
Operations Research Perspectives 8 (2021) 100202

Available online 28 September 2021
2214-7160/© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Locating emergency vehicles: Modelling the substitutability of resources 
and the impact of delays in the arrival of assistance 
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A B S T R A C T   

The quality and promptness of emergency assistance is highly dependant on the location of existing emergency 
vehicles. In this work, we propose a new model for optimizing emergency vehicles’ location that takes into 
account the existence of different types of emergency vehicles and the level of care they can provide, the pos-
sibility of vehicles’ substitution considering the hierarchy of levels of care and the explicit consideration of the 
progression of an emergency episode when the arrival of assistance suffers delays. The inherent uncertainty that 
exists in this problem is represented by a set of scenarios. A heuristic procedure for solving the problem was also 
developed. The model and algorithmic approach were tested using real data. It is possible to conclude that the 
application of stochastic location models that explicitly consider the evolution of the health condition of the 
victims when care is delayed can lead to better emergency coverage. The location of vehicles is indeed influenced 
by the explicit consideration of the impact of assistance time on the victims’ conditions.   

1. Introduction and literature review 

Emergency Medical Systems (EMS) offer care that aims to mitigate 
the morbidity and mortality associated with sudden illnesses or injuries 
and guaranteeing that people are assisted in an effective and timely way. 
The assessment of EMS is a complex task, requiring a holistic analysis 
that takes into account the EMS connection with all other existing 
community health resources and its integration within the national 
health system [1]. Within this complex system, the location and orga-
nization of emergency care in a pre-hospital context is crucial to ensure a 
proper assistance. 

1.1. The importance of the arrival time 

One of the aspects that influences the success of pre-hospital assis-
tance is the number of existing emergency vehicles and their location, 
since this significantly impacts the time it takes for assistance to arrive to 
emergency occurrences. This arrival time is a very important factor for 
the success of the health support provided since the health status of the 
victims of medical emergencies often tends to worsen over time if 
assistance is delayed. According to INEM (Portuguese National Institute 
of Medical Emergency) guidelines [2], the probability of survival of 

cardiac arrest victims with defibrillation rhythms decreases by around 
10% to 12% for every minute without electrical defibrillation. If victims 
receive basic life support (BLS) during this waiting time this percentage 
decreases to 3% to 4%. Other works suggest that the arrival of support 
should not exceed 8 or 9 min for urban areas and 14 min for rural areas, 
reflecting the differences in emergency care accessibility for different 
geographic areas [3, 4]. Some countries benchmark assistance response 
times. For instance, the USA require the response time to be no more 
than 8:59 min for 90% of episodes in urban area. This time constraint is 
changed to 15 and 30 min for rural and wilderness areas, respectively 
[5]. In the United Kingdom, 75% of the most critical emergency calls 
must be attended within an 8 min time window and 95% of these epi-
sodes must receive assistance within 14 min in urban areas and 19 min 
in rural areas. Hong Kong has defined a 12 min limit for 92% to 95% of 
all cases in rural or urban areas, respectively. 

The survival rate of the victims depends not only on the arrival time 
of the assistance, but also on the level of care that the victims need 
depending on the emergency situation that occurred. Some authors as-
sume that the survival rate depends on whether the emergency was due 
to trauma or medical situations [6–12]. The assistance arrival time can 
influence directly the health condition of the victim, and can also have 
other indirect impacts, like the costs associated with longer recovery and 
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hospitalization times or the occurrence of secondary health situations 
resulting from this assistance delay [13, 14]. 

In Portugal, pre-hospital emergency care is organized according to 
the Integrated Medical Emergency System and is carried out with the 
collaboration of different entities, such as INEM, Voluntary Firefighters 
(VF), Professionals Firefighters (PF), Red Cross (RC), amongst others 
[2]. There are no established benchmarks for assistance times. However, 
INEM has published some performance indicators considering that 
assistance should arrive within 15 and 30 min of the emergency call for 
urban and rural areas, respectively [15]. According to these time limits, 
it would be possible to cover 75% and 91% of the urban and rural 
emergency episodes, respectively, considering only basic and immediate 
life support. When it is not possible to assure that the most adequate 
means are sent to the emergency occurrence, it is more important to 
assure that some assistance arrives as soon as possible than to wait too 
long until the most adequate vehicles are available. This sometimes 
means sending vehicles that are not the best ones considering the level of 
care they can provide and the level of care the emergency episode 
requires. 

1.2. Brief literature review 

The location of emergency vehicles is a prolific area of research, and 
there are many different approaches and different points of view that 
have been considered. The reader is referred to [16–19] for an overview 
of this area. We would like to highlight some recent works that have 
some connections with the work here presented. Table 1 summarizes the 
main characteristics of the cited works. 

Peng et al. [23] describe two mathematical programming models, 
structured as two-stage stochastic programming models. In one of the 
models, the aim is to cover demand while minimizing costs. The other 
model explicitly considers the deterioration of the achieved coverage in 
more severe scenarios. The authors consider the possibility of reallo-
cating vehicles according to their respective activity during the planning 
horizon defined. The model is applied to real data from Northern 
Ireland. Yoon et al. [24] prioritize care according to the different health 
conditions of patients. They also consider a two-stage stochastic model, 
and the existence of two different types of ambulances. A given degree of 
priority is associated with each patient. Probability-based travel times 

are considered. In this model, it is possible to consider the need of having 
more than one vehicle being sent to the same occurrence. However, the 
model does not represent the possibility of a patient getting worse while 
waiting for the arrival of assistance. Zhang and Zeng [25] present a 
two-stage stochastic model that considers the relocation of an ambu-
lance to ensure the maximization of coverage determined by a given 
distance radius. There are reallocation costs that are distance depen-
dant. With the objective of maximizing road accidents coverage, Mohri 
and Haghshenas [26] propose a network location model in which the 
vehicle’s bases would be located at the most problematic areas, meaning 
that vehicles could be located at the edges instead of the nodes of the 
network. Time limits, average occurrence of accidents and other emer-
gency events are considered. They do not require all the episodes to be 
covered and do not consider the possible unavailability of vehicles. 
Boujemaa et al. [27] consider an ambulance redeployment problem for 
two-tiered EMS systems that uses two types of ambulances for basic and 
advanced life support to respond to emergency calls with two priority 
levels. The proposed model considers time-dependant and stochastic 
demand in a multi-period ambulance redeployment setting. The authors 
develop two heuristic solution approaches and evaluate the performance 
of the model by simulation considering uncertainties in preparation and 
service time. The model assumes that only one ambulance is needed for 
each occurrence. A robust approach is proposed by Akıncılar and 
Akıncılar [28] with the objective of strengthening the choice of ambu-
lance location against uncertainty in two dimensions: the average speed 
of the ambulance in reaching the accident site and the increase in the 
route distance if an alternative to the shortest path must be used due to 
traffic. The authors implicitly assume that the necessary ambulances are 
always available which can weaken the applicability of the model. Wajid 
et al. [29] present a model (Double Standard model) that maximizes 
double accident coverage in South Delhi. The authors conclude that it is 
possible to achieve complete coverage with fewer emergency vehicles 
than the existing ones. The data used represent traffic accidents only, 
and the ambulances are assumed to be always available. Intending to 
minimize the total response time for covering each episode, Bélanger 
et al. [30] describe a decision model considering the location of ambu-
lances and the dispatching decisions. The authors use a recursive 
simulation-optimization approach to solve the problem, as this approach 
better approximates real situations. 

Table 1 
Recent works in this area of research.  

Article Two stage 
stochastic 
model? 

Several vehicles 
in each 
occurrence? 

Different 
types of 
vehicles? 

Worsening of 
health status? 

Objective function Other characteristics 

Peng, Delage & Li, 
(2020) 

✓ × × × Maximize coverage demand 
Reducing Costs 

Allowed realocation of 
ambulances 

(Yoon, Albert, & White, 
2021) 

✓ ✓ ✓ × Maximize coverage, with penalization 
of non-covered calls 

Prioritize calls according to the 
severity of episodes 

(Zhang & Zeng, 2019) ✓ × × × Maximize coverage under the normal 
situation and in the worst-case 
scenarios 

Considers costs of reallocating 
ambulances 

(Mohri & Haghshenas, 
2021) 

× × × × Maximize the coverage of facilities in 
each edge 

Considers limits of time for 
each edge cover 

(Boujemaa, Jebali, 
Hammami, & Ruiz, 
2020) 

✓ × ✓ × Minimize total costs considering 
ambulance reallocation, dispatching, 
and unsatisfied coverage 

Simulation technique used 
Allowed reallocation of 
ambulances 

(Akıncılar & Akıncılar, 
2019) 

× × × × Minimizes the number of bases Considers two dimensions of 
uncertainty: time and travel 
distance 

(Wajid, Nezamuddin, & 
Unnikrishnan, 2020) 

× × ✓ × Maximizes double coverage Only considers traffic accidents 

(Bélanger, Lanzarone, 
Nicoletta, Ruiz, & 
Soriano, 2020) 

× × × × Minimize the total response time to  
satisfy the demand when each call is 
served by an ambulance on the 
dispatching list of the corresponding 
zone 

Considers location and 
dispatching of ambulances 

Our model ✓ ✓ ✓ ✓ Maximization of the covered episodes 
as early as possible 

Considers hierarchical 
substitutability of the vehicles 
and dispatching decisions  
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Although time is a dimension that, in an implicit or explicit way, 
must be present in EMS optimization location models, not all of the 
existing approaches include the impact of assistance time in the evolu-
tion of the emergency occurrence, acknowledging the influence that this 
time can have in the location decision-making process. Time has been 
used as a constraint in some models (for example [20–22]), considering 
deadlines before which the care should arrive. However, we are not 
aware of existing approaches in which the evolution of the needed level 
of care, consistent with the evolution of the health conditions of the 
victims, is explicitly considered. There are studies in the medical field 
that address the impact of the assistance delay in the victim’s condition. 
However, there is a lack of location models that include simultaneously 
the effect of assistance time and possible delay with the differentiation of 
the level of assistance, as we are proposing in our approach. The change 
of the needed level of care influences the type of vehicles that should be 
deployed, which in turn can impact location decisions. This work aims at 
contributing to the current state-of-the-art in this area of research. 

In this work, we present a model that considers, simultaneously, the 
existence of different vehicle types, capable of assuring different levels 
of care, and the possibility of one vehicle being substituted by another 
vehicle or set of vehicles that are equivalent in terms of the level of care 
they can provide. It is assumed that there are a set of potential and 
predetermined locations where the emergency vehicles can be located. 

Moreover, it is also possible to explicitly consider the evolution of the 
emergency episode, by discretizing this evolution assuming that one 
episode can have different stages and establishing different needs for 
these different stages depending on the evolution of the victims’ health 
conditions. The model also represents the assumption that it is better to 
have some assistance arriving, even if it is not the most suitable one, 
than not having any assistance at all. 

Although the objective of the model is not to optimize the dis-
patching decisions of vehicles as emergency episodes occur, it is 
important to acknowledge the fact that the dynamic assignment of ve-
hicles to episodes has impacts on the vehicles’ availability and, inevi-
tably, on the location decisions. 

The contributions of this manuscript can thus be identified as:  

• Developing a new model that includes, explicitly, the evolution of 
emergency episodes when assistance is delayed, an important feature 
that has not been considered so far.  

• Allowing the evolution of the episodes to be discretized into a 
number of stages, as many as the decision-maker desires.  

• Considering in an explicit way the impact that vehicles’ dispatching 
decisions have on the location decisions.  

• Representing in a more faithful way the decisions that are made in 
practice, assuming that it is better to send a less adequate vehicle 
than not sending any vehicle at all.  

• Presenting a heuristic procedure to solve a two-stage stochastic 
problem of a high dimension in terms of number of variables and 
constraints. 

This manuscript is organized as follows. In section 2 the model 
developed is presented. Section 3 describes the case study considered 
along with the available data and the methodology adopted. The heu-
ristic procedure applied is also explained and the main computational 
results are discussed. Section 4 presents the main conclusions and 
possible future work. Fig. 1 depicts the structure of this manuscript and 
of the work developed. 

2. Location model considering the evolution of emergency 
episodes 

The occurrence of emergency episodes is inherently stochastic: it is 
not possible to anticipate where or when they will occur, or what will be 
the necessary means to be deployed. In the developed model, this un-
certainty is represented by scenarios. The model is, thus, a two-stage 
stochastic model, where location decisions are made in the first stage 
and dispatching decisions are made in the second stage. Considering, in 
an explicit way, decision variables representing the dispatching de-
cisions is very important because these decisions reflect the true avail-
ability of vehicles when a new emergency episode occurs. 

The model assumes that all the episodes must receive some assis-
tance, even if not the most adequate one. If there is no vehicle available 
or the ones available are not the most adequate ones within a given and 
defined time window after the beginning of an emergency occurrence 
(because they are not able to provide the type of care that is needed), 
then the episode will receive assistance from any available vehicle, 
regardless of the level of care it can provide. The model is also able to 
account for the evolution of the emergency occurrence where there are 
delays in the assistance: if the health status of the victims deteriorates, 
this can lead to changes in the necessary vehicles that need to be sent. 
The representation of this possibility brings the model closer to what 
happens in real life. The model does not intend to represent an optimal 
decision-making process for assigning vehicles to emergency episodes 

Fig. 1. Structure of this study.  
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but should include this assignment problem in the most realistic way 
possible, since this assignment influences vehicle availability, and the 
corresponding location decisions. 

Three levels of care will be considered (although the model is easily 
adapted if more levels of care are defined): Basic Life Support (BLS), 
Immediate Life Support (ILS) and Advanced Life Support (ALS). 

Let us define the following notation: 
T: time horizon 
i ∈ I: set of possible bases for emergency vehicles 
j ∈ J: set of locations where emergency episodes may occur 
Ni: maximum number of vehicles that can be positioned in base i 
k ∈ K: set of different types of vehicles, where each type k also de-

termines the level of assistance of the respective vehicles (lk ∈ {BLS, ILS,
ALS},∀k ∈ K)

v ∈ V: set of existing vehicles, with each vehicle being characterized 
by a certain type (kv)

ps: probability of occurrence of each scenario s,∀s ∈ S 
s ∈ S: set of defined scenarios 
e ∈ Es: Set of real episodes that occur in a given scenario, ∀s ∈ S 
Each emergency episode e ∈ Es is characterized by the location 

where it occurs, the number of vehicles of each level of care that should 
be sent to the location and the time periods in which the episode takes 
place. Considering the episode occurrence, the only time periods of in-
terest are those related with vehicle assignments. When a vehicle is 
assigned to an episode it is not available for other emergency episodes 
that can occur during those time periods. 

Each episode e ∈ Es is represented by n fictitious episodes that 
represent a discretization of the different stages of the episode’s evolu-
tion. This is how the evolution of the episodes is represented in situa-
tions where it is not possible to immediately send the necessary 
emergency vehicles. Each episode e ∈ Es will thus be represented by a set 
of episodes EFes, such that each fictitious episode e′ belonging to EFes 
represents the same real episode e ∈ Es, but considering different time 
periods of occurrence. Episodes e′

∈ EFes may have different vehicle’s 
needs reflecting, for example, the worsening of the victims’ health state 
due to the late arrival of the means. It is also possible to consider situ-
ations in which vehicles are no longer necessary in later stages of the 
episode, because the victim was transported by other (private) means or, 
unfortunately, has died. Fig. 2 depicts this representation of emergency 
episodes. 

In the example depicted in Fig. 2, one episode is represented by three 
different fictitious episodes that correspond to the evolution of the 

episode if the assistance is delayed. The first stage (episode e) corre-
sponds to the beginning of the emergency occurrence. This occurrence 
should receive one vehicle of type 1. If this vehicle is indeed timely 
assigned to the episode, then this episode ends, and it does not evolve to 
stages 2 and 3. However, if no vehicle arrives, then, at period t2, there is 
a change in the evolution of this episode: instead of needing one vehicle 
of type 1, the episode now needs one vehicle of type 4. If such a vehicle is 
available and it is assigned to the episode, the episode ends when the 
vehicles assigned are released. If no vehicle is assigned at this stage, then 
a third stage is considered where, given the delay already confirmed in 
the assistance of this episode, the most important thing is to guarantee 
that some vehicle is sent, no matter its type. The evolution of this 
episode is, therefore, discretized into three different stages, which may 
consider different care needs. The last stage represents the assumption 
that it is better to send some assistance, even if not the most adequate 
one, than to send no assistance at all. These fictitious episodes can have 
intersections in their occurrence timings, and each episode can be rep-
resented by as many stages as one wishes. 

Each episode e’ will thus belong to one set EFes, e ∈ Es, and it will be 
characterized by: 

je′ s ∈ J: the location where the episode takes place,∀s ∈ S, that is the 
same for all the episodes belonging to EFes; 

ne′ ks: number of vehicles of type k needed for that episode, ∀s ∈ S, k ∈

K 
TSe′ k: the time period where assistance, considering vehicle type k, 

begins, ∀k ∈ K; 
TSte′ k: the time period where assistance, considering vehicle type k, 

ends, ∀k ∈ K. 
For ease in the notation, EFes is considered equal to EFe′ s, ∀e′

∈ EFes, 
meaning that set EFes can be identified by any fictitious episode e′ rep-
resenting any stage of the real episode e (since each e′ represents the 
stage of one, and only one, real episode). 

It is assumed, with no loss of generality, that the set of all the epi-
sodes e′

∈
⋃

e∈Es

EFes, are chronologically ordered, ∀s ∈ S. 

It is possible to assign a binary value to each fictitious episode that 
will define whether that episode corresponds to a stage, within the ep-
isode’s evolution, in which the best thing to do is to send any vehicle, 
whatever its type.  

For each pair (i, j) and for each level of assistance l, the coverage 
matrix will give the information of whether j is in the coverage radius of 
base i or not. This coverage matrix represents the possibility of having 

Fig. 2. Representation of an episode, through 3 fictitious episodes, considering delays in the arrival of assistance.  

Qe′ s =

{
1, if episode e

′

∈ EFes does not need to receive any type of vehicle in particular
0, otherwise

, ∀e
′

∈ EFes, ∀e ∈ Es,∀s ∈ S   
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different coverage time limits for different levels of needed assistance.  

Notice that it is possible to have different maximum time limits 
defined for different levels of assistance, so that aijl can take different 
values for different values of l. 

We also consider a substitution matrix, that makes explicit the hi-
erarchical relationship that exists between vehicles that can be dis-
patched to a particular episode. A vehicle of type k′ can replace another 
vehicle of type k if and only if it provides at least the level of care of type 
k (taking also into account transportation capability). This is a one-to- 
one substitutability (one vehicle substitutes another one). 

ckk′ =

{
1, if a vehicle of type k

′ can substitute a vehicle of type k
0, otherwise, ∀k, k′

∈ K 

It should be stressed that, in general, ckk′ can be different from ck′ k 

(k′ can replace k but the opposite cannot occur). There are situations 
where a vehicle can be substituted by two or more additional vehicles. 
This is a many-to-one substitutability (more than one vehicle substitute 
one vehicle). These situations will be properly represented by con-
straints in the model, following [22]. 

Let us define: 

rk =

{
1, if vehicle of type k can be substituted by more than one vehicle
0, otherwise , ∀ k ∈ K 

gk = {(k′

, k′′) : vehicle of type k can be substituted by a pair of 
vehicles k′and k′′, k′

,k′′ ∈ K},k ∈ K, assuming that (k,k) ∈ gk,∀k ∈ K. 
To assure that the same vehicle is not assigned to episodes that have 

intersecting time periods, an incompatibility matrix is also built, 
defining whether two episodes are overlapping or not. 

To consider the situation in which a given vehicle is not available for 
reasons other than being assigned to emergency cases, an availability 
matrix is also built.  

The decision variables are defined as follows: 

yi =

{
1, if location (base) i has vehicles located there

0, otherwise , ∀i ∈ I  

hvi =

{
1, if vehicle v is located at i

0, otherwise , ∀v ∈ V, i ∈ I     

xve′ ks =

⎧
⎪⎪⎨

⎪⎪⎩

1, if vehicle v is assigned to e
′

,

as being of type k, in scenario s
(even if it is of a different type)

′

∀e′

∈
⋃

e∈Es

EFes,v∈V,k∈K,s∈ S

0, otherwise 

Each episode is represented by a set of fictitious episodes, that corre-
spond to different stages in the episode’s evolution. However, even 
considering these different stages and the possible delays in the arrival of 
assistance, it is not possible to assure that there are available and sufficient 
vehicles to assign to all the episodes, in one of the respective stages. Each 
stage has a beginning and ending time period, and the last stage in each 
episode is not extended until the end of the planning horizon considered. 
The possibility of having episodes that are not covered at all, due to lack of 
resources, is represented by the following binary decision variables: 

be′ ,e′′ ks =

⎧
⎪⎪⎨

⎪⎪⎩

1, if episode e′ and e′′ have intersecting time periods considering
the assistance by vehicles of type k, so that a vehicle cannot
be simultaneously assigned to both, under scenario s , ∀e

′

, e′′ ∈
⋃

e∈Es

EFes,∀k ∈ K, s ∈ S

0, otherwise   

ze′ s =

⎧
⎨

⎩

1, if e′ receives all the necessary vehicles
within the appropriate time interval, under scenario s , ∀e′

∈
⋃

e∈Es

EFes, s ∈ S

0, otherwise   

aijl =

⎧
⎨

⎩

1, if base i is within the coverage radius of j
defined for level of assistance l (j is covered by vehicles in i, for assistance level l)

0, otherwise
, ∀i ∈ I, j ∈ J, l ∈ {BLS, ILS,ALS}

de′ vs =

{
1, if vehicle v can be assigned to episode e′

, under scenario s
0, otherwise

,∀e
′

∈
⋃

e∈Es

EFes, v ∈ V, s ∈ S   
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admes =

⎧
⎨

⎩

1, if real episode e, belonging to scenario s,
does not receive any assistance , ∀e ∈ Es, ∀s ∈ S
0, otherwise 

The mathematical model is now presented. The objective function 
represents the maximization of the covered episodes, but considering 
weights associated with the different stages of each episode. 

These weights represent the decision-maker’s preferences: it is better for 
any episode to receive assistance in the first stage than in a later one. So, 
weights ϖe′ s, ∀e′

∈ EFes, e ∈ Es, s ∈ S are considered, such that ϖe′ s >>

ϖe′′s for all e′

, e′′ ∈ EFes with e′

< e′′,∀e ∈ Es. 

In the second term of the objective function, M represents a very 
large positive number, meaning that solutions leading to episodes that 
do not receive any assistance at all are severely penalized. 

Max Z =
∑

s∈sps

∑
e∈Es

∑

e′ ∈EFes
ϖe′ sze′ s − M

∑
s∈S

∑
e∈Es admes+

ε
(∑

v∈V

∑
i∈Ihvi +

∑
i∈Iyi +

∑
v∈V

∑
s∈S

∑
k∈K

∑
e∈Es

∑

e′ ∈EF es
psxve′ ks

)

(1) 

Restrictions can be defined as follows:  

• An episode is considered covered if and only it receives all the 
adequate vehicles, in terms of level of care. However, if Qes = 1, then 
this constraint is redundant (in this case, the most important thing is 
to send any vehicle, regardless of the level of care it can provide, and 
constraints (8) apply). This constraint applies only if rk = 0 (direct 
substitutability of one vehicle by the other is considered). 

nekszes ≤
∑

v∈V
ckkv xveks + MQes,∀s ∈ S, e ∈

⋃

e′ ∈Es
EFe′ s, k ∈ K : rk = 0

(2)    

• Constraints (3) to (7) do not apply if Qes= 1 so, if this is the case, 
they are made redundant. 

Define auxiliary integer variables Oekk′ s,∀s ∈ S, e ∈
⋃

e′ ∈Es
EFe′ s,k ∈ K,

k′

: ∃(k′

, k′′) ∈ gk  which represent the number of vehicles of type k′

that are dispatched to episode e substituting vehicles of type k, under 
scenario s. Furthermore, let qekk′ k′′s,∀s ∈ S, e ∈

⋃
e′ ∈Es

EFe′ s, k ∈ K :

rk = 1, (k′

, k′′) ∈ gk, k
′

< k′′, represent the number of vehicles 

belonging to the pair (k′

, k′′) ∈ gk that are simultaneously dispatched 
to episode e under scenario s. Then, if vehicle k can be substituted by 
more than one vehicle (namely the pair (k′

, k′′) ∈ gk) the following 
constraints hold1: 

Oekks ≤
∑

v∈V
ckkv xveks + MQes,∀s ∈ S, e ∈

⋃

e′ ∈Es
EFe′ s, k ∈ K : rk = 1

(4)     

∑

(k′ ,k′′ )∈gk :k
′
<k′′

qekk′ k′′s≤Oekk′ s+MQes,∀s∈S,e∈
⋃

e′ ∈Es
EFe′ s,k,k

′

∈K:∃(k′

,k′′)∈gk

(6)   

∑

(k′ ,k′′ )∈gk :k
′
<k′′

qekk′ k′′s≤Oekk′′s+MQes,∀s∈S,e∈
⋃

e′ ∈Es
EFe′ s,k,k

′′

∈K:∃(k′

,k′′)∈gk

(7)    

• For episodes e such that Qes = 1, the episode is considered covered if 
it receives at least one vehicle, whatever its type. 

zes ≤
∑

v∈V

∑

k∈K
xveks + M(1 − Qes),∀s ∈ S, e ∈

⋃

e′ ∈Es

EFe′ s (8)    

• All the real episodes should be covered in one, and exactly one, of the 
respective stages. When this is not possible for some episode, this 
situation is identified by having variable admes taking the value 1. If, 
when solving the problem, at least one admes is equal to 1 this means 
that the available vehicles are not sufficient to cover all the occur-
rences. To better understand the delays this lack of resources implies, 
one possibility is to increase the number of stages that represent the 
evolution of each episode (allowing for the existence of further 

nekszes ≤ Oekks +
∑

(k′ ,k′′ )∈gk ,k
′
<k′′

qekk′ k′′s + MQes, ∀s ∈ S, e ∈
⋃

e′ ∈Es
EFe′ s, k ∈ K : rk = 1 (3)   

Oekk′ s ≤
∑

v∈V
ck′ kv

xvek′ s − nek′ s + MQes, ∀s ∈ S, e ∈
⋃

e′ ∈Es
EFe′ s, k, k

′

∈ K : ∃(k
′

, k′′) ∈ gk (5)   

1 Variable Oekks represents the number of vehicles that are dispatched to 
episode e without being substituted by more than one vehicle. Episode e is 
covered if and only it receives the necessary vehicles, either vehicles that are of 
the required type or others that are equivalent considering either one-to-one or 
many-to-one substitutability. It is important to assure that no vehicle is counted 
more than once for the same episode. Additional details explaining these con-
straints can be found in [22]. 
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delays and understanding in a more detailed way when will it be 
possible to send assistance). 
∑

e′ ∈EFes
ze′ s ≥ 1 − Madmes,∀e ∈ Es, s ∈ S (9)  

∑

e′ ∈EFes
ze′ s ≤ 1, ∀e ∈ Es, s ∈ S (10)    

• An emergency vehicle can only contribute to a certain level of 
assistance in each episode of each scenario. 
∑

k∈K xveks ≤ 1, ∀s ∈ S, e ∈
⋃

e′ ∈Es
EFe′ s, v ∈ V (11)    

• Emergency vehicle v can only assist episode e from i if it is located 
there, if e occurs within the coverage radius of i for that level of 
assistance, and if it is available in that scenario. 

xveks ≤ devs

∑

i∈I
aije lk hvi, ∀v ∈ V, s ∈ S, e ∈

⋃

e′ ∈Es
EFe′ s, k ∈ K (12)    

• An emergency vehicle can only be sent to two episodes if they occur 
in periods of time that do not intersect, considering the scenario to 
which both episodes belong. 
∑

k′ ∈K

xvek′ s+
∑

k′ ∈K

xve′ k′ s <2 − bee′ ks′ ∀v∈V,k∈K,s∈S,e,e
′

∈
⋃

e′′∈Es EFe′′s :e<e
′

(13)    

• There is a maximum number of vehicles that can be located at each 
base, and vehicles can only be assigned to a base that is prepared to 
receive them. 
∑

v∈V
hvi ≤ Niyi, ∀i ∈ I (14)    

• Each emergency vehicle can only be assigned to one base. 
∑

i∈I
hvi ≤ 1,∀v ∈ V (15)    

• It is necessary to ensure that it is not possible to anticipate the future 
in each scenario, taking into account the decision to send emergency 
vehicles to occurrences. As, in the current model, each real episode is 
represented by a set of fictitious episodes these constraints should 
only be considered when no one of the fictitious episodes that cor-
responds to the same real episode is already being assisted. 

The behaviour of the variables can be defined as follows: 

yi ∈ {0, 1}, ∀i ∈ I
hvi ∈ {0, 1},∀v ∈ V, i ∈ I
admes ∈ {0, 1}, ∀e ∈ Es, s ∈ S
zes ∈ {0, 1}, ∀e ∈

⋃

e′ ∈Es

EFe′ s, s ∈ S

xveks ∈ {0, 1}, ∀v ∈ V, e ∈
⋃

e′ ∈Es

EFe′ s, k ∈ K, s ∈ S

qekk′ k′′s ≥ 0 and integer,∀e ∈
⋃

e′ ∈Es

EFe′ s, s ∈ S, k, k
′

, k′′ ∈ K : (k
′

, k′′) ∈ gk

qekk′ s ≥ 0 and integer,∀e ∈
⋃

e′ ∈Es

EFe′ s, s ∈ S, k, k′

∈ K : (k′

, k′′) ∈ gk  

3. Case study 

3.1. Available data 

The case study considers the emergency episodes that occurred in 
2017, in the district of Coimbra, Portugal. All the data was totally 
anonymized and provided by INEM. In this civil year, a total of 50,732 
emergency episodes occurred, requiring 60,343 vehicles’ dispatches. 
The difference between the number of vehicles needed and the number 
of occurrences means that there were occurrences needing more than 
one vehicle (because there are several victims or because the needed 
care can only be provided by using more than one vehicle, for instance). 

There are five types of vehicles that provide three different levels of 
assistance: BLS, ILS and ALS. 

BLS vehicles can be Medical Emergency Motorcycles (MEM), Assis-
tance Ambulances (AA) or Medical Emergency Ambulances (MEA). 
MEM are vehicles manned by an emergency technician able to deliver 
BLS and External Automatic Defibrillation (EAD). AA are manned by 
volunteers or professionals with specific training in prehospital emer-
gency techniques. They can work with other means of emergency and 
are able to transport the victims to health units. MEA are manned by two 
emergency technicians and their mission is to stabilize the victim 
autonomously or in complementarity with other means, and to transport 
the victim to the hospital. They have equipment for resuscitation and 
clinical stabilization, namely EAD. 

Immediate Life Support Ambulances (ILSA) are ILS vehicles that 
guarantee more differentiated health care than the previous means, such 
as resuscitation maneuvers. Their crew consists of a nurse and a pre- 
hospital emergency technician. They can work in partnership with 
other means (with different levels of care differentiation) and have the 
capacity to conduct defibrillation, cardiac monitoring and transmit 
electrocardiographic data. They can also transport victims. 

Medical Emergency and Resuscitation Vehicles (MERV) are ALS ve-
hicles that are used for prehospital intervention. Their crew counts with 

a nurse and a medical doctor with competence and equipment for ALS. 
They aim to stabilize and monitor the transportation of victims to the 
hospital. These vehicles do not have the ability to transport victims, 
which forces the dispatchment of another emergency vehicle whenever 
there is such a need. 

For each real episode, it is possible to know the place where the 
episode occurred and the vehicles that were dispatched, as well as the 
dispatching times. One important information that is missing is the exact 

Table 2 
Substitutability matrix (values for ckk′ ).  

K 1 2 3 4 5 

1 1 0 1 1 0 
2 1 1 1 1 0 
3 1 0 1 1 0 
4 0 0 0 1 0 
5 0 0 0 0 1  

∑

k′ ∈K

xve′ k′ s ≤

(

2 −
∑

i∈I
aij

e′
lk hvi −

∑

i∈I
aije lk hvi

)

+ 1 −

(

bee′ ks − xveks −
∑

e′′∈EFes

ze′′s

)

+

∑

v′ ∈V

xv′ eks

neks
+

M(1 − ckkv ) +
∑

k′ ∈K

∑

e′′ :e′′<e

be′′ek′ sxve′′k′ s, ∀v ∈ V, s ∈ S, e, e′

∈
⋃

e′′∈Es

EFe′′s : e < e′

, k ∈ K : neks ≥ 1

(16)   
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time each occurrence started (the exact time when the emergency call 
was received). The information regarding the total assignment time of a 
given vehicle to a given episode is also missing (only departure time is 
known, and not the time when each vehicle is operational again). As we 
have already worked with other datasets for the same region, we have 
considered similar assignment times. It is assumed that the total dura-
tion (in minutes) of each vehicle assignment follows a Gamma distri-
bution, with shape α=4.2123 and rate β=0.0692 [22]. 

There are a total of 43 available vehicles, that are distributed by 41 
bases, such that:  

• 33 vehicles are of the type AA represented by k = 1  
• 4 vehicles are of the type MEA, k = 2  
• 1 vehicle is of type MEM, k = 3  
• 2 vehicles are of the type ILSA, k = 4  
• 3 vehicles are of the type MERV, k = 5 

These existing 41 bases are the ones considered as being the possible 

locations for the vehicles (this set constitutes set I). 
Table 2 shows the direct substitutability that is possible to be done, 

regarding vehicle’s types (one-to-one substitutability). Moreover, it is 
considered that a vehicle of type 4 can also be substituted by sending 
simultaneously a vehicle of type 5 and a vehicle of type 1 or 3. This 
means that r4 = 1 and g4 = {(4,4), (1,5), (3,5)}

Table 3 shows all the emergency vehicles that are available by type of 
vehicle. The current location of the vehicles, defined in Table 3, is also 
depicted in Fig. 3. This solution is called the “current solution”. 

It is possible to observe that the most populated municipalities, that 
also correspond to the municipalities with a greater incidence of emer-
gency occurrences (Fig. 4), are the ones that count with a greater 
number of vehicles. There are ILSA vehicles in Arganil and Cantanhede 
municipalities mostly due to the fact that only basic medical urgency 
services are located in these areas covering also other municipalities 
(such as Mira, Tocha, Tábua, Góis, Vila Nova de Poiares, Oliveira do 
Hospital, Pampilhosa da Serra, Lousã, Miranda do Corvo). 

Considering the level of care needed, 87.85% of the emergency 

Table 3 
Total number of available vehicles, per type and base.  

Base k Base k  

1 2 3 4 5  1 2 3 4 5 
Coimbra VF 1 0 0 0 0 Mira RC 0 0 0 0 0 
Coimbra PF 1 0 0 0 0 Mira VF 1 0 0 0 0 
Coimbra RC 1 0 0 0 0 Cantanhede VF 1 0 0 0 0 
Coimbra Central Hospital (CH) 0 0 0 0 1 Penela VF 1 0 0 0 0 
Coimbra General Hospital (GH) 0 0 1 0 1 Miranda do Corvo VF 1 0 0 0 0 
Borda do Campo RC 1 0 0 0 0 Lousã VF 1 0 0 0 0 
Pereira RC 1 0 0 0 0 V. N. de Poiares VF 1 0 0 0 0 
INEM Regional Base (RB) 0 1 2 0 0 Penacova VF 1 0 0 0 0 
Condeixa VF 1 0 0 0 0 Tábua VF 1 0 0 0 0 
Soure VF 1 0 0 0 0 Góis VF 1 0 0 0 0 
Cantanhede Basic Urgency (BU) 0 0 0 1 0 Arganil BU 0 0 0 1 0 
Montemor-o-Velho VF 1 0 0 0 0 Arganil VF 1 0 0 0 0 
Figueira da Foz PF 0 0 0 0 0 Pampilhosa Serra VF 1 0 0 0 0 
Figueira da Foz VF 1 0 0 0 0 Oliveira de Hospital VF 1 0 0 0 0 
Figueira da Foz DH 0 0 1 0 1 Serpins VF 1 0 0 0 0 
Figueira da Foz RC 1 0 0 0 0 Coja VF 1 0 0 0 0 
Carvalhais RC 1 0 0 0 0 V. N. de Oliveirinha VF 1 0 0 0 0 
Maiorca RC 1 0 0 0 0 Laborins RC 1 0 0 0 0 
Quiaios RC 1 0 0 0 0 Lagares da Beira VF 1 0 0 0 0 
Carapinheira RC 1 0 0 0 0 Brasfemes VF 1 0 0 0 0 
Verride RC 1 0 0 0 0        

Fig. 3. Geographical distribution of the existing vehicles in 2017.  
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episodes required an assistance of level BSL, 8.86% ALS and the rest ILS. 
Fig. 5 depicts the frequency with which each type of vehicle was sent 

to the emergency occurrences. 
The most used vehicle type is AA, that is sent to 83,90% of the epi-

sodes. MEA vehicles are sent to 21,07% of the episodes. The single MEM 
vehicle available is sent to only 1,96% of the cases. This is probably 
explained by the fact that only one vehicle exists, it has no trans-
portation capability, and it can be easily replaced by other types of ve-
hicles (MEA, ILSA or even AA). Vehicles of types ILSA and MERV, the 

ones that have the most differentiated level of care, are sent in 4,07% 
and 10,72% of the times, respectively. 

The average number of occurrences changes during the day, as can 
be observed in Fig. 6. It is possible to notice the decrease in the number 
of episodes in the 22 h - 6 h period, when compared with the rest of the 
day. 

In this work, we have not studied in detail the effects of seasonality in 
the occurrence of emergency episodes. There are some municipalities 
where this seasonality is more pronounced, namely during August. In 
municipalities near the coast, this is explained due to the affluence of 
tourists. In other municipalities this increase can reflect flows associated 
with emigrants. Fig. 7 depicts the percentage of the episodes that occur 
in four municipalities during each month of the year. These munici-
palities were chosen because they are the ones in which this seasonality 
is more pronounced. Figueira da Foz and Mira clearly present more 
episodes in August (coastal municipalities), as well as Góis (due to the 
arrival of emigrants). Coimbra presents the opposite behaviour since 
many of its inhabitants leave this area during this month. Some increase 
can also be observed near Christmas and New Year’s Eve. 

In the future, it can be useful to study alternative locations for 
emergency vehicles during the months of August and December. 

3.2. Methodology 

The proposed model was applied to the case study described. The 
objective is to calculate a new solution, considering the available data, 
and to assess if the calculated solution is similar or different from the 
current solution. If the calculated solution is different, then both solu-
tions should be compared. 

The methodology considered was structured into three different 
steps. In the first step, 100 days from the 365 days of data available (the 
whole civil year of 2017) where randomly selected, so that the corre-
sponding data was used as input data for the model (one day will 
represent one scenario in the model). Then, a solution was calculated 
(second step). In the third step, both the current and the calculated so-
lutions were tested considering not only this first dataset, but also 
another dataset corresponding to 50 days, also randomly selected from 
the 365 days available. These sets (100 samples and 50 samples) are 
disjoint, but they are both randomly generated from the real dataset. 
This third phase can be interpreted as an out-of-sample assessment: the 
calculated solution is assessed on a completely different dataset than the 
one that was used by the model and that generated that solution. This 
allows a fairer comparison between the current and the calculated so-
lutions. Otherwise, the comparison could be biased, benefiting the 
calculated solution since it would be assessed based on the same dataset 

Fig. 4. Distribution of the emergency occurrences by municipality.  

Fig. 5. Distribution of the dispatchment of vehicles considering the 
vehicle type. 

Fig. 6. Evolution of the percentage of occurrences in a 24-hour period.  
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that originated it. 

3.3. In-sample set 

To generate the data that will be the input for the model, 100 
randomly generated days are selected from the 2017 real database. Each 
day will constitute one scenario. In these randomly selected 100 days, 
around 13,700 emergency episodes have occurred. 

In Portugal, each municipality is organized into smaller adminis-
trative regions called freguesias. We considered a total of 209 freguesias. 
Instead of considering the exact GPS coordinates where each emergency 
episode occurred, all the episodes that occurred in one freguesia are 
considered as taking place in the freguesia’s centre. As freguesias have a 
small and limited geographical area, this simplification, that speeds the 
calculation of the driving times (as explained later) does not introduce 
significant errors that could impact the calculated solution. 

From these randomly selected days, it is possible to know exactly 
how many episodes occurred, and where they occurred (the freguesia 
where they occurred). Moreover, it is possible to know which were the 
vehicles that were dispatched and when they were sent. We do not have 
access to the exact total time these vehicles were assigned to these ep-
isodes. So, for each episode that occurred in each selected day, the total 
duration of the episode is randomly generated, as explained in [22]. 

Two assumptions were made: 1) as we do not know the timing of the 
emergency call (the exact timing where the emergency episode really 
began), we will assume that the first vehicle sent to the episode corre-
sponds to the beginning of the episode; 2) we will assume that the ve-
hicles sent are exactly the ones that should have been sent, so these 
vehicles will implicitly represent the level of care and the number of 
vehicles that the episode needs. 

The evolution of these episodes is represented, initially, by three 
fictitious episodes: we are discretizing the evolution of each episode by 
considering three different stages. The starting time of one stage is dis-
placed 10 min from the start of the previous one. In the third stage, we 
allow any vehicle, independently of the level of care it can provide, to 
assist the emergency episode. The total timing of this last stage is 

randomly generated by multiplying the initially randomly generated 
duration by a number in the interval [1, 1.5], considering a uniform 
distribution. For each episode, the possibility of the status of the victims 
worsening from one stage to the next, leading to a change in the vehi-
cles’ needs, is randomly generated. This random generation takes into 
consideration the analysis of the existing data: by analysing each 
occurrence and the sequence in which different vehicles where sent (if 
this was the case), as well as the main cause of the occurrence, it is 
possible to generate the probability of a given episode evolving unfav-
ourably, changing the needed vehicles accordingly. 

For the coverage matrix, all the distances between the freguesia 
centres and all the existing bases were calculated using Google Maps, 
and considering driving times. A coverage time limit of 15 min was 
considered for urban areas and 30 min for rural areas. 

If the instance is solved and there are episodes not being covered at 
all (admes = 1, for some episode e ∈ Es), then the discretization of the 
evolution of all the episodes in the corresponding scenario will consider 
an additional stage (the fourth), having the same characteristics as the 
third, but starting 10 min later. 

Regarding location variables, it was decided to fix all the existing AA 
vehicles in their current locations. This decision is justified by the 
resistance that exists in changing the location of the vehicles of this type 
[22]. Most of the AA vehicles are placed in firefighter stations, that are 
not willing to let these vehicles go anywhere else. These vehicles are a 
guarantee of INEM support to the institutions, in the form of staff 
training, access to differentiated equipment, as well as financial support 
for the vehicles’ costs during the first four years of operation, and an 
additional support for every vehicle activation. Having INEM AA vehi-
cles in the firefighter station is also seen as giving visibility and credi-
bility to the service provided, being an important motivational factor to 
promote the attraction of volunteers and professionals. Furthermore, it 
promotes a sense of safety to local populations. Some of these vehicles 
belong to volunteer firefighter stations, or to the Red Cross, and many 
have been offered to these institutions by local companies which would 
not accept to have these vehicles transferred to other locations. These 
institutions are operated resorting almost fully to volunteer work, so any 

Fig. 7. Percentage of episodes that occur, in each municipality, in each month (2017 year).  

Table 4 
Illustrative example of the heuristic procedure: optimal location of the vehicles 
for each scenario in iteration 1.   

Scenarios 

Vehicles (type) 1 2 3 4 5 
1 (1) A B A B B 
2 (1) A A A B A 
3 (1) B B A B A 
4 (2) B B A A A 
5 (2) B B B A B  

Table 5 
Illustrative example of the heuristic procedure: optimal location of the vehicles 
for each scenario in iteration 2.   

Scenarios 

Vehicles (type) 1 2 3 4 5 
1 (1) A A A A A 
2 (1) B B B B B 
3 (1) A B B A A 
4 (2) B B B B B 
5 (2) B B A A B  
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change in the location of the means could jeopardize the continuity of 
their operations. 

The weights that need to be defined in the objective function were set 
to 1000 for episodes receiving assistance in the first stage, 100 for epi-
sodes receiving assistance in the second stage, and 0 for all other 
situations. 

3.4. Calculating a solution 

As each real episode is represented by, at least, three fictitious epi-
sodes (there can be situations where this number needs to be higher, 
namely if admes is equal to one for some e ∈ Es), the total number of 
episodes to consider in the model is huge, surpassing 41,100. The model 
dimension is not compatible with the use of a general solver. Cplex was 
not able to solve the instance created, due to memory issues. Compu-
tational results showed that it is only capable of solving instances 
considering, at most, three scenarios. Considering this computational 
limitation, a heuristic procedure was devised to calculate a solution. 

Instead of creating one single instance incorporating 100 scenarios, 
100 instances were created, each one considering only one scenario. 
These instances/scenarios are interpreted as different “experts” that, 
considering the limited information each of them has, propose a given 
location solution. The 100 instances are solved, and the corresponding 
optimal solutions are analysed. Each instance is solved in less than one 
minute of computational time, considering an Intel Xeon Silver 4116, 
2.1 gigahertz, 12-core processor, 128 gigabyte RAM computer, and 
Cplex 12.7. 

If there are location decisions with which more than 50% of the 
experts agree with, then the corresponding location variables are fixed. 

If there are still vehicles that are not yet located, the 100 instances are 
solved again, now considering a set of already fixed location variables, 
and the process is repeated until all the decisions considering the loca-
tion of the vehicles have been determined. It is important to note that it 
is not necessary that the location variables are, themselves, exactly equal 
for the majority of the experts. What is relevant is the type of vehicle that 
is being located at each base. For instance, if vehicle 1 and 2 are of the 
same type k, expert 1 places vehicle 1 in base 2 and expert 2 places 
vehicle 2 in base 2, they are both agreeing that one vehicle of type k 
should be placed in base 2. 

If, in some iteration, there is no location decision with which more 
than 50% of the experts agree, then the location decision receiving the 
greater number of votes is fixed (and only this one). The procedure stops 
when all the location variables have been fixed. The heuristic procedure 
is now presented.  

1 Initialize F = ∅.  
2 Solve all the existing instances, each one representing one scenario 

only, and fixing all variables hvi such that (v, i) ∈ F equal to 1 in all 
these instances.  

3 Select all k ∈ K such that it was decided to place at least one vehicle v 
of type kv = k in base i in more than 50% of the instances. For each 
one of these types k, choose one vehicle v such that kv = k and there 
is no pair (v, i′ ) ∈ F. Fix hvi = 1,F = F ∪ {(v, i)}.  

4 If there are still vehicles v such that there is no pair (v, i) ∈ F, go to 
step 2. Else stop. All the location variables have been fixed.  

5 If no location variable was fixed in step 3, then choose one variable 
hvi such that the choice of placing one vehicle of type kv in base i is 
the most voted option amongst all the different location decisions 
calculated and there is no pair (v,i′ ) ∈ F. Fix hvi = 1,F = F ∪ {(v,i)}. If 
there are still vehicles v such that there is no pair (v,i′ ) ∈ F, go to step 
2. Else stop. All the location variables have been fixed. 

Let us consider a simple and small example to illustrate this heuristic 
procedure. Assume that there are 3 possible bases for locating vehicles 
(A, B, C), there are 5 vehicles that can be of two different types. Vehicles 
1 to 3 are of type 1 and vehicles 4 and 5 are of type 2. Five scenarios are 
generated. Following the heuristic procedure, F = ∅ and all the five 
instances, one for each scenario, are solved. The optimal location solu-
tions for each one of the scenarios are represented in Table 4. 

Looking at Table 4, it is possible to observe that, in 4 out of 5 

Table 6 
Comparison between the calculated and the current solution.  

Vehicle Current Solution Calculated Solution 

K Base Base 
3 Figueira da Foz DH Mira VF 
3 INEM RB Tábua VF 
3 INEM RB Miranda do Corvo VF 
3 Coimbra GH BV Brasfemes 
4 Cantanhede BU INEM RB 
4 Arganil BU INEM RB 
5 Coimbra CH Coimbra PF 
5 Coimbra GH INEM RB  

Fig. 8. Distribution of emergency vehicles proposed by the model.  
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scenarios, a vehicle of type 1 should be located at base A. As this rep-
resents more than half of the total number of scenarios then, according 
to step 3, one vehicle of type 1 is chosen, and its location is fixed at base 
A. As there are three vehicles of type 1, any of the three can be chosen. 
Let us consider vehicle 1: h1A = 1,F = F ∪ {(1,A)}. 

In 3 out of 5 scenarios, another vehicle of type 1 is also located at 
base A. So: h2B = 1,F = F ∪ {(2,B)}. 

Considering now vehicles of type 2, one vehicle of this type is located 
at base B in the majority of the scenarios, meaning that h4B = 1,F = F ∪

{(4,B)}. 
As there are still vehicles v such that there is no pair (v,i) ∈ F, namely 

vehicles 3 and 5, we should solve the five instances again, but now 
considering some variables fixed, namely h1A = 1, h2B = 1, h4B = 1. 
Table 5 presents the optimal solutions obtained in this second iteration 
of the procedure. 

Performing a similar analysis, the procedure would now fix the 
location of vehicle 3 at base A and vehicle 5 at location B. This would 
end the procedure, since all the location decisions are determined. 

Step 5 of the procedure accounts for the possibility of no single 
location decision gathering the votes of at least 50% of the experts 
(scenarios). If this is the case, the option most voted is the chosen one, 
and the process continues. 

This heuristic procedure is not capable of guaranteeing the calcula-
tion of an optimal solution. However, it is possible to calculate an upper 
bound for the optimality gap. Actually, in the first iteration, the optimal 
solution for each one of the instances (scenarios) is calculated. This 
means that each one of these solutions considers the optimal location of 

vehicles for each specific scenario. Let Zheur represent the objective 
function value of the solution obtained by the heuristic, Z* the optimal 
objective function value of (1) and let Zs, ∀s, represent the optimal 
objective function value for the instance that represents scenario s only. 
Then 

Zheur ≤ Z* ≤
∑

s∈S
psZs, and an upper bound for the optimality gap when 

Z* is not known can be calculated as gap ≤

∑
s∈S

psZs − Zheur∑
s∈S

psZs
. 

Other approaches were tested, namely using metaheuristics, but the 
results obtained were worse than this heuristic approach, both consid-
ering computational time and solution quality. One of the difficulties of 
applying a metaheuristic to this problem has to do with the huge number 
of constraints that have to be satisfied, and that guarantee the correct 
deployment of the vehicles. Finding a proper solution representation 
that does not promote the creation of unfeasible solutions is very diffi-
cult. Matheuristics have also been tried, where only the location vari-
ables were represented, and the second stage problems were solved by a 
general solver. The results were also much worse than the ones obtained 
with this heuristic approach. 

For the data considered, it was always possible to fix location de-
cisions based on the majority of more than 50% of the votes (it was not 
necessary to resort to step 5). The resulting optimality gap is less than 
1.92%. 

Table 6 compares the location decisions obtained (calculated solu-
tion) with the locations of the vehicles in the current solution. In Fig. 8 
we can observe the changes in the geographic distribution proposed by 

Table 7 
Coverage obtained with the current and calculated solutions for in-sample data.  

Episode stages Current solution Calculated Solution 
Average Greatest Smallest Number of episodes Average Greatest Smallest Number of episodes 

1 97.01% 100.00% 92.24% 13,086 95.26% 99.24% 87.72% 13,322 
2 0.87% 3.20% 0.00% 154 1.15% 4.62% 0.00% 116 
3 1.84% 5.43% 0.00% 451 3.60% 7.89% 0.74% 288 
Without coverage (stage 4) 0.28% 0.00% 0.88% 35 0% 0% 0% 0  

Table 8 
Coverage obtained with the current and calculated solutions for out-of-sample data.  

Episode stages Current solution Calculated Solution 
Average Greatest Smallest Number of episodes Average Greatest Smallest Number of episodes 

1 95,45% 99,24% 89,66% 6556 96,67% 100% 92,24% 6640 
2 0,92% 2,67% 0% 60 0,93% 3,20% 0% 62 
3 3,36% 6,98% 0,74% 228 2,14% 5,43% 0% 144 
Without coverage (stage 4) 0,28% 0,88% 0% 20 0,25% 2,71% 0% 18  

Fig. 9. Percentage of episodes assisted in stages 3 or 4 in each municipality 
with the current solution. 

Fig. 10. Percentage of episodes assisted in stages 3 or 4 in each municipality 
with the calculated solution. 
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our model, in comparison with the situation depicted in Fig. 3. We can 
see that, in the calculated solution, ILSA vehicles are relocated from two 
rural areas (Arganil and Cantanhede) to Coimbra urban area, and two 
out of three MEA vehicles are changed from urban to rural areas (from 
Coimbra to Tábua and Miranda do Corvo). 

In the next section we analyse and discuss the obtained results. 

4. Discussion of the results, conclusions and future work 

4.1. Comparing the current and calculated solutions 

The analysis of Table 6 shows important changes in the location of 
most of the considered vehicles. The location of four vehicles of type 3 is 
changed, and two ILSA vehicles are also relocated. There is a clear 
reinforcement of vehicles in the most inner parts of the district, in areas 
that are classified as rural. This seems to be a more balanced solution for 
emergency episodes that require ALS vehicles, and it can probably 
address some accessibility issues in less populated areas. Furthermore, 
the location of vehicles with more differentiated levels of care can have 
an indirect positive impact in the quality of care provided, since it can 
leverage the training of other human resources in the emergency assis-
tance chain, especially those assigned to AA vehicles. 

In an opposite direction, it is possible to observe the change in the 
location of ILSA vehicles, that are now placed in the heart of Coimbra 
city. As we can observe by the coverage results obtained, these decisions 
are actually balancing the reinforcement of the assistance to more rural 
areas, making essential differentiated assistance available where most of 
the population resides. 

The location of one MERV in INEM RB can be justified by the fact 
that, in this location, the vehicle is almost equidistant from the city 
centre and two important communication roads with heavy traffic 
(highway n◦ 1 and IP3). This alternative is also compensating for the fact 
that one ILSA is withdrawn from Cantanhede, since this vehicle will be 
nearby. The choice of locating another MERV in Coimbra PF makes this 
vehicle closer to the North-eastern area, improving the coverage of the 
municipalities located there. 

The current and calculated solutions are compared considering both 
the in-sample and out-of-sample datasets. The in-sample set considers 
13,726 real episodes (corresponding to 41,178 fictitious episodes). The 
out-of-sample set is composed by 6864 episodes, corresponding initially 
to 20,592 fictitious episodes. 

The coverage results obtained with the in-sample set are presented in 
Table 7. This table shows the total number of episodes that were covered 
in each of the stages considered. The average, lower and greater values 
presented considered the analysis of the daily coverage, for the 100 days 
selected. 

For the calculated solution, it was possible to cover 100% of the 
emergency occurrences considering each real episode represented by 
three fictitious episodes. However, when the current solution was 
applied to this dataset, it is possible to see that 35 real episodes were not 
covered during the three stages. To tackle this situation, for all the days 
where this situation occurred, each episode was represented by four, 
instead of three, stages, so that a solution could indeed be found. It was 
sufficient to consider this additional time stage. Episodes that need this 
fourth stage are considered as not being properly covered. 

From Table 7 it is possible to observe that both solutions are capable 
of achieving very good coverage results, since most episodes receive the 
adequate assistance in the adequate time window. The current solution 
is capable of covering in an optimal way, on average, 97,01% of the 
daily occurrences. This value is lower in the calculated solution 
(95,26%). However, the number of total episodes covered in the first 
phase is higher with the calculated solution. There are more episodes 

covered in stage 2 or 3 with the current solution than with the calculated 
solution. 

As the results obtained with the in-sample dataset could be biased, 
and could benefit the calculated solution, these solutions were also 
compared with the out-of-sample dataset. The results obtained are 
summarized in Table 8. Once again, the calculated solution is able to 
cover, in the first stage, a higher number of episodes. The worst results 
considering daily data are also better: 92.24% of the episodes are 
covered in the worst case with the calculated solution, whilst 89.66% are 
covered with the current solution. Whereas the worst relative result 
considering the episodes that are not covered in stages 1 to 3 is poorer 
for the calculated solution than for the current solution (2.71% versus 
0.88%), this corresponds to a lower number of episodes (18 versus 20). 
Achieving better results for the first stage of assistance is very important, 
since it can prevent the deterioration of the health state of the victims. 

The change in the location of ILSA, that is currently located at 
Arganil, has an impact on the increase of the episodes that are not 
covered in the first stage in this municipality. This change makes the ALS 
vehicles further away, and they are most likely to arrive only at stages 2 
or 3. Regarding the change in the location of vehicles that belonged to 
the area of Cantanhede municipality, it is possible to see that the relo-
cation of these vehicles did not jeopardize the assistance in this area. The 
relocation of three BLS vehicles and 2 ILSA vehicles contributed to a best 
overall coverage of the more serious episodes, which need ALS. 

It is also interesting to see which solution can be interpreted as being 
more equitable considering the different municipalities under study. As 
we want to prevent emergency episodes to be assisted in stages 3 or 
higher, we have considered the regional distribution of the total epi-
sodes assisted in these later stages. Fig. 9 and Fig. 10 depict this com-
parison, considering the distribution, in percentage, of these total 
number of episodes worst covered by municipalities. As can be seen, the 
calculated solution presents a smoother distribution of worst covered 
episodes. In the current solution, one of the municipalities with a larger 
number of worst covered episodes was Coimbra. It is possible to see a 
clear improvement with the calculated solution, due to the more 
reasonable location of means in urban areas. 

4.2. Main conclusions and contributions 

In this work, a new model for emergency vehicle location is pre-
sented that explicitly takes into account the worsening of the victims’ 
state due to delays in assistance time, by representing the evolution of 
each episode by a discrete set of fictitious episodes. This is a very 
interesting and important feature since it mirrors more accurately real 
emergency assistance scenarios. This work focused on the impact the 
episode’s evolution has in the types of vehicles that should be sent to the 
occurrence. However, the same type of reasoning can be used to 
represent temporal changes in other episode’s features. This represen-
tation of each episode also allows for a better characterization of the 
quality of care provided and of the timing until assistance arrives. 
Furthermore, this model allows for the explicit consideration of vehicles 
associated with different levels of care, also including the possibility of 
vehicle substitutability. 

The model was applied to a case study, resorting to real data. It is 
possible to conclude that the calculated solution assures a better 
coverage of the episodes in an earlier period of distress than the current 
solution. This can be observed in either in-sample and out-of-sample 
data. 

One important conclusion that can be reached by the analysis of the 
case study results is the fact that the explicit consideration of late 
assistance arrivals can indeed have an impact on the emergency vehi-
cles’ location decisions. It is possible to improve coverage by relocating 
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the existing vehicles in the geographical area under study, guaranteeing 
a more equitable access to this essential service, without increasing the 
total number of vehicles. Having a model that is capable of better rep-
resenting the real situation can be an added value for decision-making 
support. 

The heuristic approach presented turned out to be able to calculate a 
high-quality solution, with a very small gap. This heuristic approach has 
the advantage of being well understood by decision-makers, since it 
relies on the optimal decisions calculated for small instances corre-
sponding to different scenarios, and it is fairly easy to make an analogy 
with the situation where a set of experts is called to give their opinion. 
These experts can have different opinions on some aspects, share the 
same points of view in other aspects, and the final decision will consider 
what most of the experts agree with. The presented iterative and in-
cremental way of building the solution has also the advantage of having 
a computational time that grows linearly with the number of scenarios 
considered. 

4.3. Future work 

In this model there are some situations that are not being taken into 
account. One example is the possibility of vehicles changing their lo-
cations during the day, or to consider different locations on different 
days of the week, or periods of the year. It could also be interesting to 
introduce the possibility of locating vehicles outside existing bases, if 
that contributes to increased coverage. Changes in the location of ve-
hicles are very difficult to implement due to the disagreement of the 
professionals involved, and the resistance to these dynamic changes 
would even be stronger. Changing the location of a vehicle implies other 
logistic changes, namely considering the replacement of the materials 
consumed in the assistance activity, which are possible to address, but 
difficult to organize. Nevertheless, it can be interesting to understand if 
these possibilities could contribute or not to the improvement of the 
emergency episodes coverage. 

The developed work motivates further research challenges to be 
pursuit. The difficulty experienced by the general solver justified the use 
of the heuristic approach described. Other possibilities could be 
considered, like using decomposition methods. This type of problems 
has clearly an inherently multiobjective nature, that was not explicitly 
tackled in this work. 

CRediT authorship contribution statement 
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Appendix 

Acronymous 
AA: Assistance Ambulance 

BU: Basic Urgency 
CH: Central Hospital 
GH: General Hospital 
ILSA: Immediate Life Support Ambulance 
INEM: Instituto Nacional de Emergência Médica 
MEA: Medical Emergency Ambulance 
MEM: Medical Emergency Motorcycle 
MERV: Medical Emergency and Resuscitation Vehicles 
PF: Professional Firefighters 
RB: Regional Base 
RC: Red Cross 
RH: Regional Hospital 
VF: Volunteer firefighters 
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