocked by an inhibitor of the cAMP-dependent PKA 

(Castro-Alamancos and Calcagnotto, 1999). The same is observed in the 

cerebellum, at parallel fiber synapses (Salin et al., 1996b). It is thus 

tempting to speculate that presynaptic GluR7 kainate receptors might also 

be involved in LTP at the corticothalamic synapse. A crucial question will 

then be to understand what can be the molecular mechanisms underlying 

the polarized trafficking of GluR7 to the presynaptic compartment (Jaskolski 

et al., 2005b). 
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Several conclusions can be drawn from the present work. First, we 

showed that the selective solubilization of synaptic proteins from 

hippocampal nerve terminals yields highly pure preparations of proteins 

from the presynaptic active zone, the postsynaptic density and from non-

synaptic locations. These protein fractions can be used to investigate the 

subsynaptic distribution of glutamate receptors. 

 

By using subsynaptic protein fractions we next showed that all 

NMDA receptors subunits analyzed had a predominantly postsynaptic 

localization with only residual labelling in the presynaptic active zone, 

whereas AMPA receptors may exist presynaptically and postsynaptically. 

We also detected high amounts of non-synaptic AMPA receptors, reflecting 

most probably receptors in cellular traffic and recycling processes. The 

distribution of Group I and Group II metabotropic glutamate receptors in the 

subsynaptic protein fractions is complex and hard to reconcile with the 

literature, most probably reflecting a limitation of the technique in resolving 

certain pools of receptors, while Group III mGluRs are localized mainly 

within the presynaptic active zone, as previously described. This technique 

seems, therefore, well suited to distinguish the pre- versus postsynaptic 

distribution of synaptic receptors.  

 

We also concluded that presynaptic kainate receptors are localized 

within the active zone of hippocampal synapses. These receptors were 

found in the presynaptic active zone fraction of proteins, showing their 

close association with the presynaptic web. This subsynaptic distribution 

also puts forward their confinement close to glutamate release sites in 

hippocampal nerve terminals. These receptors are able to modulate the 

release of [3H]glutamate and this is probably accomplished by direct ionic 

permeation through the receptor channel, since Ca2+ channel blockers only 

partially reduced the intracellular Ca2+ signal.  
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Furthermore, we studied a possible physiological role for the GluR7 

subunit of kainate receptors in the brain by using GluR7 knockout mice. 

GluR7 was not identified functionally in postsynaptic sites at mossy fiber-

CA3 pyramidal cell synapses. However, at the presynaptic level, the 

absence of GluR7 severely impairs low and high frequency-induced short-

term synaptic plasticity. The involvement of these receptors in fast 

phenomena such as paired pulse facilitation lead us to suggest, in line with 

the results from chapter 4, their localization close to release sites. Probably 

only in such a location can GluR7 sense the elevated concentrations of 

glutamate required for its activation. 

LTP and PTP are also severely impaired, but not completely absent, 

in animals lacking the GluR7 subunit and can be restored by protocols that 

increase excitability, showing a permissive role of presynaptic GluR7-

containing kainate receptors in lowering the threshold for induction of these 

forms of plasticity. In the absence of GluR7 the forskolin induced 

enhancement of synaptic transmission is intact, further showing a deficit at 

the induction level of synaptic plasticity phenomena. 

 

We also show that the facilitation of synaptic transmission by 

endogenous activation of kainate receptors and its inhibition by application 

of high concentrations of kainate are phenomena that seem to involve 

receptors of different subunit composition or different localization. Our 

studies also allowed us to conclude that the impairments in synaptic 

plasticity in GluR7-/- mice are not due to miss-targeting of the receptors in 

the absence of certain subunits, since GluR7 and GluR6 are found at 

synapses in the absence of each other. Importantly, since all the changes 

in presynaptic plasticity shown here for GluR7-/- mice are similar to the ones 

previously observed for GluR6-/- mice, and also because GluR6 and GluR7 

co-immunoprecipitate from brain extracts, we conclude that presynaptic 
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receptors are formed by GluR6/GluR7 heteromers or, alternatively, that 

both GluR6 and GluR7 are essential for the presynaptic phenotype of 

mossy fibers. 

 

In addition, we show that the AMPA receptor antagonist, GYKI 

53655, is capable of antagonizing GluR6/GluR7 heteromeric receptors in 

transfected HEK cells and to reduce low frequency facilitation in brain slices 

of wild type but not GluR7-/- mice. This finding further supports the 

involvement of GluR6/GluR7 receptors in mossy fiber synaptic plasticity. 

Importantly, the present study may contribute to increase awareness about 

the interpretation of pharmacological data on kainate receptors since an 

antagonist thought to be selective towards AMPA receptors was shown to 

also antagonize GluR7. 

 

As main conclusions we may summarize that: 

 

-The technique to separate the various pools of synaptic proteins 

used in the present work may be used to study the subsynaptic localization 

of ionotropic and metabotropic glutamate receptors. 

 

-Presynaptic kainate receptors are localized within the active zone, 

close to glutamate release sites, where they efficiently modulate the 

release of [3H]glutamate probably through direct Ca2+ permeation. 

 

-GluR7 is a kainate receptor subunit that plays a functional role at 

presynaptic but not postsynaptic receptors on mossy fiber terminals and is 

essential for the control of presynaptic forms of short- and long-term 

synaptic plasticity. 
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Conclusões Gerais 

 

O presente trabalho permite a inferência de várias conclusões 

acerca dos resultados apresentados. Em primeiro lugar mostrámos que a 

solubilização selectiva das proteínas sinápticas a partir de terminais 

nervosos do hipocampo permite a obtenção de preparações enriquecidas 

em proteínas da zona activa pré-sináptica, da densidade pós-sináptica e 

de localizações não sinápticas.  

Recorrendo às fracções proteicas sub-sinápticas mostrámos que 

as subunidades de receptores NMDA estudadas apresentavam uma 

localização predominantemente pós-sináptica, existindo apenas 

imunoreactividade residual nas proteínas da zona activa pré-sináptica, 

enquanto que os receptores AMPA podem estar presentes pré-

sinapticamente. Foram também detectados elevados níveis de receptores 

AMPA não sinápticos reflectindo, provavelmente, receptores em processos 

de endereçamento para a membrana ou de reciclagem. A distribuição dos 

receptores metabotrópicos do Grupo I e II nas fracções proteicas é 

complexa e difícil de reconciliar com a literatura existente reflectindo, muito 

provavelmente, limitações da técnica na identificação de receptores com 

localização particular, como parece ser o caso de receptores localizados 

perisinapticamente. Os mGluRs do Grupo III, tal como previamente 

descrito, encontram-se localizados essencialmente na zona activa pré-

sináptica. Esta metodologia simples parece, portanto, adequada para o 

estudo da localização pré-sináptica versus pós-sináptica de receptores 

localizados dentro da sinapse.  

 

 Concluimos ainda que os receptores de cainato pré-sinápticos 

estão localizados dentro da zona activa. A sua localização na fracção 

proteica da zona activa pré-sináptica mostra uma associação estreita com 

proteínas da estrutura pré-sináptica e a sua restrição a locais próximos das 
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zonas de libertação de glutamato. Estes receptores modulam a libertação 

de [3H]glutamato e tal modulação é, provavelmente, conseguida pela 

entrada directa de Ca2+ através dos receptores, uma vez que a aplicação 

de bloqueadores de canais de Ca2+ apenas reduziu parcialmente o 

aumento do Ca2+ intracelular. 

 

 Adicionalmente, procurámos identificar um possível papel 

fisiológico para a subunidade GluR7 dos receptores de cainato. Mostrámos 

que a subunidade GluR7 não participa na formação de receptores de 

cainato a nível pós-sináptico; no entanto, a nível pré-sináptico, a sua 

ausência leva a défices severos na plasticidade sináptica de curta duração 

induzida por estimulação a alta ou baixa frequência. O envolvimento em 

fenómenos de plasticidade sináptica rápidos levam-nos a sugerir, em 

conjunto com os resultados do capítulo 4, que estes receptores se 

encontram localizados próximo dos locais de libertação de glutamato. 

Provavelmente só em tais locais é que a subunidade GluR7 está exposta a 

concentrações de glutamato suficientemente elevadas para que a sua 

activação ocorra eficientemente.  

 

 Nestes animais, quer a LTP quer a PTP estão severamente 

reduzidas, mas não completamente ausentes, e podem ser restauradas 

para níveis semelhantes aos observados em animais controlo pelo uso de 

protocolos que aumentam a excitabilidade. Estes resultados demonstram 

que os receptores de cainato contendo a subunidade GluR7 

desempenham um papel permissivo na indução destas formas de 

plasticidade, baixando o limiar para a sua indução. Na ausência da 

subunidade GluR7 o aumento da transmissão sináptica induzido pela 

aplicação de forscolina está intacto, reforçando o envolvimento de um 

défice ao nível dos mecanismos pré-sinápticos de indução da plasticidade 

e não da sua expressão. 
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 Mostramos também que a facilitação da transmissão sináptica por 

activação endógena dos receptores de cainato, e a sua inibição pela 

aplicação de concentrações elevadas de cainato, envolve, muito 

provavelmente, receptores de cainato com subunidades ou localização 

cellular diferentes. Os nossos estudos também nos permitiram concluir que 

os défices na plasticidade sináptica em animais GluR7-/- não são devidos a 

problemas no endereçamento celular dos receptores de cainato para a 

sinapse, uma vez que as subunidades GluR6 e GluR7 são encontradas em 

junções sinápticas na ausência uma da outra.  

Também de grande importância é o facto de que as alterações de 

plasticidade sináptica, a nível pré-sináptico, demonstradas neste estudo 

em animais GluR7-/- são iguais às observadas previamente em animais 

GluR6-/-. Uma vez que as subunidades GluR6 e GluR7 co-imunoprecipitam 

em extractos de cérebro, os dados levam-nos a sugerir que os receptores 

pré-sinápticos de cainato a nível das fibras musgosas serão formados por 

heterómeros GluR6/GluR7. Alternativamente, ambas as subunidade 

poderão ser essenciais para o desenvolvimento do fenótipo pré-sináptico 

das fibras musgosas. 

 

Adicionalmente, produzimos evidências de que o antagonista dos 

receptores AMPA, GYKI 53655, é capaz de bloquear receptores 

heteroméricos GluR6/GluR7 em células HEK transfectadas, e também de 

reduzir a facilitação em frequência em fatias de cérebro de animais de 

fenótipo selvagem, mas não de animais GluR7-/-. Estas experiências 

reforçam o envolvimento de receptores heteroméricos GluR6/GluR7 em 

fenómenos de plasticidade pré-sináptica das fibras musgosas.  
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Resumidamente, podemos enumerar como conclusões principais 

deste estudo que: 

 

- A metodologia que permite a separação das proteínas dos vários 

compartimentos sinápticos pode ser aplicada ao estudo da localização 

subsináptica de receptores ionotrópicos e metabotrópicos do glutamato; 

 

- Os receptores pré-sinápticos de cainato estão localizados na zona 

active pré-sináptica, próximo dos locais de libertação do glutamato, onde 

podem eficientemente modular a libertação deste neurotransmissor, 

provavelmente pela entrada directa de Ca2+ através do receptor; 

 

- A subunidade GluR7 dos receptores de cainato está presente e 

funcional a nível pré-sináptico, mas não a nível pós-sináptico, nas sinapses 

das fibras musgosas e desempenha um papel crucial no controlo de 

formas de plasticidade sináptica de curta e longa duração.  
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