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Abstract: The rare-earth element (REE) geochemistry of sedimentary deposits has been used in
provenance investigations despite the transformation that this group of elements may suffer during
a depositional cycle. In the present investigation, we used the geochemistry and XRD mineralogy
of a set of sand and mud fluvial deposits to evaluate the ability of REE parameters in provenance
tracing, and the changes in REE geochemistry associated with weathering and sorting. The analyzed
deposits were generated in a subtropical drainage basin where mafic and felsic units are evenly
represented, and these crystalline rocks are covered by sedimentary successions in a wide portion
of the basin. A few element ratios appear to hold robust information about primary sources (Eu/Y,
Eu/Eu*, LaN/YbN, LaN/SmN, and GdN/YbN), and the provenance signal is best preserved in sand
than in mud deposits. Sediment cycles, however, change the REE geochemistry, affecting mud and
sand deposits differently. They are responsible for significant REE depletion through quartz dilution
in sands and may promote discernible changes in REE patterns in muds (e.g., increase in Ce content
and some light REE depletion relative to heavy REE).

Keywords: rare-earth elements; fluvial sediments; recognition of primary sources; exogenous com-
positional transformations; Cunene River Basin

1. Introduction

Rare-earth elements (REE) have received major attention due to their economic impor-
tance for new technologies, with special emphasis on green energies, electronics, informat-
ics, and innovative agricultural practices. An increasing demand for REE has thus been
observed worldwide during recent decades [1,2]. REE deposits can be formed through mag-
matic, metamorphic or hydrothermal primary processes or be associated with secondary
processes involving weathering and erosion of primary sources [1,3]. As REE tend to be
insoluble in surface environments, their concentrations in a sedimentary deposit reflect the
respective source area geology. Hence, the REE patterns of river sediments, besides being
used to identify commercially valuable deposits, are frequently applied in provenance
investigations without a direct economic focus [4–9]. However, the REE patterns of river
sediments can be affected by exogenous processes, such as weathering [10–14] and sort-
ing [5,11–17]. For example, fine-grained deposits are expected to be particularly influenced
by weathering-related transformations [18,19], but REE geochemistry is still widely used
to trace the provenance of mud deposits [6,7,20,21]. The cumulative effects of exogenous
changes associated with multiple depositional cycles are likely to have a major influence
on REE geochemistry where the recycled component is abundant.

The present investigation is focused on the geochemistry of a set of present-day sand
and mud deposits from the Caculuvar River basin, a sub-basin of the Cunene River in
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the subtropical SW of Angola (Figure 1). It aims to better understand (1) the source rock
control on the REE contents of the produced sediment and (2) the exogenous processes
that influence the REE geochemistry. In the study region, two trunk rivers are separated by
a ridgeline striking broadly north–south, leaving the Caculuvar sub-basin to the west and
the Mucope sub-basin river to the east (Figure 2). The Caculuvar trunk river flows through
an upstream sector, where felsic igneous rocks largely prevail, and a downstream sector,
mainly with mafic igneous rocks, before entering the Kalahari Basin; the Mucope is entirely
placed in the Kalahari Basin, thus draining exclusively a recent sedimentary succession.
Several geological features of the investigated area, such as the similar representation
of mafic and felsic crystalline rocks, and the good separation of regions with sharply
different geologies, provide unique conditions to assess how the recycling of sediments
with different primary sources controls REE geochemistry.
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Proterozoic Chela Group and Leba Formation [23]. The Chela Group comprises a succes-
sion of siliciclastic rocks of different grain sizes and intercalated volcanoclastic rocks that, 
as a general rule, are Si-rich. Zircon grains retrieved from rhyolitic beds allow dating the 
Chela Group at the Paleoproterozoic [24]. Occasionally, younger igneous rocks (~1.5 Ga) 
enriched in the mafic component also occur [25]. The Leba Formation unconformably 
overlies the Chela Group in the higher elevation areas of the Humpata-Bimbe Plateau. It 
consists mostly of dark dolomitic limestones, frequently with well-preserved stromato-
lites. 

Southward, the Caculuvar flows on the pre-Chela basement, which is dominated by 
intrusive rocks. In northern locations, the so-called “regional granite” occurs [26]. In gen-
eral, it is a deformed peraluminous leucocratic granite associated with the Eburnean orog-
eny (~2.0 Ga) [24,27]. Further downstream, the river drains Mesoproterozoic mafic rocks 
of the Kunene Complex of SW Angola, previously called the gabbro-anorthosite complex 

Figure 2. Sampling sites and the orography (left panel) and geology (right panel) of their source areas. Geology is based
on the Geological Map of Angola, scale 1/1,000,000, sheet 3 [22].

2. Regional Setting
2.1. Geology

The Caculuvar River, with a length of 273 km and a drainage basin of 25,322 km2, is
the biggest tributary of the Cunene River. The Caculuvar River basin integrates two trunk
rivers, the Caculuvar and the Mucope. The catchment areas of these trunk rivers (hereafter
referred to as the Caculuvar and Mucope sub-basins) are approximately the same size. The
two rivers only join together less than 10 km from the confluence with the Cunene. The
geologies of the Caculuvar and Mucope sub-basins are substantially different. The Mucope
River is entirely placed in the sedimentary units of the Kalahari Basin, while the Caculuvar
mostly drains the Angolan Block of the Congo Craton, entering the Kalahari only in its
downstream path (Figure 2).

Different units of the Angolan Block are drained by the Caculuvar River. In the NW tip
of the catchment belonging to the Humpata-Bimbe Plateau, its headwaters drain the Pro-
terozoic Chela Group and Leba Formation [23]. The Chela Group comprises a succession
of siliciclastic rocks of different grain sizes and intercalated volcanoclastic rocks that, as
a general rule, are Si-rich. Zircon grains retrieved from rhyolitic beds allow dating the
Chela Group at the Paleoproterozoic [24]. Occasionally, younger igneous rocks (~1.5 Ga)
enriched in the mafic component also occur [25]. The Leba Formation unconformably
overlies the Chela Group in the higher elevation areas of the Humpata-Bimbe Plateau. It
consists mostly of dark dolomitic limestones, frequently with well-preserved stromatolites.

Southward, the Caculuvar flows on the pre-Chela basement, which is dominated
by intrusive rocks. In northern locations, the so-called “regional granite” occurs [26]. In
general, it is a deformed peraluminous leucocratic granite associated with the Eburnean
orogeny (~2.0 Ga) [24,27]. Further downstream, the river drains Mesoproterozoic mafic
rocks of the Kunene Complex of SW Angola, previously called the gabbro-anorthosite
complex [27–29]. These units, coupled with their continuation in Namibia, constitute the
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largest mafic complex of Africa. In places, between outliers of the Kunene Complex of SW
Angola, coeval A-type red granites that usually strike SW–NE occur [30].

After crossing the eastern border of the Kunene Complex of SW Angola, the Caculuvar
River enters the Kalahari Basin approximately 85 km upstream of its confluence with the
Mucope. Its sedimentary infill includes the Kalahari Group with aeolian and fluvial
deposits dated at the late Cretaceous to Cainozoic [31] and a series of Quaternary loose
sands associated with the recycling of the Kalahari Group.

2.2. Climate

The climate of the Caculuvar catchment presents substantial seasonal variation, with
a wet season, from October to April, in which heavy rainfall and high temperatures occur,
and a dry season, from May to September, with lower temperatures [32]. At these latitudes,
the influence that some processes such as the El Niño Southern Oscillation (ENSO) and the
Angola Low (AL) play on rainfall significantly varies. At the interannual scale, ENSO is
primarily responsible for rainfall variations in southern Africa [33], giving rise to seasonal
below-normal rainfall [34]. In contrast, the AL is a low-pressure system occurring from
October to March, favoring the wet periods, bringing the summer rains [35].

According to the Koppen–Geiger climate classification (http://koeppen-geiger.vu-
wien.ac.at/present.htm, accessed on 26 March 2021), in the Caculuvar catchment, the
mountainous sector of the basin to the NW has a subtropical highland climate (Cwb),
transitioning as we move southwards to a hot semi-arid climate (Bsh). In this way, despite
registering a tropical thermal regime softened by the catchment’s mountainous distribution
(monthly average close to 22 ◦C), the average temperature increases to the east and south.
In contrast, the annual precipitation varies in the opposite direction. The southern sectors
of the Caculuvar and Mucope catchments record about 450–500 mm per year, while in the
north, particularly in the mountainous sector of the basin, about 900–950 mm per year is
recorded (Figure 2).

3. Methods

For this study, the main lithological data came from the Geological Map of Angola,
at a scale of 1/1,000,000, sheet 3, published in 1980 [22]. The delimitation of the basins,
sub-basins, and hydrographic network was carried out in GIS and based on the altimetric
data from SRTM DEM V4, with a 30 m pixel size. The selection of the sampling sites
was carried out according to geomorphological and geological criteria, considering two
main objectives: (1) the choice of sampling points along the main river, individualized
by major lithological sectors to capture the sediments of the sector, and those coming
from the upstream sub-catchments; and (2) the choice of sampling points in exclusive sub-
catchments of each of the major lithological sectors to obtain only sediments of that sector.
Following these criteria, field locations were first defined on the cabinet by observing
imagery from the Google Earth and Terra Incognita platforms (to evaluate the terrestrial
access and sediment availability) and then transferred to a database to use in the field. In
total, 25 present-day sediment samples were selected for compositional analyses, including
15 sands and 10 muds (Table 1; Figure 2).

The mineralogical composition was determined, for both sand and mud deposits,
by X-ray diffraction (XRD) using an Aeris instrument (PanAlytical) with a Cu tube, at
15 kV, 40 mA. Diffractograms were obtained on the ground (to <15 µm) with randomly
oriented grains in the range 2–60◦ 2θ. Semi-quantitative estimations of mineral propor-
tions were based on the areas of characteristic reflections identified in the diffractograms
after extracting the background. Estimations were performed for quartz (peaks at 3.34 Å,
after correcting for mica reflection, and 4.26 Å), K-feldspar (peak at ~3.24 Å), plagioclase
(~3.18 Å), calcite (~3.03 Å), pyroxene (~2.9 and 2.95 Å), hematite (~2.7 Å), and phyllosili-
cates (summed reflections of ~7 Å, 10 Å, 12–13 Å, and 14–15 Å).

http://koeppen-geiger.vu-wien.ac.at/present.htm
http://koeppen-geiger.vu-wien.ac.at/present.htm
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Table 1. Representation of different geological units in the catchment areas of the sampling points and overall XRD
mineralogy obtained for each sediment sample (% values).

Sample Source Type Felsic Mafic Sedim. Meta-Sed Quartz KF Plagioc Phyllos Others

Sands

38S Felsic 78.4 1.6 20.0 40 42 9 6 2
39S Felsic 64.8 0.8 34.4 89 0 6 4 1
45S Felsic 77.5 22.5 91 0 0 7 2
46S Felsic 89.5 1.1 9.4 63 17 6 8 6
21S Mafic 13.2 86.8 47 23 21 0 10
42S Mafic 32.7 66.5 0.2 0.7 34 16 47 1 3
20S Cunene 14 4 63 18 84 0 5 0 11
12S Mixed 13.1 15.0 68.3 3.7 77 15 2 3 3

20aS Mixed 47.5 31.9 7.7 12.9 56 31 7 4 2
37S Mixed 41.7 40.3 7.8 10.2 14 26 51 7 2
4S Recycled 100 100 0 0 0 0

19S Recycled 4.5 99.5 96 0 0 3 2
48S Recycled 100.0 93 0 4 3 0
49S Recycled 100.0 96 3 0 0 1
50S Recycled 100.0 92 0 0 5 3
54S Recycled 100.0 97 0 0 2 1

Muds

38L Felsic 78.4 1.6 20.0 19 18 15 45 4
39L Felsic 64.8 0.8 34.4 34 24 5 29 7
44L Felsic 77.5 22.5 31 39 5 23 1
15L Mixed 36.0 41.2 13.9 8.9 38 0 36 26 0
40L Mixed 30.1 39.9 35 24 5 29 7
5L Recycled 100.0 43 0 0 57 0
9L Recycled 100.0 33 19 13 33 2

43L Recycled 100.0 35 14 0 38 14
53L Recycled 100.0 73 2 0 24 0

Sedim.: sedimentary; Meta-sed.: meta-sedimentary; KF: K-feldspars; Plagioc.: plagioclases; Phyllos: phyllosilicates.

Chemical element concentrations were determined with the same aliquots (~5 gr)
used for bulk mineralogy. Analyses were performed at the laboratories of Bureau Veritas
(Vancouver; group 4A–4B and code LF200) (Supplementary Material Table S1). Most
major oxides were determined by ICP-AES (using a Spectro Ciros/Arcos instrument) and
trace elements by ICP-MS (using an ICPMS ELAN 9000 instrument), following a lithium
metaborate/tetraborate fusion and nitric acid digestion. For quality control, accuracy
was obtained through the standard STD SO-19. The estimated errors for the elements
considered in this research were, in general, below 2% and, except for Sm (~6%), always
below 5%. Blanks were almost always below the detection level.

The composition of the Upper Continental Crust (UCC; [36,37]) was applied for
the normalization of the geochemical data. Lanthanides were also normalized to the
chondrite composition [38], with the fractionation parameters being computed after this
normalization. For simplicity, REE are grouped here as light REE (LREE; La, Ce, Pr, Nd,
and Sm), Eu, and heavy REE (HREE; Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu). In the analysis
and graphical representations, Y and Sc were separated from the REE. Univariate and
multivariate statistical analyses were performed using the software JMP Pro 14.0. To better
evaluate the associations between compositional parameters, principal component analysis
(PCA) was performed on different sets of geochemical results.
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4. Results
4.1. Sediment Classification Based on Source Geology

Sampled sediments can be classified into four types according to the geology of their
catchment areas (Table 1). Where the drainage area includes mafic and felsic crystalline
rocks and each represents at least ~1/3 of the crystalline component (i.e., after excluding
sedimentary and low-grade meta-sedimentary terranes), the source is classified as mixed.
Felsic and mafic sources are considered where one of these rock types is prevalent, and the
(meta-)sedimentary cover does not occupy more than 75% of the drainage area. Otherwise,
the sampling sites are considered to have a recycled source. With one exception, collected
in the upstream portion of the Caculuvar sub-basin, recycled sediments came from the
Mucope sub-basin. Mafic-derived sediments were collected within the Kunene Complex
of SW Angola, while felsic-derived sediments came from upstream locations in streams
draining the Eburnean granitoids. Sampling sites in the Cunene and at the middle to lower
courses of the Caculuvar are mixed source.

4.2. Mineralogy

The XRD mineralogy is presented in Table 1. Sand samples yield variable amounts of
quartz and feldspar, with phyllosilicates in secondary to minor amounts. Carbonates and
Fe oxides can be present in minor amounts. Sands with a sedimentary to meta-sedimentary
source are strongly enriched in quartz (>92%). Mafic-derived sediments tend to hold more
feldspar and less quartz than felsic-derived sediments. The composition of sands with
a mixed source are widely variable, revealing either a clear enrichment in quartz, especially
where sedimentary units occupy extensive areas of the respective catchments (12S), or
abundant feldspar, namely, near the downstream border of the Kunene Complex of SW
Angola (37S).

Except for some sediments with a dominant recycled component, which contain very
low feldspar, sampled muds usually yield similar proportions of quartz, phyllosilicates,
and feldspar. Recycled muds (i.e., mainly sourced by previous sedimentary and meta-
sedimentary units) can yield the highest contents of quartz (73%) or phyllosilicates (57%).
The proportions of feldspar in felsic-derived and mixed-source muds are not substantially
different (24−44%). Carbonates were detected in some felsic and recycled muds, but
always in secondary to minor amounts.

4.3. Overall Geochemistry

Sand composition is widely variable, particularly with regards to the concentrations
of mobile elements Na, Ca, K, Mg, Sr, Rb, and Ba (Figure 3). Sands yield more SiO2 than
muds. Conversely, the contents of Fe2O3, MgO, REE (including Y and Sc), Cs, U, V, Zr, and
Hf tend to be higher in muds. Lost on ignition is minor in sands (0.9–4.4%) and moderately
high in muds (11.9–18.5%).

All sand deposits are dominated by SiO2 (60.1–97.4%), containing Al2O3 (0.9–20.3%),
CaO (non-detected to 9.3%), Fe2O3 (0.2–4.3%), K2O (0.02–4.56%), Na2O (non-detected to
3.1%), and TiO2 (0.1–2.9%) in more variable percentages. The abundances of other elements
are always below 1%. As expected, sands mainly derived from mafic-dominated source
areas are enriched in CaO, Fe2O3, TiO2, MgO, and Sr (Figure 3; Table 2). They are also
distinguished by enrichment in Eu relative to the other sand samples. Felsic-derived
sands are distinguished by relatively high contents of K2O and Rb. Sand derived from
sedimentary units yields the lowest contents of mobile elements such as Na, Ca, and K and
are the most enriched in silica (>93%).

Muds are still dominated by SiO2 (47.1–65.9%) and, compared to sands, yield higher
and more homogenous contents of Al2O3 (13.1–25.5%) and Fe2O3 (3.2–8.0%). Except for
Na2O, which occurs in lesser amounts in recycled sediments, the element abundances
measured in muds with different source geologies broadly overlap (Figure 3).
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Figure 3. Overall geochemistry of sand and mud deposits, and the composition of sands and muds
with distinct source geologies. The range of concentrations between maximum and minimum values
is represented in the diagrams.

Table 2. Selection of geochemical data obtained with the studied sediments.

Source SiO2 Al2O3 MgO CaO Na2O K2O La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

Muds

39L Fels 52.5 23.57 0.56 0.39 0.44 3.39 120.5 257.9 28.07 101 16.06 2.88 13.27 1.9 10.48 2.19 5.94 0.94 6.31 0.97
44L Fels 57.3 21.79 0.48 0.18 0.22 3.87 92.1 183.1 18.63 64.5 10.47 1.87 8.82 1.27 7.32 1.58 4.83 0.77 5.35 0.91
P15 Mix 51.47 20.27 1.35 2.57 0.89 0.78 30.1 67.8 7.15 27 5.18 1.65 4.52 0.65 3.88 0.75 2.17 0.3 2.02 0.3
38L Fels 48.16 25.47 0.78 0.63 0.63 2.93 133 286.5 29.96 104.7 16.91 2.65 13.32 2.01 11.42 2.31 7.25 1.09 7.4 1.17
40L Mix 47.06 25.43 0.66 0.81 0.31 0.91 70.9 147.1 16.91 60.2 9.66 2.7 8.2 1.1 5.86 1.11 3.26 0.47 2.8 0.44
P5 Rec 65.92 13.14 0.89 0.63 0.11 1.46 35.4 85.1 8.54 30.1 5.88 1.24 4.98 0.76 4.36 0.89 2.68 0.41 2.7 0.42
9L Rec 47.41 23.06 1.24 1.38 0.25 0.61 33.4 67.2 7.94 28.9 5.56 1.57 4.71 0.64 3.73 0.74 2.1 0.29 1.9 0.27
43L Rec 50.48 18.48 1.5 3.18 0.12 2.18 55.1 101.6 13.95 51.1 9.46 2.21 8.33 1.22 6.8 1.35 3.86 0.53 3.25 0.53
P53L Rec 52.1 22.96 0.15 0.09 0.03 0.47 44 139.8 13.7 52.4 11.48 2.41 8.88 1.34 7.73 1.52 4.32 0.65 4.4 0.67
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Table 2. Cont.

Source SiO2 Al2O3 MgO CaO Na2O K2O La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

Sands

20S Cun 92.62 2.95 0.11 0.23 0.15 0.84 9.7 18.6 1.99 7.2 1.28 0.25 1.14 0.18 1.14 0.22 0.8 0.12 0.9 0.12
12S Mix 91.62 3.74 0.03 0.15 0.24 1.84 13.2 27.1 2.8 9.8 1.63 0.24 1.44 0.2 1.29 0.24 0.81 0.13 0.98 0.15
20aS Mix 83.81 7.81 0.15 2.48 1.33 0.88 7.6 15.8 1.78 7.1 1.32 0.65 1.06 0.15 0.88 0.16 0.47 0.06 0.45 0.07
37S Mix 64.62 20.26 0.55 8.29 3.12 0.29 3.6 4.6 0.61 2.1 0.31 0.46 0.39 0.04 0.25 0.05 0.13 0.005 0.025 0.01
38S Mix 82.27 8.68 0.1 0.29 0.97 4.56 16.8 51.5 3.77 13.2 2.09 0.4 1.78 0.24 1.42 0.32 1 0.15 0.9 0.16
39S Fels 89.48 5.11 0.02 0.06 0.36 3.44 7.3 13.7 1.41 5 0.77 0.19 0.75 0.13 0.91 0.19 0.58 0.1 0.57 0.1
45S Fels 84.59 7.42 0.1 0.08 0.31 3.84 21.1 36.7 4.15 14.4 2.36 0.41 1.9 0.29 1.82 0.38 1.32 0.2 1.37 0.28
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42S Mafic 65.42 15.35 0.65 5.45 2.65 0.99 12.9 26.7 2.86 11.1 2 1.32 1.73 0.23 1.26 0.25 0.77 0.12 0.64 0.14
4S Rec 97.25 0.85 0.03 0.04 0.03 0.28 3.2 5.7 0.56 2.1 0.42 0.07 0.42 0.06 0.42 0.09 0.28 0.04 0.38 0.05
19S Fels 92.38 2.79 0.08 0.03 0.02 0.45 11.9 22.9 2.58 9.1 1.53 0.32 1.38 0.24 1.49 0.31 0.93 0.15 1.1 0.17
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Chemical contents as % for major oxides and mg/kg for REE. Mix: mixed; Fels: felsic; Rec: recycled.

4.4. REE Grades and Patterns

The concentrations of REE are substantially higher in muds (153.5 < ∑REE < 619.7;
137.2 < ∑LREE < 571.1; 14.4 < ∑HREE < 45.0) than in sands (10.8 < ∑REE < 93.7; 9.1 < ∑LREE < 91.0;
0.9 < ∑HREE < 8.6). Muds are also enriched in Y (19.7–69.4 mg/kg) and Sc (10–20 mg/kg)
relative to sands (1.2–12.5 mg/kg; 0.5–5 mg/kg) (Figure 4). REE display a strong correlation
with Y and a moderate correlation with Th both in sands and muds (Figure 5). No
correlation is observed between REE and Zr in sands and between REE and Sc in muds.
Fairly good correlations are observed between Eu and Y and Sc. The correlation Y–Eu
becomes especially robust in sands after isolating sediments enriched in felsic and mafic
components (Figure 5).
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The REE patterns are more homogenous in muds than in sands (Figures 4 and 6). Ex-
cept for one sample with a mixed provenance that shows anomalously high GdN/YbN (6.31
in 37S), REE patterns for sands reveal substantially higher LREE fractionation
(3.41 < LaN/SmN < 7.25) than HREE fractionation (0.58 < GdN/YbN < 2.19). The Eu
anomaly is positive in mafic-derived sands (1.85 < Eu/Eu* < 2.11) and negative in both
felsic-derived (0.57 < Eu/Eu* < 0.79) and recycled (0.50 < Eu/Eu* < 0.68) sands (Figure 5).
Sands with a mixed mafic–felsic source yield widely variable Eu anomalies (0.47 < Eu/Eu* < 4.03).
Samples with distinct source areas do not display substantially different Ce anomalies
(0.69 < Ce/Ce* < 1.51), the extremes being measured in sands with a mixed provenance.

REE patterns for muds are characterized by slightly higher LREE fractionation
(2.39 < LaN/SmN < 5.49) than HREE fractionation (1.33 < GdN/YbN < 2.37) (Figure 6).
The Eu anomalies are negative in muds with felsic and recycled sources (0.58 < Eu/Eu* < 0.91),
and slightly more variable in muds with mixed sources (0.52 < Eu/Eu* < 1.02). Except
for one sample sourced exclusively from the sedimentary units of the Kalahari Basin (53L;
Ce/Ce* = 1.35), muds display only minor, positive or negative, Ce anomalies (0.87 < Ce/Ce* < 1.15).
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5. Discussion
5.1. Fingerprints of Primary Sources

The total contents of REE in the studied samples with mafic and felsic sources are
very similar. However, some features of the REE patterns, such as Eu/Eu* and the REE
fractionation parameters LaN/YbN and GdN/YbN, are higher in mafic- than felsic-derived
deposits (Figure 6). The links between these parameters and primary source rocks become
particularly evident in the PCA conducted with REE data and major chemical elements
(Figure 7). In the PCA map, Na and Ca concentrations are plotted with Eu/Eu*, reflecting
the presence of Eu in plagioclase [4], which is abundant in mafic-derived deposits. These
variables also appear linked with LaN/YbN and GdN/YbN, demonstrating that REE pa-
rameters are good proxies of the mafic contribution. The studied mafic-derived sediments
appear to display slightly steeper HREE patterns than sediments enriched in the felsic com-
ponent. The biplot Eu/Y also provides a good discrimination of sands with predominantly
mafic and felsic sources, with higher Eu/Y in the former (Figure 5), confirming the ability
of this ratio in the assessment of primary sources.

Sands with a mixed provenance can display REE patterns resembling either mafic-
or felsic-dominated deposits (Figure 6). The dominant primary source can be estimated
with the aforementioned REE parameters mentioned before (Eu/Y, Eu/Eu*, LaN/YbN,
LaN/SmN, and GdN/YbN). At least concerning the REE contents, the contributions from
different rock types do not directly mimic the spatial representation of these rock types
in the drainage areas. In other words, some areas appear to be supplying more sediment
than others. Note, for example, sample 37S, for which the REE patterns display a typical
mafic fingerprint, but in its catchment, felsic rocks are even more abundant than mafic
rocks (Table 1). In this case, the proximity to potential source rocks is crucial, as the sample
was collected at the downstream end of the area with mafic outcrops, while felsic rocks
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are dominant only approximately 75 km upstream (Figure 2). A sample collected slightly
upstream, closer to outcrops of felsic crystalline units and covering sedimentary successions
(20aS), is much less enriched in the mafic component. The other sands, either with a mixed
or recycled source, are dominated by the felsic component.
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The discrimination of source areas is not as obvious for muds. The highest mafic
contributions appear to occur in 15L (Figure 7), but the composition is still not substantially
different from some muds with a distinct provenance (e.g., 9L, 40L, 43L; Table 1). Although
the geochemistry of fine-grained sediment fractions, frequently with an emphasis on REE,
is an important tool in provenance investigations [6,7,20,21,39,40], the present results show
that the interference of other exogenous processes renders the recognition of source areas
more complicated.

5.2. Influence of Sediment Cycling on REE Geochemistry

Comparisons of fluvial sediments with their source rocks indicated that depositional
cycles are responsible for discernible changes in REE [14,41–45]. These transformations can
be associated with a different process. In the following sections, we discuss the effects of
weathering and sorting.

5.2.1. Weathering

REE are mobile within weathering profiles, particularly during the early stages of
alteration [46,47]. Still, because of the decomposition of labile minerals that host minor REE
and the retention of these elements in secondary minerals, weathering can promote an REE
enrichment relative to the parent materials. To better understand the effect of weathering on
REE, PCA was performed with parameters that characterize the REE geochemistry (∑LREE,
∑HREE, Eu, Eu/Eu*, Ce/Ce*, LaN/YbN, LaN/SmN, and GdN/YbN) and a selection of
compositional parameters that can be regarded as weathering proxies (Figure 8).
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The extent of weathering transformations can be estimated through many different
indices based on the concentration of major elements. Their formulations, advantages, and
weaknesses were discussed in more detail elsewhere [48–50]. The parameters adopted in
the PCA include the Chemical Index of Alteration (CIA; [51]), a modified CIA that does
not consider CaO (CIX; [52]), and the Mafic Index of Alteration that also considers the
fate of Fe/Mg silicates (MIA; [53]). The values obtained for all these weathering proxies
result from ratios between the concentrations of one or more non-mobile elements and
the concentrations of sets of mobile elements in the sample (Table 3). In addition, the
weathering intensity was assessed through the parameters αAlE that measure the depletion
of different mobile elements (E) using a ratio of their concentrations to the concentration of
non-mobile element Al and applying a normalization to a reference material (e.g., UCC, as
adopted in the present research) [54].
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Table 3. Geochemical indices of weathering adopted in this research.

Parameter Formula (Where Necessary); Response to Weathering Reference

WIP (Weathering Index of Parker) (CaO*/0.7 + 2Na2O/0.35 + 2K2O/0.25 + MgO/0.9) × 100 (1) [55]

CIA (Chemical Index of Alteration) Al2O3/(Al2O3 + K2O + CaO* + Na2O) × 100 (1) [51]

αAl
E (Al/E)sample/(Al/E)UCC, with E a mobile element [54]

MIA(o) (Mafic Index of Alteration,
oxidative conditions) (Al2O3 + Fe2O3) × 100/(Al2O3 + K2O + CaO* + Na2O + MgO) (1) [53]

CIX (modified CIA) Al2O3/(Al2O3 + K2O + Na2O) × 100 (1) [52]

(1) Uses molar proportions. Cao*: silicate-bound CaO. Except for WIP, all indices tend to increase with weathering.

Using both sand and mud samples, the PCA with weathering indices and REE features
separates these two sets of deposits (Figure 8A). However, one sand sample collected in
the upper reaches of the Caculuvar sub-basin that was sourced from meta-sedimentary
units is plotted along with muds. This PCA also clusters most variables indicative of the
weathering intensity (CIA, CIX, MIA, αAlNa, and αAlCa) with LREE, HREE, and Eu in the
region of the PCA where the mud deposits are plotted. Only αAlMg and αAlK, which are
strongly influenced by the source rock composition [18,56], are not grouped with the other
weathering parameters, being plotted on opposite sides of the PCA map.

To remove the grain size effect on the sediment composition, two additional PCAs
were performed for mud and sand deposits in separate. Due to the limited number of
samples, some variables found to be redundant were not included (GdN/YbN and MIA in
both PCAs; CIX, αAlK, and αAlCa in the PCA for muds) and only ∑REE was considered.

In the PCA map for sand deposits, Eu/Eu* and LaN/YbN appear linked and in oppo-
sition to Ce/Ce*, while weathering indices are plotted orthogonally, indicating that surface
alteration is not a major factor influencing REE patterns (Figure 8B). Regarding muds,
weathering indices appear to correlate with Ce/Ce* in opposition to fractionation indices
(Figure 8C), suggesting a concentration of Ce during surface alteration and a preferential
release of La relative to Sm and HREE. The limited number of mud samples does not
allow safe conclusions about weathering effects. However, they are compatible with the
reported preferential mobilization of LREE [14,57] and the concentration of Ce in secondary
oxides formed during weathering [58,59]. The PCA for muds also shows REE contents in
opposition to Eu/Eu*. As secondary REE-bearing minerals tend to show stronger negative
Eu anomalies (lower Eu/Eu*) than the primary minerals they result from (e.g., feldspar,
mica, and ferromagnesian silicates [60,61]), surface decomposition could be promoting
REE enrichment.

5.2.2. Sorting

The segregation of sediment materials with different sizes, shapes, and densities plays
a fundamental role in sediment geochemistry [14,17,42,62,63]. Significant amounts of REE
in river sediments are hosted by particles whose concentrations are strongly influenced
by sorting processes, such as heavy minerals [64–66] and clay minerals [65,67,68]. For the
studied deposits, the PCA performed with geochemical data suggests that sorting is the
principal factor determining the compositional variability (Figure 7).

Sorting accounts for the separation of fine-grained particles (clay to fine sand, depend-
ing on flow conditions) that are preferentially transported as suspended loads from coarser
particles mainly transported as a bedload [69]. Muds are characterized by enrichment in
elements that tend to be hosted in phyllosilicates, such as Al (clay minerals and micas), Fe
and Mg (e.g., biotite, chlorite, and some illite), and K (muscovite and some illite). Titanium,
along with very fine-grained REE minerals also tends to be concentrated with the finer
fractions. On the other hand, sands are enriched in quartz and contain variable amounts
of feldspars and minor heavy minerals. REE can also be frequently adsorbed onto clay
minerals and Fe-Mn oxides, which may hold the majority of the leachable REE compo-
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nent [14]. Except for some mafic-derived sands, these deposits contain minor amounts
of heavy mineral grains. Hence, sorting and quartz dilution are partially responsible for
the low contents of most REE minerals in sands. Occasional exceptions are Eu, hosted in
feldspars, and Ce, probably associated with coatings (Figure 9).
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Figure 9. Plots of CIA–WIP applied to assess weathering, recycling, and grain size control on REE geochemistry. Bubble
sizes represent ∑REE (A), REE fractionation determined as LaN/GdN (B), Eu anomaly (C), and Ce anomaly (D). Eu/Eu* is
Eu anomaly; Ce/Ce* is Ce anomaly.

5.2.3. Effect of Multiple Depositional Cycles

Intense quartz dilution can be accomplished through recycling, which promotes
a progressive enrichment in chemically stable and mechanically resistant minerals [70].
Feldspar is frequently the most abundant mineral of crystalline rocks that does not endure
a sediment cycle as quartz. With the decrease in the feldspar contents, the negative Eu
anomaly becomes progressively more evident, reflecting the release of Eu. Recycling is
also responsible for the depletion of fine-grained detritus, which is frequently dominated
by secondary clay minerals [50]. The quartz dilution effects on REE concentrations are
particularly obvious for sands sourced from the Kalahari Group (Figure 7). These sedi-
ments are strongly enriched in quartz (92–100%) and yield the lowest REE contents, with
their geochemistry indicating that they are associated with the most intense surface de-
composition (Figure 8). Different REE are not affected in the same way during sediment
cycling. For example, LREE appears to be preferentially leached relative to HREE, leading
to a decrease in LaN/YbN, but the higher values of Ce/Ce* show that Ce is not hosted
by the same minerals as the remaining LREE. Part of it is likely retained in coatings that
evolved sand grains instead of fine-grained particles, which tend to be preferentially lost
during sediment cycles.
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Recycling effects can be assessed with a combination of compositional parameters.
Unlike CIA and other indices used in this paper to assess the weathering intensity, the
Weathering Index of Parker (WIP; [55]) is strongly influenced by the addition of recycled
quartz. Hence, plots of CIA–WIP have been used to understand how recycling controls
sediment composition [52,71]. Here, we used this biplot with a third dimension, the
bubble size, to represent a feature of the REE geochemistry (Figure 9). The diagram clearly
shows how quartz dilution in recycled sands is responsible for REE impoverishment. This
set of samples is also characterized by particularly low Eu/Eu*, responding to feldspar
decomposition and breakdown, and flatter REE profiles due to the solubility of LREE.
As expected, the composition of muds is not as affected by quartz dilution as observed
with sands.

6. Conclusions

Sediment cycles, through weathering and sorting, influence the REE geochemistry of
sands and muds differently. The decomposition of labile components and the segregation of
particles according to size, shape, and density culminate with significant quartz enrichment
in sand deposits, while mud deposits become enriched in secondary minerals. Quartz
dilution explains the low REE content in sands, particularly in those most affected by
recycling. Sand deposits with evidence of the most intense surface decomposition hold the
lowest amounts of REE. As weathering transformations are accumulated during successive
sediment cycles, the composition of recycled sands also points to more intense weathering,
but the REE depletion should be ascribed to quartz dilution. REE concentrations in muds
are influenced by two processes with opposite effects. Quartz dilution can be responsible
for some REE depletion, while the decomposition of labile components and the retention
of REE in secondary minerals account for some REE enrichment. The present research
confirms that several parameters of REE geochemistry (e.g., Eu/Y, Eu/Eu*, LaN/YbN,
LaN/SmN, and GdN/YbN), particularly for sands, provide excellent information about the
source geology. Surface decomposition seems to be responsible for an increase in Ce and
some LREE depletion relative to HREE in muds but has no obvious consistent effects on
the REE patterns of sands.
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