
Computers in Human Behavior Reports 2 (2020) 100037
Contents lists available at ScienceDirect

Computers in Human Behavior Reports

journal homepage: www.journals.elsevier.com/computers-in-human-behavior-reports
A blocks-based serious game to support introductory computer
programming in undergraduate education

Adilson Vahldick a,*, Paulo Roberto Farah a, Maria Jos�e Marcelino b, Ant�onio Jos�e Mendes b

a Departamento de Engenharia de Software, Udesc Alto Vale, Brazil
b CISUC, Department of Informatics Engineering, University of Coimbra, Portugal
A R T I C L E I N F O

Keywords:
Computer programming learning
Blocks-based approach
Serious games
* Corresponding author.
E-mail addresses: adilson.vahldick@udesc.br (A.

https://doi.org/10.1016/j.chbr.2020.100037
Received 4 September 2020; Received in revised fo
Available online 9 November 2020
2451-9588/© 2020 The Authors. Published by Else
nc-nd/4.0/).
A B S T R A C T

Blocks-based environments have been used to promote computational thinking (CT) and programming learning
mostly in elementary and middle schools. In many countries, like Brazil and Portugal, isolated initiatives have
been launched to promote CT learning, but until now there is no evidence of a widespread use of this type of
environments. Consequently, it is not common that students that reach higher education nowadays are familiar
with CT and programming. This paper presents the development of a serious game to support the learning of basic
computer programming. It is a blocks-based environment including also resources that allow the teacher to follow
the student’s progress and customize in-game tasks. Four cycles of experiments were conducted, improving both
the game and how it was used. Based on the results of these experiences, the key contribution of this paper is a set
of fourteen findings and recommendations to the creation and use of a game-based approach to support intro-
ductory computer programming learning for novices.
1. Introduction

Introductory programming learning demands a very practical
approach from the students. It is not enough to read and understand the
syntax of a programming language or even its control structures. It is
necessary that the students create their own programs to solve problems:
that is learning by doing (Gomes & Mendes, 2007). However, it is not
enough to solve just a few problems. The student needs to engage in an
intensive process of programs development focusing on a variety of sit-
uations (Robins et al., 2003). It is common that this process causes dif-
ficulties and frustrations, that need to be faced with persistence and
dedication. The student must feel motivated to stay in this trajectory
(Settle et al., 2014). Many tools and pedagogical approaches have been
proposed to support the students in their learning process. Maintaining
this motivation is the main appeal to use serious games (SG) to support
learning, as the fun factor can help to keep the student playing when
solving problems in the game (O’Neil et al., 2005).

Blocks-based programming became popular with Scratch (MIT Media
Lab, 2020). In these type of environments, actions, manipulation of
variables, and control structures are represented by coloured blocks that
fit together, following a Lego metaphor (Kelleher & Pausch, 2005). This
approach has been used to introduce programming to students due to the
Vahldick), paulo.farah@udesc.br

rm 19 October 2020; Accepted 2

vier Ltd. This is an open access ar
ability to visually map complex concepts, the accessibility of all available
commands, the ease of use with the drag-and-drop technique, and the
description of blocks with natural language (DiSalvo, 2014), (Weintrop&
Wilensky, 2015).

The idea behind the use of games in educational contexts is to take
advantage of the motivation created by an experience in which the stu-
dents are out of their everyday setting, being immersed in challenges and
being rewarded for their achievements (Whitton, 2010). Both the use of
games (L�opez et al., 2016) and its development (Chau et al., 2015) have
been used as a strategy to promote learning. The development of logical
thinking and problem-solving skills are important, but difficult for many
students. The expression of solutions as programs often puts an extra
burden on them, as they have an idea about the solution, but fail to ex-
press it using a programming language. Games can be used to learn
programming if they support computational thinking (CT) and
problem-solving skills development (Kazimoglu et al., 2013), (Malliar-
akis et al., 2017), but often a gap remains when students are asked to
solve similar problems using a “real” programming language.

This paper describes the development of a new blocks-based SG to
support introductory programming learning called NoBug’s SnackBar.
This research aimed to (i) identify requirements for an educational game
to promote the learning of problem-solving techniques in introductory
(P.R. Farah), zemar@dei.uc.pt (M.J. Marcelino), toze@dei.uc.pt (A.J. Mendes).

8 October 2020

ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

mailto:adilson.vahldick@udesc.br
mailto:paulo.farah@udesc.br
mailto:zemar@dei.uc.pt
mailto:toze@dei.uc.pt
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chbr.2020.100037&domain=pdf
www.sciencedirect.com/science/journal/24519588
www.journals.elsevier.com/computers-in-human-behavior-reports
https://doi.org/10.1016/j.chbr.2020.100037
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.chbr.2020.100037

Table 1
Opportunities to develop serious games.

Opportunity References

01 Teacher configurable environments. Malliarakis et al. (2014)
02 Monitoring student tasks. Malliarakis et al. (2014)
03 Collaboration, competition and social

aspects.
(Malliarakis et al., 2014) (Harteveld
et al., 2014) (Miljanovic &
Bradbury, 2018, pp. 204–216)

04 Accept more than one way to solve
problems and more than one
programming language.

Vahldick et al. (2014)

05 Start with visual strategies for
beginners and follow with conventional
programming languages as the student
progresses.

Vahldick et al. (2014)

06 Provide instructional feedback during
the game, not just at the end.

(Vahldick et al., 2014) (Shahid
et al., 2019)

07 Open the source code of the games
developed.

(Vahldick et al., 2014) (Miljanovic
& Bradbury, 2018, pp. 204–216)

08 Clarify the learning objectives and the
educational theories used.

Harteveld et al. (2014)

09 Gender differentiation. Harteveld et al. (2014)
10 Mechanics that include narratives and

interaction with other characters,
instead of solving puzzles.

Harteveld et al. (2014)

11 Cover all ACM curriculum topics. (Miljanovic & Bradbury, 2018, pp.
204–216) (Shahid et al., 2019)

12 Adoption of best accessibility and
inclusion practices

Miljanovic and Bradbury (2018)

13 Consider the importance of aesthetics. Shahid et al. (2019)
14 Target audience: undergraduate

students
Shahid et al. (2019)

A. Vahldick et al. Computers in Human Behavior Reports 2 (2020) 100037
programming and (ii) to present a methodology to use that game inte-
grated in an introductory programming course. This led to the definition
of three research questions:

RQ1. What are the reasons for using serious games in teaching and
learning problem-solving skills in introductory computer programming
courses?

RQ2. What features should be part of a serious game to promote
problem-solving learning in an introductory computer programming
course?

RQ3. How can a serious game be integrated into introductory com-
puter programming courses?

This SG aims to promote the development of computational thinking
by creating blocks-based solutions to missions proposed to the student
(player). In this environment the student focuses on the logic and
structure of programming instead of the mechanics that involve writing
textual programs (Kelleher & Pausch, 2005). Once the student has un-
derstood how a program works and practiced problem solving, she/he
can be introduced to a programming language. The use of technology can
make teaching work easier, but it is not enough to drive student learning.
Games’ potential can only be reached when the teacher is involved, to
debrief and help the student transfer ideas out of the game to other sit-
uations (Sitzmann, 2011).

This paper is structured as follows. Section 2 presents a compilation of
surveys that were used to identify opportunities and gaps for the devel-
opment of serious games for programming learning. Section 3 describes
the research methodology used in the project. Section 4 details the game
description and the options that were made in each cycle of the game
evolution. Section 5 shows how the teachers can customize the missions
proposed to the students. Section 6 presents some lessons learned during
the development that may be useful when designing this type of games.
Section 7 includes some findings about the use of games in the context of
introductory programming courses. Finally, section 8 will reflect on the
implications of the results and offers some suggestions for further
research.

2. Opportunities in serious games for programming learning

Before starting the development of a game to support programming
learning, it was necessary to get familiar with other proposals described
in the literature. Five surveys about serious games with similar objectives
were consulted to gather a better knowledge about what has been pro-
posed and to look for gaps that could be used as a subsidy to guide the
game development.

Malliarakis, Satratzemi and Xinogalos (Malliarakis et al., 2014) ana-
lysed 12 games. They pointed out three recommendations: (i) create
environments in which the teacher can configure the game to meet
her/his needs that always end up depending on her/his pedagogical
goals; (ii) monitoring interactions and student progress; and (iii) allow
collaborative and cooperative work so that students can help each other
in completing tasks.

Vahldick, Mendes and Marcelino (Vahldick et al., 2014) analysed 40
games described in the literature and available online. The gaps identi-
fied in this work refer to flexibility and adaptability, so that more
teachers can use the games in different contexts and needs. This raised
four issues: (i) games could accept more than one representation meta-
phor, for example visual and textual, and more than one programming
language so that the teacher can configure the environment according
her/his needs and context; (ii) games should evolve according to the
student’s progression: initially using a visual language, but at a later stage
continue with a conventional programming language; (iii) games must
support learning during the resolution of tasks, and not only after their
submission or execution; (iv) make the code available with open source
licenses, as most games mentioned in the literature are inaccessible,
making it impossible to use them as a basis for further research and
development.

Harteveld et al. (Harteveld et al., 2014) analysed 36 games described
2

in the literature or available online. The focus of this survey was to
identify the most common features in the games. Based on this, they
identified some needs, mostly focused on the inclusion of girls: (i)
problem solving focusing on collaboration and social aspects (helping
another player to overcome their challenges); (ii) games must have clear
definition of learning objectives and consider more application of
educational philosophies; (iii) increase creativity in terms of gender
differentiation, promoting aesthetic aspects for girls; (iv) include narra-
tives, that is, the stories that guide the game should include interactions
with other characters and use other mechanics instead of simply solving
puzzles.

Miljanovic and Bradbury (Miljanovic & Bradbury, 2018, pp.
204–216) used 49 games identified in the literature or available online.
The survey also aimed to analyse the games to identify the most evident
common features, and those that may increase the game’s adoption. First,
the authors consider opening the source code to allow access to the
games and their modifications to serve more teachers. Like two other
surveys already mentioned, it is also stressed the importance of fostering
collaboration and competition within the game. The authors state that in
general the game’s coverage of the ACM reference curriculum for
Fundamental Concepts in Programming is weak. Finally, they found that
games do not pay enough attention to the adoption of the best accessi-
bility and inclusion practices.

Shahid et al. (Shahid et al., 2019) analysed 41 articles to identify the
gaps that exist in the literature. They concluded that most of them
emphasize mechanics and dynamics more than aesthetics, making the
games tiring and boring. They pointed out the lack of games directed to
the undergraduate level and the incomplete coverage of the items in the
ACM curriculum. They also recommended considering the student’s
previous skills and knowledge and providing automatic feedback when
the error occurs.

Based on the conclusions of these surveys, Table 1 lists the recom-
mendations identified.

3. Research methodology

From the work described in the previous section three

A. Vahldick et al. Computers in Human Behavior Reports 2 (2020) 100037
recommendations were identified to guide the development of NoBug’s
SnackBar:

1. Do not use the common approach of moving turtles and robots. The
game should explore a different approach offering a more meaningful
context to undergraduate students, possibly part of their daily life,
like a snack bar. Consequently, the commands should represent
higher level actions: instead of asking the hero to move a step or turn
left, it should be asked to go to a customer or to prepare a hotdog.
Higher level commands allow the students to program more complex
tasks with a small number of commands, keeping the task solution
closer to how they usually think about it in a real situation. For
example, it is common to think about “going to the fridge” and not
“repeat step until you reach the fridge”;

2. Self-learning: students should be able to play and learn without any
teacher intervention. The game should lead the student’s develop-
ment through a learning sequence, correcting their solutions while
they are playing;

3. Before students create their own solutions in the game, they should
experience good programming practices, for example assessing par-
tial or complete solutions to example tasks.

The game research and development process followed the steps
indicated in Fig. 1. This model is an adaptation of Design-Based Research
(DBR) and the serious games project by Marfisi-Schottman et al. (Mar-
fisi-Schottman et al., 2010).

Design-Based Research (DBR) is concerned with the pragmatic
application of learning theories, aiming to narrow the relationship be-
tween theory and practice, through tangible learning examples and ar-
tefacts, which can be used and reused in the real world (Cocciolo, 2005),
(Squire, 2005). Researchers are interested in demonstrating the useful-
ness of technological means, making the connection between effective
learning, the curriculum design and the most sensible way of using them.
In addition to the iterative and incremental cycles proposed in DBR, the
model considered the process of developing serious games proposed by
Marfisi-Schottman et al. (Marfisi-Schottman et al., 2010), which is suit-
able for minimalist teams and explores pedagogical theories applied to
games, in order to create the best teaching and learning conditions.

The research was developed in four cycles, one per semester. The
Fig. 1. Model of developme

3

experience did not limit students either in time or space, as it was con-
ducted considering the free use of the game at any time and place,
allowing us to possibly evaluate results closer to reality in terms of flow
and learning. The artefact that resulted from this research and its
development process will be presented in the next section.

4. NoBug’s SnackBar: the game and its evolution during the
research

4.1. Main ideas behind the game

In the beginning of NoBug’s SnackBar design and development pro-
cess a few decisions were made. It was designed as a web-based game
inspired in time management games. The player (student) should control
the attendant of a snack bar. Customers (controlled by the game) would
make some request (a combination of foods and drinks), and the atten-
dant should perform the necessary steps to fulfil the request. The mission
would end when the player fulfils a certain number of requests.

It was decided to use a code metaphor based in dragging and drop-
ping blocks, similar to Scratch. The idea was to avoid using the partic-
ularities of any text-based programming language. The game included a
set of commands (blocks) to control the attendant and allow him/her to
perform the tasks necessary to fulfil the customers’ request. There were
also blocks to represent variable manipulation and control structures
(conditionals and loops). Fig. 2 shows a part of a mission solution and its
environment configuration. The objective of this mission is to serve a
customer sitting in chair 2 of the counter (represented by A in Fig. 2). He
may want to drink a juice or a soda. The service ranges from asking what
the customer wants to the order delivery. The first block means that the
attendant goes to the position 2 of the bar counter. Then the customer
order is stored in a variable called order. The third block represents a
conditional and compares the value of order with the constant softDrink.
If they are equal, the attendant goes to the fridge (B), takes the drink
according to order, and stores it in the variable drink. Otherwise, she/he
goes to the fruit box (C), picks the fruit according to order and stores it in
the variable fruits. Then she/he goes to the juice machine (D), prepares
the juice and stores it in variable drink. After the conditional block, the
attendant returns to the customer and delivers the drink. If the delivery
matches the order, the player earns “money”, and accomplishes the
nt and research process.

Fig. 2. Example of a mission.

A. Vahldick et al. Computers in Human Behavior Reports 2 (2020) 100037
mission goals. Otherwise, the customer gets angry, the player receives an
error message, the execution ends, but the student can try again.
4.2. First cycle – pilot test

The goal of the first cycle was to identify basic mechanics and dy-
namics for the game and select software components that could support
these choices. First, a paper prototype (Fig. 3) was developed and eval-
uated to validate the general game scenario and its types of missions. This
prototype was presented to a group of 19 programming students enrolled
in the second semester of an undergraduate Informatics Engineering
Course. Half of these students had been approved in the introductory
Fig. 3. Paper prototype: (a) – snac

4

programming course in the previous semester. They were asked to solve a
simple mission using the paper prototype. After that most of the students
stated that they would like a game with these characteristics to be used as
a learning resource together with other activities in their programming
courses. The blocks system allowed students to solve the proposed
problem, regardless of mastering the syntax of a programming language.

A digital prototype was also developed to validate the component that
would be used for the construction of resources with blocks. Blockly
(Fraser, 2015, pp. 49–50) was used, as it transforms blocks into Java-
script code, allowing it to be executed in the browser without the need for
compilation and execution on the server side, reducing thus latency by
avoiding the transmission between client and server. Fig. 4 shows the
k bar; (b) – solution by blocks.

Fig. 4. Pilot version of the main page.

A. Vahldick et al. Computers in Human Behavior Reports 2 (2020) 100037
main screen of the pilot version. The key ideas were followed during the
whole development. The player creates the solution for the mission in the
central area. The animation area (on the left) allows the observation of
the customers and the attendant movements based on the proposed so-
lution code. The players can run or debug their code. If they debug, the
game shows a list of variables and its values (on the right) and runs a
block after each click of the debug button.

The prototype was validated in two sessions, involving two groups of
students, who were asked to play 16 tasks organized into missions
involving manipulating variables and decision structures. These sessions
took 1.5 h each. One of the groups consisted of 19 students from the
Master of Education of University of Coimbra and another included 16
students from the first semester of the undergraduate course in Software
Engineering of University of Santa Catarina State. This experiment aimed
to assess how students with such different characteristics would behave
with the game. Through log analysis, students’ performance and diffi-
culties were assessed. Fun was evaluated using a survey called EGame-
Flow (Fu et al., 2009). At the end of this cycle, all the eight steps of the
development model described in section 3 were completed for the first
time, concluding with the definition of a serious game model for this
research.

Conclusions of cycle 1. Students liked the game: the final average of
the answers to EGameFlow was 3,8 (in 5) for the Master Education stu-
dents and 4,1 for Software Engineering students. The lowest results were
found in the dimensions of autonomy (3.4) and immersion (3.6) for
master’s and undergraduate students, respectively. The feeling of loss of
control (autonomy dimension) was probably due to the number of topics
the students had to learn (sequences, variables, decision structures)
during this 1.5 h playing session. This highlighted the need to invest in a
feedback system that could help to avoid the player’s inertia and provide
supporting material to explain basic programming topics. Immersion
refers to the degree of involvement, engagement and integration of the
player with the game (Brown & Cairns, 2004). Several items were
identified that might improve immersion in the game: a scoring system,
background music, sounds, a storyline, using own pictures and images,
allowing the character to be personalized and developing simpler mis-
sions that have solutions with few blocks.
5

4.3. Second cycle – first version with class integration

In the second cycle, 60 first semester undergraduate students of the
Design and Multimedia Course of University of Coimbra were involved,
over a period of three months. The game had 57 missions, involving
variables, decision structures, repetition structures, arrays and functions
distributed in five levels. There was an image of a school in the centre
(Fig. 5), where the student had to click to access the list of levels. Around
the school, there were some blocked areas that would only be opened if
the student could reach a high number of points. The idea was to verify if
those very difficult challenges could bring any extra motivation to the
students and if this stimulus could influence the student’s gaming
experience.

There was also a leader board, where students could compare their
performance with their peers in three ways: by the amount of points
gained, by the total time spent to solve the missions and by the number of
attempts. The ranking included the position and values of all the students
in the same class. However, a particular student could only see her/his
position and the top 10. The three ranking criteria could result in
different orderings: for instance, a student could be in the first place in a
list, and in the tenth in another.

The game included a system of tips that presented a message to the
student if she/he met a particular trigger condition. One of them
happened if the student was inactive for some time while solving a
mission. Another trigger was activated when there was an error in the
execution, or the execution ended without achieving all mission objec-
tives. For example, a possible tip suggested that the student checks if a
variable used as a parameter was previously initialized, when the
attendant should deliver an order to the customer, and actually picked a
product off the shelf.

In the class, in the first lesson, teachers informed the students about
the game and how it could be a useful tool especially for those who would
feel difficulties. An area was developed for the teacher to monitor the
evolution of students in the game. However, one of the researchers was
responsible for monitoring the students through this area, and to provide
out of class support and obtain feedback, through interviews or exchange
of e-mails. This daily interaction allowed good advances in the game, be

Fig. 5. Control panel page.

A. Vahldick et al. Computers in Human Behavior Reports 2 (2020) 100037
it in its usability, fun and programming learning development. In addi-
tion, the students also answered the EGameFlow survey before starting
some missions.

Conclusions of cycle 2. Two students completed the whole game (57
missions) and five students completed eighteen or more missions. Con-
stant monitoring allowed us to identify and implement some tips and
some student suggestions still during the cycle. Aesthetically the game
was not considered good by many students. The immersion dimension
(EGameFlow) again obtained the lowest scores. At the time students
would gain more points if they were faster to solve the missions. Students
expressed that they were more focused on the time control than in the
Fig. 6. Interface of the gam

6

mission itself. So, we tested another approach to win points: the fewer
attempts to reach the solution, the more points the student would
receive. This seemed to be more adequate and all the missions were
converted to this new point gaining system. As very few students ach-
ieved a very high performance, it was not possible to make conclusions
about the impact of the blocked areas that existed in the game interface.
4.4. Third cycle – second version with class integration

In the third cycle, 36 students enrolled in the first semester of the
undergraduate Software Engineering Course of University of Santa
e NoBug’s SnackBar.

Fig. 7. Avatar editor.

Table 2
Relation between the cognitive domain of the revised Bloom’s Taxonomy cate-
gories and the missions’ tasks.

Categories Task’s Types

1. Remembering
2. Understanding

Multiple choice: a solution is provided and a question about it is
presented with four answer options. The student selects one of the
options. The game runs the solution and verifies the student
answer.

3. Applying Fix errors: a solution is provided with some errors. The types of
errors can be (1) incorrect use of comparison or logical operators,
(2) erroneous references of variables, or (3) wrong sequence of
blocks. The student must correct the mistakes by changing
operators, variables or the order of the blocks.

4. Analysing Sort: all the solution blocks are provided but dispersed in the
workplace. The student must sort the blocks in the right order.

5. Evaluating Fill in the blank: a partial solution is provided with some blocks
missing. The student must complete the solution.

6. Creating Create: the student creates her/his own solution from scratch.
There are three different types: (1) the game starts by providing a
few blocks to give some suggestion about the solution; (2)
without suggestions or constraints; (3) with constraints: quantity
of blocks and/or variables in the solution, how many times a type
of block can be used in the solution, and a time-limit to solve the
problem.

A. Vahldick et al. Computers in Human Behavior Reports 2 (2020) 100037
Catarina State were involved, over two months. All changes that resulted
from the previous cycle were introduced in the game before the students
started to use it. The most visible change was a complete redesign of the
gamemade by a professional designer. Fig. 6 shows the final main page of
the game (compare with Fig. 4).

Point winning mechanics was changed, so that the number of points
won depended on the number of attempts made to complete a particular
mission (less attempts give more points). In the top of Fig. 6, it is possible
to observe three stars (each worth 20 points) and two arrows. This means
that each star is lost after two unsuccessful attempts. Fig. 6 exemplifies a
situation where the student is in the third attempt, because one star is
uncoloured (was lost), and the arrows are coloured. After losing the three
stars, the student wins very few points in the mission, even if she/he
achieves its goals. Each mission has its own limit of attempts per star and
also the amount of points per star.

In this version an achievement system was added: students won
points, coins or some bonification when they finished a level until a
deadline. Teachers could define how students would win these extra
rewards (for instance, finishing all the missions of a level until some
specific date) and what would be won (game points or coins or extra
points in the course). This last possibility allowed teachers to define that
the student’s performance in the game had some direct influence in their
course grades.

Students could also configure the appearance of their attendant. At
the beginning, she/he starts bald and with few configuration options:
only eyes and skin colour. If the student is a woman, her attendant has
eyelashes and accented lips. As the student wins more points, new op-
tions were available: Chef’s hat and clothes, new special skin colours,
haircut type and colours if student is a woman, or moustache type and
colours if he is a man. Fig. 7 shows the tab where the clothes in the avatar
7

editor are configured.
The instructional design was revised for the topics to be introduced

more gradually between missions. The topic of functions was removed
because it was considered outside the scope of the game, which was
focused on the initial barriers’ students face when learning program-
ming. At this stage, the game had 73missions divided in 12 levels: 1-envi-
ronment, 2 to 4-variable manipulation, 5 to 7-conditional structures, 8 to
10-repetition structures, 11 and 12-arrays. Some levels (1, 2, 5, 8, 9 and
10) were covering the essential topics. The other levels were comple-
mentary and optional. For example, after finishing the level 2 (variables),
the student could choose to proceed to level 5 (conditional) or to play
levels 3 and 4 as complementary missions on variables.

In addition, within each level, the types of tasks asked in the missions
were organized considering the Bloom’s Taxonomy of educational ob-
jectives in the cognitive domain (Anderson et al., 2001). The idea was to
get a better alignment between the mission’s activities and desired
learning outcomes. The more gradual increase in difficulty could also
make the game more interesting to the students (Lameras et al., 2017).
Table 2 shows the type of the tasks used in the missions and its classifi-
cation in the taxonomy. This option allowed a better organization the
missions’ difficulty, providing first some simple tasks, with a lot of given
code, and advancing to more complex tasks, including missions where it
is necessary to develop programs from scratch. In creation-type missions
(highest cognitive domain in Bloom), an assistant was available. When
called, this assistant shows the mission solution in pseudocode. This
feature could be used by students but costed them some points. The idea
was to help students in difficulties to develop their solution after inter-
preting the provided pseudocode.

In the class, instructional material was incorporated into the expla-
nation of the missions. Materials were produced to allow the teacher to
introduce all topics using blocks. Students first learned each topic using
blocks, then using a real programming language (Java). Through the
achievement system, the teacher added bonuses in the assessments of
students who completed the level by a defined deadline.

Conclusions of cycle 3. In the last version there was only one sequence
of levels and missions. The less rigid structure of the levels in this version
allowed students to avoid being “stuck” in the game when they were
unable to complete a mission. Half of the students completed the 35th
mission (almost half of the total missions) and only 2 students completed
the entire game (73 missions). However, in general, it was possible to
observe that despite the students had some freedom to choose their
sequence of levels, most of them preferred to follow the suggested
sequence of the missions. The pseudocode assistant was useful to many

Fig. 8. Learning sequence.

A. Vahldick et al. Computers in Human Behavior Reports 2 (2020) 100037
students, although, in average, it took them 6.7 more attempts after using
the assistant to reach the final solution, showing that students tried to
understand and transform the pseudocode in blocks. Analysing the logs,
it was possible to identify somemissions that still required a high number
of attempts to many students. There was a widespread complaint about
reconciling time with class obligations and keeping pace in the game.
4.5. Fourth cycle –third version with class integration

The last development and evaluation cycle involved 33 students
enrolled in the first semester of the undergraduate course on Software
Engineering at University of Santa Catarina State. This cycle took 45
days. Several changes were introduced in the game: (1) the arrays topic
was removed, as it was verified that its blocks representation was com-
plex and inauthentic, making the topic more complicated to learn; (2)
level 1 was kept as mandatory, but after solving it, students could choose
any mission of any level; (3) two new types of tasks were created. In this
version the total number of missions were distributed in 10 levels.

Although the students had liberty to choose their next mission after
level 1, the suggested learning sequence is illustrated in Fig. 8. Each circle
represents a level, the arrows represent the prerequisites between levels,
and within parenthesis is indicated the amount of missions in each level.
White levels include the essential missions. Students should learn the
basic concepts in these levels. Light grey levels are enhancement levels
and dark grey are mastering levels. Students can practice new and more
complex situations in enhancement levels. Mastering levels have very
challenging missions adequate to the better performing students. The
game covers the initial topics usually included in introductory pro-
gramming courses. They are organized in ten levels with a total of 74
missions: levels 2 to 4: Variable manipulation (19 missions); levels 5 to 7:
Conditionals (22 missions); levels 8 to 10: Loops (24 missions: for loop,
while loop and the two together). The initial level, level 1 (9 missions) is
an introductory level to game playing.

In each essential level the initial missions introduce new concepts,
such as variable or conditional using activities in the lower levels of
Bloom’s Taxonomy (remembering and understanding). As the player
advances in the level, the tasks change to higher order categories. The
last missions in each level ask for the creation of solutions from scratch.
In enhancement levels, the game adopts one of the first four categories to
reintroduce a concept or present a new machine in the snack bar. How-
ever, they also include several creation missions. Finally, all the missions
in mastering levels ask for the creation of solutions, and many of them
have constraints to the solution, as the quantity of variables or blocks to
be used.

The teaching-learning process involves at least two actors: the student
and the teacher. Therefore, it is important to consider both views when
developing any technological artefact to improve this process. The
teacher needs to monitor the individual evolution of each student and
intervene when necessary. The monitoring area has been significantly
improved for the teacher to have an overview of the class situation. Fig. 9
8

illustrates the page that was available to the teacher showing a map with
all students’ status in terms of missions completed. Each column repre-
sented a mission and each row a student. The numbers in the cells rep-
resented the number of attempts made by a student in a particular
mission. The teacher could click on these numbers to view each attempt.

The green cells represented the missions completed with a number of
attempts that falls within the interquartile range of the class. Red rep-
resents missions completed with the number of attempts beyond the
upper limit of the interquartile range (maximum discrepancy). Missions
represented in white were not completed, even though the student had
already made some attempts. The uncompleted tasks that already had a
higher number of attempts in relation to the rest of the class were dis-
played in yellow.

This page became useful, for example, for the teacher to help those
students who had not yet completed a particular mission, but already had
a discrepant number of attempts (cells in yellow). This map could be
sorted by the students’ names, the number of outliers (students with
more discrepancy first), the number of missions done (students with the
least completed missions first) and the time taken to complete the
mission (students with more time first). According to the ordering chosen
the values presented in the cells changed. For example, if sorting by time
consumed was selected, cells would display that time in minutes.
Ordering always favours showing first the students who appear to need
more attention from the teacher.

In the class, in the first lesson the teacher explained how to access to
the game and how it would be used in the course; for three weeks the
students had to exclusively play, that is, there were nomandatory face-to-
face classes; after that a test was applied using only the notation of blocks.
In the remaining weeks the course followed a traditional approach, using
a common programming language. In the end there was a final exam.

Conclusions of cycle 4. This section presented the final version of the
game. In this cycle, half of the students concluded 48 missions and 10
students concluded the whole game (74 missions). Thirty students took
the test, resulting in an average grade of 5.4 (�2,33), on a scale of 0–10,
with 10 students obtaining a grade greater than or equal to 7.0 (grade
necessary to be approved). To analyse the impact of the game experience
in the students’ final exam performance, we used the Pearson’s bivariate
correlation between the exam score and the number of missions
completed. It was identified a moderate correlation (r ¼ 0,621, p <

0,0001), indicating that the students that played more tended to perform
better in the final exam.

5. Customize missions in the game

The definitions of the learning sequence and its missions are stored in
a XML file accessed by the game. This allows the teachers to customize
the learning environment. As an illustration, Table 3 shows the element
<objectives> that is the part of a mission definition that allows the
specification of its objectives. These include the tasks to be accomplished
by the student and how the game can check if they are accomplished.

Fig. 10 illustrates an example of the element (<objectives>). It defines
the mission type (missionType, in the case fillInGaps indicates the type
“Fill in the blank”) according to Table 2, the score (xpIndividual, xpFinal
and xpTotalRun), the maximum number of commands to be used
(commQtd) and extra punctuation (maxCommands and maxCommands-
RewardCoins). There are 6 other attributes, not shown here, that can be
used to enable buttons and define other restrictions.

Each <objective> element defines one of the missions’ objectives. Its
content defines the type of the objective. In the example, there are 3
objectives defined: (1) deliver that is accomplished when the customer in
position 2 of the counter has been served (defined by the attributes pos
and place); (2) askWantHowManyFoods that is fulfilled if this type of
block was used in the solution for the customer in position 2 of the
counter; and (3) callTimes, which is fulfilled if the “for” block was used
only once in the solution. Some objectives are used to guide the student
during the solution development. There is a total of 22 types of objectives

Fig. 9. Monitoring student tasks.

Table 3
Mission objectives definition in XML.

XML Element Element description

<explanation> Learning content and task description
<hints> Rules that define when a tip is shown
<help> Pseudocode wizard
<commands> Commands available to build the solution
<customers> Customers configuration and their desires
<objectives> Objectives, game restrictions and scoring
<xml> Initial blocks suggested in the solution

Fig. 10. Example of objectives setting.

A. Vahldick et al. Computers in Human Behavior Reports 2 (2020) 100037
defined in the game.
The process of verifying the student’s solution is not based on the

analysis of the code produced, but whether during the execution of the
mission its objectives were fulfilled. Some objectives are checked during
execution and others after it ends. Considering the example of Fig. 10,
during execution the game checks whether the order has been delivered
to the customer and whether the askWantHowManyFoods block has been
used, and after execution if the “for” block has been used at most once.
This approach allows the student to build a solution that will be evalu-
ated considering its result and not by comparison with an ideal solution
already defined in the game.

6. Guidelines to use serious game to support introductory
computer programming

The four cycles of experimentation that aimed to develop the game
and define how it could be used in classes took 2 years. It was a process
based on students’ feedback that lead to different changes in the version
of the game for the next cycle, and in the strategy used for its integration
in the introductory programming courses. During the cycles, fun and
learning were key aspects evaluated. Below are listed a set of ideas that
we argue are good practices or good considerations for the design of a
game to support introductory programming learning. These principles
are a refinement of a previous work published after the second cycle
(Vahldick et al., 2017).
6.1. Guidelines about game features

P01-Reward points. Every game needs a form to reward the player.
This usually happens through some kind of points system. During our
studies there were behaviours that emerged from the students’ desire to
earn as much points as possible. This stimulated students to create
9

strategies to overcome challenges, which is positive for learning.
P02-Reward contingency. Solving programming problems requires

student concentration rather than quick thinking. Time pressure makes
the student lose calm and adopt a trial and error approach, without
necessarily having done a thorough analysis. When using the allocation
of points for the number of attempts, the student can use all the time
necessary. To avoid losing points, she/he must verify her/his program
carefully before running it.

P03-Leaderboard. The leader board was often used by the students,
including those with weaker performances. Although the game does not
provide any direct competition between players, this ranking comparison
was popular and seemed to encourage students to do more and better in
the next missions. However, some weaker students asked that their
classification would not be visible to the remaining students. Thus, we
concluded that the ranking should only display the best classified stu-
dents (ten in our case). If the student is not in the top, her/his classifi-
cation appears only in her/his control panel.

P04-Avatar customization. This was a resource that students focused
on particularly at the beginning of the game. The possibility of person-
alizing her/his avatar as she/he receives points offers a feeling of prog-
ress. The leader board also displays the students’ avatar, offering yet
another aspect of fun by allowing some to see the progress of others.

P05-Locked areas. There were blocked areas that could only be
opened if the student achieved a certain score. Students showed moti-
vation to do their best to earn the points and complete the missions in

A. Vahldick et al. Computers in Human Behavior Reports 2 (2020) 100037
order to unlock these areas. We consider that including this kind of
strategy is recommended to keep students stimulated.

P06-Virtual currency. This feature was implemented in the third
cycle, when students received points in the course assessments for
completing game levels. In the fourth cycle, students received coins that
could be used to purchase exclusive items for their avatar or activate the
pseudocode wizard. In the third cycle, this system was much more used
than in the fourth, showing that including some connection with the
course assessment may be a good idea. This can also be a tool to integrate
the game with the tasks of the discipline.

P07-Background music. Our experience recommends that the use of
background music is made carefully, so that it doesn’t add a disturbing
factor. The main objective of game playing is learning through problem
solving and it is important that the students are fully concentrated in the
tasks. The use of different music when the player approaches a losing
situation or the time is getting short seemed to add a stress factor to some
students, which is should be avoided.

6.2. Guidelines about game-based computer programming leaning

P08-Feedback and support. Some students need to be frequently
supported to continue their programming learning development.
Therefore, the game should detect when a particular student needs help
and the type of support that should be given. In this research support was
provided manually, but further research is necessary, so that automatic
feedback and pedagogical support can be included in games.

P09-Simple assistant using alternative representations. When stu-
dents are stuck in a mission, a possibility is to allow them to call an as-
sistant that shows the mission solution using a different representation
(for example using pseudocode, flowchart, or any other representation
that is easy to understand). Students are responsible for interpreting the
representation and building the solution, that is, inserting and dragging
the blocks, and changing their parameters, as required by the mission.
Experience showed that this assistant was useful, as most students that
used it could complete the mission, but often using some more attempts.
Of course, using the assistant should have a high point cost to avoid
students getting used to use it in every mission, even if they could solve it
without assistance.

P10-Access and interact with concluded missions. Data shows that it
was positive to allow students to interact with the missions they had
already completed, either by consulting, running, debugging or changing
the solution, even if it does no longer interfere with the score. Playing a
mission again served both to review a concept and to test something that
had made the student lose points.

P11-Blocks/commands available. The blocks available in the menus
are only those necessary to solve the current mission. Although we may
be restricting the students’ creation process, we maintained this
approach in the game to serve as instruction of what is best for the
specific type of problem addressed in the mission. Then, when the stu-
dent transfers this knowledge to the programming language, it will be the
student’s task to adapt the type of structure and use the correct com-
mands according to the problem to be solved.

P12-Free choice of missions to be played. Allowing the student to
freely choose the next mission to play contributes to prevent her/him
from getting stuck in a mission. It could be assumed that this type of
possibility would lead the student to ignore the learning sequence sug-
gested by the game, and finally, to follow a learning path less adequate to
her/his evolution. However, analysing the log, we were able to conclude
that most students tried to advance according to the suggested sequence,
and they only tried different missions when they were stuck in the game.
In some cases, after playing a different mission they returned to the
original mission and were able to solve it.

P13-Cognitive domain and tasks. It is a good idea to organize the tasks
proposed to students according to a well-established taxonomy (Bloom’s
Taxonomy in our case). The first stages involve simpler tasks, such as
determining the output produced by running a program, then making
10
minor corrections to a solution with errors, and so on, until arriving to
tasks that demand the development of a solution from scratch. This
sequence aims to introduce students to functional programs and good
practices before the game asks the students to create their own solution.

P14-Simple learning analytics to the teacher. Through simple ana-
lyses, such as the number of attempts in each mission, the time spent to
solve them, and the number of accesses to support features, it is possible
to give useful information to the teacher, allowing an easy identification
of students who require special attention, and the kind of support they
need. It is essential that serious games can provide this information to
increase their usefulness as educational tools.

7. Uses of the game in classes

The game was used in three different semesters with different groups
of students. The strategies used to connect the game playing with the
formal classes were different from semester to semester. From this work
four possible strategies emerged on how to integrate the game with an
introductory programming course, especially in its initial weeks.

01-Play optionally. This option may be adequate when the teacher
cannot change his/her pedagogical methodology for institutional reasons
or believes that current pedagogical strategy is good for most students. In
this case, the game can be used as an additional resource particularly
directed to students with more difficulties. For example, it could be useful
if those students play a set of missions before the corresponding topic is
addressed in class. The teacher can monitor the failures and evolution of
the students in the administrative environment and thus identify those
who need further interventions.

02-Game used in classes. This mode is adequate for situations where
the teacher can and is interested to introduce changes in her/his peda-
gogical strategies. The game and the blocks representation can be used as
an alternative form to introduce topics, before the use of a programming
language directly. The objective is to understand and use programming
structures without the complexity of the language syntax. After, the
teacher can present the same examples using the programming language.

03-Game used to prepare the course. This mode is suggested for
teachers who want to use the game as a preparation for the course. This
can be done before the course starts or in its first weeks. Students should
play independently with some teacher support, so that they develop a
good knowledge about the different topics the game addresses. After that
period, the classes would follow introducing the programming language,
taking advantage of the previous game experience.

04-In-game tasks or assignments that complement the course grade.
Students often define their work priorities according to the next assess-
ment. If some activity does not count to their grade it is often left behind.
During our experiences we also saw this behaviour. Therefore, a small
additional score counting to the course final grade could be positive to
stimulate game playing. This component should be small in an inde-
pendent playing scenario, due to possible fraud situations. An alternative,
which was tested in a parallel experiment (Vahldick et al., 2018), is to use
extra missions as a form of assessment. These missions should be avail-
able only during the period of the classes where the test is done. Knowing
this methodology would be used, it is likely that the students get more
involved with the game to be better prepared for the test.

8. Conclusions and future work

The main objective of the investigation described in this paper was
design and implement a game that might help to develop problem-
solving skills useful in introductory programming courses. Also, we
wanted to study how such a game could be used in the course’s context. A
new serious game was developed, called NoBug’s SnackBar, and
experimented four times, in different semesters, using an iterative and
interactive methodology, which allowed improvements to be made after
each cycle. The experience did not limit the students either in time or
space, as they were free to use the game at their own discretion, allowing

A. Vahldick et al. Computers in Human Behavior Reports 2 (2020) 100037
us to possibly evaluate results closer to reality in terms of flow and
learning.

Now we try to answer each of the three research questions.
RQ1. What are the reasons for using serious games in teaching and

learning problem-solving skills in introductory computer programming
courses?

Programming learning materializes with practice, that is, it is not
enough to read and understand the syntax of a programming language or
how basic control structures, work. It is necessary to engage in an
intensive problem-solving activity. The student must be motivated to
continue this trajectory, no matter the difficulties found. Maintaining this
motivation is the main appeal in serious games, as they are designed to
use fun as a factor to keep the user playing.

The last three cycles of our work involved the use of different versions
of the game. They involved 129 students (63.6%men and 36.4%women)
with 70.5% (n ¼ 91) claiming to have no prior knowledge of program-
ming. Regarding the habits of playing digital games, practically the same
population claimed to play daily (32,6%, n¼ 42), occasionally (34.1%, n
¼ 44) and rarely (33.3%, n ¼ 43). It was not surprisingly that the stu-
dent’s behaviour towards the game was also varied. Some engaged
seriously with the game, finishing a large number of missions and looking
for help when they weren’t able to progress, while others didn’t show the
same level of interest. Some students said they liked the game, but they
would rather spend their time with other learning activities.

The data collected showed that the game can be useful to many stu-
dents, but also that other strategies are also necessary to cover the di-
versity of students common in higher education nowadays.

As expected, the connection between the game and the course
assessment stimulated a lot of students to play the game. So, this may be a
strategy to consider carefully.

RQ2. What features should be part of a serious game to promote
problem-solving learning in an introductory computer programming
course?

We used several tools to draw students’ attention to the game, such as
getting points to personalize the avatar, three leader boards and an
achievement system. We observed that many students were attracted to
the game, trying to win points mostly for personal satisfaction. The
comparison with their peers didn’t seem to be as important. Some stu-
dents created strategies and tried to improve their performance looking
to maximize the amount of points earned in each mission. There was a
visible feeling of satisfaction when they were able to win a challenge. The
objective of earning more points even induced some second cycle stu-
dents to draft the mission solution first on paper, in order to minimize the
number of attempts. We can conclude that even though scoring may not
be a primary objective of a serious game, its use increases the attraction
of the game.

The use of blocks instead of direct coding freed the students from the
syntactic details of the programming language used in the course. This
allowed some of them to make good progress in the game (and in the
underlying topics), even with if they had difficulties to manage the
language.

The organization of the tasks included in the game according to solid
pedagogical principles is also an important recommendation. It is
important that the tasks proposed to the student make sense and lead the
student in a correct learning progress.

Finally, in sections 6.1 and 6.2 we listed 14 principles to be consid-
ered in the development of games for computer programming learning.

RQ3. How can a serious game be integrated into introductory com-
puter programming courses?

In section 7 we included four possible strategies to use the game in the
context of an introductory programming course. Our experience showed
that a stronger connection with the course induces a higher use of the
game. In particular, if the game results are taken into consideration in the
course assessment, even using a low weight, the students tend to give
more importance to the activity and develop efforts to get those points.

The possibility to use the game in different contexts requires that it is
11
flexible enough for adaptations to be implemented with a minimal effort.
This was possible because the game was implemented following the
principles of game engines. The missions and the learning organization
were not hard coded but included in a database that is consulted by the
game when necessary.

Regarding the opportunities identified in section 2, this game
answered the following items:

� 01-Teacher configurable environments: as described in section 6, the
game allows the teachers to create new in-game tasks and configure
the learning sequence;

� 02-Monitoring student tasks: Fig. 9 shows the area for the teacher to
track the students’ activities;

� 06-Provide instructional feedback during the game, not just at the
end: there is a system that presents tips during the production of the
solution and that constantly checks what the student is producing; a
message is triggered, for instance, when the student is inactive for
some time;

� 07-Opening the source code of the games developed: https://gith
ub.com/adilsonv77/nobugssnackbar;

� 08-Clarity in the learning objectives and adoption of educational
philosophies: Fig. 8 shows the learning sequence that is also displayed
to the student. Each level is associated with a learning objective.
Table 2 shows the organization of the missions into each level
following the Bloom Taxonomy;

� 09-Gender differentiation: the avatar has different skin for boys and
girls. Game is absent of violence;

� 13-Aesthetics: after the second cycle, there was an investment to
improve the aesthetics of the game. No complaints were received
from students after this improvement;

� 14-Target audience: undergraduate students: all aspects of the game
were targeted to undergraduate students following their first pro-
gramming course. In particular, the sequence of topics and tasks were
adapted for those courses.

There are still some future research paths that are planned to be
pursued soon. The first is to include adaptive features in the game. The
current version presents the same basic learning sequence to all students,
without considering their performance. This may bore the best students
or prove insufficient for weaker ones. The game could provide a different
set of missions according to the students’ progress: less missions and
rapidly increasing in difficulty for those who progress quickly, and more
missions, with a slightly increasing difficulty level, for those who have a
slower progress. Second, currently, students produce the complete solu-
tion on the first attempt, as they earn points according to the number of
attempts. However, the ideal would be for them to solve iteratively and
incrementally, especially in the case of more complexmissions. The game
needs to support this good practice, and it can do so by incrementally
presenting the objectives of the mission, where the number of attempts is
based on this set of objectives, and no longer on the total attempts of the
mission. It is also important to vary the number of attempts per star for
each new set of goals that is presented. Finally, there is a need to develop
a level and mission editor, requiring no knowledge of XML and SQL for
the teacher to adapt the game to her/his preferences.

Acknowledgments

First author acknowledges the doctoral scholarship supported by
CNPq/CAPES – Programa Ciência sem Fronteiras – CsF (6392-13-0) and
authorized retirement by UDESC (688/13). We also want to thank the
students that played the game and their teachers that allowed us to try it
with them.

Declaration of competing interest

The authors declare that they have no known competing financial

https://github.com/adilsonv77/
https://github.com/adilsonv77/

A. Vahldick et al. Computers in Human Behavior Reports 2 (2020) 100037
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://do
i.org/10.1016/j.chbr.2020.100037.

References

Anderson, L. W., Krathwohl, D. R., & Bloom, B. S. (2001). A taxonomy for learning,
teaching, and assessing: A revision of Bloom’s taxonomy of educational objectives. Allyn &
Bacon.

Brown, E., & Cairns, P. (2004). A grounded investigation of game immersion. In Human
actors in computing systems (pp. 1297–1300). https://doi.org/10.1145/
985921.986048

Chau, B., Nash, R., Sung, K., & Pace, J. (2015). Building casual games and APIs for teaching
introductory programming concepts.

Cocciolo, A. (2005). Reviewing design-based research. http://www.thinkingprojects.org
/wp-content/dbr.doc. (Accessed 14 February 2014).

DiSalvo, B. (2014). Graphical qualities of educational technology: Using drag-and-drop
and text-based programs for introductory computer science. IEEE Computer Graphics
and Applications, 34(6), 12–15.

Fraser, N. (2015). Ten things we ’ ve learned from blockly. In “IEEE blocks and beyond
workshop.

Fu, F. L., Su, R. C., & Yu, S. C. (2009). EGameFlow: A scale to measure learners’
enjoyment of e-learning games. Computer Education, 52(1), 101–112.

Gomes, A., & Mendes, A. J. (Sep. 2007). Learning to program-difficulties and solutions. In
International conference on engineering education (pp. 1–5).

Harteveld, C., Smith, G., Carmichael, G., Gee, E., & Stewart-Gardiner, C. (2014). A design-
focused analysis of games teaching computer science. Proceedings Gamesþ Learning
Society, 10, 1–8.

Kazimoglu, C., Kiernan, M., Bacon, L., & Mackinnon, L. (2013). Understanding
computational thinking before programming: Developed guidelines for the design of
games to learn introductory programming through game-play. In P. Felicia (Ed.),
Developments in current game-based learning design and development. Hershey, PA: IGI
Global.

Kelleher, C., & Pausch, R. (2005). Lowering the barriers to programming. ACM Computing
Surveys, 37(2), 83–137.

Lameras, P., Arnab, S., Dunwell, I., Stewart, C., Clarke, S., & Petridis, P. (2017). Essential
features of serious games design in higher education: Linking learning attributes to
game mechanics. British Journal of Educational Technology, 48(4), 972–994.

L�opez, M. A., Duarte, E. V., Gutierrez, E. C., & Valderrama, A. P. (2016). Teaching
abstraction , function and reuse in the first class of CS1 – a lightbot experience. In
21th annual conference on innovation and technology in computer science education (pp.
256–257).
12
Malliarakis, C., Satratzemi, M., & Xinogalos, S. (2014). Educational games for teaching
computer programming. In C. Karagiannidis, P. Politis, & I. Karasavvidis (Eds.),
Research on e-Learning and ICT in Education: Technological, pedagogical and instructional
perspectives (pp. 87–98). New York: Springer.

Malliarakis, C., Satratzemi, M., & Xinogalos, S. (2017). CMX : The effects of an
educational MMORPG on learning and teaching computer programming. IEEE
Transactions on Learning Technologies, 10(2), 219–235.

Marfisi-Schottman, I., George, S., & Tarpin-Bernard, F. (2010). Tools and methods for
efficiently designing serious games. In , no. October. 4th European conference on game-
based learning (pp. 226–234).

Miljanovic, M. A., & Bradbury, J. S. (2018). A review of serious games for programming.
In “Joint international conference on serious games.

MIT Media Lab. “Scratch - imagine, program, share.”. https://scratch.mit.edu/. (Accessed
16 March 2020).

O’Neil, H. F., Wainess, R., & Baker, E. L. (2005). Classification of learning outcomes:
Evidence from the computer games literature. Curriculum Journal, 16(4), 455–474.
https://doi.org/10.1080/09585170500384529

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching programming: A
review and discussion. Computer Science Education, 13(2), 137–172.

Settle, A., Vihavainen, A., & Sorva, J. (2014). Three views on motivation and
programming. In 19th annual conference on innovation and technology in computer
science education (pp. 321–322). https://doi.org/10.1145/2591708.2591709

Shahid, M., Saleem, I., Wajid, A., Shujja, A. H., & ul Haq, K. (2019). A review of
gamification for learning programming fundamental. In 2019 international conference
on innovative computing (ICIC) (pp. 1–8).

Sitzmann, T. (2011). “A meta-analytic examination of the instructional effectiveness of
computer-based simulation games. Personnel Psychology, 64(2), 489–528.

Squire, K. D. (2005). Resuscitating research in educational technology: Using game-based
learning research as a lens for looking at design-based research. Educational
Technology, 45(1), 8–14.

Vahldick, A., Marcelino, M. J., & Mendes, A. J. (2017). Principles of a casual serious game
to support introductory programming learning in higher education. In
R. A. P. Queir�os, & M. T. Pinto (Eds.), Gamification-based e-learning platform for
computer programming education. IGI Global.

Vahldick, A., Mendes, A. J., & Marcelino, M. J. (Oct. 2014). A review of games designed to
improve introductory computer programming competencies. In 44th annual frontiers
in education conference (pp. 781–787).

Vahldick, A., Schoeffel, P., Liz, F. B., Faria, V., Ramos, C., & Wazlawick, R. S. (2018).
Maior Frequência na Aplicaç~ao de Instrumentos de Avaliaç~ao em uma Disciplina
Introdut�oria de Programaç~ao : Impactos no Desempenho e Motivaç~ao. In Anais dos
workshops do VII congresso brasileiro de Inform�atica na educaç~ao (pp. 739–748).

Weintrop, D., & Wilensky, U. (Jun. 2015). “To block or not to block , that is the question :
Students’ perceptions of blocks-based programming. In ACM SIGCHI interaction design
and children (pp. 199–208).

Whitton, N. (2010). Learning with digital games: A practical guide to engaging students in
higher education. New York: Taylor & Francis.

https://doi.org/10.1016/j.chbr.2020.100037
https://doi.org/10.1016/j.chbr.2020.100037
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref1
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref1
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref1
https://doi.org/10.1145/985921.986048
https://doi.org/10.1145/985921.986048
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref3
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref3
http://www.thinkingprojects.org/wp-content/dbr.doc
http://www.thinkingprojects.org/wp-content/dbr.doc
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref5
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref5
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref5
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref5
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref6
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref6
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref7
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref7
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref7
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref8
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref8
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref8
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref9
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref9
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref9
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref9
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref9
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref10
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref10
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref10
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref10
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref10
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref11
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref11
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref11
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref12
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref12
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref12
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref12
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref13
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref13
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref13
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref13
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref13
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref13
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref13
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref14
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref14
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref14
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref14
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref14
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref15
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref15
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref15
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref15
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref16
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref16
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref16
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref16
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref17
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref17
https://scratch.mit.edu/
https://doi.org/10.1080/09585170500384529
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref20
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref20
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref20
https://doi.org/10.1145/2591708.2591709
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref22
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref22
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref22
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref22
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref23
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref23
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref23
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref24
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref24
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref24
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref24
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref25
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref25
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref25
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref25
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref25
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref26
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref26
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref26
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref26
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref27
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref27
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref27
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref27
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref27
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref27
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref27
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref27
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref27
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref27
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref27
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref27
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref27
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref28
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref28
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref28
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref28
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref29
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref29
http://refhub.elsevier.com/S2451-9588(20)30037-3/sref29

	A blocks-based serious game to support introductory computer programming in undergraduate education
	1. Introduction
	2. Opportunities in serious games for programming learning
	3. Research methodology
	4. NoBug’s SnackBar: the game and its evolution during the research
	4.1. Main ideas behind the game
	4.2. First cycle – pilot test
	4.3. Second cycle – first version with class integration
	4.4. Third cycle – second version with class integration
	4.5. Fourth cycle –third version with class integration

	5. Customize missions in the game
	6. Guidelines to use serious game to support introductory computer programming
	6.1. Guidelines about game features
	6.2. Guidelines about game-based computer programming leaning

	7. Uses of the game in classes
	8. Conclusions and future work
	Acknowledgments
	Declaration of competing interest
	Appendix A. Supplementary data
	References

