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Abstract: Maintenance professionals and other technical staff regularly need to learn to identify new
parts in car engines and other equipment. The present work proposes a model of a task assistant
based on a deep learning neural network. A YOLOv5 network is used for recognizing some of the
constituent parts of an automobile. A dataset of car engine images was created and eight car parts
were marked in the images. Then, the neural network was trained to detect each part. The results
show that YOLOv5s is able to successfully detect the parts in real time video streams, with high
accuracy, thus being useful as an aid to train professionals learning to deal with new equipment
using augmented reality. The architecture of an object recognition system using augmented reality
glasses is also designed.

Keywords: task assistant; YOLOv5; car engine dataset; car part detection; augmented reality

1. Introduction

Maintenance technicians often have to perform a large number of different jobs,
involving numerous parts, manufactured by numerous different companies. The main
objective of the present work is to build a system to recognize mechanical parts in car
engines, and give directions, which come from a work order, to the technician. The
technician wears augmented reality glasses during the procedure. Through the glasses, he
sees the car parts and also the instructions on how to proceed, which are added in real time.

The field of object detection has garnered new attention with recent developments in
deep neural network architectures, and it is constantly growing. More and more research
is proposed, aiming to solve various problems to make people’s lives easier. Many neural
network architectures can detect a large number of objects, with high accuracy, in real time.
The detection of engine parts of an automobile can bring major developments in the scope
of manufacturing and maintenance, especially facilitating correct maintenance tasks, with
the objective of maximizing the quality of maintenance procedures, aiming to increase
engines’ life and reliability.

To be able to build a good task assistant system, it is necessary to implement a good
detection method. The present work relies on a YOLOv5 deep neural network, which is
one of the fastest and most reliable detectors available nowadays. The YOLOv5 receives
images in real time from the technician’s augmented reality glasses and detects the parts.
The task assistant suggests actions to perform, based on the sequence of actions of the work
order and on which objects are detected in the technician’s field of view.

To properly train the YOLOv5 neural network, it is essential to have a good dataset.
The larger the dataset, the higher the chances of training the network to have good per-
formance. For this first step, the dataset created consisted of 582 images taken from three
videos with similar lighting conditions, where it was possible to identify a total of eight
different types of parts: oil dipstick; battery; engine oil reservoir; wiper water tank; air
filter; brakes fluid reservoir; coolant reservoir; and power steering reservoir. The images
taken from each frame are converted to a 416 × 416 format, which is the format that the
chosen architecture needs to use as input.
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Two versions of YOLOv5 were tried, namely YOLOv5s and YOLOv5m. They are
available at https://pytorch.org/hub/ultralytics_yolov5/ (accessed on 21 May 2021). The
data were split into training, validation and testing sets and converted to YOLOv5 PyTorch
format. Then, data were saved into a data.yaml file, which describes the classes to be used
for training, validating and testing the model. This process was done using Roboflow,
which is available online at http://www.roboflow.com (accessed on 21 May 2021). Then,
using a Google Colab virtual machine, which is available at http://colab.research.google.
com (accessed on 21 May 2021), the models were trained, with a total of 250 epochs.
Different evaluation metrics were used, to evaluate the quality and reliability of the system.
In a second experiment, the dataset size was increased to a total of 900 images with different
lighting conditions, in order to optimize object recognition and test the system under more
challenging situations.

Section 2 presents a brief review of the state of the art in the context of neural networks,
mentioning some examples of the use of YOLOv5 architecture from other studies. Section 3
describes the proposed architecture for the augmented reality system. Sections 4 and 5 de-
scribe the materials used and the development of datasets for the intended work. Section 6
describes the YOLOv5 network and the models. The tests and results are described in
Section 7 and discussed in Section 8. The conclusions and future work are presented in
Section 9.

2. Related Work
2.1. Object Detection with YOLO

Deep learning-based object detection has been a research hotspot in recent years. For
better image understanding methods, it is necessary not only to concentrate on classifying
different images, but also to try to precisely estimate which objects are present in the images
and their locations. This task is referred to as object detection [1], and the state of the art
detectors are deep neural networks, namely convolution neural networks (CNN).

ImageNet is a dataset of more than 15 million high-resolution labeled images, which
belong to about 22,000 categories. In the article “ImageNet classification with deep convo-
lutional neural networks.” [2], two error rates need to be analyzed: top-1 and top-5. The
error rate of top-5 is the fraction of test images, where the caption is not one of the five
captions considered most likely by the model. In the test data, error rates of 37.5% and
17% were achieved for top-1 and top-5, respectively, which is significantly better than the
state of the art. In this context, a convolutional-based network appeared for the first time,
which drastically reduced the error rates of the previous state-of-the-art methods. That
new network is the now famous AlexNet.

Many modern detectors are usually pre-trained on ImageNet or on COCO datasets.
Although the CNN architectures are still recent models, other works on object detection
have already been developed using the pre-trained YOLOv5 architecture in the COCO
dataset. In the article “Face Mask Detection using YOLOv5 for COVID -19” [3], the model
correctly classified both people wearing a mask and people not wearing a mask. The model
was tested using both YOLOv5s and YOLOv5x. The training process was completed by
running the model through Google Colab. YOLOv5s is significantly better than YOLOv5x
in terms of performance and speed. The mean average precision (mAP) is quite similar
for both the processes, but when the processing speed is considered, YOLOv5s is slightly
superior to YOLOv5x.

Another article purports to train the YOLOv5 architecture to recognize handguns in
images. This project uses the pre-trained YOLOv5x model to determine the initial weights
from which it started the training. The rest of the configuration settings are mostly preset:
50 epochs, 640 px image size for training including test set and stack size of 64. The model
can successfully detect the presence of a handgun in an image, even if the handgun is not
ideally oriented, does not have the traditional shape, or contains multiple handguns in the
image. The results show 0.80 for precision, 0.89 for recognition, and 0.905 for mAP [4].

https://pytorch.org/hub/ultralytics_yolov5/
http://www.roboflow.com
http://colab.research.google.com
http://colab.research.google.com
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2.2. Augmented Reality Applications

Most of the existing augmented reality systems are able to understand the 3D geometry
of the surroundings but lack the ability to detect and classify complex objects in the real
world. Such capabilities can be enabled with deep convolutional neural networks [5].
The proposed architecture for these works combines deep learning-based object detection
with AR technology to provide user-centered task assistance. In the paper [6], proposes
two studies, matching a virtual object to a real object. in a real environment, and performing
a realistic task, that is, the maintenance and inspection of a 3D printer. These tests are
performed using HoloLens from Microsoft and combine object detection and instance
segmentation and the results show the advantage, effectiveness, and extensibility to various
real applications.

Augmented reality is being used in different industrial fields. Another example is the
use of AR in conceptual prototyping processes in product design by overlaying different
car interior mock-ups, which are usually only available as 3D models in the initial phases
of development [7].

2.3. Task Assistance in Industrial Augmented Reality

Task assistance is one of the main areas of application of AR in the industry. Siam and
Tonggoed [8] proposed a human–robot collaboration with augmented reality for virtual
assembly task and conclude that the use of augmented reality in the assembly task can
save cost and training time.

Augmented reality (AR) is considered to provide user-centric information easily in
different environments, thus being able to reduce a worker’s cognitive load and increase
work efficiency [9]. Augmented reality is slowly gaining ground in industry by embedding
visual information onto the real objects directly. In particular, the AR-based visualization
of manufacturing information, called industrial AR, can provide more effective task assis-
tance [10,11]. In some areas, industrial workers use AR glasses as an auxiliary tool or as
a training simulator to be prepared for specific situations. Bosch’s Common Augmented
Reality Platform (CAP) is now also available for the new Microsoft HoloLens 2. The inter-
active training provides holographic step-by-step instructions that help workshop trainees
understand new products and technologies and enable service technicians to conduct
repair and maintenance tasks more efficiently and with fewer errors [12,13].

Kim et al. [9] propose an approach to industrial AR, which can complement existing
AR methods and provide manufacturing information more effectively through the deep
learning-based instance segmentation and depth prediction of physical objects in the AR
scene. The proposed approach can provide consistent AR visualization regardless of the
movement of the physical object. Therefore, manufacturing information can be provided to
the worker more intuitively and situation-dependently based on the estimated 3D spatial
relation and depth perception.

3. Proposed Architecture

The system proposed manages and processes work orders, which are sequences of
procedures that need to be done by the maintenance technicians.

3.1. Workflow

Figure 1 represents, in a flowchart, the sequence of actions that are necessary to
perform to go through a typical work order, to perform a planned maintenance task.
The use of intelligent task assistants can facilitate the technician’s job to go through the
procedures, while reducing execution time and the risk of human errors.
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Figure 1. Flowchart showing the sequence of actions necessary to process a given work order,
to perform maintenance tasks. The task assistant guides the maintenance technician through the
steps shown.

The system proposed aims to guide the technician through all the steps, showing
information and directions in the virtual reality glasses and audio messages. The steps
illustrated in the flowchart are:

1. Open work order—This is the first step, where the technician opens the work order
which was previously assigned to him by a manager. The work order is specific for
an equipment, such as a given car or industrial machine.

2. Read equipment code—After opening the work order, the technician must read the
equipment code. Each equipment has a unique code, and this step ensures that the
technician is at the right equipment. The code can be a barcode, QR code, RF-id or
other type of code used in the factory.

3. Present maintenance procedures—Once the equipment code is validated, the tech-
nician sees the sequence of procedures required for that particular work order. This
gives an overview of the work that needs to be done. The technician can then choose
to start working or cancel for some reason.

4. Activate system—After seeing the procedures, the technician must then activate the
system to start working and going through each procedure.

5. Perform procedure—Once the system is activated, the task assistant guides the techni-
cian through all the procedures in a valid order. The technician is told to search for a
particular part, and once that part is in his field of view, the assistant gives directions
on how to correctly perform each task necessary. This is repeated for all procedures
of the work order.

6. Once the work order is completed, the maintenance database is updated. This step
may be done at the end for offline assistants, or in near real time for online assistants.

3.2. System Architecture

Figure 2 shows the architecture proposed for the system. The work orders (WO) are
created and managed in a Computerized Maintenance Management System (CMMS), by
a team manager. CMMS systems are special applications used to manage maintenance
operations. It helps optimize the reliability and availability of physical assets [14]. The
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present system adds new potential to execute maintenance interventions, both planned
and non-planned. The final result will correspond to the reduction of the maintenance time
of each intervention and, globally, to optimize the mean time to repair (MTTR).

For each intervention, the maintenance technician has an interface to the CMMS,
where he picks the WO and downloads them to the augmented reality (AR) glasses, which
can work offline or online with the CMMS. If they work online, the maintenance WO can be
updated at the end of each procedure. If they work offline, the technician is only required
to connect them again to the CMMS at the end of the task, to update the WO and send it
back to the maintenance manager.

The picture also shows another user, who is the administrator, who has special privi-
leges to manage the CMMS teams and tasks.

Farinha (2018) presents a holistic approach for the maintenance of physical assets,
including technological solutions like AR [15].

Figure 2. System architecture, showing the main components and interactions. The technician wears
Augmented Reality glasses, where he receives directions to go through the procedures of the Working
Order, that is created and managed through a CMMS application.

4. Materials and Methods

The complete system requires different types of software and hardware, for develop-
ment and then for use when it is deployed.

4.1. Hardware Using for Development

The hardware used during development included computers, for running software,
and cell phones, for capturing videos and pictures. The object detection model was trained
using, laptop computer with access to a Google Colab virtual machine, which offers free
GPU cloud service that allows one to obtain 0.007 second inference time. That is, 140 FPS
on a TESLA P100 GPU.

To obtain the videos to construct the dataset, two mobile devices were used. The first
mobile device was a Samsung Galaxy S10 and the second an IPhone 11. Both are devices
with high quality 4K video recording. Table 1 summarizes the characteristics of the mobile
devices’ cameras.
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Table 1. Mobile Devices Camera Characteristics.

Mobile Device Camera Characteristics

Samsung Galaxy S10
Triple lens camera on the back with a 12 MP regular lens,
12 MP optical zoomed telephoto lens, and a brand new
16 MP ultra wide angle lens.

IPhone 11 Dual 12 MP Ultra Wide and Wide cameras.

4.2. Software Used for Development

The object detection model runs in Python and therefore requires a python interpreter.
However, other applications were required for creating the dataset. The list of applications
and libraries is as follows.

• PyTorch—An open source machine learning library for deep learning, used for appli-
cations such as computer vision and natural language processing. This framework
was developed by Facebook and it was created to provide models that are easier to
write than other frameworks such as TensorFlow [16]. The YOLOv5 architecture is
available only for PyTorch at this point.

• VoTT—Visual Object Tagging Tool (VoTT) is an open source annotation and labeling
tool for image and video assets. It is possible to import data from local or cloud
storage providers and to export labeled data to local or cloud storage providers. There
is an online version available at https://vott.z22.web.core.windows.net/#/ (accessed
on 21 May 2021). VoTT was used to manually tag the images, marking the bounding
boxes of each object for the training and testing sets.

• Roboflow—Hosts free public computer vision datasets in many popular formats. In
the present project, Roboflow was used after VoTT, to tag the images, apply data
augmentation and convert the dataset to YOLOv5 PyTorch format.

• FFmpeg—Platform to record, convert and stream audio and video. It was necessary
to use it to convert the videos recorded through the mobile device to a format that
VoTT would recognize. This framework is available at https://www.ffmpeg.org/
(accessed on 21 May 2021).

4.3. Software and Hardware Used for AR System

The proposed augmented reality system requires augmented reality glasses and a
server to run the CMMS.

There are currently many augmented reality glasses, but none have been tested at this
point. Microsoft HoloLens is a popular platform, which could serve for the proposed task
assistant [17]. Another example is Vuzix smart glasses [18].

As for the server, it needs to run the CMMS software to manage the different equip-
ment, maintenance procedures and work orders. The server and the augmented reality
glasses can communicate in real time, via wireless network, or they can synchronize
periodically according to the technician’s needs.

5. Datasets
5.1. Dataset Search

For the present research, a dataset of the mechanical components of an automobile
was necessary. However, publicly available datasets that were found were not compatible
with the goals intended for the present research. Due to the increasing development of
technology in the field of autonomous driving, there are a variety of datasets related to
public roads for detecting pedestrians, traffic signs, pedestrian crossings, etc. One dataset
widely used in this field is the “KITTI” [19]. KITTI was created mostly for autonomous
driving platforms and contains a set of object detection data, including monocular images
and object bounding boxes. However, KITTI is not useful for the development of the
present project, which aims to detect car motor parts. Datasets of car components were
also found, but again, those were not the most relevant components, for they were just

https://vott.z22.web.core.windows.net/#/
https://www.ffmpeg.org/
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non-mechanical components such as the steering wheel or lighting [20]. After an exhaustive
search, it was not possible to find a dataset which would be appropriate for the present
research. Therefore, it was deemed necessary to build a custom dataset to proceed with
the project.

5.2. Dataset Created

To create a custom dataset, the first step was to shoot three videos of the engine
components of a car. The car model chosen was a Peugeot 206, built in 1998. The first
videos were recorded with a Samsung Galaxy S10 cell phone. The quality was 4 K at
60 fps. It was necessary to produce multiple videos with different angles and distances,
so that the algorithm could more easily identify the desired components. More videos
were shot, using another cell phone, namely an iPhone 11. The video characteristics were
maintained, to facilitate comparing the results. After the videos were produced using
the mobile devices, the videos shot with the Samsung device were in “mp4” format. The
videos shot with the iPhone were in “mov” format. This format is not well recognized by
VoTT tool, which was used for the part tagging process. So, it was necessary to convert the
video through a conversion application, which was “FFmpeg”.

Once the videos were ready, they were tagged in VoTT. Eight car parts were chosen
as targets for the present project. They are: 1—battery; 2—air filter; 3—power steering
reservoir; 4—engine oil reservoir; 5—coolant reservoir; 6—brakes fluid reservoir; 7—water
tank of the wiper; 8—oil dipstick. The first dataset had a total of 582 images. The second
dataset had additional 318 images, for a total of 900 images, as shown in Table 2. As the
table shows, there are a total of 510 targets in the first dataset, 335 targets in the second
dataset and a total of 845 targets in the combined dataset.

The part class names were written in Portuguese, which is the official language of the
application being developed. Table 3 shows the correspondence of each class name from
English to Portuguese, so that in the test images, it is possible to perceive which classes
are identified.

Table 2. Characteristics of the Datasets created for training and testing the object detector.

Mobile Device Videos Total Images Total Labels Targets

Samsung Galaxy S10 3 582 8 510
IPhone 11 3 318 8 335

Total 6 900 8 845

Table 3. Target classes labels translation.

Labels in English Labels in Portuguese

Battery Bateria
Air filter Filtro de ar
Power steering reservoir Reservatório da direção assistida
Engine oil reservoir Reservatório de óleo do motor
Coolant reservoir Reservatório do líquido de arrefecimento
Brakes fluid reservoir Reservatório do líquido dos travões
Wiper water tank Reservatório de água dos limpa-vidros
Oil dipstick Vareta de óleo

6. Object Detection with Deep Learning
6.1. YOLO Deep Neural Network

YOLO (You Only Look Once) is one of the most popular deep convolution neural
models for object detection, due to its good performance and short time requirements.

The first model was proposed in 2016, and it is known as YOLOv1. Several updates
were made since then, and the latest model is now YOLOv5, released by Glenn Jocher
in 2020. To the best of the authors’ knowledge, there is no peer-reviewed research paper
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proposing the YOLOv5 architecture. Nonetheless, there are already more than 240 research
papers referring to the architecture. YOLOv5 is based on the PyTorch framework. It is
the latest version of the YOLO object recognition model, developed with the continuous
efforts of 58 open source contributors [21]. There are a few model configuration files and
different versions of the object detector. The present implementation uses YOLOv5s, which
is the smallest model, and YOLOv5m, which is the next model in size. The other models
available are YOLOv5l and YOLOv5x, the latter being the largest of all. As the network size
increases, its performance may also increase, at the cost of additional processing times [22].
Therefore, the larger models may only be useful for complex problems where large datasets
are available.

There are many other deep neural networks that can be used to detect objects. One
of them is the mask-RCNN, which aims to solve the instance segmentation problem in
machine learning or computer vision. The mask-RCNN is therefore, in theory, more precise,
at the cost of additional processing time. In a comparison study, for the task of detecting a
sports ball, both YOLO and Mask R-CNN with pre-trained weights show good precision
and recall [23].

Because it is a good and faster detector, with high levels of performance [24], it was
decided to choose the YOLOv5 network for the present project. Other architectures, such as
the mask-RCNN, could provide similar detection performance and more precise location
of the objects. However, the YOLO speed is a great advantage for real time operation of
the task assistant. Moreover, in the present case, a bounding box is enough to give good
directions to the technician.

6.2. Performance Evaluation

To evaluate the performance of an object detector, it is crucial to use appropriate
metrics for each problem. Object detection is a very challenging problem because it is
necessary to draw a bounding box around each detected object in the image. To evaluate the
detection performance, some of the most common metrics are shown in Equations (1)–(3):
precision, recall, and mAP.

precision =
TP

TP + FP
(1)

recall =
TP

TP + FN
(2)

mAP =
1
N

i=1

∑
N

APi (3)

True positive (TP) is a correct detection of an object that actually exists in the picture.
False positive (FP) is an incorrect detection of an object, i.e., the network marks an object
that is not there in the picture. False negative (FN) is an object that actually exists in the
picture but is not detected by the network. In object detection, the intersection over union
(IoU) measures the overlap area between the predicted bounding box and the ground truth
bounding box of the actual object. Comparing the IoU with a given threshold, detection
can be classified as correct or incorrect. Each value of the IoU threshold provides a different
average precision (AP) metric, so it is necessary to specify this value.

7. Experiments and Results

The model was trained and tested with the datasets described in Section 5.

7.1. Train the Model

For the first experiment of the proposed system, the smallest and fastest YOLOv5
model was chosen (YOLOv5s). A notebook was adapted for the first tests [25], with all the
necessary steps for training and validating the performance of the model recognizing the
desired objects. The training procedure consisted of 250 epochs, which took 55 min 12 s for
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the dataset. Moreover, 466 of the 582 images were used for training, and 116 were used for
validation. The second test used 571 of the 900 images for training and 159 for validation.
The training was completed with 250 epochs in 1 h 15 min 7 s.

For the second experiment of the system, the YOLOv5m was used. The test with
YOLOv5m and the first dataset was completed with 250 epochs in 55 min 1 s. The test with
the second dataset was completed with 250 epochs in 1 h 15 min 39 s.

7.2. Performance for Real Time Operation

Table 4 shows the results of those metrics for all classes, obtained on the first dataset
with model YOLOv5s. Table 5 shows the same results for the same dataset but for the
second model, YOLOv5m.

The tables show the performance for each of the eight classes and for the whole
validation set. The third column shows the number of known targets to be detected. The
fourth and fifth columns show the precision and recall of the detector. The sixth and
seventh columns show the mean average precision for the IoU specified. As the tables
show, YOLOv5s performs about the same as the larger network. So, for the volume of data
and complexity of the problem, it is adequate and bigger models are not justified.

Table 4. Performance of the model YOLOv5s for first dataset (582 images).

Class Images Targets Precision Recall mAP 0.5 mAP 0.5:0.95

All 116 510 0.98 0.987 0.992 0.813
1 116 81 0.987 0.967 0.993 0.892
2 116 72 0.972 0.977 0.982 0.873
3 116 46 0.968 1 0.995 0.801
4 116 68 0.985 0.956 0.993 0.826
5 116 56 1 1 0.995 0.883
6 116 79 0.986 1 0.99 0.792
7 116 43 0.976 1 0.994 0.777
8 116 65 0.963 1 0.994 0.656

Table 5. Performance of the model YOLOv5m for first dataset (582 images).

Class Images Targets Precision Recall mAP 0.5 mAP 0.5:0.95

All 116 510 0.806 0.981 0.993 0.806
1 116 81 0.987 0.966 0.993 0.882
2 116 72 0.971 0.972 0.986 0.867
3 116 46 0.978 0.987 0.995 0.771
4 116 68 0.981 0.956 0.993 0.806
5 116 56 1 0.987 0.995 0.886
6 116 79 0.987 1 0.99 0.811
7 116 43 0.985 1 0.995 0.875
8 116 65 0.985 1 0.995 0.775

7.3. Prediction Examples

After the models were trained and tested, they were also tested against images that
had not been used during training and some example results are shown in Figures 3 and 4.
The figures show bounding boxes around objects detected. Each bounding box has a label
identifying which object is detected inside the bounding box. Each bounding box is also
pointed out by a red arrow, where instructions will be added for the technicians. In the
figures, all the instructions are just “open here”, for that part of the software is left as
future work.
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Figure 3. Example of object detection on a test image, where the engine oil reservoir and oil dipstick
are detected.

Figure 4. Example of object detection on a test image, where brakes fluid reservoir and battery
are detected.

In test mode, the IoU parameter was lowered to 0.3. This means that a detection box
is considered valid for IoU ≥ 30%. This was decided because to the human eye, it becomes
difficult to distinguish between correct predictions considering a threshold of 0.5 and 0.3,
according to [26–28]. When considering a lower IoU threshold, it will be possible to view
a more significant number of valid detections, avoiding false negatives in the analysis of
each image.

7.4. Comparison of Model YOLOv5s with Model YOLOv5m

In terms of speed, the two models are very similar. In terms of accuracy, the YOLOv5m
model turned out to be slightly superior.

The two models were tested on both datasets. For the dataset with 900 images, the
differences between the models in terms of mAP@0.5, mAP@0.5:0.9, precision and recall
are shown in Figure 5. The color blue corresponds to model YOLOv5s and the color orange
corresponds to the model YOLOv5m. As the graphs show, YOLOv5m is a bit more stable
during the train. Nonetheless, both models converge to the same point.
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Figure 5. Comparison of performance metrics, during training, for YOLOv5s and YOLOv5m. The
performance of YOLOv5s is shown in blue and YOLOv5m is shown in orange.

The plots show that the models are progressively learning through every epoch
because the performance is increasing and 250 epochs are enough training, considering
that the curves are stable at that point.

The loss function shows the performance of a given predictor in classifying the input
data points in a dataset. The smaller the loss, the better the classifier is at modeling the
relationship between the input data and the output targets. There are two different types
of loss shown in Figure 6. The loss represented at the top is related to both the predicted
bounding box and the loss related to the given cell containing an object during the training.
The graphs of val Box and val Objectness represent their validation scores. Training loss is
measured during each epoch while validation loss is measured after each epoch.

Figure 6. Loss during training, related to both the predicted bounding box and the loss related to the
given cell containing an object, as well as their validation scores displayed as Box and Objectness.
Results for the YOLOv5s are on the left hand side, for the YOLOv5m at the right hand side.

Figure 5. Comparison of performance metrics, during training, for YOLOv5s and YOLOv5m. The
performance of YOLOv5s is shown in blue and YOLOv5m is shown in orange.

The plots show that the models are progressively learning through every epoch
because the performance is increasing and 250 epochs are enough training, considering
that the curves are stable at that point.

The loss function shows the performance of a given predictor in classifying the input
data points in a dataset. The smaller the loss, the better the classifier is at modeling the
relationship between the input data and the output targets. There are two different types
of loss shown in Figure 6. The loss represented at the top is related to both the predicted
bounding box and the loss related to the given cell containing an object during the training.
The graphs of val Box and val Objectness represent their validation scores. Training loss is
measured during each epoch while validation loss is measured after each epoch.

Figure 6. Loss during training, related to both the predicted bounding box and the loss related to the
given cell containing an object, as well as their validation scores displayed as Box and Objectness.
Results for the YOLOv5s are on the left hand side, for the YOLOv5m at the right hand side.
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On the left-hand side, there are those values for the dataset with 582 images with the
model YOLOv5s, and on the right are the same values for the model YOLOv5m. The charts
show that both models are very similar. The YOLOv5m is faster stabilizing the learning
process, but the model YOLOv5s seems to be enough.

Figure 7 shows the loss related to the predicted bounding box, a cell containing an
object and the class loss for the two models YOLOv5s and YOLOv5m on the dataset with
900 images. YOLOv5m results are represented in orange and YOLOv5s results are in blue.
Again, the results show that the evolution of loss for both models are very similar. Actually,
the lines are practically overlapping.

Figure 7. Loss functions for both the models YOLOv5s (blue) and YOLOv5m (orange).

8. Discussion

A task assistant was proposed, using a YOLO deep network for object detection and
augmented reality glasses. The model of object detection trained learns quickly and gives a
prediction in a fraction of a second, making it suitable for use in real time.

The precision obtained for the two models is in line with that obtained by other authors
for similar problems, namely the “Artificial Intelligence for Real Time Threat Detection
and Monitoring” [4] that has a precision of 0.803, 0.89 for recall and 0.905 for mAP 0.5.
Prediction time is approximately 0.007 seconds, which allows up to 140 FPS on a TESLA
P100 GPU. This shows that the system of detection can be integrated with the architecture
proposed, to be used in real time, as intended, by maintenance professionals.

Table 6 compares the results for detection for all classes for both models, YOLOv5s
and YOLOv5m, on both datasets. The first two lines show the results of training and
testing the models with the largest dataset. A total of 571 images were used for training,
159 used for validation and 170 images were used for testing. The last two lines are the
results obtained with the smaller dataset, as described in Section 7.1.

Table 6. Tests with YOLOv5s YOLOv5m for both datasets.

Model Class Test Dataset Precision Recall mAP 0.5 mAP 0.5:0.95

YOLOv5s All dataset 2 0.975 0.992 0.994 0.797
YOLOv5m All dataset 2 0.985 0.994 0.994 0.8
YOLOv5s All dataset 1 0.969 1 0.992 0.818
YOLOv5m All dataset 1 0.974 0.997 0.994 0.829
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9. Conclusions and Future Work

The goal of the present work was to train a neural network for deep learning that can
serve as a basis for integrating into an augmented reality system that helps professionals in
the field of maintenance.

To train the model, two different datasets were created, using two different devices in
different illumination conditions. Two versions of YOLOv5 were also tested, and it was
determined that YOLOv5s can be sufficient for the intended detection problem.

YOLOv5s demonstrated to be capable of identifying eight different mechanical parts
in a car engine with high precision and recall always above 96.8% in the test sets, which,
compared to the larger model, has almost the same results. All tests and results prove that
the network is good and fast enough to be applied to the proposed system.

Future work includes the integration of the trained model in the CMMS, with the
main objective of communicating with the virtual reality glasses, so that the technician is
guided through the procedures of the working order in real time.
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Abbreviations
The following abbreviations are used in this manuscript:

Ap Average Precision
AR Augmented Reality
CAP Common Augmented Reality Platform
CMMS Computerized Maintenance Management System
CNN Convolutional Neural Network
COCO Common Objects in Context
FFmpeg Fast Forward MPEG
FN False Negative
FP False Positive
FPS Frames per Second
GPU Graphics Processing Unit
IoU Intersection over Union
mAP Mean Average Precision
MP Megapixel
MTTP Mean Time To Repair
RCNN Region Based Convolutional Neural Networks
TP True Positive
VoTT Visual Object Tagging Tool
WO Worker Order
YOLO You Only Look Once
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