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Abstract: The use of mulching, compost, and their interaction on organic residue (OR) decomposition
rate (k), time of residue decay, primming effect, and soil organisms’ community composition was tested
in a 16-year P. pyrifolia field experiment conducted from January 2020 to June 2021. A 2 × 2 factorial
design was used with compost and mulching as the two factors within four blocks. OR decomposition
was characterized by using litter bags with different mesh, and soil organisms were identified at
family level. The half-decay rate (hd), total-decay rate (td), and remaining residue mass (Rm) varied
among the organic residue management and mesh-type. The highest values of k and primming effect
were found in litter bags with 15 mm2 size containing compost in the plots that received compost.
For soil organisms’ abundance and richness, the highest values were found on plot that received both
mulching and compost. The observed results suggested that the OR management determined organic
matter decomposition, soil organisms’ abundance and richness in an Acrisols of the Southern Brazil.
Soil organisms were the main factors contributing to the data variance (e.g., Acaridae, Blattidae,
Chrysopidae, Halictophagidae, and Forficulidae).

Keywords: compost; litterbags; mulching; nutrient cycling; priming effect; soil organisms

1. Introduction

In subtropical agroecosystems, organic residues are the major source of energy supply
and habitat for nutrient cycling and soil organisms [1]. In Pyrus pyrifolia (Burm.f.) Nakai
plantation, the transition process from conventional to organic farming system (OFS)
accounts for 18% of its cultivated area in the southern Brazil and represents 22,000 t year−1

of P. pyrifolia fruits produced in an OFS [2,3]. In this condition, organic residues with C-
and N-rich compounds may improve net primary production, soil food web, and organic
residue decomposition [4–6]. OFS may reduce the use of mineral fertilizers and ICIDE-type
products (e.g., herbicides, pesticides, fungicides) due to an increase in the soil organisms’
abundance and richness that promotes organic matter fragmentation [7,8]. However, field
studies considering the effects of the continuous use of organic residues as compost and
mulching on organic residue decomposition modulated by the soil organisms’ activity are
rare [2,3,5]. In this context, the use of organic residues can be an important alternative to
promote soil quality, nutrient cycling by increasing soil organisms’ activity, its community
structure, and soil food web [9].

Decomposition of organic residues is controlled by many factors (e.g., fractional
composition of organic matter, temperature, soil moisture, soil organisms’ activity), but
their quantity (C-rich) and quality (N-rich) along with soil organisms’ community are
considered key-factors in subtropical agricultural systems [10]. The consensus is that C-
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and N-rich residues are generally found to stimulate habitat provision and decomposition,
respectively [11,12]. Other studies have provided evidence of C-rich residues negatively
influencing decomposition rates [13,14]. Organic residues as mulching may act as habitat for
soil organisms, while compost may act as energy supply for nutrient cycling [15,16]. Next,
these two organic residues ensure the organic matter input into soil profile, which avoids
soil quality loss, and increases plant nutrient release overtime [17]. Finally, the continuous
use of compost and mulching can create positive plant-soil feedback, which overtime
increases plant production, and decreases costs with low C input [18]. Previous studies
showed that the use of organic residues increased the soil organic matter decomposition,
and soil organisms’ community structure [18–20].

Soil organisms’ community is amongst the most important biotic factor in tropical
and subtropical ecosystems [10,21,22]. These soil organisms perform a range of ecosystem
services including soil structure, soil organic matter transformation, nutrient cycling, bio-
logical control etc., [23,24]. Pyrus pyrifolia is one of the four most important tree species in
Brazilian fruticulture, and pearl fruits have shown to have an important social-economic
impact on southern Brazil [2]. However, the role of soil organisms’ community in organic
residues decomposition in a 16-year P. pyrifolia field remains unclear. Some studies have
described that compost may influence soil organic matter dynamics by improving decay
rate, and primming effect, which in turn influences nutrient cycling, and soil organisms’
abundance [25–27]. On the other hand, other works have shown that soil organic residues
management may alter soil reaction by the H+ extrusion and the release of some C-rich
compounds, thus promoting rootability improvement [17,28]. Finally, organic residues man-
agement that provide high input of C-rich compounds may positively affect soil organisms’
community structure by habitat provision [10,17].

This study aimed to assess if: (a) the organic residue management (considering
the plots) may influence the residues decomposition in a litterbag assay using different
mesh sizes; (b) there are different decomposition rates influenced by soil organisms; and
(c) the use of organic residues may improve the soil organisms’ community structure.
Soil sampling, litter bag assay using different mesh sizes, and soil organisms’ community
assemblage were used to achieve these aims [17,29,30].

2. Materials and Methods
2.1. Pyrus Pyrifolia and Study Site

Pyrus pyrifolia has been cultivated in Paraná, Santa Catarina, Rio Grande do Sul
covering an area of 1300 ha from which just 18% is cultivated following the organic farming
system [31]. This field experiment was conducted in a 16-year P. pyrifolia var. Hosui
field cultivated in a subtropical Acrisol [32] that follows an organic farming system at
the Pirapora emprise (27◦12′47.01” S and 50◦39′44.52” W), Curitibanos, SC, Brazil, from
January 2020 to June 2021. It comprises an area of 123.10 ha. The enterprise count with
an area of 21.4 ha planted, included principally Pyrus pyrifolia var. Housui. The climate is
type Cfb-type following Köppen-Geiger classification, with average annual precipitation
and air temperature of 1676 mm and +15.0 ◦C, respectively [33]. Climate data, monthly
rainfall, mean temperature, and thermal amplitude (monthly temperature fluctuation from
maximum and minimum temperature) from the field experiment, Curitibanos, SC, Brazil
(January 2020 to June 2021), were obtained online: https://ciram.epagri.sc.gov.br (accessed
on 23 August 2021) (Figure 1).

https://ciram.epagri.sc.gov.br
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Figure 1. Monthly precipitation (mm), air temperature (°C), and thermal amplitude (°C) from the 
field experiment, Curitibanos, SC, Brazil (January 2020 to June 2021). Data were obtained online: 
https://ciram.epagri.sc.gov.br (accessed on 23 August 2021). 

2.2. Experimental Design 
The experiment was conducted in field conditions using a 2 × 2 factorial design with 

compost and mulching as the two treatment factors within four blocks. The presence and 
absence of mulching and compost were the studied treatments. Each treatment was tested 
in permanent plots (25 × 36 m), which contained 25 plants of P. pyrifolia (Figure 2). 

 
Figure 2. Experimental scheme of the field study inside a 16-year P. pyrifolia field using different 
organic residues management in a subtropical ecosystem, Curitibanos, SC, Southern Brazil. 

2.3. Mulching and Compost Production 
The plant material used as mulching was obtained by P. pyrifolia pruning. All mulch-

ing material were air dried for 7 days in mulching piles (1.5 × 2.0 × 5.0 m; height: width: 
lenght) covered by black plastic during all process. Temperature changes in mulching 
piles was not detected. In this study, the use of 3 kg m−2 of this material applied around 
the P. pyrifolia plants was tested. For compost, piles (1.5 × 1.5 × 3.0 m; height: width: length) 
using a mixture of chicken manure, green biomass, and cow manure (1: 2: 1 ratio) were 
made. Daily, compost piles were watered (e.g., 80% of field capacity), and once a week 
they were turned by providing oxygen inside the piles, and to reduce thermal variation 

Figure 1. Monthly precipitation (mm), air temperature (◦C), and thermal amplitude (◦C) from the
field experiment, Curitibanos, SC, Brazil (January 2020 to June 2021). Data were obtained online:
https://ciram.epagri.sc.gov.br (accessed on 23 August 2021).

2.2. Experimental Design

The experiment was conducted in field conditions using a 2 × 2 factorial design with
compost and mulching as the two treatment factors within four blocks. The presence and
absence of mulching and compost were the studied treatments. Each treatment was tested
in permanent plots (25 × 36 m), which contained 25 plants of P. pyrifolia (Figure 2).
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Figure 2. Experimental scheme of the field study inside a 16-year P. pyrifolia field using different
organic residues management in a subtropical ecosystem, Curitibanos, SC, Southern Brazil.

2.3. Mulching and Compost Production

The plant material used as mulching was obtained by P. pyrifolia pruning. All mulching
material were air dried for 7 days in mulching piles (1.5 × 2.0 × 5.0 m; height: width:
lenght) covered by black plastic during all process. Temperature changes in mulching piles
was not detected. In this study, the use of 3 kg m−2 of this material applied around the
P. pyrifolia plants was tested. For compost, piles (1.5 × 1.5 × 3.0 m; height: width: length)
using a mixture of chicken manure, green biomass, and cow manure (1: 2: 1 ratio) were
made. Daily, compost piles were watered (e.g., 80% of field capacity), and once a week
they were turned by providing oxygen inside the piles, and to reduce thermal variation
preventing the piles to self-burn. The effect of using 10 kg m−2 of compost applied on the

https://ciram.epagri.sc.gov.br
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soil surface and then incorporating at 20 cm soil depth, 60 days before the flowering stage
was studied. For the organic residue characterization, both compost and mulching materials
were sampled from each pile. Mulching and compost piles were produced in their own
experimental areas. For both studied organic residues, twenty samples were collected per
organic residue, separately. Both compost and mulching samples were air-dried and passed
through a 2-mm size sieve for C, N, P, and K analysis (Table 1) following Tedesco et al. [34].

Table 1. Chemical composition (N, P, and K) of the organic residues used in the field experiment.

Organic Residues C/N Ratio N (g kg−1) P (g kg−1) K (g kg−1)

Mulching 45.85 ± 0.98 1 8.52 ± 1.12 13.87 ± 1.34 86.68 ± 4.23
Compost 21.13 ± 1.02 20.84 ± 1.18 16.18 ± 1.37 31.18 ± 4.39

1 Vales are given as mean and standard deviation (n = 20).

2.4. Soil Chemical Characterization

Soil was collected before starting the field experiment on January 2020 using a soil
auger and sampling at 0.2 m soil depth in each plot. Five soil samples were collected,
nested per plot. All soil samples were air dried and passed through a 2-mm size sieve
as described by Teixeira et al. [35]. The soil chemical characterization included soil pH,
available phosphorous, soil exchangeable cations (K+, Ca2+, and Mg2+), soil organic carbon,
and total nitrogen (Table 2). Soil pH was measured in a suspension of soil and distilled water
(1:1, v:v, soil: water suspension). Available phosphorous was measured using colorimetry
of the phospho-molybdic complex at 882 nm wavelength after extraction by Mehlich-1
method M-1 (0.05 mol L−1 HCl + 0.025 mol L−1 H2SO4). The potassium chloride extraction
method was used to determine exchangeable Ca2+, K+, and Mg2+ [36]. Total organic carbon
was estimated according to the methodology described by Teixeira et al. [35]. The total
nitrogen was estimated using sulfuric acid and potassium sulfate digestion followed to a
distiller by Kjeldahl’s method [35].

Table 2. Soil chemical properties of before to start the field experiment (mean, n = 192) in a 16-year
P. pyrifolia plantation, Curitibanos, SC, Brazil.

Treatments pH (H2O) P
(mg dm−3)

K+

(mg dm−3)
Ca2+

(cmolc dm−3)
Mg2+

(cmolc dm−3)
SOC 1

(g kg−1)
TN 2

(g kg−1)

Control 6.28 ± 0.03 30.22 ± 1.04 408.23 ± 2.32 10.28 ± 0.08 3.08 ± 0.02 30.59 ± 2.34 1.62 ± 0.08

Mulching (M) 6.35 ± 0.03 48.98 ± 1.29 461.30 ± 2.09 11.88 ± 0.08 3.06 ± 0.03 30.59 ± 1.99 1.81 ± 0.05

Compost (C) 6.15 ± 0.02 35.07 ± 1.27 326.31 ± 1.99 10.96 ± 0.05 3.26 ± 0.02 27.98 ± 2.11 1.80 ± 0.06

M + C 6.23 ± 0.04 43.12 ± 1.39 576.92 ± 2.05 10.36 ± 0.09 2.92 ± 0.03 30.16 ± 2.10 1.78 ± 0.02
1 SOC = Soil organic carbon. 2 TN = Total nitrogen.

2.5. Organic Residues Decomposition Assay

Litterbags (10 × 10 cm) with different mesh (e.g., 4-mm2 and 15-mm2) were used
to determine the organic residue decomposition rate (k, years−1). The use of litterbags
with different mesh enabled us to assess: (i) macrofauna action on litter fragmentation
(e.g., by the action of litter transformers on the coarse mesh); and microbiota action on
litter decomposition (e.g., by the action of decomposer on the fine mesh). Each litterbag
received 10 g of organic residues (e.g., mulching and compost). Hundred forty-four lit-
terbags were placed per plot that were distributed in the central portion of each plot (e.g.,
sixteen litterbags around each plant). Following a 30 day-schedule, eight litterbags (e.g.,
two fine mesh and two coarse mesh) were collected. The last litterbags remained in field
conditions for eighteen months. Litterbags were harvested and placed in individual paper
bags. In the lab, the organic residues sampled in each litterbag were oven-dried at 60 ◦C
until reaching a constant weight for 72 h, and then organic residues samples were weighed.
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The change in mass was used to determine the organic residues decomposition rate (k,
years−1) as described by Olson [37]: X/X0 = e(−kt). Where, X is the remaining mass (g) after
t years, X0 is the initial organic residues mass (g). Half-decay time (hd) and total-decay time
(td) were estimated by using two nonlinear regression models that were tested for robust-
ness. Finally, the remaining residue mass was estimated by using the following equation:
Rm (%) = X/X0 × 100. Where, Rm is the remaining litter mass (%), X0 represents the initial
dry mass of litter (g); X is the dry mass of the litter remaining after retrieval (g) at time
t [38], and priming effect: pf = ln(X0/X). Where, pf is the priming effect, X0 is (g) is the
initial organic residues mass, and X is the mass remaining.

2.6. Soil Organisms’ Collection

The Tropical Soil Biology and Fertility protocol [17,39] was used to sample soil organ-
isms. Two Provid-type traps were placed per plot following a 2-days schedule without
any interruption to collect soil organisms (e.g., Annelida, Arachnida, Insecta, Mollusca,
and Myriapoda). Each trap received a solution of 100 mL of distilled water, 40 mL of
neutral liquid detergent, and 15 mL of 70% alcohol. All Provid-type traps were placed
six times during the whole study, but we present the mean of each studied treatment in
our Section 3. The soil organisms within each trap were inserted in plastic pots containing
30 mL of 70% alcohol. All collected organisms were considered for our analysis, and they
were sorted, counted, and classified at family level. The soil organism community structure
was characterized by the mean abundance (individual trap−1), richness, Shannon diversity
index [40], Simpson dominance index [41], and functional groups [23].

2.7. Statistical Analysis

Prior to the statistical analysis all dataset was tested for normality by Shapiro–Wilk test
(“shapiro.test” function), and log transformation (“decostand” function) was applied when
necessary. The entire dataset was analyzed to detect spatial autocorrelation (“Moran.I”
function). All variables were analyzed with a two-way ANOVA with the main factor
organic residue management, the secondary factor litter bag residue/mesh, and plot
number as a random factor. Bonferroni’s test was used as the post-hoc test. To analyze
differences among the organic residue management in terms of soil organism community
structure we used a NMDS procedure with Jaccard dissimilarities (“metaMDS” function).
The decomposition rates, half-decay time, total decay time, remaining litter mass, and
ecological indices were summarized using PCA (“vegan” package) to identify possible
organic residue management dissimilarities, and to reduce the n-dimensional nature of
variables to two linear axes explaining all the data variance. All functions and statistical
analyses were performed in R 3.4.0 [42].

3. Results
3.1. Influence of the Organic Residue Management and Soil Organisms’ Activity on Organic
Residues Decomposition

The half-decay rate (hd), total-decay rate (td), and remaining residue mass (Rm) varied
among the organic residue management and mesh-type in a 16-year P. pyrifolia field. The
highest values of hd, td, and Rm were found in the mulching treatment with litter bags
(15 mm2 size) containing mulching, and in the compost treatment with litter bags (4 mm2

size) containing mulching (Table 3).
Decomposition rate (k), and primming effect varied among the organic residue man-

agement and mesh-type in the 16-year P. pyrifolia field. The highest values of k and prim-
ming effect were found in the compost treatment with litter bags (15 mm2 size) containing
compost (Figure 3).
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Figure 3. Decomposition rate (k, years−1, A), and primming effect (B) as affected by different organic
residues management and litterbag mesh-type in a subtropical ecosystem, Curitibanos, SC, Southern
Brazil. Different small letters in each organic residue management differ by Bonferroni’s test (p < 0.05),
while different capital letters in each litterbag mesh-type differ by Bonferroni’s test (p < 0.05). The
decomposition rate was adjusted by multiplication by 10.
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Table 3. Half-decay time (hd, days), total-decay time (td, days), and remaining litter mass (Rm, %)
among the organic residues influence and litterbag mesh-type in a subtropical ecosystem, Curitibanos,
SC, Southern Brazil.

Organic Residues Management

Mesh—Type

hd (Days)

Compost, 4 mm2 Compost, 15 mm2 Mulching, 4 mm2 Mulching, 15 mm2

Control 50.86 (0.59) cA 1 61.61 (2.64) bA 86.03 (0.67) aB 86.88 (2.56) aB
Mulching (M) 47.88 (1.21) cB 2 37.28 (0.76) dB 81.00 (0.90) bB 105.21 (1.53) aA
Compost (C) 44.72 (0.39) bB 27.54 (0.45) cC 132.25 (9.64) aA 45.77 (0.53) bC

M + C 35.12 (0.36) bC 30.97 (0.21) bC 64.43 (0.58) aC 53.84 (0.78) aC

td (days)

Control 308.99 (9.44) bA 374.33 (19.58) bA 522.64 (15.25) aB 527.83 (21.80) aB
Mulching (M) 290.92 (10.76) cA 226.48 (7.95) cB 492.11 (14.93) bB 637.79 (19.61) aA
Compost (C) 274.05 (9.16) bB 167.31 (5.48) cC 806.88 (6.56) aA 275.71 (7.23) bC

M + C 213.19 (6.41) bC 188.18 (5.44) cC 391.42 (11.57) aC 327.07 (10.40) aC

Rm (%)

Control 19.75 (0.31) cA 24.85 (1.47) bA 38.35 (0.16) aB 37.59 (0.10) aB
Mulching (M) 17.75 (0.68) cA 11.05 (0.46) cB 36.05 (0.34) bB 45.42 (0.45) aA
Compost (C) 15.87 (0.26) bA 5.15 (0.22) cB 43.42 (2.86) aA 16.47 (0.20) bC

M + C 9.60 (0.18) bB 7.00 (0.04) bB 27.80 (0.23) aC 21.55 (0.43) aC
1 Different small letters in each line differ by Bonferroni’s test (p < 0.05), whereas different capital letters in each
row considering the organic residues management differ by the same post-hoc test. 2 Mean values (n = 144 per
plot) followed by the standard deviation in parenthesis.

3.2. Soil Organisms’ Collection in a 16-Year P. pyrifolia Field under Different Organic Residue Management

Nineteen taxonomical orders, and thirty-three families were identified of the soil
organisms’ community (Table 4). The mean abundance of soil organisms varied signif-
icantly among organic residue management (p < 0.001). The most abundant taxonomic
group was Hymenoptera—Formicidae. This taxonomic group had abundances varying from
65.65 ± 5.63 (Mulching + Compost) to 100.24 ± 7.65 (Control). The one-way ANOVA results
showed significant differences among organic residue management on Acari—Acaridae,
Araneae—Araneidae, Blattodea—Blattidae, Blattodea—Termitidae, Coleoptera—Cugygidae,
Coleoptera—Staphylinidae, Dermaptera—Forficulidae, Diptera—Muscoidea, Gastropoda—
Gymnomorpha, Gastropoda—Pulmonata, Hemiptera—Cicadidae, Neuroptera—Chrysopidae,
and Strepsiptera—Halictophagidae. Control promoted the occurrence of Araneae—Araneidae,
Blattodea—Termitidae, Coleoptera—Staphylinidae, and Hemiptera—Cicadidae. Then,
mulching promoted the occurrence of Acari—Acaridae, Gastropoda—Pulmonata, and
Strepsiptera—Halictophagidae. Next, compost promoted Coleoptera—Cugygidae, and
Dermaptera—Forficulidae. Finally, compost and mulching promoted the occurrence of
Blattodea—Blattidae, Diptera—Muscoidea, Gastropoda—Gymnomorpha, and Neuroptera—
Chrysopidae. For ecological index, significative differences were found among organic
residues management on richness, and soil organisms’ abundance. Non-significative differ-
ences were observed among organic residue management on Shannon’s diversity index,
and Simpson’s dominance index (Table 4).



Agronomy 2022, 12, 263 8 of 15

Table 4. Mean abundance (ind. trap−1) of soil organisms’ taxonomic groups, and ecological indexes
among the studied organic residue management in a 16-year P. pyrifolia field.

Order—Family Control Mulching (M) Compost (C) M + C F-Value

Acari—Acaridae 0.62 (0.11) b 1 1.75 (0.21) a 0.12 (0.03) c 0.50 (0.07) b 10.62 *** 2

Araneae—Araneidae 2.25 (0.15) a 1.50 (0.13) b 0.87 (0.10) d 1.12 (0.10) c 8.25 ** 3

Araneae—Filistatidae 4.62 (0.26) a 5.25 (0.38) a 4.37 (0.19) a 5.75 (0.22) a 3.07 ns 4

Blattodea—Blattidae - 0.50 (0.05) b 0.37 (0.05) c 0.62 (0.07) a 11.83 ***
Blattodea—Termitidae 0.37 (0.05) a 0.12 (0.03) b - - 13.50 ***
Coleoptera—Carabidae 15.75 (1.49) a 12.37 (0.98) a 15.00 (0.99) a 13.87 (1.76) a 2.00 ns

Coleoptera—Cerambycidae 0.12 (0.03) a 0.12 (0.03) a - 0.12 (0.03) a 2.17 ns

Coleoptera—Cuccilinidae - 0.12 (0.03) a - - 6.09 ns

Coleoptera—Cugygidae - 0.12 (0.03) b 0.25 (0.04) a - 7.96 **
Coleoptera—Gyrinidae - 0.12 (0.03) a 0.37 (0.07) a 0.12 (0.03) a 4.77 ns

Coleoptera—Nitidulidae 34.37 (1.22) a 32.50 (1.15) a 33.75 (1.04) a 44.87 (2.13) a 4.41 ns

Coleoptera—Passalidae 0.12 (0.03) a - - - 6.09 ns

Coleoptera—Scarabaeidae 7.37 (0.58) a 8.62 (0.92) a 9.37 (0.93) a 3.75 (0.25) a 4.42 ns

Coleoptera—Staphylinidae 2.12 (0.33) a 1.12 (0.16) c 0.25 (0.04) d 1.87 (0.22) b 10.07 ***
Dermaptera—Forficulidae 1.87 (0.15) d 3.50 (0.22) b 7.50 (0.70) a 2.50 (0.12) c 9.96 ***

Diptera—Muscoidea 1.12 (0.27) d 2.37 (0.23) c 3.00 (0.23) b 3.37 (0.27) a 10.51 ***
Gastropoda—Gymnomorpha 0.62 (0.07) c 1.50 (0.13) b 1.62 (0.16) a 1.75 (0.11) a 8.75 **

Gastropoda—Pulmonata 1.37 (0.14) b 2.37 (0.47) a 0.12 (0.03) d 1.87 (0.22) c 10.87 ***
Haplotaxida—Lumbricidae 0.62 (0.08) a 1.12 (0.08) a 1.00 (0.14) a 0.37 (0.05) a 7.11 ns

Hemiptera—Cicadidae 0.37 (0.05) a - - 0.12 (0.03) b 13.50 ***
Hemiptera—Pentatomidae 0.12 (0.03) a - - - 6.09 ns

Hymenoptera—Formicidae 100.24 (7.65) a 68.25 (3.35) a 67.27 (4.57) a 65.65 (5.63) a 3.32 ns

Hymenoptera—Vespidae 0.12 (0.03) a 0.12 (0.03) a - 0.12 (0.03) a 2.17 ns

Larvae of Lepidoptera 5.87 (0.45) a 3.12 (0.28) a 8.00 (0.59) a 8.25 (0.79) a 6.94 ns

Lepidoptera 0.12 (0.03) a 0.12 (0.03) a 0.12 (0.03) a 0.25 (0.04) a 1.40 ns

Mollusca—Pulmonata 0.50 (0.05) a 0.62 (0.07) a 0.25 (0.04) a 0.62 (0.07) a 3.50 ns

Neuroptera—Chrysopidae - 0.25 (0.06) b - 0.37 (0.07) a 7.77 **
Orthoptera—Grylloidea 0.12 (0.03) a 0.12 (0.03) a - - 4.20 ns

Opiliones 0.12 (0.03) a 0.12 (0.03) a 0.25 (0.04) a 0.12 (0.03) a 1.40 ns

Scutigeromorpha—Scutigeridae - 0.12 (0.03) a 0.12 (0.03) a - 4.20 ns

Spirobolida—Scolopendromorpha 0.12 (0.03) a - - - 6.09 ns

Strepsiptera—Halictophagidae - 1.87 (0.20) a 1.62 (0.25) b 1.25 (0.17) c 12.51 ***
Thysanoptera—Thripidae 3.00 (0.92) a 3.75 (0.38) a 6.62 (0.67) a (4.75 ± 0.46) a 4.88 ns

Ecological indices Control Mulching (M) Compost (C) M + C F-value

Richness—S 17.75 (0.26) b 19.87 (0.15) a 17.50 (0.19) c 19.37 (0.23) a 11.28 ***
Shannon’s diversity index—H 2.00 (0.05) a 2.14 (0.03) a 2.15 (0.04) a 2.08 (0.04) a 5.06 ns

Simpson’s dominance index—C 0.81 (0.05) a 0.83 (0.03) a 0.84 (0.04) a 0.82 (0.05) a 5.58 ns

1 Within organic residue management, same letters represent no significant differences by Bonferroni’s test
(p < 0.05); 2 *** p < 0.001; 3 ** p < 0.01; 4 ns not significant.

3.3. Multivariate Analysis

The NMDS revealed that the soil organisms’ composition varied significantly among
the organic residue management. The ordination had a good fit (stress value = 0.17). Soil
organisms’ composition were highly correlated with organic residue management. Acari—
Acaridae, Blattodea—Blattidae, Diptera—Muscoidea, Mollusca—Pulmonata, Opiliones,
and Strepsiptera—Halictophagidae explained 33, 52, 59, 37, 49, and 28 % of the variation in
the soil organisms’ composition in each studied orginic residue management (Figure 4).
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Figure 4. Non-metric multidimensional scaling (NMDS) based on soil organisms’ composition among
the studied organic residue management in a 16-year P. pyrifolia field. Organic residue management
are represented as follows: Control = circles; mulching = squares; compost = hexagon; and compost
plus mulching = triangles.

According to the PCA analysis, all organic residue management treatments were
dissimilar. The first two axes of the overall PCA explained 80.16% of the variation in the
litter decomposition data (Figure 5). The first axis explained 62.92% of variance and was
positively correlated with Rm (R = 0.83, p < 0.001), and was negatively correlated with
primming effect (R = −0.93, p < 0.01). The second axis explained 17.24% of the variation in
litter decomposition data and was positively correlated with k (R = 0.87, p < 0.01) and was
negatively correlated with td and hd (R = −0.80, p < 0.01) (Figure 5).
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4. Discussion

The observed results in this study emphasize the influence of organic residue manage-
ment (e.g., mulching and compost) on decomposition rate (k), half-decay rate (hd), total-
decay rate (td), priming effect, remaining litter mass (Rm), and soil organisms’ community
(e.g., abundance of Acari—Acaridae, Araneae—Araneidae, Blattodea—Blattidae, Blattodea—
Termitidae, Coleoptera—Cugygidae, Coleoptera—Staphylinidae, Dermaptera—Forficulidae,
Diptera—Muscoidea, Gastropoda—Gymnomorpha and Pulmonata, Hemiptera—Cicadidae,
Neuroptera—Chrysopidae, Strepsiptera—Halictophagidae, and richness) in the 16-year field
with P. pyrifolia plants cultivated in subtropical Acrisols, Southern Brazil. All organic
residue management improved the decomposition rate, priming effect, and soil organisms’
activity (e.g., by the obtained results in the litterbag mesh assay) under subtropical condi-
tions when we compared the results obtained in the organic residue management with the
control treatment. These results also provide evidence about the organic decomposition
mediated by soil organisms’ community.

Essentially, this study highlighted how the isolate and combined use of compost
and mulching can change organic matter dynamics, soil organisms’ structure and activity,
following an organic farming system schedule and preventing the use of synthetic com-
pounds. Decomposition rate (k), half-decay time (hd), total-decay time (td), priming effect,
and remaining litter mass (Rm) on plots where compost was applied were higher than
their results on plots where mulching and control treatments were applied using litterbag
with 4 mm2 mesh-type. On the other hand, the observed results show strong evidence
about the soil organisms’ activity on mulching decomposition on plots where compost
was applied using litterbag with 15 mm2 mesh-type. These results agree with the previous
studies that reported positive effects of organic residues management on soil organic matter
dynamics [17,43,44]. These studies have reported soil improvements, and soil organisms’
activity with the continuous use of compost and green manure practice in tropical and
subtropical soils. Overtime the use of organic amendments promotes both habitat and
food provision to a wide range of soil organisms that provide ecosystem services, such as
organic matter decomposition, nutrient cycling, and soil food web [45–47].

In subtropical agroecosystems, the rate of organic residues decomposition is the main
driver that regulates the nutrient cycling process and biomass production [48]. The decom-
position rate (k) in this study was positively affected using compost on the studied plots.
This variable was also influenced by soil organisms’ activity, since the highest values of k
were found on plots that received litterbags with 15 mm2 size-mesh containing compost.
The decomposition rate is directly correlated with (i) high abundance of litter transform-
ers (e.g., Coleoptera, and Diplopoda); and (ii) organic residues quality (e.g., compost) by
providing food availability to a wide range of soil organisms; and N availability [49–51].
Compost as a soil amendment is an interesting source of organic C, N, P, and other mi-
cronutrients [36,52], and these studies have shown an improved soil food web on plots
where compost was applied, which in turns promoted organic matter dynamics.

The use of compost also provides positive influence on priming effect (e.g., which
represent high nutrient availability). Compost treatment showed a higher priming effect
when compared with the other studied organic residues management. The use of compost
also provides positive influence on organic matter traits (e.g., hd, td, and remaining litter
mass) that in turns promoted soil organisms’ activity. Several studies have reported an
improved microbial activity, N cycling, nutrient release on soil solution, and soil organic
C stocks [10,53,54]. These results support the hypothesis that compost can influence soil
organic matter dynamics by improving decay rate, and primming effect, which in turn
influence nutrient cycling, and plant nutrient supply [25–27]. The litterbag assay using
15 mm2 mesh-type provided evidence about the influence of soil organisms’ community
on decomposition rate [19].

Inside the bags with 15 mm2 mesh-type, soil organisms classified as litter transformers
(e.g., Coleoptera and Diplopoda) were found and identified. These soil organisms influence the
physical fragmentation of organic residues as described by Liu et al. [55], and Liu et al. [56]. The
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high-quality of the organic residues used in the studied plots created positive conditions for
decomposers, as we found remaining litter mass on litterbags with 4 mm2 mesh-type [17].
Here, in these bags a high abundance of red and gray fungi colonies combined with high
abundance of microregulators (e.g., Acari) that feed on this fungi community was found.
Unfortunately, strong evidence of the combined use of compost and mulching was not
detected. This suggest that combined action of organic residues needed to be studied in
a long-term schedule. In this case, just the eighteen studied months were not enough to
go deeper in the ecological process behind the combined use of organic residues as direct
sources of habitat and energy to the soil organisms [57,58].

Results of this study indicate that compost and mulching decomposed more easily
by the hd and td results in the plots where compost, and the combination of compost and
mulching were applied, respectively. The organic residues decomposition was significantly
faster under the compost treatments than the control. Both half-, and total-decay rate were
positively correlated to the soil organisms’ activity. Here, the action of litter transformers
on organic residue fragmentation must be considered [23]. The soil organisms promote
physical fragmentation of the organic residues, thus increasing their surface area on the
ground, and incorporating all fragmented residues into the soil profile. This process
improves the decomposer activity that promotes chemical fragmentation of the organic
residues in the soil profile [59]. Decomposition rates on areas that received N-rich organic
residues have been studied, however, previous studies have concerned only compost. Other
studies have shown a strong influence of N-rich organic residues than organic residues with
recalcitrant-rich compounds [60,61]. Similarly, Kan et al. [30] reported that hd, and td were
most strongly affected by N-rich compounds, and less significantly by C-rich compounds,
stage of succession, and the stage of soil formation.

In an earlier study of agroecosystem on a subtropical region, the fast N mineralization
makes it available for plant uptake, and thus retuning to soil through plant senescence and
litter deposition (e.g., positive feedback). In this study, the compost treatment promoted
the decomposition rate of both mulching and compost in our litterbag assay. Here, the plots
where the compost was previously applied have provided an energy-rich environment with
labile sources for the soil organisms’ community [30]. It is commonly believed that C-rich
compounds as the mulching residues are decomposed less quickly than compost, which
contain more N-rich compounds and less lignin [55]. Mulching residues often contain anti-
herbivory compounds such as silica, secondary compounds, and structural traits. In this
condition, a trade-off among litter transformers and decomposers must be expected [11].
Thus, the hypothesis about the soil organic residues management altering the release of
some C-rich compounds was supported in both cases where we have used compost and
mulching. Here, strong evidence about the organic residues enhancing the soil organisms’
community was found, which in turn improved decomposition rate [17,28].

For soil organisms’ abundance and richness, plots that received mulching and the
combination with mulching and compost showed the highest values of these variables.
Thus, these results support the hypothesis that organic residues management that provide
high input of C-rich compounds may positively affect soil organisms’ community structure
by habitat provision [10,17]. The high abundance and richness presented by plots that
received high amounts of C-rich compounds may be related with the mulching layer on
the soil surface. Moreover, the hypothesis provided by Melo et al. [10] that in agricultural
soil the soil organisms’ abundance is driven by the habitat quality, while soil organisms’
diversity is driven by organic residues with N-rich compounds cannot be excluded. These
results agree with previous studies which reported that soil ecosystem with constant
organic residues input increase soil organic carbon, soil nutrient contents (e.g., P, N, and
micronutrients), soil food web (e.g., Arachnida, Insecta, and Myriapoda), and ecological
processes (e.g., nutrient cycling, herbivory control, and litter transformation) [36,62,63].
Organic residues by providing habitat and energy supply can improve both the ecological
process and energy flow in the agroecosystems, thus creating a complex soil food web in
positive plant-soil feedback [63].
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Compost and mulching are important organic residues to soil organisms, and these
kinds of residues act as food resource and refuge site, respectively [10,64]. Soil organ-
isms, especially Orders with significative abundance (Acari—Acaridae, Blattodea—Blattidae,
Diptera—Muscoidea, Mollusca—Pulmonata, Opiliones, and Strepsiptera—Halictophagidae)
were determinants in our study to separate the organic residues influence. These results
agree with the previous works [65,66] that reported a diverse soil food web in the soil
ecosystem that received organic residues. By altering soil organic matter compartment,
organic residues may alter soil reaction and some nutrient contents and thus may be re-
sponsible for the abundance and richness of soil organisms in plots where mulching, and
the combination with mulching and compost were applied [67,68]. The hypothesis that
compost may promote soil organisms’ abundance was not supported. Overall, the soil
organisms’ community was strongly influenced using mulching (e.g., habitat provision),
whereas the decomposer was strongly influenced using compost (e.g., energy fluxes). In
fact, both organic residues may enhance the trophic structure by building links among soil
organisms, plant traits, and soil factors. These links are important ecological processes such
as biological control, mutualism, plant-arthropod interaction, and nutrient cycling [69,70].

5. Conclusions

The organic residues management determined organic matter decomposition (half-
decay rate, total-decay rate, remaining residue mass, k, primming effect), soil organisms’
abundance and richness in an Acrisol of the Southern Brazil. The use of compost showed
high decomposition rate and primming effect in subtropical conditions, while the use
of mulching and the combination with compost and mulching provided conditions to
sustain high abundance and richness related to the soil organisms’ community. The highest
values of half-decay rate, total-decay rate, remaining residue mass, k, primming effect
obtained using the litter bags with 15-mm2 demonstrate the influence of soil organisms
on residues decomposition. The main results observed in this manuscript suggest that
organic residues have positive effects on decomposition rate of mulch and compost (e.g.,
improving the acceleration of organic residues decomposition), soil organisms’ activity,
and soil organisms’ community composition. These results highlighted the importance of
considering both residues with N- and C-rich compounds as energy source and habitat
provision, respectively. Thus, long-term experiments considering the combined use of
mulching and compost may exploit a deeper view inside the organic matter dynamics, and
soil organisms’ role in organic residues decomposition.
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