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Abstract: Obesity incidence is rising worldwide, including women of reproductive age, contributing
to increased gestations in which Maternal Obesity (MO) occurs. Offspring born to obese mothers
present an increased predisposition to develop metabolic (e.g., obesity, diabetes) and cardiovascular
disease (CVD). The developmental programming of the metabolic dysfunction in MO offspring can
initiate in utero. The different availability of metabolic substrates, namely glucose, can modulate
cellular growth, proliferation, and differentiation, resulting in different levels of tissue maturation
and function. We defined the remodelling of these early processes as the first hit of metabolic disease
programming. Among these, adipocyte early differentiation and gut dysbiosis are initial repercussions
occurring in MO offspring, contributing to -tissue-specific dysfunction. The second hit of disease
programming can be related to the endocrine–metabolic axis dysregulation. The endocrine–metabolic
axis consists of multi-organ communication through the release of factors that are able to regulate the
metabolic fate of cells of organs involved in physiological metabolic homeostasis. Upon adipose tissue
and gut early dysregulation, these organs’ endocrine function can be programmed to the disrupted
release of multiple factors (e.g., adiponectin, leptin, glucagon-like peptide). This can be perceived as a
natural mechanism to overcome metabolic frailty in an attempt to prevent or postpone organ-specific
disease. However, the action of these hormones on other tissues may potentiate metabolic dysfunction
or even trigger disease in organs (liver, pancreas, heart) that were also programmed in utero for early
disease. A second phase of the endocrine–metabolic dysregulation happens when the affected organs
(e.g., liver and pancreas) self-produce an endocrine response, affecting all of the involved tissues and
resulting in a new balance of the endocrine–metabolic axis. Altogether, the second hit exacerbates the
organ-specific susceptibility to disease due to the new metabolic environment. The developmental
programming of the endocrine–metabolic axis can start a vicious cycle of metabolic adaptations due
to the release of factors, leading to an endocrine response that can jeopardize the organism’s function.
Diseases programmed by MO can be boosted by endocrine dysregulation, namely Non-Alcoholic
Fatty Liver Disease, Non-Alcoholic Fatty Pancreas Disease, and the aggravation of the adipose
tissue and gut dysfunction. Chronic metabolic dysregulation can also predispose MO offspring
to CVD through the modulation of the endocrine environment and/or the metabolic status. To
cease the vicious cycle of MO disease transmission among generations and-provide preventive and
specialized prenatal and postnatal care to MO offspring, it is necessary to understand the molecular
mechanisms underlying the MO-related disease development. In this review, we summarize most of
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the developmental programming molecular events of the endocrine–metabolic axis described on the
offspring exposed to MO, providing a brief overview of the potential mechanisms that predispose
MO offspring to metabolic disease, and discuss the programming of the endocrine–metabolic axis as
a plausible mechanism for metabolic disease predisposition in MO offspring.

Keywords: maternal overweight; endocrine dysregulation; metabolic dysfunction; disease predisposition;
developmental programming

1. Introduction

Obesity has been rapidly increasing worldwide, especially among women of child-
bearing age. In Europe, it is estimated that 26.8–54% of reproductive-aged women are either
overweight or obese [1]. More than an imbalance between energy intake and expenditure,
obesity results from the interaction between genetic, behavioral, endocrine, physiologic,
and other factors [2].

Being overweight or obese before pregnancy represents an increased risk for excessive
gestational weight gain (GWG), whose prevalence reaches up to 40% of pregnancies [3].
Maternal obesity (MO) includes a high pre-gestational body mass index and/or excessive
GWG. MO is associated with short- and long-term adverse outcomes for both the mother
and the offspring [4]. In the mothers, MO is related to increased odd-ratios for the long-
term development of obesity, metabolic syndrome, type 2 diabetes mellitus (T2DM), and
cardiovascular disease (CVD) [5]. During pregnancy, MO is associated with a higher risk of
developing pregnancy-related disorders such as gestational diabetes mellitus (GDM), hyper-
tensive disorders (e.g., gestational hypertension, pre-eclampsia), venous thromboembolism,
and wound infection [6–10]. MO is also associated with increased risks of complications
during delivery: cesarean delivery risk is increased 1.41-fold in overweight and 1.75-fold in
obese women, usually associated with protracted labor and cephalopelvic disproportion
that result from fetal macrosomia [11]. In addition, fetuses of overweight women present an
elevated risk of incidence of structural birth defects(e.g., neural tube defects), prematurity,
macrosomia, hypoglycemia, birth injury from shoulder dystocia, and stillbirth [6].

According to the Developmental Origins of Health and Disease (DOHaD) hypothesis,
in response to the intrauterine environment, a single genotype may give origin to an array
of fetal physiological and/or morphological state alterations [12]. It is now accepted that
maternal lifestyle before and during pregnancy influences lifelong offspring’s metabolism
and responses to metabolic demands, predisposing them to non-communicable diseases
(NCDs), including obesity, T2DM, and CVD [13]. Offspring’s early consequences of MO
generally include fetal macrosomia. MO offspring can present low gestational weight
instead if MO is concomitant with hypertension and compromised placental vasculature.
Offspring from MO also have a higher occurrence of obesity and diabetes in childhood
as well as CVD in young adulthood [14–16]. The clinical evidence reports that newborns
delivered by obese mothers present a three-fold increased risk of developing obesity [3],
a higher tendency to be large for gestational age (LGA) [17], an adverse lipid profile [3],
increased body-adiposity [18], and an abnormal body fat mass distribution [1]. Moreover,
adults born to obese mothers present an increased body mass index (BMI) in comparison
with adults born to lean mothers in Australian [19], Israeli [20], and Finnish [21] populations.
Offspring born to mothers with excessive GWG present increased adiposity, especially for
higher GWG at early pregnancy, and increased high-density lipoprotein, triglycerides, and
inflammatory biomarkers in mid-pregnancy excessive GWG [18]. Clinical studies have
reported sexual dimorphism in response to MO. MO-offspring 6-year-old males presented
greater adiposity than males born to lean mothers, whereas no differences for females were
detected [22].

These data highlight that, beyond genetic predisposition and postnatal environment,
NCDs transmission can be intergenerationally (direct impact on first-generation health or
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impact on the second generation through the programming of first-generation germline
cells) or even transgenerationally programmed (vicious cycle of obesity transmission across
generations without genetic explanation) [23]. To prevent the vicious cycle of transmission
among generations and provide more specialized prenatal and postnatal care, it is necessary
to understand the molecular mechanisms underlying the development of NCDs in MO
offspring. Here, we provide a focused overview of the potential molecular mechanisms that
predispose MO offspring to metabolic disease and discuss whether the programming of the
metabolic–endocrine axis is an implicated mechanism for metabolic disease predisposition
in MO offspring or a consequence of other underlying mechanisms.

2. Mechanistic Links between MO and the Development of Metabolic Disease
in the Offspring

The evidence in clinical studies of increased disease incidence in MO offspring has
made it necessary to explore the mechanistic links between offspring metabolic disease de-
velopment and MO. For ethical reasons, animal studies are critical to examining the cellular
and molecular mechanisms associated with the phenotypes of the human offspring born to
MO. Several animal models have been used in an attempt to elucidate these mechanisms.
Studies in rats, sheep, and non-human primates have consistently proven MO’s deleterious
effects on offspring, displaying similar phenotypes to those described in humans [24].
Increased birth- and postnatal-body weight [25–27], excessive body fat percentage [28,29],
adiposity [29,30] and hyperinsulinemia [28,30] are frequent in rodent, ovine, and non-
human primate studies ranging from MO offspring’s early ages until adulthood. These
outcomes are often accompanied by an abnormal lipidic profile (increased cholesterol and
triglycerides levels) [28] and endocrine dysregulation, evidenced by impaired adipokine
levels [15,21,31].

The mechanisms associated with these outcomes and, subsequently, increased predis-
position to metabolic disease for MO progeny seem to be multifactorial. In this focused
manuscript, we explore (a) metabolic programming and oxidative stress, (b) epigenomic
alterations, and (c) endocrine-stress response dysregulation as the main potential mecha-
nisms involved in offspring’s metabolic disease programming by MO. We define the first
two as the first hit of offspring adaptations to MO, i.e., structural and molecular alterations
already observed at developmental stages that are maintained throughout offspring life.
The first hit of developmental programming is tissue-specific and a direct result of the
intrauterine environment on each organ cell’s maturation, growth, and proliferation.

MO influences fetal nutrient availability, namely glucose and lipids, due to the dif-
ferent blood maternal metabolome and the ability of each molecule to cross through the
placenta [32]. For example, glucose is only partially buffered by the placenta, meaning
that if a higher glucose concentration exists in maternal blood, it will also be increased
in fetal circulation [33]. This leads to fetal hyperinsulinemia, which potentiates insulin
resistance, metabolic dysregulation, and oxidative stress; these are thought to be involved
in offspring’s metabolic disease programming [16]. Accordingly, insulin resistance in white
adipose, hepatic, and cardiac tissues of MO offspring has been reported [16]. The hepatic
and cardiac ratio between phosphorylated insulin receptor substrate 1 (IRS-1) at Ser307
residue and total IRS-1 is increased for 3- [34] and 4-month-old [26] MO mice offspring.
In addition, many studies have shown mitochondrial dysfunction in individuals with
insulin resistance (IR) [35]. MO offspring present sex-specific cardiac mitochondrial func-
tion modulation [36]. Newborn female MO rat offspring present increased expression of
mitochondrial fusion proteins, and males show increased levels of proteins involved in
mitophagy [36]. Four-month-old MO mice offspring present altered cardiac mitochon-
drial ultrastructure, with swollen and disrupted mitochondria, reduced mitochondrial
membrane potential and increased ROS production [26]. Cardiac oxidative stress was
determined by higher malondialdehyde levels in newborn rat MO offspring [37]. Hepatic
oxidative stress in non-human primates [31] and 20-week-old male mice MO offspring [38]
was marked by increased levels of 8-hydroxy-2-deoxyguanosine. Increased pancreatic
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glutathione peroxidase mRNA levels were detected in 20-week-old male mice MO off-
spring [38], potentially as a way to counteract oxidative stress.

Although previously hypothesized, it remains unknown whether MO-induced metabolic
programming in the offspring has an effect on the long-term regulation of gene expression [16].
In spite of this, the literature has pointed to epigenetic dysregulation as a possible disease-
programming mechanism due to the fetal epigenome responsiveness to maternal dietary
patterns [39]. MO-induced microRNA (miRNA) expression alterations, DNA methylation, and
post-translational histone modifications are the main mechanisms that lead to the epigenetic
modulation of gene expression in offspring [40]. Hepatic miRNAs that regulate the insulin-
signaling pathway are decreased in 4-month-old MO sheep offspring [39]. The inhibition
of IRS-1 translation in white adipose tissue (WAT) is provoked by elevated miRNA-126 in
2-month-old MO mice offspring [41]. Genome-scale DNA methylation is altered by MO in 21-
day-old rat male offspring [42]. Differential DNA methylation patterns and post-translational
histone modifications (acetylation/methylation) were also found for genes encoding for
adipocytokine, adiponectin, and leptin in MO mice offspring [43].

The programming of hypothalamic appetite-regulating centers is another mechanism
potentially involved in MO programming of offspring’s metabolic disease [44]. MO in-
duces endocrine stress-response dysregulation, leading to offspring’s hyperphagia and
obesity [16]. The orexigenic drive (i.e., increased food intake, weight gain, the ratio be-
tween orexigenic and anorexigenic neuronal number/peptide expression and signaling) is
increased in MO offspring [45]. Some studies have suggested that, in rodents, the regula-
tion of the central nervous system (CNS) occurs postnatally; however, recent research has
indicated that this might occur in utero [43]. In the hypothalamus of newborn MO rat off-
spring, neuropeptide Y mRNA expression and protein levels are increased [45]. In contrast,
in another study, 1-day-old MO offspring’s hypothalamus presented decreased mRNA
expression of the leptin receptor, signal transducer/activator of transcription (STAT)-3,
and hypothalamic neuropeptide Y [46], demonstrating that appetite-regulating centers
are likely modulated by the MO-induced intrauterine environment. Nevertheless, current
research fails to explain this contradictory data. Further research is needed to unravel this
issue and whether MO-induced endocrine dysregulation in the hypothalamus extends to
other organs and remains in adulthood.

In addition to biochemical end-point alterations, evidence supports deeper alterations,
with the fetal tissues and organs adapting their function to an adverse intrauterine en-
vironment caused by MO [47], leading to organ dysfunction that could persist over the
offspring’s life course and lead to metabolic disease development (Figure 1). For a detailed
review of the mechanisms associated with the first hit of developmental programming by
MO, consult the reviews [16,35].
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in organs in early life stages, which leads to different metabolic homeostasis in MO offspring. 
Among these, the adipose tissue and gut are organs with an important endocrine role in the endo-
crine–metabolic axis. Adipose tissue dysfunction and gut dysbiosis are early organ-specific events 
in MO offspring, promoting the release of endocrine proteins (e.g., adipokines, glucagon-like pep-
tide (GLP) 1/2) capable of modulating other tissues’ functions, such as the liver and pancreas, and 
through them, the body’s metabolism—the second hit of the endocrine–metabolic axis program-
ming. These events can modulate the concentrations and classes of circulating metabolites (e.g., 
peptides, enzymes, fatty acids), which affect other organs and predispose them to metabolic diseases 
at early life stages. 

3. The Second Hit of Developmental Programming by MO: The Endocrine–Metabolic 
Axis 

The endocrine–metabolic axis consists of the synchronized regulation and communi-
cation between multiple organs to a coordinated response to any metabolic stimuli 

Figure 1. Mechanism of endocrine-metabolic axis programming in offspring due to maternal obesity.
Throughout fetal development, Maternal Obesity (MO) programs organ-specific dysfunction through
the modulation of cell proliferation, growth rates, differentiation, and maturation—the first hit of
developmental programming. Consequently, metabolic dysregulation is commonly observed in
organs in early life stages, which leads to different metabolic homeostasis in MO offspring. Among
these, the adipose tissue and gut are organs with an important endocrine role in the endocrine–
metabolic axis. Adipose tissue dysfunction and gut dysbiosis are early organ-specific events in MO
offspring, promoting the release of endocrine proteins (e.g., adipokines, glucagon-like peptide (GLP)
1/2) capable of modulating other tissues’ functions, such as the liver and pancreas, and through them,
the body’s metabolism—the second hit of the endocrine–metabolic axis programming. These events
can modulate the concentrations and classes of circulating metabolites (e.g., peptides, enzymes, fatty
acids), which affect other organs and predispose them to metabolic diseases at early life stages.

3. The Second Hit of Developmental Programming by MO:
The Endocrine–Metabolic Axis

The endocrine–metabolic axis consists of the synchronized regulation and communi-
cation between multiple organs to a coordinated response to any metabolic stimuli through
the release of molecules that are able to influence other cells’ functions. This communica-
tion is critical to avoid unnecessary energy expenditure and to the synchronization of the
metabolic mechanisms according to the physiological demands across several organs, such
as the liver, pancreas, gut, and adipose tissue (AT) [48,49]. This process occurs multiple
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times a day and is critical, for example, in the preprandial to the postprandial transition [50].
For inter-organ communication, the release of molecules able to produce a response in the
other tissues is crucial. Among these molecules (hormones) exist peptides (e.g., insulin,
leptin) or enzymes (e.g., Dipeptidyl peptidase-4 (DPP4)) [48,51].

Dysfunction in adipose tissue and gut is observed in the early life stages of MO
offspring as a consequence of the first hit of disease programming in MO offspring (see
Sections 3.1 and 3.3). Along with these alterations, endocrine factors (e.g., adipokines,
glucagon-like peptide (GLP) 1 and 2) are released in different concentrations due to
MO [2,25,52,53]. We propose that this dysfunction (disrupted release of endocrine fac-
tors) represents a second hit (i.e., challenge) to the organs involved in body metabolic
homeostasis (e.g., liver, pancreas). The exclusive modulation of the hormonal landscape
originating in adipose tissue and gut represents phase one of the endocrine–metabolic axis
programming by MO (i.e., second hit) (Figures 1 and 2).
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temic metabolic disorders both as a cause and a consequence. However, fat distribution is 
a more powerful indicator of obesity risk and associated comorbidities than whole-adi-
posity [54]. 

Three AT types exert complementary functions: (i) WAT, mainly adapted for fat stor-
age; (ii) brown AT (BAT), more abundant in newborns, with thermogenic function, given 
the high mitochondrial content and expression of uncoupling protein 1 (UCP-1); and (iii) 
beige AT, normally developed upon sympathetic stimulation (e.g., exercise practice, pro-
longed cold exposure) [55]. Two types are distinguished within the WAT: subcutaneous 

Figure 2. Endocrine-metabolic axis programming in offspring born to maternal obesity. The modu-
lation of the organs’ maturation and differentiation state by Maternal Obesity (MO) throughout the
developmental phase results in early dysregulation of multiple organs, including adipose tissue, gut,
liver, pancreas, and heart—the first hit of developmental programming. Subsequently, in the first phase
of the second hit, adipose tissue dysfunction and gut dysbiosis result in the different secretion of multi-
ple hormones (e.g., adiponectin, leptin, glucagon-like peptide (GLP) 1/2), which impact and regulate
other tissues’ (e.g., liver, heart, pancreas) metabolism. The liver and pancreas alter their metabolic
function as a response to the endocrine signaling resultant from adipose tissue and gut dysregulation,
which induces organ-specific metabolic dysfunction. In the second phase, the pancreas and liver also
modulate the release of pancreatic and hepatic endocrine molecules, which leads to a new endocrine
physiological state and impacts other tissues including the heart—the second hit of developmental
programming. The endocrine–metabolic axis programming promotes systemic metabolic adaptations,
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which increases organ-specific and systemic disease predisposition. Red arrows represent endocrine
molecules whose circulating levels are decreased in MO, and green arrows are endocrine molecules
with greater circulating concentrations in MO. Dashed lines are set for hormones capable of inhibiting
other hormones’ endocrine effects.

Later in MO offspring’s life, a second phase of the second hit (Figure 2) is observed
when the other tissues (e.g., liver and pancreas) manipulate their own secretome [25,51] as a
consequence of (1) organ-specific developmental programming (i.e., first hit) and (2) release
of endocrine molecules from adipose tissue and gut (i.e., phase one of the second hit).
Since MO offspring are more susceptible to disease, these alterations can start a vicious
cycle of metabolic adaptations that challenge the metabolic homeostasis and predispose
the offspring to metabolic disease (Figures 1 and 2).

For a comprehensive understanding, next we describe the longitudinal modula-
tion of each organ secretome due to MO, the consequences of the inter-organ metabolic
(dys)regulation, and in particular the relationship with the development of CVD. Under-
standing the temporal coordination of these events is an important step to better assess
health status and evaluate susceptibility to disease at each point of the MO offspring’s
life course.

3.1. Adipose Tissue: An Endocrine Organ Involved in MO-Offspring’s Programming

Adipose tissue is now recognized as a highly metabolic organ involved in the regula-
tion of vital physiological functions [54,55]. AT dysfunction has been implicated in systemic
metabolic disorders both as a cause and a consequence. However, fat distribution is a more
powerful indicator of obesity risk and associated comorbidities than whole-adiposity [54].

Three AT types exert complementary functions: (i) WAT, mainly adapted for fat storage;
(ii) brown AT (BAT), more abundant in newborns, with thermogenic function, given the
high mitochondrial content and expression of uncoupling protein 1 (UCP-1); and (iii) beige
AT, normally developed upon sympathetic stimulation (e.g., exercise practice, prolonged
cold exposure) [55]. Two types are distinguished within the WAT: subcutaneous (SAT) and
visceral AT (VAT) [55]. While SAT confers protective effects for energy homeostasis, VAT is
associated with IR, high triglyceride content, high blood pressure, and increased metabolic
risk [2,56]. Obesity, IR, glucose intolerance, and dyslipidemia, often combined, belong to
the cluster of factors involved in metabolic syndrome development [54].

Moreover, AT functions as triglyceride storage, with a significant role in thermoreg-
ulation and mechanical protection, also constituting an endocrine organ that secretes
bioactive peptides known as adipokines [56]. Adipokines regulate physiological pro-
cesses, such as appetite, food intake, immune and inflammatory function, and glucose
and lipid metabolism [57]. More than 600 adipokines were already reported, including
leptin, adiponectin, resistin, and visfatin [54,55]. Adipokines secreted by ectopic lipid
depots, which result from TG storage near internal organs, such as the liver, skeletal muscle,
heart, and pancreas, drain to the portal vein, directly impacting liver tissue and cellular
function [55].

In lean individuals, the relation of adipokines with insulin signaling and metabolic
homeostasis has already been observed in the AT [16,37,38]. Obesity is associated with
impaired adipocyte remodeling. Upon surpassing TG storage capacity, the AT size (hyper-
plasia) and volume (hypertrophy) increases, culminating in AT dysfunction and consequent
dysfunctional adipokine secretion [56,57].

MO increases the adipogenic potential of offspring’s adipocyte precursor cells [42],
which represents the first hit of developmental programming on adipose tissue (Figure 1).
Other adaptations include WAT insulin receptor-β, IRS-1, PI3K, and AKT1/2 expression
levels, which were reduced in 2-month-old female MO rat offspring [42], suggesting an
IR event in AT and potentially AT dysfunction. In GDM-portraying mothers, lower irisin
levels were observed in colostrum and transitional milk, which might induce an increased
WAT/BAT ratio in the offspring and promote fat storage [45,58]. After weaning, male MO
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offspring show a significant increase in the percentage of fat composition [59]. Greater fat
mass was also observed in male and female human adults (between 20 and 30 years old)
born to obese mothers [60]. Increased expression of pro-adipogenic genes (Pparc, Fabp4)
and transcription factors (Pparγ, C/ebpα) and the reduction of the anti-adipogenic gene
(Pref-1) for adult MO mice offspring were observed for WAT [42].

Similar to non-pregnant obese individuals, MO results in adipokine secretion alteration
with implications for metabolic homeostasis [61]. Obese pregnant women have decreased
adiponectin and elevated leptin plasma levels, which positively correlate with maternal
BMI, fat mass, IR, glucose production, and fetal growth [61,62]. In the placenta, decreased
adiponectin levels, in the context of MO, counterbalance adiponectin’s physiologic role [61].
Hypomethylation of the adiponectin promoter was observed in the maternal side of third-
trimester MO placentas [52]. These observations are clear indications that adipokines could
be involved in MO pathophysiology.

Adiponectin inhibits insulin signaling at IRS-1 via proliferator-activated receptor-alpha
(PPARα) activation and ceramide synthesis [63]. Coupled with MO-derived decreased
activated AMP-activated protein kinase (AMPK), MO adiponectin levels contribute to
placental mTOR activation, which may prompt increased nutrient delivery to the fetus [61].
The dysregulation of adipokines has been reported in the human fetal umbilical cord blood.
MO human offspring newborns present increased concentration of adiponectin, leptin [64],
and TNF-α [65] in the fetal cord blood.

Early alteration in adipokine release results in the first phase of the second hit of
the endocrine–metabolic axis developmental programming by MO (Figure 2). Due to
adipocyte’s dysfunctions and in utero early differentiation, adipokine secretion will pro-
mote a different metabolic state in MO offspring through the regulation of multi-organ
metabolic functions, including in the liver, pancreas, skeletal muscle, and heart (Figure 2).

Leptin secretion is proportional to adipocyte volume [57]. The activation of mitogen-
activated protein kinase (MAPK) and STAT signaling cascades by leptin induction re-
sulted in AT hyperplasia and hypertrophy in male Sprague-Dawley adipocyte primary
cultures [66], demonstrating a cumulative effect. Upon leptin treatment, C57BL/6J mice
adipose-derived stem cell (ASC) fat depots revealed increased expression of peroxisome
proliferator-activated receptor-gamma (PPARγ) and proinflammatory cytokines (IL-6, IL-10,
and TNFα), which resulted in enhanced lipid droplet formation via mTOR signaling [67].
Plasma hyperleptinemia and, consequently, hyperphagia have been identified both in
rodents and non-human primates MO offspring [28,29,68]. Postnatally, leptin plasma con-
centrations are stable between 4-day-old and 3-week-old rats [69]. A high-fat high-sucrose
(HFHS)-diet-induced MO stimulated an increase in offspring’s circulating leptin levels
after weaning in Sprague–Dawley rats [70,71] and in 11-week-old offspring of a high-fat-
induced MO [59]. Serum leptin levels were found to be increased in obese children [58].
However, a significant decrease in circulating leptin was observed in both sexes of human
MO offspring between 20 and 30 years old [60]. While leptin stimulates the expression of
proinflammatory cytokines, these molecules inhibit adiponectin secretion [72].

Adiponectin concentration in MO offspring cord blood was increased in humans [64];
nevertheless, a significant decrease in circulating adiponectin was observed in male and
female young adult humans born to MO [60]. The expression of both adiponectin receptors
(AdipoR1 and AdipoR2) was decreased in the AT of high-fat diet (HFD)–induced obese
male mice [63].

Resistin treatment in 3T3-L1 adipocytes negatively impacted insulin signaling through
lower expression and activation of proteins involved in the insulin signaling pathway
and increased gene expression of suppressor of cytokine signaling 3 (SOCS-3), whose
inhibition prevented the effects on insulin signaling [73]. Resistin circulating concentrations
of maternal overweight offspring were increased at 3 weeks of age in Sprague–Dawley
rats [71].

Visfatin is essentially released from VAT [54], but its effects have been strongly ob-
served in the hepatic tissue. Visfatin affected the Janus kinase (JAK)/STAT3 and IkappaB
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kinase (IKK)/factor nuclear kappa (NF-kB) pathways in HepG2 cells, contributing to in-
creased expression of proinflammatory cytokines and reduced levels of proteins involved
in insulin signaling [74]. Treatment with inhibitors of each pathway prevented the observed
effects, suggesting the involvement of visfatin regulating these signaling cascades within
hepatocytes [74]. Visfatin circulating concentrations are usually greater in obese children,
correlating well with resistin concentrations [75,76].

Overall, in an attempt to overcome AT impairment, cells modulate the release of
adipokines and other AT-related hormones that are able to regulate other organs’ metabolism
via endocrine pathways. The observation of early-AT dysfunction in MO offspring suggests
that this could be one of the first hits in metabolic disease programming, followed by other
organs’ metabolic dysfunction. Research has shown evidence of MO-induced pancreatic,
hepatic, and cardiovascular dysregulation in offspring across different life stages [16].
The next section discusses the impact of adipokines specifically on the liver and on the
predisposition to hepatic disease.

3.2. Impact of MO Programming of Endocrine–Metabolic Axis Dysregulation in Offspring’s
Hepatic Disease Development

Dysregulation of the endocrine–metabolic axis can be programmed by various mecha-
nisms in MO offspring despite the non-instantaneous development of obesity, diabetes, or
other metabolic diseases. Overall, children born to abnormal maternal GWG present an
increased risk of developing obesity [77]. Excessive GWG and MO are positively correlated
with offspring’s IR and T2DM increased risk during childhood and adulthood [20] [78,79].
Across human organs, the relation between IR and tissue metabolic dysregulation is in-
tricate and bidirectional, which induces a temporal propagation of metabolic disease
(Figure 2).

Even though some evidence suggests that endocrine–metabolic dysregulation is pro-
grammed in utero (i.e., epigenetic dysregulation), the natural role of aging is likely to
represent a challenge, triggering an exacerbation of metabolic disease. The development of
cellular IR, also observed in normative aging, in the liver, AT, skeletal muscle, and heart
precedes the impairment of insulin release from the pancreas in healthy offspring from
MO [80,81]. The age-related IR development also produces a challenge to the liver in order
to achieve physiological glucose homeostasis [81,82].

Insulin resistance is a widely described mechanism that plays a role in organ-specific patho-
physiology, namely in Metabolic dysfunction-Associated Fatty Liver Disease (MAFLD) [83]. The
origin of hepatic IR includes a multi-organ contribution, promoting a changed inflammatory
environment (i.e., pro-inflammatory cytokine IL-6 and TNF-α), impairment of gut microbiota,
lipotoxicity, and/or adiponectin signaling [84].

Adiponectin levels are usually lower in Non-Alcoholic Fatty Liver Disease (NAFLD)
patients and correlated inversely with IR [85], suggesting a minor adiponectin contribution
in enhancing fatty acid (FA) and glucose oxidation and a FA synthesis suppression via
AMPK phosphorylation at residue threonine 172 of the α subunit (activation) [86]. Block-
age of AMPK activation inhibits adiponectin’s effects on glucose and lipid metabolism,
resulting in insulin insensitivity [86]. Even small intrahepatic fat accumulation (1.5%) can
promote hepatic IR [87] by overactivating PKC epsilon via hepatocytes’ diacylglycerol
(DAG) increased levels, consequently impairing IRS-1 and IRS-2 and the downstream PI3K
pathway [88]. Adiponectin treatment, in animal and in in vitro studies, ameliorated hepatic
steatosis [89,90]. Babies born to obese mothers present increased body adiposity [18] and
consequent early lipotoxicity and dysfunctional adipokine release [70]. The impairment of
AT is likely to shift the hepatic metabolism and lead to a premature MAFLD-like pheno-
type in the MO offspring liver. Impaired hepatic insulin signaling [91], triglycerides, and
increased expression of gluconeogenic enzymes have been reported for MO non-human pri-
mate offspring [31]. In addition to adiponectin, serum leptin concentrations are increased in
NAFLD subjects [92], suggesting a potential AT dysfunction prior to hepatic fat accumula-
tion, which results in new metabolic homeostasis stimulated by adipokines’ levels. HepG2
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leptin treatment led to decreased expression of low-density lipoprotein (LDL) receptors
and decreased LDL uptake, with augmented proprotein convertase subtilisin/kexin type 9
(PCSK9), which proved essential for the observed response [93].

Adropin, mainly expressed in the liver, increases skeletal muscle insulin signaling [94],
improves AT and liver glucose homeostasis, and reduces FA synthesis [95]. Obese subjects
present lower adropin in circulation [96,97], including obese children [58]. Colostrum from
women with GDM also presents reduced adropin levels [98], which exposes the offspring
to reduced adropin, associated with higher body fat mass [99].

Fetuin-A, a regulator of insulin sensitivity, is also correlated with IR and NAFLD and
suggests involvement in excessive fetal growth [100,101]. Although no alterations in cord
blood Fetuin-A levels were observed, insulin-like growth factor (IGF)-1 and IGF-2 were
significantly increased in GDM [102]. Circulating levels of Fibroblast Growth Factor (FGF)
21, a regulator of the systemic lipid metabolism, are increased in NAFLD [103] and GDM
offspring during adolescence [104], and it was described that FGF21 gene expression was
dysregulated in murine offspring of MO [105].

Another protein secreted by the liver with a critical role in the endocrine–metabolic axis
is DPP4. DPP4 is able to regulate gut–pancreas communication by inactivating GLP-1 and
Gastric Inhibitory Peptide (GIP), regulating body glucose homeostasis (see Section 3.3 and
Figure 2) [51]. DPP4-bound syncytiotrophoblast-derived extracellular vesicles were found
to be increased eight-fold in the circulation of GDM women, being considerably higher
in the uterine than in paired peripheral blood [106]. In fact, maternal BMI significantly
correlated with plasma DPP4 activity both in maternal and fetal cord blood [107]. Elevated
DPP4 activity was also observed in individuals presenting IR and NAFLD [108].

It is clear that the hepatic secretome (e.g., hepatokines) changes to interact with other
cell types and promote inflammation and IR as a response to hepatic metabolic alter-
ations and steatosis. NAFLD patients present a specific hepatokine profile that modulates
metabolism and IR in AT, skeletal muscle, and pancreas [51]. Accordingly, myocytes’ insulin
sensitivity impairs at low degrees of hepatic fat accumulation (up to 6%) [87]. However,
little is known about how MO programs the hepatic endocrine function.

Among the mentioned proteins, many others, including part of the liver secretome, are
dysregulated during NAFLD and potentially play a role in MO-related offspring hepatic
disease programming through endocrine regulation [51]. It is relevant that the modulation
of both adipokines and hepatokines in offspring born to MO share a similar profile to the
NAFLD and MAFLD patients. This highlights the susceptibility of MO offspring to develop
hepatic disease early in life as well as the role of the endocrine–metabolic axis in its origins.
As discussed, some of these proteins are able to regulate other organs’ metabolism and
even modulate the endocrine communication among them, such as the gut–pancreas axis
(Figure 2).

3.3. The Contribution of the Gut–Pancreas Axis to the Endocrine–Metabolic Imbalance
in MO Offspring

Gut microbiota plays an important role in fat and fat-soluble vitamin absorption, di-
gestion of complex carbohydrates, bile maintenance acid-related metabolism, preservation
of intestinal epithelial barrier, and permeability [109]. The composition and diversity of
gut microbiota change throughout pregnancy and are different during obesity develop-
ment [70,110,111]. Even though for many years it was proposed that the gut microbiota
was developed at birth and early life stages, recent studies found bacterial DNA on the
placenta, amniotic fluid, umbilical cord, and infant meconium, contradicting the idea of
fetal development in a sterile womb [112–114].

Multiple studies have associated MO with offspring gut dysbiosis, intestinal per-
meability, reduced macrophage phagocytosis, and dampened cytokine production [109].
Lower α-diversity of the fecal microbial community was detected in mice offspring exposed
to HFD [115]. As well, lower diversity (including Firmicutes phylum, which is critical in
maintaining the integrity of the intestinal epithelial barrier) of the gut microbiota in HFD-
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fed dams weaned mice offspring [116,117]. Reduced bacteroides in the human neonatal
intestinal microbiota from HFD mothers during gestation persisted at least until 6 weeks of
age [118]. Furthermore, the gut microbiota of children born to obese mothers also showed
higher numbers of Parabacteroides spp. and Oscillibacter spp. and lower numbers of Blautia
spp. (associated with obesity) and Eubacterium spp. [119].

Altogether, these profile changes in the endocrine function of intestinal K- and ileum L-
cells from the intestine, responsible for releasing incretins into circulation, cause variations
namely in GIP and GLP-1/GLP-2, respectively [120,121]. Both hormones are closely related
to pancreatic endocrine function. While GIP is responsible for promoting glucagon release
to circulation, GLP-1 stimulates postprandial insulin secretion [121,122].

GLP-1 and GLP-2 circulating concentrations after the weaning period are increased in
offspring born to HFHS diet-induced MO [70]. However, in young adults, GLP-1 fasting
plasma levels were reduced in human offspring exposed to GDM or type 1 diabetes mellitus
(T1DM) during pregnancy [53]. This is likely a consequence of liver steatosis and metabolic
dysfunction, which increases hepatic secretion of DPP4, as described in the previous section
(Section 3.2). Similar secretory behavior is found with aging, obesity, and diabetes [121].

Although leptin, GLP-1, and GLP-2 levels were increased, no differences were found
in circulating insulin levels of the offspring after the weaning of an HFHS diet-induced
MO in Sprague–Dawley rats [70], suggesting AT dysfunction and gut adaptations as initial
second hits of systemic metabolic MO programming, occurring prior to altered pancreatic
insulin release. Indeed, circulating insulin concentration, fasting insulin secretion, and total
insulin secretion were significantly increased in human male young adults exposed to MO,
and lower insulin sensitivity was described in both male and female MO offspring [60].

The repercussions of dysfunctional adipokine release from ectopic fat also extend to
pancreatic cells. G protein-coupled receptors (GPCRs) have been reported as probable
binding sites for adipokines in response to obesity in humans [123]. The implication of
apelin, chemerin, and other adipokines has been suggested to be involved in the adipokine-
induced β-cell response to regulate insulin secretion through interaction with the islets
GPCRs [123]. In the rat insulinoma cell line INS-1, a well-established model to study
pancreatic β-cell function, leptin signaling activated protein kinase A (PKA), even while
AMPK was inhibited and influenced F-actin organization, resulting in increased surface
ATP-sensitive potassium channels [124], which is associated with the inhibition of insulin
secretion. Indeed, adiponectin can stimulate insulin secretion and increase membrane
capacitance in isolated pancreatic islets of 16-week-old C57BL/6 mice [125].

Increased β-cell mass has been detected in fetal sheep and 3-month-old mice MO
offspring [25,126]. In young adults, higher levels of glucagon during the oral glucose
tolerance test (OGTT) were detected in human offspring of overweight women, suggesting
a reduced postprandial suppression of glucagon concomitant with impairment in GLP-1
levels [53], potentially regulated by the hepatokine DPP4.

In more severe cases, pancreatic cells’ dysregulation results in cell death, compromising
the endocrine function of the pancreas in 8-week-old male rat MO offspring [127]. Later,
dead cells might be replaced by adipocytes, leading to Non-Alcoholic Fatty Pancreas
Disease (NAFPD). At this point, newly formed adipocytes start releasing, in site, adipokines
and inflammatory cytokines that end up exacerbating pancreatic cells’ dysfunction [128].

Overall, these data support the idea that the offspring’s pancreas undergoes structural
adaptations due to MO as the first hit of developmental programming of metabolic disease.
However, a second hit is required to produce alterations in the pancreatic endocrine
function. This second hit can be the complex endocrine environment resulting from
the intricate relationship between gut dysbiosis and AT dysfunction. The involvement
of pancreatic and hepatic dysfunction in MO offspring leads to a metabolic shift in the
endocrine–metabolic axis, which is able to affect the function of organs highly dependent
on the physiological energetic status, such as skeletal muscle and heart.
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3.4. Relation of MO Programmed Metabolic Dysfunction with Cardiovascular Disease
Development in the Offspring

Cardiovascular disease is the main cause of death worldwide, with metabolic syn-
drome, IR, and NAFLD being major risk factors [129]. Most of the endocrine dysregulations
described in MO offspring have been proposed as part of or correlated with higher CVD in-
cidence, including alterations in adiponectin [130], leptin [131], insulin [132], glucagon [133],
IGF-1 [134], GLP-1 [135], among others. Some of these factors have a direct impact on car-
diomyocytes’ function, regulating cardiac metabolism. However, cardiac dysfunction can
be also caused by the altered metabolic environment and nutrient availability (concentration
and variety of FAs, glucose, ketone bodies, etc.) for the cardiac metabolism [35]. Increased
cardiac energy production through the stimulation of glycolysis instead of FA oxidation
and loss of metabolic flexibility are common features in CVD (e.g., cardiomyopathy, heart
failure) [136]. It is clear in the literature the contribution of MO to offspring’s increased risk
of CVD, which potentially represents the final consequence of the endocrine–metabolic
axis dysregulation [16,137] (Figure 2).

Regarding the impact of MO on the offspring’s cardiovascular system, animal models
provided evidence of increased endothelial dysfunction at 3-months-old and systolic blood
pressure at 6-months-old in female MO mice offspring [138]. Myocardial fibrosis and in-
flammation [139,140] increased cardiac inflammation markers [140] and decreased cardiac
contractile function [141] for ovine MO fetal and adult offspring. Impaired cardiac physiol-
ogy, thickening of the left ventricle wall [142], increased mass, and increased myocardial
lipid accumulation were described for MO mice adult offspring [35].

In human cohorts, increased GWG/MO induced offspring’s higher adiposity and
adverse metabolic profile (i.e., elevated VLDL, triglycerides, and saturated FA), enhance
the risk of offspring’s CVD development [143]. Human cohort studies have demonstrated
increased systolic blood pressure in 6- and 21-year-old MO offspring [18,19]. Indeed, a hu-
man epidemiological follow-up study in the UK disclosed that MO offspring aged between
32 and 62 years old are more likely to be admitted to the hospital due to cardiovascular
events and have a higher risk of premature death than those of lean mothers [144]. This
accumulating body of clinical evidence suggests that the sudden worldwide rise in NCDs
among the young-adult population might be attributable, at least in part, to the increased
incidence of MO, and that NCDs can be “dictated” in utero, even before birth [13].

It has been recently suggested that cardiometabolic disease development could be prompted
due to an imbalance between the release of anti- and proinflammatory adipokines [145]. Clin-
ical research has suggested that impaired serum levels of adipokines, including leptin [146],
adiponectin [147], and irisin [148], may contribute to the development of cardiometabolic disease.
This relationship was corroborated by animal studies; increased levels of leptin and decreased
levels of both adiponectin and irisin, as observed in human MO offspring, have been associated
with cardiovascular abnormalities in rodent animal models [149]. For example, in female mice,
increased leptin leads to hypertension and endothelial dysfunction [150]. The role of lower
adiponectin in cardiac hypertrophy has been reported, which was corroborated in adiponectin
knockout mice presenting more severe cardiac hypertrophy [151–153]. In an animal model
for cardiac ischemia, irisin administration improved cardiac function in adult mice [154]. This
beneficial action could be a consequence of the role of irisin in improving cardiac mitochondrial
function, by increasing the activity of SOD-2, an antioxidant protein, thus protecting the heart
from ischemia-reperfusion injury [155]. Overall, it seems that impaired release of adipokines
might play a role in cardiovascular disease development.

Additional research is needed to completely understand the impact of the endocrine
alterations in MO offspring on the heart. Cardiac dysfunction can also be explained as
an outcome of the endocrine–metabolic developmental programming by MO. It is critical
to unravel if there is a direct impact, through manipulation of cardiomyocytes’ signaling
pathways, or if CVD results from the metabolic profile achieved by the endocrine–metabolic
axis dysregulation in MO offspring.
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4. Conclusions

Evidence of human and animal offspring’s metabolic programming by MO has been
accumulating. Specific organ metabolic modulation is now clear, although the temporal
perspective of each alteration is usually unexplored in the available studies. Understanding
developmental programming as multi-organ programming instead of individual tissue
in a time-dependent way is critical to a deeper knowledge of metabolic programming in
MO offspring.

Some of the consequences of MO on offspring directly impact particular tissues,
mostly occurring in utero; the first hits are immature cardiomyocytes, early pre-adipocytes
differentiation, or β-cells mass growth. However, multi-organ endocrine communication
is commonly missed in studies, which jeopardizes the understanding of the endocrine–
metabolic axis adaptation and early systemic metabolic disease in MO offspring.

Growing evidence suggests two alternatives as initial second hits in MO-offspring
systemic metabolic programming: (1) early adiposity and adipose tissue dysfunction; and
(2) gut dysbiosis. In the first, AT dysfunction promotes a diverse circulating adipokine pro-
file, whic137h regulates pancreatic and hepatic metabolic function via IR and inflammation.
In turn, the pancreas and liver are endocrine organs and modulate pancreatic hormones
and hepatokine release to achieve a new systemic homeostasis, ultimately impacting highly
metabolic functional tissues such as the heart. The second consists of the modulation of gut
microbiota during fetal development and lactation, which leads to premature gut dysbiosis
and consequent gut endocrine-induced metabolic adaptations at the cost of mild metabolic
dysfunction of the liver-AT-pancreas axis.

Second hits are multi-organ and dependent on endocrine communication. It is critical
to take into consideration the effect of aging. Most of the evidence showed that MO
offspring present an early-age deteriorated phenotype (e.g., early disease, reduced lifespan,
telomere shortening, cellular senescence) [156–158] across their life that promotes the
development of metabolic and cardiovascular disease at an early stage of life (Figure 2).

Longitudinal studies to unravel time- and organ-dependent endocrine–metabolic axis
dysfunction that also include aging’s impact are required for a better understanding of
the metabolic developmental programming by maternal obesity. MO offspring follow-up
of circulation hormones with direct metabolic impact and their health status is critical for
improving these individuals’ healthcare and aging-related quality of life.
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