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a b s t r a c t 

The poor adhesion of carbon thin films was the main restriction for its massive application in recent years. 
Physicochemical interaction improvement at the adhesion interface between substrate and thin film is one of the 
most important fields of research to overcome such problem. From a chemical point of view, oxygen seems to 
be a major issue in the adhesion control. In this work, the influence of base pressure prior to deposition process 
on the carbon thin film tribological behaviour was studied. Rockwell C and scratch tests were performed to 
qualify the thin film failures and adhesion. Chemical mapping was performed by energy-dispersive spectroscopy 
to characterise the chemical elements after thin film failure. The carbon thin films show better adhesion at 
lower base deposition pressures. The tribological behaviour is associated with the oxygen content in the chamber 
atmosphere as well as to the higher thin film adhesion achieved at lower base pressures. 
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. Introduction 

Poor adhesion of carbon thin films on ferrous alloys restricts many
ndustrial applications regarding their mechanical and tribological prop-
rties [1] . Carbon thin films are usually applied in engine and mechani-
al components to effectively reduce the friction and wear of the sliding
arts [ 2 , 3 ]. However, the high residual stress of such coatings is the
ain technical restriction for their massive applications [ 4 , 5 ]. Chem-

cal vapour deposition (CVD), physical vapour deposition (PVD) and
lasma-enhanced chemical vapour deposition (PECVD) techniques pro-
ide relatively large ion fluxes on substrate for the growth of carbon
hin films and are consolidated at the laboratorial scale [ 6 , 7 ]. For in-
ustrial processes, magnetron sputtering (MS) techniques are employed
or their conceptual simplicity and their ability to deposit uniform and
ow- defect films. However, magnetron sputtering plasmas in DC, pulsed
nd RF configurations are characterised by relatively low electron den-
ities that may induce poor mechanical and adhesive properties [ 8 , 9 ].
igh-power impulse magnetron sputtering (HiPIMS) technique shows
 high ionisation rate of plasma species at high power that allow ion
mplantation during deposition, which improves the density and adhe-
ion of thin films. In addition, carbon is difficult to be ionised. Studies
ave reported the possibility of improving the deposition rate exploring
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oth the experimental setup and the deposition conditions [ 10 , 11 ]. Non-
etallic and metallic interlayers are used to improve the adhesion of

arbon thin films enhancing the poor chemical bonding and mismatch-
ng at the interface [12] . These interlayers have scientific and industrial
mportance and can be easily obtained using the above-mentioned tech-
iques. Interlayers aim to reduce the physical and chemical incompati-
ilities between the carbon thin film and the ferrous substrate, incom-
atibility that is responsible for the poor adhesion to the system thin
lm/substrate. Elements such as Ti, Cr, F, B, S, Si and N are generally
sed at the interlayer and should be, consequently, compatible [13–15] .
therwise, these elements become the main initiator of failure and of
elamination [ 16 , 17 ]. Previous studies have reported that Si-containing
nterlayers improve the adhesion in thin film//steel systems [18–20] . In
his case, it should be remarked that a new interface is created in the
nal sandwich architecture of thin film//interlayer//steel. The better
dhesion does not depend only on the silicon concentration but also on
he chemical structure of the functional groups created during thin film
rocessing which are associated with the deposition parameters [21–
3] . The Si-C bonds promoted by the carbon thin film//Si-containing
nterlayer system are effective in reducing internal stress and improving
dhesion [ 24 , 25 ]. 
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Table 1 

Code of samples, pumping times and pressures for deposition processes. 

Sample Pumping time (min) Base pressure (Pa) Estimated oxygen partial pressure (Pa) 

10 − 1 10 1.6 × 10 − 1 3.10 × 10 − 2 

10 − 2 40 1.0 × 10 − 2 2.08 × 10 − 3 

10 − 3 100 1.7 × 10 − 3 3.40 × 10 − 4 

10 − 4 200 2.2 × 10 − 4 4.40 × 10 − 5 
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Table 2 

Processing parameters for sample deposition. 

Argon etching Si interlayer Carbon-based thin film 

Time (min) 30 10 20 

Target – Si graphite 

Voltage (V) – 450 650 

Bias (V) 250 60 60 

Power (W) 130 550 750 
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A Si-containing adhesion interlayer must present good thermal and
tructural stability, which is able to be reached after the formation of
trong Si-C bonds between Si, from the adhesion interlayer, and C, from
he carbon thin film [26] . On the one hand, previous works have re-
orted that the oxygen presence, as a dopant element in carbon thin
lms, has a major role in their tribological performance [26–28] . More-
ver, other works have concluded that the oxygen presence at interfaces
eopardises the adhesion of carbon thin films on ferrous alloys becom-
ng a key factor [ 29 , 30 ]. The oxygen presence at the interfaces of the
arbon thin film//interlayer//ferrous alloy system comes from either
he residual gases absorbed on the walls or the residual air into the
hamber during plasma deposition [31] . Different methods to remove
r minimise the oxygen content have been proposed, such as, the use of
 relatively high deposition temperature or hydrogen etching [ 32 , 33 ].
owever, there is a lack of systematic studies to evaluate the influence
f the chamber base pressure on the adhesion of carbon thin films on fer-
ous alloys without any other treatment. Consequently, this work aims
o investigate the influence of the deposition base pressure on the adhe-
ion behaviour of carbon thin films deposited on ferrous substrate. 

. Material and methods 

Samples of AISI M2 steel, with diameter of 21.5 mm and thickness
f 4 mm were polished with SiC abrasive paper followed by diamond
uspension of 3 𝜇m and, after, were ultrasonically cleaned with acetone
nd ethanol baths for 15 min. The samples were glued with silver glue
99.9% purity) and placed on a rotating holder with rotation of 18 rpm
t the central axis of the chamber and situated to 80 mm distance from
he targets. The deposition chamber is a vacuum system constituted by a
otary (Edwards NxOs 20i) and a turbomolecular pumps (Pfeiffer TMH
21 P) sealed with Viton R ○ rubber. This equipment is located in the clean
oom with controlled temperature and humidity. The first stage of the
eposition process was the chamber evacuation where different pump
imes allow reaching each base/background pressure, i.e., the vacuum
evel achieved before starting the silicon interlayer and carbon film de-
ositions. The longer the pumping time, the lower the base pressure.
his base pressure was the main parameter to be studied in this work
nd, therefore, Table 1 describes the different times to evacuation and
eposition base pressures where the estimated oxygen partial pressures,
hich consider only air (rough approximation) in the base pressure,
re also shown. Different pumping times render different base pressures
rior to deposition of the silicon interlayer and subsequent carbon thin
lm. The coatings were deposited at room temperature with using direct
urrent magnetron sputtering under Ar (99.999%) atmosphere (constant
ressure of 0.5 Pa with a flow rate of 21 sccm). The etching stage was
sed to remove all surface contaminants and activate the surface. After
tching, a Si interlayer was deposited by sputtering using a pure Si target
150 × 150 mm). The carbon thin film was then deposited by sputtering
 graphite target (150 × 150 mm) [ 34 , 35 ] until a final thickness of 0.3
m is achieved. Detailed process parameters for deposition process are
escribed in Table 2 . 

The adhesion behaviour of the carbon thin films was evaluated using
dhesion tests: Rockwell C indentation test and the instrumented linear
cratch-test. The chemical composition was analysed by Energy Disper-
ive Spectroscopy (EDS) technique. The Rockwell indentation test, also
nown as “Mercedes test ”, was performed using a Rockwell C indenter
nder a normal load of 1471.5 N (recommended for AISI M2 substrate)
sing Karl Frank GMBH Weinheim-Birkenau Type 38 532 equipment.
he indentations were categorised into six failure classes in order to
valuate the adhesion strength and the type of fracture of carbon thin
lms according to VDI 3198 indentation test [ 36 , 37 ]. The instrumented

inear scratch-test (Swiss CSEM Scratch Test) was conducted according
o European Standard EN 1071-3 [38] by linearly applying loads from 0
o 50 N on a trail length of 50 mm, using a Rockwell C with a tip (Möss-
er Ideen Aus Diamant) radius of 200 𝜇m. The worn trail as well as the
ockwell indents were evaluated by optical microscopy (OM) using a
eica DM4 B vertical microscope to assess the failure and delamination
echanisms. Scanning electron microscopy (SEM-Shimadzu SSX-550)
as also used to evaluate the delamination mechanisms. The chemical
apping in qualitative mode was determined in the same SEM focusing

n the same area that those for microstructural analysis by EDS (Oxford
-act). 

. Results and discussion 

Fig. 1 (a)–(d) shows OM images after Rockwell C indentation of thin
lms deposited at variable base pressure. Different adhesion/cohesion
ehaviours are observed as a function of the deposition base pres-
ure. Carbon thin films deposited at relative high base pressures of
.6 × 10 − 1 and 1.0 × 10 − 2 Pa were ultimately removed as shown in
ig. 1 (a) and (b), respectively. At intermediate deposition base pressure
f 1.7 × 10 − 3 Pa ( Fig. 1 (c)) the adhesion is enhanced and only microc-
acks and isolated small delamination areas were detected. The lowest
eposition base pressure (2.2 × 10 − 4 Pa) guaranteed good adhesion of
he carbon thin films where only minor microcracks are seen ( Fig. 1 (d)).
ccording to the standard VDI 3198 [36] , the adhesion can be classi-
ed through cracking and coating delamination around the indent [39] .
ig. 1 (e)–(h) shows the OM images at higher magnification around the
ndentation for each sample. Consequently, the adhesion/cohesion be-
aviour of carbon thin films as a function of deposition base pressure is
ble to be matched to the standard VDI 3198, accordingly. This classifi-
ation is ranked from HF1 to HF6 where the area around the indentation
s classified as HF1 and HF2, for a suitable adhesion when just a few
racks are observed, HF3 to HF5 is associated with delamination and
assive cracking points and, HF6, corresponds to a complete delami-
ation [40] . Fig. 1 (i)–(l) shows EDS analyses of carbon (C) and silicon
Si) in the carbon thin film and interlayer systems deposited on AISI M2
teel after Rockwell C indentation for different base pressures. These fig-
res identify, qualitatively, the presence of carbon (in red colour) and
ilicon (in blue colour) in the cracks and delamination points created
ue to indentations. According to images in Fig. 1 , and the standard
lassification for Rockwell C analysis, these samples were classified as
ollows: HF6 for the samples deposited at base pressures of 1.6 × 10 − 1 

nd 1.0 × 10 − 2 Pa, since these images show complete delamination of
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Fig. 1. (a)–(d) Optical microscopy images of top view Rockwell C indentation areas for samples deposited at high base pressure (at the top) to low base pressure (at 
the bottom); where (e), to (h) detailed the optical microscopy images of cracking region and delamination mechanisms (i) to l) EDS analyses of C and Si chemical 
elements in the sandwich structure of carbon thin film//interlayer//steel after Rockwell C indentations at variable deposition base pressures. (For interpretation of 
the references to colour in this figure, the reader is referred to the web version of this article.) 
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oth the carbon thin film and silicon interlayer, exposing the metallic
aterial as seen in Fig. 1 (i) and (j) where no carbon and silicon signals
ere recorded in the delaminated zone; HF4 for the sample deposited
t base pressure of 1.7 × 10 − 3 Pa, showing massive cracking points and
ocal delamination and, finally, the sample deposited at base pressure of
.2 × 10 − 4 Pa was classified as HF3 due to the much lower number of
racks. For these last two base pressures, only the carbon thin film was
elaminated remaining the silicon interlayer as shown in Fig. 1 (k) and
l). 

Fig. 2 (a) schematises the linear scratch-test conducted by linearly ap-
lying loads from 0 to 50 N on a trail length of 50 mm. Fig. 2 (b) shows
he OM images of worn trails after testing of carbon thin films as a func-
ion of the deposition base pressure. Higher magnification and chemical
apping of worn trails are shown in Fig. 2 (c) where the different fail-
re types may depend on the base pressure. Typical cohesion (buckling)
nd adhesion (lateral chipping and spalling) failures of the carbon thin
lms [40] are observed in the micrographs. The arrows in Fig. 2 (b) indi-
ate the critical load determined at the beginning of coating detachment
nd complete failure. Delamination failures (spalling) are observed for
amples deposited at the highest base pressures where the failure occurs
ggressively at low normal forces, exposing a large area of delamination.
he higher magnification obtained in Fig. 2 (c) by SEM allows to anal-
se the delamination mechanism at the beginning with more details.
or samples deposited at high deposition base pressures (codes: 10 − 1 

nd 10 − 2 ), the failure starts by cohesive failure, with cracking induced
y buckling, occurring delamination of both carbon thin film and silicon
nterlayer. For the sample deposited at lower deposition base pressures
codes: 10 − 3 and 10 − 4 ), the delamination occurs at much higher forces,
n a milder manner keeping the silicon interlayer (see the presence of sil-
con in the delaminated areas for conditions 10 − 3 and 10 − 4 in Fig. 2 (c).
s mentioned above, a lower deposition base pressure enhanced the ad-
esion behaviour, requiring higher critical loads for the delamination
o occur. One must notice that the brighter points for silicon on EDS
hemical maps in Fig. 2 (c) should be associated with rich-W metallic
arbides precipitates in the substrate (AISI M2). Indeed, the Si K-L 2,3 
nd W M 5 -M 6,7 peaks show photon energies at 1.740 and 1774 eV [41] ,
espectively. Thus, the brighter signal for silicon in Fig. 2 (c) is due to
n extra signal that comes from tungsten. 

The dependence of the critical load for delamination of carbon thin
lms on the deposition base pressure is presented in Fig. 3 . As the de-
osition base pressure decreases, the critical load increased from 9 N
o about 27 N. Therefore, the base pressure reduction significantly im-
roved the cohesion/adhesion behaviour. We did not consider the hu-
idity for this discussion because and as mentioned in the experimental

ection, all samples were processed in an equipment sealed by Viton R ○

ubber, which may leak water vapour from room atmosphere to cham-
er atmosphere. Moreover, the equipment for thin film deposition is
ocated in a clean room with controlled environmental conditions of
emperature and humidity, thus, the background condition can be con-
idered constant in terms of the atmospheric composition and relative
umidity when the deposition chamber is closed and during pumping
42] . The residual chamber atmosphere is, majorly, constituted by atmo-
pheric air (~ 78 of N 2 and ~ 21% of O 2 ) and water vapour. In terms of
eactivity, oxygen that comes from oxygen and water molecules is more
angerous than nitrogen in plasma-based processing and, in addition,
xygen is known as a potential barrier to appropriate adhesion of car-
on coatings in a chemical point of view [ 31 , 43 ]. One must notice that
ur results can only be correlated with the deposition base pressure and
ur discussion about the harmful effect of residual oxygen, which is one
f the strongest hypotheses, must be proven by quantitative chemical
nalysis that is beyond the scope of the current work. 

Fig. 4 proposes a delamination mechanism for the sandwich structure
f the thin film//interlayer//steel occurring during scratching in two
ifferent failure modes that depend on a) high (codes: 10 − 1 and 10 − 2 )
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Fig. 2. (a) Schematic of the linear scratch-test, (b) OM im- 
ages of worn trails after instrumented linear scratch-testing for 
samples, (c) SEM and EDS analyses of characteristic areas to 
evaluate the first stages of delamination during scratching. 

Fig. 3. Critical load for thin film delamination at variable base pressure during 
deposition. The dashed line is a guide line for the eyes. 
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r low b) (codes: 10 − 3 and 10 − 4 ) deposition base pressures. Fig. 4 (a)
hows that high deposition base pressures induce delamination at the
nnermost interface, i.e., at the silicon interlayer and steel interface ex-
osing the substrate. Fig. 4 (b) shows that low deposition base pressures
nduce delamination at the outermost interface, i. e., at the carbon thin
lm and silicon interlayer interface exposing the silicon interlayer. We
uggest that this behaviour may be associated with the oxygen partial
ressure during deposition since both air and water vapour (possible
rigin of oxygen in the interface) are mostly evacuated during pumping
o reach the deposition base pressure [42] . Moreover, the equipment for
hin film deposition is located in a clean room with controlled environ-
ental conditions of temperature and humidity, thus, the background

ondition can be considered constant in terms of the atmospheric com-
osition when the deposition chamber is closed. After that, different
ase/background deposition pressures are achieved, which define our
ystematic study. The better cohesion/adhesion behaviour of the carbon
hin films on AISI M2 steel is associated with the low deposition base
ressure, which may be associated with the presence of oxygen during
he deposition process. Previous works have shown that the chemical
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Fig. 4. Delamination mechanism of the sandwich structure of 
thin film//interlayer//steel occurring during scratching in two 
different failure modes that depend on a) high (10 − 1 and 10 − 2 ) 
or low b) (10 − 3 and 10 − 4 ) deposition base pressure where the 
innermost or outermost interface is broken, respectively. 
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omposition of interlayers and interfaces controls the tribological be-
aviour as a whole, in particular the presence of oxygen [ 31 , 44 ]. Oxy-
en atoms are detrimental due to the interruption of chemical bonding
t both interfaces that impairs good adhesion of thin films. For the in-
ermost interface (silicon interlayer / steel), Si-Fe bonds are substituted
y terminal Si = O and Fe = O bonds [ 31 , 44 ]. For the outermost interface
carbon thin film / silicon interlayer), C-Si bonds are substituted by ter-
inal C = O and Si = O [ 31 , 44 ]. For high base pressure prior to deposi-

ion, the higher initial oxygen concentration is able to form more Si = O
nd Fe = O chemical bonds at the innermost interface than C = O and
i = O chemical bonds at the outermost interface owing to most of oxy-
en was used in the formation of the first interface (innermost). Such
 mechanism allows explaining the premature adhesion failure at the
nnermost interface in higher base pressures. On the contrary, for low
ase pressure prior to deposition, the lower initial oxygen concentra-
ion forms less Si = O and Fe = O chemical bonds at the innermost inter-
ace than for high base pressure. The innermost interface is preserved
nd the outermost interface fails in lower base pressures. We suggest
hat the outermost interface may fail in all deposition conditions, how-
ver, the premature delamination at the innermost interface in higher
ase pressures is hiding this behaviour. Although such practical find-
ng is known in the vacuum coaters’ community, we have proved the
nfluence of the deposition base pressure on the adhesion behaviour of
arbon thin films in a systematic way. 

. Conclusions 

A systematic study of the influence of base pressure prior to depo-
ition on the adhesion behaviour of carbon thin film was performed.
ifferent base pressures prior to deposition modify significantly the crit-

cal load for delamination of the carbon films in the mentioned system
here better adhesion was achieved at lower deposition base pressures
ollowing an exponential behaviour. Also, two different failure mecha-
isms were detected: at higher deposition base pressures, the delamina-
ion takes place at the innermost interface (silicon interlayer // steel)
nd at lower deposition base pressures, the delamination takes place at
he outermost interface (carbon thin film // silicon interlayer). These
esults might be related to the oxygen presence at the interfaces during
he deposition process. This finding might be used to adjust the more
dequate base pressure prior to deposition in order to enhance the ad-
esion of carbon thin films on steels in plasma processing. 
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