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Abstract: Several studies emphasize that temperature-related mortality can be expected to have
differential effects on different subpopulations, particularly in the context of climate change. This
study aims to evaluate and quantify the future temperature-attributable mortality due to circulatory
system diseases by age groups (under 65 and 65+ years), in Lisbon metropolitan area (LMA) and
Porto metropolitan area (PMA), over the 2051-2065 and 2085-2099 time horizons, considering the
greenhouse gas emissions scenario RCP8.5, in relation to a historical period (1991-2005). We found a
decrease in extreme cold-related deaths of 0.55% and 0.45% in LMA, for 2051-2065 and 2085-2099,
respectively. In PMA, there was a decrease in cold-related deaths of 0.31% and 0.49% for 2051-2065
and 2085-2099, respectively, compared to 1991-2005. In LMA, the burden of extreme heat-related
mortality in age group 65+ years is slightly higher than in age group <65 years, at 2.22% vs. 1.38%,
for 2085-2099. In PMA, only people aged 65+ years showed significant temperature-related burden
of deaths that can be attributable to hot temperatures. The heat-related excess deaths increased from
0.23% for 2051-2065 to 1.37% for 2085-2099, compared to the historical period.

Keywords: climate change; extreme temperatures; distributed lag non-linear model (DLNM);
mortality; elderly; projections; WRF model; Portugal

1. Introduction

The association between extreme temperatures and mortality in urban areas has been identified
in previous studies [1-11]. Additionally, studies from Portugal report that a large proportion of such
excess mortality in the hot season is caused by cardiovascular diseases, cerebrovascular diseases,
and diseases of the respiratory system. This mortality is higher among the elderly and people with
pre-existing conditions [1,12,13]. Concerning the cold season, Portugal has been mentioned over the
years as having one of the highest rates of excess winter mortality in Europe [14-17], which may be
related to socioeconomic conditions and population health status. Most often, this excess has been
attributed to the influenza virus, mainly among the most vulnerable populations, due to the spread of
respiratory infections and the decompensation caused by chronic illnesses [1,9,18-20].

Though many studies demonstrate the association between extreme temperatures and mortality,
the Intergovernmental Panel on Climate Change (IPCC) Assessment Report [21] IPCC, and the
World Health Organization [22] consider that research on the impacts of climate change, such as
temperature-related mortality [23], should be intensified so as to characterize and identify the most
vulnerable population groups, taking urban context into account [24]. Urban areas are particularly
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vulnerable to the effects of extreme temperatures [25] due to the high concentration of the susceptible
population (elderly, impoverished populations, people with chronic health conditions, including
diabetes, people using certain medications, the mentally ill and outdoor workers) [26,27], buildings,
number of green areas or vegetative covering [28,29] and the nature of infrastructures [30,31].

In a context characterized by climate change, future scenario-based projections have stood as
the main approach when it comes to planning and formulating policies. Climate change is expected
to bring about a temperature increase between 1.6 °C and 4.5 °C by 2100 [32]. More importantly,
temperature extremes have become more frequent and intense, and this trend is expected to continue
in the future [33-35]. These projections have been estimated for many regions [36-38], and particularly
for Europe [39,40], the Mediterranean [41-43], and the Iberian Peninsula [44]. Heat waves are such
type of temperature extreme events that may bring continuous thermal stress for periods of days
and are associated to increased mortality [45,46]. The frequency and intensity of heat waves is also
expected to increase in the future in many regions [47-49]. This has been reported for Europe [50-54]
and particularly for the Iberian Peninsula [55,56]. Pereira et al. [55] estimated projections of heat
waves for 12 cities in the Iberian Peninsula for the Representative Concentration Pathway 8.5 (RCP8.5)
greenhouse gas emission scenario. They report very large increases in the average number of heat
wave days per year, up to 10-fold in some cities which may experience heat wave conditions during
most of the summer by 2100.

Accordingly, the aim of this study is to quantify attributable mortality while identifying and
characterizing the age groups (aged less than 65 and 65+ years) that are more vulnerable to the health
impacts of climate change in Portuguese metropolitan areas (Lisbon and Porto), over the 2046-2065
and 2080-2099 time horizons, under a Representative Concentration Pathway 8.5 (RCP8.5) greenhouse
gas emission scenario.

2. Data and Methods

2.1. Mortality Data

For this study, we first collected daily deaths due to diseases of the circulatory system from
metropolitan areas (LMA, Lisbon metropolitan area; PMA, Porto metropolitan area). Data on the daily
counts of deaths from 1 January 1 1991 to 31 December 2005 were collected from the Statistics Portugal.
Mortality data were classified into the following categories using the International Classification of
Diseases, Ninth Revision (ICD-9) and the International Statistical Classification of Diseases and Related
Health Problems, Tenth Revision (ICD-10): Diseases of the Circulatory System (ICD-9: 390-459, ICD-10:
100-199). To account for population aging, mortality data were disaggregated by two age groups (0-65
years and 65+ years).

2.2. Temperature Projections

In this study, the simulations were performed using the Weather Research and Forecast-Advanced
Research weather (WRF) model v3.5 [57] to dynamically downscale climate simulations from the
Max Planck Institute Earth System Model (MPI-ESM-LR) [58], for time periods namely, a recent past
climate (1991-2005), a mid-term future climate (2051-2065) and a long-term future climate (2085-2099).
The simulations were performed using the RCP8.5 emission scenario [59,60]. The RCP8.5 scenario
represents relatively high greenhouse gas emissions, with a radiative forcing reaching 8.5 W.m? by
2100 [21,61], as detailed in the fifth IPCC report [61]. Systematic biases in daily temperatures were
removed by applying the quantile-based mapping bias correction method [62]. This method has
already shown to be adequate to be suitable to produce bias corrected high-resolution meteorological
information for climate change impact studies [55,63,64]. As reported by Dosio et al. [65], bias correction
of climate simulations is deemed necessary for climate impact studies because climate model outputs
may present bias when compared with observed data [66]. Previously, the present data were submitted
to bias correction to minimize model systematic errors to relative observations [9,55].
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2.3. Statistical Approach

2.3.1. Estimation of Temperature-Mortality Association

In this study, mean daily temperature was used to examine the current temperature-mortality
association in Porto and Lisbon metropolitan areas. We used distributed lag non-linear models
(DLNMs) [1,9,67-70] assuming a quasi-Poisson distribution. We simultaneously explored the non-linear
and delayed effects of temperature, adjusted for long-term temporal trends, day of the week (DOW),
and holiday (Hoy).

The model is formulated as follows:

log[E(Yit)] = Yt ~ quasiPoisson(ut) 1)

log(ut) = a+ of fset (Population) + cb(Tmean) + ns(time, df = n,year) +yDOW + AHoy

The daily number of deaths on day t is represented by Yt; a is the intercept; ns is the natural
cubic spline to capture long-term trend and seasonality with 3 degrees of freedom per year of
study; cb(Tmean) was used to model the non-linear and delayed effect of temperature through a
bi-dimensional cross-basis function, described by a natural cubic spline with 4 degrees of freedom
(dfs) for the exposure-response association, with four internal knots placed at equal intervals in
the temperature range and the log scale of lags without intercept. The maximum lag was set at 30
days [1,9,20]. We accounted for linear effects binary indicator of day of the week (DOW) and holiday
(Hoy), where y and A represent vector of coefficients of DOW and Hoy, respectively.

Furthermore, we assessed whether the associations varied by seasons (summer: June-September;
and winter: December—March) [9] and age group (0-65 years and 65+ years). The heat effects were
assessed using the data restricted to the summer months, and extreme hot was defined as the 99th
percentile of the mean temperature. Similarly, data restricted to winter months was used to assess the
cold effects with extreme cold classified as the first percentile of the mean temperature. Minimum
mortality temperatures (MMT) were set as threshold temperatures for hot and cold.

For the model, the exposure-response curves for temperature-mortality associations were presented
as log relative risk (logRR) of death for every unit increase/decrease in temperature with reference to
the minimum mortality threshold/temperature (MMT). Minimum mortality temperature (MMT) is the
temperature at which the mortality risk is at its lowest, and is derived from the prediction of the overall
cumulative exposure-response relationship, based on the above-described model. The derivation of
MMT is a straightforward scan through the temperature-mortality function to find the temperature
value that minimizes the function [71].

2.3.2. Attributable Risk from DLNMs

Estimated temperature-mortality associations, reported as Log Relative Risks (IogRR) for the entire
exposure lag (30 days), were used to estimate temperature-related mortality. Following Gasparrini
et al. [72-74] we assumed that the risk at day t is attributable to a series of exposure events in the
past up to a maximum of 30 days. We calculated the attributable number deaths associated with
temperature for the present year (1991-2005) using the estimated temperature-mortality rate. The
backward attributable fraction (b — AFy ;) and thus the backward attributable number (b — ANy ), result
from the sum of all contributions in each day, given by the Equations:

b—AFy;=1-¢ = 2)

b- ANx/t =b- AFx/t'i’lt

where n; is the number of cases at time ¢.
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2.3.3. Projection of Temperature-Mortality Association

First, the projections of future mortality trends were computed as average daily mortality for
every year of the current period (1991-2005) to account for seasonal variations of the historical data [68].
These series were now replicated over the future periods. Finally, temperature-related mortality
was calculated to estimate the change in mortality rate per million people for mid-term (2046-2065)
and long-term (2081-2099) periods in the both metropolitan areas. Data distribution of current and
future periods was explored and is presented in figures. Following, Gasparrini et al. [2], we used
the exposure-lag-response curves and estimated temperatures thresholds with projections of future
temperatures to estimate the change in mortality attributable to temperature per million people for
winter and summer seasons, in the future decades (20462065 and 2081-2099).

Assuming the temperature-mortality risk is attributable to a series of past exposure, the sum of
the contributions from all the previous days of the series is interpreted as the total excess mortality
attributed to non-optimal temperature [2]. The expected mortality changes in hot-related, cold-related,
and total temperature mortality rates per million people were presented together with the empirical
confidence intervals (eCls) obtained through Monte Carlo simulations.

2.4. Model Assessment and Sensitivity Analysis

The modified Akaike information criteria for models with over-dispersed data, Quasi-AIC [9,73],
was used to examine various df for nonlinear and lag functions for mean temperatures. Sensitivity
analyses were performed by changing the df (1-16) per year for time, so as to control for seasonality
and trends (Table S1).

All analyses were carried out using the package dInm [74] in R 3.4.2 statistical software (R Core
Team 2017).

3. Results

3.1. Descriptive Statistics

During the study period (1991 and 2005), a total of 159,592 and 74,400 deaths were recorded in
Lisbon metropolitan area (LMA) and Porto metropolitan area (PMA), respectively. Table 1 presents
the descriptive summaries of baseline mortality rates in the study period. The daily mean deaths in
LMA and PMA were 29.13 and 13.58, respectively. There were more deaths in the winter months:
67,349 (42.20%) and 30,138 (40.50%) deaths during the study period - than in the summer months:
44,651 (27.98%) and 20,911 (28.11%) in both metropolitan areas. Overall, the number of deaths among
people aged 65+ was 138812 and 65062 in LMA and PMA, respectively, which accounts for the biggest
proportion in the two metropolitan areas.

During the study period, the daily minimum and maximum mean temperature for LMA were
3.20 °C and 34.00 °C, respectively, and for LMA, and 1.00 °C and 31.50 °C for PMA, respectively
(Table 2). The average daily temperature in winter and summer months for LMA was 12.72 °C and
21.81 °C, respectively, and 11.10 °C and 19.48 °C for PMA, respectively.
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Table 1. Descriptive statistics of daily mortality in Lisbon metropolitan area (LMA) and Porto
metropolitan area (PMA), 1991-2005.

Metropolitan Percentiles

Area/Age Season Mean = SD Min. Max.
8 P25 P50 P75
All ages

Total 29.13 + 8.54 8.0 23 28 34 88

LMA Summer 24.36 + 6.29 8.0 20 24 28 88
Winter 35.32 +8.79 11 29 35 41 71

Total 13.58 + 4.75 3.0 10 13 16 36

PMA Summer 11.41 +3.59 3.0 9.0 11 14 27
Winter 16.57 + 5.01 3.0 13 16 20 36

Age < 65 years

Total 3.79 +2.11 0.0 2.0 4.0 5.0 14

LMA Summer 343 +1.95 0.0 2.0 3.0 5.0 11
Winter 4.34 +2.38 0.0 3.0 4.0 6.0 14

Total 1.70 £ 1.41 0.0 1.0 1.0 3.0 10

PMA Summer 1.51 +1.29 0.0 1.0 1.0 2.0 7
Winter 1.98 +1.54 0.0 1.0 2.0 3.0 10

Age 65+ years

Total 25.34 +7.84 7.0 20 24 30 78

LMA Summer 20.96 + 5.73 7.0 17 21 24 78
Winter 31.70 £ 7.65 13 26 31 36 65

Total 11.87 +4.35 1.0 9.0 11 14 33

PMA Summer 9.90 +3.33 1.0 8.0 10 12 23
Winter 14.62 +4.62 2.0 11 14 18 33

Table 2. Descriptive statistics for the mean daily temperatures in Lisbon metropolitan area (LMA) and
Porto metropolitan area (PMA), 1991-2005.

MeKopolltan Season Mean SD Min. Percentiles Max.
rea P1 P25 P97.5 P99

Total 16.90 4.80 3.20 10.80 13.30 26.51 28.20 34.00

LMA Summer 21.81 2.86 16.10 18.50 19.60 28.60 29.77 34.00

Winter 12.72 3.42 3.20 8.80 10.60 21.60 23.39 30.20

Total 15.09 4.42 1.00 9.40 11.80 24.00 26.50 31.50

PMA Summer 19.48 2.84 12.90 16.30 17.60 26.80 28.27 31.50

Winter 11.10 2.64 1.00 7.60 9.20 15.80 16.60 18.40

3.2. Temperature-Mortality Association

Table 3 presents the associated risk (logRR) of temperature-related mortality based on daily
temperatures for all months, summer and winter months. Across both metropolitan areas, the relative
risk for the first percentile and 99th percentile of mean temperature, for LMA and PMA, which shows
an increased with exposure to the 1st percentile in winter months. When exposed to maximum
temperature (34.00 °C) in LMA, there were significant cumulative (lag 0-30) heat effects for age
group 65+ years (logRR = 2.18, 95% CI: 0.19-4.17) and <65 years (logRR = 1.07, 95% CI: —4.12-6.27).
However, heat effects were only significant among people aged 65+ years in PMA (logRR = 1.02, 95%
CI: 0.04-1.34). On the other hand, with a minimum temperature of 3.20 °C in LMA, and 1.00 °C in
PMA, LMA showed a significant cold effect for the elderly (logRR =7.14., 95%CI: 4.06-18.42) and PMA
showed a significant cold effect for the elderly (IogRR = logRR = 4.37, 95%Cl: 1.52-16.22).
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Table 3. Metropolitan areas (MA)-specific relative risk (RR) of mortality due to hot and cold effects, logRR (95%CI), for the period 1991-2005.

Summer 95% CI Winter 95% CI
MA/Ages Temperature logRR L Hich Temperature logRR L Hich
(99%) ow '8 (1%) ow '8
All ages 29.77 0.09 ~0.02 0.19 5.80 0.64 -0.23 1.52
Lisbon
Porto 28.27 0.14 -0.77 1.05 5.20 1.51 -1.10 4.13
Age < 65 years
Lisbon 29.77 0.20 0.00 0.60 5.80 0.32 -2.09 1.64
Porto 28.27 0.80 0.01 1.59 5.20 1.45 -1.30 4.22
Age 65+ years
Lisbon 29.77 0.05 -0.04 0.15 5.80 0.72 -0.21 1.64
Porto 28.27 0.14 -0.84 1.12 5.20 217 -1.29 5.65
S % Wint %
. ummer logRR 95% CI Inter logRR 95% CI
emperature L Hich Temperature L Hich
(Maximum) ow 15 (Minimum) ow 15
All ages 34.00 2.03 0.15 3.93 3.20 5.34 1.96 8.92
Lisbon
Porto 31.50 1.06 0.42 2.14 1.00 1.65 -0.70 4.01
Age < 65 years
Lisbon 34.00 1.07 —-4.12 6.27 3.20 4.47 0.74 8.21
Porto 31.50 0.03 -9.09 9.14 1.00 1.77 —-1.54 3.1
Age 65+ years
Lisbon 34.00 2.18 0.19 4.17 3.20 7.14 4.06 18.42
Porto 31.50 1.02 0.04 1.34 1.00 4.37 1.52 16.22

Bold face represents statistically significant risk.
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3.3. Projected Exposure and Health Outcomes

In this study, our main interest is the total number of deaths attributable to temperate change
in the absence of other changes. The mortality counts were based on average daily deaths per year
of the observed data, thereby keeping the seasonality observed in the historical period-1991-2005.
Figure 1 shows the temporal trends in temperature for the historical data (1991-2005) and projected
future periods (2051-2065 and 2081-2099). The time series plot indicates an increasing trend in average
temperature in both metropolitan areas over the century (Figure 1a).

Average Difference
201 —— PMA 4
— LMA — PMA
— LMA
34
o151 & 1991-2005 2051-2065
Z’ 1991-2005 2051-2065 2085-2100 e
g 2
E 10 °
3
5 E 1
g g
]
Z 5. 2
D |
0 - 1-
L O O O TTTT T T T T T T T 111711 M T T T T T I T T T I T T T T T T T T T T I T T I T T T T T TTITTIT TTT11
1891 1996 2001 2051 2056 2061 2085 2090 2095 2100 1991 1996 2001 2051 2056 2061 2085 2090 2085 2100
Year Year
(a) (b)

Figure 1. Time series plot of temperature in the PMA (Porto metropolitan area) and LMA (Lisbon
metropolitan area) for the present/current period, 1991-2005 and future projections 2051-2065 and
2085-2099, (a) Average temperature, (b) Difference in temperature from historical average (1991-2005).

The temperature in LMA is estimated to increase from a yearly mean of 16.89 °C in 1991-2005 to a
yearly mean of 18.61 °C and 20.25 °C in future periods 2051-2065 and 2085-2099, respectively. In the
same vein, temperatures in PMA are estimated to rise from 15.09 °C in the current period to 16.81 °C
and 18.50 °C in the future periods, respectively. The differences observed in these future temperatures
are depicted in the Figure 1b.

The top panel of Figures 2-5 display the estimated temperature-mortality relationship for the
historical period and the future periods. The exposure-response curve is extrapolated to capture the
future temperature projections. There is a general observation that the estimate mortality risk is set to
increase with warmer temperatures in the future periods, compared to historical period (Figures 2
and 3). This is clearly observed as the red dash lines increase with warmer temperatures, especially
during the summer in the future periods (Figures 4 and 5).
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Figure 2. Temperature related mortality and excess mortality for the present and projected future periods in

Lisbon metropolitan area (LMA) during the summer period for people aged <65 years (a) and 65+ years (b).

Top panel: Exposure-response curve for temperature-mortality cumulative associations (IogRR). The solid
lines represent the logRR and the gray areas the 95% empirical confidence interval. The dotted vertical line
corresponds to reference temperature (MMT) which divides the curve into cold and hot (blue and red lines,
respectively). Middle panel: distribution of temperature values for the present period, 1991-2005 (grey area)
and future periods, 2051-2065 (green area) and 2085-2099 (darker green area). Bottom panel: distribution
of temperature-related excess mortality, expressed as the fraction of additional deaths (%) attributed to
non-optimal temperature, compared with the reference temperature.
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Figure 3. Temperature related mortality and excess mortality for the present and projected future

periods in Porto metropolitan area (PMA) during the summer period for people aged <65 years (a) and

65+ years (b). Top panel: Exposure-response curve for temperature-mortality cumulative associations

(logRR). The solid lines represent the logRR and the gray areas the 95% empirical confidence interval.

The dotted vertical line corresponds to the reference temperature (MMT) which divides the curve

into cold and hot (blue and red lines, respectively). Middle panel: distribution of the temperature
values for the present period, 1991-2005 (grey area), and future periods, 2051-2065 (green area) and
2085-2099 (darker green area). Bottom panel: distribution of temperature-related excess mortality,

expressed as the fraction of additional deaths (%) attributed to non-optimal temperature compared
with the reference temperature.
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Figure 4. Temperature related mortality and excess mortality for the present and projected future periods
in Lisbon metropolitan area (LMA) during the winter period for people aged <65 years (a) and 65+ years
(b). Top panel: Exposure-response curve for temperature-mortality cumulative associations (logRR). The
solid lines represent the logRR and the gray areas the 95% empirical confidence interval. The dotted
vertical line corresponds to reference temperature (MMT) which divides the curve into cold and hot (blue
and red lines, respectively). Middle panel: distribution of the temperature values for the present period,
19912005 (grey area), and future periods, 2051-2065 (green area) and 2085-2099 (darker green area).
Bottom panel: distribution of temperature-related excess mortality, expressed as the fraction of additional
deaths (%) attributed to non-optimal temperature compared with the reference temperature.
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Figure 5. Temperature related mortality and excess mortality for the present and projected future periods
in Porto metropolitan area (PMA) during the winter period for people aged <65 years (a) and 65+ years
(b). Top panel: Exposure-response curve for temperature-mortality cumulative associations (logRR). The
solid lines represent the logRR and the gray area the 95% empirical confidence interval. The dotted vertical
line corresponds to reference temperature (MMT) which divides the curve into cold and hot (blue and red
lines, respectively). Middle panel: distribution of the temperature values for the present period, 1991-2005
(grey area) and future periods, 2051-2065 (green area) and 2085-2099 (darker green area). Bottom panel:
distribution of temperature-related excess mortality, expressed as the fraction of additional deaths (%)
attributed to non-optimal temperature compared with the reference temperature.
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However, the estimated mortality risk decreases in the winter in the future periods (Figures 4
and 5). The distribution of temperature values throughout the historical and future periods is presented
in the middle panels of Figures 2-5. It is evident that temperatures in both metropolitan areas show a
slight difference, with PMA exhibiting lower temperatures than in LMA. In the future periods, it is
projected that winter will get warmer (middle panels of Figures 4 and 5) and summer will get hotter
(middle panel of Figures 2 and 3).

The estimated burden of temperature-attributable mortality (%) in the historical period (1991-2005)
and future periods 2051-2065 and 2085-2099 are presented in Table 4. We estimate a decrease in
extreme cold-related deaths of 0.55% and 0.45% in LMA, for 2051-2065 vs. 1991-2005 and 2085-2099
vs. 1991-2005, respectively (Table 4). Similarly, in PMA there is a decrease in cold-related deaths of
0.31% and 0.49% for 2051-2065 and 2085-2099, compared to 1991-2005. LMA is expected to have
an overall increase in extreme heat-related deaths of 1.04% and 0.44% in 2051-2065 and 2085-2099,
respectively, compared to the historical period (1991-2005). The burden of heat-related mortality
(during the summer months) is estimated to increase substantially over the future periods, compared
to the current period for all ages, being higher among people 65+ years. For example, in LMA, during
the summer months, there is an increase for all ages in extreme heat-related deaths of 1.58% and
0.10% for the two periods, compared to the historical period. The burden of extreme heat-related
mortality in the 65+ years age group is slightly higher than in age group <65 years, at 2.22% vs. 1.38%
for 20852099, compared to the historical period. However, in PMA, only people aged 65+ years
showed a significant temperature-related burden of deaths that can be attributable to hot temperatures.
The heat-related excess deaths increased from 0.23% for 2051-2065 to 1.37% for 2085-2099, compared
to the historical period.

Table 4. Changes in temperature-attributable mortality (%) in the future periods (2051-2065 and
2085-2099) vs. 1991-2005, with their 95% empirical confidence interval.

Metropolitan Area/Age Period Extreme Cold Extreme Heat
LMA
All ages
All vear 2051-2065 —0.55 (—0.71 to —0.40) 1.04 (0.55 to 1.47)
y 2085-2099 —0.45 (—0.57 to —0.33) 0.44 (0.19 to 0.67)
) 2051-2065 1.58 (0.75 to 1.90)
Summer 2085-2099 0.10 (0.04 to 0.14)
o 2051-2065 —0.67 (-=1.19 to 0.59)
Winter 2085-2099 0.79 (-1.39 to 0.69)
<65 years
X 2051-2065 0.08 (0.11 to 0.21)
Summer 2085-2099 1.38 (1.67 to 2.37)
o 2051-2065 -1.15 (-3.11 to 49.01)
Winter 2085-2099 -1.39 (=3.76 to 53.11)
65+ years
. 2051-2065 0.10 (0.00 to 0.18)
Summer 2085-2099 2.22 (0.11 to 1.82)
2051-2065 —1.41 (-2.53 to 1.50)

: 2
Winter 2085-2099 -1.67 (=3.05 to 1.10)
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Table 4. Cont.

Metropolitan Area/Age Period Extreme Cold Extreme Heat
PMA
All ages
All vear 2051-2065 —0.49 (—1.00 to 0.05) 0.39 (-0.14 to 0.88)
y 2085-2099 —0.31 (=0.57 to —0.01) 0.14 (-0.10 to 0.37)
X 2051-2065 0.08 (=0.24 to 0.21)
Summer 2085-2099 0.57 (-1.10 to 1.15)
o 2051-2065 —1.13 (-1.47 to 3.49)
Winter 2085-2099 -1.34 (-1.74 to 4.16)
<65 years
) 2051-2065 0.06 (~0.35 to 0.20)
Summer 2085-2099 0.39 (-2.01 to 1.12)
o 2051-2065 —0.28 (-0.58 to 0.96)
Winter 2085-2099 —0.32 (—0.68 to 0.85)
65+ years
) 2051-2065 0.23 (0.05 to 0.28)
Summer 2085-2099 1.37 (0.41 to 1.52)
. 2051-2065 —1.35 (-1.51 to 17.84)
Winter 2085-2099 —1.58 (—=1.75 to 17.79)

1 Extreme heat above 99th percent. 2 Extreme cold less than 1st percentile. Bold face represents statistically
significant risk.

4. Discussion

This study projects the number of deaths attributable to temperature according to diseases of
the circulatory system and age group (under 65 years and 65+ years), using future daily temperature
simulated by the weather research and forecasting (WRF) model, a distributed lag non-linear model
with a quasi-Poisson family. This was conducted for two metropolitan areas in Portugal (Lisbon
and Porto).

The results reported in this study indicate that the baseline temperature-mortality relationships
for cold and hot temperatures contributed to an increased risk of mortality. However, substantial
mortality burdens are visibly attributable to cold temperatures in Lisbon and Porto metropolitan areas,
during the historical period. According to recent studies in Portugal [1,9,20,68], winter mortality is
higher than summer mortality, especially among people aged 65 years and older with cardiovascular
or higher prevalence of individuals with chronic diseases. Various underlying mechanisms have been
proposed to explain the mortality risk associated with exposure to high and low temperatures. Previous
studies have shown plausible physiological mechanisms for these relationships. Regarding high
temperatures, mortality risks may be caused by failure of thermoregulation, which may be impaired
by dehydration, salt depletion, increased surface blood circulation, and elevated blood viscosity
during the hot season [75-77]. Low temperatures increase the risk of thrombogenic complications by
inducing well-known and relatively rapid changes in blood composition, such as platelet viscosity,
blood cholesterol, and blood pressure [78-82], which may increase the risk of myocardial infarction
and stroke [83]. According to other studies, the magnitude of associations varies according to several
characteristics, such as population structure, level of education, pre-existing conditions, socioeconomic
status, housing conditions, access to health care, nutrition status, race, and ethnicity, which can affect
the vulnerability to extreme temperatures [10,11].

Results also revealed that, in future projections, the proportion of burdens attributable to the
effects of heat has a higher order of magnitude than for the cold. A decrease is estimated in extreme
cold-related deaths of 0.55% and 0.45% in LMA for 2051-2065 and 2085-2099, respectively. In PMA,
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there is a decrease in cold-related deaths of 0.31% and 0.49% for 2051-2065 and 2085-2099, respectively.
Our findings agree with previous studies estimating the magnitude of temperature effects on mortality.
Gasparrini et al. [2] analyzed the impact of extreme temperatures under different climate change
scenarios over a long-time horizon, 2090-2099, having concluded that southern European regions are
going to experience an increase in hot-related mortality as well as a clear decrease in cold-wave-related
mortality. For example, a study by Hajat et al. [84], based on modeled daily temperature projections
for the whole of the UK, estimated an increase in annual heat-related deaths over the 2020s-2050s
and 2050s-2080s, and corresponding decreases in cold-related deaths. In a study about Canada,
Cheng et al. [85] projected that hot-related mortality would more than double by the 2050s and triple
by the 2080s, estimating as well that cold-related mortality would decrease by 45-60% by the 2050s
and by 60-70% by the 2080s, in four Canadian cities. On the other hand, according to climate change
projections by Baccini et al. [86], the highest impact in Europe will be in three Mediterranean cities
(Barcelona, Rome, and Valencia) and in two continental cities (Paris and Budapest), due to high summer
temperatures. This study also estimates that, in terms of age, the highest impact will be in people aged
75 years and older. However, in some cities, a relatively high rate of hot-related deaths is estimated in
young adults.

Southern Europe and the Iberian Peninsula are pointed out as one of the European regions most
likely to be affected by climate change, facing a diversity of potential impacts such as more frequent
heat-related events, which are expected to increase over the next decade in terms of intensity, magnitude,
and spatial extent [21]. Increases in morbidity and mortality are therefore expected. Understanding
the possible magnitude of future adaptation needs could facilitate identifying interventions to increase
population health resilience in a future climate [22,87]. For that reason, adaptation measures will need
to be developed, particularly in metropolitan areas, in order to quantify and explain excess deaths
related to high temperatures in an increasingly older population. Even though Lisbon and Porto are
cities with frequent heatwave events, older people and children are still not acclimatized to extreme
heat, which increases temperature-related mortality. These measures could consist of identifying
disease thresholds; interfacing with emergency preparedness; reinforcing population monitoring
processes, particularly of the most vulnerable people; reinforcing alert systems for cold weather
and heatwave plans; improving the knowledge on local vulnerabilities; and including projections of
climate change health impacts under different climates so as to identify impacts on mortality of all
magnitudes and formulate public health policies. Cities are particularly vulnerable to the effects of
climate change due to their location, increasing urbanization, infrastructures, as well as social and
economic inequalities [88-90]. Urban planning is strongly associated with population health, which
should be protected today and in the future. At alocal level, it is crucial that urban planning addresses
climate mitigation and adaptation issues, aiming towards a sustainable development. For example,
by creating green spaces for leisure that intersperse grassed open areas with spaces with trees and
shading, where aeration is simple, and by improving the thermal behavior of buildings.

Some limitations of this study must be acknowledged. First, we did not take into account the future
changes in the demographic structure, which may result in an underestimate of the health impact of
climate change. Population trends can be interrelated and may intersect across different susceptibilities,
with potential growth in different subgroups with varying sensitivities. Since subpopulations respond
to hot differently with respect to mortality risk, any increase in total population density or in the
proportion of vulnerable subpopulations may tend to change population characteristics and affect
the relative impact of hot in the future [2,91,92]. Second, there is a need to be cautious with the
interpretation of the projected temperature-related impact. Our approach to estimate future changes
to temperature-related mortality is based on temperature-mortality rates estimated using historical
data to model future temperature series. The attributable number of deaths was computed using
the historical mortality data averaged over the observed time series. Third, the choice of smoothing
functions for the exposure-lag-response relationships are difficult to validate in DLNM. In this study
we based our choice on model selection criteria (QAIC). In spite of these limitations, the assumptions
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made in this study are reasonable in the absence of adequate information and do not reduce the
importance of our findings.

5. Conclusions

To conclude, this study showed that, for the future periods (2051-2065 and 2085-2099), projections
indicate that winters will be warmer and summers will be hotter. The estimated mortality risk is
expected to increase with warmer temperatures in the future periods, compared to the historical period.
For all ages, the proportion of burdens attributable to hot effects is much higher than the burden
attributable to cold in both metropolitan areas, especially in the future periods. In LMA, the burden of
extreme hot-related mortality in age group 65+ years is slightly higher than in age group <65 years,
for 20512065 and 2085-2099. However, in PMA, only people aged 65+ years showed significant
temperature-related burden of deaths that can be attributable to hot temperatures.

Our study provides results which may be beneficial to healthcare providers when developing
long-term management plans, contributing as well to the development and implementation of public
health policies, strategic initiatives contemplating the future distribution of the health resources
necessary to control mortality due to diseases of the circulatory system in Portuguese metropolitan
areas. Lastly, further research is required in order to understand vulnerabilities associated with poverty,
social isolation, and outdoor workers.
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