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ABSTRACT 

The present research concerns the study of input-output modelling and input-output table 

construction, when applied at the regional level. Input-output models, at the national or 

regional level, are known as a fundamental tool for economic analysis. Yet, in order to 

apply such models, the researcher must have access to the correspondent input-output 

tables. National-level tables are currently published by the national statistical offices 

according to well-defined conventions. The same, however, cannot be said about regional 

tables which are not provided as a rule by official statistics organisms. Being so, a great 

part of input-output research is still dedicated to the study of techniques for input-output 

table gathering.  

 

This dissertation is, in such context, divided into three chapters. The first one is mainly 

theoretical, aiming to review the basic principles underlying input-output analysis at the 

regional level. The second and third chapters constitute the research’s practical 

contribution, focused on two major issues, respectively: 1) interregional trade estimation 

and 2) input-output modelling on the basis of total-use rectangular table at purchasers’ 

prices.  

 

In most countries, survey-based interregional trade data does not exist. However, even 

when some simplifying assumptions are used in the model, a minimum amount of data on 

interregional trade is always necessary, in order for the model to succeed in capturing 

spillover and feedback effects caused by the interregional linkages. In order to evaluate 

the reasonability of using indirect interregional trade flows estimates, a comparison was 

made between alternative methodologies (with special focus on gravitational models), 

assessing the sensitivity of the model results. Such comparison allowed to conclude that 

the results of the input-output model are not greatly affected by the insertion of different 
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trade flow values. Thus, the results obtained do not reject the reasonability of using 

indirect estimates for interregional trade, whenever survey-based data is unavailable.  

 

The official input-output tables are published on a total-use rectangular format, which is 

different from the lay-out upon which traditional input-output models were developed 

(domestic use symmetric tables). The objective here was to demonstrate the equivalence 

in the results of the input-output model between two alternative procedures: 1) to convert 

the available input-output table into a domestic-flow symmetric table at basic prices and 

then implement the input-output model; 2) to perform the direct modelling of the original 

table (the total-flow rectangular table at purchasers’ prices). It has been concluded that, 

when the same set of hypotheses is used, there is no advantage in making a previous 

transformation of the original tables into the symmetric format and a previous calculation 

of domestic flows, since the results of the model are exactly the same. 
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RESUMO 

O presente trabalho de investigação incide sobre modelos de input-output, a nível 

regional. Os modelos de input-output, ao nível nacional ou regional, são reconhecidos 

como uma ferramenta fundamental de análise económica. Contudo, para que tais modelos 

sejam aplicáveis, é necessário dispor dos quadros de input-output correspondentes. 

Actualmente, os quadros nacionais de input-output são publicados de forma regular pelos 

organismos de estatística oficiais de cada país, de acordo com convenções internacionais 

bem definidas. O mesmo não pode ser afirmado sobre os quadros regionais, que não 

fazem parte das publicações estatísticas oficiais. Sendo assim, uma boa parte da 

investigação na área do input-output recai ainda sobre as técnicas para a construção de 

quadros a nível regional.  

 

Neste contexto, a presente dissertação divide-se em três capítulos. O primeiro possui uma 

natureza substancialmente teórica, pretendendo fazer uma revisão dos princípios básicos 

subjacentes à análise input-output ao nível regional. O segundo e terceiro capítulos 

constituem o contributo prático da investigação, focando dois temas específicos: 1) 

estimação do comércio inter-regional e 2) modelização input-output baseada em quadros 

rectangulares de uso total, a preços de aquisição. 

 

Na maioria dos países não existem dados directos sobre o comércio inter-regional. No 

entanto, há um mínimo de informação sobre estes fluxos que é imprescindível, mesmo 

que no modelo sejam usadas algumas hipóteses simplificadoras. Sem essa informação, o 

modelo é incapaz de captar os efeitos de spillover (extravazamento) e de feedback 

(realimentação) causados pelas ligações inter-regionais. Com o intuito de avaliar a 

razoabilidade de usar estimativas indirectas para os fluxos de comércio inter-regional, foi 

feita uma comparação entre metodologias alternativas (com especial enfoque nos 

modelos gravitacionais), medindo a sensibilidade dos resultados do modelo. Esta 
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comparação permitiu-nos concluir que os resultados do modelo input-output não são 

afectados em grande medida pela inserção de diferentes valores de fluxos de comércio. 

Assim, os resultados obtidos não rejeitam a razoabilidade de usar estimativas indirectas 

para o comércio inter-regional, sempre que não estejam disponíveis dados recolhidos 

directamente. 

 

Os quadros oficiais de input-output são publicados num formato rectangular, com fluxos 

de uso total, sendo por isso diferentes do molde tradicional sobre o qual foram 

desenvolvidos os modelos de input-output tradicionais (quadros simétricos com fluxos de 

uso doméstico). O objectivo aqui era o de demonstrar a equivalência nos resultados do 

modelo de input-output quando são aplicados dois procedimentos alternativos: 1) 

converter o quadro input-output publicado para um quadro simétrico de fluxos 

domésticos a preços de base e só depois implementar o modelo de input-output; 2) 

desenvolver o modelo directamente a partir do quadro original (o quadro rectangular de 

fluxos totais a preços de aquisição). Concluiu-se que, quando se utiliza o mesmo conjunto 

de hipóteses, não há qualquer vantagem em proceder a uma transformação prévia dos 

quadros originais para o formato simétrico a fluxos domésticos, dado que os resultados 

do modelo são exactamente os mesmos. 
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INTRODUCTION 
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The input-output framework relies upon a very simple, yet essential notion, according to 

which the output is obtained through the consumption of production factors (inputs) 

which can be, in their turn, the output of other industries. The fundamental recognition of 

the underlying system of interactions and interdependencies between industries is at the 

core of the input-output tables and model construction.  

 

This work is concerned with the study of the input-output analysis, when applied at the 

sub-national or regional level. Regional input-output analysis involves, on the one hand, 

the access to a very detailed statistical tool about the economy we are focusing on: the 

regional input-output table. These tables represent a comprehensive portrait of the region 

describing, among other things: the technology implicit in the production process, the 

inter-dependencies between industries, the regional consumption patterns and the inter-

dependencies between the region and the rest of the world. They may constitute an 

important instrument in the production of regional accounts, namely to balance the 

income, expenditure and production estimates of regional GDP. The information 

comprised in regional input-output tables permits also the conduction of interesting 

studies about the regional economic structure, such as the identification of key sectors or 

crucial interregional linkages. Yet, the most widespread use of the regional input-output 

tables consists in the input-output models, allowing for the assessment of economic 

impacts resulting from exogenous changes in final demand, which may be caused by 

different regional policies, for instance: regional development policies or investment on 

transportation infrastructures. Such sort of regional analysis is receiving increasing 

interest by the research community, as a results of the growing economic integration 

(especially in the European Union), with the associated efforts in reducing regional 

disparities within each country and between members. This should imply the need for 

some reliable accounting system that helps the identification of regional impacts and 

interregional spillover effects and which may be used as an instrument to monitor 

regional policies. 

 

In spite of the recognized interest in regional input-output models, the difficulties occur 

when it comes to obtain the necessary regional input-output tables and, more even, when 
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the researcher intends to link several regions through a multiregional input-output system. 

Regional input-output tables are not provided as a rule by official statistics organisms. In 

the majority of the European countries, only some regional indicators are published on a 

regular basis, such as: regional output by industry, regional value added by industry and 

total intermediate consumption by industry. These data may be taken as a starting point to 

assemble the individual regional tables, using a combination of non-survey and survey 

methods and taking the national input-output table as a reference to obtain the regional 

counterpart. It is consensual that the more direct information is incorporated in the table, 

the more accurately it tends to reflect regional reality. However, the introduction of direct 

information implies higher costs, which forces the researcher to make this in a selective 

way (more or less restrictively, depending on the resources available to conduct regional 

surveys). The attempt of assembling regional input-output tables and multiregional input-

output systems using limited direct information is often considered to be an unfeasible 

endeavor. We do not agree with this view. Conversely, we share the perceptible opinion 

of other researchers which have devoted their efforts to the construction of regional 

input-output models, even in developing countries, in which information is more limited. 

Yet, in order to obtain the best possible results, we consider that it is necessary to: 

• Find an adequate equilibrium in the existing trade-off between model complexity 

and model construction practicability. This means that the existing models must 

be evaluated in face of the information availability in each particular case. 

• Study and evaluate different non-survey methodologies to estimate inexistent 

information (such as interregional trade) and critically analyze the implicit 

hypotheses, testing the sensitivity of the model solutions to the techniques and 

hypotheses assumed.  

• Get the maximum benefit of the existing information and try to adapt the 

proposed models in order to fit into the (sometimes more advantageous) format in 

which information is provided. For example, traditional input-output models were 

developed within the symmetric framework, meaning that the supporting input-

output tables were product-by-product or industry-by-industry tables. Currently, 

however, most of the countries compile and publish their national input-output 
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tables in the rectangular or Make and Use format (introduced by the United 

Nations in 1960’s), requiring some adaptation in the existing models. 

 

With the present work we aim to achieve the following broad objectives, which 

correspond to the three Chapters included in this dissertation: 

• To make a broad review of the state of knowledge regarding input-output 

modeling and input-output table construction at the regional level, paying special 

attention to the quantitative and qualitative disagreement between the data 

requirements implicit in the traditional input-output models and the usually 

available data. We intend to accomplish this objective in Chapter 1 of the 

Dissertation: “Introducing Input-output analysis at the regional level: basic 

notions and specific issues”. 

• To study and test methodologies to overcome the above mentioned mismatch 

between data requirements and data availability, focusing on two specific issues: 

o Interregional trade indirect estimation, as a viable alternative to solve the 

common difficulty in regional table construction – the inexistence of 

survey-based interregional trade data. This will be the focus of Chapter 2: 

“Determining interregional trade flows in a many-region system”. 

o Input-output modeling based on total use rectangular input-output tables, 

implying the adaptation of the traditional input-output model to the format 

in which the input-output database (published on a regular basis for the 

national level) is currently provided. This issue is considered in Chapter 3: 

“Input-output modeling based on total use rectangular tables”.   

 

The research is guided towards the answer to the following questions (of which some 

involve specific concepts to be explained in the development of the dissertation): 

• What is the state of the art of regional input-output table construction and 

modelling?  
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• How easy is it to apply the existing models to countries like Portugal, with limited 

regional and interregional information? 

• What models have been used to indirectly estimate interregional trade flows? 

• What is their actual applicability under a context of very limited a priori 

information? 

• When applying different interregional trade estimation methodologies: 

o What is the degree of closeness of each estimated matrix to the real matrix 

of flows?  

o Which method generates the most accurate estimated matrix? 

o How sensitive are the values obtained in the final trade matrix to different 

estimating methods? 

o How sensitive is the solution of the input-output model to the insertion of 

different interregional trade values? In other words, how important is the 

choice of interregional trade estimation method to the solution of the 

input-output model? 

• What procedures and related hypotheses may be used to perform input-output 

modelling when the basic data consists of a total-use rectangular table at 

purchasers’ prices, with no available import matrix? 

• Is it advantageous to perform a previous transformation of the original tables into 

the symmetric format and a previous calculation of domestic flows, before 

implementing the model? 

 

The main motivation to the conduction of this research is a very practical one: to help the 

researchers in defining their strategy in future efforts of multiregional input-output table 

construction and modelling. We hope to give our contribution to the construction of such 

model to the Portuguese economy. Despite being heavily theoretical, the underneath 

intention of this work is evident in various parts of the dissertation. 
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CHAPTER 1 – INTRODUCING INPUT-OUTPUT 

ANALYSIS AT THE REGIONAL LEVEL: BASIC 

NOTIONS AND SPECIFIC ISSUES. 
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1.1. Introduction 

 

The main objective of the well known input-output model, developed by Leontief in the 

late 1930s, is to study the interdependence among the different sectors in any economy 

(Miller and Blair, 1985). This tool holds upon a very simple, yet essential notion, 

according to which the output is obtained through the consumption of production factors 

(inputs) which can be, in their turn, the output of other industries. Hence, one of the 

principal tasks of input-output analysis is to identify the indirect demands concerning the 

intermediate consumptions necessary to generate the outputs. 

 

The origins of the basic notion behind the input-output model go back to the 18th 

century, when Quesnay published the “Tableau Economique”. His objective was to 

describe the economic transactions established between three social classes: landowners, 

farmers and rural workers (productive class) and the sterile class, composed by artisans 

and merchants (this classification reflects the physiocrats’ philosophy, according to 

which agriculture was the only wealth generating sector).  

 

Over more than one century, this idea of economic interdependence had a new and 

important contribution, with the work developed by Walras
1
. This economist introduced 

the general equilibrium model, aiming to determine prices and quantities of all economic 

markets. In this model Walras used a set of production coefficients very similar to the 

ones defined a posteriori in the Leontief’s input-output model: they compared the amount 

of production factors used in production with the total output obtained (Miller and Blair, 

1985).  

 

The perception and depiction of the interactions among the different economic activities 

(besides the spatial dimension which is being considered) allows, on the one hand, the 

access to a very detailed statistical tool about the economy we are focusing on: the input-

                                                 
1
 Walras, L. 1874. “Elements of pure economics”. Translated by W. Jaffé. Hmoewood, Illinois: Richard 

Irwin, Inc., 1954. Referred in Miller and Blair (1985). 
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output table. An input-output table records the “flows of products from each industrial 

sector considered as a producer to each of the sectors considered as consumers” (Miller 

and Blair, 1985, p. 2). This table gives us a quite complete picture of the economy at 

some specific point in time, providing estimates for an important set of macroeconomic 

aggregates (production, demand components, value added and trade flows) and 

disaggregating these among the different industries and products. Besides, the input-

output table is a suitable instrument to perform structural analysis of the correspondent 

economy, depicting the interdependence between its different sectors and between the 

economy and the rest of the world (ISEG/CIRU, 2004). On the other hand, the input-

output table provides an important database to the construction of input-output models 

which may be used, for example, to evaluate the economic impact caused by exogenous 

changes in final demand (Miller, 1998).  

 

The original applications of the input-output model were made at a nation-wide level
2
. 

However, the interest in extending the application of the same framework to spatial units 

different from the country (usually, sub-national regions) led to some modifications in the 

national model, originating a set of regional input-output models. According to Miller 

and Blair (1985), there are two specific characteristics referring to the regional dimension 

which make evident and necessary the distinction between national and regional input-

output models. First, the productive structure of each region is specific, probably being 

very different from the national one; second, the smaller the focusing economy, the more 

it depends on the exterior world (this including the other regions of the same country and 

other countries), making exports and imports to become more important in determining 

the region’s demand and supply.  

 

Since the 1950’s, different regional input-output models were developed, being 

distinguished through the following criteria: (1) the number of regions taken into account; 

(2) the recognition (or not) of interregional linkages; (3) the degree of detail implicit in 

interregional trade flows (which is related to the degree of detail demanded for the input-

                                                 
2
 An example of this is the pioneering application of Leontief to the United States that became public 

through the book “The Structure of the American Economy, 1919-1929”, published for the first time in 

1941. 
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output data) and (4) the kind of hypotheses assumed to estimate trade coefficients. The 

first criterion is used to distinguish the single-region model from the several types of 

models designed to systems with more than one region. The single-region model seeks to 

capture intra-regional effects alone. So, its crucial limitation consists of the fact that it 

ignores the effects caused by the linkages between this region and the others. But in 

reality, when one region increases its production, as a reaction to some exogenous change 

in its final demand for example, some of the inputs needed to answer the production 

augment will come from the remaining regions, originating an increase of production in 

these regions – these are the spillover effects. The remaining regions, in turn, may need to 

import inputs from other regions (probably including the first region) to use in their own 

production. These involve the concept of interregional feedback effects: those which are 

caused by the first region in itself, through the interactions it performs with the remaining 

regions (Miller, 1998). The seminal applications of input-output analysis to systems with 

more that one region, capturing the effects caused by the interconnections between the 

different regions (which corresponds to the second criterion previously referred), had the 

fundamental contributions of Walter Isard (Glasmeier, 2004). These contributions 

originated the interregional model also known as Isard’s model. Practical difficulties in 

implementing the interregional model, mainly due to its high requirements in terms of 

interregional trade data, motivated the emergence of multi-regional models (of which the 

Chenery-Moses model is the most popular). As we shall see latter on this Chapter, the 

different many-region models are distinguishable through the third and fourth criteria 

mentioned above.  

 

This brief introduction to regional input-output models makes clear that their 

implementation requires the access to some data on interregional trade flows (more or 

less detailed, depending on the specific type of regional input-output model). But how 

relevant are actually interregional trade flows to regional economies? Some regional 

studies have proved that trade flows established between one region and the remaining 

regions tend to be more significant than trade flows established between the same region 

and foreign countries (Munroe and Hewings, 1999). Moreover, interregional trade is 

indeed growing faster than intra-regional and international trade (Jackson et al., 2004). 
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One of the reasons for the rapid growth of interregional trade is the fact that it is currently 

replacing much of the intra-regional transactions, in a process called “hollowing-out”: it 

implies that the density of relations within the regional economy tends to diminish, in 

favour of interregional linkages (Polenske and Hewings, 2004). Given its relative 

importance in the region’s external trade, the knowledge of the volume and nature of 

interregional trade flows constitutes a critical issue for regional analysis. For example, a 

deficit in the region’s trade balance means that the region relies on income transfer and/or 

granting of savings from other regions, within the country or from the rest of the world 

(Ramos and Sargento, 2003). In a more detailed perspective, knowledge about regional 

external trade, segmented by commodities, allows us to characterize productive 

specialization, foresee eventual productive weaknesses as well as determine the region’s 

dependency on the exterior (or in some cases the exterior’s dependency on the region) 

regarding to the supply of different commodities. In spite of its recognized importance, 

interregional trade flows established between regions of the same country constitute 

precisely the hardest data to find among the set of data necessary to implement the input-

output model.  

 

The previous paragraph leads us to the first of the fundamental issues underlying the 

present work, which also constitutes one of the main challenges of regional input-output 

researchers: obtaining the regional data necessary to implement input-output models, 

with special concern in interregional trade. The existing regional data, provided by the 

official organisms of statistics, is usually “less than perfect”, meaning that it is more or 

less distant from the ideal set of data required by each type of regional input-output 

model. Facing this problem, the researcher may follow two alternatives (or do both): 

adapt the model to the existing data and / or estimate (or directly collect) the inexistent 

data. Even when some adaptation is made, through the use of some assumptions, a 

minimum amount of data on interregional trade (besides other input-output table 

components) is always necessary, so that the model succeeds in capturing spillover and 

feedback effects caused by the interregional linkages. Being so, some techniques must be 

adopted to assess those data. These techniques can be classified according to the degree 

of incorporation of direct regional information. Most of the researchers use hybrid 
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methods, combining some survey information with non-survey techniques, in which 

specific regional indicators are applied to convert national values into regional ones. It is 

consensual that the more direct information is incorporated in the table, the more 

accurately it tends to reflect regional reality. However, the introduction of direct 

information implies higher costs, which forces the researcher to make this in a selective 

way (more or less restrictively, depending on the resources available to conduct regional 

surveys). Besides, even if the research team doesn’t face any restrictions in terms of 

money, time, manpower or logistic resources, this doesn’t guarantee that a pure survey-

based table is completely exempt of errors. In fact, according to Jensen (1980), errors in 

survey tables can result from errors in the process of gathering the data (for example: 

errors arising from incorrect definition of the sample, hiding of information or lack of 

concern in answering the questionnaires by the respondents) or errors in compilation 

procedures. Besides, other problems may arise whenever the questions included in the 

questionnaires require very detailed information to which some respondents may not be 

able to answer. In this context, Jensen (1980) argues that the concept of holistic accuracy 

must be privileged, meaning that the assembly of direct information should be directed 

only towards the larger or most important elements of the economy being studied, thus 

ensuring a correct representation of the structure of the economy, in general terms 

(Hewings, 1983).  In other words, hybrid methods assure the best compromise between 

accuracy and required resources. The theoretical review of the main techniques used to 

generate undisclosed data will be made on this Chapter. In what concerns specifically to 

the problem interregional trade estimation, the main existing techniques will be discussed 

on Chapter 2.  

 

An additional important challenge faced by input-output researchers consists in adapting 

the traditional input-output models in order to fit them into the specific format in which 

information is available. The fact is that, sometimes, input-output rough data exists, but it 

is provided in a different way from that underlying the traditional input-output models. 

For example, traditional input-output models were developed within the symmetric 

framework, meaning that the supporting input-output tables were product-by-product or 

industry-by-industry tables. Product-by-product tables have products as the dimension of 
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both rows and columns, showing the amounts of each product used in the production of 

which other products. In turn, industry-by-industry tables have industries as the 

dimension of both rows and columns, showing the amounts of output of each industry 

used in the production of which other industries (UN, 1993). Currently, however, most of 

the countries compile and publish their national input-output tables in the rectangular or 

Make and Use format (introduced by the United Nations in 1960’s). In this framework, 

two dimensions are simultaneously considered (industries and products) and two tables 

are essential: the Use table, which describes the consumption of products j by the several 

industries i, and the Make table that represents the distribution of the industries’ output 

by the several products. In conjunction, these tables depict how supplies of different 

products originate from domestic industries and imports and how those products are used 

by the different intermediate or final users, including exports (UN, 1993). The procedures 

and hypotheses adopted in input-output table construction as well as in input-output 

modelling should be suited to fit this data format.  

 

Another example of non-coincidence between the model’s data requirements and data 

availability is at the intermediate transactions table: the nuclear part of an input-output 

table, which represents the intermediate consumption of the several products made by the 

different industries. In some countries, like Portugal, the national intermediate 

transactions table is provided in a total use basis, meaning that the amount of products 

recorded as inputs in the intermediate consumption of the different industries comprise 

either nationally produced or imported products. However, some input-output models 

involve the determination of impacts within the region (or within the nation, depending 

on the spatial dimension being considered), implying that the computed effects should be 

cleaned from effects on imports. In such case, the model should be adapted, under some 

hypotheses, to fit the available total use data.  

 

The choice of the proper hypotheses to develop national and regional input-output models 

when input-output data is not available in the traditional format is the second 

fundamental issue underlying the present work. Being so, we aim to provide in this 

Chapter some fundamental concepts on the accounting systems in which input-output 
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data are currently provided, so that latter on this work (in Chapter 3) the above referred 

hypotheses can be discussed in a clearer way. Obviously, instead of adapting the models 

to fit the existing data, an alternative consists in transforming the data in order to match 

the hypotheses beneath the traditional models. In the above mentioned situations this 

would imply: (1) converting the Make and Use format into a symmetric format 

previously to the development of the model and (2) subtract imports from the total flow 

intermediate transactions table previously to the development of the model. The 

pertinence and feasibility of this alternative will also be discussed in Chapter 3 of this 

work. 

 

This Chapter aims to achieve two fundamental objectives, which became clearer with the 

previous introduction: 

• Make a comprehensive review of the state of the art concerning input-output 

modelling (mainly at the regional level) and techniques for regional input-output 

table construction, providing consistency to the accomplishment of the practical 

objectives of the present work. 

• Make a critical appraisal of the proposed input-output models and techniques of 

regional input-output table construction, focusing specially on the quantitative and 

qualitative disagreement between the required and the available data. In this 

context, two issues will receive special attention: interregional trade estimation 

and input-output modelling based on total use rectangular input-output tables. The 

critical evaluation of the existing methodologies will provide justification for the 

options made on the empirical applications of the present work (developed in 

Chapters 2 and 3). 

 

This Chapter is organized in seven sections, including this Introduction. The second 

section aims to introduce the foundations of the input-output model, presenting the basic 

structure of a (national) input-output table and the deduction of the Leontief’s input-

output model from that table. In section 1.3, we will review the most important regional 

input-output models, involving one or more regions, discussing the theoretical and 
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practical implications of each one. Section 1.4 brings in the problem of table 

construction, at the regional level, discussing the advantages and drawbacks of survey, 

hybrid and nonsurvey approaches. The issue of accuracy assessment of the constructed 

tables will also be dealt with in this section. Next, in section 1.5, we turn to the specific 

features of the accounting systems implicit in the official national tables, which 

necessarily have an influence on the techniques used for regional table construction and 

on the hypotheses assumed in national and regional input-output modelling. Of these 

specific features, we will focus our attention on the Make and Use format (contrasting to 

the symmetric format) and on total intermediate transactions flows (as opposed to intra-

regional or domestic flows). Section 1.6 provides some insight into the problem of 

estimating interregional trade data, which will be further developed in Chapter 2. Finally, 

section 1.7 presents a summary of the main conclusions of this Chapter. 

  

 

1.2. Foundations of input-output: basic input-output table and 

deduction of the Leontief model. 

 

The several input-output interconnections existing in any economy (of any geographic 

dimension: a city, a region, a country, an integrated bloc of countries, etc), may be traced 

in a very simple but elucidating way through an input-output table. An input-output table 

records the “flows of products from each industrial sector considered as a producer to 

each of the sectors considered as consumers” (Miller and Blair, 1985, p. 2). Let’s 

illustrate this with the example of one hypothetical national economy that has n industries 

and, for simplicity, let’s assume a one-to-one relationship between industries and 

products: i.e., each product is produced by only one industry and each industry produces 

only one product
3
. In the production process, each of these industries uses products that 

were produced by other industries and produces outputs that will be consumed by final 

users (for private consumption, government consumption, investment and exports) and 

                                                 
3
 This is called the homogeneity assumption, used as a simplification in the traditional input-output 

analysis. This assumption will be discussed later on in this chapter and it will be relaxed in the models 

developed in Chapter 3. 
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also by other industries, as inputs for intermediate consumption
4
. These transactions may 

be arrayed in an input-output table, as illustrated in Figure 1. 1: 

 

Figure 1. 1 – Simplified structure of a national IO table, with total use flows. 

Products 1 ... n Total Final Demand Total Demand

1

...
n

Total Intermediate 

Consumption

Value Added
Total Supply of 

domestic products

Imported products

Total Supply

Total interindustry transactions

 

 

Looking across the rows in this table, we can observe how the output of each product is 

used throughout the several consumers of this economy: the total output of each product i 

( ix ) is used for intermediate consumption by the various industries j and for the diverse 

final demand purposes. As mentioned in the Figure’s label, this is a total flow table, 

meaning that the flows recorded as intermediate and final demand refer not only to 

domestically produced input, but also to imported input. The columns of Figure 1. 1 

provide information on the input composition of the total supply of each product j ( jx ): 

this is comprised by the national production and also by imported products. The value of 

domestic production consists of intermediate consumption of several industrial inputs i 

plus value added
5
. The interindustry transactions table is a nuclear part of this table, in 

the sense that it provides a detailed portrait of how the different economic activities are 

interrelated. Since, in this table, intermediate consumption is of the total-flow type, this 

implies that true technological relationships are being accounted for. In fact, each column 

of the intermediate consumption table describes the total amount of each input i 

                                                 
4
 Intermediate consumption consists in the value of products “which are used or consumed as inputs in the 

process of production during a specific accounting period.” (Jackson, 2000, p.110) 
5
 Value added is measured by the payments made for other production factors, like labour and capital (thus 

including compensation of employees, profits and capital consumption allowances).  

In this simplified structure, for the moment, we are neglecting some elements of the table, such as trade and 

transport margins and taxes (less subsidies) on products. 
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consumed in the production of output j, regardless of the geographical origin of that 

input. 

 

Figure 1. 2 - Simplified structure of a national IO table, with domestic flows. 

Products 1 ... n Final Demand

Total Demand 

of domestic 

products

1

...
n

Imports
Total Intermediate 

Consumption

Value Added

Total Supply of 

domestic products

interindustry transactions of 

domestically produced inputs

 

 

In alternative, input-output interconnections can be presented considering only 

domestically produced products in the inputs to be used in intermediate and final 

consumption. In such case, the table will have a different structure, illustrated in Figure 1. 

2 above. 

 

Three major differences exist between this table and the former: 

1) The amounts of products used in intermediate consumption by the several 

industries and by the various final users comprise only domestically produced 

inputs. In this case, the interindustry transactions table is no longer representative 

of a technological matrix. It rather represents the intra-national interindustry 

transactions, which are determined not only by technological factors, but also by 

trade factors. 

2) The row referring to imports has a different arrangement in the table and also a 

different meaning.  Instead of being disaggregated by products and included in the 

intermediate and final demand flows (as they were in the total-flow table), the 

imported inputs are now lumped together in a single row, which must be added to 

the total intermediate consumption of domestic inputs (and to the total final 
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demand of domestic products), in order to get the total amount of intermediate 

consumption made by each industry (and the total amount of each component of 

final demand). Thus, each element of this row gives us the aggregate amount of 

imports used by each industry and by each kind of final user. Conversely, the row 

of imported products in the total-flow table depicts the total amount of imports of 

each product j ( nj ,,1 L= ). These are added to domestic production, in order to 

obtain the value of total supply by product. So, in the total-flow table, the row of 

imported products depicts imports disaggregated by products, whereas in the 

domestic-flow table, it represents imports disaggregated by destination industry. 

3) As a consequence, the balance between supply and demand in the total-flow table 

includes imported products, whereas in the domestic-flow table this balance is 

made considering only domestic production. 

 

The dichotomy between total use and domestic flows will be a recurring issue in the 

following sections and it will be analysed with further detail in section 1.5.3. In the 

following nation-level input-output model deduction, we will assume a total-use table as 

the starting point. The comparison between the total-use model and the model 

correspondent to Figure 1. 2 is left to section 1.3.1, in which a single-region case is 

considered. In fact, the structure of single-region models is very similar to the structure of 

single-nation models, as we will see in section 1.3.1. 

 

The input-output interconnections illustrated in Figure 1. 1 can be translated analytically 

into accounting identities. On the demand perspective, if we let ijz  denote the 

intermediate use of product i by industry j and iy  denote the final use of product i, we 

may write, to each of the n products: 

 

   ......21 iiniiiii yzzzzx ++++++=  

(1. 1) 

 

At the supply side, we know that: 
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  m...... j21 +++++++= jnjjjjjj wzzzzx  

(1. 2) 

 

in which jw  stands for value added in the production of j and jm  for total imports of 

product j. Of course, it is required that, for ji = , ji xx = , i.e., for one specific product, 

the total output obtained in the use or demand perspective must equal the total output 

achieved by the supply perspective. 

 

These two equations can be easily related to the National Accounts identities. Let’s use 

the following notation for the macroeconomic variables: C  represents private 

consumption; F  represents gross capital formation; G  stands for government 

consumption; E  and M  denote exports and imports, respectively and VA  means value 

added. All these variables represent aggregate values. Let’s consider also the following 

sums: 

∑
=

=+++++=
n

j

ijiniiiii zzzzzz
1

21 ......  and ∑
=

=+++++=
n

i

ijnjjjjjj zzzzzz
1

21 ...... .  

 

Then, if we sum up all the equations (1. 1), we get the total value of all economic activity 

in this economy (Miller, 1998): 
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Given that EGFCy
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, the previous equation becomes: 
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Similarly, if we sum up all the equations (1. 2), we must achieve the same value. This 

corresponds to: 
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(1. 5) 
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 are equal, since both represent the sum of all elements of the 

intermediate consumption matrix ( ∑∑∑∑
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), we may write: 

 

)( MEGFCVA
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(1. 6) 

Since VA  represents the sum of the value added generated by all producers in the 

economy, it corresponds to the economy’s gross domestic product (GDP)
6
 accounted by a 

product approach. So, equation (1. 6) is precisely the well known macroeconomic 

identity between GDP when it is defined by a product approach and the same concept, 

defined according to the expenditure perspective: 

 

)( MEGFCGDP −+++=  

(1. 7) 

 

Let’s refer back to the disaggregate level, embodied in equations (1. 1) and (1. 2). These 

are merely the mathematical representation of the information displayed in any input-

output table, for a certain base-year. In order to introduce the input-output model we need 

to consider the fundamental concept of technical coefficient (Miller, 1998): ij

j

ij
a

x

z
= , 

                                                 
6
 In National Accounts, the aggregate value added differs from GDP, by the amount of the aggregate taxes 

(less subsidies) on products; i.e., it is valued at basic prices, while GDP by default, as it is defined on the 

expenditure side, is at purchasers prices. However, in this introductory analysis, these elements are being 

ignored, as it has been referred before. 
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which gives us the total amount of product i (domestically produced and imported) used 

as input in the production of one monetary unit of industry j’s output. Using this 

definition, equation (1. 1) may be substituted for: 

 

ininiiiiii yxaxaxaxax ++++++= ......2211  

(1. 8) 

Replicating this to each of the n products under consideration and rearranging terms in 

the equation, we have:  

nnnnininn

ininiiiii

nnii

nnii

yxaxaxaxa

yxaxaxaxa

yxaxaxaxa

yxaxaxaxa

=−+−−−−−

=−−−+−−−

=−−−−−+−

=−−−−−−

)1(......

...

...

...)1(...

...

...

......)1(

......)1(

2211

2211

222222121

111212111

 

(1. 9) 

 

or, in matrix terms: 
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(1. 10) 

 

which may be translated into a compact form: 
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(1. 11) 
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In this equation, A  is the technical coefficient matrix (total use flows); x  is the total 

output column vector and y  is the final use column vector. From equation (1. 11), the 

popular input-output impact analysis can be carried out straightforwardly. Assuming a 

small exogenous change in the final use vector (by the amount y∆ ), the correspondent 

change in the output vector ( x∆ ) can be obtained as follows: 

 

yBx

yA)(Ix
1

∆=∆

∆−=∆ −

 

(1. 12) 

 

There is a proportionality hypothesis embodied in this equation. It is assumed that the 

change occurred in the output vector is a constant proportion (given by 1A)(I −− ) of the 

change in the final demand vector. This fixed proportion implies that the technical 

coefficients comprised in matrix A  do not change with the exogenous impact in final 

demand, which is a reasonable hypothesis if we consider a small impact y∆ .  1A)(I −−  

or B  is the so-called Leontief inverse. Each of its elements ijb  traduces the value of 

output i required directly and indirectly to deliver one additional monetary unit to j’s 

demand (Miller, 1998)
7
. In analytical terms, 

j

i

ij
y

x
b

∂

∂
= .  If we sum up each column of this 

inverse matrix, we obtain ∑
=

• =
n

i

ijj bb
1

, which are the output multipliers
8
. These represent 

the value of the economy-wide output required directly and indirectly to deliver one 

additional monetary unit to j’s demand. In other words, they measure the impact over all 

the economy caused by a change in the final demand for output j. 

 

                                                 
7
 It should be noted that output i may either be domestically produced or imported. Also, the initial impact 

over product j is not exclusively directed to domestic production, but is indifferent to the geographic origin 

of the product. Further on this Chapter, we will present alternative multipliers which measure specifically 

the impact over domestic production. 
8
 Other types of multipliers can be computed. For example, if we weight the elements of the inverse matrix 

by appropriate employment coefficients, we can deduce employment multipliers, measuring the impact on 

employment, created by exogenous changes in final demand. For further details see, for example, Miller 

(1998), pp. 61-64. 
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The Leontief inverse can also be approximated through a mathematical series expansion. 

Given that the technical coefficients matrix verifies the conditions of being “(…) a square 

matrix A  in which all elements are nonnegative and less than one, and in which all 

column sums are less than one” (Miller, 1998, p. 53), the inverse 1A)(I −−  can be 

expanded using the following power series expression
9
: 

 

LL ++++++=− − k321 AAAAIA)(I  

(1. 13) 

 

This expression highlights the presence of different types of effects (initial, direct and 

indirect effects)
10

 caused by an exogenous change in final demand (Miller, 1998). 

Inserting equation (1. 13) into (1. 12), we get: 
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(1. 14) 

 

From this equation we can see that, when the vector of final demand changes, this causes 

an initial effect of the same amount on the output vector, given by the first term: y∆ . To 

satisfy these new productions, industries will have to buy some new inputs, given by 

yA∆  - these are the direct effects. The remaining terms capture the indirect effects 

caused by the fact that the production of those new inputs also requires intermediate 

consumption of additional inputs. Of course, as it happens in any power series expansion, 

as the exponent increases, the correspondent effect decreases, implying that the latter 

indirect effects will be necessarily smaller than the former indirect effects and than the 

direct effects. 

 

                                                 
9
 This results is similar to that of ordinary algebra, according to which a power series of infinite terms like 

LL ++++++ krrrr 321  is equal to ( ) 1
1

−
− r , given that 10 ≤≤ r . 

10
 Sometimes, initial and direct effects are lumped together and considered both as direct effects. This is 

why Leontief inverse is also known by the matrix of direct and indirect requirements. 
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Some hypotheses are implicit in the kind of reasoning exposed above, frequently pointed 

out as limitations of input-output (mainly when it is used as a forecast model): firstly, the 

elements of matrix A  are assumed to be time-invariant, meaning that the underlying 

technology is constant – obviously, this is a restrictive assumption in long-run forecast 

applications of the model, making it more suitable to short-run uses; second, it is assumed 

that the aij are the same, irrespective of the scale of production (constant returns to scale), 

which implies that scale economies are not taken into account;  thirdly, the assumption of 

constant aij also implies that we are dealing with a fixed proportion technology; in fact, if 

we consider two inputs, i and k, to produce output j, the proportion in which they are used 

is given by ,
kj

ij

j

kj

j

ij

kj

ij

a

a

x

a

x

a

z

z
==  which is constant, since the technical coefficients are also 

constant (Miller e Blair, 1985); finally, the production capacity is supposed to be 

unlimited: when the final use of some product increases it is supposed that the output of 

this product and the others will be able to answer the additional direct and indirect 

requirements, without any capacity restrictions. With the aim of overcoming these 

shortcomings of the model, several developments have been introduced into the basic 

formulation: for instance, dynamic models that consider varying technical coefficients 

and models that include capacity restrictions. Yet, in the present work, the basic 

formulation will be used, since forecasting impacts is not our primary objective.  

 

1.3. Regional input-output models. 

 

In spite of having been originally conceived to national-wide applications, input-output 

model has been applied to sub-national geographic units since the second half of the last 

century. According to Miller and Blair (1985), there are two specific features associated 

to the regional dimension which make evident and necessary the distinction between 

national and regional input-output models. First, the technology of production of each 

region is specific, and it may be close or, on the contrary, very different from the one 

which is registered at the national input-output table; for example, the age of regional 
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industries, the characteristics of input markets or the education level of the labour force 

are important factors that may influence the regional technology of production to deviate 

from the national one. Second, the smaller the economy under study, the more it depends 

on the exterior world, making more relevant the exported and imported components of 

demand and supply, respectively. It should be noted that these components correspond 

not only to international trade, but also to the trade between the region and the rest of the 

country to which the region belongs. 

  

In this section we aim to review the main contributions in regional input-output 

modelling. The following models are distinguishable by four main criteria: 

- the number of regions taken into account: single-region or many-region models. 

- the recognition (or not) of interregional linkages; 

- the degree of detail implicit in interregional trade flows (which is related to the 

degree of detail demanded for the input-output data) and 

- the kind of hypotheses assumed to estimate trade coefficients. 

 

We will begin by presenting the single-region model (section 1.3.1), which has a similar 

structure to the nation level input-output model presented in the previous section. Then 

we proceed to those models that try to capture, not only intra-regional transactions, but 

also the interconnections between regions. Of these, we begin by reviewing Leontief’s 

intranational model (section 1.3.2), which consists of a very primary type of regional 

input-output model, since the only spatial effect it recognizes concerns to the one-way 

effect of national changes over regional output. As it will be seen, spillover and feedback 

regional effects are not considered by this model. The remaining models (sections 1.3.3. 

to 1.3.5) seek to account for inter-spatial effects. Yet, they differ in the degree of detail 

used in the specification of interregional trade flows. Besides, the two multi-regional 

models (Chenery-Moses and Riefler-Tiebout) are distinct by the hypotheses they assume 

to determine trade coefficients. One common feature of the last three regional models is 



 38 

the fact that trade coefficient stability is assumed. We will give special attention to this 

aspect on section 1.3.6. 

 

1.3.1 Single-region model. 

 

The aim of single-region input-output models is to evaluate the impact on regional output 

caused by changes in regional final demand. The starting point for a single-region model 

is, obviously, a single-region input-output table. Just like it happened in the nation-level 

table, exposed in the previous section, the single-region input-output table may be 

presented in two different versions: as a total-use table or as an intra-regional flow 

table
11

. The correspondence between the structure of these two regional tables and the 

national tables presented above is straightforward. If we consider that, in Figure 1. 1, the 

row of imported products includes also imports from other regions of the same country 

and the vector of final demand comprises also exports to the rest of the country, then this 

table represents a single-region input-output table, with total use flows. Correspondingly, 

if we take similar considerations over the table in Figure 1. 2 (concerning imports and 

exports) and consider additionally that the intermediate and final use flows include only 

regionally produced inputs, then Figure 1. 2 is converted into a single-region input-output 

table, with intra-regional flows. These two types of data arrangement originate two 

different single-region models: (1) total-use single-region model and (2) intra-regional 

single-region model.  

 

The development of the total-use single-region model follows closely the development of 

the nation-level input-output model made in the previous section. Let’s use the 

superscript r to denote a regional variable; thus, for example r

ix  is the amount of output i 

available in region r (including international and interregional imports), r

iy  represents 

regional final demand for product i (including the one that consists of imported products) 

and r

ijz  denotes the total amount of input i used in the production of output j in region r 

                                                 
11

 In the context of regional models the word “intra-regional” is used with the same meaning as the word 

“domestic”, in the nation-level models.  



 39 

(including imported inputs as well). Then, 
r

j

r

ijr

ij
x

z
a =  is the regional technical coefficient, 

defined in a similar way as the national one. This indicates the amount of input i 

necessary to produce one monetary unit of output j in region r. In should be stressed out 

that all the possible geographic origins of input i are being included in the calculation of 

this coefficient, meaning that r

ijz  comprises product i produced in region r but also 

produced in other regions or even abroad, since it is traded in region r. Using the regional 

variables instead of the national ones, we can write an equation similar to equation (1. 1): 
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Considering the regional technical coefficient 
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The compact matrix representation correspondent to the previous equation (considering 

one equation like this to each of the n products) is: 
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(1. 17) 

This solution allows us to quantify the impact over the total output available at region r 

caused by a change in regional final demand. Similarly to what was done at the national 

level, we may write: 

 

r1rr y)A(Ix ∆−=∆ −  

(1. 18) 

It should be noted that this impact is not limited to the region itself; instead, some of the 

impact measured by this equation is felt outside the region, via effect on imported 

products (included in the values of vector rx ). Yet, it is possible to compute the impact 
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over regional production from the total-use model. If we pre-multiply both sides of the 

previous equation by ( )cI ˆ− , in which ĉ  is a diagonal matrix
12

 of import propensities, we 

get the impact over regional production. The discussion of the reasonability of this 

procedure is not made here, being left to Chapter 3. 

 

Let’s now consider an intra-regional input-output table (similar to the one in Figure 1. 2) 

as the starting point to the input-output model development. The major difference relies 

on the type of coefficient used: instead of the regional technical coefficient, it is used a 

coefficient that indicates the amount of regionally produced input i necessary to produce 

one monetary unit of output j in region r. This is called an intra-regional input coefficient, 

being this label sometimes simplified to regional input coefficient (Miller and Blair, 

1985). Let rr

ijz  denote the amount of regionally produced input i used in the production of 

output j in region r. Then, the intra-regional input coefficient may be computed as: 

r

j

rr

ijrr

ij
e

z
a = , in which r

je  denotes regional production of product j. Considering 

additionally r

if  as the region’s final demand towards product i produced in region r 

(including regional requirements as well as exports for any other regions, national or 

foreign), the solution of the single-region input-output model with intra-regional flows 

follows the same procedures as before. In matrix terms, let’s use the notation: 

 

• rrA  - a matrix composed by intra-regional input coefficients rr

ija ; 

• r
e  - the vector of output produced in region r; 

• rf  - the vector of regional final demand towards products produced in region r. 

 

Then, the final equation of the single-region model with intra-regional flows is: 

 

                                                 
12

 We will use â to note a diagonal matrix composed by the elements of column vector a . 
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( )
rrrr

r1rrr

fBe

fAIe

=

−=
−

 

(1. 19) 

Applying impact analysis to this model, we get: 

rrrr
∆fB∆e =  

(1. 20) 

The intra-regional inverse matrix rrB  measures the impact of changes in final demand for 

regional products over regionally produced output. The fundamental differences between 

this equation and equation (1. 18) are: (1) the impact is quantified over regional 

production ( r
e ), whilst, in equation (1. 18), the impact is quantified over total output 

available at the region ( rx ); (2) the initial change refers to final demand for regionally 

produced products, r
∆f , whereas, in equation (1. 18), the initial change refers to regional 

final demand (for both regional production and imports: r
∆y ) and (3) the inverse matrix 

is obtained from intra-regional coefficients, whereas in equation (1. 18), the inverse 

matrix is obtained from true regional technical coefficients. 

 

Of course, the practical application of the single-region model with intra-regional flows 

requires that the researcher has previous access to the vector of regional outputs, which 

generally occurs, and also to the matrix of intra-regional flows rrZ  and to the vector of 

final demand rf . These two latter statistics are much more difficult to obtain. As stated in 

Miller (1998), “To generate these kinds of data through a survey, respondents must be 

able to distinguish regionally supplied inputs from imported products” (p. 87). This is 

valid to firms, when asked about their intermediate consumption patterns, but also to final 

users. It is obvious that the fundamental problem in conducting such a survey is not the 

usually mentioned time and cost restrictions, but rather the fact that the respondents may 

not know the answer. In fact, most of industrial units buy their inputs in wholesale traders 

which, in turn, sell a mix of regional and imported products. It should be stressed that 

imported products, in a regional context, involve also products from other regions. Thus, 

it is very difficult to firms to answer whether a specific input i was imported or not, from 

other countries or other regions. For evident reasons, the problem of not knowing the 
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origin of the products is even more manifest in what respects to final consumers. Being 

so, a set of hypotheses is usually applied in order to estimate rrA  from a regional 

technical coefficients matrix rA . In Chapter 3 it will be shown that, if consistent 

hypotheses are used in both types of single-region models (total-flow and intra-regional 

flow), the results provided by both are equivalent and the total-flow single-region model 

is capable of measuring the same kind of impacts as the intra-regional single-region 

model does.  

 

Regardless of the type of flows being considered, the single-region model has a crucial 

limitation of theoretical nature: it consists of the fact that it ignores the effects caused by 

the linkages between this region and the others (in the same country and abroad). Exports 

are, thus, considered as exogenous variables. However, in reality, when a new final 

demand occurs in one specific region, the impact doesn’t confine itself to its boundaries; 

instead, in order to satisfy the new final demand, the first region will need to import 

goods and services from the remaining regions, to use as intermediate consumption. This 

effect is indeed of growing importance, given the increasing economic integration 

between the different countries and regions (Van der Linden and Oosterhaven, 1995). 

One of two fundamental inter-spatial effects, which are neglected by the single-region 

model, are the spillover effects, which account for the change in the production of other 

regions caused by input purchases made by the first region (to answer its own additional 

needs). The remaining regions, in turn, may need to import inputs from other regions 

(probably including the first region) to use in their own production. These involve the 

concept of interregional feedback effects: those which are caused by the first region in 

itself, through the interactions it performs with the remaining regions (Miller, 1998).  

 

1.3.2 Leontief’s intranational model.  

 

The precursor of input-output analysis developed his first spatial input-output model in 

1953. This was a very simple model, both in analytical as well as in data requirements. In 

his intranational model, also called balanced regional model, he combined the traditional 

input-output analysis with the awareness that “some commodities are produced not far 
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from where they are consumed, while the others can and do travel long distances between 

the place of their origin and that of their actual utilization” (Leontief, 1953, p. 93). In 

order to account for such spatial interaction, yet in a crude manner, he begins by 

distinguishing two classes of commodities: “regional” and “national”. “Regional” 

commodities are supposed to be regionally balanced, which means that all the regional 

production is consumed in the same region. Examples of such goods might be: utilities, 

personal services and real estate (Miller and Blair, 1985). Conversely, “national” 

commodities are those which are “...easily transportable...” (Leontief, 1953, p. 94) and in 

which production-consumption balance occurs only at the national or even at the 

international level. Products like cars or clothes can fit into this category. This implies 

that one region may have production in excess in some “national” product, originating 

exports to the rest of the country, or instead, it may have a deficit, which leads to imports 

from the rest of the country. The model only computes net trade flows, rather than gross 

exports and gross imports, and it doesn’t determine the region of origin (destination) of 

the imports from (exports to) the rest of the country. This is the reason why the author 

prefers to label this model intranational, instead of interregional. 

 

The ultimate aim of this model is to determine the regional impact of an exogenous 

change in the final demand for “national” and / or “regional” products (Miller and Blair, 

1985). The following set of hypotheses support the development of the model: 

• There are n products, divided in “regional” (from 1 to h) and “national” (from 

h+1 to n), according to the previous definitions; this classification is known a 

priori. 

• There are k regions. 

• The technical coefficients, 
j

ij

ij
x

z
a = , are known and the same technological 

matrix is used for all regions and for the nation as a whole.  

• The national and regional outputs, as well as the national and regional final 

demands, are known a priori (for both “national” and “regional” commodities); 
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“national” commodities are marked with the subscript N and “regional” 

commodities are marked with the subscript R; let the national outputs and final 

demand be represented by the following vectors. It should be emphasized that 

these subscripts refer to types of products and not to geographic locations: 
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At the regional level we have precisely the same set of variables; as usual, a 

superscript 
r
 is used to denote a regional variable. 

• The market share of each region in providing each of the “national” products, 

N

r

Nr

N
x

x
=τ , is also given a priori and it is assumed to be constant, i.e., “the regional 

output of these commodities is assumed to expand and contract proportionally 

with the change in national demand” (Polenske, 1995). 

 

Using these hypotheses, equation yxA)(I =⋅− , deduced previously, yields for the 

economy as a whole. Only, in this case, matrix A  may be looked as a composition of 

four different matrices, taking into account the classification of commodities into 

“regional” and “national”: 

 









=

NNNR

RNRR

AA

AA
A  

(1. 21) 
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Making use of the previously defined composed vectors x  and y , the solution of the 

model can be expressed, in this case as (Miller and Blair, 1985): 
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(1. 22) 

 

This equation quantifies the nation-wide impact on the total output of each type of 

products, caused by an exogenous change in the demand for “the outputs of one or more 

national sectors and/or one or more regional sectors” (Miller and Blair, 1985, p. 87). The 

Leontief inverse may also be seen as decomposed in two, in which the upper part 

represents the direct and indirect requirements of “regional” products and the lower part 

represents the direct and indirect requirements of “national” products (Leontief, 1953): 
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(1. 23) 

 

Until now, no spatial dimension was included in the model. To do so, we need to 

consider the market share of each region in providing each of the “national” products, 

N

r

Nr

N
x

x
=τ . From this, it follows that, for each region r , the output of the “national” 

commodities is a function of the national output of the same commodities: 
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N

r

N

r

N xx τ=  

(1. 24) 

 

or, in matrix terms, N

r

N xτx ˆ= , in which τ̂  represents a diagonal matrix with the market 

shares for each “national” product in the main diagonal. 

 

In what concerns to “regional” commodities, we can define the regional output through 

the demand perspective. But we must be aware that “regional” inputs may be required to 

the production of both “regional” and “national” industries operating in that region. 

Being so, the regional output of “regional” commodities is given by: 
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(1. 25) 

which, using the relevant sub-matrices defined in (1. 21), and considering also equation 

(1. 24), corresponds to: 

 

( )

( ) ( )

( ) ( ) r

R

1

RRNRN

1

RR

r

R

r

R

1

RR

r

NRN

1

RR

r

R

r

R

r

NRN

r

RRR

r

R

r

NRN

r

RRR

r

R

yAIxτAAIx

yAIxAAIx

yxAxAI

yxAxAx

−−

−−

−+−=

−+−=

+=−

++=

ˆ

 

(1. 26) 

 

This equation means that the regional output of “regional” commodities is a function of 

the regional demand for these commodities, but also of the national output for “national 

commodities”. However, according to equation (1. 22), national output for “national 

commodities” is, in turn, a function of national demand for both types of products. Thus, 

ultimately, this model quantifies the regional impact caused by changes in the national 

demands for both products, allocating “the impacts of new Ry  and Ny  demand to the 

various sectors in each region” (Miller and Blair, 1985, p. 88). 
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In spite of its pioneering character in trying to capture spatial interactions and its ease 

application, the results from the empirical applications of this model were not 

satisfactory, because it relies on the use of net trade flows leading to the underestimation 

of the interregional feedback effects previously referred (Polenske and Hewings, 2004). 

The importance of these effects will be discussed later on. 

 

1.3.3 Isard’s IRIO (interregional input-output model). 

 

An interregional input-output model was proposed by Isard in a paper published in 1951 

(Isard, 1951). The review of this model will be presented following Miller (1998)’s 

example for a two-region system: region r and region s. Let’s consider that each region 

has n industries and each industry produces only one product (and vice-versa). Then, the 

domestic production of product i in region r, may be written in the demand perspective, 

as: 
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(1. 27) 

 

This equation embraces intra-regional intermediate uses of input i and also inter-regional 

sales of the same input for intermediate consumption, as well as for final uses (these are 

included in the aggregate r

if  which contains: private and government consumption, and 

investment in the region, exports for other regions for final uses and total exports to 

foreign countries). It should be noted that only the demand addressing regional 

production is included in the amount r

if . 

 

Using the supply perspective, the production of product j in region r is given by: 
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(1. 28) 
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In this equation, r

jm  represents international imports used as intermediate consumption in 

the production of j.  

 

The two preceding equations make clear that the interregional input-output model is 

inherently an intra-regional flow input-output model; the fundamental difference between 

this model and the intra-regional single-region input-output model described before 

consists of the fact that the former model takes into account the spillover and feedback 

effects, through the inclusion of one (or more) additional region in the system. 

 

The next step consists in developing the model, which requires the use of the following 

coefficients: 
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a = , for region r and 

s

j
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a = , for region s, as intra-regional input coefficients; 
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a =  and 

r

j
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z
a = , as interregional trade coefficients. For example, rs

ija  

represents the amount of input i from region r necessary per monetary unit of product j 

produced in region s. 

 

Using these coefficients, equation (1. 27) can be written as: 
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(1. 29) 

 

This equation may be expressed in matrix terms, given: 

- rrA , as the intra-regional input coefficient matrix for region r (generic element: 

rr

ija ); 
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- ssA , as the intra-regional input coefficient matrix for region s (generic element: 

ss

ija ); 

- rsA , as the interregional trade coefficient matrix with generic element rs

ija ; 

- srA , as the interregional trade coefficient matrix with generic element sr

ija ; 

- rf  and sf , as the final demand vectors for production of region r and s, 

respectively. 

- r
e  and s

e , as the output vectors for region r and s, respectively. 

 

Hence, the following system of equations yields for the two regions: 

 

ssssrsr

rsrsrrr

f)eA(IeA

feA)eA(I

=−+−

=−−
 

(1. 30) 

If we define a matrix ISA  as a partitioned matrix composed of four sub-matrices defined 

previously in this model
13

: 









=

sssr

rsrr

IS

AA

AA
A ; 

if, additionally, we aggregate the output and final demand vectors like: 









=

s

r

e

e
e  and 








=

s

r

f

f
f , 

the matrix system for the two-region interregional model assumes the following 

expression: 

fe)A(I IS =⋅−  

(1. 31) 

Thus, the solution to this model is given by: 

 

                                                 
13

 superscript 
IS

 stands for Isard’s model 
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fBef)A(Ie IS1IS =⇔⋅−= − . 

(1. 32) 

From this equation, one can perform economic impact analysis, making: 

 

∆fB∆e∆f)A(I∆e IS1IS =⇔⋅−= −  

(1. 33) 

 

This final equation is similar to the one found in the single-region model with intra-

regional flows (equation (1. 20)), but the similitude is misleading, since the degree of 

detail and complexity in this model is much higher. Now the economic impact is 

determined in terms of the different regions, but also in terms of the different industries, 

because the interregional trade flows comprised in the model not only specify the region 

of origin and the region of destination, but also the industry of origin and of destination 

(Isard, 1951). In other words, the model assumes that “(…) any given commodity 

produced in a region is distinct from the same good produced in any other region” 

(Toyomane, 1988, p. 16). Besides, the previously referred spillover and feedback effects 

are now accounted for: any change in the final demand of one region causes effects on 

the others and these return to the first region, through the interregional linkages specified 

in the model. The magnitude of the interregional feedback effects may be isolated. 

Following Miller (1966), and going back to equation (1. 30), the outputs of each region 

may be written in terms of the final demands rf  and sf , as follows: 
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(1. 34) 

 

Let’s analyze the economic significance of this equation, taking for example, the 

expression of region s’s output: this is determined by the total requirements needed to 

satisfy the final demand within the region and also by the total requirements needed to 

satisfy the final demand in region r. Let’s look at these two components with greater 

detail, starting with the requirements to provide sf . In an intra-regional single-region 

model with no interregional linkages, the total effect on region s would be given by the 

traditional inverse ( ) 1ssAI
−

−  . However, this is not the case here. Therefore, we must 

consider also the intrerregional feedback effects. First, region s will require inputs from 

region r; this link is expressed by the interregional trade matrix rsA . In turn, region r will 

answer this new demand through its total requirements matrix: ( ) rs1rr AAI
−

− . But we are 

seeking for the effects on region s’s output. The additional production in r will be 

reflected in s, through the demand for inputs expressed by srA . Thus, the interregional 
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feedback effect felt in region s is given by ( ) rsrrsr AAIA − . The other component of s
e  

implicit in equation (1. 34) is resultant from the requirements necessary to provide rf . 

First, region r will suffer an intra-regional effect given by ( ) r1rr fAI
−

− . Because of this, 

region r will import some inputs from region s; this effect is felt on region s by the 

amount ( ) r1rrsr fAIA
−

− . This can be seen as a new demand in s, which causes effects 

similar to those explained before, given by the direct and indirect requirements matrix: 

[ ] 1rs1rrsrss A)A(IA)A(I
−−−−− .  

 

From the previous exposition, the following question may arise: what is the magnitude of 

the interregional effects, or, in other words, what is the amount of error caused by 

neglecting these effects? To answer this question, let’s suppose that it has occurred a 

change in final demand for regional products, either originated in region r or in region s: 

r
∆f . The effect of this in region r is given by: 

[ ] r1sr1ssrsrrr
∆fA)A(IA)A(I∆e

−−−−−= . If no interregional feedback effects were 

taken into account, the correspondent effect would be: ( ) r1rrr
∆fAI∆e

−
−= . Then, the 

difference between these two effects reflects the amount due to interregional feedback 

effects. This is, still, an empirical issue. In some cases, the error may be small, as in the 

tests made in Miller (1966). In others, the error is quite significant, as it happened in the 

empirical application for the interregional model with eight-region and twenty-three 

industries, made by Greytrack (1970): this author concluded that, when feedback effects 

are taken into consideration, the obtained multipliers are about 14% larger than when 

these effects are neglected. Anyway, these two empirical results depend heavily on the 

data, in particular, on the degree of auto-sufficiency and on the dimension of the regions 

under study. 

 

Of course, the degree of complexity involved in interregional input-output model has a 

reflection on the demand of data to implement it: it’s extremely data demanding, 

especially in what concerns to interregional trade flows. In fact, if it is difficult to gather 
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data on trade flows from one region to the others, it is even more difficult to collect these 

data specifying the industry of origin and the industry of destination of those flows.  

 

It should be also noted that, in the example used to expose this model, only two regions 

were considered. In this case, the compact matrix 







=

sssr

rsrr

IS

AA

AA
A  is composed of 4 

matrices, each with dimension nn ×  (being n the number of industries and of products). 

If three regions were considered, then matrix ISA  would be composed of 9 nn ×  

matrices. Generalizing, if k regions are considered, matrix ISA  is a composition of 2
k  

nn ×  matrices. Then, it is clear that the amount of data required to implement such a 

model increases quickly with the number of regions being studied (Miller and Blair, 

1985). 

 

Finally, it should be emphasized that the use of equation (1. 33) implies the supposition 

of constant elements in matrix A (Isard,1951). But now these elements comprise two 

kinds of coefficients: intra-regional input coefficients and trade coefficients 

(Oosterhaven, 1984). The stability supposition is, therefore, extended to the trade 

coefficients, which is a very restrictive assumption. The implications of the interregional 

trade stability supposition will be focused with more detail in section 1.3.6.   

 

1.3.4 Chenery-Moses’s MRIO (multiregional input-output model). 

 

Given the difficulty in gathering the data required to implement the Isard’s model, it has 

seldom been applied. With the aim of overcoming this drawback, Chenery (1953) and 

Moses (1955) developed the first version of a multi-regional input-output model, which 

used the following simplification: interregional trade flows are only specified by region 

of origin and region of destination, being ignored the specific industry (or final 

consumer) of destination.  

 

The data requirements to this model imply that the researcher has previous access to four 

sets of data. The first consists of an Origin-Destination (O-D) matrix for each and every 
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product, depicting intra and interregional shipments of the outputs of that product. Such 

matrix can be illustrated by: 

 

Figure 1. 3 – Intra and interregional shipments of product i. 
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In this matrix, rr

ix , for example, represents the amount of product i produced and 

consumed in region r and sr

ix  represents the amount of product i shipped by region s to 

region r, without specifying the type of buyer in the region of destination (it may be used 

by any industry or even to final users). The column total of this matrix will be denoted 

by: r

iR , for the first column, representing the total amount of product i available in region 

r, except for foreign imports; s

iR , for the second column, representing the total amount of 

product i available in region s, except for foreign imports.  

 

The second set of information consists of an interindustry flow matrix for each region. 

For example, for region s, we will need a matrix sZ • , in which each element s

ijz •  

describes “the value of purchases by each industry in a region from each industry in the 

nation as a whole during some base period” (Moses, 1955, p. 805). In other words, all 

geographic origins of input i are being considered, except for foreign countries. 

 

Finally, it is necessary to know, in advance, the vectors of regional final demand for each 

region (in which, for example, r

iy  denotes final demand for product i in region r, 

including all regional sources of i) and also the vectors of regional production in each 

region ( r

ie  stand for regional production of product i in region r). 
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The starting equations to the development of this model are similar to those presented in 

the previous section. The balance equations state “that the output of each industry in each 

region is equal to its sales to all industries and final demand sectors in all regions” 

(Moses, 1955, p. 804). Considering, as before, a system of two regions (r and s) with n 

industries and n products each, we may write: 
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(1. 35) 

for all .,,1 ni L= 14
 

 

Given that intra-regional flows such as rr

ijz  or rr

if  are not easy to obtain through direct 

observation, some hypotheses are considered in order to use more accessible data. The 

first fundamental hypothesis consists of the introduction of the so-called trade 

coefficients. Using the information of the O-D matrix depicted before, and dividing each 

element of the first column by its column total, we obtain the proportions of the product 

available in region r that is provided by the region itself and by the other region. 

Analytically, we make: 
r

i

rr

irr

i
R

x
t =  and 

r

i

sr

isr

i
R

x
t = . Because these coefficients are computed 

dividing each element of the O-D matrix by the column total, the MRIO model is 

sometimes called a column-coefficient model (Polenske, 1995)
15

. 

                                                 
14

 As it happens in the original presentation of the model, it is assumed that the two-region system is closed, 

thus having no interaction with the rest of the world, either through international imports or exports. This is 

clear in Moses (1955), in which the author states: “Let us assume a closed economy divided into r regions 

which are open to one another for trade in n homogeneous commodities” (p. 827). For this reason, 

international exports are not included in equation (1. 35). 
15

 The column-coefficient multi-regional model, developed by Chenery and Moses, is the most popular 

MRIO and the pioneering one; yet, other MRIO models, that computed trade coefficients in a different 

manner, were proposed thereafter: namely the row-coefficient model (in which trade coefficients are 

obtained dividing each element of the O-D matrix by the row total) and the gravity-trade model, also called 

Leontief-Strout Gravity model (in which trade coefficients are computed on the basis of a gravitational 

formula to calculate trade flows, being these a function of total regional outflows, total regional inflows and 

the cost of transferring the goods from one region to another). Details on these alternative multi-regional 

models can be found in Polenske (1970a), Polenske (1970b), Polenske (1995) and Toyomane (1988). 

Empirical tests applied to these models, with the aim of assessing their capacity in estimating regional 
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The essential hypotheses underlying MRIO is the assumption of the same trade 

coefficient to all the different uses in the destination region. In other words, this means 

that if, for example, 4,0=rs

it , meaning that 40% of all the product i available in region s 

comes from region r, the assumption implies that for all intermediate and final uses of 

product i in region s, 40% comes from region r and only 60% is provided by region s 

itself
16

 (Toyomane, 1988). This is often called the import proportionality assumption 

(Riefler and Tiebout, 1970). Moses (1955) recognizes that it is an imperfect assumption; 

yet, it is adopted, given the fact “that it is impossible to implement statistically a model 

which applies separate trading patterns to each industry” (Moses, 1955, p.810).  

 

Introducing these trade coefficients into equations (1. 35), and making use of the known 

information on the matrices sZ •  and rZ •  and on the vectors of regional final demand, we 

get: 
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(1. 36) 

for all .,,1 ni L=  

 

The other type of coefficient used in this model consists of technical coefficients. In this 

particular case, the inter-industry flows (described in matrices sZ •  and rZ • ), record the 

total inputs used by each industry in each region, regardless of the regional provenience 

of those inputs (assuming a closed economy, thus with no imports from abroad)
17

.  

                                                                                                                                                 
outputs and interregional trade flows, revealed that, concerning the row coefficient, the results are not 

satisfactory (Polenske, 1970b); in the case of the gravity-trade model, this was only applicable when access 

to previous interregional trade flows existed; otherwise, the model had to be solved iteratively, and it didn’t 

converge (Polenske, 1995).  
16

 Once again, we stress the fact that, in this model, foreign imports are excluded from this assumption. 
17

 Instead of considering that the known information on inter-industry flows concerns to flows coming from 

the whole nation, as it is done in Miller (1985), Miller (1998) and Moses (1955) we might consider that the 

researcher has previous access to a technological matrix, i.e., a matrix with total flows (inputs coming from 

the whole nation and also from abroad). In this case, the trade coefficients would have to be computed in a 
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Let s

ijz •  represent the total amount of product i used as an input by industry j in region s. 

Symbol •  is used to represent the summation of all the geographical origins of input i, 

except for foreign countries. Then, 
s

j

s

ijs

ij
e

z
a

•

• =  is the technical coefficient for region s and 

it represents the amount of product i necessary to produce one unit of industry j’s output 

in region s, considering the inputs provided by all the regions in the system (Moses, 

1955).  Using these coefficients, the system of equations (1. 36) becomes: 
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for all .,,1 ni L=  

 

(1. 37) 

 

In this equation, technology and trade are treated as separate factors, thus representing an 

advantage of this model over the IRIO model (Toyomane, 1988). In fact, given that the 

factors that influence technology and trade are most likely different, is seems more 

adequate to treat the two components separately. 

 

Generalizing for all regions and products, we may write the structural form of the model 

in matrix terms. To do so, let’s consider: 

- the input matrices: rA• , of generic element r

ija• ; sA• , of generic element s

ija• ;  

                                                                                                                                                 
consistent manner, dividing each element of the O-D matrix, not by its column total, but by the total output 

available at the correspondent region (which includes foreign imports). 
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- the trade matrices T̂ , for each pair of origin and destination, with all the products 

being traded represented in the main diagonal; for example: 












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





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n

rs

rs

t

t

t

000

000

000

000

ˆ 2

1

O

rsT ; 

- the vectors of final demand in region r ( ry ) and in region s ( sy ). Since, in this 

model, the trade flows don’t specify the type of user at the destination, this implies 

that final demand of each region may as well be partially supplied by imports from 

the other region. 

 

Joining these data together, the structural form of this two-region model, in the demand 

perspective, is given by: 
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(1. 38) 

 

If we take the following partitioned matrices
18

 and vectors: 







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0A
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e

e
e  and 


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
=

s

r

y

y
y , the final equation, in a compact form is: 

 

TyeTAe CM +=  

(1. 39) 

 

                                                 
18

 superscript 
CM

 stands for Chenery-Moses’s model.
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This equation can be used to perform economic impact analysis, similarly to equation (1. 

33), in IRIO. Given any change in y , caused either by changes in one or more product 

final demands of region r or region s, the new output vector is  

 

yT∆)TA(I∆eTy)eTA(ITyeTAe 1CMCMCM −−=⇔=−⇔+=  

(1. 40) 

 

It should be noted that the inverse matrix relating the new final demand with the new 

output vector is now T)TA(I 1CM −− . This implies that the multiplier effect, quantified 

by the column sum of this matrix, can be understood as a two-stage effect (Miller, 1998): 

first, matrix T , with the trade coefficients, operates the distribution of the new final 

demands in each region by the suppliers in each region; then, multiplying this by 

1CM )TA(I −− , it gives us the total impacts (direct and indirect) in the regional industries.   

 

1.3.5 Riefler-Tiebout’s bi-regional input-output model. 

 

Riefler and Tiebout (1970) also made an important contribution to regional input-output 

models, proposing a specific formulation of an interregional input-output model, suited 

for the particular situation in which the system is composed by two-regions (plus the rest 

of the world) and the researcher has previous access to an imports matrix and an exports 

matrix for one of those regions. It is clear by now that this model requires more survey-

based data than the Chenery-Moses multi-regional model. In Riefler and Tiebout (1970), 

these authors used the example of a bi-regional system composed of California and 

Washington, since there was an exports matrix and an imports matrix for Washington. 

These two matrices depicted, for each input and for each consuming industry and final 

demand sector, the percentage of the input that came from / went to abroad (including 

here the other region and foreign suppliers / receivers). In this case, the fundamental 

problem would be confined to partitioning this matrix into imports from (exports to) 

California and imports from (exports to) the rest of the world (Harrigan, et al. 1981). 
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The structural equations of the model are similar to those presented in Isard’s IRIO 

model. Considering again two regions, r and s, and using the previously defined matrices 

of coefficients, the structural equations could be written as in equation (1. 30): 

 

ssssrsr

rsrsrrr

f)eA(IeA

feA)eA(I

=−+−

=−−
 

(1. 41) 

 

The contribution of Riefler and Tiebout’s model concerns to the way in that they specify 

the interregional trade coefficients rs

ija  and sr

ija . Making use of the existent data, they 

assume a compromise between the ideal interregional trade coefficients proposed by 

Isard and the simplified trade coefficients used by Chenery and Moses. In the Isard’s 

IRIO model, rs

ija  was obtained dividing the observed flow rs

ijz  by the observed value  s

je .  

However, as referred before, this demands a degree of detail in the data that is seldom 

available. In the Chenery-Moses model, rs

ija  was surrogated by the multiplication of the 

trade coefficient by the technical coefficient for region M: s

ij

rs

i

rs

ij ata •⋅= ; in this case, 

s

i

rs

irs

i
R

x
t = , which implies the use of the imports proportionality assumption. Using the 

imports matrix for Washington, Riefler and Tiebout demonstrate that this assumption is 

far from being verified in reality; in fact, different industries present a different input 

import’s propensity. One of the main reasons behind this is the fact that inputs and 

outputs are classified under non-homogeneous groups of products.  Thus, they propose a 

procedure in which this assumption is avoided.  

 

From the import matrix, available for Washington (region r), they were able to compute 

the percentage of the total imports of input i (coming from California - region s - and 

from abroad) which was used in the intermediate consumption of industry j. In order to 

obtain the interregional trade coefficient sr

ija , the only hypotheses to assume was that a 

constant share of those imports came from region s – this share was computed for each 

input i making use of a set of trade related statistics, including the US Census of 
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Transportation
19

. Similarly, from the export matrix, they could calculate the percentage of 

the total exports of input i which was destined to the consumption of industry j (both in 

California and in foreign countries). Given this, rs

ija  could then be computed assuming 

that a constant share of these exports was destined to region s (California). This export 

share was estimated using the same set of statistical sources as for the import share. 

These interregional trade coefficients were then introduced in equation (1. 41), allowing 

the deduction of the inverse matrix expression, as presented in IRIO
20

: 

 

fBef)A(Ie
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(1. 42) 

 

As it became clear from the previous exposition, the practical utility of this model is 

limited to situations in which exist both an import matrix and an export matrix to one of 

the regions under study. Besides, the model implies that one region sponges the 

information existent for the other region. Thus, even when such information is available, 

the first concern of the researcher should be to question the accuracy of the pre-existent 

matrices. The difficulties in conducting surveys to assess the proportion of imported 

products used as intermediate consumption have already been mentioned in the 

exposition of the single-region model. Mainly, they have to do with the fact that, usually, 

the sources of information – respondent enterprises – cannot distinguish their inputs into 

imported and regional ones. Yet, is should be recognized that it is easier to obtain an 

answer to the question “Are the inputs imported or regional?” than to the question “Are 

the inputs imported or regional and where do the imported inputs come from?”. The latter 

question is implicit in the trade data required by the Isard model, whereas the former is 

implicit in the trade data demanded by the Riefler-Tiebout model. Hence, this model 

seeks for an estimative of the Isard’s trade coefficients, using less demanding survey 

information and complementing it by the use of alternative sources as the Census of 

Transportation. In what concerns to the export matrix, the problems in gathering such 

                                                 
19

 See Riefler and Tiebout (1970) for further details. 
20

 In equation (1.42), RT stands for Riefler and Tiebout. 
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information are similar, or even more serious. The fact is that firms know the proportion 

of output they export, but they usually cannot distinguish the specific destination user of 

their exports, in terms of industries or final users. As a conclusion, while theoretically 

interesting, this model has a considerable practical disadvantage over the Chenery-Moses 

model. 

 

1.3.6 Trade coefficient stability. 

 

As we have seen, the previously described interregional and multiregional input-output 

models may be used as predictive models, aiming to quantify the economic impacts over 

the different sectors of the different regions, caused by changes in regional final 

demands. In this kind of applications, besides the usual assumption of constant technical 

coefficients, an additional supposition is implicit: trade coefficients are stable
21

 (Riefler 

and Tiebout, 1970). This means that, when a shift in final demand occurs, the trading 

patterns remain unaltered. This is, in fact, a much stronger assumption than the classical 

assumption of constant technical coefficients (Batten and Boyce, 1986). Moses (1955) 

performs an ample scrutiny of this supposition, analyzing the economic forces behind the 

trading patterns and the conditions that must hold for their stability. Trade flows are 

influenced essentially by “cost-price relationships and regional capacities for production 

and distribution” (Moses, 1955, p. 810). Being so, trade coefficients are stable if the 

following conditions hold: regional costs of production are constant, unitary costs of 

transportation are fixed and the capacity of production can be easily increased. As to the 

first two conditions, these are very restrictive, but they are generally adopted in input-

output models, thus being a general limitation of these models and not a specific problem 

of MRIO models. As to the third condition, its reasonability depends essentially on the 

elasticity of production factors, in particular, labour. From this point of view, it would be 

preferable to apply this model to long-run periods, since it would facilitate the adjustment 

of production capacities. However, this would enhance the probability of regional 

technological changes, affecting not only the stability of trade coefficients, due to 

                                                 
21

 In Isard’s model, trade coefficients are not explicit in the model. However, assuming intra-regional and 

interregional input coefficients as constant corresponds to the assumption that, not only the input structure 

is constant, but also the percentage that comes from the region itself and from other regions.  



 63 

changes in relative costs of production, but also the typically assumed stability of 

technical coefficients. Moses (1955) concludes arguing that the MRIO model is best 

suited to short-run impact analysis, given that the factors of production are below full 

employment situation. 

 

1.4. Obtaining the data for regional input-output models: table 

construction. 

 

As any model requires its own database, the regional input-output models implementation 

also implies the previous existence of the correspondent input-output tables. Yet, whereas 

at the national level the input-output tables are regularly provided by the official 

statistics, according to standardized rules, the same does not apply to the regional 

dimension. For that reason, the construction of regional input-output tables has been, by 

itself, one of the most debated themes in regional literature. The researchers seek for a 

compromise on the adoption of common rules which allow for the comparability of 

regional economic structures in space and time (Hewings and Jensen, 1986).  

 

According to Jensen (1990), it is possible to distinguish four stages in what is concerned 

to the history of regional input-output table construction: (1) in the first stage, national 

coefficients were used directly, without any adjustments, in the regional input-output 

table; (2) in the second stage, those national coefficients were adjusted in order to reflect 

some specific regional characteristics; (3) the third stage, named the “classical era of 

regional input-output” (Jensen, 1990, p.11) was dominated by the supporters of survey-

based tables, which were elaborated by research teams and implied a vast field work; in 

this era, “the achievement of the highest quality table was regarded in itself as an end” (p. 

11); (4) the end of the classical era was determined by the high requirements in terms of 

human labour, logistics, money, etc, demanded by survey tables. Today we are at the 

fourth stage, in which hybrid tables, that combine direct information with values obtained 

by non-survey techniques, are seen as the most adequate alternative. Survey, non-survey 

and hybrid techniques will be discussed with further detail in the subsequent sections. 
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1.4.1 Survey table 

 

As the name suggests, survey tables are assembled on the basis of the direct surveys 

made to firms, consumers and government institutions, and also on the basis of experts’ 

judgments about each sector. These are commonly seen as the most accurate tables, since 

they attempt to reflect all the specific characteristics of the regional economy. However, 

besides the already mentioned problem of being very time and cost demanding, survey 

techniques involve other pitfalls. Several types of errors can emerge immediately in the 

process of gathering the data: for example, errors arising from incorrect definition of the 

sample, poor design of questionnaires, hiding of information or lack of concern in 

answering the questionnaires (Jensen, 1980). Even with exactly the same set of data, 

different research teams can achieve different input-output tables, because compilation 

procedures are not unique (for example, there are different methods of making the 

reconciliation between sales and purchases data)
22

. Moreover, when non coincident data 

are provided by different sources – by statistical methods based on surveys on the one 

hand, and by experts’ judgments, on the other hand – the difficulty is to decide which of 

these sources is more reliable (Jensen, 1990). Besides these problems, survey methods 

involve also other difficulty: as referred before, sometimes the questions included in the 

questionnaires require very detailed information to which some respondents may not be 

able to answer (for example, if the inputs used are imported or not and from where they 

are imported). Being so, even official organisms of statistics, when they compute regional 

input-output tables, are often forced to use some hypotheses in order to complement the 

information they cannot obtain directly from surveys, thus using a hybrid method. We 

will get back to this issue in Chapter 3. 

 

 

 

 

 

                                                 
22

 Reconciliation problems occur whenever there is no coincidence with the values obtained by the seller 

perspective (values at the rows) and the ones assembled through a user perspective (at the columns) (Lahr, 

1993). 
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1.4.2 Non-survey and hybrid techniques.  

 

Non-survey techniques applied to regional input-output tables can be generally defined as 

a set of procedures that aim to fill the components of a regional table on the basis of 

values comprised in a similarly structured national table (Jensen, 1990). These techniques 

are also called top-down methods, since they use the values of the whole nation as a 

starting point and then apply specific regional indicators to regionalize them. The 

indicators used depend on the available data at the regional level, but usually they 

embrace employment and income data. 

 

Obviously, non-survey techniques include a vast set of methods, which is not 

homogeneous. Yet, regardless of the specific method to be used, the accuracy of non-

survey regional input-output tables is highly determined by the following issues (Lahr, 

1993): industrial mix, technology and external trade. Each of these elements assumes a 

different influence in the table’s accuracy. For example Park, et al. (1981) have made 

some tests in order to investigate the effect on the input-output table created by errors in 

technology and in trade estimation. They conclude that errors in estimating the regional 

inputs coefficients are more determined by errors in regional trade estimation than by 

errors in technical coefficients. Let’s explain each of these elements with greater detail. 

  

Differences between the regional industrial mix and the national one may create errors in 

the tables derived by non-survey methods, since national structures are applied to 

regional industries in which the proportion of each sub-industry is different from the 

national one (some sub-industries that exist at the national level may even be inexistent at 

the some specific region). However, this is a problem that may be partially solved if the 

researcher uses a high degree of disaggregation when regionalizing the national table 

(Park, et al., 1981; Goldman, 1969). Today this doesn’t constitute an operational 

problem, given the high computational capacities to deal with highly detailed tables. 

 

Technology and external trade issues have been treated by the literature in a very 

confusing manner. As an example, Czamanski and Malizia (1969) state that one of the 
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most important sources of error caused by the use of the national coefficients is the 

“relative importance and structure of foreign trade” (p. 65). This makes clear that 

technology and trade are mixed topics. We recognize that, in regional input-output 

models, these two issues are always interconnected; yet, we’ll try to treat them as two 

separate items in what concerns to input-output table assemblage.  

 

In non-survey regional input-output tables, the technical coefficients matrix is sometimes 

set equal to its national counterpart. This is called the “national technology assumption”. 

It is convenient to recall what these technical coefficients mean: they express the amount 

of input i per unit of output j, regardless of the geographic origin of input i. This means 

that the national interindustry transactions matrix which is used as a starting point has to 

be a total flow matrix
23

, thus including both nationally produced and imported inputs. So, 

the implicit hypothesis is that technology, in the production function sense, is spatially 

invariant within the same country (Lahr, 1993). Given that a high disaggregation is in fact 

used in the industry classification, this hypothesis is not very restrictive (Madsen and 

Jensen-Butler, 1999). It is rather acceptable to assume that some specific industry (taken 

at a very refined level of disaggregation) uses the same productive recipe in region A or 

in any other region of the same country. Moreover, some empirical exercises have 

concluded that this assumption doesn’t cause major errors in the table. As an example, 

Boomsma and Oosterhaven (1992) compared the regional technical coefficients obtained 

through this national technology assumption with regional technical coefficients obtained 

via direct information and concluded that “the national technology assumption produces a 

close approximation, even for subsectors that are specific for the region at hand” (p. 278). 

This is an argument in favour of non-survey techniques, in what technology is concerned. 

Of course, this is an empirical issue, which depends greatly on the specific national and 

regional economies under study. Harrigan et al. (1980), for example, performed an 

empirical comparison between a survey-based regional technological matrix (existing for 

Scotland) and the correspondent non-survey matrix, computed using the technology of 

                                                 
23

 In the Portuguese National Accounts, the national matrix is, in fact, a total flow matrix. But this is not the 

rule; in some countries, as in the USA, the published national matrices exclude foreign imports. This 

implies a previous adjustment to the national matrix before regionalizing it. This will be further discussed 

in sections 5.2 and 5.3. 
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the United Kingdom. Contrarily to the case mentioned before, the results of this study 

allow to conclude for large differences between these two matrices; thus, in this case, the 

use of the national technical coefficients leads to substantial biases in regional impact 

analysis. Still, the national technology assumption continues to be a crucial hypothesis to 

assume in regional table construction, since the alternative survey regional tables seldom 

exist.  

 

Using the national technology assumption, the regionalization of the interindustry 

transactions table is usually made using the industry’s total intermediate consumption in 

each region as the key regionalizing indicator. This means that only the purchases are 

regionalized. In other words, each column of the national interindustry transactions table 

is divided in as much columns as the number of regions. This is called a columns-only or 

purchases-only regionalization (Oosterhaven, 1984). Assuming two regions, r and s, the 

resulting regional columns depict how much of the intermediate consumption of industry 

j is used in region r and in region s (being both regional columns decomposed in several 

inputs). The spatial origin of the inputs is not specified. An alternative way of 

regionalizing the national interindustry transactions table, presented by Oosterhaven 

(1984), would be rows-only: each national row, that describes the intermediate sales of 

inputs i, would be divided by regions. In this case, the resulting regional rows would 

specify how much of the intermediate sales of industry i would be made by region r and 

by region s (being both decomposed by the several consuming industries). The spatial 

destination of these sales would not be specified. This alternative is less used than the 

first, mainly because the available regional data that serve as an indicator to regionalize 

are frequently of the “purchase” kind: usually the researcher has access to regional values 

of intermediate consumption by industry, but not to regional values of intermediate sales 

by industry
24

. 

 

                                                 
24

 In Oosterhaven (1984) another alternative is presented, that combines the information of the columns-

only with the rows-only method of regionalization. The regional table obtained in this way is called a Full 

Information table. Besides being more data demanding, this method implies the reconciliation between the 

two types of information. 
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Last, but not least, the accuracy of non-survey tables is determined by the methods used 

to estimate region’s external trade. We have to distinguish the two types of external trade 

concerning a regional economy: (1) imports and exports between it and other countries 

and (2) imports and exports between it and other regions (Isserman, 1980). The first kind 

of external trade is not really a problem, because this is usually available from official 

statistical sources. The difficulty is in estimating interregional trade flows. This is an old 

and remaining problem, as suggested by Czamanski and Malizia (1969): “Foreign trade is 

an especially sensitive issue at the regional level because of the notorious lack of reliable 

data on interregional flows” (p. 65). Despite the non-survey techniques chosen to 

estimate interregional trade, this problem comprises two distinct questions:  

(1) How to estimate the interregional trade flows necessary to fulfill an Origin-

Destination matrix to each of the products being considered? In other words, only 

the commodity shipments from and to each region are computed. This is an 

unavoidable concern to anyone who pretends to assemble a multi-regional input-

output table. In fact, we have seen in section 1.3 that, among the three many-

region models (Isard, Chenery-Moses and Riefler-Tiebout models), the Chenery-

Moses model was the one that implied the minimum amount and detail of data, 

concerning interregional trade. Such data consisted precisely of an Origin-

Destination matrix to each of the products being considered, depicting the 

shipments from the region of origin to the region of destination. Even if the 

investigation falls upon a single-region table, it is still necessary to estimate 

exports from the region to the rest of the country, as part of the demand directed 

to the region, and imports coming from other regions, given that these are part of 

the supply available at the region
25

.  

(2) How to estimate the interregional (and international) imports comprised in the 

regional technological matrix, in order to achieve intra-regional input 

coefficients? In other words, this means: how to determine the proportion of the 

inputs used that comes from the region itself? This may be seen as an optional 

                                                 
25

 As it will be seen latter, in single-region tables, usually net interregional flows are estimated, instead of 

gross exports to the rest of the country and gross imports from the rest of the country. 
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task in the table construction stage. Given that non-survey techniques are used, 

the same hypotheses that can be used to estimate intra-regional input coefficients 

in the table construction stage may, as an alternative, be applied in the model 

phase, starting from a total use technological matrix. This will be demonstrated in 

the third Chapter of this work. 

 

Non-survey techniques used in interregional trade estimation are one of the core subjects 

in this work. Being so, they will not be exposed in this section. Instead, they will be 

treated with further detail in the following sections: question (1) will be addressed in 

section 1.6 of this Chapter and in Chapter 2; question (2) will be treated in section 1.5.3 

and also in Chapter 3. 

 

Between survey and non-survey methods there is a wide range of techniques that 

combine direct information with estimated values: these are generically labeled as hybrid 

techniques (Lahr, 1998). In reality, it is very difficult to find tables which are exclusively 

survey or non-survey. This is because purely survey tables are too expensive to construct 

and purely non-survey tables are too inaccurate for conducting input-output analysis 

(Dewhurst, 1990). According to Round (1983), “The terms non-survey and survey 

suggest the existence of two well defined and mutually exclusive groups, but in practice 

virtually all input-output tables are hybrid tables constructed by semi-survey techniques, 

employing primary and secondary sources to a greater or lesser extent” (p. 190). Anyway, 

it is consensual that the more direct information is incorporated in the table, the more 

accurate it tends to be. Of course, direct information implies higher costs, which leads to 

a cost-benefit analysis; according to West (1990), the equilibrium occurs when the 

marginal benefit of substituting estimated for direct information in the table equals the 

marginal cost of obtaining this direct information. Being so, the introduction of direct 

information must be selective. For example, Lahr (1993) considers that this direct 

information should always be obtained, at least, in sectors in which the region is highly 

specialized or in sectors in which technological differentiation is more probable, namely, 

resource-based industries and residual categories, because these are more likely to have a 
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regionally differentiated industrial mix
26

 (example: “Manufacture of other non-metallic 

mineral products”).  

 

1.4.3 Matrix adjustment methods: the particular case of RAS.  

 

Belonging to the vast family of hybrid methods are matrix adjustment methods. Matrix 

adjustment methods are applied whenever the researcher wants to find the values to fill in 

a specific matrix on the basis of another matrix, which can be considered as a good 

indicator to the first one, and with regard to specific prior restrictions (Harrigan, 1990).  

For example, these methods can be applied to estimate a regional technical coefficients 

matrix, which will be the target matrix, on the basis of: (1) the national technical 

coefficients matrix or a regional technical coefficients matrix for a comparable region and 

(2) some partial information about the target matrix, usually concerning its column and 

row totals. In this case, the adjustment is made across space. But we can similarly apply a 

matrix adjustment method to update any technical coefficient matrix (regional or 

national) existing for an earlier year to a more recent year – here, the adjustment is made 

across time (Miller and Blair, 1985). Either the adjustment is made across space or across 

time, the general principle behind matrix adjustment methods “consists into finding what 

is the matrix which is closest to an initial matrix but with respect of the column and row 

sum totals of the second matrix” (de Mesnard, 2003, p. 1).  

 

Matrix adjustment methods are intensively used in several types of applications, ranging 

from the assemblage of National Accounts to many other fields in which the missing data 

can be presented in a matrix form: international and interregional trade, migration flows, 

transportation flows, and so on (Lahr and de Mesnard, 2004; Jackson and Murray, 2004). 

Additionally, matrix adjustment methods comprise a vast set of algorithms. An 

exhaustive review of these algorithms is beyond the objectives of the present work
27

. We 

                                                 
26

 Yet, it should be noted that, when the model is based on a fine product disaggregation, these residual 

categories tend to disappear or to become insignificant, such that their influence to the global accuracy of 

the model is almost null. 
27

 Recently, matrix adjustment methods have gained a renewed interest. Thus, there are some recent papers 

that make a quite complete review and discussion of the alternative matrix adjustment algorithms. Some 
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will focus only on the most popular matrix adjustment method: RAS. Among other 

attributes, which will be mentioned below, RAS presents two main practical advantages 

over competitive algorithms: it is a very simple technique and it requires a minimum 

amount of data (Lahr and de Mesnard, 2004; Mohr, Crown and Polenske, 1987). Besides, 

a number of the empirical studies (for example: de Mesnard (2003), Oosterhaven, Piek 

and Stelder (1986) and Jackson and Murray (2004)), that intend to assess the relative 

performance of alternative matrix adjustment methods conclude that, most of the times, 

RAS produces the best results, measured by the proximity between the estimated matrix 

and a known target matrix
28

.  

 

Let’s review the application of RAS, through the following example of adjustment across 

space: the researcher wants to find a matrix of regional technical coefficients for region 1, 

1A , through the adjustment of a previously known matrix of regional technical 

coefficients 0A  existing for the same year, for a comparable region
29

: region 0. To do so, 

the researcher has previous access to four pieces of information: 

• The matrix of regional technical coefficients 0A , which is the starting matrix; 

• Total output by industry for region 1: 1

jx ; 

• Total intermediate sales of each commodity i, for region 1: ∑=•

j

iji zz
11 ; this 

correspond to the sum of all elements of row i in the matrix of intermediate 

transactions Z . 

                                                                                                                                                 
examples are: Lahr and de Mesnard (2004), de Mesnard (2003), de Mesnard (2006) and Jackson and 

Murray (2004). 
28

 Yet, these authors also stress the fact that the empirical results cannot be definitively generalized, 

because they depend heavily on the particular features of the matrices to be adjusted and also on the 

measures used as matrix comparison methods. 
29

 We will get back to RAS technique, in Chapter 2, where it will be applied in a different context: in the 

process of trade flows estimating. 
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• Total intermediate consumption for each industry j, for region 1:  ∑=•

i

ijj zz1 ; 

this correspond to the sum of all elements of column j in the intermediate 

transactions Z . 

 

The RAS procedure is carried out iteratively, in several steps. Firstly, it is assumed that 

technical coefficients are equal in both regions: 10 AA = . Under this hypothesis, the 

intermediate transactions matrix for region 1 would be obtained multiplying these 

technical coefficients by the correspondent industry outputs. In matrix terms, this can be 

written as:  

 

10xAZ ˆ=I  

(1. 43) 

in which IZ  represents a first estimate (denoted by index I) of the intermediate 

transactions matrix for region 1, with generic element ( )I

ijz1 , and 1x̂  represents a diagonal 

matrix with total industry output 1

jx  for region 1 in the main diagonal. IZ  illustrates the 

intermediate transactions that would be observed in region 1 if there were no differences 

between technological structure of region 1 and region 0 (Jackson and Murray, 2004). 

The row sums of this matrix, ( ) ( )∑=•
j

I

ij

I

i zz
11 , must be compared with the actual, known, 

row sums 1

•iz . To do so, let’s take quotient 
( )I

i

iI

i

z

z
r

1

1

•

•= . The numerator of this quotient 

comprises known information, whereas the denominator is a result of the admitted 

hypothesis about the regional technical coefficients. Hence, quotient 
I

ir  is an indicator of 

the sign and value of the error implicit in the hypothesis of equal regional technical 

coefficients. If, for example, 1<
I

ir , this means that all the elements of row i were 

assumed greater than they should be, since ( ) 11

•• > i

I

i zz . So, if we multiply all these 

elements by 
I

ir , we will obtain a new set of technical coefficients which, after being 
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multiplied by industry outputs, will sum exactly 1

•iz . In matrix terms, and making the 

same to each row, this corresponds to generating a new technical coefficients matrix as: 

 

( ) 0ˆ ArA II
=  

(1. 44) 

 

in which Ir̂  represents a diagonal matrix with quotients 
I

ir  in the main diagonal. From 

technical coefficients matrix ( )I
A , we can now compute a new intermediate transactions 

matrix: 

 

( ) ( ) 11 xAZ ˆ
III

=  

(1. 45) 

 

Given the way in which it was obtained, the row sums of this new intermediate 

transactions matrix must now equal the known values 1

•iz . However, the column sums 

( ) ( )∑=•

i

II

ij

II

j zz 11  must be also compared with the known values 1

jz• . This is why RAS is 

called a bi-proportional adjustment method: both row sums and column sums must be 

respected. Let’s define quotient 
( )II

j

jII

j

z

z
s

1

1

•

•
= . This quotient is used to uniformly adjust 

all the elements of column j, in order to obtain a new set of technical coefficients which, 

after being multiplied by industry outputs will sum exactly 1

jz• . In matrix terms, this 

corresponds to: 

 

( ) ( ) IIIIIII
sArsAA ˆˆˆ 0==  

(1. 46) 
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After computing the new intermediate transactions matrix
30

, ( ) ( ) 11 xAZ ˆ
IIIII

= , the 

consistency between the correspondent row and column totals and the known values has 

to be checked again. New quotients ir  and js  are computed and the process is repeated 

iteratively until convergence between the obtained and known totals is achieved. In the 

several applications of RAS, it has been verified that the process usually converges 

meaning that quotients ir  and js  in iteration 1+t  are closer to one that in iteration t . 

The iterative process should stop when the difference between the known margins and 

the estimated ones is very small. One concrete reference number is presented by Miller 

and Blair (1985) in the example used by these authors: the difference should not exceed 

0,005 (Miller and Blair, 1985, p. 286). 

 

Although quotients ir  and js  have been presented in the context of the algebraic 

exposition of the RAS technique, some authors consider that they may be interpreted as 

economic effects (Miller and Blair, 1985). This is the case of Richard Stone
31

, the 

precursor of this technique which considered that the uniform row adjustments (through 

quotient ir ) are a result of a substitution effect, while the uniform column adjustments 

(through quotient js ) are a result of a productivity effect. Substitution effects may occur 

due to changes in the relative prices of inputs or merely because of the emergence of new 

substitute inputs. As an example, if plastic materials substitute metallic materials, this 

will reflect on the increase of technical coefficients in the row correspondent to plastic 

inputs (which will have a quotient ir  greater than one) and on an inverse effect in the row 

correspondent to metallic inputs (with ir  less than one). In what concerns to the 

productivity effect, this results from changes in productivity of industries, due to 

technological progress or change in labour skills, which originate a reduction in 

intermediate consumption, compensated by an increase in value added. In this case, there 

                                                 
30

 In the above exposition the iterative procedure is applied to the technical coefficients matrix ( A ), whilst 

quotients r and s are computed from the intermediate consumption flow matrix ( Z ). This is done in order 

to facilitate the understanding of the meaning of quotients r and s and it is correct since the multiplication 

of diagonal matrices is commutative, thus: sZrsxArxsAr ˆˆˆˆˆˆˆˆ ==⋅ .  
31

 Stone, R. 1961. “Input-Output and National Accounts”. Paris: Organization for European Economic 

Cooperation. Referred in Miller and Blair (1985).  
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is a reduction in all the technical coefficients of the column corresponding to the industry 

which productivity has changed (this is reflected by a quotient js  less than unitary) 

(Miller and Blair, 1985).   

 

This interpretation of RAS, though interesting, is questioned by several authors
32

. 

Conversely, it is commonly argued that RAS can be seen as a merely mathematical 

formula, since it is proven to correspond to the solution of a problem of minimization of 

information bias (de Mesnard, 2003; Miller and Blair, 1985; Oosterhaven, Piek and 

Stelder, 1986; Harrigan, 1990), such as
33

: 
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(1. 47) 

 

This means that the target matrix is generated in order to be as close as possible to the 

prior matrix and, at the same time, respect the row and column sum constraints (Jackson 

and Murray, 2004)
34

. Being so, RAS tends to preserve, as much as possible, the structure 

of the initial matrix.  

 

Regardless of the way in which RAS can be understood, the fact is that it has been widely 

applied, with quite good results, with special emphasis in input-output studies. The main 

theoretical advantages of RAS are listed by Oosterhaven, Piek and Stelder (1986): first, 

                                                 
32

 For example, Lahr and de Mesnard (2004), have shown that the absolute values of ir  and js  cannot be 

interpreted, but rather their relative values. For further details, please refer to the paper. 
33

 The analytical demonstration that RAS is a solution of a constrained problem of minimization of 

information bias can be found, for example, in Miller and Blair (1985), pp. 309-310 or in de Mesnard 

(2003), p. 7.  
34

 The principle of minimization of information bias will be further developed in Section 6 of this Chapter, 

in the context of Spatial Interaction Models. 
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unlike other adjustment methods (example: minimization of square differences), RAS 

doesn’t give a major weight to few big differences, neglecting many small differences; 

second, differences are weighted by their significance in the updated matrix (as it can be 

seen by coefficient 1

ija  in problem (1. 47)), while other methods use no weight value or 

instead use the value of the initial matrix; finally, RAS produces positive values at all the 

cells of the matrix to be adjusted, where there is positive value in the starting matrix, 

which is an advantage over other methods that generate surprising and economically 

meaningless negative coefficients (this occurs in non-biproportional approaches, for 

example, the minimization of square differences) (Lahr and de Mesnard, 2004). 

However, some disadvantages are also commonly pointed out to RAS, namely: (1) it is 

not capable of dealing with negative values in the matrix to be adjusted (this can be seen 

in equation (1. 47), which, due to the presence of the logarithmic function, is not defined 

for negative values); (2) every null cell in the initial matrix continues to be null in the 

final matrix (Oosterhaven, Piek and Stelder, 1986); this can be seen as a negative aspect 

in some cases. For example, if industry j in region 0 uses no input i as intermediate 

consumption, thus presenting a null technical coefficient, RAS forces the same to happen 

in region 1, which sometimes may not be desirable.  

 

The application of RAS (or other biproportional adjustment methods) as part of a hybrid 

method in input-output table assemblage often involves the use of some known a priori 

information on the matrix to be found. For example, if the researcher knows, in advance, 

that for some industry j in region 1 the consumption of input i is null (conversely to what 

happens in region 0) this information should be incorporated in the adjustment method.  

In this case, this could be done setting the specific technical coefficient to zero in the 

initial matrix; as it was mentioned before, this will remain zero until the process 

converges. If the researcher has previous knowledge of the specific value (different from 

zero) of intermediate consumption flow for industry j and some input i then he/she should 

set that specific cell to zero and subtract the known value from the corresponding row 

and column totals. At the end of the RAS procedure, that known value is placed back in 

the appropriate cell (Lahr and de Mesnard, 2004). Dewhurst (1990) examined the 

performance of RAS technique, with and without the introduction of known direct 
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information about the target matrix. His empirical exercise consisted in updating a 1973 

regional matrix (for Scotland) to year 1979, for which a survey table existed. Comparing 

the output multipliers obtained from the RAS adjusted table (with no incorporation of 

known a priori information) with the actual output multipliers, this author concluded that 

the percentage errors are quite small. The same exercise was repeated, increasingly 

inserting more known interior information in each step. The results showed that the 

introduction of superior information “does on average improve the multipliers derived 

from the estimated table” and that “there appears to be decreasing returns to additional 

superior information” (Dewhurst, 1990, p. 85). 

 

In this section special attention was dedicated to the study of a specific matrix adjustment 

method: RAS. This methodology was explained and its practical advantages were 

emphasized, reinforced by its good performance in empirical studies. This technique will 

be revisited Chapter 2, being used in the context of interregional trade estimation. 

 

1.4.4 Evaluating the accuracy of estimated input-output tables. 

 

Regardless of the specific technique (non-survey or hybrid) that has been used in the 

construction of an input-output table, it is important to assess, whenever possible, the 

accuracy or degree of exactness possessed by the obtained table (Jensen, 1980). But when 

the researcher arrives to such stage, three questions immediately arise:  

(1) Is there any objective standard to which the estimated table can be compared? 

(2) What is the concept of accuracy that should be privileged in such comparison? 

(3) Which quantitative measures should be used to make such comparison, in 

practice? 

 

The first question comprises two different issues: first, if for example the estimated input-

output table is for a specific region, there may not be another input-output table for the 

same region; second, provided that such comparative table exists, it is necessary to 



 78 

evaluate if it is sufficiently reliable to serve as a benchmark. In fact, the true input-output 

table for a specific economy may never be known. As we have mentioned before (in 

section 1.4.2), even in the so-called survey tables, assembled by direct observations, 

several types of errors can emerge. Thus, it is very difficult to define a consensual 

standard to which constructed tables should be compared. As an alternative, Jensen 

(1980) proposes an indirect evaluation of the accuracy of the table, assessing its ability in 

generating known variables, for example, using the constructed table for year t to forecast 

known values of industry outputs for year t+1. 

 

When assessing accuracy in the context of input-output studies, we should be aware of 

the different perceptions it can involve. Jensen (1980) has given a major contribution to 

the clarification of the concept of accuracy in regional input-output studies. First, it is 

important to distinguish the accuracy of the input-output table (called A-type accuracy) 

from the accuracy of the input-output model (B-type accuracy). “A-type accuracy refers 

to the degree to which an input-output table represents the ‘true table’ for the economy” 

(Jensen, 1980, p. 140). B-type accuracy involves a broader concept, referring “to the 

exactness with which the input-output model reflects the realism of the operation of the 

regional economy” (Jensen, 1980, p. 141). To implement an input-output model some 

assumptions must be added to the data comprised in the base input-output table. For 

example, the use of fixed technical coefficients implies the assumption that no economies 

of scale exist. Thus, it is important to be aware of these assumptions when applying an 

input-output model and check if they are acceptable in the concrete situation at hand. 

Probably, for a great increase in output levels, there may be considerable economies of 

scale, which may cause errors in the model. B-type accuracy is, hence, determined by the 

degree to which such assumptions are met by the real economy under study. The problem 

is that, generally, the researcher doesn’t have such a complete knowledge about the 

operating of the regional economy, implying that information on B-type accuracy is 

difficult to obtain (Hewings and Jensen, 1986).  

 

A-type accuracy, in turn, may be interpreted in two ways: partitive and holistic accuracy 

(Jensen, 1980). Partitive accuracy refers to a cell-by-cell accuracy. In this sense, the 
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input-output table is seen as a number of separate components. Thus, an input-output 

table is accurate in a partitive sense, if each and every cell accurately approximates the 

correspondent cell in the standard table. Jensen (1980) argues very clearly that partitive 

accuracy is impossible to achieve in constructed regional input-output tables, given the 

common situation of regional data availability; moreover, it is not cost effective, because 

a great part of the cells of the table are not significant to the integrity of the table as a 

whole. Some empirical results reinforce the previous idea. Jensen (1980) refers to the 

conclusions of experimental work which proved “that more than fifty percent of the 

smaller coefficients of a table can be removed (set equal to zero) before a ten percent 

error appears in input-output multipliers” (p. 147). Additionally, this author stresses the 

fact that, even when the researcher establishes partitive accuracy as the ultimate goal, the 

difficulty emerges when it is necessary to assess such accuracy. The fact is that tests often 

made to infer partitive accuracy in non-survey regional input-output tables are erroneous, 

since the constructed tables are compared against survey tables which, as explained 

before, are not error free in a partitive sense. 

 

Instead of partitive accuracy, Jensen (1980) advocates the use of holistic accuracy as a 

criterion to assess A-type accuracy. He defines holistic accuracy of an input-output table 

as “the ability to represent the size and structure of the economy in general terms” 

(Jensen, 1980, p. 143). This means that in holistic accuracy, more important than the 

absolute values of each cell is their relative magnitudes in relation with each other; for 

example, more important than accurately assess the value of each intermediate 

consumption flow r

ijz  is the correct assessment of the cost structure of industry j in region 

r, which implies an accurate assessment of the relative values of each intermediate 

consumption flow in column j. It is true that, if an input-output table verifies partitive 

accuracy, then it follows that “the table as a whole will reflect the true table with a high 

degree of accuracy” (Jensen, 1980, p. 142). This means that partitive accuracy in the table 

implies holistic accuracy. Conversely, the presence of holistic accuracy doesn’t guarantee 

that all the cells of the table are accurate in a partitive sense; particularly it doesn’t imply 

partitive accuracy in those cells that are less significant to the economy in study. Thus, 

the accuracy of the table as a whole is usually greater than the accuracy of each of its 
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cells. This is because holistic accuracy privileges the attention concerning the larger or 

most important elements of the economy being studied (Hewings, 1983). This concept of 

accuracy has guided some projects of table assemblage through hybrid methods (for 

example: West (1990) and Lahr (1998)). In these projects, direct information should be 

used in certain cells, identified as critical to the model accuracy. If the model is directed 

towards a specific industry, for example, the table assembling team should pay special 

attention to the cells that determine the accurate representation of that industry: in general 

terms, these are the ones located at that column’s industry and the ones which maintain 

strong inter-industrial relationships with it (West, 1990). Several methods have been 

developed to identify important sectors in the model construction stage. An important 

sector, in the table construction sense, is defined by Lahr (1998) as “a sector for which 

superior data will significantly improve nonsurvey model accuracy” (p. 4). This author’s 

paper (jointly with other references within it) provides a comprehensive review of these 

methods, which are beyond the scope of the present work.  

 

Miller and Blair (1985) illustrate the distinction of partitive and holistic accuracy through 

the following example (pp. 286-288): an hypothetical technical coefficients matrix for a 

specific target year is estimated on the basis of a similar technical coefficients matrix 

existing for a base year, through the application of the RAS technique. At the end of the 

iterative adjustment process, the estimated matrix is compared with the actual, known 

matrix, in two distinct ways: (1) comparing each estimated technical coefficient with the 

corresponding real value – which means that partitive accuracy is being evaluated and (2) 

comparing the output multipliers obtained from the estimated technical coefficient matrix 

with the output multipliers obtained from the real technical coefficient matrix – in this 

case, what is being evaluated is how well the technical coefficients perform in practice, 

which depends on how accurately they depict the structure of the economy (accuracy in 

the holistic sense). Using specific quantitative measures to make such comparisons 

(discussed later on this section), the results show that: the RAS adjusted table is not 

accurate in a partitive sense, since the average percentage error is around 64%; however, 

the correspondent output multipliers are very close to the real ones (the maximum 

percentage error is 1,27%), which reflects a high holistic accuracy of the estimated table. 
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Obviously, in what concerns to the typical applications of input-output tables, the 

researcher should be more concerned with the accuracy of the output multipliers, than 

with the accuracy of each individual technical coefficient. 

 

It must be noted that the choice of criterion about A-type accuracy has implications on B-

type accuracy. Given that the input-output model is based on the input-output table, part 

of the accuracy of the model is obviously determined by the accuracy of the table. Thus, 

beyond Type B errors, an input-output model based on a table that verifies accuracy in a 

holistic sense will be better suited to illustrate the functioning of the most important 

sectors of the economy (Jensen, 1980). Thus, the results provided by such input-output 

model should be cautiously interpreted, “within the unknown but probably generous 

limits of accuracy and precision suggested by the concept of holistic accuracy” (Hewings 

and Jensen, 1986, p. 317). Even if the researcher aspires to achieve partitive accuracy in 

the input-output table, there is no way of assuring that the same type of accuracy is 

achieved in the applications of correspondent model, because some assumptions are not 

verified: for example, temporal stability of technical coefficients. The previous issues, 

concerning the implications of A-type accuracy on the accuracy of the model, should also 

be accounted for when these input-output tables are to be nested within a broader 

framework (examples: social accounting systems or general equilibrium models) 

(Hewings and Jensen, 1986). An empirical application conducted in Israilevich et al. 

(1996) demonstrated that the choice of three alternative input-output tables used as a 

module of a regional econometric input-output model (one constructed with observed 

regional data, the second based on the national table adjusted using location quotients and 

the third consisting of randomly generated input-output coefficients) produced 

significantly different results, in both forecast and impact analysis. Therefore, the 

accuracy of the input-output table has a great influence on the accuracy of the model, 

even when the input-output table is only a component of the model. 

 

Finally, the third question mentioned at the beginning of this section concerns to the 

choice among several quantitative measures of matrix comparison. Once the researcher 

has decided which values to use as benchmark for comparison and after having decided 
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over the criterion of partitive or holistic accuracy, he/she must choose some specific 

formula to quantify the distance between the estimated table and the benchmark. Many 

different measures have been used in determining the accuracy of input-output tables. 

However, most of the times, the researcher makes no previous investigation of the 

properties of the chosen measure and does not seriously evaluate all the existing 

alternatives (Lahr, 1998). Of the existing measures, some have been most commonly 

used. Next, we review six of those measures, discussing their properties as well. Let’s 

consider that the elements to be compared are technical coefficients
35

 and denote the real 

and the estimated coefficients by ija  and ija~ , respectively. Considering also that both the 

real and the estimated table are of dimension nn × , we can define the following measures 

(for further details, refer to: Miller and Blair (1985), Jackson and Murray (2004) and Lahr 

(1998)): 

  

(1) Mean Absolute Difference (MAD):  
2

~

n

aa
i j

ijij∑∑ −

; 

(2) Standardized Total Percent Error (STPE): 
∑∑

∑∑ −

i j

ij

i j

ijij

a

aa ~

100 ; 

(3) Root Mean Square Error (RMSE): 

( )
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

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(4) Index of Inequality (Theil’s U): 
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2

2~


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35

 Of course, the same measures can be applied to compare, for example, the elements of the Leontief 

inverse or the output multipliers or even the estimated industry outputs. Only, in the latter two cases, the 

measures will not be comparing matrices, but rather vectors of values. 
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(5)  Mean Absolute Percent Error (MAPE): ∑∑
−

i j ij

ijij

a

aa

n

~
1

100
2

; 

 

(6) Weighted Absolute Difference (WAD): ( )∑∑

∑∑

+

−

i j

ijij

i j

ijijij

aa

aaa

~

~

100 . 

 

MAD represents the average absolute difference between the estimated and the real 

coefficient. For example, if 1,0=MAD , this means that, in average, the estimated 

coefficient exceeds or is below the real coefficient by an amount of 0,1. The major 

drawbacks of this measure are (Lahr, 1998): (1) it doesn’t weight the differences by any 

value, meaning that errors in large cells have the same influence in the error measure as 

errors in small cells; (2) it does not provide any idea of the relative difference between 

the two tables. STPE overcomes the latter problem, in the sense that it compares the 

absolute difference between the estimated and the real table with the values of the real 

table. Its major limitation is the fact that absolute differences are not weighted by the 

values of the cell, preventing this measure to be “exceptionally sensitive to high-valued 

cells” (Lahr, 1998, p. 27). RMSE is a well known statistical measure of distance, here 

applied to input-output table comparison, which simply corresponds to the square root of 

mean square error. As it happens with MAD, this measure does not reflect the relative 

difference between the two tables. Index U answers this problem, substituting 2
n  by 

∑∑
i j

ija
2 . Both RMSE and Index U suffer from the already mentioned limitation of using 

no weight to emphasize differences in larger cells. MAPE is not subject to any of the 

problems referred before: on the one hand, each error is pondered by 
ija

1 ; on the other 

hand, it provides a measure of average relative difference between both tables. Though in 

a different manner, WAD, presented in Lahr (1998), also overcomes both previously 

mentioned problems: it does weight the absolute difference by the value of the 

correspondent cell in the target table and it provides an idea of the relative difference 
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between the two tables. However, whereas MAPE weights the difference between the 

two tables in such a way that big absolute errors in large coefficients are minimized, 

WAD, does the opposite: an error in a large coefficients is doubly penalized, since the 

difference ijij aa ~−  is multiplied by the large coefficient ija .  

 

Given the great number of alternatives (which go beyond the ones presented on the above 

list), some authors prefer to apply a combination of several different measures, instead of 

making a choice for only one measure. For example, Jackson and Murray (2004) assess 

the accuracy of ten different matrix adjustment techniques, against a known table, 

applying four different measures of matrix comparison. Each of these measures generates 

a different ranking for the ten adjustment techniques. After applying the four measures, 

these authors make an average of the four rankings and achieve a final combined rank.   

 

In this section, survey, non-survey and hybrid techniques were generally discussed. We 

have seen that complete survey tables are mostly unjustified, given that a high and often 

unavailable amount of resources are necessary, to achieve a table which for a number of 

reasons may still contain several types of errors. Additionally, not all the individual 

elements of an input-output table assume the same significance to the economy the table 

depicts. This leads us to the concept of holistic accuracy on input-output tables, which 

privileges the correct representation of the general structure of the economy and is 

consistent with the adoption of hybrid methods, in which the collection of survey 

information is targeted only to the critical cells to the economy. Of course, the degree to 

which a hybrid method deviates from a non-survey method depends on the available 

resources (non only money, but also time, manpower, etc) to conduct surveys, even if 

directed to only a small number of elements. 

 

The next section is still dedicated to input-output table construction, but regarding to two 

specific issues: the regionalization of a national table when it is on a Make and Use 

format and the use of non-survey techniques to assess the amount of imported products 

comprised in intermediate and final use flows of each commodity. 
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1.5. The specific features of the national tables and their 

implications on the regional table construction processes by 

hybrid or non-survey methods.  

 

The procedures and hypotheses adopted in regional input-output table construction and 

modelling are strongly connected to the type of information contained in the national 

table that is used as a starting point to achieve the regional table and the format in which 

this information is presented. Apparently small details can create errors in the model, if 

they are ignored and/or if no consistent assumptions are used. Of course, the accounting 

system used in the table construction phase, that further determines the set of hypotheses 

to assume in the model phase, depend on the amount and format of the available national 

and regional data (Oosterhaven, 1984). 

 

So far in this work, single-region and multi-regional input-output models and tables have 

been presented according to the traditional symmetric input-output format. A symmetric 

input-output table can be of the product-by-product or industry-by-industry nature. 

Product-by-product tables consist of symmetric input-output tables with products as the 

dimension of both rows and columns; they show the amounts of each product used in the 

production of which other products. In turn, industry-by-industry tables consist of 

symmetric input-output tables with industries as the dimension of both rows and 

columns; they show the amounts of output of each industry used in the production of 

which other industries (UN, 1993). However, input-output models can be tailored to fit 

input-output tables displayed as a Make and Use (or commodity-by-industry) format. 

Make and Use (M&U) tables can be shortly defined as tables that depict how supplies of 

different products originate from domestic industries and imports and how those products 

are used by the different intermediate or final users, including exports (UN, 1993). 

Currently, most of the European countries, including Portugal, publish their National 

input-output tables in the Make and Use format. 

 

The basic structure of M&U tables and the development of a commodity-by-industry 

national input-output model will be explained in section 1.5.1. The assemblage of a 



 86 

regional Make and Use table, on the basis of its national counterpart, and the regional 

model that can be derived from it, will be the subject of section 1.5.2. It is also very 

important to be aware of the manner in which intermediate imports are treated in the 

national table, before proceed with the regionalization. Besides, this has also important 

consequences on the regional model that can be derived from the regionalized table. The 

relevance of these issues will be justified in section 1.5.3. 

 

1.5.1 “Commodity-by-industry” accounts. 

 

Nowadays, most of the countries compile and publish their input-output tables in the 

commodity-by-industry (also called rectangular or Make and Use) format. This 

framework was set up at the 1960’s, when the United Nations introduced the 1968 

System of National Accounts. The M&U format is better suited to represent the diversity 

of products that is in effect produced by each industry. Moreover, the assemblage of the 

Make and Use tables is more closely connected to the way in which firms organize their 

own data, facilitating the collection of the necessary data (Piispala, 1998). In this 

framework, two dimensions are considered, industries and products and two tables are 

essential: the Use table, which describes the consumption of products j by the several 

industries i, and the Make or supply table that represents the distribution of the industries’ 

output by the several products
36

.  

 

Since Make and Use tables involve two dimensions, industry and product, it is 

fundamental to clearly define and distinguish both concepts, in advance. The term 

“product” is used to refer all goods and services generated in the context of productive 

activity (EUROSTAT, 1996, paragraph 3.01). The term “industry” involves some more 

complexity. According to the 1993 System of National Accounts’ definition, “an industry 

consists of a group of establishments engaged on the same, or similar, kinds of activity” 

(UN, 1993, paragraph 5.40). In practice, most of enterprises are engaged in more than 

one activity (UN, 1993): (1) the principal activity, the one that is responsible for the 

                                                 
36

 Because this framework involves two dimensions, product and industry, and to allow a better 

clarification of what dimension is being treated in each case, industries will always denoted by letter i and 

products, by letter j. This convention applies only to analytical equations relating to Make and Use format. 



 87 

creation of the major part of Value Added in the enterprise; (2) the secondary activities, 

being defined as any other activities that generates goods or services and (3) the ancillary 

activities, those that support the main productive activities, such as: accounting, 

transportation, human resources management, etc. The fundamental distinction here 

refers to primary versus secondary activities. Let’s consider the example of a pulp mill. In 

the process of producing pulp some residues are generated (called biomass and including 

pulping liquors, wood residues, and bark). These kinds of outputs are called by-products: 

they unavoidably result from the primary product production process, hence being 

technologically related to it. Let’s suppose that a small part of these residues are sold to 

other enterprises and the remaining is used to produce energy for self use and also to 

provide energy to others. Then, this firm involves two distinct kinds of activity. A kind-

of-activity unit (KAU) is another fundamental statistical term, defined as a part of an 

institutional unit in which only one particular type of economic activity is carried out 

(Jackson, 2000). This concept is at the basis of the definition of industry. In fact, in order 

to assign the activity of firms to an industry classification, enterprises “must be 

partitioned into smaller and more homogeneous units, with regard to the kind of 

production” (EUROSTAT, 1996, p. 35). In our example, this firm would have to be 

partitioned into two KAU’s, and the correspondent activities would be assigned to two 

different industries: 1) the principal activity would be classified under the head 

“Manufacture of pulp, paper and paper products; publishing and printing” and 2) the 

secondary would be classified as “Electricity, gas and water supply”. Concerning the 

production and sale of biomass there is no way in which this activity can be considered in 

another KAU, since, being a residue, its production costs can’t be separated from those 

coming from the production of pulp and paper, the principal activity. So, the KAU 

corresponding to the main activity produces two products: pulp and biomass; in a 

different way, the product electricity is associated to its own KAU. By using this concept 

of KAU, National Accounts guarantee a partial refining of industrial classification, 

meaning that most of the secondary products produced in each firm are classified under a 

different industry heading, the one that produces those products as its principal activity. 

Thus, the number of secondary products included in the main industry heading is 

reduced. In fact, in our example, if the pulp firm was not partitioned into two different 
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KAU’s, energy products would be considered an output of the industry “Manufacture of 

pulp, paper and paper products; publishing and printing”. Still, industries classified in this 

way cannot be considered as being purely refined, because sometimes it is not possible to 

separate the secondary from the primary activity. This occurs whenever the available 

information obtained from enterprises doesn’t allow that separation (this is the case of 

most of the small firms, which have no accounting documents that allow the partition into 

different KAUs) or when the secondary product is a by-product (as the biomass in our 

example), hence precluding the separation of its cost structure from cost structure of the 

primary product. 

 

Using both the concept of product and of industry, the basic structure of a Make and Use 

table, at the national level, can be illustrated as in the following Figure: 

 

Figure 1. 4 – Basic structure of a National M&U table, with total flows. 

Products Industries

Products --- U y p

Industries V --- --- g

m w

p g
 

 

This table comprises two fundamental sub-matrices: U  and V , used to represent the Use 

and the Make matrix respectively. U  shows products in rows and industries in columns; 

conversely, in V , each row corresponds to one industry and each column represents one 

product. Since it’s easier to get accurate information on products than on industries, the 

degree of disaggregation at the product level is usually much higher than at the industry 

level. For that reason, the number of products considered in sub-matrices U  and V  may 
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differ from the number of industries, which gives the label “rectangular” to this format. 

These matrices are composed of elements jiu , for the Use matrix, and ijv  for the Make 

matrix. jiu  represents the amount of product j used as an input in the production of 

industry i’s output. Usually, the M&U matrices provided by National Accounts are of the 

total-flow type
37

; being so, flows jiu  include both imported and domestically produced 

amounts of input j; ijv  stands for the domestic production of product j by industry i 

(elements of the Make matrix). y  represents the vector that sums all the components of 

final demand: private consumption, government consumption, investment and exports. 

As it happens with the intermediate consumption, these values of final demand comprise 

both imported and domestically produced amounts of j. For such reason this is a total use 

table
38

. Summing all the columns in U  and adding y , we get vector p , which accounts 

for total output of each product. The same vector (transposed) can be obtained summing 

all the lines of matrix V  and adding the imported products, comprised in m .  

 

The commodity supply-demand balance, for a specific product j, may be written as
39

: 

 

j

i

jij

i

ijj yumvp +=+= ∑∑  

(1. 48) 

In what concerns to the industries, a similar balance can be established. Being w  the 

vector that represents value added by industry, one may write: 

 

i

j

ji

j

iji wuvg +== ∑∑  

(1. 49) 

 

                                                 
37

 Though, it would be possible to conceive a domestic-flow table using the Make and Use format. Since 

this is not the current layout in which these tables are published, we opt not to illustrate the basic structure 

of such a table. 
38

 In this sense, this table is comparable with the symmetric table of Figure 1, which was also a total use 

table. 
39

 As in the simplified presentation of the symmetric input-output table, in section 2, we are ignoring taxes 

and subsidies on products as well as margins. A complete version of Figure 3 will be presented in Chapter 

3.  
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From these fundamental identities an input-output model may be derived, as for the 

traditional symmetric input-output table, and an inverse matrix is achieved. To develop 

such a model, at least two hypotheses have to be considered: (1) fixed technical 

coefficients and (2) a proposition that relates industry’s output with commodity’s output.  

 

The first hypothesis is common to all input-output models and it has already been deeply 

discussed. Using the notation of the rectangular format, the technical coefficient
40

 is 

defined as: 
i

ji

ji
g

u
q = . Applying it to equation (1. 48), it yields: 

 

ji

i

jij ygqp +=∑  

(1. 50) 

In matrix terms, this looks like: 

 

yQgp +=  

(1. 51) 

in which Q  represents the technical coefficient matrix. 

 

As to the second hypothesis, two major alternatives exist: (1) to assume that each product 

is produced in fixed proportions by the several industries, implying that the structure 

implicit in each column of V  is assumed invariant; (2) to assume that each industry 

produces different products in fixed proportions, involving the hypothesis that the 

structure implicit in each row of V  is invariant
41

. At this stage, we will opt to follow the 

first alternative, without further discussion on both. These will be analyzed in detail in 

Chapter 3. Accordingly, industry’s output and commodity’s output is linked through the 

                                                 
40

 We use the notation technical coefficient, which implies that the U matrix is comprised of flows that 

include not only domestic inputs, but also imported ones. 
41

 In Chapter 3 we will show that the first alternative implies that all products produced by an industry are 

produced with the same input structure, meaning that there is one technology assigned to each industry, 

whereas the second alternative implies that a product has the same input structure in whichever industry it 

is produced, meaning that there is one technology assigned to each product. The first alternative is 

commonly named Industry Technology-based Assumption (ITA), whilst the second corresponds to the 

Commodity-based Technology Assumption (CTA). 
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use of the following ratio: 
j

ij

ij
p

v
s = . This represents the market share of industry i in total 

supply of product j. We can rewrite this as: jijij psv = . Combining this equation in with 

equation (1. 49), we may state that j

j

iji psg ∑= , which in matrix terms is equivalent to: 

 

Spg =  

(1. 52) 

Finally, this can be introduced in equation (1. 51), and manipulated until the final inverse 

matrix is achieved: 

 

( )

( ) yQSIp

ypQSI

yQSpp

yQgp

1−
−=

=−

+=

+=

 

(1. 53) 

Through this inverse, it’s possible to determine the impacts on total product supply 

caused by changes in final demand. Using equation (1. 52) we can write: 

 

( ) ( ) yQSISgyQSISSpg
11 −−

−=⇔−==  

(1. 54) 

This equation allows the assessment of the impacts caused on the production of national 

industries by changes in final demand towards products, regardless of their geographic 

origin (either domestic or imported). This impact analysis (both concerning the effect on 

total product supply and on national industry production) implies that the elements of the 

inverse matrix remain unaltered in face of exogenous shocks. Thus, this involves not only 

the assumption of constant technical coefficients jiq , but also the assumption of constant 

market shares ijs , as it has been previously referred. 
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From these basic equations several others may be deducted, if additional hypotheses are 

included in the model. Again, we refer to Chapter 3 for further developments on 

rectangular input-output modelling.  

 

1.5.2 Regionalizing a national Make and Use table. 

 

In this section we are mainly interested in how to regionalize a national table as the one 

depicted in Figure 1. 4 and, moreover, in the specific hypotheses that are implicit in those 

procedures. The choice of the methods used to regionalize commodity-by-industry 

accounts depends on the specific data availability in each country. Concerning 

specifically the Portuguese context, we may refer to the recent work described in Martins 

et al. (2005), in which seven regional Make and Use tables were assembled in order to 

build the database for a multi-regional input-output model. In this case, the input-output 

model was used as a module of an environmental model designed to evaluate the regional 

impact of legal tools to control the emission of greenhouse gases. For other countries, we 

refer to the following papers: Jackson (1998) and Lahr (2001), for the U.S. case; Madsen 

and Jensen-Butler (1999), for the Danish case; Piispala (2000) and Koutaniemi and 

Louhela (2006) for the Finnish case and Eding et al. (1997), for the Dutch case. 

 

The rectangular table for a single-region will have exactly the same aspect as the one 

illustrated in Figure 1. 4. Only, in this case, imports include also inflows coming from 

other regions and final demand is also comprised of exports to other regions (see Figure 

1.5 ahead).  

 

In a pure non-survey method, the regionalization of the Use matrix follows the same 

method as the one commonly used in the symmetric format: the national technology 

assumption is adopted (Jackson, 1998; Lahr, 2001; Madsen and Jensen-Butler, 1999). 

The researcher is supposed to have access to the total intermediate consumption of each 

industry at the regional level; in other words, the column total of the Use matrix, ∑
j

r

jiu , 
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is known
42

. This is usually available information. Then, the elements of the Use matrix at 

the regional level are deduced from their national counterparts, using the total 

intermediate consumption proportion as the regionalizing factor. Going back to the 

taxonomy introduced by Oosterhaven (1984), this is a columns-only method of 

regionalization: 

∑

∑
=

j

ji

j

r

ji

ji

r

ji
u

u

uu  

(1. 55) 

The superscript r is used to denote a regional variable. It must be emphasized that these 

r

jiu  do not represent intra-regional flows, since inputs i may come from other regions or 

even from abroad. Hence, each column of the regional Use matrix obtained in such a way 

illustrates the true technological recipe of the corresponding industry, which is assumed 

to be the same at the regional and at the national level.  

 

In what concerns to the Make matrix, the regionalization can be carried using the regional 

proportion of industrial’s output (Jackson, 1998). This implies that the table assembler 

has previous knowledge of the vector of industries’ regional output, which is usually 

verified
43

. Then, we have:  

 

i

ij

r

i

r

ij

ij

i

r

ir

ij
g

v

g

v
v

g

g
v =⇔=  

(1. 56) 

                                                 
42

 Otherwise, total output should be used, instead of total intermediate consumption and then equation  (1. 

55) would be: 
r

iji

r

ji

i

r

i

ji

r

ji gqu
g

g
uu =⇔= . However, in this case, the researcher will be taking the 

implicit assumption that the relative share of industrial versus value added inputs is the same in the region 

as in the nation. The regional variances in the proportion of value added inputs has been identified by 

Round (1983) as the fabrication effects, being one of the factors that may create diverse technical 

coefficients between regions. Details on this issue may be found in Round (1983), as well as in Miller and 

Blair (1985). 

 
43

 If this doesn’t happen, regional output for each industry has to be estimated by means of the proportion 

of regional to national employment, which implies the assumption of productivity invariance among 

regions, within the same industry (Jackson, 1998). 
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The implicit assumption behind this regionalization procedure is that the weight of 

product j in total output of industry i is the same in the region and in the country (Lahr, 

2001; Martins et al., 2005). An alternative way of regionalizing the national Make matrix 

would be to regionalize its columns, instead of regionalizing its rows. In this case, we 

would have: 
j

ij

r

j

r

ij

ij

j

r

jr

ij
v

v

v

v
v

v

v
v =⇔= . The implicit assumption here would be: the market 

share of industry i in total internal supply of product j is the same in the region and in the 

country. The option for the first alternative relies essentially on two reasons. First, the 

second alternative suffers from a problem of unavailable data: the fact is that, generally, 

the value of regional production by products is not known a priori, unlike the value of 

regional production by industry. Second, the assumption of space invariant market shares 

of each industry in the production of the several products implies that all regions have a 

similar productive structure. But if, for example, industry i does not exist in one of the 

regions, then it cannot contribute to the total product supply, opposing the implicit 

assumption of space invariant market shares. This seems to be in disagreement with the 

hypothesis assumed in the model development, on the previous section (equations (1. 51) 

to (1. 54)). However, assuming invariant market shares in sensitivity analysis merely 

implies that, in one specific region or country, market shares ijs  remain constant when 

some exogenous change occurs in final demand. This is much more reasonable than 

assuming invariant market shares across space when assembling regional tables. 

 

In a rectangular format, the vector of regional final demand consists of demand for 

products, instead of demand directed to industries, as it happens in symmetric industry-

by-industry tables. This facilitates the assemblage of such a vector for the regional level. 

For example, in what concerns to Private Consumption, there are surveys directed to 

families which ask about their patterns of product consumption. These data are usually 

used to establish the regional structure of Private Consumption (Lahr, 2001). For the 

remaining components of regional final demand (government consumption and 

investment), each country applies its own method of regionalization, according to the 

available data at the regional level. The estimation of regional exports, embracing both 

exports for other countries and exports or other regions, is a more complex issue, being 
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discussed further in section 1.6 (the same applies to imports, at the supply side). At the 

moment, it is enough to assume that these four vectors of external trade (inter-regional 

and international exports and imports) are available, having been obtained by some 

survey or non-survey method.  

 

The regional M&U matrix obtained in such a way (Figure 1. 5) is structured very 

similarly to the national counterpart, such as in Figure 1. 4, with the following 

exceptions: the final demand vector y  includes not only exports to the rest of the world, 

but also to the rest of the country; imports are also divided in two rows: rocm , coming 

from the rest of the country and rowm , coming from the rest of the world. 

 

Figure 1. 5 – Regional Make and Use matrix, with total flows. 

Products Industries
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From one regional M&U matrix derived as described before, it is possible to develop a 

total flow single regional input-output model
44

, following just the same procedures used 

to derive the national model from the national table (equations (1. 51) to (1. 54)). One of 

the final equations will be:  

 

                                                 
44

 Interregional and multi-regional models as the ones described in section 2 can also be adjusted to the 

rectangular format. See, for example, Oosterhaven (1984) and Madsen and Jensen-Butler (1999). For this 

work’s purposes, in what concerns to the rectangular format, it is sufficient to rely on the single-region 

case, as it will be explained in Chapter 3.     
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( ) r1rrr ySQIp
−

−=  

(1. 57) 

in which rQ  is the matrix of regional technical coefficients: 
r

i

r

jir

ji
g

u
q =  and r

S  is the 

matrix composed of market shares at the region: 
r

j

r

ijr

ij
p

v
s =  . This equation illustrates the 

impact over total product supply available at the region in study, rp  (either it has been 

produced regionally or not) originated by changes in final demand directed to supply 

existing at this region (this including imports from other regions and abroad) ( ry ). From 

such equation one can also compute the impact of ry  over rg , the vector of regional 

industry production:  

 

( ) ( ) r1rrrrr1rrrrr ySQISgySQISpS
−−

−=⇔−=  

(1. 58) 

 

1.5.3 Total versus intra-regional flows. 

 

A preliminary distinction between total flows and intra-regional flows was already made 

on sections 1.2 (referring to the national level) and 1.3.1 (referring to a single-region 

analysis). In these sections we were dealing with the symmetric model. But, obviously, 

the same dichotomy emerges when we are using the rectangular model. The model 

implicit in equation ( ) r1rrr ySQIp
−

−=  involves the concept of total use flows. As it has 

been explained in section 1.2, the term “total use flow” is used to indicate the 

intermediate or final use flow of input j, comprising all the possible sources of that input 

– regional production, other-regions’ production or other countries’ production. In fact, 

the flows comprised in the use matrix from which technical coefficients ( r

jiq ) are 

computed are total flows; as a consequence, the multiplier effect implicit on the inverse 

matrix ( ) 1rrSQI
−

−  involves also an effect on imported products. However, the researcher 

may be interested in isolating the impact felt only on regionally produced output caused 
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by changes in y . Moreover, he/she may have an interest in inferring the impact on 

regionally produced output caused by changes in final demand directed to regional 

products.  When such analysis is carried out, the researcher is interested in evaluating 

intra-regional impacts, i.e., those which include solely regionally produced products
45

. 

With this aim, and given the already mentioned difficulties in obtaining intra-regional use 

flows by survey methods, he/she faces two alternative procedures: (1) compute an intra-

regional use table from the total flow use table comprised in Figure 1.5; (2) use the total 

flow use table as a starting point to develop a model that allows the evaluation of intra-

regional impacts. Either alternative involves the assumption of some simplifying 

hypotheses. In Chapter 3, it will be shown that, when the same set of hypotheses is used 

in both alternative procedures, the impacts measured by an intra-regional flow based 

model are the same as the impacts measured by a total use based model. We leave the 

development of the second alternative for Chapter 3. In the next section, we will review 

some of the techniques used when we decide to follow the first alternative, i.e., to 

estimate intra-regional use flows from total use flows. 

 

1.5.4 Techniques used to estimate intra-regional use flows from total 

use flows.  

 

Each flow of the table comprised in Figure 1.5, concerning intermediate or final use, is 

composed of imported and regionally produced products. In fact, each use flow can be 

seen as the sum of three components. Let’s consider r

jiu , as the intermediate use of input j 

by industry i in region r (irrespective of the geographic origin of j), and r

jy  as the final 

use of j in region r (irrespective of the its geographic origin). Then, we have: 

 

rrow

ji

rroc

ji

rr

ji

r

ji uuuu ++=  

(1. 59) 

and 

                                                 
45

 In models applied to the nation level, the designation “intra-regional flows” is substituted by “domestic 

flows”, since in this case imports include only those coming from foreign countries. We will get back to the 

issue of total use flows versus intra-regional / domestic flows in Chapter 3. 
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rrow

j

rroc

j

rr

j

r

j yyyy ++=  

(1. 60) 

 

in which rr

jiu  represents the amount of regionally produced input j used as intermediate 

consumption by industry i in the same region r; rroc

jiu  represents the amount of input j 

imported from the rest of the country, used as intermediate consumption by industry i of 

region r and rrow

jiu  represents the amount of input j imported from the rest of the world, 

used as intermediate consumption by industry i. Similar notation is used for final 

consumption.  

 

Hence, the problem consists in obtaining rr

jiu  and rr

jy  from r

jiu  and r

jy , respectively. 

This implies the estimation of one imports matrix (or two, considering that interregional 

and international imports are estimated separately), depicting the intermediate and final 

use of each imported product.  

 

This problem receives a different solution depending on the context of data availability. 

In what data availability is concerned, we must distinguish international imports from 

interregional imports. The fact is that, usually, there is some partial information on 

international imports made by regions, provided by the official organisms of statistics: 

the total amount of regional imports, decomposed by products is currently available data. 

The same cannot be said about interregional imports. Excepting some few countries 

(Canada, for instance) in which surveys are regularly conducted to estimate interregional 

trade flows, the most common situation is that official organisms of statistics don’t 

provide any information on these flows, not even the total amounts of imports destined to 

(exports originating from) each region. In this context, we can usually identify one of the 

three following circumstances concerning trade data information to perform the 

estimation of the import matrix, ordered by increasing survey-based data availability: 

1) The researcher has no information relating total supply of the different products 

separated by origin (regional production and imports coming from the rest of the country 

and rest of the world). 



 99 

2) The researcher has access to total product supply, separated by origin – supply-side 

information; then, the problem is limited to the estimation of the proportions in which 

those imports are used by different final or intermediate users (demand-side information).  

3) The researcher has access to some additional information besides the total product 

supply separated by origin. For instance sometimes there is full information concerning 

regional imports, meaning that “a matrix of intermediate imports is available” (Harrigan 

et al., 1981, p. 70) for region r. In this event, the problem consists merely in decomposing 

that matrix into two import matrices: one for rest-of-the-country products and another for 

the rest-of-the-world products. 

 

Depending on the precise situation of data availability, different solutions have been 

proposed in the input-output literature, which will be next reviewed. 

 

Whenever there is no a priori information on imports, not even the total amount of 

imports by product, a set of so-called “purely non-survey techniques” may be applied 

(Miller and Blair, 1985). Non-survey techniques used to derive intra-regional flows from 

total use flows can be generally divided into location quotient (LQ) and commodity 

balance (CB) techniques.  

 

Location Quotients (LQ) are a measure of regional specialization. In its simplest form, 

location quotient is usually defined for product j in region r, by (Miller and Blair, 1985): 

 

v

v
v

v

LQ
j

r

r

j

r

j =  

(1. 61) 

in which: r

jv  denotes production of j in region r; rv  represents total production in region 

r; jv  and v  represent similar variables for the nation level. If data on output are not 
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available, then other variables can be used to measure relative concentration: 

employment
46

, value added, and so on.  

 

r

jLQ  measures the relative specialization of region r in producing product i, “comparing 

the relative importance of an industry in a region to its relative importance in the nation 

or some other base economy” (Schaffer and Chu, 1969, p. 85). In fact, the numerator of 

(1. 61) represents the weight of product j in total regional production; this is compared 

with the weight of product j in total national production (in the denominator). If 1>r

jLQ , 

then the production of j is more localized, or concentrated, in region r than in the nation 

as a whole (Miller and Blair, 1985). The opposite can be stated if 1<r

jLQ : region r is 

relatively less specialized in the production of j than the nation. 

 

This simple measure has been used in estimating the intra-regional flows from total use 

flows. The reasoning is as follows: if region r is relatively more specialized in the 

production of j than the nation ( 1>r

jLQ ), then it is assumed that all the requirements of j 

to met intermediate and final consumption are provided by the region itself; once regional 

requirements are satisfied, the regional surplus, given by the difference between regional 

output and regional requirements, is considered as an export from region r. The implicit 

reasoning behind this is that the weight of j in national production is an indicator of the 

weight that j has on regional demand. Conversely, if region r is relatively less specialized 

in j than the nation ( 1<r

jLQ ), then it is assumed that some of the regional requirements 

of j have to be imported; the capacity of the region in self providing product j is given by 

its relative specialization in j, i.e., by r

jLQ , originating the following equations for intra-

regional intermediate and final consumption flows: 

 

r

j

r

j

rr

j

r

ji

r

j

rr

ji

yLQy

uLQu

=

=
 

                                                 
46

 The use of employment as a proxy for output involves the assumption of identical regional and national 

industry productivity. 
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(1. 62) 

The remaining proportion, ( )r

jLQ−1  is accounted as an import of input j (Miller and 

Blair, 1985).  

 

In spite of being an easy to handle measure, which requires a small amount of data, this 

method suffers from three quite restrictive simplifying assumptions: 

1. The major problem of this non-survey technique is the fact that it considers that, if 

region r presents a relative high weight of commodity j in the total available 

output, it is capable of self-providing its own requirements of the same product; 

by doing this, LQ technique ignores the specific structure of regional demand, 

assuming that it is equal to the structure of national demand (Greytak, 1969). In 

fact, the structure of regional demand may determine, for example, a high level of 

demand for commodity j, implying that, even with a high relative weight on 

production, regional production is not enough to satisfy regional demand, which 

may have to be fulfilled by imports. This happens, for example, when commodity 

j is intensively used as an input for intermediate consumption by a certain 

industry i in which region r is specialized (Sargento, 2002). This is also 

emphasized in Schaffer and Chu (1969), stating that “To ensure success in using 

the simple location quotient, the local industry structure must closely resemble the 

national structure: this requirement is seldom met” (p. 86). In other words, given 

that regions have quite different productive structures, the simplifying assumption 

of spatially invariant demand structure is unacceptable.  

2. Another limiting consequence arises from the hypothesis under which, when LQ 

is greater that one, the region is capable of self-providing its own requirements of 

the same product, exporting the surplus to the rest of the nation: interregional 

imports of j are assumed to be null ( 0=rroc

jiu , for all industries i and 0=rroc

jy ). 

Thus, this method relies on the principle of maximum local trade (Morrison and 

Smith, 1974), meaning that if the commodity “is available at a local source, it will 

be purchased from that source” (Harrigan et al., 1981, p.71). By doing this, it 

doesn’t account for the high probability of existing simultaneous import and 
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export of the same product (crosshauling). In fact, even if the researcher works 

with a highly disaggregated classification of products, these cannot be assumed as 

homogeneous, making interregional (as well as international) trade to be 

composed, to a great extent, by simultaneous import and export of the same 

product. 

3. The LQ measure is asymmetric. In fact, for any row for which the r

jLQ  is less 

than one, the correspondent import coefficients will vary with the size of r

jLQ : 

for smaller r

jLQ ’s, the correspondent import coefficients will be larger; but if 

r

jLQ  is greater than one, the correspondent row in the import matrix will be 

arbitrarily filled with zeros, irrespective of the size of r

jLQ  (Miller and Blair, 

1985; Harrigan et al., 1981). 

 

These significant drawbacks make the LQ method too simplistic to serve the purposes of 

regional input-output analysis. As stated in Round (1978a), referring to LQ, “(…) it is 

difficult to be optimistic about the possibility of estimating trade flows (which inevitably 

result from a complex set of regional relationships) using such simple constructs” (p. 

290). The unsuitability of the assumed hypotheses is immediately reflected on the fact 

that the LQ method provides estimates for the use of the regional production of j (final 

and intermediate) that are usually inconsistent with the previously known value of the 

regional production of j. In fact, the LQ-based estimated regional production of product j, 

r

jv~ , will be (Miller and Blair, 1985): 
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(1. 63) 
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The arbitrariness of the hypotheses assumed implies that there is no guarantee that the 

estimated regional output, r

jv~ , is compatible with the actual, known, regional output r

jv . 

So, if r

j

r

j vv ≤~ , the required adjustment is made allocating the residual to exports from the 

region to the rest of the nation. Conversely, if r

j

r

j vv >~ , the intra-regional flows 

correspondent to row j are all adjusted downward, being multiplied by 
r

j

r

j

v

v

~ . Both types of 

adjustments may be required in either case of LQ value: greater or lower than one. As 

stated in Round (1978a), concerning the LQ method, “Commodity exports from the 

region are invariably ascertained as a residual after the final output and total intermediate 

sales have been deducted from gross sales. As a consequence, even in the situation where 

the [LQ]-values indicate export orientation, there is no guarantee that these residuals are 

positive” (p. 291).  

 

Commodity Balance technique differs from LQ technique, since it is not based in any 

measure of regional specialization, but rather on the regional balance of trade for each 

commodity (Harrigan et al., 1981). Let’s define regional requirements of j by r

jD .  For 

any region, the following balance must hold: 

 

rocr

j

rowr

j

rroc

j

rrow

j

r

j

r

j ddmmvD −−++=  

(1. 64) 

This means that regional requirements of j are provided by regional production added by 

regional imports and subtracted of regional exports. Based on this balance, the CB 

technique is applied as follows: if r

j

r

j Dv ≥ , then it is assumed that the region has the 

capacity to provide all the requirements of j in region r. Conversely, if r

j

r

j Dv < , it is 

assumed that the self sufficiency of the region is limited to the proportion 
r

j

r

j

D

v
. The 

remaining regional requirements will have to be fulfilled by imports coming from outside 

the region (both from the remaining regions and from abroad).  
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The basic principle underlying CB technique is, thus, much similar to the one underlying 

LQ. The region’s ability to supply its own needs of a certain input is determined by the 

value of one specific quotient ( r

jLQ  in LQ technique and 
r

j

r

j

D

v
 in CB technique): when 

such quotient is greater than one, the region’s needs are totally provided by regional 

production; when it is less than one, the ability of the region in self-providing inputs is 

reduced to the value given by the quotient. Thus, these techniques are also comparable in 

their restrictive hypotheses. In fact, problems 2 and 3 pointed out to LQ are shared by CB. 

Just like LQ, it assumes null crosshauling and it makes an asymmetric interpretation of 

the value of the quotient (
r

j

r

j

D

v
, in this case). Nevertheless, CB still can be understood as 

theoretical superior to LQ, in the sense that it doesn’t make any assumption about the 

structure of regional demand; instead, it uses the observed value of regional requirements 

r

jD . 

 

Let’s now assume that we have some partial information on trade flows: total imports (by 

products) coming from international sources and from other regions to region r are 

known.
47

 This means that we are assuming that the sum rrow

j

rroc

jj mmm +=  is available 

information. Thus, our purpose is to estimate the imports by destination; that means that 

for each imported product we are searching for which part is used as intermediate 

consumption (in each industry) and as final use (of each kind). 

 

One of the partially survey techniques is the so-called Moses Technique (MT) (Harrigan 

et al., 1981). Observing Figure 1.5 again, we can see that total supply of j in region r is 

given by
48

: 

 

                                                 
47

 While this is usually verified for international imports, this assumption over interregional imports implies 

as a rule that the total amount of imports is previously estimated by some other method (again, concerning 

the discussion of these methods, we refer no section 6.2) 
48

 In all section 5.4 we will be using the notation of the rectangular model. However, all the proposed 

techniques can also be applied to symmetric tables, to compute symmetric intermediate consumption tables 

and final demand vector with intra-regional flows from the correspondent total-flow tables. 
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roc

j
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j

r

j

r

j mmvp ++=  

(1. 65) 

in which ∑=
i

r

ij

r

j vv . Dividing all the elements of this equation by r

jp , we may compute 

the corresponding coefficients: 
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(1. 66) 

 

Each of these coefficients express the proportion in which each origin (the region itself, 

the rest of the country and the rest of the world) contributes to total supply of product j in 

region r. More precisely, 
r

j

rrow

j

p

m
 and 

r

j

rroc

j

p

m
 represent the average import propensity of 

product j (from other countries and from other regions, respectively). The essential 

assumption of MT is that this average import propensity, computed on the supply side, is 

applicable to all the demand flows for product j. In other words, if for example 

3,0=
r

j

rroc

j

p

m
, 4,0=

r

j

rrow

j

p

m
 and 3,0=

r

j

r

j

p

v
, this assumption means that, for all the possible 

uses of product j (intermediate or final), 30% of those uses will be satisfied by regionally 

produced output, 40% will come from other countries and 30%, from the rest of the 

country. Then, we may compute intra-regional intermediate and final use flows as 

follows: 
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 (1. 67) 

and  

rrow

j
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j

r

j

rr

j yyyy −−=  

(1. 68) 
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which, including the previous assumption on the average import propensity
49

, leads to: 
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 (1. 69) 

and  
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(1. 70) 

 

The use of this import proportionality assumption will be examined thoroughly in 

Chapter 3, in the context of a national input-output table. Its reasonability will be further 

discussed. Also, starting from a total flow M&U, it will be shown that such an 

assumption may be used in two different approaches: (1) to construct a domestic or intra-

regional flow table, subtracting the flows of imported products, and then develop an 

input-output model from it, which allows the assessment of the impact on domestically 

produced output caused by changes in final demand directed to domestic products; (2) to 

be directly incorporated into a model developed on the basis of a total flow table, in order 

to convert it on a model that measures domestic or intra-regional impacts. Moreover, it 

will be demonstrated that the result of these two procedures, in quantifying domestic 

impacts, is exactly the same. 

                                                 
49

 The same kind of assumption had already been used when presenting the Chenery-Moses model. 

However, there is a crucial difference between the trade coefficients defined there and the import 

coefficients 
r

j

rrow

j

p

m
 and 

r

j

rroc

j

p

m
 used here: in this case, the shipments of product i are divided by total 

supply, including foreign imports, whereas in the Chenery-Moses model the trade coefficients are obtained 

dividing the shipments of product i by total supply of i in the region, except for foreign imports. 
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The other partially survey technique is the Tiebout (TB) method (Harrigan et al., 1981). 

As it was explained when presenting the Riefler-Tiebout bi-regional model (in section 

1.3.5), this method assumes that there is already an imports matrix for region r, 

describing the intermediate use of all imported products j by all producing industries in 

region r and also the several final uses of imported products j. These regional imports 

comprise inflows from all possible origins to region r. This means that the aggregates 

( )rrow

ji

rroc

ji uu +  and ( )rrow

j

rroc

j yy +  are known a priori. Only the individual components 

rroc

jiu , rrow

jiu , rroc

jy  and rrow

jy  are unknown. Thus, the intra-regional input flows can be 

immediately obtained by subtraction; considering ( ) or

ji

rrow

ji

rroc

ji uuu =+  and 

( ) or

j

rrow

j

rroc

j yyy =+ , we have: 
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(1. 71) 

and  

or

j

r

j

rr

j yyy −=  

(1. 72) 

 

Hence, the Tiebout Method is used merely to decompose the imports matrix into imports 

from other regions and imports from other countries. To do so, it considers the following 

coefficients: 
or

j

rroc

j

m

m
 and 

or

j

rrow

j

m

m
, in which rrow

j

rroc

j

or

j mmm += . These coefficients express 

the percentage of imports that comes from the rest of the country and from the rest of the 

world, respectively. The hypothesis used here consists in assuming that these percentages 

apply uniformly to all possible uses of j; thus, it is equivalent to what is done in the 

Moses technique, except for the fact that it relies on a higher degree of a priori 

information. Then, we have: 
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for intermediate uses and: 
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and  
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for final uses. This technique has been applied, for example, in Oosterhaven and Stelder 

(2007), in their comparison between four alternative non-survey intercountry input-output 

table construction methods, for nine Asian countries and the USA. More precisely, given 

that the import matrix was previously known (considering all possible origins of flows), 

the Tiebout method has been used, for each country, to make the split between imports. 

 

The four techniques presented before involve diverse data requirements. Thus, it is 

expected that the more survey-based information is used, the more accurate are the results 

generated by them. In Harrigan et al. (1981), the results obtained from each of these 

techniques in the estimation of an imports matrix were compared with a survey based 

import matrix, existing for Scotland.  The simulation results showed that, as expected, the 

techniques which involve the use of some survey information on trade flows are more 

accurate than any of the non-survey methods, which originate very unreliable results. 
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Given the evident problems in using these non-survey techniques, especially in what 

concerns to LQ, the researcher should restrict their use to situations in which there is no 

information at all on the total amount of imports. Provided that the total amount of 

international imports is usually available for the researcher (conversely to the total 

amount of interregional imports), these non-survey methods should be applied referring 

only to interregional imports. It should be noted, however, that the partially survey 

methods are not exempt of limitations. In fact, the imported share of each total use flow is 

assumed invariant with the type of use, as it happens also in both non-survey techniques. 

But, in reality, sometimes intermediate uses tend to reflect a greater import propensity 

than final uses (as it happened in the empirical application in Harrigan et al., 1981) and 

some final uses tend to show a lower import propensity than others (for example, exports 

tend to comprise a lower share of imported products than household consumption)
50

.  

 

1.6.  Models to assess interregional trade data.  

 

1.6.1 The relevance and nature of external trade in regional economies. 

 

External trade holds an extreme importance in regional economies, in particular in small 

areas. It can be divided into trade with other regions of the same country and international 

trade. Today, regional scientists fully recognize the importance of knowing the 

magnitude and nature of the economic interdependence between each region and the rest 

of the world, in order to better identify the whole implications of regional policies. 

According to Munroe and Hewings (1999), “If international trade has significant impacts 

                                                 
50

 In some applications, this is incorporated assuming that exports do not comprise any imported products, 

i.e., countries (or regions) do not import to export. This is done, for example, in Miller and Blair (1985), p. 

295, when these authors define the proportion of regional needs self provided by the region, through the 

following quotient, named Regional Purchase Coefficient (RPC): 
r
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exports are being excluded meaning that imports will be allocated to all uses, except for exports. In other 

words, there is no re-exporting of imported products (Lahr, 2001). Conversely, in Moses technique, for 

example, the correspondent coefficient is: 
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, meaning that the assumption of invariant 

import propensity is extended to all uses, including exports. 
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on economic growth and welfare concerns (employment, income, etc), it should follow 

that trade within countries may also merit much further consideration” (p. 2). For 

example, a deficit in the region’s trade balance means that the region relies on income 

transfer and/or granting of savings from other regions (Ramos and Sargento, 2003). In a 

more detailed perspective, knowledge about regional external trade, segmented by 

commodities, allows us to characterize productive specialization, foresee eventual 

productive weaknesses as well as determine the region’s dependency on the exterior (or 

in some cases the exterior’s dependency on the region) regarding to the supply of 

different commodities. In what concerns to the application of input-output models, the 

knowledge of interregional trade flows, at least the pooled volume of exports and imports 

by commodity, is an essential requirement to allow the consideration of spillover and 

feedback effects, as it has been explained before.  

 

Recent studies applied to interregional systems in USA and Japan have demonstrated that 

interregional trade is growing faster than international trade (Jackson et al., 2004). 

Reinforcing this idea, Munroe and Hewings (1999) present the example of U.S. Midwest 

region, in which the volume of trade among the five states that compose this region 

exceeds the volume of trade between these states and the main foreign trading partners of 

USA. The reasons behind the increasing importance of interregional trade are 

determined, to a great extent, by the significant transportation costs reduction and the 

deepening integration of regions in the global economy, that have occurred in the recent 

decades. These factors led, not only to an increase in trade between different regions, but 

also to the emergence of new features of interregional trade. Polenske and Hewings 

(2004) focus on three new issues concerning interregional trade: increasing complexity in 

production processes, intra-industry trade and “hollowing-out” tendency. Trade linkages 

among regions involve a growing sophistication, since now firms look across the whole 

country or even across different countries in order to find the most cost competitive 

locations to produce in each different stage of the production chain. This is one of the 

reasons why intra-industry trade or crosshauling, i.e., trade characterized by imports and 

exports of the same product, is becoming more important (Wixted, Yamano and Webb, 

2006). Another important factor determining the increase of crosshauling is the growing 
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product differentiation, making consumers to look for differentiated products in other 

regions, instead of the ones that are produced regionally. The structural change in 

interregional trade is also determined by a decrease in intra-regional transactions, in favor 

of an increase in interregional trade: this is called a “hollowing-out” process (Polenske 

and Hewings, 2004), since this implies that the density of relations within the regional 

economy tends to diminish. 

 

In spite of this recognized importance, the available studies on the specific issue of 

interregional trade are rare, especially due to the difficulty in obtaining the necessary 

data. Besides that, the techniques often used to assess this required data sometimes fail to 

capture the real amount of exports and imports within regions. Non-survey methods that 

estimate net trade flows, for example, are clearly not suited, given the growing 

importance of crosshauling. Net values will always be small in comparison with the gross 

flows of exports and imports, underestimating the real relevance of interregional trade in 

the formation of regional GDP (Harris and Liu, 1998).  

 

As it has been mentioned before in this essay, one of the main problems in regional table 

assembly is in obtaining interregional commodity flows. In input-output practical 

applications, the knowledge of this data is of fundamental importance, in two 

perceptions: (1) in a statistical perspective, since they constitute an essential part of 

regional supply and demand, necessary to ensure consistency in the system of regional 

input-output tables (2) in the modeller perspective, because of the already mentioned 

importance of interregional feedback effects, that can only be accounted for when 

interregional trade flows are known. Given the known difficulties in collecting such 

information directly, the debate is focused on non-survey techniques. The objective of 

section 1.6 is to expose clearly the problem of interregional trade estimation and critically 

review the major non-survey techniques which have been used to estimate interregional 

commodity flows.  

 

The problem of interregional trade estimation can be illustrated as follows. Let’s assume 

a system with k regions of origin (denoted by a superscript r) and k regions of destination 
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Destination 

Origin 

(denoted by a superscript s). Then the problem consists in estimating the interregional 

shipments of j, rs

jx , ksr ,,1, L= , as illustrated by the following matrix
51

: 

  

Figure 1. 6 – Interregional trade flows of commodity j from Region r to Region s: 

rs

jx . 

 

Region 1 Region 2 … Region k Sum 

Region 1 0 
12

jx  … 
k

jx1
 

roc

jd 1
 

Region 2 
21

jx  0 … 
k

jx 2
 

roc

jd 2
 

… … … 0 …  

Region k 
1k

jx  
2k

jx  … 0 
rock

jd  

Sum 
1roc

jm  
2roc

jm  … 
kroc

jm  jj md =  

 

This problem may be addressed in three steps, of increasing complexity: (1) determining 

the net trade between each region of the system and the rest of the country; (2) 

determining gross exports and imports from net flows, which means, solving the problem 

of crosshauling; (3) determining interregional trade flows, for every product, established 

between each region of origin and each region of destination, i.e., fulfill a complete O-D 

matrix for each and every product being traded. We will deal with problems (1) and (2) in 

sections: 1.6.2 and 1.6.3, respectively. The problem of fulfilling the whole Origin-

Destination matrix for each commodity being traded is rather complex and, in such 

context, specific models are required. These models belong to the generic heading of 

spatial interaction models, being the core subject of Chapter 2.  

 

1.6.2 Determining net exports in single-region input-output models. 

 

When assembling a single-region input-output table from the correspondent national 

table, all the components of the table can be obtained for the region on the basis of the 

                                                 
51

 We are assuming, at the moment, that only interregional trade is being estimated and not intra-regional 

trade. We will get back to this issue in section 6.3. 



 113 

national values (or from direct regional sources), except for interregional trade. In this 

case, obviously, there is no counterpart at the national level. Thus, the methodology 

usually consists in estimating interregional trade only when the rest of the table is already 

assembled. In order to achieve the estimation of interregional trade in a multi-regional 

system, the first step consists in estimating the trade balance, for each product, between 

each region and the remaining regions of the system.  

 

In single-region tables, exports from (and imports to) the region to (from) the rest of the 

country are determined as outflows (and inflows) without specifying the region of 

destination (origin). Moreover, there are no consistency constraints regarding these trade 

flows, since the other regions’ inflows and outflows are not being estimated
52

. Finally, 

exports flows are treated as exogenous components of regional final demand in the 

correspondent single-region input-output model. 

 

The non-survey techniques exposed in section 1.5.4, as techniques used to estimate intra-

regional flows from total use flows, have also been used to estimate trade flows between 

each region and the rest of the country (Jackson, 1998). In this context, LQ and CB 

techniques are used in the table assemblage stage, in order to assess the values comprised 

in the vector of imports from the rest of the country, rrocm , and in the vector of exports 

to the rest of the country, rocr
d , included in final demand. As it will be explained, these 

methods don’t provide exactly the estimates of  rrocm  and rocr
d , but rather one vector of 

net exports, given by the difference rrocrocr
md −  (or equivalently, one vector of net 

imports given by rocrrroc
dm − ).  

 

Starting from the Location Quotient, let´s observe again equations (1. 62). These 

equations are applied when region r is relatively less specialized in j than the nation 

( 1<r

jLQ ). This means that the capacity of the region in self providing product j is given 

by its relative specialization in j, i.e., by r

jLQ  and some of the regional requirements of j 

                                                 
52

 Of course, if interregional trade is being estimated for each single-region table within a more complex 

multi-regional system, one restriction must be observed: the sum of all interregional exports must equal the 

sum of all interregional imports. 
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have to be imported (in this case, there are supposedly no exports of product j – it is the 

“no crosshauling” assumption). Then, the value of regional production of product j, is 

given by: 
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(1. 77) 

 

Considering that regional requirements of product j (given by r

j

i

r

ji yu∑ + ) are satisfied by 

regional production and imports, we may derive an equation for regional imports:  
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(1. 78) 

Moreover, if we assume that crosshauling does not exist, this equation provides an 

estimation of net regional imports of product j. Isserman (1980) presents an equation for 

net regional exports of product j ( r

jNEX ) which corresponds exactly to the symmetric of 

equation (1. 78) (except for the fact that regional employment is used by this author 

instead of regional production): 

r

jr

j

r

j v
LQ

NEX )
1

1( −= ,  if 1>i

jLQ  

 (1. 79) 

This implies that, in Isserman (1980), the LQ method is being used in a symmetric 

manner. This represents a slight difference comparing to the way in which LQ method 

was applied in intra-regional flow estimation (section 1.5.4). In fact, in equation (1. 79), 

the value of LQ is inserted, whether it is greater or smaller than one. Conversely, in 
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section 1.5.4, it became clear that there was an asymmetric treatment of the LQ value: 

when it was greater than one, all regional requirements were assumed to be provided by 

regional production and gross exports were computed as a residual; this was done to 

every value above one, regardless of its magnitude. 

 

Equation (1. 79) may be presented as follows: 
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(1. 80) 

This version of the equation “is most useful for identifying the theoretical rationale 

behind the location quotient approach” (Isserman, 1980, p. 157). In equation (1. 80), net 

exports are estimated as a result of the difference between the relative weight of product j 

in total regional production and an estimate of regional demand of product j, assuming 

that this is proportional to the weight product j in total national production. Thus, the LQ 

method “tends to assume away the very regional differences a regional input-output 

model is designed to highlight” (Round, 1983, p. 197). The structure of regional demand 

for each product j is then assumed to be spatially invariant, being this the major limitation 

of LQ, as already mention in section 1.5.4.  
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Three additional quite restrictive assumptions are generally pointed out to the use of LQ 

in assessing regional trade flows for each commodity
53

 (Harris and Liu, 1998). These will 

be presented in a critical way. 

 

1. It is commonly argued that “There must be no cross-hauling between regions of 

products belonging to the same industrial category, so if a region is an exporter of 

i, its consumption of i is entirely from the region’s production” (Harris and Liu, 

1998, p. 853). In fact, there is some imprecision in this statement. The fact that 

LQ gives an estimative of net exports doesn’t imply that cross-hauling doesn’t 

exist, but rather that LQ is designed to estimate net flows instead of separate gross 

flows. This distinction is assumed away, by asserting that there is no cross-

hauling (Isserman, 1980). As stated in Jackson (1998), “If there was no cross-

hauling, then the estimate of rest-of-nation exports would be gross rather than net 

(…)” (p. 234). 

 

2. The country, as the sum of k regions, is neither a net exporter nor importer of j 

(Isserman, 1980). The demonstration is based on a transformation of equation (1. 

80): rjr

j

r

j

rj

r

r

jr

j v
v

v
vNEXv

v

v

v

v
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












−= . Summing for all the k 

regions of the system, we get a null sum: 

 

                                                 
53

 Besides these, another assumption, considered as an additional limitation to the use of LQ, is mentioned 

in some papers (for example, in Isserman (1980), Harris and Liu (1998) and Harrigan et al., (1981)), 

referring to equal regional and national productivity per employee. But this supposition is only required 

when the share of regional to national employment is used as a proxy to regional contribution to national 

production. However, such assumption is avoidable if alternative variables, based on currently available 

data on production, value added, among others, are used in the definition of LQ.  
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3. The region as a whole is neither a net exporter nor a net importer. In fact, if we 

make the sum of the net exports for all n products of region r, we get a null sum: 
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(1. 82) 

 

This restriction is very limiting, since there is no theoretical reason to force the 

regional trade balance with the rest of the nation to be null.  

 

The shortfall related to the second assumption can be prevented if the method is restricted 

to the estimation of trade flows between region r and the rest of the country instead of 

using it to estimate both types of trade flows (interregional and international) in 

conjunction. In other words, commonly accessible data on international trade should be 

used, in order to avoid such restrictive assumption as the inexistence of surplus or deficit 

at the nation level. However, some adaptation must be made to the LQ method when the 

objective is to deal solely with interregional trade. An appropriate variable must be used 

in the definition of LQ, which is exempt of the effects created by international flows. 

Let’s define the variable r

jAO , representing available output in region r to satisfy 
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domestic demand (demand directed to region r and also to the remaining regions of the 

country) (Sargento, 2002): 
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j

rrow
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r

j dmvAO −+= , 

(1. 83) 

in which rowr

jd  denotes exports of j from region r to foreign countries. Defining the LQ 

on the basis of this new variable ( ( )∗r

jLQ ), we get: 
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(1. 84) 

 

In this case, using an equation equivalent to (1. 80), net exports from the rest of the 

country (or net imports, if the quotient is below unity) are estimated as: the difference 

between the available output in region r to satisfy domestic demand of product j and the 

estimated regional requirements of product j, assuming that it is a proportion of total 

available output in the region r, given by the weight of product j in domestic demand at 

the national level (which corresponds to the assumption of identical regional demand 

structure in the region and in the country): 

rjr

j

r

j AO
AO

AO
AONEX ⋅−=  

(1. 85) 

If the researcher uses such version of LQ, obtaining international trade data from an 

independent source, the previously referred assumption 2 is not only appropriate, but 

rather a necessary constraint. Obviously, for interregional trade flows of each commodity, 

it is required that one region’s exports are equal to the imports of the rest of the regions.  

 

In short, the LQ method suffers from the fact that it relies on two erroneous assumptions: 

1) the assumption of spatially invariant demand structure and 2) the obligation of null 

balance of trade between the region and the rest of the nation.  
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Commodity Balance is an alternative method to assess net commodity flows between one 

region and the rest of the country. This method relies upon the balance that must hold 

between total supply and total demand for each commodity. Total regional supply is 

equal to the sum of regional output with regional imports; total demand is given by 

regional requirements plus regional exports. Defining, as before, regional requirements of 

j by r

jD , the following balance must hold, for any region: 
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(1. 86) 

 

Using the previously defined variable rowr
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(1. 87) 

 

When 0<r

jNEX , the balance constitutes the value of net imports; when it is positive, 

then it corresponds to the value of net exports. 

 

Let’s compare this equation with equation (1. 85). Both equations attempt to estimate net 

exports through the difference between available regional output and regional 

requirements. However, while LQ uses a strong and unlikely assumption to provide an 

estimate of regional requirements for product j (given by AO
AO

AO j
⋅ ), CB uses the actual 

value of regional requirements directly. This suggests that, in practice, the direct use of 

CB should be preferred over the use of LQ. The remark made by Stevens and Treyz 

(1989) provides additional support to this argument: “(…) the alternative methods are 

based on the reasonable assumption that the greater the ratio of regional supply to 

regional demand, the more a region is likely to buy from itself; however, LQE and LQS 
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measures are only proxies for this ratio, whereas the SRD is the ratio itself” (p. 252)
54

. 

But there is also a practical problem affecting CB method: it calculates r

jNEX  as a 

residue, whose value guarantees the verification of the equilibrium between supply and 

demand; thus, the mistakes made in estimating the remaining components of the regional 

table are included in this value. Still, it has a significant theoretical advantage over LQ: it 

takes into account the specific structures of demand estimated to the region under study
55

. 

Jackson (1998) reinforces this idea stating that “the supply-demand pool approach can be 

argued to be theoretically superior to methods based on location quotients, which do not 

account for variations in the final demand structure” (p. 233). This author suggests the 

application of CB technique in his description of how to regionalize commodity-by-

industry accounts. Commodity-balance was also applied in Jensen-Butler and Madsen 

(2003) as a first step in interregional trade estimation, to obtain the net exports of each 

product made by each region.  

 

The empirical application conducted in Sargento (2002), which aimed to compare the 

results provided by LQ and by CB, suggested as well that Commodity Balance was the 

most adequate method to estimate trade flows between the Portuguese region under study 

(Região Centro) and the rest of the country. Even with no survey data on interregional 

trade flows to make an objective evaluation of each method’s accuracy, the knowledge 

about the region under study allowed the author to consider the results provided by CB, 

more adequate than the ones generated by LQ. For example, the structure of net imports 

suggested by CB reflects the specific structure of intermediate consumption of the region 

in study which is clearly associated to some important industries in the region. One of the 

paradigmatic cases involved forestry products: the region was found to be a net exporter 

of these products according to the LQ method (which may seem, at first glance, more 

                                                 
54

 LQE and LQS stand for LQ based on employment and on supply variables, respectively; SDR is for 

supply-demand ratio, the author’s label for commodity-balance. 
55

 This is a theoretical advantage only when the technique used to estimate the vectors of regional 

intermediate and final demand, in assembling the regional input-output table is a suitable one. If we resort 

to non-survey methods applying the national structures to the region under study, without incorporating any 

superior information, then this advantage looses a lot of its significance. Conversely, if for example one 

uses surveys directed to families to estimate patterns of regional private consumption, some specific 

features of regional demand’s structure are being introduced, thus influencing the values of net exports 

estimated by CB. 
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suited to the reality of the region, which is known by its forest extension) and a net 

importer, according to CB estimate. However, taking into account the specific structure 

of forest products demand in the region, we realize that intermediate demand to provide 

wood and cork as well as paper industries, with a great importance in Região Centro, is 

by itself above the available regional output. Thus, the negative sign for net trade flows 

given by CB method is probably a better estimate than the one provided by LQ. Other 

examples concerning the empirical comparison of the results provided by both methods 

can be found in Sargento (2002) and Sargento and Ramos (2003). 

 

The option for CB technique to estimate net trade flows between one region and the rest 

of the country is also patent in other empirical works carried out by Portuguese research 

teams, which had the objective of assembling single-region input-output tables for other 

Portuguese regions. This is the case in CCRN/MPAT (1995) applied to Região Norte and 

CIDER/CCRA (2001) applied to Região do Algarve. In the construction of the input-

output table for Região Autónoma dos Açores (Azores Islands), this method was applied 

only partially, to services and some residual goods, since a great part of inter-regional 

trade is established between the islands and the mainland, by air and sea, for which the 

information provided by the Statistics of Transports and Communications is quite 

complete (ISEG/CIRU, 2004).  

 

1.6.3 From net to gross trade flows: the problem of crosshauling. 

 

Both methodologies presented in the previous sections lead to net trade flows (net 

exports, when positive, or net imports, when negative) between the region and the rest of 

the country. From LQ or CB technique, we obtain: 

 

rroc

j

rocr

j

r

j mdNEX −=  

(1. 88) 

The difficulty here is that this net value is compatible with an infinite number of values 

for gross trade flows. Yet, the knowledge of the values of total gross exports and gross 

imports for each region and each products is usually required to proceed with the 
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estimation of interregional trade flows, that is, to fulfill the complete O-D matrix for each 

product being traded. The problem of obtaining gross exports and gross imports from the 

net trade balance is termed the crosshauling problem. One possible attitude consists in 

ignoring crosshauling. This corresponds to assume that: when the region is a net exporter 

of some product, there are no imports of the same product (and, in this case, net exports 

will equal gross exports); when the region is a net importer, there are no exports of the 

same product (in this case, gross imports will be set equal to net imports). But this is an 

extremely simplistic approach, given that net flows are usually very small when 

compared to gross values of exports and imports. This is demonstrated, for example, by 

Susiluoto (1997), in which trade between three Finish regions was estimated both through 

an inquiry and using the commodity balance method. The values of interregional trade 

provided by the commodity balance method were systematically lower than the ones 

obtained from the inquiry, which is expected, given that the first method accounts only 

for net trade flows.  

 

Crosshauling consists in simultaneous import and export of products under the same 

classification. In section 1.6.1 we have already addressed this issue, explaining some of 

the factors that have led to an increase in crosshauling (also named intra-industry trade). 

What matters here is that this is an unavoidable issue, even if a high degree of 

disaggregation is used in product’s classification and in regions’ definition. It is true that, 

“the principle of applying a high level of disaggregation, both in terms of commodity and 

geography, reduces the problem somewhat” (Madsen and Jensen-Butler, 1999, p. 297). 

However, the problem would only be totally solved if commodities were completely 

homogeneous or if an infinitely thin disaggregation concerning products and regions 

were used (Toyomane, 1988).    

 

One of the possible solutions to the crosshauling problem is to set arbitrarily a 

crosshauling rate. This is done for example in Madsen and Jensen-Butler (1999), in 

which the share is set equal to 10%. A crosshauling share χ  can be defined as: 
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(1. 89) 

This share represents the weight of net exports (in absolute value) over gross exports. 

From this crosshauling share, it is possible to achieve the value of gross exports and gross 

imports on the basis of the known value of net exports. This is done as follows: 
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(1. 90) 

 

Sometimes this crosshauling share is not settled in a complete ad-hoc basis, but it is 

rather based on some information on interregional trade flows available from transport 

statistics. This was done, for example, in Ramos and Sargento (2003). The crosshauling 

shares were settled through the comparison between the net trade balance and total 

regional outflows (in physical quantities), recorded in transport statistics. However, this is 

not a straightforward solution, given the known drawbacks of transport statistics. Ramos 

(2001) refers five problems related to transport statistics provided by the Portuguese 

national institute of statistics. First, these statistics are only adequate to provide 

information on flows of goods and not on flows of services, since interregional flows of 

services occur due to movements of persons and not due to movements of products. 

Second, all trade flows are expressed in physical units, which, on the one hand prevents 

the sum of flows of different products and, on the other hand, tends to emphasize heavier 

products, neglecting others that may have a higher value (yet less heavy). This last 

problem is reinforced by the fact that, in what concerns to road traffic, all vehicles below 

some weight are excluded from the population of which samples are collected. Another 

important difficulty is related to the classification of goods used by transport statistics, 

which is not coincident with the National Accounts classification, used in input-output 

table assemblage. Finally, some flows recorded by transport statistics are not true 
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Destination 

Origin 

interregional trade, but rather trade between transport platforms which serve merely as 

points of departure (or entry) for international exports (or imports). Thus, it is not easy to 

separate interregional from international trade. 

 

Given the difficulties in dealing with crosshauling, probably the best procedure consists 

in adopting a methodology which does not require the direct estimation of crosshauling. 

This can be done if the researcher opts by estimating the content of an O-D matrix 

comprising both intra and interregional trade (represented in Figure 1. 7), instead of 

estimating the content of an O-D interregional matrix as the one depicted in Figure 1. 6.  

 

Figure 1. 7 – Intra and Interregional trade flows of commodity j from Region r to 

Region s: rs
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The elements of the matrix in Figure 1. 6 are the same as the ones in Figure 1. 7, except 

in what concerns to the main diagonal and the row and column totals. The main diagonal 

in Figure 1. 7 comprises intra-regional trade of product j. The row sums represent total 

supply of product j in region r, before accounting for interregional imports. The column 

sums represent total use of product j of region s, before accounting for interregional 

exports. These totals correspond exactly to the information that the researcher usually 

gets when the regional table is assembled, before proceeding to the estimation of 

interregional trade. In fact, as explained in section 1.6.2, net exports are obtained by the 
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difference between these two totals (see equation (1. 87)). It is clear that no values of 

gross exports or gross imports are needed a priori (at the interregional level) to apply 

such methodology; thus, the problem of crosshauling is avoided.  Using this approach, 

the problem of estimating interregional trade is solved in only two steps: (1) regional 

input-output table assemblage, without accounting for interregional trade and (2) 

estimation of intra and interregional trade flows (fulfilling the matrix of Figure 1. 7). 

When this matrix is fulfilled, the researcher has access to the a posteriori values of gross 

imports and gross exports of product j, for each region: they correspond to the column 

sums and row sums (respectively) of the off-diagonal values of the matrix. Though, the 

major problem with this approach consists in finding the adequate model to fulfill the 

inner part of the matrix in Figure 1. 7. As it will be seen in Chapter 2, interregional trade 

estimation is already a very complex problem when the objective is to estimate a matrix 

such as in Figure 1. 6. When it comes to estimate a matrix like the one in Figure 1. 7 

additional difficulties arise; for example, in models that use distance between regions as 

one of the explaining factors of interregional trade, one of the problems relies in finding a 

proper way to compute intra-regional distance, in order to estimate the main diagonal 

elements of the matrix. 

 

From the previous paragraph, it seems that the non-survey techniques presented on 

section 1.6.2 are dispensable. This is true, if we are dealing with a multi-regional system 

of input-output tables, to be used in multi-regional input-output analysis. In this case, the 

researcher can follow directly from the table assemblage stage, where k

jj vv ,,1
L  and 

k

jj DD ,,1
L  were estimated, to the fulfillment of the intra and interregional trade matrices. 

However, if the researcher is interested in performing input-output analysis over one 

single-region, for instance for region 1, then only 1

jv  and 1

jD  are achieved in the first step 

of assemblage. Thus, he/she will need to go through the first two steps mentioned in 

section 1.6.1: after assembling the regional table, the net balance of trade for each 

product is computed and then crosshauling must be estimated, in order to get gross values 

of exports and imports.  
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Turning back to the many-region case, we still have to deal with the problem of fulfilling 

the O-D matrix (either comprised only of interregional trade or of intra and interregional 

trade), using the known margin totals as restrictions of the model. The presentation, 

discussion and empirical assessment of the proposed models to solve this problem, is left 

to Chapter 2. Such models are generally termed spatial interaction models. 

 

1.7. Conclusions. 

 

In this Chapter we had the main objective of making a broad and critical review of the 

state of knowledge regarding input-output modelling and input-output table construction 

at the regional level. In all sections of this Chapter we were concerned with the practical 

applicability of the models and techniques proposed by the literature, having in mind the 

quantitative and qualitative disagreement that usually exists between the required and the 

available data. Such review was essential to systematize ideas and present the primary 

concepts which will be dealt with in the subsequent Chapters. Being so, we tried to be 

parsimonious in this theoretical review (leaving out some important topics of input-

output analysis – as for example, closing the model with respect to households, supply-

side models, dynamic models, and so on), so that it could be concise and practical 

oriented. 

 

From this review, seven main conclusions may be drawn, presented in the following 

paragraphs. 

 

(1) First, it is evident that the input-output framework continues to be intensively 

studied and empirically applied, in spite of its limitations, related to the set of 

hypotheses underpinning the model. This means that the limitations of this 

framework are transcended by its two main strengths: it is a fundamental tool for 

economic analysis (concerning the input-output model) and it comprises a 

considerably detailed statistical instrument (the input-output table). 

(2) Second, the adaptation of the input-output framework to the regional level is 

extremely important, since regional features are specific and regional problems 
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may differ considerably from national problems (Miller and Blair, 1985). For 

example, the dependence on imports (to provide regional needs for commodity 

supply) and on exports (to drain regional production) tends to be much more 

relevant at the smaller regional level than at the national level (Munroe and 

Hewings, 1999). For this reason, one of the most important tasks in the 

construction of regional input-output tables consists precisely in the assessment 

of the region’s exports and imports, which comprise trade flows established with 

the remaining regions of the same country and also with other countries. In this 

context, the problem relies on the estimation of interregional trade flows, since 

international exports and imports are usually provided by official statistical 

sources. 

(3) Third, whenever the economic system under study includes more than one region, 

the adequate input-output model to apply in this context must be capable of 

accounting for the effects caused by interregional linkages – spillover and 

feedback effects (Miller, 1998). The fundamental contributions of the regional 

field of input-output analysis, which emerged in the 1950’s, have been directed to 

the accomplishment of this objective, through the proposal of different versions 

of many-region models. These different many-region models (of which the most 

important were reviewed in section 1.3) reflect different attitudes concerning the 

trade off between the detail degree in describing interregional linkages and the 

demand of trade data. In this context, the most data demanding many-region 

model is the Isard’s interregional input-output model, which is also the one that 

attempts to describe interregional trade flows with a higher detail. In opposition, 

the Chenery-Moses multi-regional model applies certain hypotheses in order to 

avoid such a high demand for observed interregional trade data. More precisely, 

it uses the import proportionality assumption, which states that the percentage of 

imports comprised in the regional demand for some specific product is the same, 

regardless of the type of intermediate or final use of that product, being given by 

the share of imports in the total supply of that same product. Still, a certain 

amount of interregional trade data is always required to the implementation of 

such model: more precisely, it requires a complete origin-destination matrix for 
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each commodity, comprised of shipments from all possible origins to all possible 

destinations (without specifying the type of user in the destination region).  

(4) The database for input-output model implementation consists of the 

correspondent input-output matrix (or system of matrices, in the case of many-

region models). Yet, whereas at the national level the input-output tables are 

regularly provided by the official statistics, according to standardized rules, the 

same does not apply to the regional dimension. For that reason, the construction 

of regional input-output tables continues to be, by itself, one of the most debated 

themes in regional literature. In the review of the proposed survey, non-survey 

and hybrid techniques of input-output table construction, we found that, 

currently, it is very difficult to find tables which are exclusively survey or non-

survey (Dewhurst, 1990). In fact, on the one hand, pure non-survey tables are 

criticized for being extremely mechanical, neglecting all the specific regional 

features that the regional input-output table intends to capture. Besides, there is a 

minimum of survey regional data (concerning, for example, regional output and 

regional value added by industry) which is usually available from official 

organisms of statistics, making it possible to incorporate such direct data, even 

for a single-person team research, with very low budget to table construction. On 

the other hand, pure survey methods involve several difficulties; the most often 

mentioned are its high requirements in time, money, human and logistic 

resources. But other problems must be taken into account when evaluating the 

possibility of survey gathering of input-output data (Jensen, 1980; Jensen, 1990). 

Besides some errors that may occur in the process of gathering the data, there is a 

specific problem that cannot be surpassed by the allocation of more money or 

other resources to the survey task: it consists simply of the fact that some 

questions that must be included in the questionnaires require very detailed 

information to which some respondents may not be able to answer. This problem 

was illustrated in the special context of the assessment of the proportion of 

imported products comprised in the intermediate and final use flows. This 

practical difficulty, sometimes, forces the official organisms of statistics 
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themselves to adopt some hypotheses, as surrogates of the information they 

cannot obtain from surveys. 

(5) The accuracy assessment of the constructed regional input-output table (or of any 

component of it) is a quite controversial matter. Firstly, because the benchmark 

for comparison (usually a survey table for the same economy) may be either 

inexistent or it may suffer from its own accuracy problems. Secondly, in spite of 

the important contribution of Jensen (1980), the adequate concept of accuracy to 

consider in each situation is still not consensual. Finally, there are multiple 

measures of comparison between two tables, being the choice upon one of them 

one more subject of debate.   

(6) Besides the difficulties created by inexistent data (as in the case of interregional 

data), another practical challenge faced by input-output researchers is qualitative 

mismatch between the existing data and the model requirements. The fact is that, 

sometimes, input-output data is provided in a different way from that underlying 

the pioneering input-output models. Thus, input-output models must be adapted 

in order to fit into the specific format in which information is available. We 

addressed this issue, even in a preliminary approach, focusing on two specific 

topics: (1) the adaptation of the input-output model and of the techniques for 

regional input-output construction to the Make and Use format and (2) the use of 

techniques to estimate intra-regional flows from total use flows (those which 

include imported and regionally produced products), when no import matrices 

exist a priori. We were able to exemplify, for the national and the single-region 

case, how the input-output model can, under some hypotheses, be adapted to fit 

the Make and Use format. Concerning the second topic, we concluded that 

different non-survey or partial survey techniques can be used to convert total 

flows into intra-regional flows. The adaptation of the input-output model to the 

Make and Use format and the adoption of hypotheses to deal with total flow 

tables consist of some of the core subjects to be further developed in Chapter 3 of 

this work. 
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(7) The problem of estimating interregional trade comprises different stages, which 

differ according to the number of regions under study. When dealing with single-

region tables, the first step consists in estimating net interregional trade flows. 

The analysis made in section 1.6.2 of the different techniques to achieve this goal 

suggests that Commodity Balance should be preferred over Location Quotient, 

since: (1) it takes into account the specific structure of demand estimated to the 

region under study, while LQ assumes that such structure is spatially invariant 

and (2) conversely to LQ, it doesn’t force the sum of interregional net exports – 

that means, the regional trade balance – to be null. After having estimated net 

trade flows, crosshauling must be accounted for and gross exports and gross 

imports must be estimated. Nevertheless, the estimation of crosshauling rates 

remains a problem to which no direct answers exist. When we are dealing with a 

multi-regional system, the problem of estimating interregional trade may be 

addressed in a different manner. In order to avoid the crosshauling problem, the 

researcher should focus on the estimation of the elements of an intra and 

interregional trade matrix, for which the margin totals are known. Anyway, the 

fulfillment of an O-D matrix, using the known margin totals as restrictions of the 

model, still represents a problem that needs to be solved. Spatial interaction 

models are targeted to the solution of this kind of problems. The study and 

empirical evaluation of such models is left to Chapter 2. 

 

 

1.8. Notation. 

 

Variables: 

ix  - output of product i; 

ijz  - Amount of product i used as an intermediate input in the production of industry j;  

jw  - value added in industry j; 

jm  - total imports of product j;  
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iy  - Final demand for product i (it includes: final consumption, gross capital formation 

and exports); 

r

ix  - output of product i in region r; 

r

ie  - regional production of product i; 

r

ijz  - total amount of product i (regionally produced and imported) used as an 

intermediate input in the production of industry j, in region r; 

rr

ijz  - amount of regionally produced product i used as an intermediate input in the 

production of industry j, in region r; 

r

if  - region’s final demand for product i produced in region r (including regional 

requirements as well as exports for any other regions, national or foreign);  

r

iy  - regional final demand for product i; 

rs

ijz  - amount of product i coming from region r that is used as an intermediate input by 

industry j in region s; 

sr

ix  - amount of product i shipped by region s to region r, without specifying the type of 

buyer in the region of destination. 

r

iR  - total amount of product i available in region r, except for foreign imports; 

rs

if  - amount of product i produced in region r and shipped to region s. 

s

ijz •  - total amount of product i (produced in region s and in the other regions of the same 

country) used as an input by industry j in region s; 

ijv  - domestic production of product j by industry i (elements of the Make matrix – 

rectangular model); 

jiu  - the amount of product j used as an input in the production of industry i’s output 

(elements of the Use matrix – rectangular model); 

jp  - total supply of product j (rectangular model); 

ig  - domestic production of industry i (sum of the rows of the Make matrix); 

r

jAO  - available output in region r to satisfy domestic demand (demand directed to 

region r and also to the remaining regions of the country). 
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r

jD  - total requirements of i in region r. 

rocr

jd  - exports from region r to the rest of the country. 

rroc

jm  - imports from the rest of the country to region r.  

rroc

j

rocr

j

r

j deNEX −=  - net exports of product j by region r. 

i  - column vector appropriately dimensioned, composed by 1’s. 

^  - diagonal matrix. 

Superscript 
row

 – coming from (or going to) the rest of the world.  

Superscript 
roc

 – coming from (or going to) the rest of the country. 

 

Coefficients: 

ija  - technical coefficient (at national level); 

ijb  - generic element of the Leontief inverse matrix; 

jb•  - output multiplier ( ∑=•
i

ijj bb ); 

r

ija  - regional technical coefficient; 
r

j

r

ijr

ij
x

z
a = ; 

rr

ija  - intra-regional input coefficient; 
r

j

rr

ijrr

ij
e

z
a = ; 

rs

ija  - interregional trade coefficient, representing the amount of input i from region r 

necessary per monetary unit of product j produced in region s; 
s

j

rs

ijrs

ij
e

z
a = ; 

sr

it  - trade coefficient, representing the proportion of product i available in region r that 

comes from region s; 
r

i

sr

isr

i
R

x
t = ; 

s

j

s

ijs

ij
e

z
a

•

• =  - technical coefficient for region s: it represents the amount of product i 

necessary to produce one unit of industry j’s output in region s, considering the inputs 

provided by all the regions in the system.  
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i

ji

ji
g

u
q =  - Technical coefficient in the rectangular model (amount of product j used as 

input in the production of one unit of industry i’s output); 

j

ij

ij
p

v
s =  - industry i’s market share in product j’s total supply. 

 

 

Matrices and vectors:  

I  - identity matrix; 

x  - output vector; 

y  - final use vector; 

A  - technical coefficients matrix; 

B  - Leontief’s inverse; 

rA  - regional technical coefficients matrix ; 

ry  - regional final demand vector; 

rx  - regional output vector;  

r
e  - vector of output produced in region r; 

rrZ  - matrix if intra-regional intermediate use flows; 

rrA  - intra-regional input coefficients matrix; 

rf  - vector of regional final demand for products produced in region r. 

rsA  - interregional trade coefficient matrix; 

rsT  - matrix of trade coefficients rs

it  in the main diagonal; 

Q  - technical coefficient matrix (rectangular model); 

g  - vector of industries’ internal production (rectangular model); 

U  - intermediate consumption matrix (rectangular model); 

V  - Make matrix (rectangular model); 

S  - matrix of market shares ijs ; (industry-based technology assumption on the 

rectangular model); 

p  - Vector of products’ total supply (rectangular model); 
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2.1  Introduction. 

 

Interregional trade estimation has been extensively pointed out as a crucial problem to 

overcome when constructing any many-region or many-country input-output table. As it 

has been explained in the first Chapter of this work, the knowledge of interregional trade 

flows, at least the pooled volume of exports and imports by commodity, is an essential 

requirement to allow the consideration of the important spillover and feedback effects 

caused by interregional linkages. Besides, it is important, for regional analysis purposes, 

to be acquainted with the magnitude and nature of the economic interdependence 

between each region and the rest of the world.  

 

In spite of its recognized importance, the fact is that, in most countries, there are no 

completely reliable survey-based statistics on interregional trade. The most approximate 

available source of data on interregional trade consists of transport statistics, which, 

however, are not suited for the needs of input-output table construction, for several 

reasons (Ramos, 2001; Verduras, 2004; Alward, Olson and Lindall, 1998): 1) they do not 

cover service trading; 2) transport flows are expressed in physical units, requiring the 

access to some value / volume relation; 3) flows shipped by manufacturers are not 

distinguished from flows shipped by resellers, leading to problems of double-counting; 4) 

regions with transport platforms appear with an over-estimation of trade flows. Because 

of these problems, transport statistics are only used as an indirect source of data in 

interregional trade estimation (as, for example, in Schwarm, Jackson and Okuyama, 2006 

and in Ferreira, 2008). Given the already mentioned problems associated with the 

conduction of surveys (see section 1.4.2 of Chapter 1), the alternative consists in using 

non-survey methods to generate the undisclosed values of interregional trade or, at least, 

to complement some partial information existing on those flows.  

 

The problem of interregional trade estimation using non-survey methods can be studied 

under the context of spatial interaction models: the aim is to estimate a set of flows 

between several origins and several destinations, separated in space. Belonging to the 
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family of spatial interaction models, there are different methodologies which differ not 

only on the theoretical foundations, but also on their practical applicability, especially 

determined by data demand issues. It is, therefore, important to make a deep analysis of 

each of the alternatives, keeping in mind the objective of the model and its adequacy to 

the problem under study: trade flow estimation.   

 

The use of spatial interaction models (with special emphasis on the gravity model) in the 

context of interregional trade estimation is not new. Such type of application of spatial 

interaction models can be found in the literature since Wilson (1970), Kim, Boyce and 

Hewings (1983), Alward, Olson and Lindall (1998) and, more recently, Schwarm, 

Jackson and Okuyama (2006) and Ferreira (2008), mentioning only some examples. 

However, usually each researcher makes an option for some specific type of model, 

without making a comparison between the results provided by that model and the existing 

alternatives. This is due to the fact that the evaluation of the model results requires the 

access to some benchmark values, which are typically unavailable (Hewings and Jensen, 

1986; Canning and Wang, 2006) – the inexistence of that data is precisely the motivation 

for the application of the model in the first place. Yet, we consider that it is paramount to 

investigate the relative accuracy of the several proposals, in order to evaluate the 

reasonability of using those non-survey methods as a viable alternative to survey 

methods, in input-output table construction. Hence, in the present Chapter, the empirical 

comparison between different interregional trade estimation methods will be made using 

European countries instead of regions and officially known inter-country trade flows as 

the benchmark for model accuracy evaluation. 

 

In the present work we will assume the context of very limited information as the data 

scenario faced by the researcher: it is considered that, concerning trade flows, the only 

previously known information consists of the total value, by product, that enters into each 

destination region and the total value also by product that is shipped from each origin 

region. The motivation to do so relies on the fact that the conclusions of this study are 

intended to be used by regional input-output assemblers, which in most cases face the 

obstacle of a complete lack of data on interregional trade flows, except from those values 
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of total exports and imports – usually obtained previously along with the remaining 

components of the regional input-output table (as explained in section 1.6 of Chapter 1). 

 

The main objectives of the present Chapter are: 

• To make a comprehensive review of the proposed models for interregional trade 

estimation and evaluate the practical applicability of each of the models under a 

context of very limited a priori information. 

• To make an empirical comparison between different methodologies of 

interregional trade estimation. This comparison is guided towards the following 

research questions:  

o What is the degree of closeness of each estimated matrix to the real matrix 

of flows?  

o Which method generates the most accurate estimated matrix? 

o How sensitive are the values obtained in the final trade matrix to different 

estimating methods? 

o How sensitive is the solution of the input-output model to the insertion of 

different interregional trade values? In other words, how important is the 

choice of interregional trade estimation method to the solution of the 

input-output model? 

 

The answers found to these questions are of extreme importance to any researcher who 

intends to use a non-survey method to estimate interregional trade. For example, if the 

solution of the input-output model is found to have a low sensitivity to the choice of trade 

estimating method, then, this can be used as an argument to opt for a simple non-survey 

method of trade estimation. Conversely, if the choice of method reflects highly on the 

trade values and also on the results of the input-output model, then, that choice should be 

made carefully and a pure non-survey method may not constitute a viable alternative. 
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This Chapter is organized in six sections, including this Introduction. In the second 

section, the problem under study is presented and framed within the theoretical reasoning 

of spatial interaction problems. Section 2.3 comprises a review of the most important 

models belonging to the family of spatial interaction models, discussing their theoretical 

foundations and also their practical applicability in the context of interregional trade 

estimation. Section 2.4 is dedicated to a more detailed study of the most frequently used 

spatial interaction model, namely the gravity model. The often advocated good 

performance of this model as an explanatory framework is tested, through an extensive 

econometric application. The fifth section contains the nuclear part of the present 

Chapter’s empirical application: the comparison between different methods of 

interregional trade estimation. Finally, section 2.6 presents a summary of the main 

conclusions of this Chapter. 

 

2.2  Interregional trade flow estimation as a spatial interaction 

problem. 

 

As stated in Hewings, Nazara and Dridi (2004), “interregional interaction is not only 

inevitable, it is often the key to enhancing the success of a region” (p. 13). Among the 

different types of interaction that may exist between different regions, our interest is 

focused on interregional trade. This Chapter is concerned with the specific problem of 

estimating the values to be inserted into an Origin-Destination (O-D) matrix, depicting – 

for each product – interregional trade flows from each region of origin to each region of 

destination.  

 

It is assumed that the column and row totals are previously known. Moreover, since only 

interregional trade flows are being estimated (and not intra-regional ones), the main 

diagonal values are previously set equal to zero. Let’s assume a system with k regions of 

origin (denoted by a superscript r) and k regions of destination (denoted by a superscript 

s). Then the problem consists in estimating the interregional shipments of j, rs

jx , 

ksr ,,1, L= , as illustrated by Figure 2. 1. 
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Figure 2. 1 – Interregional trade flows of commodity j from Region r to Region s: 

rs

jx . 

 

 

This is a typical problem to be addressed by models generally called as spatial interaction 

models (Alward, Olson and Lindall, 1998). Broadly speaking, the goal of these models is 

to explain and/or estimate spatial interaction flows, defined as the movement or 

communication between different spaces. This interaction implies a decision taken after a 

cost-benefit analysis, in which the individual evaluates the trade-off between the benefit 

from the movement (related to the motivation that causes it) and the cost of that same 

movement (which corresponds to the traveling across the spatial separation between his / 

her origin and the several destinations) (Fotherigham and O’Kelly, 1989).  Besides trade 

flows, in which we are specifically interested, spatial interaction models deal with a vast 

collection of flows, such as: migration, information flows, traffic flows and commuting 

movements, among others. In presence of such a variety of applications, there is no 

specific type of model which is superior to all the remaining, whatever the topic that it is 

applied to. Being so, in each particular circumstance, the researcher must decide which is 
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the most adequate, among all the proposed models (Isard, 1998). Yet, one of the 

conditions which may restrict the choice of the researcher is the context of information 

availability. We can distinguish two possible information contexts, which we have 

decided to name as Type (a) and Type (b): 

(a) Type (a) information context: spatial interaction flows are known a priori, at least 

for some time period previous to the one that the researcher wants to study. 

(b) Type (b) information context: Spatial interaction flows are totally unknown a 

priori. 

 

As it will be made clear in the following section, some of the spatial interaction models, 

namely the gravity model, may be applied in any of these two different contexts, yet with 

different research objectives, while others, like information theory models, require the 

existence of some previous information on the spatial interaction flows.  

 

Regardless of the specific goal of the investigation, there are four fundamental elements 

that are common to every spatial interaction model (Fotherigham and O’Kelly, 1989):   

• One interaction matrix, T, structured as in Figure 2. 1, consisting of spatial interaction 

flows to be determined, between region r and region s, rsT , with k rows (origins) and 

k columns (destinations)
56

; 

• One matrix C, of the same dimension as T, of which elements rsδ  represent spatial 

separation between each origin r and each destination s (this separation can be 

measured in several ways, like physical distance, transportation costs, etc). 

• One or more rϖ  variables for each origin r ( kr ,,1L= ), called propulsion measures 

of origins; these are measures that influence the volume of flows that leaves each 

                                                 
56

 Since, in this Chapter, spatial interaction flows will always refer to flows of some commodity j, we will 

simplify the notation, avoiding the use of subscript j; in this case, we write 
rsT  as a simplification of 

rs

jT . 
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origin; for example, if one is dealing with migration movements, one of the variables 

to be considered here is, necessarily, the unemployment rate at each origin. 

• One or more sϖ  variables for each destination s ( ks ,,1L= ), which are attraction 

measures for destinations. Again, if migration is the subject under study, the 

unemployment rate at destination s will also be one of the variables to account for, yet 

having here a negative influence on the attractiveness of that destination. In spite of 

this example, generally the variables used to measure the potential of attraction in the 

destinations may be different from the ones used to capture the propulsion force of 

origins. 

 

The function of any spatial interaction model is to relate the values on matrix T (the 

dependent variable) with variables rϖ , sϖ  and rsδ . If one admits, for simplicity sake, 

that there is only one propulsion variable for each origin and one attraction variable for 

each destination, the purpose consists in finding the appropriate form to the following 

function:  

 

( )rssrrs fT δϖϖ ;;= ,  

 (2. 1) 

in which rsT  represents the spatial interaction flow between r and s. 

 

In the development path of investigation in spatial interaction models, several specific 

forms have been proposed to the general function in (2. 1), which can be influenced by 

practical application issues or by the theoretical foundations in which they rely. On the 

following sections, the intention is to review the most important models belonging to the 

family of spatial interaction models. We present them in a stepwise fashion, beginning by 

the pioneering approach, that is, by the gravity model. This model will deserve a good 

deal of our attention, since it is still one of the most attractive among spatial interaction 

models, especially in empirical applications to trade. Then, we proceed with probabilistic 

models, established on the concepts of entropy and information theory and, at last, with a 
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brief reference to behavioural models. In each model, we will present the underlying 

theoretical concepts and discuss their applicability in the specific study of trade flows.   

 

2.3  Theoretical review of the spatial interaction models proposed to 

estimate trade flows. 

 

2.3.1 Gravity models. 

 

The original spatial interaction models to be applied to human interactions were based on 

the analogy with physical interaction among particles. In the 1930’s, Newton’s 

gravitational law
57

 was applied by Reilly, for the first time, to the study of human 

interactions, more precisely, to trade flows, establishing that “two cities attract trade from 

an intermediate town in the vicinity of the breaking point, approximately in direct 

proportion to the population of the two cities, and in inverse proportion to the squares of 

the distances of the intermediate town”
58

.  When we apply gravitational law to trade, we 

meet: 

 

( )( )
( )2rs

sr
rs PP

Gx
δ

=  

(2. 2) 

 

in which: rs
x  represents exports from origin r to destination s, G  is a constant of 

proportionality, rP  and sP  express the populations of origin r and destination s and rsδ  

represents spatial separation – the distance – between each origin r and each destination 

s. 

 

                                                 
57

 According to which the attraction between to bodies, r and s is directly proportional to their masses and 

inversely proportional to the distance between them, in the specific form:
2

rs

sr

rs

mm
GF

δ
= . 

58
 Reilly, W. 1931. “The law of retail gravitation”. New York: Pilsbury, republished in 1953, p. 9. Referred 

in Batten and Boyce (1986), p.360. 
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We can also see that this equation consists of a very particular case of equation (2. 1); in 

this case, the propulsion and attraction variables are represented by population at the 

origin and at the destination, respectively, and spatial separation is measured by the 

distance between the origin and the destination. 

 

In the 1940’s, this model knew a great development explaining and forecasting spatial 

interaction among populations. The mathematical simplicity and intuitive nature of the 

gravitational hypothesis, as well as the reasonability of the results produced by its 

application were at the basis of the success this model had among researchers (Sen and 

Smith, 1995). The growing application of gravitational model to different kinds of spatial 

interaction led investigators to seek for the specific formulation that generated the best 

results to the matter under scrutiny, moving away from the rigidity associated to 

Newton’s formula (Roy and Thill, 2004). The first step that was taken in order to enhance 

flexibility of gravity model was to consider that the exponent of distance between each 

origin r and each destination s should not be fixed at any specific value. This exponent 

expresses the distance friction effect, i.e, the flow’s sensibility to spatial separation. 

Though Newton’s gravitational formula indicates 2 as the proper exponent, there is no 

reason to transfer this value to other kinds of interaction. Thus, it is consensual that such 

exponent should be estimated in each particular case. Isard and Bramhall (1960), for 

example, reflect this generalization in the gravitational formula that they propose: 

 

( )( )
( )α
δ rs

sr
rs PP

Gx =  

(2. 3) 

 

Besides this generalization, other adjustments were subsequently made to equation (2. 3), 

involving the debate on several issues, such as: the use of alternative variables to measure 

each region’s mass, instead of population; the use of alternative measures of distance; the 

use of specific weights related to the origin and destination masses, instead of considering 

them to be unitary, a priori and, finally, the use of alternative formulations to express the 

influence of spatial separation on spatial interaction – the so-called distance deterrence 
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function (Batten and Boyce, 1986). The discussion of each of these issues is presented in 

the next paragraphs. 

 

One of the problems is the selection of the specific measure to the mass variable: it must 

be chosen in such a way that assures it is the proper one to the actual problem under 

study. For example, when dealing with migration studies, the relevant measures should 

be regional income or regional unemployment, for instance, and not regional population 

(Isard, 1998).  

 

The researcher should also adapt the choice of spatial separation measures to the 

interaction phenomenon at hand. For example, traveling time is a more adequate spatial 

interaction deterrence measure to urban traffic studies than physical distance. In other 

contexts, broader definitions of distance are used; this is the case of social distance (Isard 

and Bramhall, 1960), a concept that intends to evaluate the influence of several factors, 

such as cultural, political, religious (or other) patterns on certain kinds of social 

interactions, like migration or even marriages. In this case, distance may be measured in 

ordinal terms and not in cardinal terms, i.e., the number defining the distance measure 

simply represents the degree of proximity between two spaces or two individuals, having 

no meaning when taken in an isolated manner (Sen and Smith, 1995).  

 

The issue of finding the adequate measures to the variables of the model is not the only 

one involved in this debate. The functional form in which these variables should be 

presented continues to be a matter of great discussion (Dentinho, 2002). For example, 

instead of assuming implicitly that both masses receive a similar weight (equal to one), as 

in equation (2. 3), it may be proved empirically that non-unitary weights are more 

suitable in explaining the specific interaction flows under study. Considering this 

generalization into equation (2. 3), we get: 

 

( ) ( )
( ) 3

21

α

αα

δ rs

sr
rs PP

Gx =  

(2. 4) 
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in which weights 1α  and 2α  are assigned to the masses of origin and destination, 

respectively, rsδ  represents spatial separation between each origin r and each destination 

s and 3α  is the distance decay parameter. 

 

The last issue raised by gravitational model relates to the functional form to represent 

spatial separation. There are two predominant forms that can be found in the literature on 

this matter: the power function and the exponential function (Fotherigham and O’Kelly, 

1989). The power function is the one that has been used in the previous presentation of 

the gravity model; in this case, distance (or other spatial separation variable) is raised to 

an exponent: ( ) 3α
δ rs . If the exponential functional form was used to represent spatial 

separation, instead of the power functional form, equation (2. 4) would be: 

 

( ) ( )
)exp( 3

21

rs

sr
rs PP

Gx
δα

αα

=  

(2. 5) 

 

The choice between these two functional forms of spatial separation is mostly an 

empirical issue. The researcher must analyze, in each situation, whether there is an 

exponential or a power functional form for the negative relationship between spatial 

separation and spatial interaction. However, there are two other features that should be 

borne in mind when choosing one or another functional form (Isard, 1998): 1) the 

economic meaning of parameter 3α  and 2) the behavior of each function when distances 

are very small. 

 

As to the first item, we must realize that 3α  can be interpreted as elasticity in power 

functions, but not in exponential functions. In fact, if we take the logarithmic form
59

 of 

equation (2. 4) and (2. 5), we get, respectively: 

                                                 
59

 We use notation ln to represent elog . 
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rssrrs
PPGx δααα lnlnlnlnln 321 −++=  

(2. 6) 

and 

rssrrs
PPGx δααα 321 lnlnlnln −++=  

(2. 7) 

Being so, in equation (2. 6), 
rs

rsx

δ
α

ln

ln
3

∂

∂
= , meaning spatial interaction elasticity to 

distance. This is not the case in equation (2. 7), where distance is not in logarithm form. 

This feature constitutes an advantage of power functional form over exponential form, in 

particular in what concerns to trade applications. In this case, it is interesting to infer the 

trade flow elasticity to distance, especially when different commodities are being studied. 

We will get back to this issue on Section 2.4. 

 

The second item referred above is related to the fact that power functional form has the 

disadvantage of overestimating spatial interaction value when distance between origin 

and destination tends to zero (since 
( ) 3

1
α

δ rs
 tends to infinity as rsδ  tends to zero). 

Exponential function does not face this problem, because, when rsδ  tends to zero, 

)exp(

1

3

rsδα
 tends to 1. This feature of the power functional form may create problems 

whenever the objective involves the estimation of spatial interaction flows between 

different spaces, but also within the same space. This occurs, for instance in problems of 

intra and interregional trade estimation (like the one illustrated in section 1.6.3 of Chapter 

1). But, even in these cases, intra-regional distance may be calculated, instead of being 

assumed a null distance.  

 

In spite of the importance of the theoretical debate, the option for the suitable gravity 

equation is more an empirical matter than a theoretical one. In what concerns to trade 

flow empirical studies, equations such (2. 4) are the most commonly applied, using GDP 

or related variables to express the size of the origin and of the destination. The specific 
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way in which this basic concept is applied in the study of trade flows depends, however, 

on the information context that is faced by the researcher (previously mentioned as type 

(a) and type (b) information contexts). When trade flows are known a priori (type (a) 

information context) the model is usually used to explain trade flows’ behaviour, through 

econometric modelling; conversely, in type (b) information context, the model is applied 

in order to assess the unknown flows.  

 

In type (a) information contexts, equation (2. 6) can be the starting point to a regression 

equation like: 

 

rsrssrrs
YYGx εδααα +−++= lnlnlnlnln 321  

(2. 8) 

 

in which rY  and sY  represent the gross domestic product at the region of origin and of 

destination, respectively, rsε  stands for the error term and the remaining variables are 

defined as above referred
60

. 

 

In type (b) information contexts, gravity model is used with the aim of generating the 

unknowns rs
x  of an Origin-Destination matrix like the one in Figure 2. 1. Using an 

equation similar to equation (2. 4), interregional trade flows first estimative, denoted by 

rs
x~ , could be obtained by

61
: 

 

( ) ( )
( ) 3

21

~
α

αα

δ rs

sr
rs YY

Gx = . 

(2. 9) 

 

                                                 
60

 As it will be seen in section 4, this basic equation can be modified, either by the addition of other 

explicative variables, or by using a specific formulation which allows the incorporation of spatial 

dependence effects.  
61

 By now, we are assuming that parameters ,G  1α , 2α  and 3α  are known values.  
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However, in most cases, the column and row totals of Figure 2. 1 (meaning: the sum of 

all inflows into each destination and of all outflows from each origin) are previously 

known. In this case, the estimated values must verify the following additivity constraints: 

r

s

rs dx =∑~  and s

r

rs mx =∑~ , and the model is doubly-constrained (Isard, 1998)
62

. What 

happens, yet, is that the substitution of the known values of variables rY , sY  and rsδ  

will most certainly produce a matrix of flows in which the row and column totals do not 

match with the ex ante values. The agreement with the additivity constraints can, then, be 

assured through an iterative procedure of bi-proportional adjustment, alike to RAS 

technique
63

 (Batten and Boyce, 1986). After the iterative procedure convergence, the 

adjusted flows can be expressed by: 

 

( ) ( ) ( )
( )

s

rs

sr
rsrsr

RAS

rs
L

YY
GJLxJx

3

21

~~
α

αα

δ
==  

(2. 10) 

 

in which r
J  and sL  are the product of different values that, in each iteration, aim to 

adjust the row and column results, respectively, to the previously known totals. As we 

shall see, parameters like r
J  and sL , called balancing parameters, always appear in the 

solution of any doubly-constrained spatial interaction model, either it is a gravitational 

model or not. These parameters have the mission of assuring the verification of additivity 

constraints. 

 

Obviously, the precise results obtained by the RAS-type iterative procedure are 

determined by the values considered in the starting matrix. In fact, taking the general case 

of k origins (and destinations), the problem corresponds to a system with 2k additivity 

                                                 
62

 Other types of problems may be derived: (1) production-constrained, when only the row additivity 

constrain is considered, 
s

r

rs mx =∑~
; (2) attraction-constrained, when only the column additivity 

constrain is considered: 
r

s

rs dx =∑~
; and unconstrained, which obviously results when no restrictions are 

taken into account (Fotherigham and O’Kelly, 1989). 
63

 Please see Chapter 1, section 4.3.1, for details on the RAS technique. 
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restrictions and 2
k  elements 

rs
x  to be determined

64
. Whenever 2>k , this system admits 

several solutions (Lahr and de Mesnard, 2004). Yet, the solution provided by RAS 

iterative procedure tends to preserve, as much as possible, the structure of the initial 

matrix, changing it only in a minimum amount necessary to respect the row and column 

sum constraints (Jackson and Murray, 2004). In fact, as it was referred in section 1.4.3.1 

of Chapter 1, the solution of RAS corresponds to the solution of a problem of 

minimization of information bias, meaning that the target matrix is generated in order to 

be as close as possible to the prior matrix and, at the same time, respect the row and 

column sum constraints
65

. This makes evident that the starting matrix is determinant to 

the final solution, leading us back to the fundamental issue: finding the adequate model to 

accurately generate the first estimate of interregional flows, i.e., finding the initial matrix.  

 

The potential extensions to the basic gravity equation used in Type (a) studies as well as 

the difficulties faced by the researcher when trying to apply the gravity model in Type (b) 

information context will be deeply analyzed in section 2.4. 

 

2.3.2 Entropy-based models. 

 

In the beginnings of 1970’s there was a new line of research in spatial interaction, in 

which we must emphasize the work of Wilson (1970), for his pioneering contribute. The 

use of entropy maximizing principles originated the development of the so-called 

probabilistic family of spatial interaction models (O’Kelly, 2004). 

 

Entropy-based models are suitable to be used as type (b) spatial interaction models, that 

means, whenever the objective is to estimate interaction flows, having no previous 

information on their value. 

 

                                                 
64

 If the main diagonal elements are a priori considered to be null, then there will be only kk −2
 elements 

to be determined. 
65

 We will analyze problems of minimization of information bias with more detail in section 3.3. 
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To better understand the notion of entropy when applied in the context of spatial 

interaction models, it is useful to introduce the concepts of micro state and macro state of 

a spatial interaction system (Snickars and Weibull, 1977). Let us use an example. 

Suppose that there are 4=T  individuals performing commuting movements between 

two regions, A and B. These movements can be represented either at a micro level or at a 

macro level. A micro level description of the movements (micro state) consists of 

describing the exact movement taken by each of the four individuals. An example of a 

micro state in this system could be the one illustrated in Figure 2. 2: individual 1, 2, 3 and 

4 are making the same movement, from A to B (let this be micro state a). Another 

possible micro state could be micro state b, in Figure 2. 3. 

 

Figure 2. 2 – Micro state a. 

 

Figure 2. 3 – Micro state b. 

 

At all, we could find 16 different micro states like these in our example. The macro state 

correspondent to micro state a can be expressed by the following matrix R , with 

elements BAsBArT rs ,;,, == : 

BA

B

A








=

00

40
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r s
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So, the macro state is represented by a matrix R  of spatial interactions rsT , which counts 

the number of individuals in each cell. It is clear that every macro state is a “reflection of 

individual actions taken on a disaggregate or micro level” (Snickars and Weibull, 1977, 

p.137). Further, in principle, every micro state that is compatible with the information on 

the number of individuals (T ) is equally probable. Being so, the probability of an 

arbitrary macro state is proportional “to the number of micro states that yield that very 

macro state on aggregation” (Snickars and Weibull, 1977, p.138). 

 

It should be stressed that spatial interaction entropy models are applied in a context where 

there is no information about the micro level events and, additionally, there is no a priori 

observations available at the macro level. The goal of these models is precisely to obtain 

this aggregate information.  

 

Following with our example, the number of micro states consistent with macro state R  is 

equal to 1. In other words, there is only one situation in which every cell is null except 

from ABT  and that occurs when all the four individuals travel from A to B. Let ( )Rw  be 

the number of micro states consistent with some R  macro state. Using combinatorial 

analysis to obtain a general formula, we can state that: 

 

 

( )
∏∏

=

r s

rs
T

T
w

!

!
R  

(2. 11) 

Applying (2. 11) to the example above, we have ( ) 1
!4

!4
==Rw . 

 

The entropy maximizing principle consists in choosing the most probable distribution (or 

macro state) R , which is the one that can be replicated by the maximum number of 

micro states, i.e.: ( )RwMax  (Batten and Boyce, 1986; Nijkamp and Paelink, 1974). 
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For this reason, entropy maximizing model is included in the probabilistic class of spatial 

interaction models (Nijkamp and Paelink, 1974).  

 

Looking back to our commuting example, the most probable distribution of the 

commuting movements would be: 

BA

B

A








=∗

02

20
R , with ( ) 6

!2!2

!4
=

×
=∗

Rw . In fact, this 

solution implicitly involves two constraints, associated to the information comprised in 

our concrete example: (1) the total number of commuting individuals is known and the 

solution must respect that previous knowledge: ∑∑ ==
r s

rs TT 4  and (2) there are no 

commuting movements from a region to itself, i.e., 0== BBAA
TT . Otherwise, the 

unconstrained maximization of ( )Rw  would lead to: 

BA

B

A








=∗∗

11

11
R , with 

( ) 24
!1!1!1!1

!4
=

×××
=∗∗

Rw . From this example, it is clear that, in principle, the free 

maximization of the entropy of any spatial interaction matrix leads to an even distribution 

of the individuals among the cells of the matrix. It is the introduction of some constraints 

that makes the solution to deviate from a uniform distribution. The solution will, then, 

maximize entropy or dispersion, given the known restrictions. The resulting maximum 

entropy is obviously less than the maximum entropy obtained from an unconstrained 

maximization (in our simple example, we get an entropy of 6, compared to 24, 

respectively).  

 

In practice, actually, the maximized equation is the logarithmic transformation of 

equation (2. 11), that is:  

 

( ) ∑∑−=
r s

rsTTw !ln!lnln R  

(2. 12) 
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Using Stirling
66

 approximation for factorials and dropping !lnT  (since that, being a 

constant, it will not interfere on the maximization process), the final version of the 

objective function is: 

 

 

( ) ( )∑∑ −−=
r s

rsrsrs

T

TTTwMax
rs

lnln R   

(2. 13) 

 

If we are dealing with a doubly-constrained problem, in which total flows leaving each 

origin ( r
O ) and total flows arriving each destination ( sD ) are known, two additivity 

constraints must be considered. Besides that, as long as the data allow it, we must also 

take into account a restriction which is related to the behaviour of the individuals that we 

are studying (Roy and Thill, 2004); for instance, if we are dealing with commuting or 

trade, one relevant restriction to take into the model is transportation cost restriction, 

given by CT rs

r s

rs =∑∑π , in which rsπ  represents the (known) unitary transportation 

cost of traveling from r to s and C  represents total transportation budget. Thus, the 

entropy maximizing problem may be stated as follows: 

 

 

( ) ( )

CT

DT

OT

tosubjectTTTwMax

rs

r s

rs

r

srs

s

rrs

r s

rsrsrs

T rs

=

=

=

−−=

∑∑

∑

∑

∑∑

π

lnln R

 

(2. 14) 

 

The correspondent Lagrangean function is: 

 

                                                 
66

 According to which ( )1ln!ln −= xxx  - see, for example, Wilson (1970), p. 271. 
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( ) ( )
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r s

rsrs

r

rsss

s

rsrr

r s

rsrsrssrrs

TC

TDTOTTTTL

πβ

µλβµλ ln,,,

 

(2. 15) 

 

in which rλ  stands for the Lagrangean multipliers related to constraints of origin r, sµ , 

are the Lagrangean multipliers related to constraints of destination s, and β  is the 

Lagrangean multiplier related to cost constraint. 

 

Working out the first-order partial derivates (for the unknowns rλ , sµ , β  and rsT ) and 

equating these to zero, we obtain a system of ( )122 ++ kk  equations, being k  the number 

of origins and of destinations. These equations are divided by: k  equations of additivity 

constraint at the origin, k  equations of additivity constraint at the destination, 1 equation 

concerning the cost constraint and, finally, 2
k  equations

67
 concerning the first-order 

partial derivate with respect to the spatial interaction flows rsT , expressed as:  

 

( )
( )[ ]rssrrs

rssrrs

rssr

rs

rsrs

rs

T

T

T
TT

T

L

βπµλ

βπµλ

βπµλ
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






−+−⇔=

∂

∂

exp

ln

01
1

ln0

 

(2. 16) 

 

If we multiply and divide the right member of the solution in (2. 16) by r
O  and sD , we 

may re-write the previous solution in the following way: 

 

( )rsssrrrs DLOJT βπ−= exp  

(2. 17) 

                                                 
67

 As it was illustrated in Figure 1, in many spatial interaction problems, it is a priori assumed that there are 

no spatial interaction flows from the region to itself. In such case, there will be only kk −2
 equations like 

equation (2. 16).  
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in which 
( )

r

r
r

O
J

λ−
=

exp
 e 

( )
s

s
s

D
L

µ−
=

exp
. 

 

Finally, replacing this solution in the additivity constraints at origin and destination, we 

may re-write parameters r
J  and 

sL  as: 

 

( )∑ −
=

s

rsss

r

DL
J

βπexp

1
 

(2.18) 

and 

 

( )∑ −
=

r

rsrr

s

OJ
L

βπexp

1
. 

(2.19) 

 

Let’s analyze this solution carefully. First, we can observe that equation (2. 17) fits into 

the general specification of spatial interaction models expressed by equation (2. 1): it 

defines spatial interactions as a function of origin-related and destination-related 

variables and also of spatial separation.  Second, let’s compare it with equation (2. 10). 

Equation (2. 10) corresponds to the solution of the doubly constrained gravitational 

model, presented in the previous section. In fact, if we take into account some common 

structural features between those two equations, solution (2. 17) resembles a gravitational 

specification: spatial separation function (here expressed in exponential form, instead of 

being expressed through a power function) is multiplied by the masses of origin and of 

destination and by the balancing parameters r
J  and sL , which assure that the model 

verifies the additivity constraints (just like they did in equation (2. 10)).  This allows us to 

conclude that entropy maximizing method provides a theoretical framework supporting 

the use of the gravitational formula (Dentinho, 2002; Batten and Boyce, 1986; Wilson, 

1970). 
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Based on this entropy maximizing model, Wilson has produced a family of solutions, in 

which each one differs by the number and type of considered restrictions (Wilson, 1970): 

doubly-constrained, which corresponds to the solution previously derived, production-

constrained (considering only the origin constraint), attraction-constrained (considering 

only the destination constraint) and unconstrained (in which no restriction is accounted 

for). The solving method for each of these types of models is similar to the one used to 

model (2. 14): each one can be solved by means of the adequate Lagrangean function. 

 

The entropy model described in (2. 14) can be represented as well in an alternative way, 

using the concept of probability (Batten and Boyce, 1986). If we define 
T

T
p

rs
rs =  as the 

probability of occurring a spatial interaction movement between r and s (in which, 

obviously, 1=∑∑
r s

rsp ), we can re-write the objective function in the following way: 

 

( ) { }∑∑ −−=
r s

rsrsrs TpTpTpw )ln(ln R  

(2.20) 

This equation can be simplified in the following way: 
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Since ∑∑ =
r s

rsp 1, we get: 
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( )1lnln −−− ∑∑ TTppT
r s

rsrs  

(2.21) 

 

Equation (2.21) can still be simplified, considering that: a) ( )1ln −− TT  is a constant, thus 

being innocuous to the result of the maximization procedure; b) the objective function is 

“invariant with a monotonically increasing transformation” (Nijkamp and Paelink, 1974, 

p.20) as multiplying by T. Thus, the final expression for the objective function will be: 

 

( ) ∑∑−==Ω
r s

rsrs ppw lnln R  

(2.22) 

 

 

In order to reformulate the entire model (2. 14) to the probability version, it is also 

necessary to transform the restrictions, as follows: ∑ =
s

rrs OTp ; ∑ =
r

srs DTp  and 

CTp rs

r s

rs =∑∑π . So, the final version of the entropy maximizing problem is (Nijkamp 

and Paelink, 1974):  
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(2.23) 
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This specification of the entropy maximizing model will be useful to compare entropy 

models with information theory based models, which will be discussed in the next 

section. 

 

In spite of being theoretically appealing, entropy based model faces serious problems of 

applicability. Let us observe again model (2. 14); the empirical use of this model requires 

the introduction of a cost constraint, which, in practice, implies that the researcher has 

previous access to: the unitary transportation cost of traveling from r to s, rsπ , as well as 

C , the total transportation budget. But, on the one hand, these data are seldom available 

and are not easily substituted for proxy variables. One could think of using physical 

distances instead of economic cost, for example; although, to apply the equivalent 

constraint, it would be necessary to know the maximum number of kilometers traveled by 

the flow in question. This is obviously very difficult (if not impossible) to obtain. On the 

other hand, such constraint is somewhat unrealistic, since there is no effective restriction 

which submits a transportation system to a maximum amount of transportation cost – it is 

always possible to raise the transportation budget, in detriment of other activities such as 

consumption, investment and so on. Thus, another option would be to disregard the cost 

constraint and consider only the additivity constraints. But this alternative would result in 

a solution in which the spatial interaction flow would be completely independent from 

spatial dimension. As we have seen, in an intuitive manner, from the example above, the 

free maximization of entropy tends to yield a solution with equal values in all the cells of 

the spatial interaction matrix. Adding additivity constraints makes the solution to deviate 

from that uniform distribution, but only by a minimum amount necessary to respect those 

constraints. In fact, it is the cost restriction that provides a true spatial dimension into the 

model: inserting cost constraints makes the spatial interaction flows to be no longer 

equally probable. Instead, spatial interaction flows established between closer regions 

will be more probable than those established between distant regions. If we consider an 

entropy maximization problem in which restrictions refer only to the additivity 

constrains, the solution of such problem would be:  

 

ssrrrs
LDOJT =  
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(2.24)  

 

There is no mention to spatial reality in this model, which makes it unacceptable when 

the goal is to estimate spatial interaction flows.  

 

Batten and Boyce (1986) refer to an alternative version of the entropy-maximizing 

model: the entropy constrained model. This was proposed earlier by Erlander (1977) and 

consisted of minimizing transportation cost, subject to the additivity constraints and to a 

minimum degree of dispersion or entropy ( E ) of flows: 
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tosubjectTCMin

r s

rsrsrs
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r s
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=
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∑∑

∑

∑

∑∑

ln

π

 

(2. 25) 

 

In this model, the efficiency of the spatial interaction system is maximized (using the 

minimization of costs as the objective function), maintaining a minimum degree of 

entropy in the system, which can be understood as an expression of interactivity 

(Erlander, 1980) or interdependence between the various regions under study. Such 

model has been also suggested by Kim, Boyce and Hewings (1983), being the entropy 

constraint interpreted as a condition which would ensure a minimum level of 

crosshauling.  

 

Of course, the practical problem in applying such a model is in the difficulty of setting an 

a priori fixed value of entropy. Should some previous matrix of flows exist, the problem 

may be addressed simply by assuming the degree of entropy of that matrix. In such event, 

the researcher would be imposing to the estimated trade flows the same degree of 

dispersion that they reflected in previously known matrix (of some previous year, for 

example, as it was done in Kim, Boyce and Hewings (1983)). But, once again, this 
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demands the existence of some previous information, which is a seldom verified 

requirement. So, an alternative consists in eliminating this constraint. In this case, the 

model becomes a classical transportation model of linear programming (Batten and 

Boyce, 1986; Erlander, 1977). But then, if we are dealing with the estimation of 

interregional trade flows, for example, the solution will tend to exclude the existence of 

cross-hauling (the simultaneous flow of the same commodity in both directions between r 

and s), since it will always be less expensive to maximize the consumption of regionally 

produced goods (Kim, Boyce and Hewings, 1983; Ferreira, 2008). Conversely to the 

entropy maximization formulation, in which the solution tends towards an equal 

distribution among the various pairs of regions, the solution of the classical transportation 

model tends to place the maximum flows at the diagonal of the O-D matrix. This occurs 

because “The transportation model of linear programming as an explicative approach 

depends heavily on the assumption of perfect competition” (Batten and Boyce, 1986, p. 

385). But, in real world, cross-hauling does exist because products are not homogeneous, 

which leads to an imperfect competition behaviour.  

 

This allows us to conclude that the proposed alternatives, namely the entropy-constrained 

model, or even the related transportation model of linear programming, do not overcome 

the difficulties of practical applicability affecting entropy models, especially in what 

concerns to the estimation of interregional trade flows. Moreover, given that the general 

solution of the entropy model is not considerably different from the general solution of 

the gravitational model, as it was mentioned above, this model is often omitted in 

empirical applications, in favor of the gravitational model, which do not suffer from the 

same drawbacks. 

 

2.3.3 Information theory models. 

 

Information theory is a “statistical inference technique evaluating the change in a 

probability distribution due to the supply of certain new information” (Roy and Thill, 

2004, p. 347). To better understand the application of information theory in spatial 

interaction models, we begin by introducing the concept of information content of a given 
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message. Let’s suppose we are about to receive a completely reliable message about the 

occurrence of some event X  and let q  be the probability that such event will occur 

( 10 ≤≤ q ). When we later receive the message saying that event X  has indeed occurred, 

there is some information content in that message (Theil, 1967). If q  was previously 

0,99, there is no surprise when we know that X  occurred, because it was practically 

certain. Then, the information content of the received message is small (Theil, 1967). 

Conversely, if q  was previously 0,01, the received message saying that X  occurred 

comprises a large information content (or surprise). Given this example, the issue consists 

in finding the best function to express the information content of a given message. 

Denoting this function by )(qh , the problem is: “What is the adequate functional form to 

)(qh ?”. There is no definitive answer to this question, but it is incontestable that it should 

be some decreasing function of the ex ante probability q . In fact, “the more unlikely the 

event before the message on its realization, the larger the information content of this 

message” (Theil, 1967, p. 3). From all the possible decreasing functions, the logarithm of 

the inverse of the ex ante probability q  is generally adopted, because of its particular 

properties
68

. Thus, we have: 

 









=

q
qh

1
ln)(  

(2. 26) 

 

We can now generalize this concept of information content of a message to situations in 

which the received message is not completely reliable (for example, in weather forecast, 

if it is predicted that the day after will be raining, there is not 100% reliability in this 

message, but it should rather be verified with some lower probability, let’s say, 90%). In 

this case, the information content of the message measures the information bias caused by 

a message which has associated some probability p  of occurrence of event X , in 

relation to an ex ante probability q  (in the weather forecast example, this ex ante 

                                                 
68

 Namely, because it verifies additivity in the presence of many independent events; for further details on 

this, please refer to Theil (1967). 
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probability could be, for instance, 5,0=q , meaning that there is a 50% chance of raining 

in any random day of the year). When the message is not completely reliable, instead of 

considering a numerator 1 as in expression (2. 26), we consider the numerator p , the so-

called ex post probability (Theil, 1967). Hence, the information bias caused by the 

message can be expressed by an indicator as: 

 

( ) 







=

q

p
qph ln,  

(2. 27) 

 

This indicator measures the change of information obtained when probability changes 

from q  to p  (Batten, 1982; Batten and Boyce, 1986). If qp = , it follows that 0=h , 

meaning that the information bias is null; if qp > , then 0>h , meaning that the 

information bias is positive; finally, if qp < , then 0<h , meaning that the information 

bias is negative. The larger the difference between p  and q , the larger h  will be.  

 

The application of this concept to spatial interaction models is appropriate whenever we 

possess some previous information on the matrix of flows that we intend to estimate. Let 

us consider, again, the model expressed in (2.23) (doubly-constrained Wilson model, in 

the probability version with 
T

T
p

rs
rs = ). The previously known information may be, for 

example, the knowledge of some matrix of flows rsQ , with a total of flows that reaches 

Q , for a period of time 0t , earlier than 1t  (the one to which we intend to obtain the 

estimation). Thus, for every origin/destination pair rs, it is possible to determine the 

observed 
Q

Q
q

rs
rs = . The information bias between the rsp  estimated for time period 1t  

and the observed rsq , relative to 0t , will be given by (Snickars and Weibull, 1977): 
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



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rs
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(2.28) 

 

The major difference between (2.28) and (2. 27) is simply the fact that, in the former 

expression, the relative difference between p  and q  is weighted by the estimated 

probabilities rsp , meaning that this indicator tends to emphasize the difference in the 

most significant flows. 

 

The information bias minimizing method consists precisely in minimizing ( )qpI , , 

subject to the additivity constraints in the probability form (Roy and Thill, 2004): 
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(2.29) 

 

This principle is based on the fact that the estimated probability distribution that results 

from (2.29), rsp̂ , is the one which contains the minimum deviation relatively to rsq , 

among all the probability distributions that are compatible with a given information on 

the matrix of flows at 1t  (Batten and Martellato, 1985). This information at 1t , in this 

case, is no more than the knowledge of the margin totals, r
O  and sD , respectively, which 

are taken into account by means of the model constraints. Thus, there is no reason to 

select a probability distribution different from rsp̂ , since any other will comprise more 

deviation than rsp̂  (Snickars and Weibull, 1977). In other words, the use of information 

minimizing principle means that the spatial interaction problem is considered as a 

problem of finding a matrix as close as possible to the previously known matrix, that also 

satisfies the problem constraints (Willekens, 1983; Harrigan, 1990). 
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It follows that, when the problem constraints are merely the additivity constraints, the 

information minimizing problem can be solved by means of an iterative procedure of bi-

proportional adjustments, like RAS technique or other similar to it. This can be easily 

proven, as in Miller and Blair (1985), pp. 309-310. Yet, according to Batten (1982), the 

use of this kind of procedures to solve this problem has some disadvantages 

comparatively to the solution through linear programming. First, it doesn’t allow the 

consideration of additional variables, beyond the standard additivity constraints; this is a 

limit to the explicative capacity of the model, since it is often convenient to consider 

other restrictions related, for example, to limits in productive capacity or in transportation 

budgets. Secondly, it doesn’t permit the inclusion of restrictions in inequality form 

which, in spatial interaction problems, may exhibit some advantages. For example, it may 

be interesting to consider an upper limit to transportation costs or a minimum degree of 

entropy in the spatial interaction system
69

. However, these disadvantages are of minor 

importance in practical applications, since such specific information (like productive 

capacity, transportation budgets or previously known entropy level) is rarely available. 

 

The choice of the objective function presented in (2.29), instead of objective function of 

problem (2.23) (entropy maximizing), must be conditional to the knowledge of some a 

priori information on the matrix we intend to estimate (Batten, 1982). Supposing that we 

also know and use transportation cost information, as it was assumed in the entropy 

maximizing problem, the final version of the information minimizing problem will be 

(Snickars and Weibull, 1977): 

 

                                                 
69

 We will get back to the case of using a minimum entropy constraint in section 5.3. 
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The solution to this problem is found through the usual construction of Lagrangean 

function, as follows: 
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(2.31) 

 

in which rλ , sµ  and β  are the Lagrangean multipliers related to the first, second and 

third restrictions, respectively.  
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Let us pay attention to the similitude between the structure of this solution and of solution 

(2. 16), that results from the entropy maximizing problem. The main difference arises 

from the fact that, in solution (2.31) there is some previous information on the spatial 

interaction flow pattern. However, if such information does not exist (or if it has not 

enough credibility to be used), it is reasonable to assume that, a priori, all the flows are 

uniformly distributed among the nm ×  cells of the matrix (admitting that there are m 

origins e n destinations). In this case, only the additivity and cost constraints information 

will be used. The supposition of spatial interaction flows uniformity is equivalent to the 

consideration that, a priori, each origin/destination flow is equal to 
nm

T
T

rs

×
= , to which 

corresponds an “observed” probability of 
nmT

T
q

rs
rs

×
==

1
. So, equation (2.31) 

becomes: 
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The similarity between this solution and the entropy maximizing solution allows us to 

conclude that the entropy maximizing problem may be seen as a particular case of 

information minimizing problem, in which we assume that the starting matrix is a matrix 

with uniformly distributed spatial flows (Batten, 1982). 

 

Solution (2.31) may be written in a more reduced way, as follows:  

 

( )[ ]
( ) ( ) ( ) ( )

( ) ( ) ( )

( )rsssrrrsrs

s

s
s

r

r
r

rsrssrrs

rsrssrrs

DlOjqp

D
l

O
j

qp

qp

βπ

µλ

βπµλ

βπµλ

−=

−
=

−⋅−
=

⋅−⋅−⋅−⋅−=

⇔⋅+++−=

exp

:can write  we,
exp

 and 
exp1exp

  variablesUsing

expexpexp1exp

1exp

 

(2.33) 



 178 

 

Using additivity constraints, rj  and s
l  can be determined recursively in the following 

way: 
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and 
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Parameters rj  and s
l  serve as balancing parameters just like the correspondent r

J  and 

sL  did in gravity and entropy models. 

 

The relative performance of different variants of model (2.30) is tested in Snickars and 

Weibull (1977), through an empirical application to commuting between sub-regions of 

Stockholm, during the period of 1965-70. The test is carried out comparing the estimative 

provided by each variant of the model with the real commuting flows, which are known. 

Four versions of the model are used: (1) independency model, in which only the 
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additivity constraints are used; (2) classical gravity model
70

, in which, besides the 

additivity constraints, cost constraint is also used; (3) information bias minimizing 

method (the one expressed by means of equation (2.29)), that uses no cost restriction, but 

uses a matrix of flows rsq  of an earlier period, as previous information and, finally, (4) 

New gravity model, which corresponds to the problem depicted in (2.30). 

 

As expected, the results of the accuracy tests show that the third model is clearly superior 

to the first two models; besides, it is only slightly less precise than the model that uses 

more information, the “new gravity model”. From this comparison, the authors confirm 

that the spatial separation effect by itself (which, in this case, was measured using 

traveling time) is not sufficient to determine inter-spatial flows, making gravitational 

model to be less effective in explaining these movements than models based in previous 

periods matrices do. This conclusion was predictable, since there are many other factors 

that may influence inter-spatial flows; if we are dealing with commuting movements, for 

example, the laws in force concerning territory arrangement are an important issue to 

consider. If it is not possible to locate industrial facilities in residential areas, then 

obviously workers have to commute between home and work. The influence of all the 

determinant factors is already comprised in the a priori matrix of flows and can only be 

taken into account if such information is used as a starting point. Once again, the problem 

is that, in most cases, there is no such a priori information, making this model impossible 

to use, in practice, as a generator of spatial interaction flows. 

 

2.3.4 Behaviour models. 

 

The models that were previously reviewed are included in a macro level perspective, i.e., 

they are models that search for regularities in the movements of big groups of people (or 

other kind of flows). But, because macro behavior is influenced by individual behavior, 

several authors have proposed, since the 1970’s, that is should exist a better connection 

                                                 
70

 This denomination is the one used by the authors, to refer to a model in which distance (expressed in 

time, kilometres, cost or other) is considered as the determinant factor for flow distribution, as in 

gravitational models. However, gravitational models do not allow for the consideration of restrictions such 

as the cost constraint in (2.30). 
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between spatial interaction research and micro level models (Cesario and Smith, 1975; 

Sheppard, 1978). 

 

Behavioral models fit precisely in a micro level approach, since they are based on the 

utility function of the individual (or group of individuals) that originates the spatial 

interaction flow. In these models, the mass of origin or destination is seen as an aggregate 

of micro level units (Isard, 1998), in which each one tries to maximize its utility, subject 

to a behavioral restriction (for example, a transportation budget constraint). Utility 

maximization is the force that lies upon the individual’s choice among alternative 

destinations which not only respects the cost constraint, but also observes the following 

optimum requirement: marginal utility of destination s per transportation cost monetary 

unit is the same for any destination s. Batten and Boyce (1986) derive this solution 

starting from the supposition that “each place of origin can be conceived of as a collective 

decision-unit, which allocates a certain transportation budget among a series of shipments 

to alternative destinations” (Batten and Boyce, 1986, p. 372). Being so, the utility 

function of origin r is determined by the combination of deliveries to the several 

destinations: 

 

 

( )rkrrrr TTTUU ,,, 21
L=  

(2.36) 

 

This function is maximized subject to a transportation budget constraint, expressed by: 

 

r

s
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(2.37) 

 

in which r
C  stands for the total available transportation budget of place r. 

 

The lagrangean function correspondent to this optimization problem is: 
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Making out the first order partial derivates, we have: 
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The first set of equations on system (2.39) can be solved dividing each of the first ( )1−k  

equations for the last one; this results in: 
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(2.40) 

 

This equation is the equilibrium condition, according to which marginal utility of 

destination s per transportation cost monetary unit is the same for any destination s. All 

the k unknowns rsT  can be solved for a given origin r, through the consideration of 

(2.40) along with the cost constraint (2.37). 

 

Batten and Boyce (1986) go further and show that, under some presuppositions on the 

utility functional form, utility maximization leads to a solution that assumes a 
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gravitational formulation. These authors start from a specific collective utility function
71

 

for origin r and prove that the solution of maximizing such an utility function is 

equivalent to a gravitational type solution. This allows us to conclude that a micro level 

approach may be used as one more theoretical argument to the use of gravitational model. 

 

With a similar reasoning, Isard (1975) shows that utility maximization, subject to a limit 

imposed by the individual on the number of trips he/she wants to make, also leads to a 

gravitational type solution, in this case, of the exponential form
72

. In this case, the 

individual utility function is deduced from an indifference curve (consisting of indifferent 

combinations of number of trips and covered distance), in which it is assumed that for 

“for every increase in one mile, he must have c percent more trips, where c is a constant” 

(Isard, 1975, p.26). This simply means that the individual establishes a trade-off between 

the benefit from traveling and the cost related to the distance to run. 

 

These are two examples that, under certain specific forms to utility function, the resulting 

demand functions for spatial interaction observe the gravitational law. In spite of this 

connection, the utility function approach possesses a smaller empirical potential than the 

preceding approaches (gravitational, entropy maximizing and information minimizing 

models), since it is difficult to estimate the utility functions and also because this 

approach requires a great set of restrictive suppositions on the individual choice behavior, 

which are not easy to verify (Sen and Smith, 1995; Isard, 1998; Sheppard, 1978). 

 

For these reasons, the profound study of behavior-based models is beyond the scope of 

the present work. 

 

Section 2.3 intended to review the most important members of the family of spatial 

interaction models, discussing their applicability in the estimation of spatial interaction 

flows and having in mind the specific case of interregional trade. We have seen that, even 

                                                 

71
 The function they use is expressed by ( ) rsrs

k

s

sr
TfDU ln

1

δ∑
=

= . For further details, please see Batten 

and Boyce, 1986, pp. 373-374. 
72

 For further details, please see Isard (1975), pp. 28-29. 
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being sustained by different theories, the solutions of the several models show a 

considerable similitude. As stated in Batten and Boyce (1986), the different theoretical 

models lead to conclusions that “are more notable for their similarities than for their 

differences” (p. 357). However, these models are quite different in what concerns to their 

applicability, especially in interregional trade flow estimation, which is our major 

concern. This is because, most of the times, the estimation of interregional trade flows is 

made under a type (b) information context, i.e., when there is no a priory matrix of flows. 

This immediately precludes the direct application of models that minimize information 

bias, since these require a previous matrix of flows (section 2.3.3). Problems of 

applicability were also identified in entropy and behaviour models (sections 2.3.2 and 

2.3.4, respectively). In what respects to entropy models, such problems were related 

mainly to the difficulties is assessing data on transportation costs (as well as to the fact 

that such cost restriction may not constitute a suited interpretation of transportation 

systems behaviour. Concerning behaviour models, the central problem is in the proper 

definition of the utility function. Conversely, major strengths of the gravity model 

continue to be its simplicity and its good capacity to produce accurate results, especially 

in studies applied to trade flows (Brocker, 1989; Porojan, 2001). For this reason, 

gravitational formula keeps on finding numerous followers. This success is reinforced by 

the model’s capacity to produce reasonable results, even with very aggregate starting 

information on spatial interaction (usually, the margin totals) and using very simple 

measures of spatial separation (as physical distance or mean traveling time) (Sen and 

Smith, 1995).  

 

Considering the a priori drawbacks of entropy, information theory and behaviour models, 

and having recognized that the generic solutions provided by these models are similar to 

the generic solution of the gravity model, from now on, our attention will be focused on 

the latter model. Still, the concepts of entropy and information bias will be recovered in 

section 2.5, to be used not as generators of the initial values of interregional trade, but 

rather in their adjustment to the additivity constraints. 
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2.4  Empirical examination of the gravity model in two different 

information contexts: explanation and estimation. 

 

In a previous paper (Sargento, 2007), we had already carried out a first attempt of 

empirically examining the gravity model, with the main objective of discussing and 

testing its practical applicability to the study trade flows, in both information contexts 

referred in section 2.3.1: with and without previous information on trade flows. The good 

results usually provided by gravity-based equations in trade econometric applications 

may suggest that the gravity model can be also successfully used in predicting trade 

flows. However, this is seldom subject to empirical testing. Thus, the main objectives of 

the present section, which is based on the above referred paper
73

, consist in: 1) evaluating 

the explanatory power of gravity-based models in the context of interregional trade flows, 

identifying the relevant explanatory variables and testing different formulations of the 

model and 2) analyzing the performance of the gravity model as a generator of 

undisclosed interregional trade flows. Additionally, the empirical work described in this 

section also intends to fill another gap in trade flow gravity model uses: the fact that the 

majority of studies consider trade in an aggregate manner. Recognizing the specificity of 

each product, this study is applied separately to different trading products. 

 

 2.4.1 Type (a) information context. 

 

When the researcher has previous access to a known trade matrix, the objective is to 

calibrate the model, i.e., to estimate the model parameters. An immediate question 

emerges: “if we already have the interaction matrix, why do we need to calibrate an 

interaction model?” (Fotheringham and O'Kelly, 1988). In fact, the calibration process is 

useful to forecasting purposes (admitting that the parameters remain the same in different 

points of time and/or space) and to draw conclusions on the behavior patterns of the 

                                                 
73

 The experiences and results which are described in the present section do not exactly correspond to what 

has been previously presented in Sargento (2007). Some improvements were introduced, namely: 1) the 

degree of detail in product classification (using 17 categories of manufactured products instead of 10) and 

2) the way by which distance was computed, being this an issue to be explained in section 4.1.2. Yet, the 

main conclusions of this empirical study remain the same. 
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subject in study (for example: to assess the degree of elasticity of exports with respect to 

the distance between the trading partners and to evaluate how this varies from one 

product to another, or to infer about the relevance of the pre-defined explanatory 

variables). Thus, in this section, attention will be given to the econometric application of 

gravity model to explain bilateral trade flows among the “old” EU countries (before 

enlargement). This application was carried out in a stepwise fashion, testing several 

alternative equations and analyzing the results of each one. Previously to the description 

of the equations tested, a brief theoretical support is presented in the following section.  

 

2.4.1.1 Gravity model extensions to trade applications in type (a) 

information context. 

 

2.4.1.1.1 Augmenting the gravity equation with additional 

explanatory variables. 

 

As it has been referred before, in type (a) information context, the basic gravitational 

equation is the starting point to an econometric model like the one in equation (2. 8). 

However, it has been demonstrated that the variables included in this basic equation are 

often not enough to explain trade flow’s behavior. Numerous studies have, thus, used an 

augmented version of gravity model basic equation, in order to address some specific 

issues. One of the most important motivations to gravity model extensions is the study of 

preferential trade agreements effects. Some examples of this kind of exercises can be 

found in Martinez-Zarzoso (2003), Soloaga and Winters (1999) and Piani and Kume, 

(2000). The common feature of these three works is the addition of specific bloc-related 

dummy variables to equation (2. 8), in order to capture the effects of preferential trade 

agreements, especially those concerning trade creation and trade diversion. Further 

dummy variables are also included to isolate the effects of other determinants of trade, 

such as: sharing the same language or sharing a common border.  The work of Blavy 

(2001) is another example of extending the gravity model to answer some specific trade 

issues. In this case, the author starts by applying the basic gravity model to trade patterns 
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in specific region composed by six Middle East countries, reaching to the conclusion that 

it overestimates intranational and international trade in that region. To overcome such 

problem, the model is extended with specific explanatory variables, to assess the effects 

of: over-appreciation of exchange rates, trade barriers and political uncertainty. It is 

shown that the augmented model has a better performance in estimating trade flows. 

 

2.4.1.1.2 Formal specification of spatial dependence. 

 

One of the frequent criticisms pointed out to gravity model is the fact that it generally 

assumes that observations collected at different points of space are completely 

independent, which is not true. There are well known diffusion processes among different 

locations that must be taken into account, through a specific modeling of space.  

 

One possible way to acknowledge spatial structure effects is through the inclusion in the 

gravity model of additional variables that, in some way, illustrate the map pattern of the 

observations under study. In this context, one of the fundamental contributions is the 

Competing Destinations model, proposed by Fotherihgam (1983). This author stressed 

out the fact that, sometimes, the decision of spatial interaction movement occurs in a two-

stage process, in which individuals begin by choosing a broad destination region and then 

“choose a specific destination from the set of destinations contained within in broad 

region” (Fotherihgam, 1983, p. 19). In this situation, the specific destinations to be 

chosen in the second stage are competing for the total amount of flows that the broad 

region receives. When an origin is geographically accessible to many destinations, each 

specific destination will tend to receive less volume of flows, and vice-versa. Given that 

this spatial arrangement effect is ignored by the basic gravity model, the result is that the 

distance decay parameter will be misspecified, incorporating not only the behavior of 

distance resistance, but also the spatial structure effect. More precisely, the distance 

parameter will be biased upwards in more accessible origins and it will be biased 

downwards in inaccessible origins (Fotherihgam, 1983). The proposed solution consists 

in including an additional variable designed to measure accessibility of destination s to all 

other destinations available to origin r (Fotherihgam, 1983). Given the principle of 
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competition between destinations, the estimated accessibility coefficient should have a 

negative sign: the more accessible the destination is, the less volume of flows it receives. 

One example of an empirical application of such model can be found in Hu and Pooler 

(2002). In this paper, the authors use an augmented gravity model (applied to explain 

international trade flows between r and s), in which spatial structure effect is captured 

through the inclusion of an accessibility variable, given by the weighed sum of the 

distances between all the origins and s, with each origin’s mass as the relevant ponderer. 

They compare the performance of this model with the traditional gravity model, showing 

that the addition of the accessibility variable contributes to a better predictive capacity of 

the model. Some previously referred exercises also attempt to include in their gravity 

models a variable that expresses the relative locations of the different observations. That 

is the case, for example, in Piani and Kume, (2000) and in Soloaga and Winters (1999), 

which consider a relative distance (or remoteness) indicator, to control for the stronger 

trade intensity that usually exists between remote pairs of countries, when compared with 

trade between neighbors that have many other close trading partners. A simpler and more 

common way used to illustrate map pattern of the observations is the inclusion of a 

dummy variable that indicates the presence (or not) of a common border between the 

trading partners. 

 

However, spatial effects are often more comprehensive, making unavoidable the use of 

more sophisticated modeling techniques, that fall in the spatial econometrics field. If this 

is the case, it is very important, not only to find the proper way to formally express the 

spatial effects, but also to use the adequate techniques to estimate the model. Standard 

regression methods (as Ordinary Least Squares) are no longer acceptable when spatial 

effects are definitely present
74

 (Anselin and Griffith (1988)). The paper of Anselin and 

Griffith (1988) is crucial to systematize the nature of spatial effects. These consist of 

spatial dependence, on the one hand, and spatial heterogeneity, on the other hand. Spatial 

dependence may exist due to spillover effects across space and occurs whenever the 

dependent variable is “affected by the values of the dependent variable in nearby units, 

                                                 
74

 Yet, most of the practical applications completely ignore the possibility of spatial effects, using OLS as 

the single estimating method.  
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with nearby suitable defined” (Beck, Gleditsch and Beardsley, 2005, p.9). Moreover, it 

may occur merely as a side effect due to misspecifications in the data used in the model. 

As stated in Anselin and Bera (1998), “(…) a mismatch between the spatial unit of 

observation and the spatial extent of the economic phenomena under consideration will 

result in spatial measurement errors and spatial autocorrelation between the errors and 

adjoining locations” (p. 239). Spatial dependence can be discovered by the presence of 

autocorrelated error terms (originating the spatial error models) and/or autocorrelation in 

the dependent variable (resulting in the spatial lag model). Spatial heterogeneity may be 

due to structural instability, meaning that functional forms and/or parameters differ from 

one observation to another
75

, or to model misspecification that leads to non-constant error 

term variances (heteroskedasticity). Whenever it is caused by heteroskedasticity, spatial 

heterogeneity can be undertaken by means of the typical solutions in traditional 

econometrics (e.g.: using Weighted Least Squares estimation or transforming the 

regression equation in order to generate homoskedastic errors)
76

.  

 

The attention of this study is focused on spatial dependence. To formally account for 

spatial dependence, however, it is necessary to introduce the concept of spatial lag. 

Contrarily to what happens in time-series analysis, in which the time lag is easily 

introduced through a backward or forward shift on the one-dimensional time axis, in 

cross-section analysis the problem is more complex, given the multi-dimensional 

character of space (Anselin and Bera, 1998). In this case, a spatial lag operator is used – a 

W matrix, also called connectivity matrix (Beck, Gleditsch and Beardsley, 2005). This 

matrix represents spatial morphology and is composed by non-stochastic rsw  elements, 

based on the geographic arrangement of observations. One of the most popular criteria to 

                                                 
75

 Formally, this would mean that, for each observation i, there would be a function iiiii xfy εβ += ),( , 

in which ix  is a 1*m row of m explanatory variables and iβ  stands for the correspondent coefficients, that 

are different for each i. The function f as well may be different for each i.  
76

 Conversely, structural instability involves more complex solution procedures. In spatial analyses, 

structural instability may be caused by spatial nonstationarity. This means that the assumption of constant 

coefficients throughout space – implied in typical econometric estimations with one single equation for all 

spatial data – is not verified in reality (Fotheringham and Charlton, 1998). Some statistical techniques have 

been proposed to overcome this problem, namely the expansion method and the geographically weighted 

regression approach. Yet, spatial heterogeneity goes beyond the scope of the present work. Thus, the reader 

is referred to Fotheringham and Charlton (1998), for an explanation on these techniques. 
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express geographic arrangement is contiguity; following this criterion, rsw  assumes the 

value 1 if r and s are contiguous locations and the value 0, otherwise
77

. In short, the 

spatial lag operator can be seen as a “weighted average (with the rsw  being the weights) 

of the neighbors, or as a spatial smoother” (Anselin, 1999).  

 

 

The spatial lag model, also named spatial autoregressive model, expresses the case of 

spatial autocorrelation in the dependent variable. Analytically, it can be written as: 

 

εβρ ++= XWYY  

(2. 41) 

 

in which Y represents the vector of dependent variables, X is the matrix of explanatory 

variables, W is the lag operator, β  is the vector of parameters that reflect the influence of 

explanatory variables on Y and ρ  illustrates the degree of the dependent variable spatial 

autocorrelation. This model implies the assumption of feedback effects among 

observations / locations: variations in the explanatory variables of location i affect the 

dependent variable of that location and of neighboring locations (because of the lag 

operator). Consequently, location i will be affected for a second time (again, because of 

the spatial link with its neighbors) and this process will be successively repeated as in a 

multiplier effect. 

 

In the specific case of our empirical application, we will be dealing with origin-

destination (O-D) data. This has implications on how to construct an adequate weight 

matrixW . It should be noted that, when dealing with spatially collected data, usually each 

observation corresponds to one region. This is not the present case: in origin-destination 

data, the observations vector is composed by the flows generated by every possible 

combination of origin and destination, in both directions (LeSage and Pace, 2005: 1). For 

example, if the number of origins, n, is equal to the number of destinations, the total 

                                                 
77

 The matrix W is row-standardized, as usual in this type of models; each row sums 1, so that there is no 

need to worry about the units used to measure connectivity. 
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number of observations will be 2
nN = . So, the W operator must have a compatible 

dimension. Among the several manners in which Matrix W can be constructed, three 

different specifications will be considered in the present work, reflecting distinct types of 

spatial dependence: destination-based, origin-based, and a mixed origin-destination-based 

dependence. A destination-based weight matrix, named dW , can be assembled by 

repeating the typical contiguity matrix n times (being n the number of spatial units 

included in the study) in the diagonal of an N*N block matrix, placing blocks of zeros in 

all the off-diagonal matrices (LeSage and Pace, 2005).  

 

Figure 2. 4 – Construction of matrix W 

 

 

 

 

As we have previously referred, we will be using bilateral trade data between 14 

European countries as the set of spatial observations. This corresponds to a 14*14 matrix 

of origin-destination observations. Making use of the most common concept of contiguity 

– sharing of a common border – the construction of the spatial lag operator involves the 

assemblage of a starting 14*14 w matrix, with elements rs
w  that are given the value 1 if r 
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and s share a common border and the value 0, otherwise. Matrix w is then row-

standardized, becoming matrix C. Finally, dW  is formed spreading out the 14*14 matrix 

C on a 196*196 matrix. Figure 2.4 illustrates the process of matrix dW  construction
78

. 

 

The use of spatial lag operator dW  in an autoregressive process (either a spatial 

autoregressive or a spatial error model) captures a “destination-based” spatial dependence 

(LeSage and Pace, 2005). The following equation depicts a destination-based spatial 

autoregressive (SAR) model for O-D flows rs
x , equivalent to the one presented in 

equation (2. 41): 

 

rsrs

dd

rs
XxWx εβρ ++=  

(2. 42) 

 

Consider a specific element rs
x  in the observations vector. The inclusion of the 

destination-based spatial lag in the regression equations means that flows from r to s are 

influenced, among other factors, by the average of flows from r to all the neighbours of s. 

Using a specific example, this is equivalent to say that the France to Germany value of 

exports is influenced by the average of exports coming from France to all the neighbours 

of Germany.  

 

Another alternative consists of considering origin-based spatial dependence. In fact, “it 

seems plausible that forces leading to flows from any origin to a particular destination 

may create similar flows from neighbours to this origin to the same destination.” (LeSage 

and Pace, 2005, p. 7). In order to capture this potential effect, an origin-based weight 

matrix can be computed through: 14ICWo ⊗= . The resulting origin-based spatial 

autoregressive model is: 

 

rsrs

oo

rs
XxWx εβρ ++=  

                                                 
78

 The dW matrix can also be obtained by simply applying the Kronecker product between a n*n identity 

matrix and matrix C – please see LeSage and Pace (2005) for further details. 



 192 

(2. 43) 

 

Finally, a third type of W matrix will be used in the present work
79

: dood WWW ⋅= . This 

matrix aims to capture an “origin-destination” mixed effect of spatial dependence. The 

inclusion of spatial lag rs

od xW ln  in the spatial autoregressive model means that: flows 

from r to s are influenced, among other factors, by the average of flows from all the 

neighbours of r to all the neighbours of s. This weight matrix can be computed as the 

Kronecker product: CCWod ⊗=  (LeSage and Pace, 2005). The origin-destination-based 

spatial autoregressive model (SAR), becomes:  

 

rsrs

odod

rs
XxWx εβρ ++=  

(2. 44) 

 

The other type of spatial dependence occurs through the presence of spatially 

autocorrelated error terms. This can be analytically reflected through a spatial error 

model, expressed by an equation like: 

 

ελ

β

+=

+=

Wuu

uXY
 

(2. 45) 

 

in which λ  expresses the degree of spatial correlation among the model disturbances
80

 

and the remaining variables have the above referred meaning. In this model it is assumed 

that the only source of interdependence among observations is in the error formation 

                                                 
79

 As it will be explained in Section 2.4.1.3.2, these three alternative weight matrices will be also used in 

the other spatial econometric models tested on the spatial econometric application: the spatial error and the 

general spatial model. 

 
80

 Another commonly used approach to specify error spatial autocorrelation is direct representation, which 

consists in assuming a specific functional form for the covariance matrix of the error terms, and estimate its 

parameters along with the regression ones. This functional form is usually some inverse function of 

distance, expressing the notion of spatial clustering of the disturbances (Anselin, 1999). Examples of these 

functions may be found in Dubin (1998). Since the empirical application of the present work falls 

exclusively upon the spatial lag approach, the direct representation is not subject to further development.  
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process, more precisely, the fact that some omitted variables are spatially correlated 

(Beck, Gleditsch and Beardsley, 2005). 

 

It can also be the case that the disturbances from a spatial lag model evidence spatial 

autocorrelation. In such situation, it is adequate to apply a general spatial model, in which 

both the dependent variable and the error term are spatially correlated (LeSage, 1998). 

Formally, this can be expressed by: 

 

 
ελ

µβρ

+=

++=

uWu

XYWY

2

1
 

(2. 46) 

 

in which 1W  and 2W  represent the lag operators used in the autoregressive processes of 

the dependent variable and the error term, respectively. 

 

The emergence of new software tools and theoretical contributions to deal with spatial 

dependence has enhanced the empirical application of these models. Some examples can 

be found in Beck, Gleditsch and Beardsley, (2005) and Porojan (2001). Beck, Gleditsch 

and Beardsley (2005) propose an alternative connectivity measure to include in the 

spatial lag model. Their objective is to explain democracy level. They argue that instead 

of geographical notion of proximity other measures can be used. So, they propose a W 

matrix with elements given by the “volume of the dyadic trade flow between i and j as a 

proportion of country i’s total trade” (p.13); the empirical exercise proves that the spatial 

autocorrelation coefficient related to this connectivity matrix is statistically significant, 

suggesting that “countries that trade more with democracies are more likely to be 

democratic (…)” (p. 17). The empirical application carried out in Porojan (2001) aims to 

find the most proper version of gravity model to explain international trade. Several 

alternative equations are tested, including the gravity traditional specification, leading the 

author to the conclusion that the most adequate equation is the one which explicitly 

considers the existence of two spatial effects: spatial heterogeneity (adapting the model to 

account for heteroskedastic error) and spatial autocorrelation of the dependent variable.  
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2.4.1.2 Description of the data used. 

 

The set of data used in this work is composed by: 

 

- Trade flow data originated in each of 14 countries to each of the others, for year 

2001, in USD and current prices; source: OECD Bilateral Trade Database 2002
81

. 

The 14 countries correspond to the “old” European members, in which Belgium 

and Luxembourg are considered jointly
82

. Trade data concerns only to 

manufactured products, disaggregated in seventeen groups, as illustrated in Table 

2. 1. One important feature of this product classification, comprised in the OECD 

Bilateral Trade database, consists in the fact that it broadly matches the 

classification used in National Accounts and, in particular, in input-output tables 

(the correspondence is indicated in the third column of the table). This is 

important whenever the results from the trade flow estimation model are to be 

used in the construction of input-output tables. 

- Population, year 2001, in thousands; source: OECD member countries' population 

1981-2004 (thousands and indices: 2000=100). Labour Force Statistics, 2005 

Edition; 

- Gross Domestic Product, year 2001, in USD and current prices; source: OECD 

Annual National Accounts database. 

- A matrix of distances between countries, based on the polygon centroid (x,y) 

coordinates for each NUT II comprised in the countries under study, and in 

weighting distances between the regions of the different countries. 

                                                 
81

 It should be noted that the OECD’s Bilateral Trade Database provides two types of information regarding 

trade flows: information on exports and information on imports, to each declaring country. However, as it 

happens in all international trade databases, “mirror statistics often do not match between two countries 

(exports from the USA to France may well not agree with imports by France from the USA).” (OECD, 

2002, p. 13). Beucause of that, we have opted for using the average value between the data derived from 

exports information provided by the country of origin and from imports information provided by the 

country of destination. 
82

 This was done in order to maintain the same country database as in Sargento (2007). These two countries 

were then considered jointly because the distance data used in that work – great circle distances between 

capital cities – considered them as one single point. 
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Table 2. 1 – Product classification. 

 

Abbrev. Designation ISIC Rev.3

FBT FOOD PRODUCTS, BEVERAGES AND TOBACCO 15-16

TEX TEXTILES, TEXTILE PRODUCTS, LEATHER AND FOOTWEAR 17-19

WOO WOOD AND PRODUCTS OF WOOD AND CORK 20

PPP PULP, PAPER, PAPER PRODUCTS, PRINTING AND PUBLISHING 21-22

COK COKE, REFINED PETROLEUM PRODUCTS AND NUCLEAR FUEL 23

CHE CHEMICALS AND CHEMICAL PRODUCTS 24

RPL RUBBER AND PLASTICS PRODUCTS 25

ONM OTHER NON-METALLIC MINERAL PRODUCTS 26

BMT BASIC METALS 27

FMT FABRICATED METAL PRODUCTS 28

MAC MACHINERY AND EQUIPMENT, N.E.C. 29

OFF OFFICE, ACCOUNTING AND COMPUTING MACHINERY 30

ELE ELECTRICAL MACHINERY AND APPARATUS, NEC 31

RTV RADIO, TELEVISION AND COMMUNICATION EQUIPMENT 32

MED MEDICAL, PRECISION AND OPTICAL INSTRUMENTS 33

MTV MOTOR VEHICLES, TRAILERS AND SEMI-TRAILERS 34

OTR OTHER TRANSPORT EQUIPMENT 35  

 

 

Some additional comments must be made concerning this matrix of distances. The 

traditional measure of distance between countries used in this kind of studies consists 

most of the times in using the straight line distance between capital cities
83

. However, 

two problems are associated with this measure: first, trade flows occur between each and 

every local of each economic area and not only between capital cities; besides, capital 

cities, sometimes are not even the central spot of the country, in geographic terms. Thus, 

we opted for using for each pair of countries, a weighted distance between their regions, 

calculated as follows. Consider two countries A and B, with two regions each, as 

depicted in Figure 2.5
84

. The distance between A and B was computed as: 

 

22122111

2222121221211111

BABABABA

BABABABABABABABA

AB
GDPGDPGDPGDPGDPGDPGDPGDP

dGDPGDPdGDPGDPdGDPGDPdGDPGDP
d

+++

+++
=  

(2. 47) 

                                                 
83

 In fact, this had been the distance measure used in the experiences reported in Sargento (2006) and in 

Sargento (2007). 
84

 NUTs II was the geographic partition used in the calculation. 
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Figure 2. 5  – Two countries – A and B, with two regions each. 

 

 

 

Using such a formula, the distance between country A and country B takes into account 

the several distances between all regions of country A and all regions of country B, 

instead of considering merely the distance between two specific points of the country. 

The distances between pairs of NUTs II were calculated using the polygon centroid’s 

(x,y) coordinates for each one
85

, as it was done in other similar studies, like for example 

Dall’erba (2003). 

 

As it was mentioned before, origin-destination flow data have specific characteristics, 

which must be emphasized before explaining the practical application that was carried 

out. First, the number of observations, N, is equal to 2
n  (196, in this case, where n = 14 

represents the number of countries included in the study
86

). Second, the vectors of 

explanatory variables have a particular feature: in the origin related variables (as, for 

example, GDP of origin i), the same value is repeated n times: once to each destination 

                                                 
85

 A polygon centroid is used to refer to its centre of mass or centre of gravity, i.e., the point about which 

the polygon would balance, assuming that it had a constant density. These points are widely used in 

Geographical Information Systems (GIS), for example, in distance calculations, just as we have done here. 

This distances between the NUTs II’s polygon centroid came from the database provided by ArcView GIS. 

 
86

 In practice, there are only 184 non-zero observations, since i tis assumed no intra-regional trade, making 

the main diagonal elements of the O-D matrix equal to zero. 
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country; in the destination related variables (for example, GDP of destination j) the same 

sequence of values is repeated n times: once to each origin country. Finally, distance and 

contiguity matrices are symmetric (ex.: if Germany is contiguous to France, the opposite 

is also true; the same reasoning applies to the distance between these two countries). The 

discussion of these particular features of origin-destination flow data, and its 

implications, is the main subject of LeSage and Pace (2005). 

 

All the alternative equations were estimated seventeen times: once to each of the 

seventeen manufactured products considered in the study. The use of gravity model with 

individual products is less common than aggregate trade applications. However, some 

exceptions exist. For example, Feenstra, Markusen and Rose (1998) distinguish two 

groups of products: differentiated and homogeneous, expecting to find a higher value of 

domestic income exports elasticity in manufactured / differentiated products, when 

compared to the correspondent value in primary, homogeneous, resource based goods. 

Their results confirm the initial expectative. Srivastava and Green (1986) also include 

different individual product categories in their study of the determinants of trade between 

a large sample of nations. These authors have found that the explanatory variables are 

better for explaining trade intensity of manufactured goods than in nonmanufactured 

categories. Besides, even among the categories in which the independent variables are 

statistically significant, considerably varying parameters have been found (Srivastava and 

Green (1986)). The same conclusion was found in Jackson, Schwarm and Okuyama 

(2006), in their estimate of interregional trade flows to be included in an interregional 

Social Accounting Matrix framework for the U.S. According to the results obtained there 

is “considerable variation in interaction parameters across commodities”. (p. 87). The few 

studies that have used commodity-specific estimates of interregional trade have all 

concluded that there is considerable parameter variability from one product to another. 

This may also be an expected result in the present study. However, it should be noted that 

there are a priori limitations that must be taken into account when inferring the results: 1) 

only manufactured product categories are included in the study, preventing the 

comparison with non-manufactured products; 2) the level of aggregation involved in the 

above list of seventeen products is still very high. 
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2.4.1.3 Model calibration through alternative gravity equations. 

 

2.4.1.3.1 Basic gravity equation. 

 

Model calibration was done in a stepwise fashion, testing succeeding formulations for 

gravity model. The first regression, named Model 1, was based on the traditional 

specification of gravity model, expressed before in equation (2. 8) and used Ordinary 

Least Squares. As a matter of fact, Model 1 acts as a benchmark for further estimates. 

Yet, the estimated equation was a bit different from equation (2. 8), since GDP was 

decomposed in two separate factors, in order to capture two distinct effects on trade: 

population, as a size explanatory variable, and per capita income, as an indicator of 

development. Being so, Model 1 is expressed by: 

 

rsrsssrrrs
POPNPOPNx εδββββββ ++++++= lnlnlnlnlnln 543210  

(2. 48) 

 

in which N  stands for per capita GDP and POP is population. The remaining variables 

and parameters have the meaning referred before. It is expected that the coefficients 

associated to N and POP, have positive signs, because these are the traditional propulsion 

(for origins) and attraction (for destinations) variables in the gravity model. On the 

contrary, it is expected that the distance parameter, 5β , has a negative sign.  

 

Equation (2. 48) was applied successively to the seventeen manufactured products. The 

dependent variable vector was different to each product, but the explanatory variables 

remained the same, since these variables are not related to any particular product. The 

display and analysis of the results will be targeted to some specific issues, since the 

complete list of results for the seventeen products would be too extensive.  
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Table 2. 2 – Principal results for Model 1. 

Beta 5

(distance 

coeff.)

FBT 79,48% beta 3 yes -0,8537

TEX 80,05% beta 3 no: negative beta 1 -0,8557

WOO 40,88% beta 3 yes -0,7543

PPP 56,86% none yes -0,4353

COK 54,15% beta 3 yes -1,1518

CHE 75,23% none yes -0,5679

RPL 83,25% none yes -0,7019

ONM 77,04% beta 0 and beta 1 yes -0,7587

BMT 73,23% beta 3 yes -0,6538

FMT 80,78% none yes -0,7375

MAC 81,73% none yes -0,4976

OFF 66,16% none yes -0,6332

ELE 75,29% none yes -0,5007

RTV 66,13% none yes -0,2890

MED 81,88% none yes -0,5112

MTV 64,88% beta 3 yes -0,8961

OTR 81,33% none yes -0,5566

R-bar squared Statistically insignificant 

coefficients (5%)

Coeff. signs equal to 

expected?

 

 

 

Table 2. 2 sums up the more relevant results of Model 1. The first column of the table 

expresses the explicative power of the model, by means of its R-bar Squared. In spite of 

being extremely variable between the different products, it should be emphasized that this 

indicator assumes relatively low values for some of them, like WOO, for instance (for the 

full designation of the products, please see again Table 2. 1). The second column refers to 

the statistical relevance of the variables included in this model, through the t-statistic 

value (at 5% significance level). The most evident observation is that the estimated 

parameter associated to per capita GDP of the importing country is not significant in six 

of the seventeen cases. This may be a sign that size matters more than development level 

as an attraction measure to international trade (since the origin and destination population 

parameters are always statistically significant). The third column indicates the 

coincidence (or not) between the estimated parameters’ signs and the expected ones. That 

coincidence is not verified in the case of TEX, in what respects to 1β . In fact, the 

traditional interpretation of gravity model in international trade applications is that trade 

tends to be greater between larger countries. However, since GDP effect was decomposed 

in two indicators (size and development), it could be argued that the sign of per capita 
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GDP is more an empirical issue, i.e., it may be positive or negative, according to the 

specific case. One plausible explanation to the negative sign found in TEX products is 

that it belongs to a class of low-technology industries, in which less developed countries 

are more specialized
87

. Being so, countries with a smaller per capita GDP would be 

expected to export more of these products and vice-versa. Finally, the last column 

presents the distance parameter estimated value, to each of the products. It is clear that, as 

expected, distance produces a negative effect on international trade flows. However, the 

estimated elasticity is extremely variable among the different products. Figure 2. 6 

illustrates distance parameter variability. 

 

 

Figure 2. 6 – Distance decay parameter variability. 

-1,4000 -1,2000 -1,0000 -0,8000 -0,6000 -0,4000 -0,2000 0,0000

FBT

TEX

WOO

PPP

COK

CHE

RPL

ONM

BM T

FM T

M AC

OFF

ELE

RTV

M ED

M TV

OTR
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 See, for example, the case of textiles and related products, in which Portugal, with a per capita GDP 

below the average, shows a great specialization. 
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2.4.1.3.2 Spatial econometric application. 

 

The awareness of potential spatial dependence effects motivated us for a spatial 

econometric application as well. The several spatial econometric models which will be 

presented were all calibrated making use of the spatial functions of the Econometrics 

MATLAB toolbox, available at http://www.spatial-econometrics.com/.  

 

The first step consisted in constructing the three above mentioned spatial weight matrices 

– destination-based, origin-based and origin-destination based
88

, in order to capture the 

spatial structure of these particular data.   

 

Using a stepwise approach, the first spatial model to be tested was the Spatial Error 

Model (equation (2. 45)). The computation of the Moran I-statistic over the least squares 

regression provided strong motivation to do so. This statistic
89

 is designed to detect the 

presence of spatial autocorrelation in the residuals from a least-squares model (Le Sage, 

1998). It was computed over the residuals from Model 1, using the correspondent 

function in Matlab. The values obtained for this statistic are summarized in Table 2. 3. 

For values above 1,96 one may reject the null hypothesis of no spatial correlation in the 

error terms, corresponding to a probability < 5% (Le Sage, 1998). In this Table, the bold 

values support the hypothesis of spatial autocorrelation in Model 1 error disturbances. We 

may observe that, using weight matrix dW , the values obtained by Moran I-statistic for 

each product’s regression were always very high, suggesting that the least squares 

residuals exhibited spatial correlation. 

 

 

 

 

                                                 
88

 It must be noted that there are other alternatives for mixed effects (simultaneous origin and destination 

based dependence), namely summing the origin-based with the destination-based W matrices. This 

alternative was also considered in our empirical application, but with results that did not differ from the 

ones using do WW ⋅ . 
89

 The formula for this statistic can be seen, for example, in Le Sage (1998), p. 74. 
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Table 2. 3 – Moran’s I statistic for Model 1 residuals. 

Wd Wo Wod

FBT 5,80 4,34 5,21

TEX 6,53 3,93 3,26

WOO 8,46 4,26 5,13

PPP 8,24 2,41 2,90

COK 5,60 2,80 1,12

CHE 6,05 2,07 0,96

RPL 4,25 4,15 2,23

ONM 4,85 2,47 2,19

BMT 4,35 3,77 2,84

FMT 4,50 3,67 2,99

MAC 5,25 3,04 1,93

OFF 8,50 3,28 8,50

ELE 4,99 2,16 1,37

RTV 7,32 1,42 1,94

MED 4,88 2,72 0,70

MTV 8,94 1,97 1,81

OTR 2,89 0,86 0,76

Moran I stat

 

 

The results of this statistic were not so evident when matrices oW  or odW  were used 

instead of dW . In these cases, the null hypothesis of no spatial correlation on the model 

disturbances was accepted in three of the seventeen and in eight out of seventeen 

regressions, respectively
90

. Yet, given the unambiguous suggestion of error 

autocorrelation derived from one specific representation of spatial structure, it was 

considered that there was enough motivation to apply a Spatial Error Model to all the 

manufactured products. This model, named Model 2, was conducted applying 

alternatively the three spatial weight matrices presented before, originating Model 2A 

(with weight matrix oW ), Model 2B (with weight matrix dW ) and Model 2C (with weight 

matrix odW ). The correspondent regressions can be written as: 

 

                                                 
90

 These different results occur because the formula of the Moran I-statistic makes use of matrix W (as it 

happens with other statistical tests for spatial autocorrelation). Thus, as stated in Dubin (1998), p. 319, “the 

results of this test will be conditional on the researcher’s choice of W”. 
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rsrs

oo

rs

rsrssrsrrs

W

POPNPOPNx

εµλµ

µδββββββ

+=

++++++= lnlnlnlnlnln 543210
 

(2. 49) 

rsrs
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rsrssrsrrs

W

POPNPOPNx

εµλµ

µδββββββ
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++++++= lnlnlnlnlnln 543210
 

(2. 50) 

and 

rsrs

odod

rs

rsrssrsrrs

W

POPNPOPNx

εµλµ

µδββββββ

+=

++++++= lnlnlnlnlnln 543210
. 

(2. 51) 

 

The statistical significance and value of λ  will allow inferring about the presence and 

degree of spatial aucorrelation in the errors of the model. It is expected that, if significant, 

this parameter has a positive sign. As to the remaining variables, the expected signs are 

the same as previously mentioned. The calibration of Model 2 was done using the SEM 

(Spatial Error Model) function in Econometrics MATLAB toolbox (LeSage, 1998), 

which comprises maximum likelihood estimation method.  

Spatial autoregressive model, named Model 3, was tested through the regression 

equations expressed before as equations (2. 42) to (2. 44) (respectively: Model 3B, Model 

3A and Model 3C). Although the SAR model has been tested in these three versions, only 

the results of Model 3C will be shown here, since it is the one which generates higher 

evidence of autocorrelation in the dependent variable (see Table 2. 5). In fact, in Models 

3A and 3B, the autoregressive coefficient is statistically insignificant in the majority of 

the regressions; moreover, it assumes a very low value when statistically significant. 

Conversely, in Model 3C, we can see that the autoregressive coefficient is statistically 

significant in fifteen out of seventeen cases. These results allow us to conclude that, when 

a mixed effect is considered in the multiplicative form, the spatial dependence hypothesis 

obtains a superior support. However, once again, its absolute value is not very high. In 

short, two main reasons made the SAR model to be considered inferior to the SEM 

model: (1) the low explicative power of the lagged dependent variable, even when it is 
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statistically significant and (2) the lower fit to the sample data, reported by generally 

lower values obtained for the log-likelihood.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. 4 presents the principal results of this application. There are three main 

observations to make on these results. First, the distance resistance coefficients, though 

being statistically different from zero, have now much smaller values than in Model 1, 

being far from the commonly obtained values in similar gravity trade studies
91

. Also, 

their variability among products has also diminished. This is an interesting result, since it 

may be explained by the fact that, in Model 1, the distance coefficient could be 

incorporating the effect of other explanatory factors associated to the spatial structure of 

the observations, different from the mere distance between origin and destination. 

Reinforcing this idea is the fact that in Model 2, the autocorrelation parameter λ  is now 

capturing some product variability, instead of 5β . The other two observations concern to 

the comparison that can be made between the three alternative SEM specifications. The 

                                                 
 
91

 Usually the distance coefficient is around unity. 
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first column of this table expresses the fit of the model by means of the maximum level 

obtained for the log-likelihood. According to this, and as it was previously suggested by 

the Moran I-statistic results, it seems that matrix dW  represents the type of spatial 

dependence that better reflects the way in which the errors are autocorrelated. On the one 

hand, in the destination-based SEM λ  is statistically significant in all products, without 

exception. On the other hand, besides being relevant it assumes the highest values in 

Model 2B. The significant values found to parameter λ , suggest the existence of 

explanatory factors not included in the model that are spatially correlated. This last 

observation constituted a motivation to experiment the SAR model, in order to 

investigate the possibility of spatial autocorrelation in the dependent variable. 

 

Spatial autoregressive model, named Model 3, was tested through the regression 

equations expressed before as equations (2. 42) to (2. 44) (respectively: Model 3B, Model 

3A and Model 3C). Although the SAR model has been tested in these three versions, only 

the results of Model 3C will be shown here, since it is the one which generates higher 

evidence of autocorrelation in the dependent variable (see Table 2. 5). In fact, in Models 

3A and 3B, the autoregressive coefficient is statistically insignificant in the majority of 

the regressions; moreover, it assumes a very low value when statistically significant. 

Conversely, in Model 3C, we can see that the autoregressive coefficient is statistically 

significant in fifteen out of seventeen cases. These results allow us to conclude that, when 

a mixed effect is considered in the multiplicative form, the spatial dependence hypothesis 

obtains a superior support. However, once again, its absolute value is not very high. In 

short, two main reasons made the SAR model to be considered inferior to the SEM 

model: (1) the low explicative power of the lagged dependent variable, even when it is 

statistically significant and (2) the lower fit to the sample data, reported by generally 

lower values obtained for the log-likelihood.  
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Table 2. 4 – Principal results for Model 2. 

 

Maximized 

Log Lik

Statistically insignificant 

coefficients (5%)

Coeff. signs equal 

to expected?

Beta 5 lambda

2A -217,85 beta 3 yes -0,1356 0,415

2B -213,82 beta 3 yes -0,1358 0,418

2C -219,24 beta 3 yes -0,1288 0,43

2A -217,76 beta 0 no: negative beta 1 -0,1293 0,295

2B -202,40 beta 0 no: negative beta 1 -0,1315 0,434

2C -222,67 beta 0 no: negative beta 1 -0,1249 0,23

2A -316,48 beta 3 yes -0,1125 0,434

2B -280,17 beta 1 yes -0,1182 0,602

2C -314,41 beta 3 yes -0,1022 0,55

2A -260,35 none yes -0,1254 0,263

2B -220,11 none yes -0,1322 0,588

2C -259,98 none yes -0,1190 0,31

2A -390,29 beta 3 yes -0,1078 0,234

2B -377,19 beta 3 yes -0,1132 0,395

2C -394,51 beta 3 and lambda yes -0,0980 not stat sig

2A -229,32 none yes -0,1342 0,148

2B -212,15 none yes -0,1383 0,399

2C -231,18 lambda yes -0,1317 not stat sig

2A -208,43 none yes -0,1240 0,326

2B -207,95 none yes -0,1243 0,335

2C -216,89 none yes -0,1173 0,18

2A -239,52 beta 1 yes -0,1140 0,225

2B -228,21 beta 1 yes -0,1183 0,395

2C -241,44 beta 1 yes -0,1085 0,17

2A -256,49 beta 3 yes -0,1270 0,305

2B -254,33 none yes -0,1275 0,331

2C -262,26 none yes -0,1194 0,21

2A -221,87 none yes -0,1220 0,323

2B -217,47 none yes -0,1232 0,38

2C -227,15 none yes -0,1145 0,23

2A -208,03 beta 3 yes -0,1315 0,253

2B -197,95 none yes -0,1340 0,366

2C -212,06 lambda yes -0,1267 not stat sig

2A -296,59 none yes -0,1190 0,27

2B -260,60 none yes -0,1242 0,548

2C -291,30 none yes -0,1242 0,548

2A -214,31 none yes -0,1228 0,21

2B -203,67 none yes -0,1257 0,347

2C -216,50 lambda yes -0,1186 not stat sig

2A -254,71 none yes -0,1250 0,128

2B -228,41 none yes -0,1307 0,445

2C -253,92 none yes -0,1216 0,20

2A -220,01 none yes -0,1160 0,213

2B -211,85 none yes -0,1182 0,33

2C -223,92 lambda yes -0,1127 not stat sig

2A -338,46 beta 3 yes -0,1276 0,175

2B -292,99 beta 3 yes -0,1366 0,568

2C -339,16 beta 3 yes -0,1236 0,18

2A -261,86 lambda yes -0,1070 not stat sig

2B -258,40 none yes -0,1098 0,184

2C -261,96 lambda yes -0,1061 not stat sig

MTV

OTR

OFF

ELE

RTV

MED

BMT

FMT

MAC

COK

CHE

RPL

ONM

FBT

TEX

WOO

PPP
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Table 2. 5 – Principal results for Model 3C. 

Wod Max Log 

Lik

Statistically 

insignificant 

coefficients (5%)

Coeff. signs equal to 

expected?

Beta 5 rho

FBT -232,21 beta 3 and rho yes -0,1241 not stat sig

TEX -223,33 beta 0 and beta 3 no: negative beta 1 -0,1198 0,052

WOO -301,99 beta 3 yes -0,0880 0,259

PPP -245,41 beta 3 yes -0,1111 0,142

COK -392,97 beta 3 yes -0,0931 0,092

CHE -227,45 beta 3 yes -0,1282 0,053

RPL -207,62 none yes -0,1115 0,09

ONM -234,99 beta 1 yes -0,1023 0,092

BMT -264,79 rho yes -0,1173 not stat sig

FMT -221,11 none yes -0,1086 0,089

MAC -200,21 beta 3 yes -0,1209 0,088

OFF -287,69 beta 3 yes -0,1039 0,158

ELE -199,83 none yes -0,1120 0,108

RTV -234,22 beta 3 yes -0,1137 0,14

MED -210,69 beta 3 yes -0,1066 0,104

MTV -325,59 beta 3 yes -0,1127 0,164

OTR -257,59 none yes -0,1020 0,073  

 

Still, as we can observe in Table 2. 5, this model confirms the results of SEM model, in 

what concerns to the distance decay parameters, which are lower than in Model 1, but 

always statistically significant.   

 

 

In order to complete this spatial analysis, the general spatial model was also tested. The 

computation of the LM test to the SAR model residuals – a statistical test for spatial 

autocorrelation in the disturbances of the SAR model (Le Sage, 1998) – indicated that 

these were still autocorrelated (the LM value was always very high, irrespectively of the 

type of weight matrix used in the calculation). Thus, the general spatial model seems an 

appropriate formulation, since it also incorporates autocorrelation in the error terms. 

Given the results of the previous spatial model experiences (SEM and SAR), this 

application was made using matrix odW  as the spatial lag operator for the dependent 

variable and matrix dW  as the spatial lag operator for the error terms. The estimated 

regression equation, named Model 4, was: 
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(2. 52) 

 

Three main observations are suggested by these results (see Table 2. 6). First, this model 

exhibits a better fit than in the two previous models. However, this new specification of 

the model, incorporating error autocorrelation, makes clear that the autoregressive 

coefficient of the dependent variable is not statistically significant in almost half of the 

products under study. Thus, the general spatial model seems a superior model only in ten 

of seventeen products; even in these cases, the ρ  value is very low. Finally, even being 

lower than in Model 2, the error term autoregressive coefficient ( λ ) remains statistically 

significant in all product equations and continues to be considerably high.  

 

Table 2. 6 – Principal results for Model 4. 

Wod, Wd

Max Log Lik Statistically insignificant 

coefficients (5%)

Coeff. signs equal 

to expected?

Beta 5 rho lambda

FBT -101,36 beta 3 and rho yes -0,1347 not stat sig 0,41

TEX -89,73 beta 0, beta 1 and rho no: negative beta 1 -0,1306 not stat sig 0,44

WOO -164,62 beta 1 and beta 3 yes -0,1099 0,10 0,54

PPP -106,62 beta 3 and rho yes -0,1288 not stat sig 0,57

COK -263,62 beta 3 and rho yes -0,1076 not stat sig 0,39

CHE -99,09 beta 3 and rho yes -0,1359 not stat sig 0,38

RPL -90,37 none yes -0,1175 0,07 0,24

ONM -113,31 beta 1 yes -0,1127 0,06 0,32

BMT -141,33 rho yes -0,1250 not stat sig 0,32

FMT -101,66 none yes -0,1175 0,06 0,30

MAC -80,32 beta 3 yes -0,1277 0,06 0,29

OFF -141,91 beta 3 yes -0,1158 0,10 0,51

ELE -83,24 beta 3 yes -0,1174 0,08 0,22

RTV -107,72 beta 3 yes -0,1221 0,09 0,36

MED -94,49 beta 3 yes -0,1115 0,07 0,22

MTV -180,00 beta 3 and rho yes -0,1347 not stat sig 0,55

OTR -143,34 none yes -0,1052 0,06 0,14  

 

Given the high autocorrelation of errors evidenced by Models 2 and 4, suggesting that 

some relevant spatially connected explanatory variables could be missing in the model, 

an additional experience was carried out. In Model 5, a new variable was added to the 

traditional gravity explanatory variables. This added variable is product specific and 

reflects the effect of each country’s specialization on the volume of exports. It should be 

noted that in the previous models, the vector of explanatory variables was the same, 
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independently of the specific product in study. However, in some cases, de degree of 

specialization of some country in exporting a specific product k has an influence that may 

even prevail over the distance effect. Consider, for example, the product “WOOD AND 

PRODUCTS OF WOOD AND CORK”. The weight of this product exports on total 

exports of Finland is pretty above the average. More precisely, is almost 7 times the 

correspondent weight in the whole of countries being considered. Formally, this can be 

expressed by a Degree of Specialization (DS) indicator, as in equation (2. 53). The 

numerator of this index represents the weight of product k on origin r’s total exports
92

; 

the denominator indicates the weight of product k on all origins’ exports. Actually, this is 

no more than a Location Quotient, computed using exports as the variable of 

specialization: values above (below) 1 indicate a higher (lower) than average 

specialization of country r in exporting product k. Table 2. 7 shows the maximum values 

of this index obtained for each product and the correspondent highly specialized country.  

: 
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(2. 53) 

 

From the previous explanation, it is clear that the expected sign for the new variable’s 

estimated coefficient is positive. In addition, it should be emphasized that product 

specialization is likely to be a spatially clustered variable, since it is often determined by 

natural resources allowance. Thus, it may offset some of the effects previously included 

in the error term autoregressive coefficient. 

 

                                                 
92
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Table 2. 7 – Maximum value of DS , for each product, and correspondent 

specialized country. 

Max SD Country

FBT 2,59 Denmark

TEX 4,84 Portugal

WOO 6,66 Finland

PPP 6,63 Finland

COK 3,11 Netherlands

CHE 2,71 Ireland

RPL 1,37 Italy

ONM 1,99 Portugal

BMT 2,40 Greece

FMT 1,64 Italy

MAC 1,89 Italy

OFF 4,48 Ireland

ELE 1,58 Portugal

RTV 3,59 Finland

MED 1,38 Denmark

MTV 1,91 Spain

OTR 2,10 France  

 

 

The regression equation for Model 5, given below, assumes the Spatial Error Model 

formulation – given the low degree of autocorrelation in the dependent variable shown in 

Model 3 and Model 4, this was not taken into account in Model 5. 
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(2. 54) 

 

The main estimation results of this model are shown in Table 2. 8. Five main comments 

are suggested by these achievements:  

- The values of the maximized log-likelihood indicate that this formulation 

possesses a better overall fit to the data than Model 2, which corresponds to the 

Spatial Error Model without the additional explanatory variable. 

- Statistically insignificant coefficients are fewer in this model than on the previous 

ones. 
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- All the estimated coefficient signs correspond to what was expected a priori. 

- Estimated DS coefficients are statistically significant in all but one product and 

show a high sensibility of exports with respect to origin’s specialization on the 

specific product under study. All coefficients are close to or greater than unity. 

- The distance decay parameter remains statistically significant in all products, 

although with low absolute values. 

 

Table 2. 8 – Principal results for Model 5. 

Max Log Lik Statistically insignificant 

coefficients (5%)

Coeff. signs equal 

to expected?

Beta 5 Beta 6 lambda

FBT -201,14 beta 3 yes -0,1341 0,74 0,32

TEX -189,26 none yes -0,1306 0,81 0,36

WOO -253,14 none yes -0,1099 1,19 0,29

PPP -195,27 none yes -0,1262 1,16 0,28

COK -371,22 beta 3 yes -0,1115 0,72 0,33

CHE -195,70 none yes -0,1366 1,17 0,28

RPL -201,85 none yes -0,1234 1,04 0,29

ONM -223,71 none yes -0,1175 0,91 0,35

BMT -237,05 none yes -0,1248 0,94 0,21

FMT -210,22 none yes -0,1219 0,90 0,31

MAC -186,97 none yes -0,1319 0,85 0,26

OFF -238,71 none yes -0,1203 0,98 0,33

ELE -201,67 none yes -0,1252 0,68 0,32

RTV -211,32 none yes -0,1266 1,13 0,21

MED -200,34 beta 1 yes -0,1153 1,77 0,16

MTV -261,51 none yes -0,1272 1,22 0,18

OTR -258,05 beta 6 yes -0,1097 not stat sig 0,16  

 

Additional comments on these results are pertinent. Comparing the values obtained here 

for the coefficient of error autocorrelation with the ones of Model 2, it is evident that it 

has diminished considerably, though remaining statistically significant. Thus, we may 

conclude that the introduction of the additional variable has reduced the error term 

autocorrelation.  

 

Finally, it seems evident, from this and the previous models, that it is relevant to make a 

disaggregated analysis, instead of calibrating the model for the aggregate trade flows. In 

Figure 2. 7, we can observe the estimated distance coefficients, for each product, 

obtained in Model 5. Although the most distance resistant products are not the same in 

this Model as in Model 1 (probably because some effects are now being captured by the 

DS variable and also because this model recognizes spatial correlation in the 
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disturbances, unlike Model 1), we can still observe that some variability remains: 

chemical products and food, beverages and tobacco are suggested to be the most 

distance-sensitive, according to the results of this model. 

 

Figure 2. 7 – Distance coefficient variability in Model 5. 
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The several experiences undertaken in the previous section confirm that gravity-based 

models generate quite good results when trade flows are known a priori, i.e., when the 

model is used with an explanatory purpose. Contrarily to what has been done in most of 

the gravity trade model econometric applications, some spatial econometric experiences 

were carried out, considering three different spatial models and three different types of 

spatial dependence (through the use of three distinct spatial weight matrices W). 

Comparing these results with the ones of Model 1 (with no consideration of spatial 

effects), we have concluded that the recognition of spatial autocorrelation of errors 

provides unambiguous improvement in the Model, reflected by a higher statistical 

significance of the estimated parameters and a better consistency between expected and 

obtained signs. The relevance of taking error autocorrelation into account is confirmed by 

the fact that λ  is statistically significant and assumes quite high values, especially in the 
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destination-based version of the spatial weight matrix. Conversely, the incorporation of a 

spatial lag of the dependent variable (as in Model 3) doesn’t seem critical in this sample 

data. Even in those cases in which the spatial autoregressive coefficient has shown 

statistical significance, its values were always rather low, indicating a very weak degree 

of spatial dependence (this result was reached both in the spatial autoregressive and in the 

general spatial models). Thus, the last experience relied upon the SEM formulation, yet 

including an additional explanatory variable, which has demonstrated to be statistically 

relevant: the origin’s relative specialization on the exportation of product k. The results of 

this model allow for the conclusion that the augmented version of the gravity model is the 

best suited to explain trade flow behavior. The fact that these econometric exercises were 

separately applied to distinct products also made clear that each different traded product 

has its own specificity, originating quite variable estimated coefficients. Furthermore, the 

product disaggregated application is very important because, in most of the times, the 

gravity model is used in the construction of larger models, like input-output models, 

which require product specific estimated values.  

 

2.4.2 Type (b) information context. 

 

In the previous section we have confirmed what other studies have concluded before: that 

the gravity-based model is well suited to explain trade flow behaviour. The question in 

this section consists in discussing and exploring the potential of the model in type (b) 

information contexts. In this section, we intend to review the empirical work carried out 

in Sargento (2007), which intended to answer the above referred question. As it has been 

referred in the beginning of section 2.4, in type (b) information contexts, the gravity 

model is used with the aim of generating the undisclosed values of an Origin-Destination 

matrix as the one in Figure 2. 1, having usually previous access to the column and row 

totals. Interregional trade flows first estimative, denoted by rs
x~ , can then be obtained by: 
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In order to guarantee the agreement with the additivity constraints, the initial values are 

adjusted, through a matrix adjustment method, like RAS, for example. The underlying 

principle consists in finding the closest the matrix to the initial one, which also respects 

the known row and column totals (de Mesnard, 2003). The resulting matrix will be given 

by an equation like (2. 10), repeated here: 
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(2. 56) 

   

being r
J  and sL  defined, as before, as the balancing parameters. 

 

As it was explained in section 2.3.1, the final estimated matrix composed by elements 

given by equation (2. 56) depends heavily on the initial matrix (prior to the adjustment 

procedure). Nevertheless, the main difficulties take place exactly when it comes to 

estimate the initial matrix, i.e., when applying an equation like (2. 55). In practice, we can 

refer to two main problems, listed below:  

(1) Parameters ,G  1α , 2α  and 3α  are unknown, which makes it impossible to 

directly apply the previous formula. 

(2) Without any survey-based table to serve as a benchmark, the results provided by 

the gravity model cannot be not rigorously evaluated (Hewings and Jensen, 

1986).  

 

Following the work done in Sargento (2007), a first exploratory experience was carried 

out in which the above mentioned problems were overcome as follows: 
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(1) The initial matrix was obtained applying a particular version of equation (2. 55), 

in which almost all the unknown parameters were arbitrarily set equal to one. 

More precisely, we have made: 
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(2. 57) 

in which an additional variable was considered: Degree of Specialization of origin 

r ( r
DS ) in exporting the specific product under study, for which it was found 

evidence of statistical significance in the previous section (Model 5). The constant 

of proportionality r
G  is a scalar that guarantees the exact observance of the rth 

row summing up constraint: r

s

rs xx =∑~ 93
; it is introduced in order to make the 

initial matrix comparable to the real one (if no scalar was introduced, the values 

of both matrices would have considerably different values). As evidenced by the 

formula, 1α , 2α and 3α  are assumed to be unitary. The initial matrix was 

iteratively adjusted, making use of the known margins. The algorithm converged 

after six iterations.  

 

(2) The performance of the gravity model was tested upon international trade flows 

between 14 European countries – the same database that was used in the previous 

section
94

. The information on international trade flows is used in two stages: 1) to 

adjust the initial matrix to the column and row totals extracted from the 

international trade database; 2) to serve as a benchmark to the values generated 

by the model, comparing the estimated flows to the real ones
95

, in order to assess 

                                                 
93

 The introduction of this scalar is equivalent to a first iteration of the RAS procedure, in which the row 

sums are the first to be adjusted.  
94

 A similar solution to overcome the lack of a survey-based table to serve as a benchmark was adopted, for 

example, in Canning and Wang (2006). 
95

 For a discussion on measures of matrix comparison, please see section 4.4 of Chapter 1. 
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the performance of the model – a better performance will be reflected in smaller 

differences between the estimated and the real matrix. In this study, the following 

measure of distance between matrices was used: 
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xx
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~

100  

(2. 58) 

 

in which STPE stands for: Standard Total Percentage Error.  

 

This measure was computed in two different stages of the process: before applying RAS 

(indicating the distance between the initial matrix and the real one) and after applying 

RAS (indicating the distance between the estimated final matrix and the real one).  

 

Table 2. 9 – STPE measured between the estimated and the real trade matrix  

 
BEFORE RAS AFTER RAS

FBT 40% 30%

TEX 48% 39%

WOO 54% 42%

PPP 40% 33%

COK 61% 53%

CHE 48% 35%

RPL 41% 30%

ONM 38% 27%

BMT 46% 32%

FMT 44% 32%

MAC 44% 29%

OFF 56% 41%

ELE 47% 34%

RTV 54% 36%

MED 46% 35%

MTV 50% 31%

OTR 64% 41%

average 48% 35%  
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Table 2. 9 presents the obtained results for all the seventeen products. These results show 

that the initial matrix is quite distant from the real one (with a mean error around 50%). 

The iterative adjustment allows for some improvements in the matrix, yet not in a drastic 

way. In some products, like ONM, for example, the resulting error is rather low. 

However, in general, the final matrix is still quite distant from the real one, suggesting 

that the gravity-based formulation used here is not suitable to accurately generate the 

international trade flows. 

 

From these preliminary results several questions arise, which will be addressed in the 

following section: 

(1) How important are the initial origin-destination flows? In other words, if one 

applies an even simpler method to generate the initial values, or conversely, a 

more sophisticated one, instead of the gravity-based model, are the final results 

affected in a drastic way? 

(2) What happens if at least some of the parameters of the model are estimated 

through an alternative procedure instead of being set equal to one? Does the 

estimated O/D matrix become closer to the real one? In fact, one of the most 

obvious sources of error of the previous experience relies on the fact that all 

coefficients were arbitrarily set equal to one, while it became clear from the 

previous section that the estimated parameters assume variable values from 

product to product and are not unitary. This is especially true in what respects to 

the distance coefficient, which was found to be much smaller than unity, 

according to the values obtained in the spatial econometric models.  

(3) How sensitive is the input-output model to the insertion of different estimates for 

interregional trade? This means: “What is the impact on the interregional 

multipliers of considering different values for interregional trade?”; “Do these 

large errors in the O/D matrix reflect also in large errors when the model is 

applied, for example, to access the impact of an exogenous change in final 
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demand?”. In fact, when the main concern relies in the application of multi-

regional input-output models, as it happens in our study, this is a crucial question, 

since it may validate (or not) the use of indirect methods to obtain the seldom 

available and absolutely indispensable data on interregional trade flows. 

 

2.5  Absolute and analytical comparison between different 

interregional trade estimation methods. 

 

The objective of this section consists in making a comparison between distinct 

interregional trade estimation methods, both in absolute and in analytical terms. First of 

all, it is necessary to clarify what is meant by “absolute” and “analytical” comparison. An 

absolute comparison relies on the differences observed among Origin-Destination 

matrices of trade flows generated by different interregional trade estimation methods. An 

exercise of such nature was made in the previous section, in which one estimated matrix 

was contrasted to the real trade flow matrix. An analytical comparison goes further and 

involves the assessment of the impact on the multipliers obtained from the model, created 

by the insertion of different interregional trade values. In order to allow for this sort of 

comparison, it is necessary to have access to a complete multi-regional system upon 

which a multi-regional input-output model can be developed. Thus, the achievement of 

this section’s purpose is conducted under 5 stages, listed below, which also correspond to 

the sub-sections under Section 2.5: 

 

(1) Multi-regional input-output table assemblage
96

 – this is done using the Input-

output tables for each individual country and a set of bilateral trade flows as the 

base data; 

(2) Development of the multi-regional input-output model, which implies the 

adoption of certain simplifying hypotheses, explained further on.  

(3) Estimation of O/D trade matrices on the basis of six different methodologies. 

                                                 
96

 For a matter of consistency with the terms used in Chapter 1, in the presentation of the many-region 

models, we opt for using the designation “region” and “multi-regional” in the context of this empirical 

application, even when we are actually dealing with a system of countries. 



 220 

(4) Comparison between the six different matrices obtained before (absolute 

comparison). 

(5) Consecutive insertion of the different O/D matrices into the Multi-regional input-

output system and model simulation in a context of final demand change, in order 

to evaluate the sensitivity of the model to different interregional trade estimates 

(analytical comparison). 

 

2.5.1 Multi-regional input-output system assemblage. 

 

Before explaining how the multi-regional input-output system was assembled, a previous 

elucidation must be made. The assemblage of the multi-regional system is not the 

ultimate objective of this empirical study; instead, it is merely an instrument to be used in 

the comparison between the different interregional trade estimation methods. Thus, the 

high level of aggregation considered, as well as the several simplifying hypotheses 

adopted, should not be overemphasized. In fact, all the subsequent experiences will be 

made using the assembled input-output system as the common starting point. Hence, the 

conclusions obtained comparing those different experiences to one another should not be 

affected to a great extent by the hypotheses assumed in the construction stage. 

 

The set of countries involved in the system is the same that was considered in Section 

2.4: the 14 countries belonging to the European Union before enlargement (15 minus one, 

since Belgium and Luxembourg are considered jointly). The reference year is 2000. The 

input-output data come from the ESA 95 Input-output table database, provided by the 

EUROSTAT, which is available on-line at the EUROSTAT webpage
97

. The bilateral 

trade data come from the OECD Bilateral Trade Database, Edition 2002. This trade 

database is used to estimate the distribution of intra-regional trade among the 14 

countries included in the system. Given the discrepancies that occurred between export-

based data and import-based data (commonly known as the “mirror statistics puzzle”), 

                                                 
97

http://epp.eurostat.ec.europa.eu/portal/page?_pageid=2474,54156821,2474_54764840&_dad=portal&_sc

hema=PORTAL. 
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meaning that the total exports reported by country A differ from the sum of total imports 

coming from country A reported by the other countries, a short-cut method was adopted: 

to consider the mean value between the export-based and the import-based OECD data. 

However, the totals of intra-regional imports and intra-regional exports are imposed by 

the values indicated by the EUROSTAT Input-output tables. In order to avoid an 

extremely heavy multi-regional table, the original classification embodied in the 

EUROSTAT Input-output tables was aggregated into 6 categories of products and 

industries. The following table sums up the set of data used in this study: 

 

Table 2. 10 – Data description. 

 

Data type Source / Number Description

Reference year 2000

Countries involved in the multi-regional 

system
14 European countries

France (FRA), Germany (GER), Italy (ITA), Belgium

+ Luxembourg (BELUX), Netherlads (NLD), Denmark

(DNK), Ireland (IRE), United Kingdom (GBR), Greece

(GRC), Spain (ESP), Portugal (PRT), Austria (AUT),

Finland (FIN) and Sweden (SWE).

Input-output data
ESA 95 Input-output tables, 

EUROSTAT

Tables are provided in rectangular format (Supply

and Use tables); Supply table at basic prices

including a transformation into purchasers’ prices and

Use table at purchasers’ prices. Use flows include

both domestically produced and imported products -

total use flows.

Bilateral trade data
OECD Bilateral Trade 

Database, Edition 2002
Export-based data and Import-based data.

Product classification 6 categories

A+B – “Products of agriculture, hunting, forestry and

fishing”, C – “Mining and quarrying”, D – “Industry”, E 

– “Electricity, gas and water supply”, F –

“Construction” and G to P – “Services”.  

 

Some additional comments on these data are due, especially in what concerns to the 

Supply (or Make) and Use tables. In Section 5 of Chapter 1 (Section 1.5.1 – 

“Commodity-by-industry accounts”), we had the opportunity to present the rectangular or 

Supply and Use framework (distinguishing it from the symmetric format) and also to 

differentiate between total use tables and intra-regional use tables. The original tables that 

come from the EUROSTAT database are provided in rectangular format (thus including 

Make and Use tables) and the Use tables are composed by intermediate and final use 
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flows which include not only domestically produced products, but also imported ones. 

Thus, they are said to be total use tables. The issue concerning the valuation of goods and 

services has not been addressed in Chapter 1, since we were using the simplification of 

ignoring taxes and subsidies on products, as well as margins. Although this is a subject to 

be further developed in Chapter 3, it is essential to provide here a brief explanation on the 

concepts of basic prices and purchasers’ prices. Different concepts can be used in the 

valuation of input-output flows of products, ranging from the production price to the 

purchasers’ price. In practice, however, in the input-output tables produced according to 

the European System of Accounts (ESA), only two price concepts are used: basic price 

and purchasers’ price. Basic prices are similar to production prices, except for the fact 

that basic prices include other taxes and subsidies on production, which are not possible 

to allocate to specific products. Purchasers’ prices, as the name indicates, represent the 

amount paid to obtain “a unit of a good or service at the time and place required by the 

purchaser” (EUROSTAT, 2002, p. 121). Basic prices (bp) can be obtained from 

purchasers’ prices (pp), through the following calculations: 

margins  transportand trade-productson  subsidiesproductson  taxes +−= ppbp  

 

In the case of the ESA tables, the balance between supply and use is made at pp, 

implying that the Supply tables include the addition of margins and taxes less subsidies, 

in order to convert total supply at bp into total supply at pp. 

 

Making use of the above described database, the assembling process involved the 

assumption of certain hypotheses to perform the conversion of the original tables, in 

which use tables were composed of total use flows valuated at pp, into domestic Use 

tables, with products valuated at bp. This previous conversion of the Use tables 

corresponds to one of the options that could be taken in this stage: the other option would 

be to work directly with the Use tables in their original nature and then assume the same 

kind of hypotheses in the model development. The discussion about the choice between 

these two alternative approaches is the central theme of Chapter 3
98

. Thus, in this 

                                                 
98

 In fact, Chapter 3 will also discuss the plausibility of performing the conversion of the Supply and Use 

tables into the symmetric format before applying the model, vis a vis the direct modelling of the Supply and 
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empirical study, we have opted for following the usual approach adopted by other 

researchers and preferred by the regional input-output literature
99

: to operate first the 

conversion of the original tables into domestic Use tables valuated at bp and then develop 

the input-output model on the basis of the converted tables
100

. The basic structure of the 

final table can be observed in Figure 2. 8, which illustrates the case for 3 regions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                                                 
Use tables. The hypothesis of converting the original tables into the symmetric format was not even 

considered in this study. Further details on this discussion are left to Chapter 3. 
99

 This procedure is advocated for example in EUROSTAT (2002) and is followed in empirical 

applications, for example, in ISEG/CIRU (2004) and in Oosterhaven and Stelder (2007).  
100

 Still, we have opted for using the rectangular model structure, conversely to what is usually made in this 

kind of exercises. 
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  Region A Region B Region C ROW SUM 

  Products Industries 
Final 

demand 
Products Industries 

Final 
demand 

Products Industries 
Final 

demand 
   

Products --- [ ]AA

jiu  
AA

jy  --- [ ]AB

jiu  
AB

jy  --- [ ]AC

jiu  
AC

jy  
ROWA

jy  
A

jv  b.p. 

Region A 

Industries [ ]A

ijv  --- --- --- --- --- --- --- --- --- 
A

ig  b.p. 

Products --- [ ]BA

jiu  
BA

jy  --- [ ]BB

jiu  
BB

jy  --- [ ]BC

jiu  
BC

jy  
ROWB

jy  
B

jv  b.p. 

Region B 

Industries --- --- --- [ ]B

ijv  --- --- --- --- --- --- 
B

ig  b.p. 

Products --- [ ]CA

jiu  
CA

jy  --- [ ]CB

jiu  
CB

jy  --- [ ]CC

jiu  
CC

jy  
ROWC

jy  
C

jv  b.p 

Region C 

Industries --- --- --- --- --- --- [ ]C

ijv  --- --- --- 
C

ig  b.p. 

ROW ---    ∑
j

AROW

jiu  ---  ---   ∑
j

BROW

jiu   ---  ---  ∑
j

CROW

jiu   ---     

Trade and transp marg ---   
A

id  ---  ---  
B

id   ---  ---  
C

id   ---     

Taxes less sub on prod ---    
A

il  ---  ---  
B

il   ---  ---  
C

il   ---     

Total Int. Consumption ---   
A

iIC p.p. ---   ---   
B

iIC p.p. ---   ---   
C

iIC p.p. ---     

Value Added ---  
A

iVA   ---  ---  
B

iVA   ---  ---  
C

iVA   ---     

SUM 
A

jv  b.p.   
A

ig  b.p. ---  
B

jv  bp.   
B

ig  b.p. ---  
C

jv  bp.   
C

ig  b.p. ---     
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Notation for Figure 2. 8: 

• A, B e C: indices that designate the three regions. 

• AA

jiu  - generic element of the regional production Use matrix AAU , which indicates 

the amount of product j produced in region A that is used by industry i in region 

A.  

• AB

jiu  - generic element of the Use matrix BAU , which indicates the amount of 

product j produced in region A that is used by industry i in region B.  

• BROW

jiu  - amount of product j produced in the rest of the world that is used by 

industry i in region B. 

• AA

jy  - amount of product j produced in region A which is used for final demand in 

the region. 

• AB

jy  - amount of product j produced in region A which is used for final demand in 

region B. 

• ROWA

jy - amount of product j produced in region A which is exported to the rest of 

the world. 

• A

ijv  - generic element of the Make matrix in region A. It represents the amount of 

product j produced by industry i in region A. 

• A

id - total amount of margins embodied in intermediate consumption of industry i 

(it corresponds to the column sum of the matrix of margins, for industry i; the 

matrix of margins is computed under certain hypotheses, exposed further on).  

• A

il  - total amount of taxes, less subsidies, embodied in intermediate consumption 

of industry i (it corresponds to the column sum of the matrix of net taxes, for 

industry i; the computation of the matrix of net taxes will also be explained 

further on). 

• A

iIC  - total intermediate consumption of industry i in region A. 
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• A

iVA  - value added of industry i in region A. 

• A

jv  - total production of product j in region A. 

• A

ig - total production of industry i in region A. 

 

In order to achieve such multi-regional Make and Use system, the assemblage was 

carried out in seven steps, namely: 

 

(1) Aggregation of the Make and Use tables, converting the original classification of 

59 product and industry categories into a classification with 6 categories (see 

Table 2. 10). 

 

(2) Operate the conversion of the Use tables valuated at pp into Use tables valuated at 

bp. This was done making use of the proportionality assumption, commonly used 

in this sort of exercises
101

: for each product, the margin (net taxes) rate comprised 

in any type of use (intermediate or final) of that product is the same and is given 

by the proportion of margins (net taxes) on total supply of the same product.  

 

(3) Eliminate the discrepancies between aggregated exports and aggregated imports 

among the 14 European countries involved in the multi-regional system. In 

principle, for each product, the aggregate value of intra-EU imports should equal 

the aggregate value of intra-EU exports. However, this was not verified by the 

values contained in the Make and Use tables obtained in the previous step, due to 

discrepancies originated by the different valuation prices for exports and imports. 

In principle, it should be possible to convert all cif prices into fob prices. Yet, 

only 8 out of 15 of the Make and Use tables included in the Eurostat database had 

a column with information for cif / fob adjustments. Being so, and given that the 

present exercise merely aims to provide a basis for a simulation exercise, rather 

                                                 
101

 Once again, we refer to Chapter 3 for a deeper discussion on the plausibility of the proportionality 

assumptions, considered not only with respect to margins and net taxes, but also in the treatment of 

imports. The analytical presentation of these hypotheses is also left to Chapter 3. 
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than a true multi-regional input-output system for European countries, we have 

applied the following solution: a) for each product, the aggregate value of intra-

EU imports was made equal to the aggregate value of intra-EU exports; b) the 

distribution of the corrected value of intra-EU imports among the 14 countries 

was made assuming that the weight of each supplier country in intra-EU imports 

is the same that it had according to the initial value of intra-EU imports; c) the 

difference between the corrected column of intra-EU imports and the original one 

was allocated to the column of extra-EU imports, hence maintaining the total 

value of imports for each product.  

 

(4) Expurgate the import content from the intermediate and final use flows, in order 

to get an intra-regional flow table for each region. In the Make tables, imports are 

split up into intra-EU and extra-EU (keeping in mind that, in the reference year of 

2000, only the 15 “old” European countries are considered in such distinction). 

Following the same basic principle as for margins and net taxes, it was assumed a 

constant average import propensity, meaning that, for each product, the same rate 

of imports (coming from the rest of the world and from the rest of the regions 

involved in the system) is embodied in intermediate and final use of that product. 

This is a common assumption in this type of studies, which follows the suggestion 

implicit in the Chenery-Moses model. It has been used, for example, in 

Oosterhaven and Stelder (2007) and in Van Der Linden and Oosterhaven (1995). 

Yet, it must be noted that, in our case, the average import propensity was 

computed under the “no re-exports” hypothesis. Following Miller and Blair 

(1985) and Jackson (1998), the intention was to recognize the specificity of 

exports in the context of final uses, given that they involve much less 

incorporation of imported products than other final uses, like investment for 

example. In order to take this differentiation into account, the average import 

propensity for each product was computed dividing the corresponding amount of 

imports by the amount of internal demand (total production + imports – exports). 

Then, it was applied to all intermediate and final uses of that product, except for 



 228 

exports. This means that we are assuming no import content in the export value of 

that product. 

 

(5) For each product, adjust the OECD-based Origin-Destination matrices to the row 

and column totals corresponding to the values of intra-EU exports and imports, 

provided by the Use and Supply (corrected) tables, respectively. This was made 

using the RAS procedure. It must be noted that, in the cases of products “F – 

Construction” and “G to P – Services”, the initial O/D matrix was computed using 

the data on aggregate trade, since the Bilateral Trade database does not cover 

service trading. As it is referred in Van Der Linden and Oosterhaven (1995), this 

assumption is adequate, given that “trade in services is strongly related to the 

trade in goods, especially for trade and transportation margins” (p. 5).  

 

(6) For each country, compute the 13 Use tables for the imported products – one to 

each of the remaining supplier country. This was made using the same 

proportionality assumption as for the aggregate intra-EU imports and for the 

extra-EU imports. Using an example, if France provides 1% of total supply of 

agricultural products in Austria (being total supply composed by Austrian 

production, intra-EU imports and extra-EU imports), it is assumed that, of all 

intermediate and final uses (except for exports) of agricultural products implicit in 

the total Use Austrian table, 1% corresponds to imports from France. 

 

(7) Final assemblage of the multi-regional Make and Use table, inserting the original 

Make tables (respecting only to the domestic production matrix, represented by 

the generic element ijv ) and the Use tables for the domestic production and for 

imports, obtained in the preceding steps. The rows named in Figure 2. 8 by 

“ROW”, “Trade and transp. margins” and “Taxes less sub. on products” 

correspond to the column sum of the matrices of extra-EU imports, trade and 

transport margins and net taxes, respectively, which were constructed assuming 

the already explained hypotheses of proportionality (steps (2) and (4)). 
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The assembled multi-regional Make and Use table for the 14 European countries may be 

observed in Annex A.2.1 (because this was too extensive to be integrated in the present 

text, we have opted by saving it as an excel file – named MRMU_Table – and making it 

available in the CD-rom that is attached to this dissertation). 

 

2.5.2 Development of the multi-regional input-output model. 

 

The development of an input-output model on the basis of the rectangular or Make and 

Use format has already been introduced in Chapter 1, Section 1.5.1, yet to the case of one 

single region (or single nation) table. Here, the same principles will be followed, using 

the necessary adaptations to consider the multi-regional linkages embodied in the system. 

 

If we have a multi-regional table such as the one depicted in Figure 2. 8 as a starting 

point (and using the 3 regions’ example), the multi-regional input-output model can be 

developed as follows. Let the bold notation designate the column vectors and the matrices 

composed by the corresponding variables introduced before. For example, ABU  stands 

for the matrix of intermediate consumption composed by flows AB

jiu  and ABy  represents 

the vector composed by flows AB

jy . Hence, we can write the system: 

 

ROWCCCCCBCBBACAC

ROWBCBCBBBBBABAB

ROWAACACABABAAAAA

yyiUyiUyiUv

yyiUyiUyiUv

yyiUyiUyiUv

C

B

++++++=

++++++=

++++++=

 

(2. 59) 

 

 

Additionally, making use of the intra-regional input coefficients and of the interregional 

trade coefficients
102

, defined as: 

 

                                                 
102

 The definitions of intra-regional input coefficients and interregional trade coefficients have been 

presented before, in Chapter 1, when presenting the Isard’s interregional model. 
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(2. 60) 

 

The system becomes: 

 

ROWCCCCCCBBCBCAACAC

ROWBCCBCBBBBBBAABAB

ROWAACCACABBABAAAAAA

yygQygQygQv

yygQygQygQv

yygQygQygQv

C

B

++++++=

++++++=

++++++=

 

(2. 61) 

 

Besides the fixed input coefficients hypothesis, another assumption must be taken – a 

proposition that relates industry’s output with commodity’s output. To do so, we assume 

that each product in each region is produced in fixed proportions by the several 

industries, implying that the structure implicit in each column of the Make matrix is 

assumed invariant
103

: 

 

A

j

A

ij

A

ijA

j

A

ijA

ij vsv
v

v
s =⇒=  

(2. 62) 

 

In matrix terms, this corresponds to: AAA
vSV ˆ= . Multiplying both sides of this equation 

by i (a column vector appropriately dimensioned, composed by 1’s), we obtain: 

  

AAAAAA vSgivSiV =⇔= ˆ  

(2. 63) 

                                                 
103

 As we have mentioned in Chapter 1, this corresponds to the hypothesis commonly known as the 

Industry Technology-based Assumption (ITA), and it implies that all products produced by an industry are 

produced with the same input structure, meaning that there is one technology assigned to each industry. 

The discussion of the reasonability of this hypothesis, as well as the analysis of an alternative assumption, 

is left for Chapter 3. 
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Obviously, the same applies to regions B and C. Introducing (2. 63) into (2. 61), we get:  

CCCBCACCCCBBCBAACAC

BCBBBACCBCBBBBAABAB

ACABAACCACBBABAAAAA

yyyvSQvSQvSQv

yyyvSQvSQvSQv

yyyvSQvSQvSQv

+++++=

+++++=

+++++=

  

(2. 64) 

 

Which can still be represented by: 

 

•

•

•

+++=

+++=

+++=

CCCCCBBCBAACAC

BCCBCBBBBAABAB

ACCACBBABAAAAA

yvSQvSQvSQv

yvSQvSQvSQv

yvSQvSQvSQv

,  

(2. 65) 

 

in which •Ay represents final demand for region A’s production.  

 

If we take the following block matrices and vectors: 
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
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


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















=
C

B

A

S00

0S0

00S

S , 

 

we may write: 

 

( )

( )

( ) yQSISg

yQSIv

yvQSI

yQSvv

1

1

−

−

−=

−=

=−

+=

 

(2. 66) 
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These equations allow the assessment of the impacts on the production of the several 

regions (concerning the effect on regional product supply as well as on regional industry 

production), caused by changes in the vector of final demand for regional production. 

Such impact analysis implies that the elements of the inverse matrix ( ) 1
QSI

−
−  remain 

unaltered in face of exogenous shocks. Thus, this involves not only the assumption of 

constant input coefficients jiq , but also the assumption of constant market shares ijs , as it 

has been previously referred. 

 

It must be reminded that the model is developed on the basis of partial Use flows, 

valuated at basic prices. This implies that, in practice, the impact analysis represented in 

equations (2. 66), involves two stages: 1) convert the final demand data into partial flows, 

valuated at bp and 2) apply equations (2. 66) in order to obtain the impact on regional 

production. In fact, usually, the data on final demand is available to the researcher on a 

total flow basis (meaning that one knows the total value of final demand without 

distinguishing the origin of the products – regional or imported) and it is valuated at pp; 

thus, the same assumptions used to assemble the multi-regional table (exposed on Section 

2.5.1) must be used to perform the conversion of the final demand data from pp to bp and 

from total flows to partial flows. 

 

2.5.3 Alternative methodologies to estimate interregional trade. 

 

The purpose of this section is to describe the alternative methodologies applied to 

estimate “interregional” trade established between the 14 European countries belonging 

to our database. All the six methodologies applied in this study share a common point: 

they all depart from the same information on the row and column totals for the O/D 

matrices
104

. However, as it is referred in Hulu and Hewings (1993), the fact that all the 

                                                 
104

 These values are extracted from the EUROSTAT tables, more precisely, the intra-EU exports and 

imports (after having eliminated the discrepancies, as explained in Section 5.1). Actually, we know in 

advance the true value of the whole trade matrix and not only the column and row totals, since we are using 

international trade as a benchmark for testing the non-survey estimating methods. Yet, we assume that the 

inner part of the matrix is not known, which corresponds to the usual information context when we are 

dealing with interregional and not with international trade. 
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estimates observe the same additivity conditions, doesn’t guarantee that the final 

estimates are the same; in the authors’ words “the bi-proportional adjustment process 

only guarantees accuracy at the margins (…)” (Hulu and Hewings, 1993, p. 142). Thus, it 

is expected that different initial matrices originate also different final matrices (after the 

adjustment procedure). The analysis of the results provided by the several methodologies 

described below will allow inferring the sensitivity of the final estimates to the different 

initial matrices. The different methodologies will be named as Experiences, ranging from 

Experience 1 to Experience 6. These Experiences can be grouped in two classes. 

Experiences 1 to 3 use RAS as the adjusting method to compel the row and column totals 

to equal the previously given values. Experiences 4 to 6 consist in repeating Experiences 

1 to 3, yet making use of another adjusting method, relying on a linear programming 

model (which will be presented further on). As we have referred at the end of section 2.3, 

in practical applications, the gravity model continues to be most frequently used among 

the spatial interaction models. The reasons behind this choice are associated mainly to the 

simplicity of this model, and to the obstacles usually found to the application of the 

alternative spatial interaction models. This empirical exercise is not an exception. In the 

absence of data on transportation costs, the entropy formulation was excluded as a 

possibility to generate the initial matrices; similarly, the minimization of the information 

bias was also not considered, since the objective of this empirical exercise was to act as if 

there was no previous information on the inner part of the O/D matrix. Hence, in two of 

the three methodologies suggested to generate the initial values for the O/D matrix, the 

formulation is based on the gravitational formula. The remaining methodology consists of 

a very straightforward way of generating the initial matrix, employed with the aim of 

understanding the sensibility of the final matrix to completely different initial estimates. 

 

Experience 1 

 

Experience 1 corresponds exactly to what had been previously done in section 2.4.2, now 

using a different product classification. For each of the six categories of products, the 

initial O/D matrix was estimated through the application of a simplified gravity-based 

model, expressed as in equation (2. 57). Afterwards, the initial values were adjusted to 
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the additivity restrictions, using the RAS method. Among all the six products, the 

maximum number of iterations needed for convergence was 13. 

 

Experience 2 

 

Similarly to what was done in Hulu and Hewings (1993), in their endeavour of 

assembling an interregional input-output table for Indonesia, we have begun by assuming 

that, in each country, the total amount of imports coming from the remaining 13 countries 

was equally divided by each of those 13 supplying countries: 

 

13

~
s

rs x
x = , in which s

r

rs xx =∑  

(2. 67) 

 

Being so, the column sums of this initial matrix were necessarily equal to the reference 

values. However, given that the row sums did not verify the correspondent additivity 

constraints, the RAS method was adopted, as in Experience 1. Among all the six 

products, the maximum number of iterations needed for convergence was 10. 

 

Experience 3 

 

In Experience 3, the initial values of trade flows are determined according to the 

following equation: 
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in which β  is determined in order to minimize the following indicator of error
105

: 
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As stated in Schwarm, Jackson, and Okuyama (2006), the ideal procedure to estimate the 

values of the gravity parameters should be to “minimize the absolute differences between 

estimated and observed flows” (p. 87). Given that observed flows are supposedly 

unknown in our case, we have opted for constructing an indicator of error using solely the 

available information on row totals (of course, an equally valid alternative would be to 

consider the information on column totals). 

 

With this Experience, we are trying to assess the effect on the results of estimating one of 

the most relevant parameters in the gravitational formula (the distance-decay parameter) 

through an alternative procedure, instead of considering it equal to one, a priori, as it is 

assumed in the remaining parameters. This methodology has been already applied in 

previous empirical exercises, such as in Ramos and Sargento (2003) and in Sargento 

(2007). In the first case, the performance of the methodology remained unknown, since it 

was applied to interregional trade flows between 7 Portuguese regions, to which there 

was no benchmark. In the second, it was applied to the same database that is being used 

here, though with a more disaggregated product classification. The results of this 

application in Sargento (2007) have demonstrated that, in average, the distance between 

the final matrix and the real one was a bit smaller than when all the parameters were 

being set equal to one. 
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 This particular formula for indicator I is the one that resembles more closely the STPE, the measure that 

has already been applied in section 4.2 and which will be used in the next section to compute the distance 

between the estimated and the real matrix. However, it is not exactly equal to SPTE. Thus, diminishing I, 

which is calculated using only the column sums, does not necessarily imply a decrease in the STPE, which 

involves a cell-by-cell computation of absolute difference. 
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Experience 4 

 

Two major differences exist between this Experience and Experience 1. The first 

concerns the adjustment procedure used to make the O/D row and column totals to match 

with the previously known ones. Instead of using the RAS procedure, a linear 

programming model was applied. The reason that motivated this variation relies on the 

fact that, as it has been referred in Section 2.3.3, linear programming models allow for 

the introduction of additional constraints, beyond the standard additivity ones; moreover, 

the constraints can be inserted in the inequality form, which is convenient, given the 

objectives behind the second group of Experiences (4 to 6).  

 

The second difference is the fact that we are now assuming some additional previous 

information concerning the real trade matrix. Let us suppose that, besides the information 

on the row and column totals, the researcher also has access to the level of Entropy 

embodied in the real O/D matrix, which indicates the degree of dispersion or interactivity 

of that matrix (Erlander, 1980).  In such case, it may be desirable, in the adjustment of the 

initial estimates, to consider only those solutions that preserve at least the same degree of 

interactivity as the one implicit in the real matrix. Let 0S  be the level of Entropy 

embodied in the real O/D matrix; also, let rsx1
~ be the initial estimates of the origin-

destination trade flows derived from Experience 1 and rsx4
~ be the final estimates obtained 

through the present Experience: Experience 4. Thus, Experience 4 may be expressed as 

follows: 
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This means that we are trying to find a matrix of flows which is as close as possible to the 

initial matrix, simultaneously complying with the restrictions on the row and column 

totals, as well as with the entropy constraint. The objective function chosen to minimize 

the difference between the initial and the final matrix follows the principle of minimizing 

the information bias. Thus, this principle was not directly applied to generate initial 

values, but rather in the posterior adjustment of those values.  

 

The computation of this model (as well as the ones in Experiences 5 and 6) was made 

using GAMS. 

 

Experience 5 

 

This model replicates the previous one, with the exception of considering the initial 

values derived from Experience 2, instead of considering the values from Experience 1. 

In analytical terms, we have: 
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(2. 70) 

 

Experience 6 

 

Finally, in Experience 6, the values from Experience 3 (before the RAS adjustment) are 

considered as the initial values to be adjusted by the linear programming: 
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The results provided by these Experiences, as well as their analysis, will be presented in 

the following Section.  

 

2.5.4 Comparison between the results provided by the different 

estimation methods. 

 

Before proceeding for the presentation of results, a previous note must be made. The 

estimation of origin-destination matrices through the Experiences described above was 

made only to 4 of the 6 product categories used in the multi-regional input-output system: 

“A+B – Products of agriculture, hunting, forestry and fishing”, “C – Mining and 

quarrying”, “D – Industry” and “E – Electricity, gas and water supply”. This option was 

justified by the fact that, for the remaining categories, the trade data taken as “real” were 

already affected by some simplifying hypotheses. In fact, interregional trade for “F – 

“Construction” and “G to P – Services”, was estimated assuming the distributions 

embodied in the data for aggregate trade (as explained in step (5) of multi-regional table 

assemblage, Section 2.5.1) 

 

The several O/D matrices obtained through the different methodologies are compared 

among each other and also to the correspondent real matrices, using the already presented 

measure of matrix comparison: the Standard Total Percentage Error (equation (2. 58)). 

The results are presented in Table 2. 11. In the first column of the Table, the performance 

of each of the different Experiences can be evaluated: each estimated matrix is compared 

to the correspondent real matrix. In the remaining columns, a comparison is made 
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between the results provided by the different estimates, meaning that an evaluation is 

made to the sensitivity of the final results to each methodology. A weighted average was 

computed for each Experience, which expresses the error associated to the corresponding 

methodology considering all product categories, weighting by their relative importance in 

aggregate trade (obviously, the errors concerning category “D – Industry” and “A+B – 

Products of agriculture, hunting, forestry and fishing” are the most relevant, given the 

higher relative weight these products have in international trade). 

 

Table 2. 11 – Summary results from the comparison between the 6 different 

interregional trade estimation methods. 

 

STPE versus…
REAL EXP 2 EXP 3 EXP 4 EXP 5 EXP 6

A+B 31,9% 44,6% 19,9% 44,6% 44,6% 44,6%

C 43,0% 34,6% 15,3% 34,6% 34,6% 34,6%

D 28,9% 43,8% 2,0% 43,8% 43,8% 43,8%

E 72,7% 37,4% 45,7% 37,4% 37,4% 37,4%

aggregate 28,4% 43,5% 2,1% 43,5% 43,5% 43,5%

A+B 44,9% 24,9% 0,0% 0,0% 0,0%

C 35,7% 48,9% 0,0% 0,0% 0,0%

D 28,1% 41,9% 0,0% 0,0% 0,0%

E 67,4% 55,8% 0,0% 0,0% 0,0%

aggregate 28,2% 41,5% 0,0% 0,0% 0,0%

A+B 31,4% 24,9% 24,9% 24,9%

C 50,9% 48,9% 48,9% 48,9%

D 27,6% 42,0% 42,0% 42,0%

E 78,0% 55,8% 55,8% 55,8%

aggregate 27,2% 41,5% 41,5% 41,5%

A+B 44,9% 0,0% 0,0%

C 35,7% 0,0% 0,0%

D 28,1% 0,0% 0,0%

E 67,4% 0,0% 0,0%

aggregate 28,2% 0,0% 0,0%

A+B 44,9% 0,0%

C 35,7% 0,0%

D 28,1% 0,0%

E 67,4% 0,0%

aggregate 28,2% 0,0%

A+B 44,9%

C 35,7%

D 28,1%

E 67,4%

aggregate 28,2%

EXP 5

EXP 6

EXP 1

EXP 2

EXP 3

EXP 4

 

 



 240 

These results suggest four main remarks: 

 

1) The most immediate observation to be made on the results is the fact that Experiences 

2, 4, 5 and 6 generate exactly the same results. As we have explained before, 

Experiences 4, 5 and 6 have in common the fact that they share the same Entropy 

constraint (for each product). The observation of these results leads us to conclude 

that the imposed Entropy constraint is strong enough to compel the values of the 

initial matrix to converge to a same final matrix, regardless of the method used to 

generate the initial values. The identity found between Experience 2 results and the 

ones resulting from Experiences 4, 5 and 6 may be explained by the fact that 

Experience 2 uses an even dispersion of imports for each destination country as a 

starting point, which makes the starting matrix to have a higher Entropy level than the 

one implicit in the real matrix (which corresponds to the minimum level considered in 

the Entropy constraint in Experiences 4, 5 and 6). This means that the introduction of 

an Entropy constraint through a linear programming model can be equivalent to a 

simpler procedure, consisting in using an exceptionally disperse matrix as a starting 

point and then make the adjustment through RAS. Thus, in this case, the use of such 

superior information about the real matrix of flows (the entropy level), doesn’t seem 

critical to enhance the results. Given the coincidence of results provided by 

Experiences 2, 4, 5 and 6, our further analysis is restricted to the comparison between 

Experiences 1, 2 and 3. 

2) Taking the first column and the aggregate error for each Experience as a reference, 

we conclude that Experience 3 (gravitational model in which the distance parameter 

is computed through the minimization of indicator I) is the one which originates the 

smaller aggregate error against the real values. The simple gravitational model 

(Experience 1) seems to generate the higher aggregate error. This result confirms 

what had been verified in the 10 product application used in Sargento (2007), 

implying that the introduction of an independent estimate for the distance-decay 

parameter, instead considering it to be equal to one, may represent an improvement in 

the results. However, the differences among aggregate errors are small, when the 

comparison is made against the real values. 
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3) The errors generated by the three Experiences are quite high for some products 

(achieving 78% in product “E”, Experience 3), but they are lower in the most 

representative products. If we limit the analysis to the “Industry” case, the most 

relevant in international trade, we may state that the non-survey methods proposed 

here produce quite reasonable results.  

4) Observing the mutual differences between the several Experiences, we conclude that 

these are larger between Experiences 1 and 2 and between Experiences 2 and 3, than 

between Experiences 1 and 3. In other words, the only case in which we do not use 

gravitational formula as a starting point – Experience 2 – generates more outlying 

results, demonstrating that the way by which initial estimates are obtained is not 

innocuous.  

 

In the particular case of these data, the results allow us to conclude that a gravity-based 

model to generate the initial values jointly with the simpler adjusting procedure originate 

the best results (Experience 3 provides the closer matrices). Still, some large errors 

observed in the first column, as well as the considerable differences existing among the 

first three experiences, constitute an impetus to perform an analytical comparison 

between the different methodologies. As explained before, the ultimate aim is to assess 

the extent to which these different estimates reflect themselves in different results in 

practical applications of the input-output model. In other words, how important is the 

accuracy of the interregional trade estimates to the model accuracy? Following the 

notation introduced by Jensen (1980) and already referred in Chapter 1 (Section 2.4.4), 

this would mean: how relevant is partitive accuracy implicit in the interregional trade 

component of the table to the holistic accuracy? 

 

2.5.5 Input-output model sensitivity to the alternative methodologies of 

interregional trade estimation. 

 

The analytical comparison between alternative interregional trade estimation methods 

consists of a sort of exercise that is not usually done. To the authors’ knowledge, there 
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are two recent works which constitute the exceptions to this rule. One consists of the 

exercise presented in Oosterhaven and Stelder (2007), applied to the constructing the 

Asian-Pacific Input-output Table, given that they do compute the impact on the model 

multipliers of using 4 different non-survey methods of assembling the multi-regional 

table. Yet, the objective in Oosterhaven and Stelder (2007) is somewhat different. In their 

paper, what is being modified from one method to another is not the way by which the 

origin-destination matrices are computed (given that, in all methods, the distribution of 

intra-regional imports over the countries of origin is made using available trade 

statistics), but rather the way by which they deal with the discrepancies between intra-

regional export and import data. Another relevant study to consider in this kind of 

sensitivity analyses is the one reported by Robinson and Liu (2006), in which an 

evaluation is made on the sensitivity of the multipliers obtained from a multiregional 

Social Accounting Matrix to different methods of estimating domestic imports and 

domestic exports. In their study, two distinct methods are applied to estimate the total 

amount of imports and exports that each individual region establishes with the remaining 

regions of the system – which is different to what is being estimated in our study: the 

distribution of the total amount of intra-EU imports by the remaining supplying countries 

of the system. 

 

In our case, we intend to assess the sensitivity of the input-output model solution to the 

insertion of the O/D matrices derived from three of the six Experiences previously 

described (Experiences 1, 2 and 3, given that the remaining originated the same O/D 

matrices as Experience 2). Referring back to the several steps taken for the multi-regional 

table assemblage, this means that, in Step 6, the split up of the intra-EU imports between 

the 13 remaining supplying countries is made using the percentages given by the O/D 

matrices derived from each of Experiences, instead of the percentages derived from the 

OECD-based matrices. Hence, we obtain a set of three different multi-regional systems, 

(besides the reference one, computed on the basis of the OECD trade data) each one 

corresponding to a different interregional trade estimation methodology. The only 

difference among the obtained multi-regional tables consists precisely in the interregional 

Use tables, caused by the different interregional trade data inserted. In terms of Figure 2. 
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8, this means that the Use matrices (and also the final demand vector) located in the main 

diagonal are the same in all the three estimated multi-regional tables and also in the 

reference table. The difference relies on the off-diagonal components of the multi-

regional table, given that the intra-EU imports distribution is varying from one table to 

another. This implies that the interregional trade coefficients embodied in the off-

diagonal components of the block matrix Q are being substituted by different values in 

each different Experience. Observing equation (2. 66), it becomes clear that this has an 

impact on the model solution. The empirical exercise reported in this Section aims to 

investigate the extent to which that solution is affected. 

 

Let us take the following simulation exercise: considering the change in the real final 

demand vector actually verified from year 2000 to 2001, what is the model estimate for 

growth in aggregate Gross Value Added (GVA) resulting from the use of the different 

multi-regional tables (the reference one and the other three, generated from the different 

trade estimation methods)? In order to answer such question, the first step consisted in 

collecting and aggregating the final demand vectors for each country, recorded in the Use 

tables for year 2001, available from the EUROSTAT database. Given that the tables are 

provided in current prices for the generality of the countries, we opted for using the GDP 

deflator (for year 2001, base 2000=100
106

) to convert the current prices vectors into 

vectors of final demand at 2000 prices. The objective was to obtain real growth rates. 

Then, these vectors were converted from pp total use flows into domestic flow vectors, 

valuated at bp. This was done applying the same proportionality assumptions previously 

presented. Afterwards, equation (2. 66) was applied in order to compute the impact of 

final demand change on product and industry output vectors: 
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 Source: OECD, National Accounts Statistics. 
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Finally, a Value Added coefficient was considered to compute the vector of changes in 

Value Added. Taking 
A

i

A

iA

i
g

VA
va =  as the proportion of Value Added included in the 

output of industry i in region A, we may write: A

i

A

i

A

i gvaVA = . If we assume constant 

value added coefficients, we have, in matrix terms: 
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(2. 73) 

 

in which avˆ  represents a diagonal block matrix with the country-specific diagonal 

matrices of value added coefficients in the main diagonal. This input-output model 

estimate for real GVA growth rate was first computed using the real data on interregional 

trade and it was subsequently calculated using the three Experiences’ estimate for trade 

flows. Each of the three estimated GVA growth rates derived from the inclusion of the 

trade flow estimates is compared to the input-output model estimate for GVA growth 

rate, when real trade data is considered – which we designate by reference GVA growth 

rate. It must be noted, however, that this reference GVA growth rate is already embodied 

of some error, given the hypotheses implicit in the impact analysis represented by 

equations (2. 73), namely, the fact that input coefficients, industry market shares and 

value added proportions are all assumed invariant. Thus, the reference growth rate is 

different from the actual GVA growth rate, as it can be observed in Table 2. 12. Yet, the 

objective of this application is not to accurately calculate growth rates through the model, 

but rather to provide a reference to evaluate the deviations generated by the three 

interregional trade estimation methods. 
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Table 2. 12 – Reference growth rate, actual growth rate and model forecast error. 

 

Reference GVA percentual 

growth (with real data on IR 

trade)

Actual GVA percentual 

growth
Model forecast error

FRA 1,52% 2,23% 0,72%

GER 1,30% 1,38% 0,09%

ITA 2,29% 2,48% 0,19%

BELUX 3,80% 3,75% -0,05%

NLD 2,17% 0,86% -1,31%

DNK -1,13% -1,72% -0,58%

IRE 7,45% 7,39% -0,06%

GBR 3,49% 2,73% -0,75%

GRC 5,51% 3,03% -2,48%

ESP 3,39% 3,99% 0,60%

PRT 1,88% 2,14% 0,26%

AUT 3,18% 3,68% 0,50%

FIN 2,35% 3,23% 0,89%

SWE 3,06% 0,94% -2,12%

WHOLE 

ECONOMY 2,34% 2,27% -0,06%  

 

The results of this computation are presented in Table 2.13, A and B. In part A, we may 

observe GVA growth rate estimated by the model, for each industry in each of the 14 

countries (as well as for the aggregate economy) and for the entire system taken as a 

whole, using the four versions of the multi-regional table (the reference one and the other 

three). For each Experience, there is also a column reporting the difference (in percentage 

points) between the GVA growth rate obtained in that Experience and the one obtained 

using real interregional trade data. All the differences are computed in absolute percent 

points. The “average” column is calculated taking, for each country, the mean of all the 

differences (labelled as “diff.” in the table) obtained from the three Experiences. It 

reflects the mean error resulting from using non-survey trade values instead of using the 

real values. In part B of the table the same indicators are used, but now the comparison is 

made among the three Experiences and not against the reference table. In both tables, 

differences equal to or above 0,005% are highlighted in blue. 
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Table 2. 13 – Differences in growth forecast as a consequence of final demand 

increase. 

A - Comparison between the GVA growth rate using trade estimates from each 

individual experience and the reference GVA growth rate. 

Reference 

GVA growth 

% 

growth in 

GVA % 
diff.

growth in 

GVA % 
diff.

growth in 

GVA % 
diff.

average 

diff.

A+B 0,67% 0,67% 0,002% 0,65% 0,024% 0,67% 0,005% 0,010%

C 1,15% 1,14% 0,004% 1,12% 0,024% 1,14% 0,006% 0,011%

D 0,68% 0,69% 0,007% 0,66% 0,025% 0,69% 0,006% 0,013%

E 3,96% 3,96% 0,001% 3,95% 0,008% 3,96% 0,000% 0,003%

F 2,20% 2,20% 0,000% 2,20% 0,001% 2,20% 0,000% 0,000%

G a P 1,66% 1,66% 0,001% 1,65% 0,003% 1,66% 0,001% 0,002%

AGGR. 1,52% 1,52% 0,002% 1,51% 0,008% 1,52% 0,001% 0,004%

A+B 0,89% 0,88% 0,005% 0,90% 0,016% 0,89% 0,001% 0,007%

C 4,38% 4,37% 0,007% 4,39% 0,012% 4,37% 0,007% 0,009%

D 1,18% 1,17% 0,016% 1,19% 0,011% 1,17% 0,014% 0,014%

E 5,33% 5,32% 0,008% 5,33% 0,001% 5,33% 0,006% 0,005%

F -4,31% -4,31% 0,001% -4,31% 0,001% -4,31% 0,001% 0,001%

G a P 1,65% 1,64% 0,003% 1,65% 0,002% 1,64% 0,002% 0,002%

AGGR. 1,30% 1,29% 0,006% 1,30% 0,004% 1,29% 0,005% 0,005%

A+B 0,34% 0,34% 0,000% 0,33% 0,004% 0,33% 0,004% 0,003%

C -0,91% -0,92% 0,011% -0,92% 0,005% -0,92% 0,009% 0,008%

D 0,92% 0,91% 0,009% 0,91% 0,001% 0,91% 0,008% 0,006%

E 1,54% 1,53% 0,004% 1,54% 0,000% 1,53% 0,003% 0,002%

F 3,27% 3,27% 0,001% 3,27% 0,000% 3,27% 0,001% 0,000%

G a P 2,77% 2,77% 0,002% 2,77% 0,000% 2,77% 0,002% 0,001%

AGGR. 2,29% 2,29% 0,003% 2,29% 0,001% 2,29% 0,003% 0,002%

A+B 1,45% 1,35% 0,101% 1,53% 0,082% 1,42% 0,034% 0,072%

C -13,70% -13,65% 0,050% -13,89% 0,197% -13,74% 0,047% 0,098%

D 1,95% 1,89% 0,059% 2,01% 0,060% 1,90% 0,053% 0,057%

E 7,34% 7,34% 0,008% 7,37% 0,030% 7,34% 0,008% 0,015%

F 0,11% 0,10% 0,005% 0,11% 0,006% 0,10% 0,005% 0,005%

G a P 4,53% 4,52% 0,007% 4,54% 0,007% 4,52% 0,007% 0,007%

AGGR. 3,80% 3,78% 0,018% 3,82% 0,019% 3,79% 0,016% 0,018%

A+B 0,13% 0,14% 0,016% 0,12% 0,010% 0,14% 0,008% 0,012%

C 7,73% 7,79% 0,068% 7,72% 0,006% 7,83% 0,100% 0,058%

D -1,18% -1,16% 0,023% -1,18% 0,005% -1,16% 0,021% 0,017%

E 5,38% 5,39% 0,006% 5,38% 0,002% 5,39% 0,005% 0,004%

F 1,81% 1,81% 0,001% 1,81% 0,000% 1,81% 0,001% 0,001%

G a P 2,79% 2,79% 0,003% 2,79% 0,001% 2,79% 0,003% 0,002%

AGGR. 2,17% 2,18% 0,009% 2,17% 0,002% 2,18% 0,009% 0,006%

A+B -2,16% -2,19% 0,033% -2,15% 0,004% -2,19% 0,030% 0,022%

C -4,91% -4,84% 0,070% -4,78% 0,129% -4,83% 0,083% 0,094%

D -1,30% -1,36% 0,062% -1,30% 0,004% -1,36% 0,059% 0,042%

E -0,76% -0,77% 0,004% -0,74% 0,017% -0,77% 0,007% 0,009%

F -3,55% -3,55% 0,002% -3,55% 0,000% -3,55% 0,002% 0,001%

G a P -0,72% -0,72% 0,004% -0,72% 0,000% -0,72% 0,003% 0,002%

AGGR. -1,13% -1,14% 0,011% -1,13% 0,004% -1,14% 0,010% 0,009%

A+B 0,87% 0,93% 0,060% 0,82% 0,053% 0,91% 0,045% 0,053%

C 10,94% 10,99% 0,051% 10,94% 0,000% 10,98% 0,043% 0,031%

D 1,65% 1,74% 0,093% 1,59% 0,058% 1,74% 0,086% 0,079%

E 2,28% 2,31% 0,030% 2,27% 0,019% 2,31% 0,028% 0,026%

F 9,96% 9,96% 0,004% 9,95% 0,002% 9,96% 0,004% 0,003%

G a P 11,15% 11,18% 0,026% 11,13% 0,016% 11,17% 0,024% 0,022%

AGGR. 7,45% 7,50% 0,048% 7,42% 0,030% 7,49% 0,044% 0,041%
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Reference 

GVA growth 

% 

growth in 

GVA % 
diff.

growth in 

GVA % 
diff.

growth in 

GVA % 
diff.

average 

diff.

A+B 1,02% 1,02% 0,003% 1,01% 0,010% 1,02% 0,002% 0,005%

C -0,11% -0,13% 0,020% -0,13% 0,021% -0,13% 0,023% 0,021%

D 1,47% 1,48% 0,004% 1,44% 0,031% 1,48% 0,002% 0,012%

E 0,13% 0,13% 0,001% 0,12% 0,008% 0,13% 0,000% 0,003%

F 5,60% 5,60% 0,000% 5,60% 0,001% 5,60% 0,000% 0,000%

G a P 4,12% 4,12% 0,001% 4,12% 0,003% 4,12% 0,000% 0,001%

AGGR. 3,49% 3,49% 0,001% 3,48% 0,008% 3,49% 0,000% 0,003%

A+B 2,70% 2,71% 0,009% 2,71% 0,004% 2,71% 0,007% 0,007%

C 0,49% 0,49% 0,003% 0,50% 0,007% 0,49% 0,001% 0,004%

D 0,52% 0,53% 0,004% 0,53% 0,003% 0,53% 0,004% 0,004%

E 4,77% 4,78% 0,001% 4,78% 0,001% 4,78% 0,001% 0,001%

F 7,00% 7,00% 0,000% 7,00% 0,000% 7,00% 0,000% 0,000%

G a P 6,64% 6,64% 0,000% 6,64% 0,000% 6,64% 0,000% 0,000%

AGGR. 5,51% 5,51% 0,001% 5,51% 0,001% 5,51% 0,001% 0,001%

A+B 2,47% 2,48% 0,012% 2,48% 0,005% 2,48% 0,011% 0,009%

C 1,65% 1,66% 0,019% 1,67% 0,027% 1,65% 0,009% 0,018%

D 1,55% 1,57% 0,023% 1,56% 0,014% 1,57% 0,023% 0,020%

E 2,45% 2,46% 0,007% 2,45% 0,005% 2,46% 0,008% 0,007%

F 7,60% 7,60% 0,001% 7,60% 0,001% 7,60% 0,001% 0,001%

G a P 3,48% 3,48% 0,003% 3,48% 0,002% 3,48% 0,003% 0,003%

AGGR. 3,39% 3,40% 0,007% 3,40% 0,004% 3,40% 0,007% 0,006%

A+B 1,57% 1,64% 0,073% 1,54% 0,023% 1,63% 0,062% 0,053%

C -0,60% -0,51% 0,090% -0,62% 0,020% -0,49% 0,107% 0,072%

D -0,06% 0,06% 0,119% -0,09% 0,029% 0,05% 0,112% 0,086%

E 3,13% 3,16% 0,027% 3,12% 0,009% 3,16% 0,028% 0,021%

F 2,97% 2,97% 0,005% 2,97% 0,001% 2,97% 0,005% 0,004%

G a P 2,24% 2,25% 0,012% 2,24% 0,003% 2,25% 0,011% 0,009%

AGGR. 1,88% 1,92% 0,033% 1,88% 0,008% 1,92% 0,031% 0,024%

A+B 4,11% 4,13% 0,014% 4,15% 0,038% 4,13% 0,014% 0,022%

C 4,13% 4,14% 0,011% 4,18% 0,049% 4,14% 0,009% 0,023%

D 2,34% 2,36% 0,021% 2,41% 0,068% 2,36% 0,023% 0,037%

E 9,00% 9,00% 0,006% 9,03% 0,034% 9,00% 0,001% 0,013%

F -1,10% -1,10% 0,001% -1,10% 0,005% -1,10% 0,001% 0,002%

G a P 3,74% 3,74% 0,002% 3,75% 0,008% 3,75% 0,003% 0,004%

AGGR. 3,18% 3,19% 0,007% 3,20% 0,022% 3,19% 0,007% 0,012%

A+B 1,49% 1,52% 0,023% 1,50% 0,005% 1,51% 0,020% 0,016%

C -0,67% -0,63% 0,038% -0,66% 0,009% -0,62% 0,051% 0,033%

D -0,94% -0,92% 0,026% -0,94% 0,002% -0,92% 0,024% 0,018%

E 2,53% 2,54% 0,010% 2,53% 0,001% 2,54% 0,010% 0,007%

F 1,28% 1,28% 0,001% 1,28% 0,000% 1,28% 0,001% 0,001%

G a P 3,87% 3,87% 0,004% 3,87% 0,000% 3,87% 0,004% 0,003%

AGGR. 2,35% 2,36% 0,011% 2,35% 0,001% 2,36% 0,010% 0,007%

A+B 7,85% 7,89% 0,036% 7,85% 0,002% 7,89% 0,042% 0,027%

C 4,68% 5,00% 0,318% 4,60% 0,087% 5,40% 0,714% 0,373%

D 1,03% 1,07% 0,038% 0,99% 0,038% 1,07% 0,035% 0,037%

E 11,64% 11,65% 0,010% 11,65% 0,005% 11,66% 0,016% 0,010%

F 7,67% 7,67% 0,003% 7,67% 0,001% 7,68% 0,008% 0,004%

G a P 3,01% 3,01% 0,002% 3,01% 0,000% 3,01% 0,003% 0,002%

AGGR. 3,06% 3,07% 0,012% 3,05% 0,009% 3,07% 0,014% 0,011%

average 

AGGR. 0,012% 0,009% 0,011% 0,011%

WHOLE 

ECONOMY 2,34% 2,34% 0,000% 2,34% 0,000% 2,34% 0,000% 0,000%
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B - Comparison among the different experiences. 

Exp 2 against 

Exp 1

Exp 3 against 

Exp 1

Exp 3 against 

Exp 2 average diff.

A+B 0,022% 0,003% 0,019% 0,015%

C 0,020% 0,002% 0,018% 0,014%

D 0,032% 0,001% 0,031% 0,021%

E 0,009% 0,001% 0,008% 0,006%

F 0,001% 0,000% 0,001% 0,001%

G a P 0,004% 0,000% 0,004% 0,003%

AGGREGATE 0,010% 0,000% 0,009% 0,007%

A+B 0,021% 0,004% 0,017% 0,014%

C 0,019% 0,000% 0,019% 0,013%

D 0,027% 0,001% 0,025% 0,018%

E 0,008% 0,002% 0,007% 0,006%

F 0,002% 0,000% 0,002% 0,001%

G a P 0,005% 0,000% 0,004% 0,003%

AGGREGATE 0,010% 0,001% 0,009% 0,007%

A+B 0,004% 0,004% 0,000% 0,003%

C 0,006% 0,002% 0,003% 0,004%

D 0,008% 0,000% 0,007% 0,005%

E 0,003% 0,000% 0,003% 0,002%

F 0,000% 0,000% 0,000% 0,000%

G a P 0,001% 0,000% 0,001% 0,001%

AGGREGATE 0,003% 0,000% 0,003% 0,002%

A+B 0,182% 0,066% 0,116% 0,121%

C 0,246% 0,096% 0,150% 0,164%

D 0,118% 0,005% 0,113% 0,079%

E 0,038% 0,000% 0,038% 0,025%

F 0,011% 0,000% 0,011% 0,007%

G a P 0,015% 0,001% 0,014% 0,010%

AGGREGATE 0,037% 0,002% 0,035% 0,025%

A+B 0,026% 0,008% 0,019% 0,018%

C 0,075% 0,031% 0,106% 0,071%

D 0,028% 0,002% 0,026% 0,019%

E 0,008% 0,001% 0,007% 0,005%

F 0,002% 0,000% 0,002% 0,001%

G a P 0,004% 0,000% 0,004% 0,003%

AGGREGATE 0,010% 0,000% 0,011% 0,007%

A+B 0,037% 0,003% 0,034% 0,025%

C 0,058% 0,013% 0,045% 0,039%

D 0,059% 0,003% 0,056% 0,039%

E 0,021% 0,003% 0,024% 0,016%

F 0,002% 0,000% 0,002% 0,001%

G a P 0,004% 0,000% 0,003% 0,002%

AGGREGATE 0,015% 0,001% 0,014% 0,010%

A+B 0,113% 0,015% 0,098% 0,075%

C 0,051% 0,008% 0,043% 0,034%

D 0,151% 0,007% 0,144% 0,101%

E 0,049% 0,003% 0,046% 0,033%

F 0,006% 0,000% 0,006% 0,004%

G a P 0,042% 0,002% 0,040% 0,028%

AGGREGATE 0,078% 0,004% 0,074% 0,052%
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Exp 2 against 

Exp 1

Exp 3 against 

Exp 1

Exp 3 against 

Exp 2 average diff.

A+B 0,013% 0,001% 0,012% 0,008%

C 0,002% 0,003% 0,001% 0,002%

D 0,035% 0,002% 0,033% 0,023%

E 0,008% 0,000% 0,008% 0,005%

F 0,001% 0,000% 0,001% 0,001%

G a P 0,003% 0,000% 0,003% 0,002%

AGGREGATE 0,009% 0,001% 0,008% 0,006%

A+B 0,005% 0,002% 0,003% 0,003%

C 0,004% 0,002% 0,006% 0,004%

D 0,001% 0,000% 0,001% 0,000%

E 0,000% 0,000% 0,000% 0,000%

F 0,000% 0,000% 0,000% 0,000%

G a P 0,000% 0,000% 0,000% 0,000%

AGGREGATE 0,001% 0,000% 0,000% 0,000%

A+B 0,007% 0,001% 0,006% 0,005%

C 0,008% 0,010% 0,018% 0,012%

D 0,009% 0,000% 0,010% 0,006%

E 0,003% 0,000% 0,003% 0,002%

F 0,000% 0,000% 0,000% 0,000%

G a P 0,001% 0,000% 0,001% 0,001%

AGGREGATE 0,003% 0,000% 0,003% 0,002%

A+B 0,096% 0,011% 0,085% 0,064%

C 0,110% 0,018% 0,128% 0,085%

D 0,147% 0,007% 0,141% 0,098%

E 0,036% 0,001% 0,037% 0,024%

F 0,006% 0,000% 0,006% 0,004%

G a P 0,015% 0,001% 0,014% 0,010%

AGGREGATE 0,041% 0,002% 0,039% 0,027%

A+B 0,023% 0,001% 0,024% 0,016%

C 0,038% 0,002% 0,040% 0,027%

D 0,047% 0,001% 0,045% 0,031%

E 0,028% 0,005% 0,033% 0,022%

F 0,003% 0,000% 0,003% 0,002%

G a P 0,006% 0,000% 0,006% 0,004%

AGGREGATE 0,015% 0,000% 0,015% 0,010%

A+B 0,018% 0,003% 0,015% 0,012%

C 0,029% 0,013% 0,042% 0,028%

D 0,024% 0,002% 0,022% 0,016%

E 0,009% 0,000% 0,009% 0,006%

F 0,001% 0,000% 0,001% 0,001%

G a P 0,004% 0,000% 0,004% 0,003%

AGGREGATE 0,010% 0,001% 0,009% 0,006%

A+B 0,038% 0,006% 0,044% 0,029%

C 0,405% 0,395% 0,801% 0,534%

D 0,076% 0,003% 0,073% 0,051%

E 0,005% 0,006% 0,012% 0,008%

F 0,004% 0,004% 0,008% 0,005%

G a P 0,002% 0,001% 0,003% 0,002%

AGGREGATE 0,021% 0,002% 0,022% 0,015%

average 

AGGR. 0,019% 0,001% 0,018% 0,013%

WHOLE 

ECON. 0,000% 0,000% 0,000% 0,000%
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The following observations are suggested by the results contained in these two tables: 

 

1) The GVA growth rate obtained for the whole economy is invariant: 2,34%. This is an 

expected result given that, as explained before, the only difference between the distinct 

Experiences relies on the distribution of intra-regional imports and exports among the 14 

countries. Thus, despite the differences in the growth rates assigned to each individual 

country by the different Experiences, this doesn’t seem to affect the growth rate for the 

whole economy.  

 

2) We have considered that absolute differences between 0,005% and 0,05% are 

moderately relevant differences (these differences imply a deviation, for example, from a 

growth rate of 3,00% to a growth rate of 3,005%, or in round terms, of 3,01%). Below 

that reference value, we have considered the differences to be non-significant. Absolute 

differences above 0,05% are considered to be large. Using such boundaries, we may 

observe in Table A that almost half of the computed differences are moderately relevant 

(182 out of 392 differences lie between 0,005% and 0,05%); a significant part of those 

differences (169 out of 392) is below 0,005%, thus being considered insignificant; 

finally, a small amount of differences fall into the category of large deviations (41 in 

392). It must be noted that none of the observed large differences occurs in the aggregate 

estimate for GVA growth rate, but rather when the product detail is taken into account. In 

Table B, the number of large differences is also small (43 out of 392); the remaining 

differences are all considered to be moderate (165) or non-significant (184). Yet, even 

being the minority, the cases of large differences should not be neglected. Using an 

example, they mean that, in practice, the use of product group C trade estimates from 

Experience 3 instead of the reference OECD-based values for interregional trade, makes 

the GVA growth rate for that product category to change from 4,68% to 5,40%, which is 

a considerable deviation (see Table A). Another example relates to the comparison 

among Experiences: the largest difference occurs in Sweden, also in product C, to which 

the predicted GVA growth rate is 4,60%, according to the data generated by Experience 2 
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and it is 5,40%, according to Experience 3. The previous examples illustrate the 

maximum differences observed in Table A and in Table B, respectively. 

 

3) Looking at the average column of Table A, which indicates the mean deviation for 

each country generated by the use of interregional trade estimates, instead of the 

reference values, we conclude that for the majority of the countries (10 in 14) the mean 

deviation is moderately relevant. In the remaining cases, the mean deviation is non-

significant. Looking at these data in more detail, we see that the average deviation against 

the real values reaches the highest value in the case of Irish growth estimates (0,041%), 

in which the difference is close to the upper limit of the “moderately relevant” interval.  

 

4) The average row of Table A, computed as the mean, for each Experience, between the 

several differences found for each country as a whole, suggests that Experiences 1 to 3 

generate GVA growth rate estimates which have comparable errors. Yet, among the 

three, Experience 2 is the one which evidences the best match against the reference 

growth rates – this Experience shows the minimum average deviation and also the 

minimum number of differences above 0,05%. 

 

5) The average row of Table B (computed in a similar way as for Table A) makes evident 

that, as expected, the mean difference between Experience 3 and Experience 1, which are 

gravity-based Experiences, is non-significant and it is smaller than between each of those 

Experiences and Experience 2.  

 

Given these observations, we may conclude that, in general, the multi-regional input-

output model shows a moderate sensitivity to the insertion of different estimates for 

interregional trade. The results do not reject the reasonability of using indirect estimates 

for interregional trade, given that large deviations in the results of the model are an 

exception. Nevertheless, it can’t be stated that the choice of one specific method among 

several alternatives is completely innocuous. Even recognizing that the “choice” is most 

frequently constrained by the availability of information (as it happened in the present 
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study), the researcher must be aware that the results of the model will necessarily be 

affected, although only in a moderate manner. 

 

2.6  Conclusions. 

 

The main objective of present chapter was to study different interregional trade 

estimation methodologies and make an empirical comparison between them.  

 

The literature review upon the several models proposed to estimate interregional trade, 

made in section 2.3, led us to conclude that: 1) the solutions of the several models show a 

considerable similitude among each other and 2) most of the alternatives suffer from 

problems of applicability when the objective is to generate undisclosed values of 

interregional trade. Those problems (affecting the entropy model, the model of 

minimization of information bias, and the behaviour-based models), jointly with the 

advocated strengths of the gravity model, caused the focus of the remaining chapter to be 

put at several gravity-based methodologies. 

 

Our first approach consisted in attempting to attest the good performance usually 

attributed to the gravity model, when used as an explanatory model to trade flow 

behaviour. To do so, an econometric application was carried out using bilateral trade 

flows between 14 European countries as the database. Five versions of the gravity 

equation were tested, including one non-spatial basic equation and four different spatial 

models. The results have demonstrated the overall adequacy of the gravity-based model 

to explain trade flow behaviour, especially when spatial dependence – revealed by spatial 

autocorrelation of errors – is recognized. All the experienced models were separately 

applied to distinct products, revealing a great variability among the estimated coefficients 

to each different traded product. 

 

The next step consisted in examining distinct formulations of the gravity model as a 

generator of undisclosed values of interregional trade. Three different methods of 

generating the initial matrices of flows were applied and two different procedures were 
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used to adjust the row and column totals of those initial matrices to previously known 

values, leading to a total of six different Experiences. Two out of the three different 

methods used to obtain the initial matrices were gravity-based. The third method, 

consisting in evenly distributing the amount of imports by each supplier country, was 

applied with the aim of assessing the impact of using an ad-hoc fulfillment of the initial 

matrix, instead of using a widely investigated model, as the gravity model. Concerning 

the adjustment procedures, the two methods applied in this study were: 1) the RAS 

method and 2) a linear programming model using minimization of information bias as the 

objective function and employing an entropy constraint (besides the usual additivity 

constraints).  

 

The comparison between the results provided by the six different methodologies allowed 

us to infer four main conclusions. First, all the methodologies based upon a linear 

programming model and involving the use of additional information on real trade flows 

have provided exactly the same results, which were also equal to the ones provided by 

Experience 2, the one that relied upon an ad-hoc method to generate the initial matrix and 

used RAS as the adjustment procedure. This means that the use of superior information 

about the real matrix of flows (in this case, the entropy level), jointly with the resource to 

a more sophisticated model doesn’t seem critical to enhance the results. Second, among 

the first three Experiences, the gravity-based model with an independent estimate of the 

distance decay parameter seems to originate the most accurate matrix (although the 

differences between aggregate errors obtained from Experiences 1 to 3 are small). Third, 

the initial matrix seems to have an effective influence on the final results. In fact, when 

comparing the different Experiences among each other, we have concluded that the only 

case which is not gravity-based – Experience 2 – generates more outlying results, 

demonstrating that the way by which initial estimates are obtained is not innocuous. 

Finally, the mean errors generated by the three Experiences are not very high in the 

products which are most representative in international trade (around 28%). Thus, we 

may state that the non-survey methods proposed here produce quite reasonable results.  
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Finally, an analytical comparison among the different methodologies was made. This 

implied the construction of a simplified multi-regional input-output system, involving the 

14 European countries of the sample, using a dataset composed by the individual Make 

and Use tables and bilateral trade data. The objective was to assess the sensitivity of the 

input-output model to the insertion on the input-output system of the Origin-Destination 

matrices obtained from the several interregional trade estimation Experiences. The 

impact on the model results was measured through the different GVA growth rates 

estimated as a consequence of an exogenous change in final demand. We have concluded 

that the results of the input-output model were not greatly affected by the consideration of 

different trade flow values, since large deviations between the obtained growth rates were 

the exception and not the rule.  

 

The main practical contribution of this Chapter consists precisely in the conclusions that 

can be drawn from the absolute and analytical comparison between the different trade 

estimation methods, namely: 1) among the several Experiences applied, the one that 

generated the most accurate matrix corresponded to a gravity-based model, with 

independent estimation of the distance decay parameter and using RAS as the adjusting 

procedure; 2) the introduction of superior complexity in the models as well as the use of 

additional information about the real trade flows, such as the degree of Entropy of the 

real trade matrix, may not originate better results, as it happened it this case; 3) the 

impacts on the input-output model of using differently estimated trade flows are only 

moderate – thus, the results do not reject the reasonability of using indirect estimates for 

interregional trade.  

 

Although it is not advisable to generalize these results, given that they were obtained 

from a particular set of data and using a specific set of hypothesis, we consider that these 

practical contributions are most relevant to regional input-output researchers, especially 

to those who intend to assemble an input-output model in a context of absent information 

on interregional trade flows (which is the most frequent situation at the sub-national 

level). In fact, our conclusions may be useful as important arguments to estimate those 

inexistent data through the use of gravity-based non-survey methods. 
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3.1  Introduction. 

 

Input-output tables, at national or at regional level, can be classified according to three 

main criteria:  

1) symmetric or rectangular format. 

2) total use or domestic use flows.  

3) valuation of goods and services. 

 

As it has been previously referred, in Chapter 1, the historical format of the input-output 

table is symmetric, which means that the inner part of the table depicts product-by-

product or industry-by-industry relations. Yet, since the end of the 1960’s, when the 

United Nations introduced the 1968 System of National Accounts, countries are 

recommended to compile and publish the input-output tables on a rectangular or Make 

and Use format
107

. In this case, two tables are combined to depict supply and use product-

by-industry relationships. Since the number of products may be higher than the number 

of industries, this format is called rectangular. 

 

The second criterion is defined according to the type of flows represented in the 

intermediate transactions part of the Use table and also in the several components of final 

demand. Intermediate consumption of products (made by industries) and final use (made 

by households, government, firms and foreign countries) involves the use of products 

which are not only domestically produced, but are also imported. A total-flow Use table 

records the whole amount of inputs used, whether these have been produced within the 

country (or the region, depending on whether we are dealing with a national or a regional 

model) or imported. Conversely, if intermediate and final use flows are expurgated from 

the value of imported products, then we are facing a domestic (or intra-regional) flow 

table.  

                                                 
107

 This format has briefly been presented in Chapter 1, section 5.1. 
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Finally, the third criterion is related to the different prices at which goods and services 

may be evaluated. Current input-output tables involve two different price systems: basic 

prices, the closest to the value of production factor costs, and purchasers’ prices, which 

include taxes on the products (deducted from subsidies) and trade and transport margins. 

 

Combining these criteria in several manners, many different input-output tables can be 

constructed. However, in practice, the starting point to the construction of these tables is 

as a rule the total-flow rectangular table at purchasers’ prices, since this is the format in 

which statistical information is gathered and published (at least in EU countries). 

 

Whenever the researcher intends to implement any input-output model, starting from a 

total-flow rectangular table at purchasers’ prices, there are two alternative procedures: 

1. convert the starting table into a domestic-flow symmetric table at basic prices, and 

then, implement the classical input-output model or 

2. perform the direct modelling of the total-flow rectangular table at purchasers’ 

prices, i.e., implementing the model on the basis of the table as it is published. 

 

Many authors have thought the first procedure as the most adequate for input-output 

model applications. For example, in what respects the symmetric feature of the table, the 

EUROSTAT Input-output manual advocates that “For analytical purposes a relationship 

is needed between the inputs and the outputs irrespective of whether the products have 

been produced by the primary industry or by other industries as their secondary output” 

(EUROSTAT, 2002, p. 23); as a consequence, symmetric input-output tables “are 

compiled mainly to be used in input-output analysis” (p. 230). Concerning the content of 

the intermediate and final use flows, the same manual states that “the separation of 

domestically-produced and imported goods and services is of great importance for 

analytical purposes” (p. 145), leading to the option for domestic flow tables. A similar 

view can be found in other papers, as for example Lopes and Dias (2003), who sustain 

the extreme importance, for input-output impact analysis, of having an import matrix 

which allows for the computing of a domestic flow table. At the regional level, the 
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symmetric domestic flow table is usually presented as preferable to conduct regional 

input-output analysis. For this reason, most of the regional input-output table building 

involves two stages. This is the case, for example, of the compilation of the Azores input-

output table described in ISEG/CIRU (2004), which was carried out in the following 

steps: 1) regionalizing the M&U national table and 2) transforming it into a symmetric 

format, with domestic flows and at basic prices.  

 

The methodology used to obtain a domestic-flow symmetric table at basic prices from the 

starting table (total-flow rectangular table at purchasers’ prices) generally involves the 

use of a set of hypotheses needed to perform the following operations:  

 

1) To expurgate the import content from the intermediate and final use flows, in order to 

get a domestic (or intra-regional) flow table. A constant proportion of imports is usually 

assumed, which is independent from the type of industry (or final user) the input goes 

into.  

 

2) To transform purchasers’ prices into basic prices. In the absence of direct information, 

which allows for expurgating margins and net taxes from the different uses of inputs, the 

same proportionality hypotheses are applied, similarly to what is done regarding imports.  

 

3) To convert the rectangular matrix into a symmetric one. In this operation, one of two 

alternative hypotheses is usually adopted, to relate industry’s output with commodity’s 

output: the first hypothesis implies that all products produced by an industry are produced 

with the same input structure, meaning that there is one technology assigned to each 

industry; this is, therefore, called the Industry-based technology assumption (ITA). In 

opposition, the second hypothesis implies that a given product has the same input 

structure in whichever industry it is produced, meaning that there is one technology 

assigned to each product (UN, 1993); thus, it is named Commodity-based technology 

assumption (CTA). As it will be further demonstrated, the first hypothesis implies that 

each product is produced always in the same fixed proportions, while the second involves 
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the assumption that each industry produces its different products always in the same fixed 

proportions.  

 

The theoretical and practical consequences of each of the above-referred hypotheses, as 

well as their reasonability, will be discussed in the present Chapter. Although 

controversial, these hypotheses are adopted in many cases, either purely, or 

complemented with some direct information, even when the domestic-flow symmetric 

table is assembled by the official entities. In what concerns to the estimation of the 

imports matrix, for example, even OECD recognizes that this happens in the official 

statistics, stating that “Techniques used to construct the import matrix data vary between 

countries, but every country in the OECD database made, to some extent, use of the 

import proportionality assumption in the construction of their import matrices” (OECD, 

2000, p.12).  Moreover, the Input-output database provided by OECD (consisting of 

symmetric industry-by-industry tables) is compiled using this kind of assumptions, 

whenever supplementary information is not available (Yamano and Ahmad, 2006). 

 

The alternative procedure, consisting of the direct modelling of the rectangular table in its 

original format is the main theme of this chapter. The rectangular model will be 

developed using the same hypotheses adopted when obtaining the symmetric table. The 

objective is to demonstrate that this procedure leads to a result, which is precisely the 

same than the obtained by the first procedure. To do so, a practical example will be 

presented, in which we perform both procedures starting from a common initial M&U 

table. In both cases, exactly the same results are achieved. More precisely, the multipliers 

obtainable from in the inverse matrix comprised in the final equation of the input-output 

model are the same, whether the model has been developed on the basis of a symmetric 

table (derived from the rectangular one), or whether it has been directly implemented 

from the total use rectangular table at purchasers’ prices. It cannot therefore be argued, 

that one of the alternatives is better than the other, nor, that it is incorrect to use either of 

them. As stated in UN (2002), “(...) there is theoretically no need to force the separate 
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input and output matrices included in the SUT framework of the 1993 SNA into the 

traditional input-output straightjacket”
108

 (paragraph 3.44).  

 

In fact, the preference for the symmetric framework as the unique valid basis for input-

output modelling is being questioned by other authors, such as Madsen and Jensen-Butler 

(1999), Kauppila (1999) and Piispala (1998), which suggest that the direct use of the 

M&U format has considerable advantages, namely:  

• In the assembling process of the tables, since M&U tables are exempt of 

additional hypotheses (conversely to product-by-product or industry-by-industry 

tables), being more directly connected to the data collected by official statistical 

agencies. In fact, industries are able to inform how much of each commodity they 

produce (information comprised in the Make matrix) and how much of each 

commodity they consume for intermediate purposes (Use matrix). Conversely, the 

fulfilment of an industry-by-industry or a product-by-product table requires some 

transformation to the originally surveyed data. For this reason, when the objective 

is to build regional tables using non-survey methods, it is more advantageous to 

depart directly from the “cleaner” national M&U tables, rather than from national 

symmetrized tables.  

• Make and Use tables are more easily intelligible for potential users of the model, 

since it closer resembles reality. In effect, in the real world, each industry 

produces a growing diversity of products, one of these being the primary product 

and the others the secondary products. M&U tables basically tell what 

commodities are produced by each industry and what commodities are consumed 

by industries and final consumers in the economy. 

• M&U format is more suitable for application in certain fields of research which 

deal specifically with spatial interaction flows of commodities such as: 

environmental modelling (for example, when flows of products to be used in 

different industries are attached with flows of polluting elements, such as CO2) 

and trade modelling (given that it becomes easier to incorporate data of trade 

                                                 
108

 The term SUT stands for Supply and Use tables and is equivalent to the expression Make and Use 

tables, used in the present work. 
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statistics, which report trade taking place with products and not with the output of 

industries, in broad terms). 

• Concerning specifically to the regional-level analysis, the straight modelling of 

the rectangular table allows for the direct use of officially available Regional 

Accounts, which are industry-related data (these data comprise: regional value 

added by industry, regional production by industry and regional intermediate 

consumption by industry). In order to use such information directly, with the 

minimum imposition of hypothesis, the option should fall upon a Make and Use 

format or, eventually, upon an industry-by-industry symmetric format, which is 

however considered a second best option for input-output analysis, given the high 

heterogeneity of products involved in each element of such tables (EUROSTAT, 

2002).  

• Finally, as it will be demonstrated further on this chapter, the direct modelling of 

the rectangular table is a more timesaving procedure, which can be considered as 

an advantage of this alternative over the first one (involving the previous 

transformation into a symmetric table).  

 

In this context, the research developed in this essay is guided towards the following 

questions: 

• What procedures and related hypotheses may be used to perform input-output 

modelling when the base data consists of a total-use rectangular table at 

purchasers’ prices, with no available import matrix? 

• Is it advantageous to perform a previous transformation of the original tables into 

the symmetric format and a previous calculation of domestic flows, before 

implementing the model? 

 

All the theoretical and practical development will be made using the National input-

output tables as a reference, since there is no survey-based regional information to do so 

in Portugal. The conclusions are, however, also valid for regional and multi-regional 

input-output tables. Some adaptations have obviously to be made: for example, in a 
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regional context, the procedure proposed to deal with international imports has to be 

extended to imports from other regions (however, the problem here is more complex, 

since not even the total amount of regional imports by product is known in advance). 

 

The essay is divided into six sections, including this Introduction. In the next section, the 

three main criteria used to classify input-output tables are examined in detail. Section 3.3 

is dedicated to a description of the Portuguese input-output tables. Section 3.4 is the 

nuclear part of this essay: the algebraic development of the input-output model based on 

the M&U framework will be presented, as well as the meaning and implications of all the 

assumed hypotheses. A practical application will be carried out in Section 3.5, aiming to 

compare the results obtained from both above mentioned types of procedures. The last 

section presents a summary of the main conclusions. 

 

 

3.2  The three fundamental criteria for the construction of input-

output tables: definitions and implications. 

 

To better understand the implications of each of the three criteria previously referred to, 

we begin this section by illustrating the structure of the total use M&U tables at 

purchasers’ prices (Figure 3. 1) and of the domestic use symmetric table at basic prices 

(Figure 3. 2).  

 

Figure 3. 1 illustrates the M&U framework. Matrix [(1),(2)]
109

 is the (intermediate) Use 

matrix; each of its columns indicates the total amount of each product used by the 

industry, irrespective of the origin of those products (total use: domestic plus imported 

use flows); this matrix is valuated at purchasers’ prices. Vector [(1),(3)] is the final 

demand vector and each of its elements result from the aggregation of the different types 

of final demand (final consumption, gross capital formation and exports); also, the flows 

                                                 
109

 In this notation, sub-matrices at rows are identified by the first number in brackets, and at columns by 

the second; in this case, [(1),(2)] means the sub-matrix located at the quadrant at the first row and second 

column, in Figure 3.1 scheme ahead.. 
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included in this vector include both domestic and imported products and are valuated at 

purchasers’ prices.  

 

Figure 3. 1 – Structure of the total use M&U tables at purchasers’ prices. 

 
(1) (2) (3) (4)

Products Industries Final Uses Total = (2) + (3)

(1) Products ---

Intermediate 

consumption of 

domestic and 

imported products, 

by industries, at 

p.p.

Final Uses of 

domestic and 

imported 

products, at 

p.p.

Total uses of 

domestic and 

imported 

products, at 

p.p.

(2) Industries

Production by 

industry and by 

product, at b.p.

--- ---

Total 

industries' 

domestic 

output at b.p.

(3) Value Added ---

Components of 

Value added by 

industry

(4)
Domestic 

output

Total products' 

domestic output 

at b.p.

Total industries' 

domestic output 

at b.p.

(5) Imports
Imports by product 

at cif prices
---

(6) (4)+(5)
Total supply at 

b.p.

(7)

Trade and 

Transport 

margins

trade and transport 

margins on 

products

(8)

Taxes less 

subsidies on 

products

taxes less subsidies 

on products

(9) (6)+(7)+(8)
Total Supply at 

p.p.

p.p. = purchasers' prices          

b.p. = basic prices

 

 

 

Matrix [(2),(1)] is the Make matrix; each column depicts how the various domestic 

industries contribute to the output of that column’s product; reading along the rows, it 

gives us the distribution of each industry’s output over the several products: one, which is 

the primary product and the various secondary products. The Make matrix is valuated at 

basic prices. Row-vector [(4),(1)] corresponds to the column sum of the Make matrix and 
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it gives us the total domestic output of each product, valuated at basic prices. Adding the 

imported products, depicted in vector [(5),(1)], we obtain total supply of each product 

([(6),(1)]).  Finally, by adding trade and transport margins and net taxes on products
110

, 

we get total supply by product, valuated at purchasers’ prices ([(9),(1)]). The balance 

between product supply and use is made at purchasers’ prices (this is illustrated by the 

grey shadowed vectors, which must be equal). Looking at the Industry dimension, we 

have row vector [(3),(2)], which represents value added by industry; in fact each element 

of this row is the sum of the several components of value added in each industry. Adding 

this to total intermediate consumption, by industry, we achieve row [(4),(2)]: total 

industries’ domestic output at basic prices. These same values may be found, in the 

transposed form, in column [(2),(4)], which is the result of  adding all the columns of the 

Make matrix.  

 

In Figure 3. 2, we can find a product-by-product framework. However, an industry-by-

industry symmetric table may also be constructed. For this section’s purposes, it is 

sufficient to look at one of the two possible symmetric tables by choosing the most 

common type of relation: product-by-product. Matrix [(1),(1)] comprises the symmetric 

intermediate consumption flows: each column indicates the amount of the various 

products consumed as inputs in the production of that column’s product, regardless of the 

industry where that product is produced. These flows, as well as the final use flows, 

include only domestically produced goods and services (domestic flows). Imported 

products used as intermediate products, margins and taxes are added in order to obtain 

total intermediate consumption, by product, at purchasers’ prices. The same is made in 

[(2),(2)] and [(3),(2)], getting total final uses at purchasers’ prices. Adding Value Added 

by product, we get total supply of domestic products. The balance between domestic 

product’s supply and use occurs at basic prices.  

 

 

 

 

                                                 
110

 It is assumed that these taxes also include duties on imported products. 
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Figure 3. 2 - Structure of the domestic flow symmetric table at basic prices. 

 
(1) (2) (3)
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(1) Products

Intermediate 
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b.p.

(2) Imports
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product
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subsidies
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Total intermediate 
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Total uses, at 

p.p.

(5)
Value 

Added

Components of value 

added by product at 

b.p.

(6) (4)+(5)

Total supply of 

domestic products at 

b.p.  

 

 

3.2.1 Symmetric and rectangular input-output tables revisited. 

 

The simplified hypothesis inherent in the traditional symmetric input-output table is that 

each product is produced by one single industry and each industry produces one single 

product. However, in reality, the most common situation is that each industry produces a 

growing diversity of products, one of these being the primary product and the others the 

secondary products. These secondary products can be divided into two categories:  

subsidiary products and by-products (EUROSTAT, 2002); subsidiary products are those 

secondary products which are technologically dissociated from the primary product; by-

products are outputs that unavoidably result from the primary product production process, 

therefore being technologically related to it. Due to the presence of secondary products, 
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the M&U framework is the one which better depicts reality, especially through its Make 

matrix, which provides all the details of this varied production. Yet, current National 

Make tables, following the SNA (System of National Accounts) recommendations, 

involve some partial refining in the Industry classification. This is due to the fact that 

industries are grouped according to the concept of kind-of-activity unit, and not 

according to the concept of enterprise. The term kind-of-activity unit (KAU) is used to 

denote a part of an institutional unit in which only one particular type of economic 

activity is carried out (Jackson, 2000). Thus, as a rule, enterprises “must be partitioned 

into smaller and more homogeneous units, with regard to the kind of production” (ESA, 

1995, p. 35). So, in the National Accounts’ Industry classification, each Industry consists 

of a group of KAUs which are “engaged in the same or a similar kind of activity” (ESA, 

1995, p. 35). This means that most of the subsidiary products produced in each enterprise 

are classified under a different Industry heading, the one that produces those products as 

its main activity. Exceptions to this procedure occur whenever it is not possible to 

separate the secondary from the primary activity, either because secondary production is 

of by-product nature, or because the available information obtained from enterprises does 

not allow for separation (this being the case with most small firms, which have no 

accounting documents which allow for partitioning into different KAUs). As a result, the 

values of production recorded outside the main diagonal in the Make matrix are, at least 

in the majority of the European countries, mostly by-products, along with some residual 

subsidiary products that could not be separated from the main activity in the firms in 

which they were produced. 

 

To achieve a symmetric input-output table (SIOT), some hypotheses have to be assumed, 

in order to calculate the product-by-product (or industry-by-industry) intermediate 

consumption flows
111

. Therefore, the SIOT is a derivative table, built upon the M&U 

tables, using some hypotheses which will be discussed in section 3.4.3.  

 

 

                                                 
111

 As well as to compute the value added by products, or, in industry-by-industry tables, the final demand 

by industries. 
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3.2.2 Total use flows versus domestic use flows. 

 

Another major difference between Figure 3. 1 and Figure 3. 2 is in the treatment of 

imported products. In the total use table, all the use flows (intermediate and final) also 

include imported products. This means that the intermediate use matrix reflects true 

technical relationships: each of its elements indicates the total amount of a certain input 

used to produce a certain output. Data collected by means of surveys to firms can be 

directly used to prepare these types of tables. The same does not apply to domestic flow 

tables. In this case, a Use matrix of imported products is needed in order to deduce its 

value from the total Use table
112

. Direct information to construct such an Imports matrix 

is very rare. It is in fact very difficult for firms to know the origin (imported or 

domestically produced) of many of their inputs. In the majority of cases, firms buy inputs 

from wholesale traders, hence ignoring their origin. Besides that, even if we could obtain 

the percentage of inputs, which some firms import, it would be complex to know the 

specific use of those inputs, mainly to distinguish between intermediate consumption and 

capital formation. For similar reasons, the computation of final demand domestic flows 

based on direct information is also very complicated (or even more complex, since the 

number of intermediate traders between the importing firm and the final user is usually 

greater). Being so, Import matrices are always built under some plausible assumptions, 

sometimes complemented by direct information on some particular products. 

 

3.2.3 Basic versus purchasers’ prices. 

 

Different concepts can be used in the valuation of input-output flows of goods and 

services, ranging from the factor cost price to the purchasers’ prices. The valuation at 

factor cost price represents the production price and it better reflects the production 

function of each product (Martins, 2004). At the opposite extremity of the distribution 

process we find the purchasers’ price, representing the amount paid to obtain “a unit of a 

good or service at the time and place required by the purchaser” (EUROSTAT, 2002, p. 

121). In spite of this multiplicity of concepts, in practice SNA input-output tables use 

                                                 
112

 Details will be given in section 4.1. 
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only two price concepts: basic prices and purchasers’ prices. Basic prices are similar to 

factor costs, except for the fact that basic prices include other taxes and subsidies on 

production, which are not possible to allocate to specific products
113

. Basic prices (bp) 

can be obtained from purchasers’ prices (pp), through the following calculations
114

: 

 

margins  transportand trade-productson  subsidiesproductson  taxes +−= ppbp  

 

In the particular case of M&U tables, data is valuated as follows: 

• Production in the Make matrix is at bp; 

• Intermediate consumption in the Use matrix and the final use vectors are at pp; 

• Imports are valuated at cif  prices
115

; cif prices are bp in the sense that they do not 

include any taxes or margins to be paid in the importing country; 

• Exports are valuated at fob prices
116

, which, in practice, correspond to pp, since 

they are comprised of all the taxes and margins to be paid in the exporting 

country. 

 

There are two possible ways to balance supply and use in M&U tables: 1) transform 

supply flows into pp in order to allow balance with pp use flows or 2) transform use 

flows into bp in order to match with bp supply flows. The first option is illustrated in 

Figure 3. 1: row vectors (7) and (8) of margins and taxes less subsidies, respectively, are 

                                                 
113

 Taxes (subsidies) on products are those that “are payable per unit for some goods or services produced 

or transacted”(EUROSTAT, 2002, p. 200); examples: Value added taxes, import duties or tobacco product 

tax. Taxes (or subsidies) on production are those paid (or received) by firms as a direct result of their 

production activity, “independently of the quantity or value of the goods and services produced or sold” 

(idem, p. 200). 
114

 Trade and transport margins are necessary to convert basic prices into purchasers’ prices of each specific 

product. Thus, in column (7) of Figure 1, trade and transport margins appear as a positive entry in most  

products, but are imputed as negative entries in Trade and Transport services, to avoid double counting in 

the output of these activities. Therefore, when the aggregate level is being considered, margins do not 

appear in the transformation of bp into pp. 
115

 cif price – “price of a good delivered at the frontier of the importing country, or the price of a service 

delivered to a resident, before the payment of any import duties or other taxes on imports or trade and 

transport margins within the country” (EUROSTAT, 2002, p. 123). 
116

 fob price – “price of a good at the frontier of the exporting country, or the price of a service delivered to 

a non-resident, including transport charges and trade margins up to the point of the border, and including 

any taxes less subsidies on the goods exported” (EUROSTAT, 2002, p. 123). 
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added to total supply at bp in order to obtain total supply at pp. The second option is 

more data demanding. In fact, the adjustment of use flows from pp to bp involves the 

deduction, to each pp flow, of the value of margins and taxes comprised in that particular 

flow. To do so, valuation matrices are needed. Valuation matrices (of margins, for 

example) are tables of the same dimension as the intermediate and final use table, which 

“tell us how many margins are included in the pp or, in other words, which amounts need 

to be deducted from the purchasers’ price in order to achieve the valuation of basic 

prices, if similar product taxes less subsidies are also deducted” (EUROSTAT, 2002, p. 

127).  

 

The published M&U tables usually employ pp concept to balance supply and use. It is 

however, sometimes argued, that this valuation is not sufficiently homogeneous to be 

used for input-output analytical purposes; for example, the ESA’s Input-Output Manual 

states that “a valuation at purchasers’ prices is a less homogeneous option as the shares of 

trade and transport margins differ from industry to industry and also from and between 

the final uses; the same is true for the shares of product taxes less subsidies” 

(EUROSTAT, 2002, p.124). It is also true that basic prices are closer to the concept of 

production costs involved in the technical relations used in input-output analysis. These 

relations assume that a certain amount of an input represents the same physical unit 

irrespective of the production process in which it is used (EUROSTAT, 2002). Hence, it 

is desirable that prices are cleared from margins and taxes which differently affect the 

diverse uses of the products. The problem lies in the compilation of the valuation 

matrices required to transform pp into bp, since direct information on the value of 

margins and taxes comprised in each use flow is very scarce. In fact, when someone buys 

a certain item, he/she doesn’t know the amount of margins comprised in the price that has 

to be paid. Whenever valuation matrices are compiled, some hypotheses are used, whose 

plausibility will later be discussed (section 3.4.2).  It will also be shown that similar 

hypotheses may be directly used to model a rectangular input-output table valuated at pp. 
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3.3  Input-output tables in the Portuguese National Accounts. 

 

Every year, since 1995, the Portuguese National Institute of Statistics provides a set of 

National Accounts, which includes a M&U table, structured as in Figure 3. 1
117

.  

 

Products and industries are usually published in a 60 by 60 disaggregate level (ESA95 - 

A60 classification) although products can be further disaggregated and provided under 

request, at a specific National Accounts classification with 137 groups of products.  

 

The Portuguese Make matrices are heavily diagonal, meaning that most of the production 

has been allocated to its primary producing industry, in the process of partial refining of 

Industries’ classification, as it has been previously explained. 

 

Intermediate and final uses of goods and services are composed of both domestically 

produced and imported products, but no import matrices are regularly compiled. 

Additionally, these use flows are valuated at pp; in this case, the table is complemented 

with valuation matrices (which are published on a regular basis) that allow transformation 

into bp. Finally, there is no regular production and publication of any symmetric tables 

(product by product or industry by industry). Thus, whenever the researcher wants to 

make use of input-output tables with a format similar to Figure 3. 2, he/she has to 

assemble the import matrix and the symmetric input-output table, under a series of 

different hypotheses.  

 

It must be noted, however, that domestic flow symmetric input-output tables at basic 

prices were officially provided, with reference to the period 1995-1999, and more 

recently, to the period 2000-2004. The compiling work was not directly done by the 

National Institute of Statistics, but by a partnership between it and the Ministry of 

Finance’s Planning and Prospective Department. The description of these tables’ 
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 Except for the fact that the Use and the Make matrices are provided in separate tables, rather than in a 

combined one. 
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assembling, as well as the resulting matrices, is available at Martins (2004), Lopes (2007) 

and Lopes (2008).  

 

3.4  Input-output modelling based on the total use M&U matrix, at 

purchasers’ prices. 

 

The direct implementation of the input-output model from the rectangular table, with 

total use flows and at purchasers’ prices, will be dealt with in this section. As in any 

theoretical model, we will have to assume hypotheses, bearing in mind that, in some 

cases, they may be somewhat limiting. The assumed assumptions will be explained and 

their reasonability will be discussed, insofar they have to be incorporated in the model.  

 

The relationships involved in the table of Figure 3. 1 can be translated into algebraic 

terms. Consider: bp

ig  denote total domestic production of industry i, at basic prices; bp

ijv , 

the domestic production of product j by industry i, at basic prices (elements of the Make 

matrix); pp

jiu , the amount of product j used as an input in the production of industry i’s 

output, at purchasers’ prices (elements of the Use matrix) and bp

iw , the value added in the 

production of i, at basic prices. The industry balance may be expressed by: 

 

bp

i

j

pp

ji

j

bp

ij

bp

i wuvg +== ∑∑  

(3. 1) 

 

At product level, the balance can be expressed as: 

 

pp

j

i

pp

jijjj

i

bp

ij

pp

j yuldmvp +=+++= ∑∑  

(3. 2) 
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in which: pp

jp  represents total supply of product j; jm , total imports of product j; jd , 

margins falling upon product j; il , taxes (less subsidies) falling upon product j and, 

finally, pp

jy , final use of product j (both domestically produced and imported). 

 

These expressions are applied to all products j and all industries i. Thus, the balance can 

be written using matrices and vectors. Let us use: 1) vector i as a column vector 

composed by ones that computes the column sum of the correspondent matrix; 2) the sign 

A′  to indicate a transpose of a matrix A . Then, equations (3. 1) and (3. 2) can be 

expressed as
118

: 

 

( ) ( )′+
′

== bpppbpbp wiUiVg  

(3. 3) 

 

( ) ppppbppp yiUldmiVp +=′+′+′+
′

=  

(3. 4) 

 

These two equations are mere algebraic specifications of the required balances at industry 

and at product level. To develop a model it is necessary to assume some hypotheses, 

which will be discussed in the following sections.  

    

3.4.1 The proposed hypothesis to deal with intermediate and final use of 

imported products. 

 

As seen in section 3.2.2, direct information to construct import matrices is scarce or even 

non-existent. Therefore, we intend to suggest a hypothesis which avoids the construction 

of such a matrix and which can be incorporated by directly implementing the rectangular 

model. The proposed assumption, named import proportionality assumption, establishes 

that for each product the share of imports in any type of use (intermediate or final) of that 

                                                 
118

 Matrices and vectors are presented in bold, while variables are in italic. 
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product is the same and is given by the proportion of imports on total supply of the same 

product. For example, if 40% of steel’s total supply is imported, and 60% is provided by 

domestic production (corresponding to the self-sufficiency ratio) it is assumed that, in 

every industry which uses steel, 40% is imported and the same applies to any type of 

final use. This means that imports shares are differentiated by type of product but not by 

type of use. The implicit reasoning behind this assumption is that every industry and 

every final user directs its demand to a common pool of resources, having no preference 

for imported or domestically produced goods. The composition of that common pool 

(divided into imported and domestic products) will then determine the composition of the 

several uses.  

 

In analytical terms, this hypothesis can be expressed as follows: let 
bp

j

j

j
p

m
c =  be the 

import coefficient, representing the share of imports in the total supply of a certain 

product j, valuated at basic prices. On the supply side, this means that: 
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j
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jj
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j
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(3. 5) 

 

The import proportionality assumption takes place, on the demand side, as follows: 
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,   for all user industries i and 

(3. 6) 
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( )

( )

( )bpN
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−−=
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,    

 (3. 7) 

 

for all types of final uses, in which superior index 
N
 indicates domestic origin of products. 

 

In spite of being very simple and logically sound, this assumption is not free from 

limitations in what concerns its application. One crucial point is the disaggregation level 

of the product (EUROSTAT, 2002). If the import coefficients are calculated at a much 

aggregated level, the assumed hypothesis may not be acceptable. Let us take the “Wood 

and wood products” product group as an example; this group comprises different types of 

wood, in different stages of transformation. By calculating the import coefficient of this 

product group and applying it to all its different uses, this will cause a serious bias in the 

results. This is because final users like families may use almost no imported wood 

transformed products, while industries will use a great share of imported wood raw 

materials (e.g. exotic woods). This leads to concluding that: in applying such a 

hypothesis, the most detailed level of disaggregation available on import data should be 

used. This usually does not cause a great deal of trouble since import data is available at a 

very detailed product level. The problem is that import data must be combined with the 

data in the Use matrix, which is usually more aggregated, thus limiting the level of 

disaggregation used in the calculations. Another criticism pointed out to this assumption 

goes directly to the definition of it: the fact that it assumes an invariant import proportion, 

irrespectively of the type of intermediate or final use the imported product goes to. It is 

clearly recognized that some final uses, like exports, for example, have less incorporation 

of imported products than others, like investment. In order to take this differentiation into 

account, some authors have proposed to exclude exports from the import proportionality 

assumption, assuming that there are no re-exports. This is done, for example, in Miller 

and Blair (1985), and Jackson (1998). As emphasized by Lahr (2001), this approach 

should be preferred only in those cases in which the researcher knows that the export 
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vector has no (or almost no) re-exports
119

. For this essay’s purposes, however, the 

proposed methodology should be suited to be applied on regional tables, in which re-

exports may be more the rule than the exception. Hence, the import proportionality 

assumption will be taken uniformly throughout the various types of intermediate and final 

uses. Still, we recognize that the assumption must be applied in a conscious manner, and 

the researcher must be aware of the possible bias in the results. The magnitude of the 

errors coming from such an assumption, however, can only be accounted for when there 

is a benchmark survey-based import matrix against which the estimated one can be 

compared. This is done in Oosterhaven and Stelder (2007), in their comparison between 

four alternative non-survey intercountry input-output table construction methods, for nine 

Asian countries and the USA. In one of the non-survey input-output tables, they assume 

that there is no import matrix and use the import proportionality assumption to indirectly 

estimate it. The comparison between this table and the benchmark (which is a semi-

survey based intercountry table) allow the authors to conclude that in general, “The tests 

show that the impact of using self-sufficiency ratios to estimate the domestic flows is 

small (…)” (Oosterhaven and Stelder, 2007, p. 258). 

 

3.4.2 The proposed hypothesis to deal with margins and taxes less 

subsidies on products. 

 

Margins and taxes less subsidies comprised in the Use table may be treated in a similar 

manner as imports. In the absence of direct information to construct valuation matrices 

and obtain a basic price valuated table, the proposal here is to assume the following: for 

each product, the margin (net taxes) rate comprised in any type of use (intermediate or 

final) of that product is the same and is given by the proportion of margins on total 

supply of the same product. In analytical terms, let:  
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 We have used this approach in Chapter 2, when assembling the multi-national system, composed of 14 

countries. 
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• 
pp

j

j

j
p

d
f =  be the margins coefficient: it tells us the percentage of margins on total 

supply of a certain product, valuated at pp
120

; 

• 
pp

j

j

j
p

l
n =  be the taxes (less subsidies) coefficient: it tells us the percentage of net 

taxes on total supply of a certain product, valuated at pp; 

 

Hence, total supply valuated at pp may be written as a function of total supply valuated at 

bp: 
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(3. 8) 

 

The proposed assumption consists in horizontally applying these coefficients to all the 

different uses of the product: 
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, for all user industries i and 

 

(3. 9) 
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, for all types of final users. 

(3. 10) 
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 It is considered that margins and taxes (less subsidies) fall upon total supply, including imported goods 

and services. 
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What is the plausibility of such an assumption? In this case, it is useful to look at each of 

the following items separately: Value Added Tax (VAT), margins, other taxes on 

products and subsidies on products.  

 

In what concerns non-deductible VAT
121

, the problem is quite complex. Ideally, direct 

information should be available in order to:  

 

1. Identify the type of users who support non-deductible VAT. Non-deductible VAT 

is, in fact, supported mainly by households and, in some exceptional cases, by 

firms, either falling upon intermediate consumption or GFCF (e.g. firms exempt 

from VAT and therefore not allowed to deduct it from their purchases).   

2. Perform the linkage between the different VAT taxes and the product 

classification in the Use matrix; if the level of aggregation is high, some problems 

can arise because groups of products may well involve different VAT taxes 

(EUROSTAT, 2002).  

 

Due to the specific feature of non-deductible VAT, the proportionality assumption is not 

the most suitable to deal with it. In addition, direct information, in some cases, can be 

obtained relating to non-deductible VAT – which is the case in Portugal, where the 

National Institute of Statistics provides a non-deductible VAT matrix under request. If 

such information is available, it is advisable to subtract non-deductible VAT from the 

Use table before applying the model. In our theoretical exposition, VAT will be treated 

jointly with the remaining taxes on products; for this reason, we will assume the 

proportionality assumption for this kind of tax, as well as for the other taxes on products. 

This is however only done in this purely theoretical model deduction, and it should be 

avoided as far as it is possible in practical exercises.  
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 Deductible VAT is not included in the pp valuation. 
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Treating margins on a proportional assumption basis is also not completely realistic. In 

fact, it has to be recognized that different users of a product pay different margins on it. 

For example, an industrial enterprise will certainly pay a smaller amount of margins on 

stationery materials than the final consumer
122

. 

 

Finally, the use of the proportional assumption in the case of other taxes and subsidies is 

less controversial. These taxes and subsidies fall upon specific products and any type of 

user has to support them. For example, taxes on gasoline have to be paid equally by any 

type of user of this product. 

 

In any of the above mentioned items, the proportionality assumption must be applied at 

the most disaggregated level of product classification. This is important in order to avoid 

situations in which groups of products are heterogeneous in respect to margins or tax 

rates. 

 

3.4.3 Two alternative hypotheses to connect the products’ output with 

the industries’ output on the rectangular table: Industry technology 

assumption (ITA) and Commodity technology assumption (CTA). 

 

 

Two dimensions are considered in rectangular tables: products and industries. In order to 

write the structural equations and achieve the final impact model, it is necessary to 

assume some correspondences between industries’ output and products’ output. The 

following equations allow for a better understandment of this issue. Let us begin by 

assuming the traditional starting hypothesis in input-output models: there is a fixed 

technical relationship between the product input and the industry output. We will use the 

inputs and the outputs directly as they are provided in the M&U table (see Figure 3. 1). 

Thus, the technical coefficient in the rectangular model is given by:  

                                                 
122

 This distinction may, to some extent, be carried out using separate types of margins: wholesale and retail 

trade margins, and assuming that the former is supported by intermediate consumers and in GFCF and the 

latter or both are borne by final consumers. Although this distinction is not always available, this level of 

detail goes beyond the purpose of the present exposition. 
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bp

i

pp

ji

ji
g

u
q =  

(3. 11) 

 

The above mentioned equation indicates the amount of product j used as input, 

irrespective of its origin (domestic or imported), directly necessary to produce one unit of 

industry i output. This allows us to write bp

iji

pp

ji gqu =  or, in matrix terms, bppp QgiU = , 

in which Q  represents the technical coefficient matrix and g  represents the industry 

output vector. Please remember that U is the Use matrix in the M&U frame, and ppp  is 

the vector of the products output. The superscript pp means that both, the matrix and the 

vector, are valuated at purchasers’ prices. Equation (3. 4) can, therefore, be developed as 

follows: 

 

ppbppp

pppppp
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yiUp
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(3. 12) 

 

To further develop this model, it is, at this stage, necessary to establish some assumption 

about the kind of technological link between p  and g . Two alternative assumptions may 

be considered. 

 

One possible option is to assume that each product is produced in fixed proportions by 

the several industries, implying that the structure implicit in each column of bp
V  (the 

Make matrix) is assumed invariant; assuming also constant import, margins and taxes 

coefficients, industry’s output and commodity’s output is linked through the use of the 

following ratio: 
pp

j

bp

ij

ij
p

v
s = . This gives us the market share of industry i in total supply of 

product j (including imports, margins and taxes). From this market share, we can write: 

pp

jij

bp

ij psv = . In matrix terms, this corresponds to: ppbp pSV ˆ= , in which S  represents the 
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matrix of elements ijs , of equal dimension as matrix V , and the sign ^ is used to denote a 

diagonal matrix. Taking into account that the sum of the columns of V  is the vector of 

industries’ output, iVg bpbp = , this produces: 

 

ppbpppbpppbp SpgipSiVpSV =⇔=⇔= ˆˆ  

(3. 13) 

 

This equation provides a way of relating the output of industries with the output of 

products. The use of such a relation in model developing, starting from equation (3. 12), 

implies the employment of Industry-based technology assumption (ITA), as it will be 

seen in Section 3.4.3.1. The crucial supposition under ITA is that each industry has its 

own technology, which is common to all the commodities it produces. Thus, the 

technology assigned to each product depends on the industry where it is produced.  

 

Another option is to assume that each industry produces different products in fixed 

proportions, involving the hypothesis that the structure implicit in each row of bp
V  is 

invariant; in this case, industry’s output and commodity’s output is linked through: 

bp

i

bp

ij

ij
g

v
h =  (or bp

ij

bp

iij vgh = ). This indicates the percentage of industry i’s output that 

consists of the output of product j. In matrix terms, this is equivalent to:  
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(3. 14) 

 

in which ( ) iVv bpbp ′
=

′
, is the vector of products’ domestic production, at basic prices. 
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There are, however, two problems with this equation: firstly, to be mathematically 

possible, this equation requires the existence of 1H − . A necessary condition (but not 

sufficient) to the existence of such an inverse is that it must be square, which means, in 

practice, that the number of industries has to be equal to the number of products. This is, 

in fact, one of the drawbacks of this assumption, which will be later discussed. Secondly, 

this equation gives us the relation between bpg  and bp
v , and not between bpg  and ppp , 

the required relation to substitute in equation (3. 12). This problem can, however, be 

easily solved by making use of equations (3. 5) and (3. 8), in matrix terms: 

 

( )

( )( ) ppbp

bpbp

pnfIcIv
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ˆˆˆ

ˆ

−−−=

−=
 

(3. 15) 

 

Substituting this equation into (3. 14), it yields: 

 

( )( ) pp1bp pnfIcIHg ˆˆˆ −−−= −  

(3. 16) 

 

The development of the input-output model on the basis of this relationship between 

product output and industry output involves the use of the so-called Commodity-based 

technology assumption (CTA). It assumes that each product is always produced by the 

same technology, regardless of the industry in which it is produced.  

 

At this stage, when all the relevant hypotheses have been explained, it is possible to go 

through the development of the input-output model, based on the total use rectangular 

table, at purchasers’ prices. Since there are two alternatives to relate industry output with 

commodity output (ITA and CTA), this will originate two different models, analytically 

presented in the subsequent section. 
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3.4.3.1 Model development under each of the hypotheses. 

 

INDUSTRY-BASED TECHNOLOGY ASSUMPTION 

Substituting equation (3. 13) (industry technology hypothesis) into (3. 12), we can derive 

a product-by-product relationship: 
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(3. 17) 

 

This equation allows the assessment of the impact on total product supply originated by 

changes in final demand, both valuated at pp and on a total use basis. In other words, the 

ijth element of its inverse represents the amount of total output of product i directly and 

indirectly needed to deliver an additional unit
123

 of product j to final demand. As usual in 

input-output, this kind of impact analysis implies that the inverse elements are fixed, 

which, in turn, requires that the direct coefficients are also constant. In this case, the 

direct coefficients are the elements of the product matrix QS , denoted by ijα . Let us pay 

some attention to the meaning of these elements, exploring the way in which they are 

obtained: the specific element in position [1,2] (first row and second column) will be the 

result of the matrix product between the first row of matrix Q  (technical coefficients) 

and the second column of matrix S  (market shares). Considering, for example, that there 

are only 3 products and 3 industries, we have: 

 

32132212121112 sqsqsq ++=α  

(3. 18) 
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 All reasoning is obviously made in monetary units, but for the sake of simplicity in exposition, we will 

dispense with the constant use of the term “monetary unit”. 
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This means that the amount of product 1 needed to produce one unit of product 2 is the 

sum of three portions, each corresponding to the share of each industry in producing 

product 2. Each industry that contributes to the production of product 2 uses its own 

technology, as established by the ITA. In this case, we have a combination of three 

different technologies involved in the production of product 2. Since it is required that 

direct coefficients are fixed, this implies that not only industries’ technologies be fixed 

(expressed by the u elements), but also that the shares of each industry in the product’s 

output also be constant. This is the main theoretical implication deriving from ITA: the 

technology associated to each product is a fixed linear combination of different 

industries’ technologies. 

 

The impact measured by equation (3. 17) comprises the effect on domestic production, on 

imported products and also on margins, taxes and subsidies because all these elements are 

included in ppp . If one wants to isolate the effect on domestic production, valuated at bp, 

this can be achieved by making use of the hypotheses defined in sections 3.4.1 and 3.4.2. 

Substituting equation (3. 8) into (3. 17), we have: 
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(3. 19) 

 

Then, using equation (3. 5), it leads to: 
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(3. 20) 

 

It is still possible to arrange this equation in order to express the impact of demand 

directed towards only domestically produced products, valuated at bp. Using equations 

(3. 10) and  (3. 7), it yields: 
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( )( )( ) ( ) ( ) ( )bpN111bp ycInfIQSInfIcIv
−−−

−−−−−−−= ˆˆˆˆˆˆ  

(3. 21) 

 

This expression represents the impact on domestic production valuated at bp caused by 

changes in demand for domestic products, also at bp. It shows that, by using some 

hypotheses, the rectangular model answers the same kind of questions as a product-by-

product domestic flow symmetric model valuated at bp, built upon a symmetric table 

constructed under similar hypotheses. Moreover, it will be shown (in section 3.5) that the 

result of matrix multiplication ( )( )( ) ( ) ( ) 111
cInfIQSInfIcI

−−−
−−−−−−− ˆˆˆˆˆˆ  is exactly 

equal to the domestic flow symmetric model inverse, leading to equal multipliers. 

 

All the previously derived equations depict product-by-product relationships. However, 

the rectangular model also permits us to achieve industry-by-industry relations. Taking 

equation (3. 12) again, we have:  

 

( )

( ) pp1bp

ppbp

ppbpbp

ppbppp

ppbppp

SySQIg

SygSQI

SySQgg

SySQgSp

yQgp

−
−=

=−

+=

+=

+=

(3.13),by        ,

 

(3. 22) 

 

Factor ppSy  represents the final demand directed at domestic industries. In fact, if vector 

ppy  is the final demand for products and matrix S indicates the market shares of each 

industry in providing the several commodities, the product between them is the final 

demand directed at industries
124

. Thus, equation (3. 22) can be understood as an industry-

                                                 
124

 The values comprised in vector 
ppSy  are necessarily valuated at basic prices and exclude imported 

products, since matrix S  is obtained from matrix V, which is a domestic production matrix, valuated at 

b.p.. 
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by-industry relationship. The inverse matrix ( ) 1
SQI

−
−  gives us the direct and indirect 

needs of industry output to answer increases in final demand directed at industries. The 

total requirements matrix involved in this equation ( ( ) 1
SQI

−
− ) should be equal to the 

inverse matrix derived from a domestic flow industry-by-industry symmetric table 

(valuated at bp), constructed from the rectangular table, using similar hypotheses. Again, 

we postpone the practical demonstration to section 3.5. 

 

Besides product-by-product and industry-by-industry relations, another type of 

connection may be of the researcher’s interest: what is the effect on industries resulting 

from a change in final demand for products? This is answered by an industry-by-product 

relation, which can be extracted from equation (3. 22). In fact, post-multiplying the 

previous inverse matrix ( ) 1
SQI

−
−  by S, we obtain the total requirements matrix that 

relates industry’s output with final demand for products: ( ) SSQI
1−

− . Furthermore, using 

equations  (3. 7) and (3. 10) it is still possible to obtain an expression that reflects the 

impact on industries resulting from changes in domestic flow bp final demand: 

 

( ) ( ) ( ) ( )bpN111bp ycInfISSQIg
−−−

−−−−= ˆˆˆ  

(3. 23) 

 

An alternative way of deriving an industry-by-product inverse matrix starts from equation 

(3. 17), as follows
125

: 

 

( )

( )

( ) pp1bp

pp1pp

pp1pp

yQSISg

yQSISSp

yQSIp

−

−

−

−=

−=

−=

 

(3. 24) 

                                                 
125

 Provided that matrix S has an inverse, 
1

S
−

, it can be easily demonstrated that equation (3.24) is 

equivalent to (3.22). In fact, ( ) ( )[ ] ( ) ( ) =−=−=−=−
−−−−−−−− 11111111

SQSSQSSQSIQSIS  

( )[ ] ( ) SSQISQIS
111 −−− −=− . 
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COMMODITY-BASED TECHNOLOGY ASSUMPTION 

 

The same type of relationships can be derived using the CTA to connect industry output 

with product output. The obtained inverse matrices will, naturally, differ from the 

correspondent matrices derived under ITA, since technology assumptions, crucial in 

input-output analysis, are completely diverse. Let’s again take the starting equation: (3. 

12) and substitute (3. 16) into it: 

 

( )( )[ ]
( )( )[ ]

( )( )[ ] pp
1

1pp

pppp1

pppp1pp

ppbppp

ynfIcIQHIp

ypnfIcIQHI

ypnfIcIQHp

yQgp

−
−

−

−

−−−−=

=−−−−

+−−−=

+=

ˆˆˆ

ˆˆˆ

ˆˆˆ
 

(3. 25) 

 

This equation shows the effect on total product supply of changes in final demand, at pp 

and on a total use basis. Using CTA in this kind of exercise implies that, besides constant 

technical coefficients
126

, we are assuming constant H elements, which forces the product 

composition of each industry’s output to be fixed. Thus, each industry’s technology is 

determined by a fixed linear combination of several technologies, one for each different 

product.  

 

From this initial equation, several other relationships can be derived, similar to what has 

been done in the ITA development. Using equation (3. 14), which postulates CTA in an 

alternative way, we can substitute it into (3. 12) to achieve: 

 

                                                 
126

 In this particular case it is also necessary to assume constant import, margins and taxes coefficients. 
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( ) ( )

( )( )[ ]
( )( )[ ] ( )

( )( )[ ] ( )
( )( )[ ] ( )bpN

1
1bp

bpNbp1

bpNbp1bp

ppbp1bp
1

ppbp1bp11

ppbp1pp

yQHnfIcIIv

yvQHnfIcII

.yvQHnfIcIv

yvQHvnfIcI

yvQHvcInfI

yvQHp

−
−

−

−

−
−

−−−

−

−−−−=

=−−−−

+−−−=

+=−−−

+=−−−

+=

ˆˆˆ

ˆˆˆ

(3.15)by   ,ˆˆˆ

ˆˆˆ

ˆˆˆ

 

(3. 26) 

 

This expression shows the impact of final demand for domestic products on domestically-

produced products. It therefore gives us the same information which is contained in the 

inverse of a product-by-product symmetric domestic flow input-output table, if obtained 

by using similar hypotheses. 

 

An industry-by-industry equation may also be derived from equation (3. 12), as follows: 

 

( ) ( )

( )( )[ ]
( )( )[ ] ( )

( )( )[ ] ( )
( )( )[ ] ( )

( )( )[ ][ ] ( )
( )( )[ ][ ] ( )bpN1

1
1bp

bpN1bp1

bpN1bp1bp

bpN1bp1bp1

bpNbpbp

ppbpbp
1

ppbpbp11

ppbppp

yHQnfIcIHIg

yHgQnfIcIHI

yHQgnfIcIHg

yHQgnfIcIHvH

(3.15). by  ,yQgnfIcIv

yQgvnfIcI

yQgvcInfI

yQgp

−
−

−

−−

−−

−−−

−

−−

−−−−=

=−−−−

+−−−=

+−−−=

+−−−=

+=−−−

+=−−−

+=

ˆˆˆ

ˆˆˆ

(3.14).by   ,ˆˆˆ

ˆˆˆ

ˆˆˆ

ˆˆˆ

ˆˆˆ

 

(3. 27) 

 

Being 1H −  the matrix which allows the conversion from product dimension to industry 

dimension, the product ( )bpN1 yH −  represents final demand directed at industries. 

Therefore, the inverse matrix ( )( )[ ][ ] 1
1 QnfIcIHI

−
− −−−− ˆˆˆ  gives us the same kind of 

information as an inverse matrix of an industry-by-industry symmetric model. It will also 
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be shown that these two inverse matrices are equal, if the same hypotheses are used to 

derive the symmetric model. 

 

Evidently, equation (3. 27) also embraces an industry-by-product total requirements 

matrix: ( )( )[ ][ ] 1ˆˆˆ −
−

− −−−− HQnfIcIHI
1

1  expresses the impact on industries’ output 

caused by changes in domestic final demand for products. 

 

Referring back to equation (3. 12), we can still work out an equation which relates 

industry’s output with total final demand, valuated at pp: 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( ) pp
1

11
bp

ppbp11

ppbpbp11

ppbpbp11

ppbppp

yQHcInfIg

ygQHcInfI

,yQgHgcInfI

yQgvcInfI

yQgp

−
−−

−−

−−

−−





 −−−−=

=




 −−−−

+=−−−

+=−−−

+=

ˆˆˆ

ˆˆˆ

(3.14)by   ˆˆˆ

(3.15)by   ,ˆˆˆ

 

(3. 28) 

 

In this section it has been shown that the data directly available in the rectangular table is 

suitable to model equations that allow for the assessment of product-by-product, industry-

by-industry or mixed impacts. The underlying hypotheses have been previously presented 

and their plausibility has been discussed, except in what concerns CTA versus ITA; this 

will be done in section 3.4.3.3. In the next section it will be demonstrated that the 

previously derived equations may be obtained in a one-step procedure, which consists of 

the simultaneous inversion of the M&U coefficient matrices. 

   

3.4.3.2 Partitioned matrix inverse: calculation and analysis. 

 

INDUSTRY-BASED TECHNOLOGY ASSUMPTION 
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Let us start with the ITA based model. The nuclear part of the M&U table is represented 

by the shadowed quadrants in Figure 3. 3 (this is a simplified version of Figure 3. 1): 

 

Figure 3. 3 – Make and Use matrix – simplified structure. 

 

Products Industries Final Uses Total

Products 0 U
pp

y
pp

p
pp

Industries V
bp 0 --- g

bp

Value Added 0 w

Imports m 0

Margins d 0

Taxes less subsidies l 0

Total p
pp

g
bp

  

 

It should be noted that even if the matrices pp
U  and bp

V  are not square, the shadowed 

(and partitioned) matrix composed of these two (and of zero matrices of the appropriate 

dimension) will be square. Consider, for example, that there are 30 industries and 50 

products. In this case, the matrix pp
U  will have a dimension of 50*30 and bp

V  will be a 

30*50 matrix. Consequently, the shadowed matrix will have a dimension of 80*80 and it 

can be inverted. Hence, we can not agree with the following statement of Koronczi 

(2004): “A symmetric or square I-O matrix is required for I-O analysis, as only a square 

matrix can be inverted to obtain the Leontief inverse” (p. 24), presented as an argument 

to prevent the rectangular format to be used directly to input-output modeling.   

 

Dividing all the elements of pp
U  and bp

V  by the correspondent column totals, we obtain 

the following partitioned matrix, composed by two matrices of zeros and the previously 

defined matrices Q and S: 

 









=

0S

Q0
D    
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Using matrix D, we can write the matrix system: 

 









=








+
















bp

pppp

bp

pp

g

p

0

y

g

p

0S

Q0
 

(3. 29) 

 

From this system, we may derive equations (3. 12) and (3. 13) that were our starting point 

in previous section 3.4.3. In fact, if we multiply these partitioned matrices, we 

obtain: ppppbp pyQg =+  and bppp gSp = . 

 

The matrix system in (3. 22) may be handled in order to isolate the outputs (products and 

industries) vector: 

 

( )

( )


















−

−
=

















−=

















=








−

−

−

0

y

IS

QI

g

p

0

y
DI

g

p

0

y

g

p
DI

pp1

bp

pp

pp
1

bp

pp

pp

bp

pp

 

(3. 30) 

 

Applying the general formula for computing the inverse of a partitioned matrix
127

, we 

obtain: 

 

( ) ( )
( ) ( )










−−

−−+
=









−

−
−−

−−−

11

111

SQISSQI

SQIQSSQIQI

IS

QI
  

                                                 
127

 This formula can be found, for example, in Barnett (1990), pp. 71-72, and states that: 










−

−+
=








−−

−−−−−−−

,111

1111111

FCAF

BFACABFAA

DC

BA
, in which BCADF

1−−= , or equivalently, 










+−

−
=








−−−−

−−−−

11,1,111

1111

BDCGDDCGD

BDGG

DC

BA
, in which CBDAG

1−−= . 
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(3. 31) 

or 

( ) ( )
( ) ( )










−+−

−−
=









−

−
−−

−−−

QQSISIQSIS

QQSIQSI

IS

QI
11

111

 

(3. 32) 

 

Inserting equation (3. 32) into (3. 30), and multiplying these partitioned matrices, we get 

the equations: ( ) pp1pp yQSIp
−

−=  and ( ) pp1bp yQSISg
−

−= , which are, precisely, the 

previously derived equations (3. 17) and (3. 24), respectively. The first equation gives us 

the impact on total product supply originated by changes in final demand for products 

(
pp

pp

y

p

∂

∂
). Therefore, this is a product-by-product relation. The second is an industry-by-

product relation; it shows the impact on industry’s supply caused by changes in final 

demand for products (
pp

bp

y

g

∂

∂
).  

 

However, the right hand blocks are also susceptible to some interpretation. The lower 

right hand corner of (3. 31) is, in fact, precisely equation (3. 22), which depicts an 

industry-by-industry relation; it gives us 
( )pp

bp

Sy

g

∂

∂
. The upper right hand corner, 

( ) 1
SQIQ

−
−  or ( ) QQSI

1−
− , accounts for the impact on product demand, including 

imports, margins and taxes, created by changes in the demand directed at domestic 

industries (
( )pp

pp

Sy

p

∂

∂
). Hence, it is a product-by-industry relation. It should, however, be 

noted that a different type of product-by-industry relation can be established, yet not 

comprised in this rectangular inverse.  

 

Starting from these equations, several others (at basic prices and domestic flows) may be 

derived through the application of similar hypotheses as in section 3.4.3.1. 
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The previous exercise allowed us to conclude that all the equations mathematically 

obtained in section 3.4.3.1 for ITA (product-by-product, industry-by-industry and 

industry-by-product) can be directly achieved through the inversion of the so-called 

rectangular matrix, with stable s coefficients derived from V , according to ITA. 

Furthermore, this approach has several considerable advantages over symmetric models. 

For instance, in the symmetric model we have to build a different model for each type of 

relationship: the product-by-product symmetric model generates only a product-by-

product impact equation; if we want to quantify an industry-by-industry impact, we will 

need to construct an industry-by-industry symmetric table and develop the corresponding 

model. On the contrary, in the rectangular approach the both kind of relationships result 

from the unique model. 

 

COMMODITY-BASED TECHNOLOGY ASSUMPTION 

 

Alternatively, a similar reasoning can be made using the CTA.  In this case, in system (3. 

29), equation (3. 13), which defines ITA, is substituted by equation (3. 16), which 

corresponds to CTA; by doing this, we obtain system (3. 33): 

 

( )( ) 







=








+

















−−−− bp

pppp

bp

pp

1
g

p

0

y

g

p

0nfIcIH

Q0

ˆˆˆ
 

(3. 33) 

 

Let E  designate the partitioned matrix. Then, the system leads to: 

 

( )

( )

( )( ) 
















−−−−

−
=

















−=

















=








−

−

−

−

0

y

InfIcIH

QI

g

p

0

y
EI

g

p

0

y

g

p
EI

pp1

1bp

pp

pp
1

bp

pp

pp

bp

pp

ˆˆˆ

 

(3. 34) 
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Applying the formula for inverting partitioned matrices, we get: 

 

( )( )[ ] ( )( )[ ] ( )( )[ ]
( )( )[ ] ( )( )[ ] ( )( )[ ] 












−−−−−−−−−−−−

−−−−−−−−−−−−+
−

−
−

−
−

−

−
−

−
−

−
−

1
1

1
1

1
1

1
1

1
1

1
1

QnfIcIHIQnfIcIHIQnfIcIHI

QnfIcIHIQQnfIcIHIQnfIcIHIQI

ˆˆˆˆˆˆˆˆˆ

ˆˆˆˆˆˆˆˆˆ  

(3. 35) 

or 

( )( )[ ] ( )( )[ ]
( )( ) ( )( )[ ] ( )( ) ( )( )[ ] 












−−−−−−−−−−−−−−−

−−−−−−−−
−

−−
−

−−

−
−

−
−

QnfIcIQHInfIcIHInfIcIQHInfIcIH

QnfIcIQHInfIcIQHI
1

11
1

11

1
1

1
1

ˆˆˆˆˆˆˆˆˆˆˆˆ

ˆˆˆˆˆˆ

  

(3. 36) 

 

Inserting (3. 36) into (3. 34), we get the equations that represent the product-by-product 

and industry-by-product relations, expressed in equations (3. 25) and (3. 27), 

respectively. The lower right-hand corner of the first form of the inverse is exactly the 

inverse implicit in the industry-by-industry relation, deduced in equation (3. 27). Finally, 

the upper right-hand corner comprises a product-by-industry relation, having the same 

meaning as explained previously (in the ITA inverse matrix). Thus, using CTA, the same 

type of relations can be derived directly from the rectangular model, leading to different 

multipliers, since the technology assumption is diverse. 

 

  

3.4.3.3 The present and past literature debate on ITA versus CTA. 

 

In spite of the longstanding debate over the plausibility of the alternative assumptions, 

ITA and CTA, there is still no definite consensus. This debate started when most 

countries began to publish their input-output tables in the rectangular format. Some 

technological assumption is required, either to develop the input-output model directly 

from the rectangular table (as illustrated in the previous section) or to obtain a symmetric 

matrix, starting from M&U tables. 
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The subsequent literature review aims to systematize the main arguments in favour of 

each of these technological assumptions. Additionally, attention will be targeted at the 

two major existing assumptions: ITA and CTA, still recognizing that other hypotheses 

exist
128

.  

 

Summarizing what has been previously said, ITA states that each industry has its own 

input structure, regardless of the mix of products it produces, while CTA admits that each 

product has its own technology, irrespective of the industry in which it is produced (ten 

Raa and Rueda-Cantuche, 2007). Hence, when ITA is applied to obtain a symmetric table 

from the M&U matrices, the process consists of transferring the secondary production of 

each industry to the one in which the product is a primary production, using the input 

structure of the first industry. As a result, in the intermediate part of a product-by-product 

symmetric table derived through ITA, each column involves a combination of several 

input structures. Conversely, when the symmetric table is assembled on the basis of CTA, 

the products are transferred to the industry in which they are primary ones, using this 

latter industry’s technology. Thus, in the intermediate part of a product-by-product 

symmetric table derived through CTA, each column comprises only one technology. The 

main problem with this methodology is the generation of negative entries in the 

symmetric intermediate consumption table. It is easy to understand why this happens: the 

fact that product i is transferred from industry j to industry k using the technology of 

industry k, implies that some inputs that are to be subtracted from the input structure of 

industry j may not be used in the production of i in this industry (or may be used in a 

lesser amount), originating meaningless negative flows. This problem will be further 

discussed in this section. 

 

As it has been explained in section 3.4.3.1, when used in input-output impact analysis, 

the assumption of ITA corresponds to the supposition, to every industry, of fixed shares 

in each market product, while CTA implies considering that each industry has a fixed 

                                                 
128

  The fact is that these complementary hypotheses are all based on ITA, CTA or a mixture of both. 

The “Almon algorithm” for example, is derived from CTA (for a description of the method see, for 

example, Vollebregt and van Dalen, 2002) and the “Mixed-technology model” applies a mixture of CTA 

and ITA, according to the classification of the secondary production into subsidiary products or by-

products, respectively (Jansen and ten Raa, 1990). 
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mix of products in its output. It should be stated that these implications only take place 

when input-output analysis is carried out; EUROSTAT (2002) emphasises this topic by 

stating: “input-output analysis with a product-by-product table based on the industry 

technology assumption implicitly requires the assumption of fixed market shares (but not 

in the process of compiling the matrix, as is sometimes argued).” (p. 228). The same 

applies to CTA. Then, whenever one chooses one or another technological assumption 

with the aim of performing input-output analysis, one should be aware of these 

implications and fully assume them. On this basis, we cannot agree with the argument 

used by Vollebregt and van Dalen (2002) to reject ITA: they refuse to consider ITA as a 

plausible assumption because it presumably “conflicts with the assumption of 

homogeneous production that is the basis for input-output analysis” (p. 3). The facts are: 

1) the homogeneous production assumption, according to which every industry produces 

exactly one product and every product is produced by exactly one industry is a 

simplifying hypothesis used to apply the traditional Leontief input-output model; 2) on 

the contrary, the truth is that each industry produces more than one product and each 

product may be produced by more than one industry; 3) according to ITA, each product 

is, in fact, produced by one single, fixed input structure, given by a fixed linear 

combination of several industries’ technologies.  

 

It has been referred to in section 3.2.1 that secondary production may be classified into: 

subsidiary products, technologically unrelated to the primary production, and by-

products, which result from the application of the same technology as the primary 

product. It seems then, that ITA is best suited when secondary products have a by-

product nature and CTA is more adequate to treat subsidiary production (Miller and 

Blair, 1985). Following this reasoning, some authors propose a mixed model, which 

consists of dividing the make matrix in two (excluding the primary production, in the 

diagonal): one with only subsidiary products and another with by-products, and then 

apply the best suited assumption to each of these sub-matrices. The problem, however, is 

that, in practice, this requires some additional information which is seldom available: the 

split of secondary production into subsidiary and by-products (ten Raa, et al., 1984).   
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Both ITA and CTA have known advantages and disadvantages. Guo et al. (2003) provide 

a comprehensive overview of the major contributions on this debate. The main critiques 

pointed out to CTA, by opposition to ITA, are:  

• The fact that it doesn’t allow the use of non-square Make and Use tables. The 

expressions deduced in section 3.4.3.1, according to which 
1−H  has to be 

computed, are proof of this drawback. On the contrary, ITA does not require the 

computation of any inverse, thus allowing the direct use of tables in which the 

number of products differs from the number of industries. 

• It generates negative coefficients in the direct requirements matrix (as explained 

before). In ITA it never happens. 

• According to de Mesnard (2004 and 2002), CTA is not logically compatible with 

a demand-driven input-output model. We will review this approach further on. 

 

On the other hand, ITA is also criticized because it does not fulfill three of the four 

axioms established by ten Raa (ten Raa et al. 1984 and Jansen and ten Raa, 1990) as 

desirable properties of what these authors name matrix ( )VU,A . Matrix ( )VU,A  

represents a product-by-product direct requirements matrix, i.e., it tells us the necessary 

amount of product input i in order to produce one unit of product output j
129

. The 

arguments U  and V  mean that the direct requirements matrix is based on the 

information given by the M&U tables (Jansen and ten Raa, 1990). According to these 

authors, matrix ( )VU,A  should fulfil the following axioms: material balance, financial 

balance, price invariance and scale invariance. The first, material balance, states that the 

total intermediate use of each product must be equal in the product-by-product table and 

in the Use (product-by-industry) table. Financial balance establishes that, “for each 

commodity unit, revenue equals material cost plus value added” (Jansen and ten Raa, 

1990, p. 217). Price invariance implies that matrix ( )VU,A  must remain the same, 

regardless of the base year price chosen to compute constant prices U  and V  tables. 

                                                 
129

  This type of matrix is also named technical coefficients matrix and is usually labeled as matrix 

A  with elements ija . Such technical coefficients matrix was already presented in the first Chapter of this 

Dissertation, when developing the traditional symmetric input-output model. 
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Finally, scale invariance requires that, whenever all inputs and outputs of some industry 

are multiplied by the same scaling factor, the ( )VU,A  coefficients remain the same. In 

these two papers, these authors demonstrate that CTA is compatible with all four axioms, 

while ITA only fulfills the first one
130

. 

 

Several solutions have been suggested in order to overcome the shortcomings of CTA. 

The problem of rectangular tables is simply solved by making the tables square; this is 

done by merging “rows into aggregates with products that are alike” (Vollebregt and van 

Dalen, 2002, p. 15). Some information is obviously lost in this process, eliminating, to 

some extent, one of the advantages of the rectangular model: the detail on production 

provided in the Make matrix.   

 

In what concerns the negative entries, the case is more problematic. Firstly, there is no 

consensus as to the causes which originate these negative flows. Yet, the following 

sources are frequently pointed out: 1) the assumption underlying CTA is incorrect; this 

happens, for example, whenever secondary production is of by-product nature; 2) a high 

level of aggregation is used in product classification, such that CTA becomes “there is a 

single technology to each group of products” and not, as originally suggested, “there is a 

single technology to each product”; given that heterogeneity is unavoidable, due to the 

need for aggregation in the M&U data, it is recommended to use the most disaggregate 

version available (EUROSTAT, 2002); 3) errors in the supply and use tables (Vollebregt 

and van Dalen, 2002); this last source of errors is evidently more difficult to overcome, 

unless the original M&U tables are changed. The correction of all these causes of errors 

requires “human expert knowledge about the [supply and use] tables” (Vollebregt and 

van Dalen, 2002, p.18). Several “tricks” are enumerated in these authors’ paper, as well 

as in the Input-output Manual (EUROSTAT, 2002) in order to avoid the negatives in the 

( )VUA ,  matrix. These comprise: industry merging, changing the main producer and 

creating new products among others. The usual procedure consists of: 1) applying CTA 

to the original M&U tables; 2) analyzing the results and identifying the causes of the 

negatives; 3) Making changes to the original M&U tables; 4) applying CTA again; 5) 

                                                 
130

  All demonstrations can be found in the referred papers. 
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repeating the process until only small negatives remain; 6) setting those small negatives 

to zero, and then, applying RAS to balance column and row totals
131

. This procedure has 

two main drawbacks: first, it requires a lot of manual work and an inside knowledge of 

M&U tables; secondly, it modifies the original M&U tables, making these inconsistent 

with the final symmetric input-output table (this will be consistent only with the adjusted 

M&U tables) (EUROSTAT, 2002).  

 

In a recent paper, Bohlin and Widell (2006) propose a different model to create 

symmetric input-output tables, based on ITA and CTA. They demonstrate that “both the 

ITA and CTA can be transformed into problems of minimizing the variance of a variable 

ijkb , which is defined as the quantity of commodity i that is used for producing one unit 

of commodity j in industry k.” (p. 206). The reasoning which underlies this minimizing 

approach is as follows. In respect to ITA, the assumption states that each industry used 

the same input structure for all the products it produces; then, the previously defined 

coefficient ijkb , for a certain input i, will be the same for all outputs j of industry k. This 

means that all the coefficients are equal to their mean: ikijk bb = , or, in other words, they 

have a null variance referring to j. The authors propose to relax this equality and instead 

minimize the variance of ikb . Conversely, the CTA states that each product uses the same 

mix of inputs irrespective of the industry in which it is produced. Using coefficient ijkb , 

means that “the b-coefficients for a specific input in the production of a specific output 

are the same in all industries, and therefore the same as the economy-wide technical 

coefficient, ija ” (Bohlin and Widell (2006), p.208). This implies that ijijijk abb == . 

Once again, the approach used in this paper is to minimize the variance of ijb , instead of 

setting it equal to zero. Additionally, it must always hold that ∑=
j

jkijkik vbu
, i.e., the 

amount of input i consumed by industry k must be equal to the sum of the amounts of 

input i consumed in the production of all the outputs of industry k (here jkv  stands for the 
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 If the Almon algorithm is applied instead of CTA, RAS will be dispensable, since the algorithm is 

applied in such a way that no negatives occur  – they are eliminated during the running of the algorithm. 
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quantity of product j produced in industry k). Using these assumptions and constraints, 

the method proposed by these authors is expressed by: 

 

( ) ( )

∑

∑∑

=≥











+

j

jkijkikijk

j

ij

k

ik

vbuandb

TS

bbMin

0

..

varvar µϖ

 

(3. 37) 

 

This model considers the use of a combination of ITA and CTA, with weights ϖ  and µ , 

expressing the relative importance of each assumption. Obviously, when we set 0=ω , 

we fall on the case of CTA; when 0=µ , we fall on ITA
132

. Another advantage is the 

constraint on non-null b-coefficients, which avoids the generation of negative coefficients 

caused by CTA. The other limitation of CTA – the incapacity of dealing with rectangular 

tables – is also solved by this approach, since no inverse matrix needs to be computed. 

 

In two recent papers, de Mesnard (2002) and de Mesnard (2004), this author uses an 

economic-circuit approach, to show that CTA suffers from a lack of logic when applied 

to a demand-driven input-output model, being adequate only to supply-driven models. In 

demand-driven models, the multiplier effect starts with an impact on demand: using the 

author’s approach, let’s consider an increase in final demand for product i. This will force 

an increase in the production of several industries that produce that product. According to 

ITA, this link is given by matrix S, which indicates, through its market shares, what the 

increase in the production of each industry is. This additional industry output will create 

the necessity for new products to be used as inputs, and the process is repeated in a 

circular manner, which is precisely the multiplier effect. Now, if CTA is used, this circuit 

will be broken. This model cannot establish the link between the initial product increase 

in final demand and the increase in the industries’ output. If production of product i 

                                                 
132

 A clear disadvantage of this model is the fact that weights ϖ  and µ  are both unknown. Besides, the 

existence of the non-negativity restriction can prevent the objective function to get the value zero, making 

the results different from the ones obtained through the use of CTA or ITA in their pure form. 
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increase, what will the augment be in the output of each industry? Matrix H tells us how 

each industry’s output is composed; thus, it answers to the following question: “When the 

output of an industry increases, what is the augment of each product’s output?”, which is 

a different question. Thus, the economic circuit is broken. This lack of economical logic 

leads the author to reject CTA in demand-driven models; he proves that it is only suited 

for Ghosh or supply-driven models. 

 

In spite of the theoretical relevance of the previous debate concerning ITA versus CTA, 

the practical consequence of the choice between these two assumptions (or using a 

combination of both) depends on the weight and type of the production located outside 

the main diagonal in the Make matrix (Koronczi, 2004). On the one hand, it is quite 

obvious that the more diffuse the Make matrix is, the larger the difference will be 

between symmetric input-output tables (and the corresponding multipliers) calculated by 

ITA and by CTA (Guo, et al. 2003). In this context, if we look at the Portuguese Make 

and Use tables and take, for example, the current prices tables for the year 2002, with 30 

industries and 30 products, we can conclude that the secondary production is around 5% 

of the total industries’ output. Therefore, the choice between ITA and CTA may not have 

such great relevance. This will be empirically examined in the following sections, in 

which multipliers obtained from ITA and CTA will be compared. On the other hand, as 

was previously referred to, the nature of the production outside the main diagonal is 

important when it comes to choosing between ITA and CTA. More precisely, ITA is 

more suitable for situations in which this production is mainly comprised of by-products 

and CTA is more adequate when dealing mainly with subsidiary products. Then, 

considering the partial refining done by the National Accounts when classifying 

industries according to the notion of KAU, the result is that the off-diagonal values of 

production are mainly by-products and residual subsidiary products. Thus, it seems that 

ITA is a more adequate assumption to use in Portugal and other countries that follow the 

same procedure (recommended by SNA and ESA). Yet, the choice between one and the 

other technological assumption is not essential in this essay, since we will compare the 

rectangular with the symmetric model under both assumptions. 
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3.5  Practical application. 

 

In this section, it will be shown that the direct modelling of the starting table (rectangular 

M&U matrices, with total use flows and at pp), is exactly equivalent to the modelling of a 

domestic flow symmetric table (at bp), derived from the starting table, using similar 

assumptions. To do so, we will begin by presenting the multipliers obtained through the 

direct modelling of the rectangular table, making use of the hypotheses explained in the 

previous section. Then, we will explain how product-by-product and industry-by-industry 

symmetric tables can be obtained from the starting table, and present the correspondent 

inverse matrices. Finally, we will justify the fact that these two alternative procedures 

originate the same result, showing the equivalence that exists between the direct 

requirements matrices in both the rectangular and the symmetric model.  

 

3.5.1 Calculation of different multipliers on the basis of the rectangular 

model, using the Portuguese M&U table. 

 

In order to demonstrate the application of the rectangular model inverse matrices 

obtained in sections 3.4.3.1 and 3.4.3.2, a practical example is used. The basic data are 

the Portuguese Make and Use tables for the year 2002, at current prices, provided by 

INE
133

. The level of aggregation contains 30 products and 30 industries. However, in the 

CTA applications, this had to be reduced to 29 products and 29 industries. The reason for 

this supplementary aggregation was the fact that industry “CA - Mining and quarrying of 

energy producing materials” had no production, and consequently, no intermediate 

consumption in Portugal. This caused the H  matrix to have a null determinant and, 

therefore, to be non-invertible, preventing the application of CTA (see the expressions 

deduced in sections 3.4.3.1 and 3.4.3.2). On the other hand, one could not opt for 

eliminating only industry CA and leave the imported products included in group CA, 

since CTA does not admit a different number of industries and products (this has been 

                                                 
133

 This is the Portuguese Statistics National Institute. We are thankful to INE, for its kindness in providing 

the author with the Make table for the reference year. The remaining information is available at the INE’s 

official website: www.ine.pt.  
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previously referred to as one of the disadvantages of this assumption). Thus, the option 

was to merge industry CA with industry “CB – Mining and quarrying except energy 

producing materials and product”, as well as the correspondent products. The resulting 

Make and Use matrix, used as a basis for this empirical application, is presented in 

Annex A.3.1
134

. 

 

We begin by presenting the inverse matrices and correspondent multipliers obtained 

when ITA is the underlying assumption. The results of partitioned matrix inversion 

( ( ) 1
DI

−
− ) are displayed in Annex A.3.2

135
.  

 

The upper left-hand block of this inverse matrix corresponds to ( ) 1
QSI

−
−  and it 

computes the impact of changes in ppy  over ppp . For example, value 0,0217, located at 

[EE, DJ] in this product-by-product block has the following meaning: when final demand 

for “DJ – Basic metals and fabricated metal products” valuated at p.p. suffers a unitary 

increase, the direct and indirect extra demand (at p.p.) for product “EE - Electricity, gas 

and water supply” increases 0,0217 units. This increase also includes the increase for 

imported “EE” products, since the effect evaluated here is on ppp . Looking at the column 

sum of this block, we can see that the total supply of products (domestic and imported) 

has to increase 1,6033 in order to satisfy the direct and indirect needs created by the 

additional demand of “DJ” products. If we want to obtain the effect of demand for 

domestic products on the domestic supply of products, we may apply equation (3. 21), 

from which we obtain the impact of ( )bpNy  on bp
v . The matrix derived from this 

equation is displayed in Annex A.3.3. This matrix is the one which should correspond to 

the inverse matrix derived from a domestic flow product-by-product symmetric table 

(valuated at bp). It can, therefore, be seen that a unitary increase in the demand for “DJ” 

domestically produced products creates direct and indirect extra needs in the production 

of all the domestic production by the amount of 1,7240. 

                                                 
134

 All the Annexes referred in this Chapter are made available as Excel files at the CD-rom attached to this 

Dissertation. 
135

 For a better understanding of  all the results displayed, different colors are used to distinguish industries 

from products: industries are in light green and products in light yellow. 
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The lower left-hand block of ( ) 1
DI

−
−  corresponds to ( ) 1

QSIS
−

−  and it measures the 

impact on industry’s domestic supply ( bpg ) caused by changes in final demand for 

products ( ppy ). From this matrix we can say, for instance, that a unitary change in final 

demand for “DJ” products creates an amount of 0,9327 direct and indirect additional 

demand for the output of all industries in the economy. It should be stressed that the total 

multiplier is less than one, because part of the effect goes into imported products, which 

are not accounted for in bpg . 

 

The lower right-hand block of ( ) 1
DI

−
−  quantifies the industry-by-industry relationships. 

It corresponds to ( ) 1
SQI

−
− . From this matrix, one can evaluate the effect in each 

industry and in the domestic economy-wide caused by changes in the demand directed at 

some industry. For example, if the demand directed to the output of industry “DJ” 

increases unitarily, this same industry will have to increase 1,2983 (through direct and 

indirect effects) and the whole economy will be increased by 1,7246. As referred to 

before, the values of this matrix should be equal to the values of the inverse matrix 

derived from a domestic flow industry-by-industry symmetric table (valuated at bp), 

constructed from the rectangular table, using similar hypotheses. 

 

As expected, other matrices can be computed according to the equations derived in 

section 3.4.3.1. Yet, for this essay’s purpose, the relevant matrices are the product-by-

product and the industry-by-industry total requirements matrix, since these will be further 

compared with the corresponding symmetric total requirements matrices.  

 

The same type of matrices can be derived using CTA as the technology assumption. The 

partitioned inverse ( ) 1
EI

−
− , shown in Annex A.3.4, allows us to extract different types 

of total requirements matrices. The upper left-hand block corresponds to 

( )( )[ ] 1
1 nfIcIQHI

−
− −−−− ˆˆˆ  and expresses the effect of ppy  on ppp . From this, we can 

derive the total requirements matrix that relates ( )bpNy  with bp
v  (applying equation (3. 
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26)). The resultant matrix is exhibited in Annex A.3.5. This is the matrix which 

corresponds to the inverse matrix derived from a product-by-product symmetric input-

output table, constructed under similar hypotheses. We can see, for example, that a 

unitary increase in the demand for “DJ” domestic products creates direct and indirect 

extra needs in the production of all the domestic production by the amount of 1,7286. The 

lower right-hand block comprises the industry-by-industry total requirements matrix – it 

corresponds to the inverse matrix of a symmetric industry-by-industry table. 

 

3.5.2 Obtaining the symmetric input-output table (SIOT) from the 

rectangular one. 

 

In order to allow for comparison between the multipliers obtained directly from the 

rectangular table and the ones obtained from the constructed symmetric tables, the 

methodology used to derive the SIOTs followed the exact hypotheses established to 

model the rectangular tables. The objective was to compute the subsequent SIOTs: a) 

Product-by-product domestic flow symmetric table valuated at b.p.; b) Industry-by-

industry domestic flow symmetric table valuated at b.p.; 

 

The method involved three stages: 

1) Computing use matrices for margins and for taxes (less subsidies), in order to subtract 

them from the purchasers’ prices Use table and obtain the basic prices Use table. This 

was done applying the proportionality assumptions established in equations (3. 9) and (3. 

10).  

 

2) Computing the use matrix of imported products, in order to subtract it from the basic 

prices Use table and thus obtain the domestic flow basic prices Use table. To do this, the 

proportionality hypotheses expressed in (3. 6) and  (3. 7) were used. In practice, most of 

the countries that construct an official import matrix also support their work in this kind 

of hypothesis (OECD, 2000).  
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3) Obtaining the product-by-product and industry-by-industry symmetric tables, using 

both the alternative technology assumptions.  

 

The result of stage 1) in addition to stage 2), this is, the domestic flow basic prices Use 

tables, can be observed in Annexes A.3.6 and A.3.7
136

. From these, 4 SIOTs were 

derived: product by product using ITA, industry by industry using ITA, product by 

product using CTA and industry by industry using CTA. 

 

3.5.2.1 Product-by-product symmetric tables. 

 

Let’s begin with the product-by-product table and consider the case of industry “AA – 

Agriculture, hunting and forestry” as an example. The objective is to convert the first 

column of the domestic flow basic prices Use table ( ( )bpNU ), which gives us the amount 

of different products used by industry “AA”, into the first column of the intermediate 

symmetric table ( ( )bpNZ ), which will indicate the amount of different products used to 

produce products “AA”. Firstly, this will be done by using ITA, and in a second step by 

applying CTA. By looking at matrix V
bp 

(first row) we can see that industry “AA” 

produces several products: “AA”, “DA”, “DJ”, “FF”, “GG” and “KK”. Then, according 

to ITA, the technology of industry “AA”, implicit in the correspondent column of the 

technical coefficients matrix ( )bpNQ , will be used to produce all these products, primary 

as well as secondary.  

 

The intermediate consumptions associated with the secondary products of industry “AA”, 

according to ITA, are displayed in columns 2 to 6 of Table 3.1. Each of these columns are 

obtained by multiplying the first column of matrix ( )bpNQ  (technology of industry “AA”) 

by the correspondent production of industry “AA”, given in the first row of matrix V.  

Product “AA” is, however, also produced by other industries. In this particular case, 

                                                 
136

  In principle, there should be only one domestic flow b.p. Use table, since the initial stages have 

nothing to do with the technology assumption. However, as explained before, a merge between two 

industries and two products in the original M&U tables had to be done in order to apply CTA. This led to 

different starting tables in the third stage.  
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product “AA” is produced only by its main producer and in industry “LL – Public 

administration and defence; compulsory social security” (this information is extracted 

from the first column of matrix V). This intermediate consumption, to be transferred to 

product “AA”, is given in column 7 of Table 3.1. This column is obtained by multiplying 

the “LL” column of matrix ( )bpNQ  by the production of product “AA” in industry “LL” 

(5 units). The result of subtracting the intermediate consumptions relative to secondary 

products, and summing up the intermediate consumption associated to the production of 

“AA” in other industries, is the first column of matrix ( )bpNZ  (in the column (8) of Table 

3.1). 

 

Table 3. 1 – Calculation of the first column of matrix ( )bpNZ  under ITA. 

 

(1) (2) (3) (4) (5) (6) (7) (8)
Ind. AA DA DJ FF GG KK AA (LL) Prod. AA

AA 661  - 38,8  - 0,1  - 1,9  - 1,5  - 2,6  + 0,0  = 615,8

BB 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

CA 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

CB 1 0,0 0,0 0,0 0,0 0,0 0,0 0,7

DA 614 36,0 0,1 1,8 1,4 2,5 0,0 571,8

DB 18 1,1 0,0 0,1 0,0 0,1 0,0 17,0

DC 1 0,0 0,0 0,0 0,0 0,0 0,0 0,6

DD 14 0,8 0,0 0,0 0,0 0,1 0,0 13,1

DE 17 1,0 0,0 0,0 0,0 0,1 0,0 15,5

DF 45 2,7 0,0 0,1 0,1 0,2 0,0 42,1

DG 86 5,1 0,0 0,2 0,2 0,3 0,0 80,4

DH 4 0,2 0,0 0,0 0,0 0,0 0,0 3,7

DI 51 3,0 0,0 0,1 0,1 0,2 0,0 47,6

DJ 15 0,9 0,0 0,0 0,0 0,1 0,0 13,6

DK 7 0,4 0,0 0,0 0,0 0,0 0,0 6,2

DL 1 0,0 0,0 0,0 0,0 0,0 0,0 0,8

DM 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

DN 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

EE 98 5,8 0,0 0,3 0,2 0,4 0,1 91,4

FF 71 4,2 0,0 0,2 0,2 0,3 0,0 66,1

GG 333 19,6 0,0 1,0 0,8 1,3 0,1 310,6

HH 19 1,1 0,0 0,1 0,0 0,1 0,1 17,5

II 49 2,9 0,0 0,1 0,1 0,2 0,1 45,4

JJ 158 9,3 0,0 0,5 0,4 0,6 0,0 147,7

KK 180 10,5 0,0 0,5 0,4 0,7 0,3 167,7

LL 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

MM 1 0,1 0,0 0,0 0,0 0,0 0,0 0,9

NN 22 1,3 0,0 0,1 0,1 0,1 0,0 20,4

OO 4 0,2 0,0 0,0 0,0 0,0 0,0 3,4
PP 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0  
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This may, obviously, be done in a more straightforward manner, using a specific matrix 

product. Let us begin by asking: “Which industries have to be considered in the 

production of product “AA”? The answer is in the first column of matrix V: industries 

“AA” and “LL”. Thus, using ITA, two technologies are implicit in the production of 

product “AA”. This means that the columns to be considered in ( )bpNQ  are “AA” and 

“LL”. This, however, corresponds to multiplying matrix ( )bpNQ  by the first column of 

matrix V (which has non-null elements in rows “AA” and “LL”). Then, the first column 

of ( )bpNZ  can be obtained by multiplying ( )bpNQ  by the first column of matrix V. This 

operation does, in fact, make sense, given the meaning of these two matrices: for 

example, the first row of ( )bpNQ  gives us the amount of product “AA” necessary to 

produce one unit of output of each industry j; the first column of V gives us the 

distribution of product “AA” throughout the several industries; then, by multiplying one 

by another, we obtain the amount of product “AA” used in the production of product 

“AA”, by all the industries that produce it, which is precisely the first element of  ( )bpNZ . 

Generalizing, matrix ( )bpNZ  can be obtained through: 

 

( ) ( ) VQZ
bpNbpN =   

(3. 38) 

 

The intermediate consumption part of the symmetric product by product domestic flow 

table (at basic prices) obtained using ITA is presented in Annex A.3.8. 

 

If the other technology assumption, CTA, is considered, the reasoning is very similar, 

except for the fact that in the transferences of the secondary production, the technology 

used is the one which is associated with the product being transferred. Then, the 
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intermediate consumptions to be subtracted from and added to the first column of ( )bpNU  

are given in Table 3.2
137

. 

 

Table 3. 2 – Calculation of the first column of matrix ( )bpNZ  under CTA. 

 

(1) (2) (3) (4) (5) (6) (7) (8)
Ind. AA DA DJ FF GG KK AA (LL) Prod. AA

AA 661  - 85,4  - 0,0  - 0,0  - 0,0  - 0,0  + 0,5  = 575,8

BB 0 0,5 0,0 0,0 0,0 0,0 0,0 -0,5

CACB 0 0,1 0,0 0,0 0,0 0,0 0,0 0,3

DA 614 48,1 0,0 0,0 0,0 0,0 0,4 565,9

DB 18 0,1 0,0 0,0 0,0 0,0 0,0 18,2

DC 1 0,0 0,0 0,0 0,0 0,0 0,0 0,6

DD 14 0,9 0,0 0,4 0,0 0,0 0,0 12,7

DE 17 8,9 0,0 0,0 0,2 0,4 0,0 7,1

DF 45 0,7 0,0 0,2 0,1 0,0 0,0 44,3

DG 86 1,1 0,0 0,1 0,1 0,0 0,1 85,0

DH 4 4,1 0,0 0,1 0,1 0,1 0,0 -0,4

DI 51 4,2 0,0 1,9 0,0 0,0 0,0 44,9

DJ 15 3,8 0,2 0,7 0,2 0,1 0,0 9,6

DK 7 0,4 0,0 0,1 0,0 0,0 0,0 6,1

DL 1 0,0 0,0 0,1 0,1 0,1 0,0 0,5

DM 0 0,0 0,0 0,0 0,1 0,0 0,0 -0,1

DN 0 0,0 0,0 0,1 0,0 0,0 0,0 -0,1

EE 98 3,6 0,0 0,1 0,2 0,1 0,1 94,1

FF 71 2,5 0,0 5,2 0,2 0,9 0,1 62,2

GG 333 5,3 0,0 0,5 1,7 1,2 0,2 324,7

HH 19 1,5 0,0 0,0 0,3 0,2 0,0 16,8

II 49 5,4 0,0 0,1 1,0 0,5 0,0 41,6

JJ 158 7,1 0,0 0,4 0,6 1,9 0,1 148,6

KK 180 21,7 0,0 0,5 2,3 4,6 0,1 150,5

LL 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

MM 1 0,4 0,0 0,0 0,0 0,0 0,0 0,6

NN 22 0,3 0,0 0,0 0,0 0,0 0,0 21,7

OO 4 0,4 0,0 0,0 0,1 0,4 0,0 2,7
PP 0 0,0 0,0 0,0 0,0 0,0 0,0 0,0  

 

As explained before, this assumption generates negative flows. This example clarifies 

why this happens: for example, industry “AA” uses no product “BB” inputs. However, 

one of the secondary productions of industry “AA” is product “DA”, of which the main 

producer uses some “BB” inputs. Thus, the result is a negative flow which has no 

economic sense. Yet, to allow for comparison between the multipliers achieved by SIOTs 

and the ones obtained directly from the M&U tables, the original M&U tables should not 

                                                 
137

 This table is presented with an illustrative purpose, for better comprehension of the CTA procedure. 

However, it involves a problem of simultaneity which makes the result of column (8) a little different from 

the result of matrix calculation. The fact is that the technologies underlying columns (2) to (6) are not really 

the technologies of products “DA”, “DJ”,... and “KK”; they are, instead, the technologies of their main 

producing industries, since these columns have not yet been converted into the symmetric form. This 

problem of simultaneity can only be solved making use of the product matrix in equation (3.42).  
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be changed in any way. This means that the negative values generated by CTA were not 

subject in this essay to any kind of correction. 

 

Let’s now derive the general formula to obtain ( )bpNZ . The supposition underlying CTA, 

is that the amount of product i used in the production of product j is the same in all 

industries that produce j. Therefore, taking the first element of matrix ( )bpNU  as an 

example, we can state that: 

  

( ) 1303012112111111 vavavau NNNbpN ′++′+′= L  

(3. 39) 

In other words, this means that: 

The amount of product 1 used to produce output of industry 1 = 

Amount of (domestically produced) product 1 used to produce one unit of product 1 * amount of product 1 produced by 

industry 1 + 

Amount of (domestically produced) product 1 used to produce one unit of product 2 * amount of product 2 produced by 

industry 1 + 

…+ 

Amount of (domestically produced) product 1 used to produce one unit of product 30 * amount of product 30 produced 

by industry 1 

 

We may write, in matrix terms: 

 

( ) ( ) ( ) 1bpNNNbpN VUAVAU
−′=⇔′=  

(3. 40) 

 

From matrix 
NA  (domestic input coefficient matrix in the product by product symmetric 

model), we can compute matrix ( )bpNZ  (domestic flow product by product intermediate 

consumption matrix) simply by multiplying by the corresponding values of domestic 

production: 

 

( ) bpNbp

CTA

N
vAZ ˆ=  
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(3. 41) 

 

The result is presented in Annex A.3.9. 

 

3.5.2.2 Industry-by-industry symmetric tables. 

 

The objective now is to obtain matrix ( )bpN

IZ , of which elements ij depict intermediate 

consumption of industry i’s output to produce industry j’s output. Taking, as an example, 

the first row of ( )bpN

IZ , it gives us the amount of industry “AA”’s output consumed in the 

production process of the several industries in the economy. How can we derive this row 

from the known matrices ( )bpNU  and V ? Firstly, we have to answer the following 

question: “Which products are produced by industry “AA”?”. As seen before, these are: 

“AA”, “DA”, “DJ”, “FF”, “GG” and “KK”. The intermediate use of these products is 

given in matrix ( )bpNU . Extracting the rows corresponding to these products, we obtain: 

 

Table 3. 3 – Intermediate use of products produced in industry “AA”. 

 
AA BB CA CB DA DB DC DD DE DF DG DH DI DJ DK DL DM DN EE FF GG HH II JJ KK LL MM NN OO PP

AA 661 0 0 0 2538 136 1 474 154 1 8 7 0 1 0 0 0 2 1 0 62 263 1 0 24 9 2 88 6 0

DA 614 2 0 0 1431 5 41 0 15 0 16 1 0 1 0 0 0 2 0 1 28 1519 1 0 6 36 18 246 1 0

DJ 15 1 0 3 112 23 21 21 15 1 31 58 80 1303 260 281 311 139 12 999 286 41 15 0 69 18 4 14 14 0

FF 71 2 0 12 73 43 17 24 37 17 28 8 69 118 44 24 17 19 86 7026 287 40 335 52 887 82 36 20 121 0

GG 333 76 0 76 158 158 23 53 111 12 111 35 205 76 58 123 70 58 70 660 3098 351 1572 53 1134 368 94 304 158 0
KK 180 12 0 50 646 277 63 49 222 2 312 73 146 158 95 242 156 68 347 633 4213 585 1131 2126 4491 906 425 684 891 0  

 

The aim is to transform this into the intermediate use of the output of industry “AA”. To 

do so, we have to assess the percentage in which industry “AA” contributes to the 

production of each one of these products. This is shown in the first row of matrix 
N

S  

(matrix with generic elements bp

j

bp

ijN

ij
v

v
s = : industry i’s market share in product j’s 

domestic supply). Then, by multiplying the first row of matrix 
N

S  by matrix ( )bpNU , we 

obtain the first row of matrix ( )bpN

IZ . Generalizing, matrix ( )bpN

IZ  can be obtained as 

follows: 
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( ) ( )bpNNbpN

I USZ =  

(3. 42) 

 

The result is displayed in Annex A.3.10. 

 

The application of CTA to operate the transformation of the use of products, depicted in 

Table 3.4, into the use of industry’s output, implies the use of 
1H −
, instead of S . Thus, 

we may write: 

 

( ) ( )bpN1bp

CTA

N

I UHZ
−=  

(3. 43) 

 

The result is displayed in Annex A.3.11. 

 

3.5.3 Computation of the symmetric input-output table’s Leontief 

inverse and the correspondent multipliers. 

 

It is possible to obtain the Leontief inverse matrix and the corresponding multipliers from 

the previous Z  matrices. Firstly, one must compute the matrices of domestic input 

coefficients. In the case of product-by-product symmetric tables, this is done simply by 

dividing the intermediate flow table by the total output of the corresponding product: 

 

 

( )
bp

j

bpN

ijN

ij
v

z
a =  

(3. 44) 

 

In industry-by-industry symmetric tables, the intermediate consumption flow is divided 

by the total industry’s output, as follows: 
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( )
( )

bp

j

bp

I

N

ij

I

N

ij
g

z
a =  

(3. 45) 

 

Taking matrix 
NA  as the domestic input coefficients matrix, the total requirements or 

Leontief inverse matrix is given by the well known ( ) 1NAI
−

− 138
. Inverse matrices 

derived from the symmetric input-output tables are shown in Annexes A.3.12 (product-

by-product, based on ITA), A.3.13 (product-by-product, based on CTA), A.3.14 

(industry-by-industry, based on ITA) and A.3.15 (industry-by-industry, based on CTA). 

 

It can be seen that these matrices are exactly the same as the correspondent inverse 

matrices derived directly from the rectangular model, as intended to be demonstrated 

(these matrices may be observed in the lower right-hand block of the partitioned inverses 

for industry-by-industry relationship – in Annexes A.3.2 (for ITA) and A.3.4 (for CTA) 

and, for product-by-product relationships, in Annexes A.3.3 (ITA) and A.3.5 (CTA). The 

output multipliers are, consequently, also the same.  

 

 

In spite of providing the same range of total requirements matrices, with identical 

meanings, ITA and CTA obviously originate different multipliers, since the technology 

assumption is diverse. In this context, it is worth investigating how different these values 

are, i.e., what is the effective consequence on the values of the technical coefficients and 

of the correspondent multipliers of choosing one or another technology assumption. 

Bohlin and Widell (2006) made a similar investigation, using Swedish Make and Use 

tables. Their results will be compared to ours. In order to evaluate the difference between 

matrices generated by different technology assumptions, the following measure will be 

used (following one of the measures used in the above mentioned paper): 

 

                                                 
138

 This has been proven in Chapter 1, where the symmetric input-output model was developed. 
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( )∑∑

∑∑

+

−

i j

ITAN

ij

CTAN

ij

i j

ITAN

ij

CTAN

ij

aa

aa

5,0
. 

(3. 46) 

 

This measure is used to assess the difference between the coefficients obtained from ITA 

and CTA and also to compare the corresponding elements from the inverse matrix. It 

relates the sum of the deviations, in absolute values, with the sum of the average 

coefficients. The following table sums up the result of this exercise: 

 

Table 3. 4 – Differences in domestic input coefficients and in the inverse elements 

caused by the technology assumption (ITA vs. CTA). 

Domestic input 

coefficients (elements 

of matrix A
N
)

Total requirement 

coefficients (elements of 

the inverse)

Product by 

Product
10,16% 3,67%

Industry by 

Industry
12,82% 4,97%

 

 

We can conclude that the choice of one or another technology assumption does not 

greatly influence the multipliers. This is consistent with the previously mentioned feature 

of the Portuguese tables: there is a small relative importance of secondary production. In 

the analogous investigation carried out by Bohlin and Widell (2006), the deviation 

between the Swedish technical coefficients matrices derived from ITA and CTA is 46%, 

which is much higher than the difference obtained herein
139

. It is, however, difficult to 

discover the reason behind these different results since: firstly, the Swedish tables were 

used in a more disaggregated manner (55 products and industries); secondly, as explained 

before, these authors did not use CTA and ITA in their pure form; a minimization 

approach, based on these assumptions, was used instead. In the case of CTA, for 

                                                 
139

 This difference is computed by applying equation (3. 37) in a recursive manner, considering first 

0=ϖ  (falling into ITA) and then 0=µ  (CTA). 
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example, the inclusion of a non-negativity restriction on the b-coefficientes (see equation 

(3. 37)), makes the results to be different from the pure CTA case.  

 

3.5.4 Direct requirements matrices in the rectangular and in the 

symmetric model. 

 

The use of the same hypotheses in the rectangular model development and in the 

construction of the symmetric tables makes the direct requirements matrices identical, 

thus leading to equal inverse matrices and multipliers. This has already been shown in the 

previous sections, computing the multipliers themselves, but it can also be demonstrated 

as well as follows. 

 

From the previously derived symmetric matrices Z , we may deduce the correspondent 

expressions for the domestic input coefficient matrices. Thus, from equation (3. 38), we 

obtain: 

 

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) 1NbpN1NNbpNN

1bpbpN1bpbpN

bpNbpN

)SQ(IAISQA

vVQvZ

VQZ

−−

−−

−=−⇒=

=

=

ˆˆ  

(3. 47) 

 

The same domestic input coefficient matrix may be derived from the rectangular table 

applying the same hypotheses used to construct the symmetric table. Referring back to 

equation (3. 12), we get: 
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( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( )
( ) ( )

( )( ) ( )

( )( ) ( )bpN
1

NbpNbp

bpNbpNbpN

bpNbpNbpNbp

bpNbpbpNbp

bpNbp1bpbpNbp

bpNbp1bp
11bp

bpNbp
11bp

pp
11bp

11pp
11

ppbppp

ySQIv

yvSQI

yvSQv

ygQv

yggUv

yggUnfIcIv

yQgnfIcIv

ynfIcIQgnfIcIpnfIcI

yQgp

−

−

−−−

−−

−−−−−−

−=

=−

+=

+=

+=

+−−−=

+−−−=

−−−+−−−=−−−

+=

ˆ

ˆˆˆˆ

ˆˆˆ

ˆˆˆˆˆˆˆˆˆ

 

(3. 48) 

 

In conclusion, the correspondent product-by-product output multipliers are necessarily 

the same. 

 

The same reasoning applies to the CTA product-by-product table. Taking equation (3. 

40), this is equivalent to: 

 

( ) ( )

( ) ( ) ( )( )

( ) ( )( )

( ) ( )( )[ ]
( ) ( ) ( ) 11bpN1N

CTA

1bpNN

CTA

1bpbpNN

CTA

1bpbpNN

CTA

1bp1bpbpNN

CTA

1bpNN

CTA

)HQ(IAIHQA

gVQA

VgQA

VggUA

VUA

−−−−

−

−

−−

−

−=−⇒=

′=

′=

′=

′=

ˆ

ˆ

ˆˆ

 

(3. 49) 

 

The same inverse matrix is, in fact, obtained from the rectangular model. By using the 

deduction carried out in (3. 48), and applying CTA, it yields:  
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( ) ( )
( ) ( )

( )( ) ( )

( )( ) ( )bpN
1

1bpNbp

bpNbp1bpN

bpNbp1bpNbp

bpNbpbpNbp

yHQIv

yvHQI

yvHQv

ygQv

−
−

−

−

−=

=−

+=

+=

L

 

(3. 50) 

 

Concerning industry-by-industry symmetric tables, and taking the ITA-based one, we 

have: 

 

( ) ( )
( ) ( ) ( ) ( )

( )bpNNN

I

1bpbpNN1bpbpN

I

bpNNbpN

I

QSA

gUSgZ

USZ

=

=

=
−−

ˆˆ  

(3. 51) 

 

From equation (3. 22): ( ) pp1bp SySQIg
−

−= , we can verify that the ITA-based industry-

by-industry technical coefficient matrix derived from the rectangular model is SQ . The 

correspondent technical coefficient matrix derived from the symmetric model, implicit in 

(3. 51), is ( )bpNN QS . We, therefore, only need to demonstrate that ( )bpNN QSSQ = , as 

follows: 

 

( ) ( ) ( ) ( )
( ) ( )( )[ ] ( )( ) ( )
( ) ( ) ( ) ( ) ( )( )
( ) SQQS

QnfIcIcInfIpVQS

gUnfIcIpnfIcIVQS

gUvVQS

bpNN

111ppbpNN

1bp
1

ppbpNN

1bpbpN1bpbpNN

=

−−−−−−=

−−−−−−=

=

−−−

−−

−−

ˆˆˆˆˆˆ

ˆˆˆˆˆˆˆ

ˆˆ

 

(3. 52) 

 

Finally, from the CTA industry-by-industry intermediate symmetric table we can derive 

the correspondent A  matrix: 
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( ) ( )
( ) ( ) ( ) ( )
( ) ( )bpN1

CTA

N

I

1bpbpN11bpbp

CTA

N

I

bpN1bp

CTA

N

I

QHA

gUHgZ

UHZ

−

−−−

−

=

=

=

ˆˆ  

(3. 53) 

 

Equation (3. 27): ( )( )[ ][ ] ( )bpN1
1

1bp yHQnfIcIHIg −
−

− −−−−= ˆˆˆ , obtained before, includes 

matrix ( )( )QnfIcIH 1 ˆˆˆ −−−−  as the CTA-based industry-by-industry technical coefficient 

matrix derived from the rectangular model.  The correspondent technical coefficient 

matrix derived from the symmetric model, expressed in (3. 53), is ( )bpN1 QH− , which is 

precisely the same A  matrix. In fact: 

 

( )( ) ( )bpN11 QHQnfIcIH −− =−−− ˆˆˆ  

(3. 54) 

 

 

3.6  Conclusions. 

 

The main issue of the present essay fell upon input-output modelling when the starting 

matrix is a total-use rectangular table at purchasers’ prices. Two alternative procedures 

have been analyzed, both theoretically and also through a practical application: 1) to 

convert the initial matrix into a domestic-flow symmetric table at basic prices and then 

implement the classical Leontief-type input-output model; 2) perform the direct 

modelling of the total-flow rectangular table at purchasers’ prices. It has been 

demonstrated that, when the hypotheses used to make the table symmetric and to operate 

the conversion from total use to domestic use flows (and from purchasers’ prices to basic 

prices) are also used in the direct modelling of the starting matrix, the obtained results are 

exactly the same. 
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The equivalence between the results of both alternative procedures has been attested 

through a numerical example as well as algebraically. The numerical example consisted 

in using the Portuguese M&U table as a starting point (which is a total-use rectangular 

table at purchasers’ prices) and implementing the input-output model, applying both 

previously referred procedures. As intended to be demonstrated, the final equation of the 

model comprised the same inverse matrices (product-by-product and industry-by-

industry), either by one procedure or by the other. It was also shown that the direct 

requirements matrices obtained by either alternative procedures are equivalent, which 

algebraically reinforces the argument that the two methods are indifferent (as long as the 

hypotheses are the same). 

 

Furthermore, it has been argued that the direct use of the rectangular format has a 

considerable advantage over the use of symmetric tables: in the rectangular framework, 

the simple inversion of a partitioned matrix generates a set of four different inverse 

matrices; conversely, the symmetric table approach originates only one type of inverse 

matrix. We must choose from the very beginning, in principle, between a product-by-

product or industry-by-industry matrix. 

 

The development of the input-output model directly from the total-flow rectangular table 

at purchasers’ prices, involved the use of proportionality hypotheses concerning imports, 

margins and taxes comprised in the intermediate and final use flows. Additionally, the 

model was developed in two versions – one using ITA and another using CTA – 

originating two different sets of results, which were subject to comparison.  The 

proportionality and the technology hypotheses adopted are of course controversial. This 

doesn’t however jeopardize the validity of the conclusions, given that the same 

hypotheses have been used either in the direct modelling of the starting matrix, or in the 

conversion of this matrix into a domestic-flow symmetric table at basic prices. Besides, 

in many cases, even the official organisms of statistics use these kinds of hypotheses (or 

similar procedures) when assembling symmetric tables. These hypotheses are sometimes 

complemented or substituted by the inclusion of direct information. For example, if a true 

import matrix is available, it is obviously better to use such information than to use the 
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proportionality hypothesis, even though the assemblage of direct information involves 

high costs and, in many cases, originates only a marginal improvement in the results. For 

this reason, even in symmetric tables assembled by official entities like the Portuguese 

Department for prospective and planning (Martins, 2004), the applied procedures 

involved the use of almost no direct information. Yet, all the available direct information 

can also be incorporated in the rectangular model. As mentioned before, for instance the 

valuation matrix for VAT, can and should be used instead of the proportionality 

hypothesis; to do so, the mere subtraction of the known VAT values must be done prior 

to the rectangular model application.  

 

In what pertains to the alternative technological hypotheses, even recognizing and 

assuming the advantages and disadvantages of each one, the choice of ITA or CTA  

doesn’t seem to be extremely relevant in the case of the particular table which was used. 

In fact, the results obtained from either hypothesis are not very different. Besides, the 

equivalence of results between direct modelling and modelling after the conversion of the 

starting matrix has been demonstrated for both technological hypotheses. Still, bearing in 

mind the type of methodology used by National Accounts in the Make matrix 

assemblage, ITA seems to be the most adequate hypothesis. As explained before, the 

partial refining done by the National Accounts when classifying industries according to 

the notion of “kind-of-activity unit” (in Portugal and in other countries that follow the 

same procedure recommended by SNA and ESA), makes the values of production 

located outside the main diagonal of the Make matrix to be mainly by-products and some 

residual subsidiary products. In such a case, as explained in section 3.4.3.3, the 

hypothesis underlying ITA is more appropriate. 
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3.7  Notation 

 

Variables: 

N

jiz  - Amount of domestically produced input j used in the production of output i 

(symmetric model);  

N

jy  - Final use of domestically produced product j (includes: final consumption, gross 

capital formation and exports); 

jy  - Final use of product j (domestically produced + imported); 

my  - final use of imported products; 

jm  - total imports of product j; 

iw  - value added in the production of i; 

jiu  - the amount of product j used as an input in the production of industry i’s output 

(elements of the Use matrix – rectangular model); 

ijv  - domestic production of product j by industry i (elements of the Make matrix – 

rectangular model); 

jv  - domestic production of product j (sum of the columns of the Make matrix); 

ig  - domestic production of industry i (sum of the rows of the Make matrix); 

jp  - total supply of product j; 

jd  - margins falling upon product j; 

jl  - taxes (less subsidies) falling upon product j; 

i  - column vector appropriately dimensioned, composed by 1’s. 

superscript 
bp

 – basic prices; 

superscript 
pp

 – purchasers’ prices; 

superscript 
N
 – related to domestically produced goods and services (domestic flows). 

^  - diagonal matrix. 

subscript I – industry by industry matrix / coefficient (by default: product by product); 

subscript CTA – commodity-technology assumption (by default: industry-technology 

assumption); 
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Coefficients: 

i

N

jiN

ji
v

z
a =

 

 - domestic input coefficient (amount of domestic input j per unit of output i); 

output j); 

i

ji

ji
g

u
q =  - Technical coefficient in the rectangular model (amount of product j used as 

input in the production of one unit of industry i’s output); 

i

N

jiN

ji
g

u
q =  - domestic input coefficient in the rectangular model (amount of domestically 

produced product j used as input in the production of one unit of industry i’s output);. 

bp

j

j

j
p

m
c =  - imports coefficient (share of imports in j’s total supply valuated at basic 

prices); 

pp

j

j

j
p

d
f =  - margins coefficient; 

pp

j

j

j
p

l
n =  - the taxes (less subsidies) coefficient; 

j

ij

ij
p

v
s =  - industry i’s market share in product j’s total supply. 

j

ijN

ij
v

v
s =  - industry i’s market share in product j’s domestic supply. 

bp

i

bp

ij

ij
g

v
h =  - percentage of industry i’s output that is attributable to output of product j. 

 

Matrices and vectors: 

I  - identity matrix; 

y  - final use vector; 

Ny  - domestic flow final use vector; 
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U  - intermediate consumption matrix (rectangular model); 

V  - Make matrix. 

Q  - technical coefficient matrix; 

NQ  - domestic input coefficient matrix (rectangular model). 

g  - vector of industries’ internal production; 

p  - Vector of products’ total supply; 

ĉ  - diagonal matrix with import coefficients on the main diagonal; 

S  - matrix of market shares ijs ; (industry-based technology assumption); 

N
S  - matrix of domestic market shares N

ijs ; (industry-based technology assumption); 

H  - matrix of elements ijh  (commodity-based technology assumption); 

D  - partitioned matrix in ITA; 

E  - partitioned matrix in CTA; 

NZ  - domestic flow product by product intermediate consumption matrix, derived by 

ITA (symmetric model); 

( )CTA

N
Z  - domestic flow product by product intermediate consumption matrix, derived 

by CTA (symmetric model); 

( )N

IZ  - domestic flow industry by industry intermediate consumption matrix, derived by 

ITA (symmetric model); 

( )
CTA

N

IZ  - domestic flow industry by industry intermediate consumption matrix, derived 

by CTA (symmetric model); 

NA  - domestic input coefficient matrix (symmetric model – product by product). 
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The present dissertation had the following main objectives: 

• To make a broad review of the state of knowledge regarding input-output 

modelling and input-output table construction at the regional level, highlighting 

the quantitative and qualitative disagreement between the data requirements 

implicit in the traditional input-output models and the usually available data. 

• To study and test methodologies to overcome the above mentioned mismatch 

between data requirements and data availability, focusing on two specific issues: 

o Interregional trade indirect estimation, as a viable alternative to solve the 

common difficulty in regional table construction – the inexistence of 

survey-based interregional trade data.  

o Input-output modelling based on total use rectangular input-output tables – 

this implies the adaptation of the traditional input-output model to the 

format in which the input-output database (published on a regular basis for 

the national level) is currently provided. 

 

The dissertation was structured according to these main objectives, leading to the 

elaboration of three distinct essays.  

 

The literature review that was made on Chapter 1, allowed us to conclude that: 

• The input-output framework continues to be intensively studied and empirically 

applied, both at the national and at the regional level. In spite of its limitations, 

related to the set of hypotheses underpinning the model, the input-output 

framework is indeed receiving an increasing interest by the research community, 

due to new issues associated with the globalization and integration of economies, 

such as: production fragmentation, pollution flows, technology flows, regional 

disparities, and so on.     
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• The application of the input-output model is directly related to the construction of 

the input-output matrix, or system of matrices, in the case of many-region 

models. The efforts are guided, on the one hand, towards the construction of 

regional input-output tables, involving a combination of survey and non-survey 

regionalization methods of the national counterparts. On the other hand, 

researchers have been and continue to be concerned in linking the individual 

tables through trade matrices, which involves the choice for the suited model 

among the alternative many-region input-output models and, when dealing with 

regions, the estimation of the necessary interregional trade matrices. Even when 

the simpler model is used to represent the interactions between the system of 

regions (using simplifying hypotheses), a certain amount of interregional trade 

data is always required to the implementation of such model. Namely, it requires 

a complete origin-destination matrix for each commodity, comprised of flow 

shipments from all possible origins to all possible destinations.  

• The classical input-output models were proposed having in mind a specific data 

arrangement which is different from the one in which information is currently 

published. On the one hand, the traditional models are suited for the symmetric 

tables (with an industry-by-industry or product-by-product configuration) whilst 

the input-output data is currently provided on a Make and Use basis, implying the 

combination of both product and industry dimensions. On the other hand, in 

many cases, the national Use tables are composed by total use flows (those which 

include imported and regionally produced products), and there are no available 

import matrices a priori, which implies the use of techniques to estimate intra-

regional flows from total use flows.  

 

The main contribution of the first Chapter consisted in the systematization of the basic 

notions and techniques involved in regional input-output modelling and table 

construction, which was made in a very critical manner, questioning the leading stream 

about some specific topics. 
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The second Chapter was dedicated to the study and comparison of alternative 

methodologies for interregional trade estimation. The main motivations for this study 

were: 1) the fact that, in most countries, there are no survey-based data on interregional 

flows, which however are indispensable for the construction and implementation of 

regional input-output models; 2) the fact that there is little experience concerning the 

accuracy evaluation of each of the proposed methodologies for trade estimation and the 

comparison between them and 3) the fact that there is insufficient knowledge about the 

impact felt on the input-output model solution caused by the consideration of different 

interregional trade values (corresponding to different methodologies).  

 

The theoretical and empirical testing of different trade estimating methodologies led to 

the following main conclusions: 

• The theoretical solutions of the several models show a considerable similitude 

among each other. However, these models are quite different in what concerns to 

their practical applicability to trade flow estimation, especially when there is no a 

priory matrix of flows. Thus, one of the determinants to consider when choosing 

between alternative methodologies consists of a very pragmatic one:  the 

possibility of application given the set of data available. The simple nature and the 

low data requirements of the gravity model, jointly with its advocated strengths in 

explaining trade behaviour, caused the focus of the Chapter to be put at several 

gravity-based methodologies. A total of six distinct Experiences for interregional 

trade estimation were tested. 

• The absolute and analytical comparison made between the different trade 

estimation methods, allowed us to conclude that: 

o Among the several Experiences applied, the one that generated the most 

accurate matrix corresponded to a gravity-based model, with independent 

estimation of the distance decay parameter and using RAS, the most 

common method, as the adjusting procedure. 
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o The starting matrix seems to have an effective influence on the final 

results. In fact, when comparing the different Experiences among each 

other, we have concluded that the only case which is not gravity-based 

generates more outlying results, demonstrating that the way by which 

initial estimates are obtained is not innocuous. 

o The introduction of superior complexity in the models (in our case, the use 

of a linear programming model instead of RAS to make the adjustment of 

the starting matrix) as well as the use of additional information about the 

real trade flows, such as the degree of Entropy of the real trade matrix, 

may not originate improved results, as it happened it this case. 

o The results of the input-output model are not greatly affected by the 

insertion of different trade flow values, since large deviations between the 

obtained growth rates were the exception and not the rule. Thus, the 

results obtained in our case do not reject the reasonability of using indirect 

estimates for interregional trade.  

 

Although it is not advisable to generalize these results, given that they were obtained 

from a particular set of data and using a specific set of hypothesis, we consider that these 

practical contributions are most relevant to regional input-output researchers, especially 

to those who intend to assemble an input-output model in a context of absent information 

on interregional trade flows (which is the most frequent situation at the sub-national 

level). In fact, our conclusions may serve as important arguments to estimate those 

inexistent data through the use of gravity-based non-survey methods. 

 

The third essay fell upon input-output modelling when the starting matrix is a total-use 

rectangular table at purchasers’ prices. This study was driven by the following 

motivations: 1) Since the end of the 1960’s, when the United Nations introduced the 1968 

System of National Accounts, countries are recommended to compile and publish the 

input-output tables on a rectangular or Make and Use format; accordingly, this is the 

format in which the Portuguese National Accounts (as well as the other European 
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Accounts) provide the database for input-output modelling at the national level; 2) The 

Make and Use format presents unquestionable advantages associated with the detail on 

the linkages between the industry and the product dimension, making it more suited for 

the current applications of input-output modelling (for instance, environmental and trade 

modelling) and 3) In spite of the practical advantages of the Make and Use format, most 

of the researchers continue to develop their models on the basis of the symmetric tables, 

forcing the original data to be converted to a symmetric arrangement, under a series of 

hypotheses; 4) In many countries, such as in Portugal, there is no provision of an import 

matrix that allows the computation of an intra-national or domestic use table. Thus, the 

starting matrix is a total use one (in which both imported and regionally produced inputs 

are included); 5) Concerning specifically to the regional level analysis, we must keep in 

mind that Regional Accounts produced by the official statistics organisms are composed 

of industry data, such as: regional value added by industry, regional production by 

industry and regional intermediate consumption by industry. In order to use such 

available information directly, with the minimum imposition of hypothesis, the option 

should fall upon a Make and Use format or, eventually, upon an industry-by-industry 

symmetric format (which is however considered a second best option for input-output 

analysis, given the high heterogeneity of products involved in each element of such 

tables).  

 

The objective of the study was to demonstrate the equivalence in the results of the input-

output model between two alternative procedures: 1) to convert the initial matrix into a 

domestic-flow symmetric table at basic prices and then implement the input-output 

model; 2) to perform the direct modelling of the total-flow rectangular table at 

purchasers’ prices.  

 

It has been concluded that: 

• When the hypotheses used to make the table symmetric and to operate the 

conversion from total flows to domestic flows (and from purchasers’ prices to 

basic prices) are also used in the direct modelling of the starting matrix, the 

obtained results are exactly the same. The equivalence between the results of both 
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alternative procedures has been attested through a numerical example as well as 

algebraically. The numerical example was based upon the Portuguese M&U table 

as a starting point, since there are no survey-based regional M&U tables to serve 

as a reference. The conclusions are, however, also valid for any regional version 

of the national table. Hence, the main contribution of this Chapter is that, when 

the same set of hypotheses is to be used, there is no advantage in making a 

previous transformation of the original tables into the symmetric format and a 

previous calculation of domestic flows.  

• Furthermore, it has been proven that the direct use of the rectangular format has a 

considerable advantage over the use of symmetric tables: in the rectangular 

framework, the simple inversion of a partitioned matrix generates a set of four 

different inverse matrices; conversely, the symmetric table originates only one 

type of inverse matrix (product-by-product or industry-by-industry). 

• The proportionality assumptions (namely, concerning intermediate imports, 

margins and net taxes) and technology-related hypotheses adopted in the both the 

above-mentioned procedures are controversial. Nevertheless, the soundness of 

the conclusions is independent from the validity of the hypotheses assumed, 

given that the same hypotheses have been used either in the direct modelling of 

the starting matrix, or in the conversion of this matrix into a domestic-flow 

symmetric table at basic prices. Besides, in many cases, even the official 

organisms of statistics use these kinds of hypotheses (or similar procedures) 

when assembling symmetric tables.  

 

In what concerns to the expected developments of the research, the conclusions drawn by 

the three essays which compose the present work give support for the construction of a 

multi-regional model for the Portuguese economy. In face of the obtained results it seems 

reasonable to use a gravity-based non-survey method to overcome the main obstacle to 

achieve such a model – the assessment of interregional trade flows. Besides, the 

regionalization of the tables can be made maintaining the original structure of the 

national table – rectangular and with total use flows – and using the adequate 
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assumptions in the modelling process. The subsequent natural step will be the upgrading 

of the input-output model into a General Equilibrium Model for the Portuguese economy. 
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