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Abstract: At ProvSec 2013, Minematsu presented the circulant hash, an almost-xor universal hash using only
the xor and rotation operations. The circulant hash is a variant of Carter and Wegman’s H3 hash as well as

Krawczyk’s Toeplitz hash, both of which are hashes based on matrix-vector multiplication over F2.

In this paper we revisit the circulant hash and reinterpret it as a multiplication in the polynomial ring

F2[x]/(x
n + 1). This leads to simpler proofs, faster implementations in modern computer chips, and newer

variants with practical implementation advantages.
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1 Introduction
Universal hashing was formally introduced by Carter and Wegman [1–3] and has numerous applications in

data structures, authentication, and many other areas. In cryptography, universal hashes are often found in

Wegman-Carter-Shoup [3, 4] authenticators and their variants. Lucks [5] and later Naor-Reingold [6] showed

that the first and last rounds of the 4-round Luby-Rackoff construction can be universal. Universal hash func-

tions are also very useful in randomness extraction, via the leftover-hash lemma [7].

The usage of universal hashing for authentication does, in fact, predate Carter andWegman, and is often

attributed to Gilbert, MacWilliams, and Sloane’s multilinear hash [8], as well as Zobrist [9]. Many practical

universal hash functions have been since proposed, including integermultiply and shift [10], polynomial eval-

uation [11–13], polynomial or integer remainder [14, 15], or Toeplitz matrices [16]. Achieving the best possible

speeds continues to be a popular research problem, with new proposals being regularly published.

One such almost-xor universal hash function, the circulant hash, was recently proposed by Mine-

matsu [17]. It is described in Definition 1.1.

Definition 1.1. Let n be apositive integer. The circulant hash (CLH) is the keyed function {0, 1}n×{0, 1}n−1 �→
{0, 1}n defined as

CLHn(k, a) =

n−1⊕
i=0

(k ≪ i) if ai = 1 . (1)

In other words, the hash consists of the xor of the key k rotated by the amounts defined by the positions of

the nonzero bits of the input a. Alternatively, CLH is a matrix-vector multiplication in which the matrix is a

circulant matrix (hence the name). Minematsu proved this function is 2/2n-almost xor universal.

Theorem 1.2 ([17, Lemma 1]). Let k be a key uniformly sampled from {0, 1}n. We have

Prk
[
CLHn(k, a)⊕ CLHn(k, b) = c

]
≤ 2/2n and Prk

[
CLHn(k, a) = c

]
≤ 2/2n ,
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for n prime and 2 a primitive root modulo n.

Minematsu’s proof of Theorem 1.2 is fairly involved, and relies on nontrivial results in linear algebra, e.g., [18].

CLH is quite similar to the “shift register hash” first described by Vazirani in the context of entropy ex-

traction [19]. Indeed, Vazirani’s proof sketch [19, Lemma 2] is similar to the one presented below in Section 3.

1.1 Contribution

Our contribution is threefold. First, we reinterpret the circulant hash in terms of polynomial arithmetic mod-

ulo xn + 1, which results in a much simpler proof (Section 3), and immediate implementation possibilities.

Secondly, we present several variants of CLH that have speed or flexibility advantages (Sections 4 and 5).

Lastly, we (re-)obtain the differential probability of data-dependent rotation and the stretch-then-shift hash

using largely the same techniques (Section 6).

2 Notation and Definitions
Unless otherwise specified, a polynomial p(x) of degree d is written as xd + · · · + 1 and has coefficients in F2.

wi denotes the ith bit of an n-bit word w. s
$←− Smeans that s is an element of S sampled uniformly at random.

We denote concatenation of two bit strings a and b by a‖b.
We define a family of hash functions as a finite multiset H of 2k functions, for some k, with each h ∈ H

having domain {0, 1}n and range {0, 1}m for some constant n and m.

The original definition of universal hashing is due to Carter and Wegman [1], and is presented below.

Definition 2.1. A hash function family H : {0, 1}n �→ {0, 1}m of size 2k is ϵ-almost universal if for every

distinct a, b ∈ {0, 1}n there are at most ϵ · 2k functions h ∈ H such that h(a) = h(b). In other words,

Prh∈H
[
h(a) = h(b)

]
≤ ϵ .

If ϵ = 2−n, H is simply called universal.

A stronger notion is presentednext. Itwas stated independently byKrawczyk [16], Rogaway [20], andLucks [5]

for xor differences, and generalized to arbitrary additive groups by Stinson [21].

Definition 2.2. A hash function family H : {0, 1}n �→ {0, 1}m of size 2k is ϵ-almost xor universal if for every

distinct a, b ∈ {0, 1}n there are at most ϵ2k functions h ∈ H such that h(a) ⊕ h(b) = c, for any c ∈ {0, 1}m.
In other words,

Prh∈H
[
h(a)⊕ h(b) = c

]
≤ ϵ .

If ϵ = 2−n, H is simply called xor universal.

A xor universal hash function is necessarily universal; this is the special case c = 0.

3 Simpler Proof of Theorem 1.2
Our proof approach follows the lead of Rivest [22] and observes the natural embedding of bit rotation by i as

multiplication by xi in the ring F2[x]/(x
n + 1). That is, a word w of n bits is interpreted as the polynomial

w0 + w1x + · · · + wn−1x
n−1 .
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Additionally, word rotation by i bits can be interpreted as multiplication by xi modulo xn + 1¹, and addition

can be accomplished by element-wise addition modulo 2, i.e., xor. Coupled with the identities 0 and 1, this

yields the ring F2[x]/(x
n + 1). This interpretation of circulant matrices is often found in error correcting code

literature [23], cellular automata [24, 25], as well as cipher design [26].

In light of this understanding, we can restate Definition 1.1 as follows.

Definition 3.1. Let n beapositive integer. The circulant hash (CLH) is the keyed function {0, 1}n×{0, 1}n−1 �→
{0, 1}n defined as

CLHn(k, a) = k · a mod (xn + 1) . (2)

Not only does this definitionhavemore explanatory power thanMinematsu’s, it alsomakes it clear that it does

not matter whether we are rotating the key depending on the data, or vice-versa. This allows variable-time

implementations without the risk of timing side-channel attacks. It also makes it obvious how to implement

this function in terms of carryless multiplication, in the common case where hardware supports it. Now we

are ready to restate and prove Theorem 1.2.

Theorem 3.2. Let k
$←− {0, 1}n. For any distinct a, b ∈ {0, 1}n−1 and c ∈ {0, 1}n, we have

Prk
[
CLHn(k, a)⊕ CLHn(k, b) = c

]
≤ 2/2n and Prk

[
CLHn(k, a) = c

]
≤ 2/2n ,

for n prime and 2 a primitive root modulo n.

Proof. Since CLHn(k, a) is clearly linear, i.e., k · a + k · b ≡ k · (a + b) (mod xn + 1), proving uniformity for

nonzero input is sufficient [16, Theorem 6].

If n is an odd prime, xn + 1 factors as (x + 1)Φn(x), Φn(x) being the nth cyclotomic polynomial xn−1 +

xn−2 + · · · + x + 1. Suppose that Φn(x) is irreducible modulo 2. Because the degree of a is at most n − 2,

a mod Φn(x) = a. We can analyze the behavior of CLH modulo Φn(x) and x + 1 independently:

– Modulo Φn(x). This is a finite field multiplication. Therefore any equation k · a ≡ c (mod Φn(x)) has a

unique solution k ≡ ca−1 (mod Φn(x)).

– Modulo x +1. By a counting argument there can be at most 2 keys satisfying k · a ≡ c (mod (x +1)) for

any choice of parameters.

Combining the two cases with the Chinese remainder theorem, we obtain at most 2 distinct solutions.

It remains to be determined that Φn(x) is irreducible. This follows directly from the fact that n is prime,

Φn(x) is the nth cyclotomic polynomial, and 2 is a primitive root modulo n [27, §1.6]. Thus, the differential

probability is at most 2/2n.

Remark 3.3. The conditions imposed by Minematsu on n are precisely the necessary conditions for there

being a type-I optimal normal basis for the field F2n−1 . Optimal normal bases are exceptionally fast repre-

sentations for polynomials over binary fields, to the point that field sizes for binary elliptic curves are often

chosen such that such bases are known to exist [28].

The circulant hash is, as a matter of fact, a multiplication in the “ghost bit” redundant representation of

a type-I optimal normal basis [29, 30], with one exception—the end result remains in the ring F2[x]/(x
n + 1)

instead of being reduced modulo Φn(x). Reduction by “all-one” polynomials is exceptionally simple, and

would enable a straightforward {0, 1}n−1 × {0, 1}n−1 �→ {0, 1}n−1 finite-field multiplicative hash—simply

add the coefficient of xn−1 to every coefficient in the polynomial, i.e.,

(w0 + wn−1) + (w1 + wn−1)x + · · · + (wn−1 + wn−1)x
n−1 ,

and output the first n − 1 coefficients. This can be achieved on a computer with a single xor and arithmetic

shift.

1 In F2, 1 and −1 are interchangeable. As such, we use positive signs whenever possible for simplicity.
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4 Polynomial Evaluation
A very successful approach to designing universal hashes that accept an arbitrary-sized input is polynomial

evaluation [31, 32]. Our interpretation of the circulant hash in the previous section lends itself to a straight-

forward polynomial evaluation variant, which allows for arbitrary-sized inputs.

In this setting, we split anm(n−1)-bit inputmessage a intom blocks (a0, a1, . . . , am−1) of n−1 bits each,

padding as needed².We interpret themessage a as the degreem polynomial with coefficients inF2[x]/(x
n+1):

a(X) = Xm · am−1 + X
m−1 · am−2 + · · · + X · a0 + 0 . (3)

We can now define the hash function PCLH(k, a) as the evaluation of this polynomial at k.

Definition 4.1. Let n be a positive integer. The polynomial evaluation circulant hash (PCLH) is a keyed func-

tion {0, 1}n × {0, 1}(n−1)m �→ {0, 1}n defined as

PCLHn(k, a) =

m∑
i=1

ki · ai mod (x
n + 1) = a(k) . (4)

Theorem 4.2. Let n be a prime such that 2 is a primitive root modulo n. For messages of at most m blocks, the

polynomial hash PCLHn is 2m/2
n-almost xor universal.

Proof. By linearity, PCLHn(k, a)+PCLHn(k, b) = PCLHn(k, a+b), wherea+b indicates addition of polynomials

of the form (3). Furthermore, PCLHn(k, a + b) = (a + b)(k). Thus we have (a + b)(k) = c, from which follows

that (a+b+ c)(k) = 0, which means the number of keys coincides with the number of roots of the polynomial

a + b + c, which has degree at most m.

As in Theorem 1.2, given the constraints on n we can consider the behavior of the hash modulo x + 1 and

Φn(x) independently:

– Modulo Φn(x). This is a finite field polynomial evaluation and the fundamental theorem of algebra

applies—there are at most m roots of a degree m polynomial.

– Modulo x + 1. Here, by a simple counting argument, there cannot be more than 2 roots for any polyno-

mial.

This leads to a probability of at most 2m/2n. The case m = 1 is exactly Theorem 1.2.

5 A Variant for Powers of 2
Operating onblock sizes of prime size, as requiredby the original CLH function, is not very convenient. Ideally,

one would work instead on “natural” power of two blocks, such as n = 128. To this end, we define a new

variant of the circulant hash that works in this setting.

Definition 5.1. Let n be a power of 2. The modified circulant hash (MCLH) is a keyed function {0, 1}n ×
{0, 1}n−1 �→ {0, 1}n defined as

MCLHn(k, a) = k ·
(
a + xn−1(a + 1 mod (x + 1))

)
mod (xn + 1) . (5)

In this variant, instead of keeping the (n − 1)th coefficient empty we use it to ensure that the input is always

invertible modulo xn + 1 with the injective transformation
(
a + xn−1(a + 1 mod (x + 1))

)
. The input to MCLH

2 Here we simply consider messages of fixed length and multiple of n − 1 bits. Standard padding methods [31, 32] apply to make

PCLH suitable for variable-length messages.
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can equivalently be defined as every element of {0, 1}n with an odd number of bits. Lemma 5.2 proves this is
the case.

Lemma 5.2. For any a ∈ {0, 1}n−1, (a + xn−1(a + 1 mod (x + 1))) mod (x + 1) = 1.

Proof. xn−1 mod (x + 1) = (xn−1)(1) = 1 by the polynomial remainder theorem. Thus,
(
a + xn−1(a + 1 mod (x + 1))

)
mod (x + 1) = a mod (x + 1) + (a + 1) mod (x + 1) = 1.

We now prove MCLH is an almost-xor universal hash.

Theorem 5.3. Let n be a power of 2. Let k
$←− {0, 1}n. For any distinct a, b ∈ {0, 1}n−1 and c ∈ {0, 1}n, we

have

Prk
[
MCLHn(k, a)⊕MCLHn(k, b) = c

]
≤ 1/2n and Prk

[
MCLHn(k, a) = c

]
≤ 1/2n .

Proof. Again, by linearity it suffices to prove Prk
[
MCLHn(k, a) = c

]
≤ 1/2n. Since we are working in charac-

teristic 2 and n is a power of 2, xn + 1 = (x + 1)n. As such, if gcd(a, x + 1) = 1, then gcd(a, (x + 1)n) = 1 for any

positive n.

Given an equation k ·a ≡ c (mod xn +1), there is a unique k such that k ≡ ca−1 (mod xn +1). a is always

invertible modulo xn + 1 by construction, as shown in Lemma 5.2.

Remark 5.4. The value a mod (x + 1) can be efficiently computed with, e.g., the Intel instruction popcnt. It
can also be computed by keeping track of the parity of the input.

6 Related Functions

6.1 Data-dependent Rotation

The same mathematical framework used in the previous sections may also be used to show that data-

dependent rotation has low differential probability when the difference is in the rotation amounts. In Theo-

rem 6.1 we re-derive the differential probability result of [33] in terms of multiplication in F2[x]/(x
n + 1).

Theorem 6.1 ([33]). Let n be a power of 2, and k
$←− {0, 1}n, and distinct r1, r2 ∈ {0, 1, . . . , n − 1} be inputs.

Then

Prk [k ≪ r1 ⊕ k ≪ r2 = c] ≤ 2
gcd(r2−r1,n)−n .

Proof. As above, k ≪ r1 ⊕ k ≪ r2 is equivalent to k · (x
r1 + xr2 ) mod (xn + 1). Thus, we want to bound the

probability that k · (xr1 + xr2 ) mod (xn + 1) = c. We begin by rewriting it as k ·
(
xr2−r1 + 1

)
= c · x−r1 .

Wemay factor any exponent r2 − r1 mod n as 2p ·q, for odd q. Then xr2−r1 +1 = (xq +1)2
p

= (x+1)2
p

(xq−1 +

xq−2 + · · · + 1)2
p

. We can now rewrite the above equality further as

k · (x + 1)2
p

= c · x−r1 · (xq−1 + xq−2 + · · · + 1)−2
p

, (6)

as the right hand sidemultipliers are all units in this ring. The remaining factor (x+1)2
p

remains to be handled.

Since 2p divides n,multiplicationby (x+1)2
p

is a surjective grouphomomorphismsendingF2[x]/(x
n+1) to the

unique subgroup of F2[x]/(x
n +1) of order 2n−2

p

. As such, each key is one of 22
p

equivalent representations in

this subgroup, k+ t ·(x+1)n−2
p

for t of degree less than 2p. If the right hand side of (6) belongs to the subgroup,

i.e., it is congruent to 0 modulo (x + 1)2
p

, there is a unique solution in the subgroup with corresponding 22
p

equivalents in the main group; otherwise there are no solutions.
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Finally, since n is a power of 2, we have 2p = gcd(r2 − r1, n). Putting it all together, we have at most

2gcd(r2−r1,n) possible keys for any given r1, r2, c, leading to a maximum probability of 2gcd(r2−r1,n)−n.

6.2 Stretch-then-shift

The OCB3 authenticated encryption mode [34] introduced a special-purpose almost xor universal function—

stretch-then-shift—to hash the 6 least significant bits of a nonce. This function, Hc(k, a), takes a 128-bit key

k, a 6-bit input a, and outputs the first 128 bits of the result:

Hc(k, a) = (stretch(k) 	 a)[0 . . . 127] ,

where stretch(k) is defined as k‖k ⊕ (k 	 c), for some constant c < 128.

As with the case of the circulant hash, the authors of stretch-then-shift offer only a linear-algebraic ratio-

nale for the almost xor universal property of their function. Yet, we can also offer a polynomial interpretation

that, once again, makes things simpler. We can understand this function as equivalent to a multiplication in

the ring F2[x]/(x
128 + xc + 1). Namely,

Hc(k, a) = k · xa mod (x128 + xc + 1) .

This comes directly from the fact that shift left by a is equivalent to polynomial multiplication by xa, and

reduction of a polynomial f of degree < 256 − c modulo x128 + xc + 1 can be written as

f mod (x128 + xc + 1) = f mod x128 + 
f /x128� · (xc + 1) ,
since x128 mod x128+xc+1 = xc+1. Therefore, the stretch-then-shift hash is nothingmore than an optimized

polynomial multiplication modulo a trinomial. Since there are no irreducible trinomials of degree 128, the

analysis proceeds similarly to the case of rotation.

We nowprove in Theorem 6.2 that the concrete choice of shift used in OCB3,H8, makes for a xor universal

hash.

Theorem 6.2. Let k
$←− {0, 1}128, and distinct a, b ∈ {0, 1, . . . , 63} be inputs. Then, for any c ∈ {0, 1}128,

Prk

[
H8(k, a)⊕ H8(k, b) = c

]
≤ 2−128 .

Proof. Weuse the equivalence ofH8 to k·xa mod (x128+x8+1).Wehave, as before, k·xa+k·xb = k·(xa+xb) = c

can be written as k · (xa−b + 1) = c · x−b. As long as both xa−b and x−b are unique (i.e., invertible modulo

x128 + x8 + 1), there is a unique k satisfying the equation.

The modulus x128 + x8 + 1 factors as (x8 + x6 + x5 + x3 + 1)8(x8 + x6 + x5 + x4 + x3 + x + 1)8. As x−b

shares no factors with it, we need only concern with xa−b +1. Without loss of generality, we consider positive

differences a > b only. As long as xa−b +1 shares no factor with the modulus, this multiplication is invertible.

We rewrite xa−b + 1 as xa−b = 1 modulo any of the factors of the modulus, i.e., the order of x. The order of x

modulo x8 + x6 + x5 + x3 + 1 is 255; the order of x modulo x8 + x6 + x5 + x4 + x3 + x + 1 is 85. Therefore, as

long as a − b ∈ [−84, . . . , 84], H8 is injective and thus for any c at most one choice of k exists.

This interpretation also gives us efficient ways to find suitable constants c. Given the factorization of the

trinomial x128 + xc + 1, the function is xor universal as long as x has sufficiently large order modulo every

factor. Alternatively, gcd(xa + 1, x128 + xc + 1) = 1 for every admissible value of a.
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