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ABSTRACT Human-Machine Interfaces employing biosignal-based inputs are hard to translate to real-life
applications, in part because of the difficulty of developing generalized models to classify physiological
events representing a user’s actions. In the proposed framework, an Electrooculography (EOG)-based game
is operated through a pipeline of decision methods. These include a user-independent classification model
of eye movements using a Convolutional Neural Network (CNN), which is fed with images created from
signal windows, and an Ensemble of Utility Decision Networks (EUDN), which moderates the impact
of oftentimes conflicting ocular events while enabling a more natural level of control over the interface.
The CNN and the EUDN replace the normally used feature-based ocular event detection methods for
EOG. Finally, a Reinforcement Learning-based game actuation approach simultaneously updates multiple
(State,Action) pairs for each rewarded outcome, intervenes to mitigate the consequences of wrongful game
Commands, and can be used as part of a ‘‘shared-control’’ paradigm based on EOG. Results show a positive
impact of Reinforcement Learning both in improving participants’ game performance as well as in reducing
some of their subjective workload indicators.

INDEX TERMS CNN, decision tree, electrooculography, reinforcement learning.

I. INTRODUCTION
Serious games are usually developed in connection to rehabil-
itation scenarios, or for players with some form of cognitive
or motor impairment that prevents normal human-computer
interactionmodes. These specific needs havemade biosignals
natural candidates for alternative input modes in a game, and
depending on the source, they can detect either voluntary
or involuntary physiological events from the player. There
are, however, several issues preventing quick adaptation of
players to biosignal-based games, of which the most impor-
tant might be the system calibration and familiarity with the
gameplay.

The associate editor coordinating the review of this manuscript and

approving it for publication was Wentao Fan .

Serious games have already been implemented using
different types of biosignals as their input mode, such
as Electroencephalographic signals [1], [2] or Electromyo-
graphic signals [3]. In this work we focus on Electroocu-
lographic (EOG) signals, which are generated by electrical
potentials measurable around the eye, given that each ocular
globe works as a dipole. Almost all types of ocular move-
ments can be detected in this way [4], which includes vertical
and horizontal saccades. Eyelid movements such as blinks
can also be detected using EOG. Typically, physical EOG
setups include two pairs of bipolar electrodes and a ground-
ing electrode, which can be self-standing or integrated on a
goggle-like device; they are primarily used to classify eye
movements into four classes – up, down, left and right.

This type of classification is done in [5], as the player
controls a dance game by issuing directional commands using
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EOG. In [6], a goggle-like device is used to acquire EOG
signals to classify eye movements so that players can perform
increasingly difficult sequences of eye movements. In [7],
EOG is used to position gaze so that an agent throws a
baseball in the chosen direction, with eight directional targets
available.

Given the relative scarcity of EOG-based game literature,
it is also important to refer to EOG-based Human-Machine
Interfaces (HMI) aimed at improving the quality of life of
motor-impaired people. Saccade detection and eye-tracking
can be used to either enable wheelchair navigation [8],
remotely control a television [9], or type phrases [10], [11].
In [12], character recognition is obtained from the continuous
tracking of eye movements through EOG. A speller using
monopolar EOG acquisition is demonstrated in [13] to detect
blinks synchronized with flashes on a virtual keyboard.

Limitations of EOG include the discreteness of ocular
events and the unreliability of signal-derived features. This
means EOG-based interfaces are very different from conven-
tional game interfaces, making initial unfamiliarity with it
a major point of concern. The impact of these issues may
be minimized by adapting some of the game’s features to
the player’s general expectations, improving game flow for
people controlling EOG-driven games for the first time and
who might be disappointed by the very specific limitations
posed by this type of input.

The use of Reinforcement Learning (RL) is one of the
ways in which these limitations can be mitigated. RL is a
group of machine learning methods in which every action a
machine takes is registered and assigned a reward, impacting
its future actions. In an RLmachine learning approach, future
actions from an agent are then modified with the goal of max-
imizing the machine’s predetermined metric of global return
[14]. In HMI trials, the relatively small amount of recorded
data compared to other implementations of machine learning
means that a direct RL approach is generally favored, instead
of a data-driven deep learning-based approach. Examples of
this approach can be seen in the game-like robotic rehabilita-
tion HMIs implemented in [3], [15], in which RL allows for
in-game adaptations of the physical system’s response so the
user remains motivated and engaged.

EOG classification is usually accomplished using either
time or frequency domain features [4], [16]. Among the vari-
ous classification methods available, Neural Networks (NNs)
have the particularity of bypassing the step of feature selec-
tion, as the most relevant are automatically selected when
training the NN [17]. NNs have been used in both raw and
filtered EOG signal classification [18], [19], and have also
been used to classify selected features [20]. Convolutional
Neural Networks (CNNs), a subset of NNs, have been intro-
duced and remain especially popular in the field of com-
puter vision [21]. A CNN can extract features directly from
raw images, yielding very good performances in dataset-
based image recognition [22], [23]. The application of CNNs
towards classification of EOG signals is rare, although exam-
ples can be found in [24], to detect the state of drowsiness

using filtered EOG signals as inputs, or for eye movement
recognition by using the EOG’s FFT as the CNN’s input [25].

A. GOALS AND CONTRIBUTIONS
In this paper we strive to mitigate the user adaptation prob-
lems often raised by the need for calibration and unfamiliar-
ity to an interface, which prevent normal engagement with
an EOG-based HMI. These problems were found in [26],
where we first introduced an EOG-based videogame whose
performance was excessively dependent on the user’s EOG
calibration and on the detection of the player’s centering
saccades, limiting the playability of the game.

The methodological contributions of this paper, which as
a whole form a new EOG event decision and classification
pipeline, are threefold:

1) A user-independent CNN model, acquired using EOG,
is used for ocular event classification. The CNN input
is based on RGB images obtained from EOGwindows,
which to the best of our knowledge is the first time
such an approach is used for classifying ocular events.
A sliding window allows the player to issue Commands
asynchronously.

2) An Ensemble of Utility Decision Networks (EUDN)
that allows to prevent conflicting classification deci-
sions from the CNN’s sequential decisions, which may
result from the overlapping windows.

3) Two RL approaches are proposed, with two modi-
fied Q-Learning methods with new update and reward
methods. Both approaches are continuously updated
during gameplay, and their models are used to help
the user avoid collisions. The first approach only does
so if the user has issued prejudicial game Commands,
while the second intervenes even if the user has issued a
‘‘Null’’ Command. This configures a ‘‘shared-control’’
paradigm. In their reward policies, for negatively-
rewarded outcomes, three (State,Action) pairs are
revalued instead of one, so as to discourage repetition
of similar Event sequences in the future.

B. PAPER ORGANIZATION
The paper is organized as follows. In Section II, the system
architecture and the methods used in each version of the game
are described. In Section III we present the gameplay results
of three different modes of processing the EOG command
signals, including game performance for the three different
versions of the game incorporating RL. In Section IV we
expand this presentation into a discussion on the results of the
online game sessions. We reserve Section V for a concluding
note about the possible impact of this work and its impli-
cations in developing Neural Networks and Reinforcement
Learning mechanisms for the recognition and classification
of human activities using biosignals as their sole input.

II. MATERIALS AND METHODS
A. ACQUISITION SETUP AND PARTICIPANTS
EOG signals are acquired from electrodes, placed in the
periphery of the eye according to montage in Fig. 1. EOG
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FIGURE 1. Diagram of the overall system architecture. All operations related to signal processing, classification, decision and game
display are executed in the same workstation. User commands are issued through ocular movements, which are acquired by two bipolar
EOG channels placed on the face. Squares denote the horizontal EOG electrodes, triangles point the vertical EOG electrodes. The
ground/reference electrode is placed on the user’s forehead (circle).

signals are acquired using a g.tec gUSBamp amplifier with
a sampling rate of 256 Hz, filtered with a 50 Hz notch filter,
and transmitted to a real-time Simulink environment. Eleven
participants took part in the trials (8 male), with an average
age of 27.7 years (σ = 7.4). For the trials, participants were
seated about 55cm away from the 24′′ computer game screen.

The study was conducted complying with the code of
Ethics of the Declaration of Helsinki. Informed consent was
obtained from all participants, explaining the aims of the
study, their role as participants (e.g., voluntary participation)
and the ethical commitments of the research team (e.g., data
anonymization, guarantee of confidentiality). The EOG elec-
trodes mounted on the face are non-invasive and without
health risks, and the experiments were conducted only with
healthy participants.

B. OVERALL SYSTEM ARCHITECTURE
After acquisition and pre-processing, EOG signals are trans-
formed into intensity maps of the vertical and horizontal EOG
signals, which are encoded into an RGB matrix to form an
image in PNG format. This image is sent via TCP/IP into
the application running the CNN, which receives one new
image every 0.25 seconds. Successive decisions outputted by
the CNN are fed into our Ensemble of Utility Decision Net-
works (EUDN), whose rule-based output takes into account
the CNN’s last eight classification decisions. The resulting
game Command is displayed to the user in the game screen.
The overall pipeline of the data processing system is shown
in Fig. 1. Each module is detailed below.

C. EOG SIGNAL, USER EVENTS AND GAME COMMANDS
To provide the player with a reasonable degree of control
over the vehicle, we have designed our kart game with nine
different EOG Event classes, reflecting several different user
actions. Six of these classes are related to saccades of differ-
ent amplitudes, with three classes for rightward saccades and
three for leftward saccades. We do not account for vertical
saccades because only lateral movement of the kart is needed
in the game. There are two classes of blinks considered, single
blinks and double blinks. User action that does not fall into
one of these eight classes is classified as a ‘‘Null’’ Event,
originating no game Command. The nine Event classes from
User Actions are described in Table 1.

TABLE 1. Discrete encoding of Event classes to their corresponding User
Action.

TABLE 2. Codes of game Commands.

Game Commands and go-kart actions are indifferently
defined, as no go-kart dynamics are considered. Game Com-
mands have an indirect connection to eye movements, and
hence to Events. Game Commands are described in Table 2.
The mapping between Events and Commands will be
described further ahead, in connection with the description
of the classification and decision methods.

D. GAME OPERATION AND GRAPHICAL INTERFACE
The game’s graphical interface follows the same layout pro-
posed in [26], with a go-kart (controllable agent) going down
a straight road and capable of avoiding obstacles by moving
laterally (see Fig. 2). Obstacles appear on the road in random
lateral positions, but are generated at a fixed rate. A collision
with the go-kart is detected using an axis-aligned bounding
box chain between the obstacle and the agent. Each collision
increments a penalizing score, which can be compared at any
time with the total number of obstacles presented to provide
a measure of a success rate for the player. The scenario is a
3D infinite scrolling model in which the agent can only move
over the road. The game was developed using C++/Qt and
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FIGURE 2. A snapshot showing the gaming environment, the kart and
two obstacles. Obstacles appear randomly on the road at fixed intervals,
and the user must perform saccades to deviate from them, or blinks in
order to change the kart’s speed. The kart can only move over the road
and the sidewalk. Superimposed over the game environment are also the
bounding boxes and the numbering of the states used to determine RL
State information, which is given by a 14-bit value shown in the bottom.
After the bit value for whether the go-kart is in the left or right-hand sides
of the road, there are 13 other non-mutually-exclusive bits that inform on
the position of an obstacle relative to the go-kart. Bit 1 is set when
obstacles are outside of any of the bounding boxes. Bit 9 is set when both
Bits 6 and 8 are set as well; together with Bit 3, these four are collision
bits, pointing to situations in which the bounding boxes of the kart and
an obstacle overlap. Bits 5, 7, 10 and 11 are set when a lateral collision
might occur if the next command is issued in the wrong direction.

uses OpenGL to draw its visual elements at a frame rate of
≈ 24Hz. Game parameters, such as the player’s point of view
over the scenario, the initial speed of the kart or the frequency
with which obstacles appear, are easily adjustable, but were
kept fixed across all participants and trials.

From the user’s perspective, the go-kart can move to its
left and right sides, to which it must be steered to avoid
obstacles along the way. This is done by executing leftward
and rightward saccades depending on the direction to which
the user wants to steer the kart to. Saccades are completely
asynchronous, being executed at the player’s discretion and
not dependent on any visual cue from the scenario other than
the boxes to avoid; sometimes more than one saccade may
be necessary in order to completely avoid a collision. The
participant must look at the center of the screen and define
a strategy to avoid boxes by making saccades. Any returning
saccade (a natural movement to the center) will be discarded
by the system, i.e. will not be considered as a command.

Besides registering the player’ saccades, the decision mod-
ule also allows for detection of eye blinks, as they are an
inescapable part of eye movements and can become more
frequent in cases of ocular fatigue. Here blinks are used for
speeding up or slowing down the kart, allowing the user to
regulate the game’s pace to some extent. A double blink
increases the go-kart’s speed along the road by a fixed per-
centage relative to the base speed. To decrease the go-kart’s
speed, a player must perform a single blink, clearly detached
from other ocular events in time.

E. CLASSIFICATION AND LEARNING ARCHITECTURE
In the present work we replace the saccade detection algo-
rithm in [26], which was based on saccadic amplitudes and

fixed thresholds based on a calibration session, with a deci-
sion provided by a CNN which is included in the information
pipeline shown in Fig. 3.

The CNN takes as its input an EOG signal window that has
been scaled and transformed into an RGB image, working
in an analogous way to that in image recognition [22]. The
CNN’s output is a code specifying which Event class was
found. This class is appended to an Event list together with
the previous seven Events outputted by the EUDN,1 forming
a sequence that is inputted to the EUDN, which generates a
shortlist of possible game Commands. This shortlist is then
passed to the Q-Learning algorithm, which chooses a suit-
able Command according to the Event found and its specific
Q-Table values for the relevant State and possible Commands
(as detailed in Section II-E3). The resulting game Command
will likely generate a change of the State of the kart and a
reward that modifies one or more Q-values. Given enough
user actions, the rewards will modify the Q-Table of this
Event towards choosing Commands less detrimental to the
player’s performance within the game, helping to correct
his/her errors when issuing game Commands via saccades
and blinks.

1) CNN-BASED EYE MOVEMENT CLASSIFICATION
The User Action classification is based on the operation of a
CNN and a decision system, whose modules are described in
the following subsections.

a: RGB IMAGE GENERATION
Acquired EOG signals are converted into images, which are
inputted into the CNN. Given that there are two EOG chan-
nels being recorded, we convert horizontal signals into the
Red values and the vertical channel into the Green values of
an RGB image. The Blue channel of the image is not used
and is thus left as zero.2 A sliding window with 256 samples
is taken from each EOG channel and its maximum and mini-
mum are taken. The range of variation of each channel within
the window is then calculated, with both signals being scaled
to the highest range between them. This allows the image
to retain information on the differences in variation between
horizontal and vertical signals, enabling the network to dis-
tinguish between different User Actions. After this scaling,
signal intensity values are scaled again to fit the image’s fixed
height, with each image being 256× 200 pixels. An example
of EOG signals converted into RGB images can be seen in
the top half of Fig. 4.

With EOG signal amplitudes correctly scaled, we employ
the Bresenham rasterization algorithm [27] for filling in the
pixels. To achieve this, we find the pixel nearest to each
intensity datapoint and connect it to the next datapoint (the
column of pixels to the right, i.e. intensity in the following

1If there are not enough Events in the EUDN’s buffer memory, it is filled
in with Null Events.

2The Blue channel is not fed to the CNN in order to reduce the size of
input data, but is kept in the recorded images for convenience, i.e. for visual
inspection of training images.
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FIGURE 3. Diagram of the game’s information pipeline on each step, with a duration of 0.25s, showing each of the processing
modules involved. The algorithm runs every 0.25s and starts with the scaled RGB images that are fed into the CNN. The class from
the CNN is fed into the EUDN, along with the last seven classes decided by previous iterations of the EUDN. The selected Event EN
will determine which of the nine Q-Tables (one per Event) will be used in the subsequent RL algorithm. Values in the relevant QN
table are employed to determine a game Command, an outcome, and eventually a Reward. The algorithm’s cycle is completed
upon updating the QN table if RL is activated, otherwise it ends upon selection of a game Command according to the classified
Event at the EUDN. This algorithm is the same for passive and ‘‘shared-control’’ RL. However, in the former the RL model (table Q1)
for the ‘‘Null’’ Event has not been trained beforehand, while in the latter that table has been updated through a training session
without human intervention.

sample). The pixels are linked in each samples to each other,
creating a continuous line for each channel and producing an
imagewhere only 0s or 1s exist in the Red andGreen channels
of the image data, as the path between points is absolute.

b: TRAINING A USER-INDEPENDENT CNN
The standardized RGB images are used to train a static CNN
and bypass a calibration phase, thereby having the partici-
pants play the game as soon as the physical setup is ready.
This is an important advantage in improving the experience
for biosignal-naïve players. The CNN was implemented in
PyTorch with three convolutional layers and three fully-
connected layers. Each layer is followed by a Rectified Linear
Unit (ReLU). The network is trainedwith a cross-entropy loss
function and uses the Adam optimizer [28] with a learning
rate of 0.0001. The CNN architecture is shown in the bottom
half of Fig. 4.
We trained the CNN using participants data obtained from

preliminary trials during this work, and from participants’
data from other EOG experiments ran in our lab with sim-
ilar EOG training paradigms, such as [26] and [29]. The
collected data were automatically assigned to one of the
classes listed in Table 1. Training windows for double-blinks
had to be synthetically created from recorded blink windows
because they did not explicitly exist in the recorded data
of any previously used EOG paradigm. To label saccades
according to their amplitude, an average range of amplitude
variation was calculated for each different loaded trial; sac-
cades are labeled according to their variation on the final
image. 5237 RGB images were extracted and labeled, with
each label being reviewed by an expert after assignment. The
horizontal and vertical ranges of EOG signal variation that
were used on the online game trials were taken from a grand
average of all signal windows’ amplitude variations, from
all the sources used to train the CNN. These scaling ranges
are automatically adjusted during each game session so that

EOG signal traces do not overshoot the image windows being
created.

Null-class EOG Events are not explicitly generated by
participants, so they were extracted from data using two
different processes. In the first, we searched data segments
without any detectable User Actions in them, originating
signal images resembling flat lines. The second process
looked for windows where an overlap of detectable user
actions occur, rendering them invalid. These will influence
the CNN’s training, helping us to avoid non-Null classi-
fication of signal windows whose interpretation could be
described as ambiguous, e.g., in which a saccade and a blink
could be seen in close proximity.

2) ENSEMBLE OF UTILITY DECISION NETWORKS
In our algorithm, an RGB image obtained from an EOG
window is fed to the CNN every 250ms (see Fig. 3). This
means an intentional action by a user, and its corresponding
signal, will appear inmultiple windows, shifted by 25% of the
window’s width (each window has 75% overlap with the pre-
vious window). This makes it necessary to establish a mech-
anism to prevent multiple classification outcomes that might
result in unnatural game behavior, which would become a
very limitative issue. Thus, we developed a decision method,
called EUDN, which is shown in Fig. 5. The EUDN selects
the most relevant Event within a sequence of classification
outcomes, after which a game Command is generated. Utility
trees evaluate the utility of assigning an Event with class c
from the CNN to class n (where c, n ∈ {1, . . . ,N },N = 9)
based on its own history of previous decisions and on themost
recent CNN classification decision.

We take the Event decisions from the last eight EOG signal
windows – epochs – and their decision output classes, and
feed them to a set of utility trees. Each epoch’s decision is
weighted according to its ‘‘age’’, with more recent decisions
weighting more. From this inputted sequence of eight Event
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FIGURE 4. On top, the EOG signal processing path, from acquisition to RGB image. From left to right:
raw horizontal (red) and vertical (green) EOG signal windows (respectively traced to left and right
y-axis); the scaled windows; converted RGB matrix created using the Bresenham algorithm, used as
input to the CNN whose architecture is shown on bottom. It is comprised of three convolutional layers
and three fully connected layers, with softmax and argmax used to output an Event class.

FIGURE 5. EUDN block diagram. Each Event En has, associated with it,
a set of rules with which the class of that Event’s utility (UEn ) is
determined, and which takes as input the current CNN-based input (Ect )
as well as the last seven EUDN decisions (Ent−1 , . . . , Ent−7 ). The class
with the highest utility is the decision of the EUDN and corresponds to the
outputted class Ent , appearing as Ent−1 in the following decision cycle.

decisions, seven are previous decisions from the EUDN,
so only the most recent Event class is the current CNN
classification decision.

When the set of trees is presented with a decision sequence,
each tree will calculate the score of its class according to
the rules shown in Fig. 6, with all scores being compared
between them. Since every tree is associated with a specific
class, the class value whose tree utility score is maximized
by the eight-Event sequence is inputted in the next module
of the pipeline, and stored as the EUDN’s Event decision for
that epoch (Ent ).

a: EUDN RULES
The trees associated to the classes are shown in Fig. 6 and
follow a set of intuitive rules governing the detection of
successive user actions in different classes:

• The system must be able to distinguish between devia-
tion saccades and back-to-center saccades;

• If a leftward or rightward saccade is two or more deci-
sion windows away, a following saccade in the opposite
direction is treated as a back-to-center saccade, produc-
ing a ‘‘Null’’ EUDN Event class;

• If two conflicting saccades (left vs. right) are found in
sequence, a ‘‘Null’’ Event class is issued instead;

FIGURE 6. The utility rules used for valuing each Event class. For each
class, a set of rules describes either a sequence that benefits the decision
toward that class, or the affirmation or denial of an Event class. Tuples
(x1, x2) are rules increasing or decreasing the utility of a class in the case
of prior decisions x1 and x2 being present, in no particular order. The
presence of isolated decisions (x) is also considered in some rules, as are
sequences of two or three prior decisions [x1, x2, x3].

• A blink can be detected in a single window, but not
in consecutive windows within the same EUDN frame.
This means a valid double blink is allowed to be either a
real double blink or a timely succession of valid blinks
at least two decision windows apart;

• Saccades take precedence over blinks, and blinks take
precedence over ‘‘Null’’ Events.

As an example referring to Fig. 6, the utility of declaring
the Event in class 7 (a strong saccade to the right) is incre-
mented when there are no Events in classes 2 or 3 (leftward
saccades) in the Event sequence – (2) and (3), but decre-
mented if two consecutive code classes of its own (‘‘7’’s)
appear in the sequence –

[
7, 7

]
. Utility for class 7 is also

incremented if there are no blinks (Event 8) in the sequence
– (8). This is meant to avoid duplicated Event classes in the
sequence, as it is not possible for two strong saccades to be
made consecutively, by the user, in the same direction.

3) REINFORCEMENT LEARNING-BASED DECISION
In the context of a computer game, RL cannot be the sole
driver of the game agent’s actions. Rather, it must act as an

46016 VOLUME 9, 2021



J. Perdiz et al.: Reinforcement Learning Assisted Eye-Driven Computer Game

FIGURE 7. Mapping of Events (circles) to possible game
Commands (boxes) when Reinforcement Learning is employed.
Afterwards, RL is responsible for selecting one of the Commands for the
appropriate user action. When RL is not employed a game Command is
selected outright from this mapping. Note that Command #1 is always
selectable as it involves no change in direction or speed on the go-kart’s
part.

assistant that mitigates both user and classification mistakes
by intermediating between possible user actions and game
Commands, trying to adapt its response to the former in
order to maximize the outcomes of the latter. This means,
for example, preventing the kart from issuing a rightward
movement when the user’s intention was to command it to the
left. However, Events classified by the CNN, which are coded
in Table 1, are not univocally mapped to a single outcome
(game Command) in the game’s environment. Instead, each
Event is mapped to up to four different game Commands. The
Event-to-Command mapping employed by the RL algorithm
is illustrated in Fig. 7, and the Events and Commands are
described in Tables 1 and 2, respectively.

There are two distinct ways in which we have applied
Reinforcement Learning to our game – we call them the
RL1 and RL2 modes –, but first we describe their com-
mon core, the modified Q-Learning method. The standard
Q-Learning algorithm [14] was modified to better suit our
goals. We employ an array of modified Q-Learning matrices
– Q-Tables –, in which Actions are chosen through a greedy
choice paradigm applied upon Q-matrices of (State,Action)
pairs valued differently. In the standard Q-Learning method,
the Q-matrix would be updated every time a game Com-
mand (the RL’s action) resulted in a Reward being attributed
to the agent. Here, as detailed below, a Q-Table can be
retroactively updated if a negative outcome occurs in a small
number of decision cycles taking place immediately after the
(State,Action) pair has been recorded. The Action selection
process is not changed, as it still depends on choosing the
(State,Action) pair that maximizes the given State’s recorded
Reward values.

a: GAME STATES
In order to work in the context of Reinforcement Learning,
the aforementioned game Commands must be translated into
Actions functioning within a (State,Action) pair fed into a
RL algorithm, which means States must be defined. We have
chosen to represent States as 14-bit words comprised of sev-
eral non-mutually-exclusive bits that point to the position and
proximity of an obstacle relative to the kart, or the occurrence
of a collision. As shown in Fig. 2, there are 13 collision state
bits that can be set, and a road-side bit indicating whether the
go-kart is on the left or right side of the road. Some state bits’

triggers are not directly observable in that Figure, such as for
bit 1 – set when obstacles are away from the go-kart, in any
of the areas not occupied by numbered boxes; and bit 9, set
when go-kart is superimposed on an obstacle on both of its
left and right sides. Multiple states can be occupied at once
depending on the obstacle’s position relative to the go-kart.

b: MODIFIED Q-LEARNING REWARDS AND UPDATES
In the process pipeline, shown in Fig. 3, we initialize an
empty Q-Table for each Event class, which is to be filled with
addresses representing different game States. Each position
will have as many Q-values as the possible game Commands
(RL Actions) that the Event allows. For training the RL
model, we define one preferred game Command for each
Event class. When updating State pointers in that Event’s
Q-Table the values pertaining to the Event’s preferred Com-
mand suffer greater modifications than values related to other
Commands, andwhen compared to that Command’s values in
other Event’s Q-Tables.

For online playing, a particular State’s Q-values within an
Event’s Q-Table are evaluated to select an appropriate RL
Action (a game Command), and updated with the appropriate
Reward depending on the outcome. A Q-Table can only be
updated by obtaining, in the decision process, the Event that
the Q-Table represents; the update process is shown in Algo-
rithm 1. After taking an Action (a game Command) derived
from that Event’s Q-Table and observing a Reward, we form a
window composed by (Event, State,Action,Reward) tuples
containing information about the three previous Actions.
If there is more than one non-Null Action in this win-
dow the Reward is set to (−1) to avoid assigning delayed
rewards stemming from an Action that was not the last
classified Action. The current Action is appended to this
Action window. If for any of these three Actions a neg-
ative Reward was issued, all of the previous Actions’
Q-Tables are penalized with this negative Reward, in order
to prevent the assignment of positive Q-values to a simi-
lar chain of (Event, State,Action,Reward) instances in the
future. This behavior is expressed in the if statement starting
at line 15 of Algorithm 1. Otherwise, the Q-value of the last
(Event, State,Action,Reward) is updated with its Reward,
found earlier.

This method was adapted from the Q-Learning algorithm
in [14]. Its α and γ values, for step-size and discount-rate
respectively, were chosen to be close to unity so that the
Q-Tables can quickly adapt to an individual user’s behavior
pattern, a desirable outcome because each user only inputs a
relatively small number of actions.

The reward should depend on the distance d between the
go-kart and its nearest obstacle after the Action is taken.
We have chosen to model the reward given to each Action
as follows:

R(d) =
1

1+ ek1(d−k4)
+ e−(d−k4)

2/k2 + k3 (1)

In the experimental validation of the go-kart game the fol-
lowing parameter values, obtained empirically, were applied:
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Algorithm 1 Q-Learning RL Algorithm as Implemented in
Our Game, Adapted From [14]
1: Initialize Q(s, a) = Q0(s, a), . . . ,QE (s, a)
2: R ∈ [−1, 1], α = 0.8, γ = 0.9
3: for each EOG Event (e) do
4: Choose Action A from state S using policy derived

from Qe
A← argmax

a∈Ae

(Qe(S, a))

5: Take action A
6: if training then
7: Observe actual reward R = R(d), where d is the

distance to the nearest obstacle
8: Compute new state S′

9: Window of previously performed actions
(D = (e0, S0,A0,R0), . . . , (eM , SM ,AM ,RM ))

10: if |D|A6=0 > 1 then
11: R←−1
12: end if
13: D← D ∪ (e, S,A,R)
14: Update Qe(S,A):
15: if min

R
D < 0 then

16: for each (ei, Si,Ai,Ri) ∈ D do
17: Qei (Si,Ai) ← Qei (Si,Ai) + α[min

R
D +

γ max
a∈Aei

Qei (S
′, a)− Qei (Si,Ai)]

18: end for
19: D← ∅
20: else
21: QeM (SM ,AM ) ← QeM (SM ,AM ) + α[RM +

γ max
a∈AeM

QeM (S
′, a)− QeM (SM ,AM )]

22: D← D \(eM , SM ,AM ,RM )
23: end if
24: S ← S ′

25: end if
26: end for

k1 = −10, k2 = 0.22, k3 = 0.75 and k4 = 1. The func-
tion was designed to encourage moderation in the changes
effected upon the Q-Tables’ entries by establishing a point
beyond which a large deviation of the go-kart is discour-
aged. This effectively moderates, on the RL model, the trend
towards making large go-kart deviations when they may not
be necessary to safely avoid a collision.

c: RL MODES
Two different RL modes (RL1 and RL2) were implemented,
and compared to a baselinemode (without actuation fromRL,
just policy training) which we call RL0. RL1 and RL2 modes
differ from each other in that the first uses only the trained
Q-Tables for Non-Null Events, and does not act when a colli-
sion is imminent but the user generates a ‘‘Null’’ Event. This
difference in operation modes must be evaluated if we want
to test the generalization of the proposed decision pipeline

FIGURE 8. Collisions for each participant, normalized to the number of
collisions each participant experienced in RL0 (thick baseline).

for future control of mobile platforms in the real world, such
as indoors wheelchair navigation [30]. In mode RL2, learning
stored in the Q-Tables actuates in the control loop of the go-
kart even when the user does not issue a Command. This is
a kind of shared-control mode, in which the machine agent
momentarily takes control of the go-kart’s steering regardless
of the user input. This is used to prevent harmful behavior and
reduce collisions at the expense of full user control of the go-
kart. Next we give an abridged description of how each RL
mode is implemented.
RL0 EUDN-based decisions are directly converted to game

Commands, without intervention by the RL module.
RL is, however, active in the sense that it is updating the
values of Q-Tables that will be used in the participant’s
subsequent sessions.

RL1 A mode in which RL is used. Events are moderated
by RL according to the Event-to-Command mapping
from Fig. 7 and each Event’s Q-Table is continuously
updated. The Q-Table for the case of the ‘‘Null’’ Event
is not directly employed, although it is still being
trained. This means a direct action to avoid a collision
can be taken by the RL model only if the user-based
Command is non-Null; this will cause RL to sometimes
ignore the mapping in Fig. 7.

RL2 A mode in which RL is active and the pre-trained
Q-Table for ‘‘Null’’ is used in an attempt to eliminate
Null Event-based collisions, using the same Event-to-
Command mapping as RL1. The machine agent is thus
proactive in avoiding a collision in case a user does
not produce a Non-Null Command to prevent it, i.e. the
EUDN’s output is ‘‘Null’’. As in this mode the machine
agent can temporarily take action without player inter-
vention, in practice it works similarly to shared control.

III. RESULTS
Here the results are presented for the overall classification
pipeline integrating the three different experimental modes:
RL0, RL1 and RL2, tested in this order for each partici-
pant. Each mode’s session ends when the kart has passed
by 150 boxes, which takes approximately 12m30s – small
variations are caused by the use of blinks to accelerate and
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FIGURE 9. Variation of the answers in each TLX item, across all participants, and its relation to the variation of total collisions of each RL mode in relation
to RL0. For each item we did a repeated median estimator regression and calculated its R2 value, showing low correlation across the board except for the
Mental Demand and Performance survey items.

decelerate the kart throughout each session. After a ses-
sion for each mode, the participant’s score and its varia-
tion to the previous experimental mode are registered, and
the participant is handed a questionnaire with an assess-
ment of the physical system’s usability characteristics and
the perceived workload for each of the modes played. This
workload assessment was carried out using the NASA-Task
Load Index (TLX) survey [31]. We also detail the validation
procedures followed when training the Convolutional Neural
Network.

A. CNN TRAINING AND VALIDATION
For training the CNN, the available dataset was divided into
67% training data and 33% testing data, with samples ran-
domly selected but with a balanced class representationwhich
ensured that the most frequent class could only have three
times as many samples as the least frequent. This restriction
means 2270 images from the full dataset were used to train
the CNN. Higher global training accuracies were attained
using different balancing multipliers, but we observed that
using a balancing multiplier of 3 allowed for higher precision
and recall values of groups of classes that aggregate similar
eye movements, which enhances playability in the online
sessions. Data, comprised of 9 classes, were subdivided in
batches with size 55 and the network was optimized over
the course of 50 epochs. The network was trained on a
workstation with an Intel 4770K processor, 24GB of memory
and a Nvidia 1070Ti graphics unit. This training procedure
attained a global accuracy of 87, 73%. A confusion matrix for
the cross-validation of the training underwent by the CNN is
shown in Table 3.

B. MODAL INFLUENCE ON PERFORMANCE
A means of evaluating the performance of the three modes
(RL0, RL1 and RL2) consisted of recording the number of
collisions on three sequential sessions. These results are pre-
sented in Fig. 8 in normalized form, since the absolute num-
ber of collisions varied greatly between participants. Global
statistics on collisions and elapsed time (their averages, µ,
and their standard deviations, σ ) are shown in Table 4. It can
be seen that both RLmodes result in reductions in the number
of collisions, which are more pronounced for the ‘‘shared-
control’’ variant. The high standard deviations for collisions
can be attributed to variation of the familiarity to the paradigm
among participants. TheRLmethodswere, in general, helpful

TABLE 3. Cross-validation results of CNN training with the parameters
mentioned in the text (2270 sample images, split 67%-33% between
training and testing sets, with a balancing multiplier of 3). Event classes
are the same as those described in Table 1. Accuracy results are
presented in percentages for each class. Global accuracy is 87, 73%.

TABLE 4. Overall statistics on the number of collisions and game
duration for each session.

enough to reduce the number of collisions occurring in each
session, although there is some discrepancy among partici-
pants. Notably, participant 8 experienced far more collisions
in modes where RL was active, probably because the low
number of collisions was not enough to train a useful RL
model for both RL1 and RL2. Overall, the increase in the
number of collisions when in mode RL1 can be partially
attributed to the same cause, as well as the fact that in this
mode the decision process is inherently more conservative
and tends to favor small lateral movements instead of the large
movements that are frequently needed to avoid a collision.

C. WORKLOAD ASSESSMENT
Results of the workload assessment conducted using the TLX
survey – using the six item, 0 to 20 scoring evaluation but
without item weighing by the participants – have yielded a
reduction of the Mental Demand and Performance indicators
when going from session in mode RL0 to either RL1 or
RL2. This effect is mixed across the participants sample, but
becomes more visible when variations in perceived workload
are compared variations in collision numbers, which is done
in Fig. 9.

When testing for the correlation between the variation in
number of collisions and the variation of demand indicators
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using Siegel’s repeated median estimator [32], we found
a correlation in the Mental Demand and the Performance
indicators, which points to more successful steering of the
kart during RL-aided session modes. There were no TLX
items where a significant negative correlation manifested,
with perceived Temporal Demand showing no influence from
the type of experimental mode.

IV. DISCUSSION
A. RELEVANCE OF THE CNN IN EOG SIGNAL PROCESSING
Deployment of the CNN for the classification of images of
EOG signal windows presents a significant advancement over
the methods proposed in [26]. Conversion of EOG signals
to RGB images is a new approach that was empirically con-
cluded to be successful in classifying a relatively high number
of classes (nine) in a CNN with a generalized training model.
This ocular Event classification pipeline is, to the best of
our knowledge, the first of its kind implemented, and it is
further strengthened by the use of a user-independent model
for online classification. This in turn allows us to introduce
users to the game without having to subject them to a calibra-
tion phase, an important asset for the general deployment of
Human-Computer Interfaces. It must be noted, however, that
because CNN performance is not being measured during an
online trial, the CNN must be carefully trained beforehand to
prevent both over-fitting and low global accuracy rates, as the
remainder of the implemented decision pipeline relies on a
high accuracy rate being achieved by its first classification
stage. The EUDN and RL can both moderate the impact
of wrongful CNN decisions, but their primary goal is to
moderate the impact of correct, but possibly conflicting, CNN
decisions that could lead to negative in-game outcomes.

B. REINFORCEMENT LEARNING: USEFUL IN EITHER
CASE?
The reduction in the number of collisions on modes RL1 and
RL2 relative to RL0 is inconsistent across participants, albeit
in most there is a reduction in the number of collisions when
going from RL0 to either RL1 or RL2. As there is a high
number of possible (State,Action) pairs that can be present in
the RL models, not all will be adequately trained during each
game session due to the randomness in obstacle placement,
and a first run of 150 obstacles may not be enough for the
model to adequately evaluate a significant proportion of the
possible states and their outcomes for each participant. This
effect, however, does not explain the inconsistent variations in
collision numbers between RL1 and RL2 for each participant,
which may point to the need to fuse the models obtained from
several participants to obtain more complete descriptions of
(State,Action) pairs across the Q-Tables.

The influence of RL on perceived effort is considered pos-
itive, as the data presented in Fig. 9 shows that the use of an
RL model during a game session has a significant correlation
to an improvement in the Mental Demand and Performance
indicators of the TLX survey. The constancy of the Temporal

and Physical Demand indicators can probably be attributed to
the trials of all three modes having roughly the same pace.

V. CONCLUSION
The proposed EOG-game classification pipeline has shown
empirical evidence of delivering the goals set out for this type
of Human-Machine Interface, namely an improved, more
playable game interface (based on user’s assessment of the
system), a user-independent biosignal classification approach
that provides a low-frustration interface, and a modifiable,
user-based machine assistance model founded on the EUDN
decision process and on Reinforcement Learning. A limi-
tation of this pipeline is its reliance on good performance
by the CNN, which was not an issue in our case but may
be degraded depending on the EOG dataset used3 and the
number of classes defined.

The use of RL has resulted in a small but important
improvement in the number of collisions. Its influence in
assisting a user in this type of interface will probably be more
relevant with longer usage times, which would allow each
user-specific action policy to be trained more thoroughly.
The shared-control Reinforcement Learning mode that was
validated can point both to the deployment of EOG-based
interfaces onto real-world applications using a similar control
paradigm, such as assisted wheelchair navigation [30], or to
better EOG-based interaction with HMIs used, for example,
for controlling smart homes or assisted living interfaces.
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