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Abstract We report a synthetic strategy to combine different moieties in a single structure using

cyanuric chloride (2,4,6-trichlorotriazine) as a starting platform for preparing potential bioimaging

agents. This reacted with macrocycles of the porphyrin family and DOTA type metal chelators

through mono-, di- and tri- substitution of its chlorine atoms by appropriate nucleophiles, control-

ling the stepwise by temperature, to produce a system that opens the potential for biomedicinal

applications. Porphyrins were chosen as one of the sensing arms, based on their rich structural

chemistry, and excellent photophysical properties, while DO3A was used since it can form a versa-

tile aminopropionate functionalized metal ion chelator. All new compounds were fully character-

ized, both spectroscopically and photophysically.
� 2018 Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Cancer is one of the leading causes of death worldwide and it
is estimated that by 2030, the number of new cancer cases

may increase by about 70%. It is accepted by both medical
and scientific communities that new drugs for cancer therapy
and more efficient imaging diagnostic methods to detect

tumors at an early stage (Singh et al., 2015; Ethirajan
et al., 2011; Calvete et al., 2014) will play a major role in
solving the problem of cancer. Porphyrins have potential in

both these areas. We can highlight, for example, the use of
tetrapyrrolic macrocycles in photodynamic therapy (Singh
et al., 2015; Ethirajan et al., 2011; Arnaut, 2011; Pereira
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et al., 2006; Dabrowski et al., 2012), and their valuable prop-
erties for imaging. In this regard, the development of new
contrast agents for medical imaging becomes imperative;

currently the most widely used medical imaging processes at
the clinical level are MRI (magnetic resonance imaging)
(Calvete et al., 2017c; Calvete et al., 2014; Kueny-Stotz

et al., 2012), SPECT (single photon emission tomography)
(Calvete et al., 2017b; Srivatsan et al., 2015) and PET
(positron emission tomography) (Rangacharyulu and Roh,

2015; Mewis and Archibald, 2010; Gambhir, 2002;
Simoes et al., 2015).

Recently, promising techniques, such as FI (fluorescence
imaging) (Josefsen and Boyle, 2012; Wagnieres et al., 1998;

Lobo et al., 2016) and PAI (photoacoustic imaging) (Wu
et al., 2014; Pan et al., 2013), have also gained considerable
attention. Each of these techniques possesses unique

strengths and weaknesses in terms of characteristics, such
as spatial resolution, radiation penetration depth, contrast,
imaging acquisition time, and equipment/running costs.

The design/development of new chemical entities that can
potentially act as multimodal contrast agents combining
the advantages of each technique has gained much attention

over last decade, and has the exciting prospect of overcom-
ing the specific limitations of each technique, improving
diagnosis and allowing, in best cases, the detection and char-
acterization of small tumors (Dong et al., 2017; Luo et al.,

2014).
As a strategy towards stepwise multi-functionalization to

produce a multimodal chemical entity, we have turned our

attention to cyanuric chloride (2,4,6-trichloro-[1,3,5]-triazine)
as a useful platform that can be used to link imaging units
through mono-, di- and tri- substitution of its chlorine atoms

by appropriate nucleophiles. The stepwise substitution
involved can be controlled by temperature, since the reactiv-
ity decreases with increasing number of substituents linked to

the platform (Blotny, 2006; Puthiaraj et al., 2016; Luechai
et al., 2012; Xiao et al., 2010). Given the excellent properties
of porphyrins, including their straightforward structural
modification, either by introduction of different functional

groups or complexation with several metal ions (Ethirajan
et al., 2011; Calvete et al., 2017c; Srivatsan et al., 2015;
Josefsen and Boyle, 2012; Pinto et al., 2016; Henriques

et al., 2016; Henriques et al., 2012; Simoes et al., 2012;
Pinto et al., 2012), their photophysical properties (for exam-
ple, high fluorescence quantum yields) (Arnaut, 2011;

Marques et al., 2012), preferential uptake in tumors and
low in vivo toxicity (Dabrowski et al., 2011), these have been
chosen as one of the arms of this multimodal sensor. Another
moiety is based on the versatility of chelates of the DOTA

type (DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetra
acetic acid), DO3A-N-alpha-aminopropionate (Ferreira
et al., 2009), a versatile bifunctional chelator that may form

low toxicity, highly thermodynamically and kinetically stable
Gd3+ complexes with optimized relaxivity to generate MRI
contrast (Ferreira et al., 2013), or complexes with different

metal ions for other imaging applications. Herein, we envis-
age a synthetic strategy to combine, in a single structure, mul-
tiple chemical entities which are potentially able as reporters

for different imaging techniques. The new compounds were
fully characterized by spectroscopic and photophysical
methods.
2. Materials and methods

2.1. General

Commercially available reagents were from Aldrich and Fluo-
rochem. All solvents were pre-dried according to standard lab-

oratory techniques.
UV–visible absorption spectra were recorded on a Hitachi

U-2010 spectrometer using quartz cells. The molar absorption

coefficients were determined using DMSO and THF as sol-
vents. Steady-state fluorescence spectra were obtained using
a Horiba-Jobin-Yvon SPEX Fluorolog 3-22 instrument (0.5 nm
slits). The fluorescence quantum yields (UF) of the systems

were measured under conditions of matched absorbance
(0.01) at the excitation wavelength, and were obtained from
the ratio of the integrated fluorescence bands of the sample

and reference, expressed as a function of energy units, and
multiplied by the fluorescence quantum yield of the reference,
after correction for the difference in the refractive indexes

between the sample and the reference solutions. A solution
of 5,10,15,20-tetraphenylporphyrin (TPP) in toluene was used
as standard (fluorescence quantum yield = 0.11) (Murov
et al., 1993). 1H NMR spectra were recorded on a 400 MHz

Bruker Avance III NMR spectrometer. Proton chemical shifts
are given in parts per million (ppm) relative to tetramethylsi-
lane at d 0.00 ppm. Mass spectra (ESI-FIA-TOF) were

acquired using a Bruker model Micro-TOF (University Santi-
ago de Compostela, Spain). Elemental analysis was obtained in
a FISONS model EA 1108 analyzer (University Santiago de

Compostela, Spain).

2.2. Synthesis

5-(4-Hydroxyphenyl)-10,15,20-triphenylporphyrin 1 was pre-
pared following our previously described methodologies
(Calvete et al., 2017a; Silva et al., 2014) and its properties
are in agreement with literature data (Calvete et al., 2017a;

Tome et al., 2005; Neves et al., 2012). Protected DO3A-N-a-
aminopropionate 4 was prepared according to the literature,
and its characterization is in agreement with previous reports

(Ferreira et al., 2009).

2.2.1. Synthesis of compound 5

Using optimized conditions, a mixture of cyanuric chloride

(0.05 g, 0.27 mmol) and diisopropylethylamine (DIPEA) (0.3
mL, 3.6 mmol) was dissolved in 7 mL of tetrahydrofuran
(THF). L-leucine methyl ester (0.05 g, 0.27 mmol) was added

at -10 �C and the reaction was left for 30 min with stirring.
Then, 5-(4-hydroxyphenyl)-10,15,20-triphenylporphyrin (0.170 g,
0.27 mmol) and DIPEA (0.3 mL, 3.6 mmol) were added, and

the reaction was left to react 24 h at 30 �C. Finally, the pro-
tected DO3A-N-a-aminopropionate 4 (0.132 g, 0.27 mmol)
and more DIPEA (0.3 mL, 3.6 mmol) were added and the
reaction was left for 72 h at 60 �C. The control of each stage

of the sequential reaction was performed using TLC. After sol-
vent evaporation the reaction crude was purified using silica
gel column chromatography, starting with CH2Cl2 as eluent

to remove residual byproducts and CH2Cl2:ethanol (1:1) to
obtain the pure compound. Compound 5 (Rf in CH2Cl2:ethanol
(1:1) = 0.25) was obtained in 56% yield.
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MS (ESI-FIA-TOF) m/z calcd for [M+ Li]+: C78H87

LiN13O11 1388.6808; found 1388.6732. 1H NMR (400 MHz)
(CDCl3), d, ppm: 8.83–8.81 (broad signal, 8H, b-H), 8.16

(broad signal, 8H, Ar-H), 7.71–7.52 (multiplet, 11H, Ar-H),
4.30–4.12 (2 broad singlets, 6H, –OCH3), 3.70–2.17 (multiplets,

32H, –CH2CH3, –NCH2CO2–, –NCH2CHNH–, –HNCH-

aminoacid, –N(CH2)2N–), 1.50–1.46 (multiplets, 12H, CH3-

CHCH3-aminoacid, –CH-CH2-CH-aminoacid, –OCH2CH3),

1.41–1.40 (broad signal, CH3CHCH3-aminoacid). UV–vis
(THF): kmax, nm (log e) 419 (5.43), 515 (4.26), 550 (4.15), 589
(3.66), 646 (3.62). Elemental Anal. calcd. for C78H87N13O11�2
H2O: C, 66.04; H, 6.47; N, 12.84; Found C, 65.86; H, 6.58;
N, 12.73.

2.2.1.1. Synthesis of compound 5a. Compound (5) (0.070 g,
0.051 mmol) was dissolved in a mixture of ethanol (3 mL)
and hydrochloric acid (6 M, 3 mL) and stirred overnight at
room temperature. After the reaction was complete, the sol-

vent was evaporated, the obtained compound was redissolved
in water and the solvent evaporated several times. Then, the
obtained solid was dissolved in water (10 mL), the solution

was adjusted to pH 10–11 by addition of small portions of
Dowex-1X2-100 OH– resin and was left with stirring for 4 h
at room temperature. The resin was transferred into a column,

washed with water and eluted with hydrochloric acid (0.1 M).
The reddish-brown fraction was collected and the solvent was
removed under reduced pressure (temperature < 40 �C) to

give compound 5a (0.031 g, 0.024 mmol, 47%).
MS (ESI- TOF-INFUSION) m/z calcd for [M+Na+H]+:

C70H72N13NaO11 1293.5372; found 1293.6942.

2.2.2. Synthesis of 5-(4-hydroxy-3-sulfonylphenyl)-10,15,20-(4-
sulfonyltriphenyl)porphyrin 6

5-(4-Hydroxyphenyl)-10,15,20-triphenylporphyrin (0.200 g,
0.32 mmol) and chlorosulfonic acid (12 mL, 150 mmol) were

stirred at 100 �C for 2 h. After this period, chloroform (400
mL) was added to the solution and a continuous water extrac-
tion was carried out, under constant stirring, until neutraliza-

tion of the solution. The organic phase was washed with
NaHCO3 and dried with Na2SO3. After solvent evaporation,
deionized water was added (150 mL) and the mixture was left

to hydrolyze under stirring, at 100 �C during 12 h. After water
evaporation, the compound 5-(4-hydroxy-3-sulfonylphenyl)-1
0,15,20-(4-sulfonyltriphenyl)porphyrin (6) was obtained in

90% yield.
HRMS (ESI-FIA-TOF) m/z calcd for [M + Na]+: C44H30-

NaN4O13S4 973.0584; found 973.0575. UV–vis (DMSO):
kmax, nm (log e) 422 (4.36), 517 (3.41), 555 (3.14), 584

(2.94), 635 (1.94). 1H NMR (400 MHz) (DMSO), d, ppm:
8.92–8.84 (m, 8H, b-H), 8.21–8.18 (m, 8H, ortho-Ph-H),
8.06–804 (m, 7H, meta-Ph-H). Elemental Anal. calcd. for

C44H30NaN4O13S4�3H2O: C, 52.58; H, 3.61; N, 5.57;
S, 12.76; Found C, 52.00; H, 3.98; N, 5.22; S, 12.91.

2.2.3. Synthesis of compound 8

Using optimized conditions, cyanuric chloride (0.014 g, 0.074
mmol) and DIPEA (0.2 mL, 2.4 mmol) were dissolved in
DMF. A solution of 5-(4-hydroxy-3-sulfonylphenyl)-10,15,20

-(4-sulfonyltriphenyl)porphyrin 6 (0.145 g, 0.150 mmol) in
DMF was then added and the reaction mixture was left for
12 h at 25 �C with stirring. After confirming the disappearance
of the starting material, protected DO3A-N-a-
aminopropionate 4 (0.078 g, 0.16 mmol) and DIPEA (0.1

mL, 1.22 mmol) were added and the reaction was left for 72
h at 60 �C. Compound 8 was obtained after precipitation
and washing with acetone, in 42% yield.

MS (ESI-FIA-TOF) m/z calcd for [M]+: C115H102N16O34S8
2507.4544; found 2507.4445. 1H NMR (400 MHz)
(DMSO d6), d, ppm: 8.90–8.85 (broad signal, 16H, b-H),

8.21–8.01 (broad signal, 30H, Ar-H), 4.19–4.06 (multiplets,

10H, –OCH2CH3, –OCH3, –NCH2CHNH–), 3.64–2.61 (multi-

plets, 24H, –NCH2CO2-, -N(CH2)2N–, –NCH2CHNH–), 1.17

(broad triplet, 9H, –OCH2CH3). UV–vis (DMSO): kmax, nm
(log e) 416 (5.06), 514 (3.91), 547 (3.79), 592 (3.29), 646
(3.07). Elemental Anal. calcd. for C115H102N16O34S8�4H2O:
C, 53.52; H, 4.30; N, 8.68; S, 9.94; Found C, 53.86; H, 4.28;

N, 8.63; S, 9.92.

3. Results and discussion

3.1. Synthesis

The synthetic pathways to obtain the new multimodal chelator
5 are presented in Scheme 1. First we optimized the synthesis
of non-symmetric 5-(4-hydroxyphenyl)-10,15,20-triphenylpor

phyrin (1), using our recently developed NaY/nitrobenzene
synthetic methodology (Silva et al., 2014; Calvete et al.,
2017a; Henriques et al., 2015; Henriques et al., 2014); the pro-

duct was obtained in 16% yield. It should be noted that this
method gave a twofold increase in yield compared with other
standard one-pot procedures (Adler et al., 1964; Gonsalves
et al., 1991). Then, the synthesis of the protected DO3A-

N-a-aminopropionate 4 (Scheme 1b), was carried out using a
methodology previously described by some of us (Ferreira
et al., 2009). A Michael addition of Boc2-Ser-OMe to cyclen

was performed and, after isolation and purification, alkylation
with ethyl bromoacetate was carried out to give the fully pro-
tected DO3A-N-a-aminopropionate derivative, in accordance

with literature (Ferreira et al., 2009) with 75% yield. To obtain
4, a selective deprotection of the amine group present at the
aminopropionate arm was performed, using a solution of

10% trifluoroacetic acid in dichloromethane, giving 4 in 90%
yield. Both compounds 1 (Calvete et al., 2017a) and 4

(Ferreira et al., 2009) were confirmed by 1H NMR and mass
spectroscopy, and the obtained data are in agreement with

the literature.
Next, we proceeded to the preparation of compound 5. We

started by reacting 1 equiv of commercially available L-leucine

methyl ester (to induce more biocompatibility) (Dong et al.,
1998; Mikhalenko et al., 2004; Haywood-Small et al., 2006;
Drechsler et al., 1999) with 1 equiv of cyanuric chloride in

THF at �10 �C in the presence of diisopropylethylamine
(DIPEA). The reaction was monitored by TLC and, after 30
min, complete disappearance of cyanuric chloride was

observed, concomitantly with the formation of the monoad-
duct derivative 2. Then, without purification of 2, 1 equiv of
the previously synthesized porphyrin 1 was added, together
with more DIPEA and left to react at 30 �C. Evolution of

the reaction was monitored by TLC and compound 2

disappeared, being converted into 3 after 24 h. Finally, upon



Scheme 1 (A) Reaction pathway to obtain compound 5. Reagents and conditions: (a) �10 �C to �5 �C, 30 min, DIPEA, THF;

(b) 30 �C, 24 h, DIPEA, THF; (c) 60 �C, 72 h, DIPEA, THF. (B) Reaction pathway to obtain compound 4. Reagents and conditions:

(a) RT, 4 h, K2CO3, CH3CN; (b) RT, 4 h, ethylbromoacetate, K2CO3, CH3CN; (c) RT, overnight, TFA (10%), CH2Cl2.
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addition of 1 equiv of 4 and more DIPEA, the reaction was left
at 60 �C for 72 h. Isolation and purification by silica gel col-

umn chromatography using CH2Cl2 to remove byproducts,
followed by CH2Cl2:ethanol (1:1) as eluents, gave product 5,
in 56% yield (Scheme 1).

In addition, to obtain water soluble structures, compound 5

was hydrolyzed using acid hydrolysis, with HCl 6 M in etha-
nol, in order to deprotect the carboxylic groups. However, to
our dismay, the solubility of the supposed structure 5a

(Fig. 1) was also highly pH dependent, being only soluble in
aqueous solution at pH > 9 (10�3 M), which is in agreement
with the formation of anionic carboxylate salts. Due to strong

aggregation, it was not possible to obtain 1H NMR spectra of
the final compound 5a, and the only characterization data
obtained was its mass spectrum, which presented a peak at

1293.6942 for [M + Na]+ (see Fig. S7 in SI).
Supplementary data associated with this article can be

found, in the online version, at https://doi.org/10.1016/j.
arabjc.2018.06.005.

Given the low water solubility presented by compound 5a,
we turned our attention to the synthesis of a more water-
soluble system. To increase water solubility of the starting por-

phyrin, we have synthesized a new sulfonated porphyrin
derivative, by chlorosulfonation of porphyrin 1, following
our previously described methodology (Gonsalves et al.,

1996; Monteiro et al., 2008), using an excess of chlorosulfonic

https://doi.org/10.1016/j.arabjc.2018.06.005
https://doi.org/10.1016/j.arabjc.2018.06.005


Fig. 1 Structure of the deprotected compound 5a.
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acid, for 2 h at 100 �C (Scheme 2). After work-up, hydrolysis
was performed by adding water and heating the suspension
at 100 �C during 12 h. Upon full solubilization of the mixture

in water and isolation/purification, 5-(4-hydroxy-3-sulfonylphe
nyl)-10,15,20-(4-sulfonyltriphenyl)porphyrin 6 was obtained in
90% yield. The degree of sulfonation was determined by
analysis of the 1H NMR and mass spectra, which corroborates

the preferred reactivity pattern of substituted benzenes
Scheme 2 Synthesis of water soluble sulfonated porphyr
(substitution in para position) and phenols (substitution in
ortho position) (Cremlyn, 2002).

In our attempts to prepare a water soluble system, we expe-

rienced difficulties when attempting to modulate the cyanuric
chloride first with protected aminoacid, followed by sulfonated
porphyrin and finally DO3A, in a stepwise one-pot reaction.

We never managed to obtain the desired compound bearing
one ‘‘aminoester”, a sulfonated porphyrin and DO3A. Since
attempts to isolate intermediates were unsuccessful, we

hypothesized that the intermediate bearing an aminoacid was
not stable in presence of sulfonated porphyrin in the second
step. We focused then on skipping the first step, and promoted
the multifunctionalization directly with sulfonated porphyrin,

followed by DO3A.
The synthetic pathway to prepare the target compound,

involving the sequential nucleophilic substitution pattern,

using cyanuric chloride was similar to that previously
described for compound 5, with some modifications. In this
case we started by reacting 1 equiv of cyanuric chloride with

2 equiv of 6 in DMF, at 25 �C in the presence of 2.4 equiv
of DIPEA (Scheme 3). After disappearance of the starting
materials (12 h, checked by TLC), 2.1 equiv of 4 and 1.2 equiv

of DIPEA were added, the reaction was left at 60 �C for 72 h.
Evolution of the reaction was monitored by TLC and the
in 6. (a) 100 �C, 2 h, HSO3Cl; (b) 100 �C, 12 h, water.



Scheme 3 Reaction pathway to obtain compound 8. Reagents and conditions: (a) 25 �C, 12 h, DIPEA, DMF; (b) 60 �C, 72 h, DIPEA,

DMF.
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disappearance of compound 7. Isolation and purification of
the product was achieved by precipitation with acetone and
a product was obtained in 42% yield.

Next, tests were carried out in order to evaluate the solubil-

ity, and we observed that, even without deprotection of the
ethyl groups of the DO3A counterpart, the compound 8 pre-
sents satisfactory solubility (10�3 M) in polar solvents, such

as DMSO, DMF, ethanol, methanol and water.

3.2. UV/visible absorption and fluorescence spectral properties

The absorption spectra of structures 5 and 8 were recorded in
THF and DMSO, respectively, and the typical five bands, B
and Soret, Qy(1-0), Qy(0-0), Qx(1-0) and Qx(0-0) of porphyrins
can be seen in Fig. 2a–b (solid line). Molar absorption coeffi-
cients (e) were determined using the Beer-Lambert law for
both compounds (Table 1) and are in the typical range of e
for porphyrins reported in literature (Pinto et al., 2012;
Martinez-Diaz et al., 2010).

In order to evaluate the potential of these structures for flu-

orescence imaging, their fluorescence spectra and quantum
yields were also determined. As can be seen in Fig. 2a–b
(dashed lines), both fluorescence spectra show two bands: at

650 nm and 719 nm for 5 and 652 nm and 717 nm for 8. These
are within the 650 – 1450 nm spectral window required for
imaging, where tissue components have their lowest absorption
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Fig. 2 UV–Visible and fluorescence spectra of (a) compound 5 in THF; (b) compound 8 in DMSO.

Table 1 Molar absorption coefficients, e, and fluorescence quantum yields, UF, of compounds 5 and 8.

kmáx (nm), e (L mol�1 cm�1) UF

1

(in THF)

B(0-0)

417 nm

1.19 � 105

Qy(1-0)

513 nm

7.21 � 103

Qy(1-0)

548 nm

3.39 � 103

Qx(1-0)

589 nm

2.07 � 103

Qx(0-0)

650 nm

1.78 � 103

0.06

(Pinto et al., 2012)

5

(in THF)

B(0-0)

419 nm

2.71 � 105

Qy(1-0)

515 nm

1.82 � 104

Qy(1-0)

550 nm

6.04 � 103

Qx(1-0)

589 nm

4.56 � 103

Qx(0-0)

646 nm

4.21 � 103

0.05

6

(in DMSO)

B(0-0)

419 nm

1.04 � 105

Qy(1-0)

517 nm

6.43 � 103

Qy(1-0)

551 nm

2.56 � 103

Qx(1-0)

589 nm

1.67 � 103

Qx(0-0)

643 nm

1.10 � 103

0.05

8

(in DMSO)

B(0-0)

416 nm

1.14 � 105

Qy(1-0)

514 nm

8.17 � 103

Qy(0-0)

547 nm

6.23 � 103

Qx(1-0)

592 nm

1.96 � 103

Qx(0-0)

646 nm

1.18 � 103

0.03
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(Pansare et al., 2012). Although fluorescence quantum yields in
THF (for 5) and DMSO (for 8) are modest, they are acceptable

for imaging since they fall within the important near infrared
window in biological tissues, and are comparable to values
found in the literature for free base porphyrins (Pinto et al.,

2012; Pinto et al., 2011) (Table 1). However, we were expecting
that compound 8, possessing two porphyrin units in its struc-
ture, could have a higher fluorescence quantum yield, as we

know from our previous studies (Pinto et al., 2012). Future
time-resolved fluorescence measurements are proposed to
obtain a deeper understanding of the photophysics of these
multimodal systems with the objective of improving emission

quantum yields.

4. Conclusions

In summary, we have reported the synthesis, structural charac-
terization and spectral evaluation of two new multifunctional
chemical entities, based on the triazine molecule as starting

platform, for the potential development of multimodal imag-
ing agents. These have modulated lipophilicity, and have three
arms bearing macrocycles of the porphyrin family, chelates of
the DOTA type (DO3A) and, in the case of the triad molecule

5, an aminoacid to increase biocompatibility. We have man-
aged to overcome the limited solubility of triad 5, by synthesiz-
ing compound 8, which presents reasonable water solubility,

even without deprotection of DO3A ethyl groups. The absorp-
tion and fluorescence spectra and quantum yields were also
determined, and the preliminary findings suggest that the opti-

cal properties presented by these systems indicate that they
have potential as fluorescence imaging agents and, following
complexation of the DO3A ligand with Gd3+, also as MRI
agents. These studies are undergoing, and future developments

will be published elsewhere.
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