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Pathology, Shanxi Medical University, Taiyuan, China; eDepartment of Forensic Medicine, Guizhou Medical University, Guiyang, 
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ABSTRACT
Accurate sex estimation is crucial to determine the identity of human skeletal remains 
effectively. Here, we developed convolutional neural network (CNN) models for sex 
estimation on virtual hemi-pelvic regions, including the ventral pubis (VP), dorsal pubis 
(DP), greater sciatic notch (GSN), pelvic inlet (PI), ischium, and acetabulum from the Han 
population and compared these models with two experienced forensic anthropologists 
using morphological methods. A Computed Tomography (CT) dataset of 862 individuals 
was divided into the subgroups of training, validation, and testing, respectively. The 
CT-based virtual hemi-pelvises from the training and validation groups were used to 
calibrate sex estimation models; and then a testing dataset was used to evaluate the 
performance of the trained models and two human experts on the sex estimation of 
specific pelvic regions in terms of overall accuracy, sensitivity, specificity, F1 score, and 
receiver operating characteristic (ROC) curve. Except for the ischium and acetabulum, 
the CNN models trained with the VP, DP, GSN, and PI images achieved excellent results 
with all the prediction metrics over 0.9. All accuracies were superior to those of the two 
forensic anthropologists in the independent testing. Notably, the heatmap results 
confirmed that the trained CNN models were focused on traditional sexual anatomic 
traits for sex classification. This study demonstrates the potential of AI techniques based 
on the radiological dataset in sex estimation of virtual pelvic models. The excellent sex 
estimation performance obtained by the CNN models indicates that this method is 
valuable to proceed with in prospective forensic trials.

KEY POINTS
•	 Deep learning can be a promising alternative for sex estimation based on the pelvis 

in forensic anthropology.
•	 The deep learning convolutional neural network models outperformed two forensic 

anthropologists using classical morphological methods.
•	 The heatmaps indicated that the most known sex-related anatomic traits contributed 

to correct sex determination.

Introduction

Accurate sex estimation of skeletal remains is fun-
damental to individual identification in forensic 
anthropology, by which other biological elements 
(e.g. ancestry, age, and stature) could be deter-
mined [1–4]. The pelvis has always been considered 
as the most reliable among all human bones for 
its remarkable sex dimorphism, primarily affected 
by the functions of bipedal locomotion and partu-
rition [3, 5–8]. Traditionally, forensic anthropolo-
gists estimate sex by empirically evaluating 

morphological features of the pelvis (e.g. ventral 
arc and subpubic contour). In some cases, however, 
they must deal with parts of the pelvis when 
corpses are poorly preserved during mass disasters 
or by carnivore scavenging activities [9–11]. These 
could make pelvis-based sex estimation more chal-
lenging. Therefore, it may be beneficial to establish 
additional objective methods to supplement routine 
morphological observation.

Current classical morphological sex estimation 
approaches mainly originate from American and 
English skeletal collections [12–14]. The individuals 

© 2021 The Author(s). Published by Taylor & Francis Group on behalf of the Academy of Forensic Science.

CONTACT Feng Chen  fchen@njmu.edu.cn; Ji Zhang  zhangj@ssfjd.cn; Ping Huang  huangp@ssfjd.cn
*Yongjie Cao and Yonggang Ma contributed equally to this work.

https://doi.org/10.1080/20961790.2021.2024369

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits 
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ARTICLE HISTORY
Received 29 October 2021
Accepted 27 December 2021

KEYWORDS
Forensic sciences; forensic 
anthropology; sex estimation; 
pelvis; deep learning; 
convolutional neural network

mailto:fchen@njmu.edu.cn
mailto:zhangj@ssfjd.cn
mailto:huangp@ssfjd.cn
https://doi.org/10.1080/20961790.2021.2024369
http://creativecommons.org/licenses/by/4.0/
http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=﻿10.1080/09500782.2019.1622711&domain=pdf&date_stamp=2019-7-2


2 Y. CAO ET AL.

from these collections were born in the second half 
of the 18th and 19th centuries [15, 16]. Although 
these approaches have been widely validated, it 
remains questionable whether their implementation 
can directly apply to the Han nationality due to 
environmental influences on skeletal development 
and population-specificity [13, 15, 17–21]. Since 
Computed Tomography (CT) scanners have been 
widely used in hospitals, collecting adequate forensic 
anthropological reference data in a contemporary 
population is convenient. Besides, the CT-based 
three-dimensional (3D) reconstruction technique is 
sufficient to portray many morphological features 
on their actual skeletal counterparts [22, 23]. 
Therefore, virtual skeletal remains constructed by 
CT scanning could be recognised as a potential can-
didate for forensic anthropology and even as a sub-
stitute for traditional skeletal collection in some 
specific situations [24, 25].

Artificial intelligence (AI) is likely to affect 
many fields by accomplishing tasks considered 
difficult for human experts [26–29]. Powered by 
its advances in computation on vast amounts of 
datasets, deep learning has gained considerable 
attention for realising AI, especially in the domain 
of medical image recognition [30]. As exemplified 
by the study from Kermany et  al. [29], a deep 
learning model with transfer-learning was used 
as a diagnostic tool to screen patients with com-
mon treatable bl inding ret inal  diseases. 
Additionally, several studies reported the applica-
tion of deep learning as a promising method in 
forensic anthropology. For example, Spampinato 
et  al. [31] proposed several deep-learning 
approaches to perform automatic skeletal bone 
age assessment on 1391 left-hand X-ray scans of 
children; the results showed an average discrep-
ancy of about 0.8 years between manual and auto-
mated evaluation. Li et  al. [32] used 1875 clinical 
pelvic radiographs to develop a convolutional 
neural network (CNN) for bone age estimation; 
the model achieved excellent performance with 
the mean absolute error of 0.89 years in test sam-
ples. Notably, only a few studies have focused on 
applying CNN models for sex estimation, using 
radiographs of hands and wrists and CT recon-
structions of skulls [33, 34].

Deep learning has the advantage of hierarchically 
extracting feature representations from the input 
imaging data. This study aimed to train the CNN 
models (GoogLeNet Inception V4) for sex estimation 
based on virtual hemi-pelvic bones, reconstructed 
with CT scanning from 862 individuals of Han 
nationality. Moreover, a comparative study was per-
formed between the trained CNN models and 
human experts in independent testing.

Materials and methods

Study population and 3D model reconstruction

This work is a retrospective study based on 862 
(females: 437; males: 425) pelvic CT scans retrieved 
from the database of the Department of Medical 
Imaging of Hanzhong Hospital. The scans were ran-
domly selected from the adult Han Chinese visiting 
the hospital for CT-imaging of the pelvis between 2015 
and 2017. These individuals aged from 20 to 85 years 
represented the Han population in this context. The 
pelvises with diseases, deformities, and injuries were 
eliminated, and only information of sex, age, and 
ancestry was retained. The study was approved by the 
Ethics Committees of Nanjing Medical University and 
Academy of Forensic Science, Ministry of Justice, and 
undertaken according to the Declaration of Helsinki. 
The committees exempted written informed consent 
from patients because of the anonymity of the partic-
ipants’ details and the retrospective nature of this study. 
The permission to use the information in this database 
for the purposes of this research was obtained from 
the dataset owner, Hanzhong Hospital.

CT acquisition was performed on an Optima 
CT660 (GE Healthcare, Chicago, IL, USA) with the 
tube voltage of 120 kV, tube current of 300 mA, slice 
thickness of 1.25 mm, and spiral pitch factor of 0.98. 
The scans of the pelvises were manually recon-
structed into 3D virtual skeletal models with the 
Mimics software (Materialise Co., Leuven, Belgium) 
by a single researcher using comparable standard 
protocols. Then the virtual ossa coxae were sepa-
rated from their adjacent soft tissues and bone 
structures with the Hounsfield unit measurements 
from 226 to 3 071.

2D Image acquisition and preprocessing

Only the left sides of the ossa coxae were included 
in this study. Eighty percentage of the samples (female: 
350; male: 340) as training (female: 263; male: 255) 
and validation datasets (female: 87; male: 85) were 
randomly selected for CNN model calibration while 
the remaining 20% ones (female: 87; male: 85) as a 
testing dataset were used for a comparative study 
between the CNN models and two human experts.

Six specific regions, including the ventral pubis 
(VP), dorsal pubis (DP), greater sciatic notch (GSN), 
pelvic inlet (PI), ischium, and acetabulum, were man-
ually cut off from the virtual hemi-pelvic models by 
a single researcher. The ventral and dorsal profiles 
of the pubic bone, GSN and PI plane, the ischium’s 
ventral profile, and the acetabular rim were oriented 
perpendicular to the viewer. Their corresponding 2D 
images were manually captured and downsampled to 
255 × 255 pixels. Our training and validation datasets 
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were relatively limited for deep learning. Therefore, 
data augmentation, randomly changing the images’ 
contrast, brightness, and rotation angles (including 
90°, 180°, and 270°), was performed to inflate the 
dataset size. This technique is a powerful and widely 
used method to improve a model’s generalisability 
over unforeseen data. In this way, the images were 
increased fourfold for the CNN training.

CNN models training and validation

The GoogLeNet Inception V4 architecture [35], whose 
internal weights had been pre-trained on the ImageNet 
dataset containing 1.28 million images with 1 000 
categories, was adopted for sex estimation on the 
virtual hemi-pelvic images using transfer learning. 
Transfer learning is another approach to addressing 
a lack of data by using the pre-trained weights as 
the initial weights in a new task. The CNNs were 
trained and assessed internally using the images from 
the training and validation datasets. During the train-
ing, the loss values mirroring model performance 
were reduced iteratively by an Adadelta algorithm 
[36] with a learning rate of 0.01 and a mini-batch 
size of 64. Learning rate is perhaps the most critical 
hyperparameter in deep learning, controlling how 
quickly the model is updated and how much the 
weights are changed in each training epoch. Batch 
size is also a hyperparameter that defines the number 
of images to be fed into the model at each step. A 
learning rate decay factor of 0.8 and a decay step of 
10 implied that the learning rate decreased to 80% 
after 10 epochs. Heatmap analysis based on the 
Guided Backpropagation algorithm [37] was used to 
determine the pixel regions on the hemi-pelvic images 
contributing to sex classification by the CNN models. 
All the experiments were implemented on an Ubuntu 
16.04 standard computer equipped with an NVIDIA 
Titan Xp 12 GB graphic processing unit (GPU), an 
Intel I7 8700 K central processing unit (CPU), and 
32 GB random access memory (RAM).

Sex estimation on virtual hemi- pelvises of the 
independent testing dataset by CNN models 
and human experts

The trained CNN model was fed with the virtual 
hemi-pelvic region images in the independent testing 
dataset, then the probability values for sex estimation 
were output. By artificially setting the threshold to 
0.5, a female could be determined when the proba-
bility value was higher than 0.5; and a male could 
be distinguished when the probability value was less 
than 0.5. Two experienced anthropologists (A, B, with 
12, 8 years of forensic anthropology experience, 
respectively) were given the independent images and 
then evaluated empirically their sexes being female 

or male based on previously reported methods. For 
VP, DP, and GSN, the images were scored on an 
ordinal scale from 1 to 5 (1 = hyperfeminine, 2 = fem-
inine, 3 = intermediate, 4 = masculine, and 5 = hyper-
masculine) to reflect the variation in the expression 
of morphological traits according to the method pre-
viously published by Klales et  al. [14] and Walker 
[13]. The images with scores ≤2 were determined as 
females, those with ≥ 4 as males, and those = 3 as 
undetermined individuals. As for PI, ischium, and 
acetabulum, the anthropologists estimated the sex on 
a binary scale based on Rogers and Saunders [38] 
and Bruzek [4]. According to Rogers and Saunders, 
the male PI is heart-shaped, while the female expres-
sion is elliptical; and the acetabulum in males is large 
and oriented laterally, whereas in females, it is said 
to be small and directed more anterolaterally. Bruzek 
reported that the ischium length is longer than pubis 
length in males while shorter in females.

Statistical analysis

We used the receiver operating characteristic (ROC) 
curve to show the classification ability of the deep 
learning models in sex estimation. The ROC curve 
was created by plotting the sensitivity against the 
specificity by varying the predicted probability thresh-
old, and then the area under the ROC curve (AUC) 
value was achieved. The females and males were arti-
ficially prescribed as true positives and true negatives. 
Sensitivity was calculated as the fraction of the cor-
rectly identified females, and specificity was calculated 
as the fraction of the males who were correctly iden-
tified. 95% CIs for sensitivity and specificity were 
calculated with the Clopper–Pearson method. The 
Delong nonparametric statistical test implemented in 
MedCalc (Version 19.2.0) was used to assess signif-
icant differences among the AUC values [39].

The intra- and interobserver agreements between 
the two observers were quantified with the Weighted 
Kappa (k) for the qualitative ordinal ranked data of 
the VP, DP, and GSN and the Cohen’s Kappa (k) for 
the binary data of the PI, ischium, and acetabulum. A 
score = 0.00 shows no agreement, 0.01–0.20 indicates 
slight agreement, 0.21–0.40 is fair, 0.41–0.60 is mod-
erate, 0.61–0.80 is substantial, and 0.81–1.00 means 
almost perfect agreement. Statistical analysis was per-
formed using SPSS 25.0 (IBM, Armonk, NY, USA).

Results

CNN models training and validation

The training samples were iteratively fed into the 
Inception V4 to modify the model’s weights and 
biases in different layers. The trained model was eval-
uated at each step on the validation dataset regarding 
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Table 1.  Performance of convolutional neural network models on sex estimation during training and validation.
Pelvic region Steps Training accuracy Training loss Validation accuracy Validation loss Time (min)

Ventral pubis 58 0.995 0.021 0.969 0.139 37.6
Dorsal pubis 42 0.993 0.025 0.972 0.100 28.6
Greater sciatic notch 52 0.988 0.050 0.947 0.348 34.8
Pelvic inlet 117 0.998 0.006 0.982 0.062 74.7
Ischium 85 0.931 0.191 0.825 0.504 131.1
Acetabulum 77 0.898 0.267 0.746 0.719 54.4

classification accuracy and validation loss. The loss 
function was a metric that distilled all aspects of the 
CNN model into a single number called loss value, 
which we sought to minimise during deep learning 
training. Low validation loss and high accuracy 
empirically implied an excellent efficacy. In Figure 1 
and Table 1, the best models of VP, DP, and GSN 
converged at about 50 steps with a training time of 
about 35 min, which was shorter than the other three 
models. Nevertheless, the maximum training time for 
the six models was about 2 h. As for the internal 
validation, the accuracies of the six models ranged 

from 74.6% (acetabulum) to 98.2% (PI), with most 
of the CNN models having validation loss values 
below 0.35. Only the validation loss values of the 
ischium and acetabulum models was higher than 0.50, 
implying that their sex estimation efficacy could be 
unpromising.

Independent prediction on the testing samples 
with CNN models

When the six CNN models were fully trained using 
the training and validation datasets, the models’ 

Figure 1.  Performance of convolutional neural network models in training and validation based on specific hemi-pelvic 
regions, including the ventral pubis (A), dorsal pubis (B), greater sciatic notch (C), pelvic inlet (D), ischium (E) and acetabulum 
(F). Accuracy and loss on the training (blue curves) and validation (orange curves) datasets are plotted as functions of 
training steps. All the curves were smoothed with a factor of 0.8 to visualise their trends. The training was terminated early 
(black dotted lines) to prevent model overfitting when the relatively highest accuracy and lowest loss values were reached.
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performance was then evaluated independently with 
the testing dataset. As shown in Table 2, the pre-
diction metrics demonstrated the excellent estima-
tion performance of the CNNs, with AUC values 
ranging from 0.930 (95%CI 0.891–0.968) to 1.000 
(95%CI 1.000–1.000) for the VP, DP, GSN, PI, and 
ischium, better than acetabulum (AUC: 0.822; 95%CI 
0.759–0.884). The comparison of the confidence 
intervals of the AUC values using the Delong test 
reflected that the VP, DP, and PI yielded higher 
AUC values than others (P < 0.05). No significant 
differences in AUC values were found among these 
three models (P > 0.05). Additionally, there was no 
remarkable statistical significance of AUC values 
between GSN and ischium models (P > 0.05), both 
of which had higher AUC values than the acetab-
ulum model (P < 0.05) that presented the lowest 
AUC value of 0.822. The results further implied that 
some inherent traits in the VP, DP, and PI might 
be the main contributors to differentiating males 
from females. Table 2 also showed the accuracies, 
sensitivities, specificities, and F1 scores of the six 
CNN models in the independent testing. The sex 
estimation accuracy of each CNN model in the inde-
pendent testing was similar with that in the internal 
validation procedure (VP: 100.0% vs 96.9%; DP: 
98.8% vs 97.2%; GSN: 93.0% vs 94.7%; PI: 96.5% vs 
98.2%; ischium: 86.0% vs 82.5%; acetabulum: 73.8% 
vs 74.6%).

Despite excellent performance in visual classifi-
cation, neural networks are also called “black boxes” 
that lack transparency. In Figure 2, we selected 
some examples of the positive outputs containing 
the regions of interest determined by our deep 
learning classif iers through the Guided 
Backpropagation heatmap test. In the VP and DP, 
the inferior margin of the pubic ramus and the 
whole pubis shape contributed highly to sex esti-
mation. Based on the heatmaps from the VP, DP, 
ischium, and acetabulum, it was implied that the 
obturator foramen contributed somewhat to the 
pelvic sex estimation.

Independent prediction on the testing samples 
with morphological evaluation by human 
experts

Table 3 demonstrated almost perfect levels of 
intraobserver agreements for VP, DP, and GSN 
(Anthropologist A: 0.864–0.891; Anthropologist B: 
0.820–0.899), and substantial agreements for PI, 
ischium, and acetabulum (Anthropologist A: 0.759–
0.770; Anthropologist B: 0.724–0.809). There were 
substantial interobserver agreements for all the traits 
(Anthropologist A & B: 0.651–0.815). These sug-
gested the relative reliability of the sex estimation 
made by human experts. As shown in Table 4, 
anthropologist A and B presented similar prediction 
metrics, with accuracies ranging from 72.7% (65.4%–
79.2%) to 80.2% (73.5%–85.9%), sensitivities ranging 
from 71.3% (60.6%–80.5%) to 88.5% (79.9%–94.3%), 
and specificities 56.5% (45.3%–67.2%) to 81.2% 
(71.2%–88.8%).

Comparison of sex estimation on the testing 
samples between CNNs and human experts

As shown in Figure 3, the points (1-specificity, sen-
sitivity) of both human experts, except for the ace-
tabulum, laid below the ROC curves of their 
corresponding CNN models, implying that the CNN 
models achieved superior overall performance in sex 
estimation than human experts in the five selected 
pelvic regions other than the acetabulum. As for the 
acetabulum, the CNN model and the anthropologists 
had almost comparable sensitivity and specificity. 
Except for the acetabulum, the CNN models per-
formed better than the experts in terms of accuracy, 
sensitivity, specificity, and F1 scores (Tables 2 and 4).

Discussion

In some cases, forensic anthropologists have no 
access to regular and entire pelvis bones, which 
could be partially destroyed, missed, or deformed 

Table 2.  Performance of convolutional neural network models on independent sex estimation.
Pelvic region Accuracy Sensitivity Specificity F1 score AUC

Ventral pubis 1.000 
(0.979, 1.000)

1.000 
(0.958, 1.000)

1.000 
(0.989, 1.000)

1.000 1.000 
(1.000, 1.000)

Dorsal pubis 0.988 
(0.959, 1.000)

0.989 
(0.938, 1.000)

0.988 
(0.936, 1.000)

0.989 0.999 
(0.999, 1.000)

Greater sciatic notch 0.930 
(0.881, 0.963)

0.920 
(0.841, 0.967)

0.941 
(0.868, 0.981)

0.930 0.965 
(0.936, 0.995)

Pelvic inlet 0.965 
(0.926, 0.987)

0.989 
(0.989, 1.000)

0.941 
(0.941, 0.981)

0.967 0.998 
(0.995, 1.000)

Ischium 0.860 
(0.800, 0.909)

0.908 
(0.827, 0.959)

0.812 
(0.712, 0.888)

0.868 0.930 
(0.891, 0.968)

Acetabulum 0.738 
(0.666, 0.802)

0.770 
(0.668, 0.854)

0.706 
(0.597, 0.800)

0.749 0.822 
(0.759, 0.884)

Note: All the metrics were calculated using an untuned threshold value of 0.5. The females and males were artificially prescribed as true positives 
and true negatives. Sensitivity and specificity were calculated as the fraction of females and males who were correctly identified in the true 
condition. Key descriptive statistics include total samples (n = 172), true female (positive) findings (n = 87), and true male (negative) findings 
(n = 85). The numbers in parentheses are the 95% confidence intervals. AUC: the area under the receiver operating characteristic curve.
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due to antemortem or postmortem injury during 
wars, air, or traffic crashes, dismember, and animal 
gnawing. It is challenging to make accurate sex esti-
mation in the above scenarios, regardless of using 
morphological or metric methods. Besides, some sex 
estimation methods based on ancient skeletal 

collection may not be applicable to other current 
populations due to significant variations of ancestry, 
environment, and nutrition [12–14, 17, 18, 40]. 
These all would prevent forensic anthropologists 
from making effective sex judgments, thereby mis-
leading further construction of skeletal biological 

Table 3. I ntra- and interobserver variability among human experts on traditional morphological sex estimation.
Pelvic region Intraobserver error rates (left: expert A; right: expert B) Interobserver error rates

Ventral pubis 0.888 (0.850, 0.926) 0.820 (0.771, 0869) 0.815 (0.768, 0.863)
Dorsal pubis 0.891 (0.851, 0.931) 0.824 (0.770, 0.879) 0.760 (0.702, 0.819)
Greater sciatic notch 0.864 (0.821, 0.907) 0.899 (0.863, 0.934) 0.770 (0.718, 0.822)
Pelvic inlet 0.770 (0.696, 0.844) 0.809 (0.717, 0.901) 0.672 (0.560, 0.784)
Ischium 0.759 (0.683, 0.835) 0.744 (0.638, 0.850) 0.659 (0.545, 0.773)
Acetabulum 0.760 (0.684, 0.876) 0.724 (0.624, 0.824) 0.651 (0.537, 0.765)

Note: The numbers in parentheses are the 95% confidence intervals. The intra- and interobserver agreements were quantified with the Weighted 
Kappa (k) for the qualitative ordinal ranked data of the ventral pubis, dorsal pubis, and greater sciatic notch and the Cohen’s Kappa (k) for the 
binary data of the pelvic inlet, ischium, and acetabulum.

Table 4.  Performance of traditional morphological methods on independent sex estimation.
Pelvic region Expert Accuracy Sensitivity Specificity F1 score

Ventral pubis A 0.791 (0.722, 0.849) 0.862 (0.771, 0.927) 0.718 (0.610, 0.810) 0.806
B 0.767 (0.697, 0.828) 0.885 (0.799, 0.943) 0.647 (0.536, 0.748) 0.794

Dorsal pubis A 0.802 (0.735, 0.859) 0.862 (0.771, 0.927) 0.741 (0.635, 0.830) 0.815
B 0.727 (0.654, 0.792) 0.885 (0.799, 0.943) 0.565 (0.453, 0.672) 0.766

Greater sciatic notch A 0.744 (0.672, 0.808) 0.713 (0.606, 0.805) 0.776 (0.673, 0.860) 0.738
B 0.767 (0.697, 0.828) 0.724 (0.618, 0.815) 0.812 (0.712, 0.888) 0.759

Pelvic inlet A 0.779 (0.710, 0.839) 0.828 (0.732, 0.900) 0.729 (0.622, 0.820) 0.791
B 0.791 (0.722, 0.849) 0.828 (0.732, 0.900) 0.753 (0.647, 0.840) 0.800

Ischium A 0.773 (0.703, 0.834) 0.816 (0.719, 0.891) 0.729 (0.622, 0.820) 0.785
B 0.756 (0.685, 0.818) 0.805 (0.706, 0.882) 0.706 (0.590, 0.800) 0.769

Acetabulum A 0.767 (0.697, 0.828) 0.759 (0.655, 0.844) 0.776 (0.673, 0.860) 0.767
B 0.756 (0.685, 0.818) 0.793 (0.693, 0.873) 0.718 (0.610, 0.810) 0.767

Note: The females and males were artificially prescribed as true positives and true negatives. Sensitivity and specificity were calculated as the 
fraction of females and males who were correctly identified in the true condition. Key descriptive statistics include total samples (n = 172), true 
female (positive) findings (n = 87), and true male (negative) findings (n = 85). The numbers in parentheses are the 95% confidence intervals.

Figure 2.  Guided Backpropagation heatmaps on the ventral pubis, dorsal pubis, greater sciatic notch, pelvic inlet, ischium, 
and acetabulum. Red indicates areas that contribute highly to sex estimation classification, while blue represents little 
contribution.
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profiles and police investigation. To deal with these 
situations, we investigated the performance of the 
CNN models on the specific regions of 3D virtual 
hemi-pelvis samples reconstructed from the contem-
porary Han CT scans, including the VP, DP, GSN, 
PI, ischium, and acetabulum. We then compared 
the performance of these models to that of two 
experienced forensic anthropologists using tradi-
tional methods.

The findings of this retrospective study showed 
that most CNN models tested in the independent 
hemi-pelvic dataset could achieve high accuracies, 
sensitivities, and specificities in sex estimation, 
which were comparable to those in the internal val-
idation procedure. This demonstrated the general-
isability of our deep learning models to the 
unforeseen samples without significant performance 
differences of overfitting. In the case of overfitting, 
the deep learning model is so well-trained on the 
training data that it cannot adapt to new data. In 
contrast, an underfitted model fails to make accurate 
predictions even on the training data. In this con-
text, our acetabulum model should be considered 
as underfitted according to its AUC value and accu-
racy in the testing dataset. We do not know whether 
this model’s underfitting is mainly related to the 
limited data size or to the sexually dimorphic nature 
of the acetabulum, which should be clarified in 
future investigations.

The results also showed that most CNN models 
outperformed human experts on sex estimation 
except acetabulum in terms of accuracy, sensitivity, 
and specificity. In addition, CNN models could be 
well-trained in a few hours, whereas a qualified 
anthropologist may require years of professional 
training. The heatmap based on the Guided 
Backpropagation algorithm demonstrated that these 
models mainly concentrated on the anatomic struc-
tures that are well-known to contribute significantly 
to sexual classification. Indeed, several morphological 
studies have confirmed the validity and reliability of 
some traits (e.g. ventral arc, subpubic angle, pubis 
body shape, and subpubic contour) on the VP and 
DP [12, 14, 17, 19, 20, 41–45]. However, our results 
yielded higher classification accuracies of both pelvic 
regions than these studies. Moreover, it was found 
that the pelvis inlet has sexual dimorphism, reaching 
a high accuracy of 96.5%–100%, even though this 
anatomic trait is not widely recognised as an ideal 
alternative for sex estimation [46]. Compared to 
similar studies on the GSN [4, 13, 47], higher accu-
racy we obtained could be explained by the ability 
of the CNN models to ignore useless details such 
as developmental variation of marginal structures 
like the ischial spine and piriform tubercle, which 
usually makes the traditional morphological and 
metric method more challenging. Contrary to several 
other studies (accuracy ranging from 82.5% to 

Figure 3.  Performance comparison between convolutional neural network models and human experts (red dot: human 
expert A; blue dot: human expert B) for sex estimation based on the ventral pubis (A), dorsal pubis (B), greater sciatic notch 
(C), pelvic inlet (D), ischium (E) and acetabulum (F). Except for the acetabulum, most models achieve superior performance 
to two anthropologists as their specificity–sensitivity points lay below the corresponding model’s receiver operating charac-
teristic curve. AUC: the area under the receiver operating characteristic curve.
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96.4%) [48–53], the model based on the acetabulum 
even cannot reach the recommended 75% accuracy 
boundary [54, 55], which may be highly associated 
with the difficulty to separate acetabulum from the 
femoral head during CT construction [56].

These results demonstrate not only the power of 
AI technology for sex estimation but also the advan-
tages of radiological techniques on rapid data 
renewal, especially for contemporary populations 
within specific regions. Despite the high perfor-
mance of our sex estimations, there are still several 
limitations of the proposed method. Firstly, the data-
set scale is relatively small. Data augmentation and 
transfer learning techniques were applied in this 
study to overcome the challenge of lacking training 
data; and the sex estimation performance of the 
models on the independent dataset demonstrated 
that these techniques appeared to address the prob-
lem of sample insufficiency. In addition, several 
studies reported the feasibility of transfer learning 
to train models with limited data. Kermany et  al. 
[29] found that the classifier trained with 1 000 
samples using transfer learning retained comparable 
performance to that trained with 10 000 samples 
from scratch. However, Kermany et  al. also acknowl-
edged that the model’s performance using transfer 
learning would be inferior to that of a model trained 
on an extremely large dataset. Secondly, the samples 
we collected originated from one platform and pri-
marily are north-western Han Chinese. Although 
most of our models exhibited excellent generalis-
ability in the independent dataset, the applicability 
of our method needs to be further evaluated using 
the CT dataset that would be generated by various 
instruments, software, and population statistics and 
the images not derived from CT scans, such as pic-
tures from cameras or smartphones. Future multi-
centre studies should include more data and expand 
the sets to real-world data from other resources to 
increase the performance and generalisability of our 
AI sex estimation system.

Although our computational analyses may play a 
role in the hemi-pelvic sex estimation, we still 
believe that AI will not replace the forensic anthro-
pologists who use morphological methods, given its 
limitations. Firstly, for their nature of lacking inter-
pretability and transparency, the inspiring and prom-
ising deep learning techniques should be applied 
with caution. The heatmap test showed that our 
models mainly focused on the skeletal structures 
with sex dimorphism; it is still impossible to explain 
how and why the models produce output for a par-
ticular image. Secondly, another factor limiting deep 
learning is the error for landmark recognition and 
size between virtual and dry skeletons generated 
during the 3D reconstruction. Some sex estimation 
traits, such as pre-auricular sulcus [23] and pubic 

symphysis scarring, may be invisible or poorly 
defined in the 3D virtual models. Therefore, AI tech-
niques can be combined with manual methods to 
augment the capabilities of forensic anthropologists, 
but they cannot replace forensic anthropologists.

Conclusion

Herein, we demonstrate the potential of AI tech-
niques based on the radiological dataset in sex esti-
mation of virtual hemi-pelvic models. Despite the 
limited number of samples available, most of the 
CNN models, trained with images of various 
hemi-pelvic anatomical regions using transfer learn-
ing, can achieve high accuracies, sensitivities, spec-
ificities, and AUC values in sex estimation, even 
better than human experts with significant anthro-
pological experience. This current AI technology 
cannot replace forensic anthropologists, but we 
believe that deep learning will soon become a com-
plementary tool for more accurate sex estimation. 
We would proceed with this method and test its 
applicability in prospective forensic trials with much 
large and multicentre training datasets and expand 
our algorithm to other types of skeletal remains 
with sexual dimorphism (cranium, mandible, 
humerus, and femur).
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