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a b s t r a c t

The trend for the decarbonization of the transportation sector, contributing to climate change mitigation,
has driven the accelerated deployment of electric buses in cities. However, higher upfront costs, charging
infrastructure deployment and operational issues are the main obstacles to their massive adoption. This
work develops an optimization model to deal with the charging schedule of a fleet of battery electric
buses. This approach aims to minimize the charging costs of electric bus fleets also considering the
ageing of the batteries and the participation in vehicle to grid schemes. We developed a case study using
real-world data from a small electric bus fleet of eleven electric buses in a medium-size Portuguese city.
Further, we performed a sensitivity analysis to assess the possibilities of energy trading with the grid. The
results indicate that below a battery replacement cost threshold of 100 V/kWh, it may become
economically attractive for public transportation operators to sell back energy to the grid for a given
remuneration scheme. Considering battery degradation and energy selling, our study indicates that
operation costs could be 38% lower in 2030. The approach presented in this article provides a tool that
can be employed by public transportation operators to assist decision making in the electrification of bus
systems.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Promoting the electrification of the transportation sector con-
tributes to energy efficiency enhancement, climate change miti-
gation, and air pollutants reduction in urban environments [1].
Therefore, many governments are implementing public policies to
increase the utilization of electric vehicles in cities. Such policies
cover purchasing subsidies, tax reduction and safety supervision
[2]. As a result, some forecasts highlight that in 10 years from now,
almost 70% of vehicles sales will be electric in Asia, Europe and
North America [3,4]. If we consider the electrification of public
transportation only, this process will be even faster with the
penetration of electric bus fleets in cities that several countries are
promoting. China is leading the electrification of the public trans-
portation sector, already holding a fleet of 421,000 buses [5]. The
. Manzolli), joao.trovao@
geler Antunes).
European Union recently started the Zero Emission Urban Bus
System (ZeEUS) program to finance the deployment of electric
buses [6]. It is expected that, until 2025, the sales of electric buses
will be greater than fossil fuel powered ones. Fig. 1 displays a
forecast of electric buses sales in Europe for the next decade using
data presented in Ref. [7]. In the USA, a series of financial incentives
in tax credits and subsidies have been applied to stimulate research
and production of electric buses [8,9]. Considering this favourable
scenario, the study in Ref. [10] concludes that electric buses will
displace their fossil fuels counterparts in the present decade.

However, this transition process faces many challenges caused
by infrastructural and operational limitations. For instance, the
significant power required to charge electric bus fleets may result
in technical grid issues e e.g., voltage, frequency, congestion and
peak demand violations [11]. Bidirectional charging schemes can
play a role in mitigating grid issues, offering a novel alternative to
ancillary services provision [12]. Lately, some pioneer projects
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List of Abbreviations

DOC Daily operating costs
DSO Distribution system operator
MBRC Maximum battery residual capacity
MILP Mixed-integer linear programming
PTO Public transportation operator
SOC State of charge
SOH State of health
TCO Total cost of ownership
TSO Transmission system operator
V2G Vehicle to grid
ZeEUS Zero Emission Urban Bus System

Fig. 1. European urban bus market evolution (%).
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regarding vehicle to grid (V2G) hubs have been implemented
worldwide [13]. The city of London recently launched a pilot
project1 aiming to become the world's largest V2G trial site. The
project comprises 28 double-decker buses capable of returning
over 1.1 MWh of energy to the grid. If achieving success, this project
can lead to a new paradigm regarding public transportation since
the electric buses will play a role as “moving” energy storage sys-
tems, thus helping to improve the grid resilience. Nevertheless, the
faster battery degradation due to the additional charging cycles can
be a drawback that could prevent the public transportation oper-
ator (PTO) from becoming a prosumer [14].

In this context, to develop an economical and effective electric
bus system (dealing with all the issues mentioned above), smart
charging strategies must be designed considering the grid opera-
tion standards while respecting the PTO's operational constraints
and requirements. However, to the best of the authors' knowledge,
a framework that considers electric bus charging scheduling, V2G
schemes, and battery degradation has not been duly characterized
in the literature. Therefore, this research aims to develop an opti-
mization approach to address those features and contribute to fill
this literature gap. The main contributions of this work are:
1 More information at: https://www.sseenergysolutions.co.uk/news-and-
insights/london-bus-garage-becomes-worlds-largest-vehicle-to-grid-site.

2

� We develop a mixed-integer linear programming (MILP) model
to minimize the operational bus fleet costs due to charging/
discharging events. As the main novelty, the model includes a
battery ageing framework to evaluate degradation costs due to
selling energy back to the grid, in addition to constraints related
to bus assignment per route, charging thresholds and trans-
former capacity.

� The model evaluates the possibilities of PTOs to participate in
V2G schemes considering a battery degradation scenario.
Therefore, our work presents a more precise evaluation of costs
associated with energy trading with the grid.

� We offer a modelling framework that assess the possibilities of
energy transactions with the grid considering scenarios of bat-
tery replacement price and electricity price variations.

The article is organized as follows. Section 2 reviews the liter-
ature, presenting some works used as the basis for this research.
Section 3 presents the methodology developed, describing the
model formulation. Section 4 presents the case study and discusses
the results. Section 5 draws the main conclusions and offers some
hints for future research.

2. Literature review

There is extensive literature regarding electric bus operation
management, with studies mainly focused on charging strategies,
vehicle scheduling, and fleet size optimization [15e17]. Typically,
the studies develop MILP models of the bus networks, considering
deterministic constraints. Some studies also include stochastic
variables to deal with uncertainty (e.g., weather, traffic, battery
charging/discharging rates, speed) [18e21]. Regarding the scope of
our article, some works have considered the optimal scheduling
and charging costs of electric bus fleets. Ref. [22] presents a study
that aims to minimize single-day total charging costs of a bus
system while keeping the maximum battery residual capacity
(MBRC) level at an operational threshold. For this purpose, the
authors split the costs into single-day construction costs and
single-day energy costs. Wind and solar generation, feeder load and
demand response costs are also included in the model. Two
different scenarios were examined: i) No consideration of renew-
able generation, feeder load and demand response; ii) Consider-
ation of the features mentioned above. For the first scenario, the
single-day total costs strongly influence the MBRC. For the second
scenario, the results point out that demand response during the
peak electricity rate hours can reduce energy consumption but at
the expense of cost increase. Ref. [23] presents a coordinated
charging strategy for electric bus fast-charging stations. The
methodology is based on a MILP model that considers the rated
capacity of the local distribution transformer and time-of-use tar-
iffs, which is solved using a heuristic. Four different charging
strategies are evaluated for the case study: optimal charging
strategy, suboptimal charging strategy, uncoordinated charging
scenario, and ideal charging strategy. The conclusion states that the
suboptimal charging strategy improves the charging costs with
much higher computational efficiency, over a slightly worst eco-
nomic performance. Ref. [24] presents a MILP model to electric bus
charging station planning, also considering the aggregators'
participation. The model contains power grid planning constraints,
including capital, maintenance, and energy costs. The outcomes
indicate that increasing the number of chargers in the network has
little impact on daily charging costs.

The literature unveils that coordinated charging events associ-
ated with energy management strategies are mandatory to keep
the operation level of electric bus fleets at a reliable state while
keeping the distribution system's security and quality of service
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requirements. Furthermore, charging infrastructure upgrade
(comprising distribution lines, substations, and transformers) is
one of the main challenges in the electrification process of bus
systems [25]. In this context, several studies have addressed the
effects of energy interactions between the PTO and the grid to
enable efficient charging operations and reduce costs. Ref. [26]
evaluates the charging demand of battery public transportation
using a heuristic vehicle scheduling tool. The study demonstrated
that the impacts are most significant at the low-voltage network,
attesting to the need of coordinating the charging events to avoid
grid problems. Ref. [27] presents an operational feasibility and grid
impact analysis of electric buses using three charging approaches:
flash, opportunity and overnight. The authors developed two
models: i) dealing with operational constraints of the bus system;
ii) investigating the grid impacts and transformer ageing due to
charging events. From an operational point of view, the flash
charging approach appears to offer a better operation when
compared to other charging strategies. The study indicates that
overnight charging provides a better operation level regarding the
grid impacts. The study demonstrates that flash and opportunity
charging require a service transformer 5e6 times larger as well as
increase energy daily losses. Ref. [28] presents an optimal charging
strategy to minimize demand charges of a fleet of electric buses in
Tallahassee, Florida. A MILP model was designed to minimize the
peak demand of the charging events. The findings reveal that
applying a 60e64% charging threshold contributes to total elec-
tricity cost savings. Further, the model demonstrates that frequent
charging events may lead to a reduction in demand charges, con-
tradicting the typical practice that drivers should maximize the bus
driving range. Ref. [29] presents a study that evaluates grid and
electric bus operators interactions regarding a dynamic market
frame using locational distribution pricing for load congestion
management. The authors employed bi-level optimization to
model the bus-grid interaction process. The outcomes exhibit that
bus fleets are capable of alleviating charging loads (reducing the
power loss by 7.2%), with the trade-off of restricting their opera-
tional requirements (8.2% loss of charging demand) while
increasing the battery capacity (10.6% higher). In Ref. [30], an
electric bus aggregator acts as an intermediate agent for distribu-
tion system operators (DSO) and transmission system operators
(TSO). The electric bus aggregator coordinates the fleet charging
operations to modulate the vehicles' charging curve to keep the
maximum available charging power below a feasible threshold.
Further, the aggregator offers services for the DSO and the TSO to
improve the grid operation. The authors present a MILP model to
evaluate the effect of charging electric buses in terms of the power
load. Furthermore, the sensitivity analysis demonstrated that the
aggregator has more load flexibility when the number of chargers
grows; however, that load flexibility does not represent a signifi-
cant economic gain.

Although this literature review confirms that relevant research
has been carried out concerning the optimization of electric bus
scheduling and planning, in our perspective there is still a gap
regarding the evaluation of electric bus fleet charging scheduling,
including V2G interactions and battery ageing. Therefore, this work
aims to evaluate the possibilities and impacts of grid interaction of
electric bus systems, while considering a battery ageing scheme,
anchoring the conclusions in the results of a MILP optimization
model.

3. Model and methods

3.1. Problem formulation

The aim is to assist PTOs to minimize the daily operational costs
3

by controlling the energy required to operate a bus fleet, including
the interactions (buying/selling energy) with the grid. We consider
one bus depot, where the vehicles perform the charging/dis-
charging operations and start/finish the routes. The buses must
serve multiple trips in each route, and only one bus should be
assigned to each trip, meaning that a trip cannot be interrupted to
switch vehicles. Further, we consider the time and the energy
consumed in deadhead trips. The daily operation is discretized into
time steps (1 min) to capture the evolution of the battery's energy
level during the planning horizon. We describe the mathematical
formulation in the following. The indices, sets, parameters and
variables are presented in Table 1.
3.2. Objective function

The objective function is presented in (1), which aims to mini-
mize the daily operating costs (DOC) of the bus fleet, allowing in-
teractions with the grid (buying-selling energy). We also consider
the battery ageing due to the charging operations as a levelized
daily cost that impacts the operation.

Min DOC¼
X
t2T

Ptw
buy
t �

X
t2T

Stwsell
t þ

X
k2K

X
t2T

dk;t (1)

The first and second terms are related to the energy bought and
sold to the grid, respectively. The third term is related to bus battery
degradation costs resulting from daily operation.
3.3. Constraints

The constraints are related to the vehicle's assignment per route,
charging thresholds, battery ageing and transformer capacity. Buses
present rigid timetables, their charging patterns differing from the
ones of light electric vehicles. Therefore, the charging vs. operation
scheduling trade-off is a relevant issue for system planning. Our
model includes energy and schedule constraints to allow for
determining the best periods to charge the buses.

Route constraints: To define the route constraints, we based
our model on the Green Vehicle Routing Problem [31]. All trips
must be fulfilled by one and only one vehicle. We include additional
scheduling constraints, i.e., the trips must start and end at pre-
defined times (Tstart

i ;Tend
i ).

X
i2I

bk;i;t þ ck;t � 1; ck2K ; ct2T (2)

X
k2K

bk;i;t ¼1; ci2I ; t2
h
Tstarti ; Tendi

i
(3)

bk;i;tþ1 � bk;i;t ; ci2I ;c k2K ; t2
h
Tstarti ; Tendi �1

i
(4)

Constraint (2) ensures that a bus is active in only one of its
possible states: charging/discharging, serving a trip, or parked.
Constraint (3) guarantees that the fleet will fulfil all assigned trips.
Constraint (4) ensures the continuity of a trip, meaning that a single
bus will serve each trip.

Energy constraints: These constraints capture the battery's
energy level at each time slot. The model also allows for selling
energy to the grid via V2G schemes.

X
k2K

xk;n;t þ
X
k2K

yk;n;t � 1;cn2N ;c t2T (5)



Table 1
Nomenclature.

Indices and Sets Description Range

i index of a trip [1 … I]
t index of a time step [0 … T]
k index of a bus [1 … K]
n index of a charger [1 … N]
I set of scheduled trips I ¼ {1, …, I}
T set of time steps T ¼ {0, …, T}
N set of chargers N ¼ {1, …, N}
K set of electric buses K ¼ {1, …, K}

Parameters Description Unit

Tstarti
start time of trip i e

Tendi
end time of trip i e

an charging power of charger n [kW]
bn discharging power of charger n [kW]

rchn charging efficiency of charger n [%]

rdisn
discharging efficiency of charger n [%]

gi average energy consumption for trip i per time slot [kWh]
Pt electricity purchasing price in time t [V/kWh]
St electricity selling price in time t [V/kWh]
E0k initial energy level of bus k [%]

Emin
k

minimum energy level allowed for bus k [%]

Emax
k maximum energy level allowed for bus k [%]

Eendk
minimum energy level after an operation day for bus k [%]

Ut maximum power transformer capacity at time t [kW]

NCy
k

maximum number of cycles that the bus k battery can last e

DoDk depth of discharge of the bus k battery [%]

Cbat
k

total capacity of the bus k battery [kWh]

Rk battery replacement costs of the bus k [V/kWh]

Variables Description Unit

bk;i;t binary variable indicating if bus k is serving trip i at time t {0,1}
xk;n;t binary variable indicating if bus k is occupying charger n at time t to charge {0,1}
yk;n;t binary variable indicating if bus k is occupying charger n at time t to discharge {0,1}
ck;t binary variable indicating if bus k is charging/discharging at time t {0,1}
ek;t energy level of bus k at time t [kWh]

wbuy
t

electricity purchased from the grid at time t [kWh]

wsell
t

electricity sold to the grid at time t [kWh]

ak total energy taken from a bus k battery through its lifespan [kWh]
dk;t total degradation cost of the bus k battery at time t [V]
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X
n2N

xk;n;t þ
X
n2N

yk;n;t � ck;t ; ck2K ;c t2T (6)

ek;t ¼ ek;t�1 þ
X
n2N

rchn :an:xk;n;t �
X
i2I

gi:bk;i;t

�
X
n2N

1
rdisn

:bn:yk;n;t ;ck2K ;c t2T (7)

X
n2N

X
k2K

an:xk;n;t ¼ wbuy
t ; ct2T (8)

X
n2N

X
k2K

bn:yk;n;t ¼ wsell
t ; ct2T (9)

Constraint (5) ensures that a bus k occupies only one charger n,
avoiding that two vehicles charge/discharge at the same time step t
at the same charger. Constraint (6) guarantees that a bus k will be
charging/discharging if occupying a charger n at a time step t.
Constraint (7) tracks the energy level of each bus k in each time step
t. Constraint (8) computes the total amount of electricity bought
from the grid. Constraint (9) computes the total amount of elec-
tricity sold to the grid.

Battery threshold constraints: We define battery charge
4

thresholds to maximize its lifespan, generally set in the literature
between 20% and 80% of the battery's capacity. The energy level at
the first and last time step of the day is specified, which we
considered to be the same to keep the charge sustaining for daily
basis operation.

ek;t � Cbat
k :Emin

k ; ck2K ;c t2T (10)

Emax
k :Cbat

k � ek;t þ
X
n2N

an:xk;n;t ; ck2K ; ct2T (11)

e0;k ¼Cbat
k :E0k ; ck2K (12)

ek;T �Cbat
k :Eendk ; ck2K (13)

Constraint (10) ensures that the energy in the battery never
drops below aminimum threshold. Constraint (11) ensures that the
buses will never charge above the battery's maximum capacity.
Constraint (12) sets the initial energy of each bus at the time step 0.
Constraint (13) guarantees a minimum energy level in the last
charging of the day, ensuring that the fleets will start the next day
with the expected energy level to operate.

Transformer constraints: We consider the transformer capac-
ity since keeping the transformers at a healthy operational level is



2 https://www.ibm.com/products/ilog-cplex-optimization-studio.
3 This scenario considers that all buses would be charged from 20% to 100% SOC

at the peak electricity price upon arrival to the depot after completion of the daily
service.
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also relevant for the PTO.
X
n2N

X
k2K

an:xk;n;t þ
X
n2N

X
k2K

bn:yk;n;t � Ut ; ct2T (14)

Constraint (14) sets the transformer's capacity constraint
regarding the charging power volume of simultaneous charging
operations for each time step t.

Battery ageing constraints: We propose an Ah-throughput
model [32,33] to assess battery loss of life and cost for each dis-
charging event.

ak¼ NCy
k : DoDk: C

bat
k ; ck2K (15)

dk;t ¼
Rk:C

bat
k

ak

X
n2N

bn:yk;n;t ; ck2K ; ct2T (16)

Constraint (15) calculates the total energy taken from a bus k
battery throughout its lifespan, considering the total number of
cycles, depth of discharge, and total capacity. Constraint (16) de-
fines the costs related to the battery degradation of the bus k due to
discharging events. Note that, for this model, we just assumed the
degradation costs associated with the selling energy discharging
events. We admit that the operations regarding the battery
charging are mandatory to keep the fleet's operation and should
not be accounted for in the battery ageing process.

Constraint (17) and (18) establish the decision variable ranges.

ek;t ; w
buy
t ;wsell

t ; ak; dk;t2ℝþ
0 ; (17)

bk;i;t ; xk;n;t ; yk;n;t ; ck;t 2f0;1g (18)

4. Results and discussion

Firstly, this section introduces the case study and the compu-
tational results. Then, a sensitivity analysis is carried out with
respect to the battery replacement and energy costs variations.
Lastly, we present a total cost of ownership (TCO) study to evaluate
costs variation in the long run.

4.1. Case study characteristics

We developed a case study using real-world data supplied to the
mathematical model presented in Section 3. The case study refers
to a bus network located in Coimbra, Portugal.We selected this case
study for two main reasons: (a) the bus system is located in a
medium-sized city and, therefore, has a reasonable size (total
number of buses, chargers, and routes) to be solved exactly; (b) it
was possible to obtain actual information from the PTO. The system
is based on the “park & ride” concept, bringing together easy-
parking and effective public transport. The drivers park their ve-
hicles in specific parking lots and then board the electric buses. The
parking lots are located on the main accesses to the city inner area,
playing a role in improving the traffic in some areas classified as
very congested. Fig. 2 presents the system's service map, including
the altitude profile of each route. The figure depicts the parking lots
(where the drivers can park their cars and are used as end stations)
and the bus stops.

Each municipality has different bus network characteristics
(e.g., time schedules, type of vehicles, user behaviours, route to-
pologies, etc.), which makes planning an electric bus system very
challenging. The model presented in Section 3 can be applied to
different bus network topologies due to its generality. Planners and
5

decision-makers need to be aware of the variety of bus system
features to fit adequately the MILP model parameters.

The system runs with eleven electric buses that allow connec-
tions to different city locations and has eight chargers in the depot.
The service timetable is scheduled to operate between 7:00 a.m.
and 8:15 p.m. on weekdays with a frequency of 10min/15min.
Table 2 shows the characteristics of the bus network.

4.2. Standard scenario

Firstly, we ran themodel considering a standard scenario, which
comprises the parameters closer to the specifications found in the
real setting. Data were obtained from the PTO and in previous
research works in the field. Table 3 presents the data used in the
computational experiments.

The energy prices comprise four periods: peak, mid-peak, off-
peak, and super off-peak tariffs. Table 4 presents the energy prices
that apply under a contract between the PTO and an electricity
retailer in 2021.

We performed all tests on a desktop computer equippedwith an
80x IntelR Xeon™ Gold 6138 Processor clocked at 2 GHz with
314 GB RAM, running Linux Kubuntu 18.04. We implemented the
mathematical model in the CPLEX Optimization Studio platform.2

4.2.1. Results
The results of the standard scenario show an optimal charging

cost of 6.17 V daily. For comparison, in a “dumb-charging” sce-
nario,3 the costs reach 10.42 V per day (40.77% higher). Fig. 3 de-
picts the buses' state of charge (SOC) variation during an operation
daye the red dot line denotes the energy price variation during the
planning period. For the experiments, we defined a SOC lower
bound of 20% to account for the batteries state of health (SOH)
during their operation lifetime. As the result graph unveils, the
charging events are concentrated between 02:00 a.m. to 06:00
a.m., when the energy is cheaper. No charging was made between
08:00 p.m. to 02:00 a.m., although the energy is also affordable in
this period. The results indicate that not all vehicles need to be fully
charged to operate daily. This aspect is relevant since it lowers the
total charging cost and plays a role in improving the batteries SOH.
The optimization results also indicate the buses that should be
assigned to each line and at which time to help planning the overall
system schedule. Lastly, the buses end the daily operation
(approximately at 08:00 p.m.) with the lowest allowed battery level
and keeps this energy until 02:00 a.m., when the charging opera-
tions start again on a daily basis operation scheme.

Another aspect regarding the charging events that we evaluated
in the model is the transformer maximum power capacity. We
considered a transformer capacity of 135 kW (based on the electric
bus system's requirements) since multiple charging events could
cause grid congestion. Peak demand charges can significantly
impact the buses TCO [38]. Thus, limiting the maximum charging
power can represent economic gains for the PTO. Fig. 4 depicts the
power variation required by the operation on a daily basis.

In the standard scenario, no V2G interaction was allowed. The
consideration of battery ageing in the model enabled to conclude
that it is not economically attractive to sell back energy to the grid if
it causes a higher battery degradation. Therefore, the price of bat-
tery replacement is crucial for increasing the adoption of V2G in the
future.

https://www.ibm.com/products/ilog-cplex-optimization-studio


Fig. 2. The system comprises three lines (Red, Green, and Purple), which are served by eleven electric buses.
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The computational effort to solve the MILP model for different
time steps discretization of the planning period is displayed in
Table 5.

As expected, increasing the time step discretization leads to a
higher computational effort to solve the MILP model. On the other
hand, a fine-grain time step discrtization gives more precise
objective function values. Even in the case of 1-min discretization,
the time to solve the model is still possible to be applied in a day-
ahead bus network planning. Nevertheless, the case study com-
prises a small bus fleet. More extensive bus networks will require
further computational effort to solve since the number of decision
6

variables and constraints will increase rapidly. Thus, it is expected
that for actual large-scale problems, the development of a
customized meta-heuristic or hybrid approaches combining meta-
heuristics with a solver could be adequate research avenues.

4.3. Sensitivity analysis

We performed a sensitivity analysis to evaluate the possibilities
of energy trading with the grid. The first subsection assesses the
effects that the battery price fall will have in V2G schemes. Further,
we evaluated the impacts of energy buying/selling price variation.



Table 2
Case study characteristics.

Linesa Per trip

Distance (km) Time (min)

Green Line 2.68 7
Red Line 7.57 15
Purple Line 13.26 28

Vehiclesb

KARSAN Jest Electric (88 kWh) 9 units
KARSAN Jest Electric (66 kWh) 2 units

Chargersc

Efacec EFAPOWER (22 kW) 5 units
Efacec EFAPOWER (7.4 kW) 3 units

a More information can be found in (content in Portuguese): https://www.smtuc.
pt/servicos/ecovia-parkride/.

b Technical information: https://www.karsan.com/en/jest-electric-specs
c Datasheet: https://electricmobility.efacec.com/wpcontent/uploads/2016/10/

CS195I1404C1_HC.pdf.

Table 3
Parameters employed in the standard scenario.

Parameter Value

Energy consumption 1.2 kWh/km [34]
Number of cycles 3000 [35]
Maximum depth of discharge 80%
Transformer capacity 135 kW
Charging/discharging efficiency 85% [36]
Battery replacement costs 130 V/kWh [37]

Note: The maximum depth of discharge value has been defined by the authors.

Table 4
Time-of-use energy prices.

Period Time (h) Price (V/kWh)

Peak 09:00 a.m.e10:30 a.m. 0.0567
06:00 p.m.e09:30 p.m.

Mid-peak 08:00 a.m.e09:00 a.m. 0.0407
10:30 a.m.e06:00 p.m.
08:30 p.m.e10:00 p.m.

Off-peak 00:00 a.m.e02:00 a.m. 0.0146
06:00 a.m.e08:00 a.m.
10:00 p.m.e00:00 a.m.

Super off-peak 02:00 a.m.e06:00 a.m. 0.0141

The price does not include the network access components. More information at:
https://mercado.ren.pt/EN/Electr/MarketInfo/MarketResults/OMIE/Pages/Prices.
aspx.

Fig. 3. SOC variation in the standard scenario.

Fig. 4. Power variation required for the operation in the standard scenario.
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4.3.1. Battery replacement costs
We selected different battery replacement costs to capture the

possibility of grid interactions, which are based on the lithium-ion
batteries price fall expected in the following years. Fig. 5 depicts the
expected price decay until 2030 using data presented in Ref. [39].

This sensitivity analysis points to the interest of bidirectional
charging trends in the medium-term. For the experiments, we
selected six different prices of battery replacement. The first five
prices are 10% (117 V/kWh), 15% (110.5 V/kWh), 23% (100 V/kWh),
25% (97.5 V/kWh) and 30% (91 V/kWh) cheaper than today's
market price. The last one is a projection of the 2030 battery price,
expected to be around 73 V/kWh. For the sake of space, only the
charts related to the 100V/kWh battery replacement price scenario
are presented.

As Fig. 6 depicts, the charging events are between 00:00 a.m.
and 08:00 a.m. when the price is lower. However, differently from
the standard scenario, all vehicles must be fully charged to operate
tomake themost of grid interactions thatmay occur during the day.
That is, the vehicles are extra charged when the energy is cheaper,
and the energy may be sold back to the grid in the periods of peak
demand, thus representing profits for the PTO at the end of the day.
Since the battery replacement costs are lower, it becomes
economically attractive to perform such transactions.

Regarding the energy trading events, Fig. 7 illustrates the pe-
riods where the buses must be charged and when it is feasible and
favourable to sell back energy to the grid. The charging events are
concentrated in the super and off-peak timewindow (00:00 a.m. to
08:00 a.m.) to reduce the fleet charging costs. On the other hand,
the energy is sold to the grid in the peak time window (09:00 a.m.
to 10:30 a.m./06:00 p.m. to 8:30 p.m.) to increase the revenues of
the electricity sold to the grid.

In this scenario, the results show an optimal charging cost of
5.99 V daily, representing a price decrease of approximately 2.93%
compared with the standard scenario. Differently from the stan-
dard scenario, however, the costs with energy trading are negative.
That is, the PTO makes 7.27 V profits daily considering only energy
transactions with the grid. The battery degradation costs play a role
in keeping the total costs positive (Table 6). Since the bus network
under study is of small dimension, the charging costs and savings
do not represent a relevant difference in absolute values, although
they are relevant percentually. Nevertheless, assuming the fleet
electrification in large urban centres, such profits can deliver an
attractive new revenue stream for PTOs.

In our experiments, a 100 V/kWh battery replacement cost
showed to be the threshold where it becomes economically
attractive to sell back energy to the grid. We carried out other ex-
periments to forecast the possibilities of cost decrease in the bus
operation in the mid-term.

As Fig. 8 indicates, the expected cost to charge the bus fleets will

https://www.smtuc.pt/servicos/ecovia-parkride/
https://www.smtuc.pt/servicos/ecovia-parkride/
https://www.karsan.com/en/jest-electric-specs
https://electricmobility.efacec.com/wpcontent/uploads/2016/10/CS195I1404C1_HC.pdf
https://electricmobility.efacec.com/wpcontent/uploads/2016/10/CS195I1404C1_HC.pdf
https://mercado.ren.pt/EN/Electr/MarketInfo/MarketResults/OMIE/Pages/Prices.aspx
https://mercado.ren.pt/EN/Electr/MarketInfo/MarketResults/OMIE/Pages/Prices.aspx


Table 5
Computational effort to solve the MILP model.

Time step discretization (min) Constraints Variables Objective function value (V) Time (h:m:s)

15 9814 219996 11.23 00:18:22
10 14890 328860 10.34 00:32:34
5 29518 655452 8.34 01:03:48
1 144982 3268188 6.17 12:24:37

Fig. 5. Prediction of the price of a battery up to 2030.

Fig. 6. SOC variation when the battery replacement cost is set at 100 V/kWh.

Fig. 7. Grid interaction when the battery replacement cost is set at 100 V/kWh.

Table 6
Battery replacement costs at 100 V/kWh results.

Costs Values (V)

Energy cost (buy) 10.83
Energy cost (sell) �18.10
Total energy costs �7.27
Battery degradation cost 13.26
Total costs 5.99

Fig. 8. Sensitivity analysis results for battery replacement cost variation.
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decrease in the following years if two main aspects are considered:
V2G interaction and battery replacement cost reduction. Regarding
the energy transactions, the amounts of the energy bought from
8

and sold to the grid tend to keep unchanged in all experiments
since the vehicles have a limited battery capacity as well as given
energy requirement to operate satisfying daily demand. Of course,
the amount of energy available to sell can vary during the days due
toweather, traffic, driving behaviour variation, route topology. Such
noise factors, leading to consumption increase, can have a signifi-
cant impact on the available energy supply, even compromising the
possibilities of V2G in different contexts. Furthermore, as the
literature indicates [40,41], weather variation strongly impacts
energy consumption. Therefore, countries with severe tempera-
tures (high or low) would need to plan the bus scheduling and
charging considering energy consumption worst-case scenarios.
The stochastic behaviour of such parameters in theMILPmodel will
be considered in further research.
4.3.2. Energy acquisition costs
The energy acquisition cost is also a model parameter that im-

pacts the charging scheduling. Therefore, we selected different
energy selling prices to evaluate the feasibility of V2G interactions.
The battery replacement cost was set up as 130 V/kWh. A sensi-
tivity analysis has been performed, with the selling prices being
increased by 1% steps (until 25%). In this context, selling energy to
the grid becomes economically feasible above a selling price 21%
higher than the standard price. Fig. 9 depicts the results of this
analysis.

As expected, bidirectional charging events become more
attractive when the energy selling price increases. Further, the
amount of energy sold to the grid tends to become limited by the
battery capacities. Although the simulations indicate that it is



Fig. 9. Sensitivity analysis results for energy acquisition cost variation.
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feasible to sell energy to the grid depending on the energy acqui-
sition prices, in real-world situations, this outcome seems to be
unlikely. In intraday energy market trading, the ratio difference
between the maximum and the minimum prices tend to vary at
much lower rates than 21% [42]. However, in some specific condi-
tions, the prices can vary significantly. In this situation, PTOs could
take advantage of such energy prices to sell back energy to the grid
and improve revenues. Dynamic energy management strategies
that consider the variation of intraday prices must be employed to
achieve this goal.

The results indicate that PTO's participation in V2G schemes will
be mainly driven by the battery replacement costs fall rather than
energy selling price increase. Nevertheless, those two scenarios
combined can push forward and accelerate the implementation of
V2G schemes. In this context, electric bus fleets can contribute to
grid resilience by selling energy to the grid and acting as “moving”
batteries.
4.4. TCO projection

We performed a TCO analysis to evaluate the costs related to
Fig. 10. TCO evaluation for: (a) the Stand
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energy transactions and battery replacement. To develop the pro-
jection, we evaluate a standard and a V2G scenario. This analysis
can shed light on the impacts that V2G may cause on the batteries,
since the charging events becomemore frequent in this setting, and
whether or not in the long run it makes sense to perform V2G
considering economic factors.

Firstly, we evaluate the fleet battery lifetime using the Ah-
throughput method. Considering equation (15), in the Standard
scenario, the batteries present a 12-year lifespan. In the V2G sce-
nario, the lifespan drops to 8 years. To be accurate regarding the
battery replacement costs, we set 2020 as the initial year of the TCO
analysis. Therefore, for the V2G scenario, the battery replacement
would occur in 2028. The estimations point out that the battery
price will be around 80 V/kWh in this year. Similarly, for the
Standard scenario, the battery replacement would occur in 2032,
when the battery price is forecasted to be about 73 V/kWh. Those
values were used to calculate the battery replacement costs.
Further, we calculate all the charging events costs expected to occur
for 12 years using the prices in Table 4.

Fig. 10 depicts the costs regarding energy buying/selling events,
battery replacement costs and total costs for the two scenarios.

For the time frame under evaluation, the V2G scenario pre-
sented 39.12% lower total costs (V62,054.25) than the Standard
scenario (V101,938.14). This result is driven by the revenues accu-
mulated during the years by selling back the energy to the grid;
however, the fleet battery replacement time is shortened in four
years.

Fig. 11 compares the TCO costs of both scenarios for a 30-year
time frame over a typical bus fleet replacing period in Europe. For
electric buses, battery prices around 45 V/kWh are projected for
the year 2050 [37].

For the simulated time frame, the savings gap between the V2G
and Standard scenarios is approximately V 50,000. Although it is
necessary to replace the batteries in a shorter period, in the long
run the savings made by PTOs can be enough to pay back a new
battery fleet acquisition cost.
ard scenario; (b) the V2G scenario.



Fig. 11. TCO comparison between the Standard and V2G scenarios.
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5. Conclusion

The electrification of public transportation plays an essential
role in achieving more liveable cities, helping to mitigate climate
change and reduce urban pollution. However, infrastructural and
operational limitations are still the main barriers to adopt electric
buses in our cities massively. In this setting, we presented a new
optimization framework that can be instrumental in assisting the
planning and operation of electric bus systems. We developed a
MILP model that aims to minimize the charging costs, considering
the operational constraints and requirements of the bus system,
including battery degradation and participation in V2G schemes.

We analysed a case study using an 11-bus network in amedium-
size Portuguese city. For the standard scenario, the experiments
reveal that our approach can limit the charging power in a viable
bound, representing savings for the PTO. No grid interaction was
possible in this setting due to the high costs of battery degradation.

We ran a sensitivity analysis to evaluate the possibilities of en-
ergy trading between the electric bus fleet and the grid by assessing
the battery replacement price decline and intraday energy price
variation. The results indicate that it will be economically viable to
perform bidirectional energy transactions shortly, considering the
battery replacement cost reduction expected in the next years.
After a threshold of 100 V/kWh, the PTO starts making profits
considering energy transactions with the grid. If we assume
massive electrification of a large urban centre, such profits can
mean considerable savings for PTOs. In a 2030 forecast, accounting
for battery degradation, the operation costs can be 38% lower than
the current values. The energy acquisition cost analysis shows that
it is economically feasible to sell energy to the grid; however, in
intraday energy market trading, the dynamic prices tend to vary at
much lower rates than those necessary to perform the transactions.
Nevertheless, there is still a lack of regulation and tariff definition
regarding the transactions made within V2G schemes. Therefore,
this market can become more attractive in the future. The TCO
analysis indicates that the V2G scenario presents 39% lower total
costs than the Standard scenario. This result unveils that, in the
long run, deploying V2G schemes can offer higher profits to PTOs,
even with the drawback of replacing the bus batteries earlier. In
summary, the results indicate a decrease in charging costs mainly
driven by the reduction of battery prices; however, combining
battery price fall and electricity selling price increase could accel-
erate the deployment of V2G. The approach developed in this work
can inform decision making in the electrification of bus systems in
different contexts. V2G technology is still evolving. Challenges such
as bidirectional chargers technology, privacy issues and investment
10
costs, still need to be surpassed to leverage V2G worldwide [43,44].
The focus of our work was not regarding the technical level feasi-
bility but rather on the possibilities of trading energy with the grid
regarding economic aspects, including battery degradation and
energy prices.

One limitation of this study is that our model considers an
average discharging rate for the vehicles. In real-world situations,
energy consumption can vary due to weather, traffic, and driving
behaviour variation. We aim to improve the present model by
including stochastic variables (e.g., traffic conditions, delays) to deal
with these types of uncertainty. As further future research, we aim
to apply robust optimization techniques to determine the fleet's
size, the number and power of the chargers, frequency of the ve-
hicles, and bus battery size. Further, the model can include the DSO
perspective, using bilevel optimization methods to address the
hierarchical decision-making process. Such an approach could
provide the requirements for the integration of the bus network
operational needs and the upstream power distribution systems,
contributing to avoid grid stress due to high-power charging
events.
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