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Abstract: Multi-Object Tracking (MOT) techniques have been under continuous research and
increasingly applied in a diverse range of tasks. One area in particular concerns its application in
navigation tasks of assistive mobile robots, with the aim to increase the mobility and autonomy of
people suffering from mobility decay, or severe motor impairments, due to muscular, neurological, or
osteoarticular decay. Therefore, in this work, having in view navigation tasks for assistive mobile
robots, an evaluation study of two MOTs by detection algorithms, SORT and Deep-SORT, is presented.
To improve the data association of both methods, which are solved as a linear assignment problem
with a generated cost matrix, a set of new object tracking data association cost matrices based
on intersection over union, Euclidean distances, and bounding box metrics is proposed. For the
evaluation of the MOT by detection in a real-time pipeline, the YOLOv3 is used to detect and classify
the objects available on images. In addition, to perform the proposed evaluation aiming at assistive
platforms, the ISR Tracking dataset, which represents the object conditions under which real robotic
platforms may navigate, is presented. Experimental evaluations were also carried out on the MOT17
dataset. Promising results were achieved by the proposed object tracking data association cost
matrices, showing an improvement in the majority of the MOT evaluation metrics compared to the
default data association cost matrix. In addition, promising frame rate values were attained by the
pipeline composed of the detector and the tracking module.

Keywords: multi-object tracking; data association; autonomous mobile robot platforms

1. Introduction

Vision-based Multi-Object Tracking (MOT) methods analyze image sequences to
establish object correspondences over the images [1,2]. Multiple MOT methods have been
proposed over the years and have been widely used in applications, such as surveillance [3],
traffic monitoring [4], autonomous driving [5], and mobile robot navigation, including
object collision avoidance [6] or target following [7]. However, MOT results may be affected
by difficult problem configurations due to crowded environments or occluded objects,
which leads to limitations in performance for such scenarios. Moreover, due to a large
number of applications where MOT methods can be applied, the importance of MOT is
high and remains a challenging topic in the research community [1,2,8].

Throughout the years, MOT tasks were mainly performed by the tracking by detection
paradigm [9], where objects were detected by an object detector and fed to the object
tracking method, which then dealt with the object association between previous frames
and the present one. Most methods proposed [10–12] use a Kalman Filter (KF) as a motion
module to predict the position of objects of interest in the current frame. On the other
hand, with the emergence of Deep learning-based Neural Networks (DNNs) [13,14], new
state-of-the-art methods have been proposed in object vision-based tasks such as object
classification [15], recognition [16], and tracking [11,17,18]. Therefore, to improve the object
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association step of tracking algorithms, Convolutional Neural Networks (CNNs) have been
applied to extract object appearance features, which are used to compute similarity values
between two objects’ feature maps, extracted over two consecutive images. On the other
hand, CNNs have also been used to locate objects to track consecutive images [19,20].

MOT techniques can be employed to improve the motion planning behavior and
safety on the navigation tasks of mobile robot platforms [6]. MOT techniques can also be an
asset on assistive platforms for target-following tasks, where the platform follows a specific
target (e.g., following a caregiver, reaching an object).

Due to several types of impairments, there are a significant number of people unable to
perform daily tasks. Hence, a particular type of assistive mobile robot, robotic wheelchair
platforms, has been researched aiming to increase the autonomy and mobility of such
users [21,22]. Brain-actuated wheelchairs [21,23,24] have also received particular focus in
research, with several promising techniques for severely motor disabled people who are
unable to control a robotic platform by the conventional interfaces, such as joystick [21,25].
With the advances in Brain–Computer Interfaces (BCI) and shared control methods, new
paradigms of the brain–computer interaction that allow the user to choose his navigation
target have been proposed. The new paradigms can represent potential goals of interest
to the user’s navigation (e.g., objects) and can be empowered by considering the tracked
objects from MOT methods. Once the user selects its navigation target, a MOT method is
required to ensure that robotic wheelchair platforms navigate towards that specific target.
However, to endow a mobile robot to pursue an object as its navigation target, a robust
visual perception module, including an object tracking method, is required. Moreover, to
ensure a robust object tracking performance, detection and tracking should be performed
frame-by-frame, which is time-consuming and can lead to the inability of performing MOT
in real-time [9].

In this work, considering navigation tasks in assistive platforms, an evaluation study
of two multi-object tracking by detection algorithms, SORT [10] and Deep-SORT [11], using
new data association metrics [26], is proposed. SORT and Deep-SORT methods were
proposed with a focus on real-time object tracking tasks, both achieving state-of-the-art
results with a high frame rate. The SORT and Deep-SORT methods share the same overall
architecture, divided into three main modules, as shown in Figure 1: KF-based estimation,
data association, and track management. To detect objects on the images, the YOLOv3 [16]
network is used. Both methods use the KF algorithm to predict the position of the objects
in the current frame, which are, as well as the object detections provided by the YOLOv3,
the inputs of the data association module, which is a linear assignment problem with a cost
matrix association. The SORT method associates objects using bounding box detections to
match measurements with predicted tracks, using the overlap of bounding boxes. On the
other hand, to improve the bounding box association step, the Deep-SORT uses a CNN to
extract appearance features from the object bounding box images. For a detailed evaluation
of the object tracking methods, a set of different types of data association cost matrices
based on bounding boxes intersection over union, Euclidean distances, and bounding boxes
ratios is proposed. To evaluate both tracking methods with the proposed cost matrices,
considering an assistive robotics context, the ISR Tracking dataset is proposed. The dataset
contains the object conditions from an assistive mobile robot’s point of view. The dataset
contains 329 object sequences of 9 different object classes. To complement the validation of
the SORT and Deep-SORT methods with the proposed cost matrices, evaluation was also
performed in the MOT17 [27] dataset.

The main contributions of this work can be summarized as follows:

• Eight new object tracking data association cost matrix formulations based on intersec-
tion over union, Euclidean distances, and bounding boxes ratio are proposed.

• The ISR Tracking dataset, presenting a mission performed by a mobile robot in a lab
setting, represents the object conditions under which robotic platforms may navigate.
It is a rearrangement of the ISR RGB-D dataset [28] with object tracking labels for
multi-object tracking tasks.



Appl. Sci. 2022, 12, 1319 3 of 18

• An evaluation, having in view navigation tasks for assistive mobile robot platforms,
of two multi-object tracking by detection algorithms, SORT and Deep-SORT, is also
presented. The proposed new data association cost matrices were integrated and
evaluated on both tracking methods.
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Figure 1. Overview of the Kalman Filter based object tracking algorithms used in this work.

2. Related Work
2.1. Object Tracking

Object tracking techniques have become a fundamental task in real-time video-based
applications that require establishing object correspondences between frames [8]. In the
literature, proposed tracking techniques fall in two main categories [29]: Single-Object
Tracking (SOT) and MOT. In SOT approaches, the appearance of the single target is known
a priori, while in MOT techniques, the aim is to estimate trajectories of multiple objects of
one or more categories without any prior knowledge about their appearance or location
targets. For MOT, an object detection step is required across frames [1]. According to [1],
applying multiple SOT models to perform MOT tasks generally leads to poor performance,
often caused by similarly looking intra-class objects.

Recent advances in MOT literature have been focusing on two different approaches:
tracking by detection and joint tracking and detection. Tracking by detection [10–12,30],
as presented in Figure 1, makes use of object detection algorithms to detect and classify
objects before performing the object association. This approach simplifies the tracking
task as an object association task over consecutive frames. Methods receive an array of
measurements and output bounding boxes with their respective tracking ID. On the other
hand, joint tracking and detection methods [9,17,19,20] are able to detect and track objects
in a single model. Generally, this approach uses visual appearance features of the object
to track and locate it in the frames of interest. Joint tracking and detection techniques
have become widely popular due to the emergence of the deep learning-based Siamese
Networks [18,31].

Despite the promising results achieved by the joint tracking and detection approaches,
for navigation tasks in assistive mobile robot platforms, an object detector method can
already be available to provide knowledge of the surrounding environment for motion
planning or localization methods. Hence, for the purpose of this work, tracking by detection
methods are more suitable.

Tracking by Detection

With the emergence of deep learning-based object detectors, tracking by detection has
become the most popular approach in the MOT research community [2]. This approach
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takes the benefit of object location knowledge to generate an association model that would
be able to associate objects over time. One of the first MOT methods found in the literature
is Multiple Hypothesis Tracking [32], which calculates hypotheses over measurements
to estimate if an object should be associated to a track, be considered as a new track, or
if it is a mis-measurement. It uses the KF algorithm to estimate the object’s states and a
probabilistic distribution over hypotheses to associate measurements to tracks.

Recent works also employ the KF algorithm, as a motion model, to improve the
association of objects over time [10–12,33]. Bewley et al. [10] proposed SORT, which is
composed of a KF to estimate object states, and by the Hungarian [34] algorithm to associate
the KF predictions with new object detections. A year later, Wojke et al. proposed an
improvement of SORT, the Deep-SORT [11], by including a novel cascading association step
that uses CNN-based object appearance features. The data association algorithm combines
the similarity of the object appearance features with the Mahalanobis distance between
object states and, at a later stage for unmatched states, uses the SORT’s data association.
Despite the usage of a CNN, the Deep-SORT method achieved a promising frame rate
on the object tracking benchmarks. A method similar to Deep-SORT was proposed by
Chen et al., the MOTDT [12]. MOTDT uses a fully CNN-based scoring function for an
optimal selection of candidates. Euclidean distances between extracted object appearance
features also are used to improve the association step. Recently, He et al. [33] proposed the
GMT-CT algorithm that incorporates graph partitioning with deep feature learning. The
graph was constructed through the extracted object appearance features, which was used
in the association step to model the relationship between measurements and tracks with
higher accuracy.

With the growth of deep learning-based Siamese networks in the object tracking
community, a new paradigm has been proposed [1]. Lee et al. [35] introduced the FPNS-
MOT, which integrates a Siamese architecture with a feature pyramid network [36]. It
computes a similarity vector between features from two different inputs and then updates
tracks using an interactive selection of the maximum scored pair of tracks and measure-
ments. FPNS-MOT outperformed the aforementioned methods on the MOT challenge
benchmarks [27] with an inference time of 10 Hz. Jin et al. [37] enhanced the performance
of the Deep-SORT [11] object feature extractor with a Siamese architecture. In addition, it in-
troduced optical flow [38] in the motion module, improving the object association accuracy.

In summary, Table 1 presents the main characteristics of the aforementioned tracking
by detection MOT methods.

2.2. Tracking Applied in Mobile Robots

Object tracking techniques have been widely applied for navigation tasks in indoor
mobile robot platforms, such as object collision avoidance [6], target following [7], and
autonomous navigation [5]. Target detection and tracking have also been applied in robotic
wheelchair platforms [39,40], which have been proposed to increase the mobility of people
with motor impairments. Xiao et al. [39] proposed a visual-target detection and tracking
method to detect and track people in the surroundings of an intelligent wheelchair. The
visual tracking was implemented as a binary classification between the object and the
background, and a semi-supervised online boosting approach was applied to solve the
object drift problem. On the other hand, Lecrosnier et al. [40] proposed an advanced driver
assistance system for a robotic wheelchair composed by the YOLOv3 [16] object detection
algorithm and a 3D object tracking approach based on SORT [10] to detect and track doors
and door handles.
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Table 1. Review of state-of-the-art tracking by detection. (DL = Deep Learning-based; KF = Kalman
Filter-based).

Method Year DL KF Description

SORT [10] 2016 ×
Simple and fast KF-based algorithm that

associates objects based on their bounding box
appearance.

Deep-SORT [11] 2017 × ×
KF-based algorithm, associates objects based on

their appearance description extracted by a CNN
re-identification network.

MOTDT [12] 2018 × ×
Deep-SORT related algorithm that uses predicted
bounding boxes as candidates for association, in

an attempt to solve the occlusion problem.

GMT-CT [33] 2021 × ×
Deep-SORT related algorithm that solves

association problems using graph partitioning
based on appearance features.

DROP [30] 2020 × ×

Associates objects using a confidence-based cost
to construct the Hungarian algorithm solver.
Furthermore, it uses appearance features to
determine occlusions in the environment.

FPSN-MOT [35] 2019 ×
It uses Siamese and Feature Pyramid-based

Networks addressing appearance and motion
features in the association stage.

Jiating Jin et al. [37] 2020 × ×

Deep-SORT related algorithm that uses Siamese
network to process association tasks and also

introduce optical flow information to the motion
model, in order to improve accuracy.

3. Methodology

In this section, a brief review of the SORT and Deep-SORT methods is presented.
The proposed cost matrix formulations, which are part of the data association’s linear
assignment problem, inside the Cost Matrix Matching module (see Data Association—Cost
Matrix Matching in Figures 2 and 3), are also presented.

3.1. SORT

SORT [10] iteratively computes the state of the objects being tracked through a KF.
The method uses the Hungarian algorithm [34] to accurately associate detected objects (by
an object detector) with objects that are being tracked. A detailed overview of the SORT
algorithm is represented in Figure 2.
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Figure 2. Overview of the object tracking SORT algorithm.
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The SORT Data Association module, which is of particular interest in this work, is
responsible for matching the KF’s predicted bounding boxes with measured bounding
boxes on the image, given by the object detector. This module receives, as input, N detected
bounding boxes and M predicted bounding boxes (acquired from their respective KF). The
module formulates a linear assignment problem by computing a cost matrix between each
detected bounding box and all predicted bounding boxes (respectively Di, i ∈ {1 . . . N}
and Pi, i ∈ {1 . . . M}), with the Intersection over Union (IoU) as metric:

IoU(D, P) =


iou(D1, P1) . . . iou(D1, PM)
iou(D2, P1) . . . iou(D2, PM)

...
. . .

...
iou(DN , P1) . . . iou(DN , PM)

 (1)

where the IoU between a detected bounding box and a predicted bounding box is given by

iou(Di, Pi) =
Di ∩ Pi
Di ∪ Pi

. (2)

After computing the cost matrix, the Hungarian algorithm [34] is used to associate the
bounding boxes. The obtained associations are represented in a N × 2 array, representing
N measurements associated to N tracks. Associations are also filtered by considering a
minimum IoU threshold, discarding associations with IoU lower than the threshold.

The KF Estimation module uses a linear constant velocity model to represent each
object’s motion model. When an object is associated with a tracked object (track), its
bounding box is used to update the track state. If no object is associated with the track,
then the track’s state is only predicted. The Track management module is responsible for
the creation and deletion of tracks. New Tracks are created when detections do not overlap
or overlap with tracks below a minimum IoU threshold. The bounding box of the detection
is used to initialize the KF state. Since the only data available are the object’s bounding
boxes, the object’s velocity in the KF is set to zero and its covariance is set high to signal the
uncertainty in the state. If a new track does not receive updates because it does not receive
associations, or if a track stops receiving associations, they are deleted to avoid maintaining
a high number of tracks to false positives or objects that left the scene, respectively.

3.2. Deep-SORT

Deep-SORT [11] is an improvement of the SORT algorithm, integrating appearance
information of objects to enhance associations. Data association integrates an additional
appearance metric based on pre-trained CNNs allowing re-identification of tracks, after
a long period of occlusion. The KF Estimation and the Track management modules are
similar to the corresponding SORT modules. An overview of the method is presented in
Figure 3.

As in SORT, the association of detected bounding boxes to tracks is solved by the
Hungarian algorithm, using a two-part matching cascade. In the first part, the Deep-SORT
method uses motion and appearance metrics to associate valid tracks. The second part
uses the same data association strategy as in SORT to associate unmatched and tentative
tracks (recently created) with unmatched detections. Motion information is incorporated by
the (squared) Mahalanobis distance between predicted states and detections. In addition
to the metric computed with the Mahalanobis distance, a second metric based on the
smallest cosine distance measures the distance between each track and each measurement
appearance features. The appearance features are computed by a pre-trained CNN model.
The CNN in the Deep-SORT method was trained on a large-scale person re-identification
dataset [41] using deep cosine metric learning [42]. A pre-trained model is provided by
the authors in their repository (https://github.com/nwojke/deep_SORT (accessed on
15 October 2021)).

https://github.com/nwojke/deep_SORT
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3.3. Data Association—Cost Matrix Matching

In this work, eight cost matrix formulations (see Cost Matrix Matching in Figures 2 and 3)
are proposed. As aforementioned, the data associations on the SORT, and also on the
second stage of the Deep-SORT, are seen as a linear assignment problem represented by a
cost matrix. Hence, the different approaches to formulate the cost matrices for the linear
assignment problem with different bounding box metrics are presented.

Intersection over union quantitatively represents the overlapping between objects’
bounding boxes, which, indirectly, ends up representing other types of information such
as Euclidean distances between two different bounding boxes and bounding boxes ratios.
However, in MOT problems, such information can be useful to improve the data association
since, between two consecutive frames, it is expected that an object has similar bounding
box dimensions and a small displacement. Therefore, object tracking data association cost
matrix formulations based on intersection over union, Euclidean distances, and bounding
boxes ratio are proposed. Let us consider a bounding box represented by the image
coordinates of its center (uBB,vBB) and its height and width (hBB,vBB), the detection set D
(with N bounding boxes), and the prediction set P (with M bounding boxes). The following
cost matrix formulations are proposed:

1. Euclidean distance based cost matrix (DE(D, P)):

DE(D, P) =


d(D1, P1) . . . d(D1, PM)
d(D2, P1) . . . d(D2, PM)

...
. . .

...
d(DN , P1) . . . d(DN , PM)

 (3)

which represents the distance between bounding box central points normalized into
half of the image dimension. To formulate the problem as a maximization problem, to
be solved using the Hungarian algorithm, the distance is obtained by the difference
between 1 and the normalized Euclidean distance, as follows:

d(Di, Pi) = 1−

√
(uDi − uPi )

2 + (vDi − vPi )
2

1
2

√
h2 + w2

(4)

where (h,w) are the height and width of the input image, Di is a bounding box from
the detection set, and Pi is a bounding box from the prediction set.
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2. Bounding box ratio based cost matrix (R(D, P))—implemented as a ratio between the
product of each width and height:

R(D, P) =


r(D1, P1) . . . r(D1, PM)
r(D2, P1) . . . r(D2, PM)

...
. . .

...
r(DN , P1) . . . r(DN , PM)

 (5)

r(Di, Pi) = min(
wDi hDi

wPi hPi

,
wPi hPi

wDi hDi

) (6)

In addition, for boxes with similar shapes, this metric outcome with a value closer to
1 contrasts values close to 0 or much greater than 1 otherwise. For that reason, the
minimum between the bounding box ratio and its inverse is applied, to get a value
that is within the [0, 1] range.

3. SORT’s IoU cost matrix combined with the Euclidean distance cost matrix:

EIoU
D (D, P) = IoU(D, P) ◦ DE(D, P) (7)

where ◦ represents the Hadamard product (element-wise product) between two matrices.
4. SORT’s IoU cost matrix combined with the box ratio based cost matrix:

RIoU(D, P) = IoU(D, P) ◦ R(D, P) (8)

5. Euclidean distance cost matrix combined with the box ratio based cost matrix:

RDE(D, P) = DE(D, P) ◦ R(D, P) (9)

6. SORT’s IoU cost matrix combined with the Euclidean distance cost matrix and the
box ratio based cost matrix:

M(D, P) = IoU(D, P) ◦ DE(D, P) ◦ R(D, P) (10)

7. Element-wise average of every cost matrix (A(D, P)):

A(Di, Pi) =
IoU(Di, Dj) + DE(Di, Dj) + R(Di, Dj)

3
, i ∈ D, j ∈ P (11)

8. Element-wise weighted mean of every cost matrix value:

WM(Di, Pi) = λIoU · IoU(Di, Pi) + λDE · DE(Di, Pi) + λR · R(Di, Pi),

i ∈ D, j ∈ P, λIoU + λDE + λR = 1 (12)

To improve tracking performance in multi-class environments, cost matrices can be
updated based on the match between predicted and detected object class (class gate):

C∗(Ci,j, Di, Pi) =

{
Ci,j if Class Di = Pi

0 otherwise
, i ∈ D, j ∈ P (13)

3.4. ISR Tracking Dataset

The ISR RGB-D Dataset [28] is a non-object centric RGB-D dataset, recorded at the
Institute of Systems and Robotics (ISR-UC) facilities using a camera sensor onboard the ISR-
InterBot [43] mobile platform. The dataset presents a mission performed by the platform in
a real scenario setting, representing object conditions under which mobile robot platforms
may navigate. The ISR RGB-D dataset contains a total of 10,000 RGB-D raw images captured
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at 30 FPS with a resolution of 640 × 480. Moreover, ten object classes (unknown, person,
laptop, tvmonitor, chair, toilet, sink, desk, door-open, and door-closed) were annotated at
every fourth frame, reaching a total of 7832 object-centric images.

As aforementioned, the main goal of this work is to study and compare the KF-based
SORT and Deep-SORT object tracking methods to be applied in real-time mobile robot
applications. To pursue that goal, a dataset representing the object conditions from the
mobile robot platform’s point of view during their navigation tasks is required. Due to the
lack of publicly available datasets for such requirements, the labels of ISR RGB-D Dataset
(https://github.com/rmca16/ISR_RGB-D_Dataset (accessed on 15 October 2021)) were
rearranged to be used as a multi-object tracking dataset, the ISR Tracking Dataset. First, the
labels for the remaining images were annotated for the described ten object classes. Then, a
unique tracking ID was associated with the same objects throughout the images, except for
the “unknown” object class that was not considered for tracking tasks. However, if an object
disappeared or was occluded for more than 15 frames, it was considered as a new object,
and a new tracking ID was associated. Each image has an associated “.txt” file that contains
all object labels for that image, and each object label is organized as follows: <object class>,
<tracking ID>, <bounding box center x>, <bounding box center y>, <bounding box width>,
and <bounding box height>. ISR Tracking dataset has in total 32,635 object bounding boxes
and 329 object sequences.

4. Experiments

The proposed study was evaluated on the MOT17 [27] dataset and also on the pro-
posed ISR Tracking dataset. Moreover, to evaluate the proposed approaches on the used
KF-based algorithms, the following standard evaluation metrics [1] were used: Multi-Object
Tracking Accuracy (MOTA), Multi-Object Tracking Precision (MOTP), True Positives (TP),
False Positives (FP), False Negatives (FN), Identification Switch (IDs) Mostly Tracked (MT),
Mostly Lost (ML), Fragmentation (FM), and Frames Per Second (FPS).

4.1. Datasets

(1) MOT17 Dataset: It is a multi-person tracking benchmark dataset divided into
14 sequences with highly crowded scenarios, different viewpoints, weather conditions,
camera motions, and indoor/outdoor environments. The dataset contains a public train-
ing/test split, where the training sequences have ground-truth files and detection files
provided by three object detection state-of-the-art methods, while the test sequences just
have the detection files. Hence, due to the scope of the performed experiments, and also
due to the submission’s constraints to obtain results on the test sequences, only the training
sequences were used in this study. Since the multi-object tracking methods evaluated in
this work do not require a training process, the training sequences were used as evaluation.

(2) ISR Tracking Dataset: It is composed of 10,000 RGB-D raw images acquired by
an Intel RealSense D435 sensor onboard a mobile robot platform [43], representing the
object conditions under which robotic platforms may navigate. Nine object classes were
annotated for multi-object tracking tasks, achieving a total of 32,635 object bounding boxes
and 329 object sequences. For evaluation, the ISR Tracking dataset was reorganized into
two sub-datasets: ISR500 and ISR200. In the ISR500, the dataset was divided into sequences
of 500 frames, which gives a total of 20 image sequences. On the other hand, the ISR200
contains 50 image sequences, which are the result of partitioning the dataset into sequences
of 200 images. On both sub-datasets, the train/test image sequence split was performed by
interleaving the sequences, i.e., the first sequence was used to train, the second sequence
was used to test, the third sequence was used to train, and so on.

4.2. Implementation Details

All modules were implemented using the Python 3.8.5 programming language. Deep
learning networks were also implemented using the PyTorch framework (version 1.8.0).
YOLOv3 network was trained using an image size of 416× 416, a fixed learning rate of

https://github.com/rmca16/ISR_RGB-D_Dataset
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104 over 50 iterations, a mini-batch of 6 images, and the ADAM optimizer. In addition,
the YOLOv3 weights were initialized using the COCO pre-trained model. To perform
evaluations on the SORT method [10], the number of frames to hold a track without
associations before deleting that track was set with TLost = 1, the minimum number of
object detections to start a new track was set with hitmin = 3, and the minimum threshold
value for bounding box association was set with thcost = 0.3. For the Deep-SORT, the
following constant values were used: λ = 0 (hyperparameter to control the influence
of each metric on the association cost), TLost = 30, and an association gating threshold,
dist1

max = 0.2. Moreover, all experiments were performed using an Nvidia RTX 2060 super
GPU, 32 GB RAM, and an AMD Ryzen 5 3600 CPU.

4.3. Results

The evaluation of the proposed work was divided as follows: evaluation of the SORT
and Deep-SORT on both MOT17 and ISR Tracking datasets using all the available frames
(ideal conditions); evaluation of the SORT and Deep-SORT on the ISR Tracking dataset
skipping frames, representing real conditions when it is not possible to perform the default
30 FPS; and evaluation of the whole pipeline, YOLOv3 + object tracking method, evaluating
also the influence that the YOLO’s detection performance has on the object tracking method.

4.3.1. SORT and Deep-SORT Evaluation

The proposed WM data association cost matrix formulation requires the selection of
three constant values (weights) to control the influence of each data association cost matrix.
Table 2 shows the evaluation performed on the MOT17 dataset with different weight value
combinations of the WM cost matrix. Based on the achieved results, the highest MOTA
value was attained using: λIoU = 7

10 , λDE = 2
10 and λR = 1

10 . The aforementioned weight
configuration has the minimum number of FP and IDs, despite the higher number of FNs.
Furthermore, it has the minimum number of FM by a large amount. Therefore, throughout
the following evaluations, the aforementioned values were used for the WM cost matrix.

Table 2. Evaluation of the WM data association cost matrix using different weight combinations on
the MOT17 dataset.

Weights Evaluation Metrics

λIoU λDE λR % MOTA↑ % MOTP↑ TP↑ FP↓ FN↓ IDs↓ % MT↑ % ML↓ FM↓
5/10 4/10 1/10 44.93 87.84 56,677 6223 54,772 848 12.3 33.0 946
5/10 3/10 2/10 44.99 87.84 56,713 6196 54,757 827 12.3 33.3 932
4/10 3/10 3/10 44.85 87.76 56,688 6323 54,776 833 13.0 32.8 953
3/10 4/10 3/10 44.64 87.71 56,613 6479 54,832 852 12.8 33.0 948
3/10 3/10 4/10 44.58 87.70 56,558 6492 54,858 881 12.8 33.0 967
4/10 5/10 1/10 44.75 87.75 56,627 6379 54,793 877 12.6 33.3 961
6/10 3/10 1/10 45.25 87.90 56,803 5984 54,695 799 12.1 33.0 912
6/10 2/10 2/10 45.25 87.92 56,801 5990 54,705 791 12.1 33.0 907
7/10 2/10 1/10 45.53 88.09 56,552 5426 54,996 749 12.6 33.5 853

The bold value highlights the best value on each column (in this case, each MOT evaluation metric).

Table 3 shows the results achieved on the MOT17 dataset. Regarding the SORT’s
results, the highest MOTA result was obtained using the default IoU cost matrix, being
a similar result achieved by the EIoU

D , RIoU , M, and WM cost matrices. However, on
the remaining evaluation metrics, the default IoU cost matrix was outperformed by the
proposed cost matrices. The M cost matrix had the lowest number of FP, IDs, and FM,
which represents the most accurate tracking for sequences generated by the SORT. The
A cost matrix had the highest number of TP and the lowest number of FN, which is
proportional to the percentage of MT sequences. For this work, which has in view mobile
robot navigation tasks, those metrics could impact performance, as it can ensure that the
object is successfully tracked until the object leaves the scene. Regarding the Deep-SORT
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results, the best MOTA result was achieved by the proposed WM cost matrix with 45.67%.
The WM cost matrix reached the best results for the TP and MT evaluation metrics. The
default IoU cost matrix achieved the best MOTP, FP, IDs, and FM results, which are very
similar to the results attained by the proposed WM cost matrix. Overall, promising results
were achieved by the proposed cost matrices, being able to outperform the default IoU
cost matrix. Moreover, the Deep-SORT with WM cost matrix was able to obtain the highest
MOTA and MT. Attained results show similar overall performances between SORT and
Deep-SORT. However, as expected, SORT is much faster than Deep-SORT.

Table 3. Evaluation of the SORT, Deep-SORT, and proposed data association cost matrices on the
MOT17 dataset.

Cost Matrix
Evaluation Metrics

% MOTA↑ % MOTP↑ TP↑ FP↓ FN↓ IDs↓ % MT↑ % ML↓ FM↓ FPS↑
SORT

IoU 45.56 88.19 56,298 5136 55,281 718 11.5 35.3 798 516
DE 41.24 86.99 54,292 7977 56,271 1734 7.9 33.7 1915 500
R 14.15 83.06 37,236 21,351 70,281 4780 4.9 37.5 4730 510

EIoU
D 45.55 88.20 56,275 5126 55,305 717 11.5 35.3 799 486

RIoU 45.55 88.21 56,263 5111 55,324 710 11.5 35.5 797 499
RDE 44.40 87.79 56,329 6470 55,028 940 11.7 32.4 1090 480
M 45.54 88.21 56,245 5107 55,344 708 11.5 35.7 797 469
A 44.72 87.72 56,636 6417 54,811 850 13.0 33.0 958 472

WM 45.53 88.09 56,552 5426 54,996 749 12.6 33.5 853 473

Deep-SORT

IoU 45.53 88.26 55,641 4510 56,187 469 13.0 35.7 666 57
DE 45.49 88.13 55,768 4689 55,988 541 13.6 34.6 736 57
R 42.20 87.76 53,722 6334 57,604 971 9.7 37.2 1126 57

EIoU
D 45.49 88.12 55,781 4702 55,995 521 13.9 34.2 724 57

RIoU 44.35 88.06 55,106 5300 56,532 659 12.6 35.3 845 57
RDE 44.83 87.99 55,383 5038 56,278 636 12.3 34.4 821 57
M 44.87 87.97 55,408 5019 56,263 626 12.6 34.4 814 57
A 45.49 88.15 55,788 4701 56,001 508 13.9 34.6 712 57

WM 45.67 88.23 55,834 4547 55,991 472 13.9 34.8 667 57

The bold value highlights the best value on each column (in this case, each MOT evaluation metric).

An evaluation of SORT and Deep-SORT, where the data association threshold is
modified, was also performed on the MOT17 dataset, whose results are presented in
Figure 4. As expected, as the threshold value increased, the MOTA score decreased for the
majority of the cost matrices. As observed, no threshold value was found to be suitable for
all evaluated cost matrices. Hence, the best results were obtained using a threshold value
of 0.3, which was thereafter used for all the evaluations.

Table 4 presents the results attained on the ISR Tracking dataset. Due to the multi-class
available on the ISR Tracking dataset, an evaluation on the SORT algorithm using and not
using the class gate metric, to discard associations of objects with different object classes,
was performed. Regarding the SORT’s results, similar to the reported results on the MOT17
dataset, the proposed data association cost matrices outperformed the default IoU cost
matrix. Moreover, the results of all evaluated data association cost matrices were slightly
improved by using the class gate formulation, being able to reach the highest MOTA result
with 91.02%. The A cost matrix using the class gate formulation was able to achieve the best
result on the TP, FN, IDs, and MT with 29,785, 2799, 51, and 69.3%, respectively. The A data
association cost matrix presents a significant improvement on the MT evaluation metric
compared with the IoU cost matrix (61.7% to 69.3%), which can impact the performance
of a mobile robot platform during navigation tasks. Regarding the Deep-SORT’s results,
once again, the proposed data association cost matrices outperformed the default IoU cost
matrix. Moreover, the A cost matrix achieved the highest MOTA and MT values, while
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the EIoU
D achieved the best TP, FN, IDs, and ML results. A significant improvement of

the MT evaluation metric was attained with the A cost matrix. Overall, on both SORT
and Deep-SORT algorithms, the proposed data association cost matrices outperformed
the default IoU cost matrix. The A cost matrix achieved the highest values on MOTA
and MT evaluation metrics, showing that it could be the most suitable data association
cost matrix to use. Regarding those evaluation metrics, the Deep-SORT outperformed the
SORT algorithm, with a highlight on the MT evaluation metric (69.3% to 78.7%). Moreover,
promising results were reached by both methods on the ISR Tracking dataset.

(a) SORT. (b) Deep-SORT.

Figure 4. Tracking MOTA variation according to different data association thresholds on the MOT17 dataset.

For the following evaluations, based on the reported results, only the following data
association cost matrices using the class gate metric were used: IoU, A, and WM on the
SORT algorithm and the IoU, EIoU

D , and A on the Deep-SORT algorithm.

Table 4. Evaluation of the SORT, Deep-SORT, and proposed data association cost matrices on the ISR
Tracking dataset.

Cost Matrix
Evaluation Metrics

% MOTA↑ % MOTP↑ TP↑ FP↓ FN↓ IDs↓ % MT↑ % ML↓ FM↓ FPS↑
SORT

IoU 90.57 92.21 29,589 31 2932 114 60.5 1.5 556 1368
DE 88.85 91.48 29,307 310 3031 297 59.0 0.9 618 1389
R 68.23 88.45 25,015 2748 5550 2070 30.7 3.6 1179 1380

EIoU
D 90.44 92.27 29,538 22 2974 123 59.0 1.5 561 1317

RIoU 90.34 92.30 29,491 9 3008 136 58.7 1.8 566 1377
RDE 90.77 92.00 29,713 91 2827 95 65.0 0.9 562 1368
M 90.21 92.35 29,445 5 3053 137 57.4 1.8 564 1311
A 90.87 91.96 29,756 101 2799 80 67.5 1.2 558 1288

WM 90.90 92.10 29,715 50 2832 88 64.4 1.2 558 1298

SORT with Class Gate Metric

IoU 90.63 92.20 29,611 33 2926 98 61.7 1.5 550 1404
DE 90.82 92.00 29,739 100 2830 66 66.9 1.2 566 1408
R 87.74 91.56 29,134 500 3216 285 63.2 1.2 642 1425

EIoU
D 90.49 92.27 29,553 22 2969 113 59.6 1.5 556 1337

RIoU 90.36 92.32 29,497 8 3015 123 59.3 1.8 559 1392
RDE 90.98 92.05 29,767 77 2813 55 68.1 0.9 555 1375
M 90.24 92.36 29,456 5 3050 129 58.1 1.8 559 1307
A 91.02 92.02 29,785 81 2799 51 69.3 1.2 554 1292

WM 90.93 92.10 29,727 53 2837 71 65.3 1.2 552 1305
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Table 4. Cont.

Cost Matrix
Evaluation Metrics

% MOTA↑ % MOTP↑ TP↑ FP↓ FN↓ IDs↓ % MT↑ % ML↓ FM↓ FPS↑
Deep-SORT with Class Gate Metric

IoU 90.80 89.66 30,989 1357 1447 199 72.3 0.3 142 163
DE 91.09 89.53 31,100 1372 1367 168 76.3 0.3 131 167
R 89.12 90.27 30,467 1384 1783 385 62.3 0.3 292 166

EIoU
D 91.15 89.52 31,124 1376 1350 161 78.4 0.3 130 165

RIoU 90.90 89.86 30,994 1328 1401 240 75.7 0.3 160 166
RDE 91.07 89.54 31,087 1367 1381 167 76.3 0.6 134 169
M 91.15 89.55 31,116 1370 1354 165 77.8 0.6 125 163
A 91.23 89.55 31,123 1350 1350 162 78.7 0.3 126 168

WM 91.09 89.56 31,103 1376 1363 169 76.6 0.3 119 166

The bold value highlights the best value on each column (in this case, each MOT evaluation metric).

4.3.2. SORT and Deep-SORT on Skipped Frames

In real scenarios, sometimes due to hardware constraints, it is not always possible (or
needed) to run the algorithms at 30 FPS, which is a standard value on image acquisition
from cameras. Hence, to evaluate the tracking performance on such conditions, experiments
by skipping 1, 2, and 3 images, representing an image acquisition at 15, 10, and 7.5 FPS,
respectively, were performed.

Table 5 shows the SORT and Deep-SORT results attained on the ISR Tracking dataset
using non-consecutive frames. As expected, as the image gap increased, the object tracking
performance decreased. This happens due to a greater displacement of the objects, which
increases the difficulty in predicting and associating objects. Nevertheless, promising
results were achieved by the proposed A data association metric on both tracking methods,
outperforming the default IoU data association metric, especially on MOTA, IDs, and MT
evaluation metrics. The best overall performance was reached by the SORT method with
the proposed A data association cost matrix with an accuracy of 86.43% and 58.2% of mostly
tracked object sequences. The SORT method using the IoU data association metric attained
the best results on the MOTP and FP evaluation metrics, while the Deep-SORT method
with the proposed A data association metric achieved the best results on the TP and FN
evaluation metrics. Note that, in these conditions, a significant improvement was achieved
by the A data association cost matrix compared to the IoU association metric, showing its
capacity to hold the object track.

4.3.3. Detection-Based MOT Pipeline

To evaluate the performance of the SORT and Deep-SORT object tracking methods
in real scenarios, an evaluation using the YOLOv3 object detector algorithm feeding the
tracking methods was performed. Moreover, to also evaluate the influence that the object
detector performance may have over the object tracking performance, four YOLOv3 models
with different performances were used. The four YOLOv3 models were trained on the
same data (ISR RGB-D Dataset), and on the same conditions, varying only the number
of training epochs. Each used YOLOv3 model has the following mean average precision:
YM1,...,M4 = {38%, 60%, 80%, 90%}.

Table 6 presents the detection-based MOT pipeline results achieved on the ISR200
sub-dataset. As expected, the YOLOv3’s performance had a significant role in the overall
pipeline. As the YOLOv3 performance increased, the object tracking performance also
increased. In the case of a poor YOLOv3’s performance, the number of FN was so high,
especially on the Deep-SORT method, which achieved a negative accuracy (MOTA). Regard-
less of the YOLOv3’s performance, in these conditions, SORT outperformed the Deep-SORT
method. Moreover, the three data association cost matrices used on the SORT method
reached similar results, being the default IoU cost matrix able to achieve the best MOTA
and FP results, while the A data association metric got the best MT values. Note that using
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an object detector may introduce additional errors to the object tracking pipeline, such as
incorrect detections, shifted detections, miss detections, and wrong object classification.
This can be observed by the obtained values of TP, FP, FN, and IDs, which directly influence
the remaining evaluation metrics. As shown in Table 6, the object tracking performance
increases as the YOLOv3’s performance also increases, due to a large decrease in the FP
values as well as the IDs values, which occurs due to an improvement of the object detec-
tion performance. Regarding the frame rate results, as expected, the SORT was faster than
Deep-SORT since SORT does not have to extract visual features through a CNN.

Table 5. Evaluation of the SORT and the Deep-SORT on the ISR Tracking dataset using non-
consecutive images. All data association cost matrices used the class gate formulation.

Gap Tracking Method
Evaluation Metrics

% MOTA↑ % MOTP↑ TP↑ FP↓ FN↓ IDs↓ % MT↑ % ML↓ FM↓ FPS↑

1

SORT (IoU) 84.92 88.89 13,514 47 2247 97 48.3 9.2 178 1444
SORT (A) 86.43 88.20 13,819 113 2012 27 58.2 8.3 160 1375

SORT (WM) 86.11 88.43 13,732 77 2073 53 53.2 8.9 154 1426
Deep-SORT (IoU) 81.28 86.02 13,893 1003 1761 204 48.9 5.8 128 155
Deep-SORT (EIoU

D ) 82.02 85.56 14,077 1070 1590 191 55.7 4.0 111 158
Deep-SORT (A) 82.49 85.61 14,109 1027 1587 162 57.2 4.6 103 158

2

SORT (IoU) 79.73 87.75 8718 53 2022 128 35.8 12.3 151 1407
SORT (A) 83.37 86.09 9239 178 1593 36 49.4 8.6 130 1413

SORT (WM) 83.08 86.61 9117 88 1674 77 43.5 9.0 127 1480
Deep-SORT (IoU) 75.28 84.16 8975 794 1697 196 38.0 8.3 126 152
Deep-SORT (EIoU

D ) 78.65 82.86 9414 866 1317 137 51.2 4.0 89 153
Deep-SORT (A) 79.41 82.98 9470 840 1279 119 51.9 4.9 83 153

3

SORT (IoU) 75.50 87.23 6406 38 1897 131 23.4 13.1 84 1272
SORT (A) 81.02 84.52 7094 261 1292 48 39.9 6.2 43 1338

SORT (WM) 81.28 85.44 6941 86 1414 79 33.0 8.4 39 1355
Deep-SORT (IoU) 69.24 83.37 6528 688 1722 184 31.5 10.0 107 138
Deep-SORT (EIoU

D ) 73.88 82.33 6947 716 1295 192 34.0 4.0 104 145
Deep-SORT (A) 75.71 80.90 7185 800 1192 57 52.0 3.4 53 148

The bold value highlights the best value on each column (in this case, each MOT evaluation metric).

Table 6. Evaluation of the detection-based MOT pipeline on the ISR200 sub-dataset. All data
association cost matrices used the class gate formulation.

YOLO Tracking Method
Evaluation Metrics

% MOTA↑ % MOTP↑ TP↑ FP↓ FN↓ IDs↓ % MT↑ % ML↓ FM↓ FPS↑

YM1

SORT (IoU) 23.30 78.65 13,345 9665 1373 1078 42.6 6.6 167 47
SORT (A) 22.39 78.61 13,384 9847 1350 1062 44.6 6.6 168 48

SORT (WM) 22.66 78.61 13,358 9778 1348 1090 44.6 6.6 166 49
Deep-SORT (IoU) −2.27 78.12 13,029 13,387 1338 1429 39.1 7.0 157 27
Deep-SORT (EIoU

D ) −10.16 78.08 13,090 14,695 1236 1470 40.3 7.4 109 28
Deep-SORT (A) −10.66 78.20 13,100 14,784 1218 1478 43.0 7.0 114 28

YM2

SORT (IoU) 41.93 81.03 14,191 7567 926 679 58.9 3.9 123 49
SORT (A) 41.59 80.99 14,222 7652 895 679 58.5 3.9 114 49

SORT (WM) 41.54 81.00 14,203 7642 906 687 58.9 3.9 120 49
Deep-SORT (IoU) 21.50 81.14 13,942 10,546 991 863 55.8 4.3 124 28
Deep-SORT (EIoU

D ) 14.90 81.04 14,043 11,689 899 854 55.8 4.7 81 28
Deep-SORT (A) 15.65 81.20 14,032 11,560 917 847 56.6 4.3 87 28

YM3

SORT (IoU) 65.43 81.64 14,623 4288 858 315 66.7 5.4 64 50
SORT (A) 65.21 81.64 14,633 4333 833 330 66.7 5.4 71 50

SORT (WM) 65.40 81.64 14,644 4313 835 317 66.3 5.4 63 50
Deep-SORT (IoU) 53.75 80.33 14,406 5916 975 415 61.2 5.8 101 30
Deep-SORT (EIoU

D ) 49.28 80.32 14,430 6646 897 469 60.5 6.2 83 30
Deep-SORT (A) 50.01 80.44 14,450 6551 890 456 62.4 6.2 75 30
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Table 6. Cont.

YOLO Tracking Method
Evaluation Metrics

% MOTA↑ % MOTP↑ TP↑ FP↓ FN↓ IDs↓ % MT↑ % ML↓ FM↓ FPS↑

YM4

SORT (IoU) 73.86 83.41 14,446 2779 1141 209 64.7 5.0 84 51
SORT (A) 73.75 83.39 14,455 2806 1132 209 65.9 4.7 86 51

SORT (WM) 73.83 83.42 14,456 2794 1132 208 65.1 5.0 80 51
Deep-SORT (IoU) 65.86 81.64 14,287 3884 1205 304 60.5 5.8 104 31
Deep-SORT (EIoU

D ) 64.32 81.62 14,392 4232 1133 271 64.3 5.8 90 31
Deep-SORT (A) 64.69 81.61 14,404 4186 1133 259 65.5 5.4 90 31

The bold value highlights the best value on each column (in this case, each MOT evaluation metric).

Table 7 presents the detection-based MOT pipeline results achieved on the ISR500
sub-dataset. Once again, the performance of the YOLOv3 is crucial for a promising object
tracking performance. Overall, similar to the results attained on the ISR200 sub-dataset,
the SORT method obtained the best results. However, the Deep-SORT method reached the
best values on the FN, MT, and ML evaluation metrics, showing that the Deep-SORT could
be most suitable for tracking larger object sequences. This happens due to an increased
capability of the Deep-SORT method to re-identifying lost object sequences compared with
the SORT method, which struggles to predict the position of the object when the track
starts to miss. As observed in the previous evaluations, the A cost matrix, in both SORT
and Deep-SORT, achieved the best MT result, meaning that the object sequence is, at least,
tracked in 80% of its life span, which is very important to successfully perform mobile
robot navigation tasks.

Table 7. Evaluation of the detection-based MOT pipeline on the ISR500 sub-dataset. All data
association cost matrices used the class gate formulation.

YOLO Tracking Method
Evaluation Metrics

% MOTA↑ % MOTP↑ TP↑ FP↓ FN↓ IDs↓ % MT↑ % ML↓ FM↓ FPS↑

YM1

SORT (IoU) 24.86 78.88 12,485 8798 1288 1056 38.3 2.3 156 50
SORT (A) 23.68 78.82 12,497 8986 1255 1077 40.0 2.3 163 49

SORT (WM) 24.30 78.82 12,495 8891 1253 1081 39.4 2.3 153 49
Deep-SORT (IoU) −0.45 78.33 12,266 12,332 1178 1385 33.1 2.9 173 28
Deep-SORT (EIoU

D ) −8.75 78.31 12,334 13,631 1093 1402 38.9 2.3 125 28
Deep-SORT (A) −8.15 78.38 12,364 13,573 1060 1405 41.1 2.3 122 28

YM2

SORT (IoU) 43.49 81.20 13,242 6793 1001 586 53.1 2.9 108 50
SORT (A) 43.16 81.19 13,250 6850 986 593 54.3 2.9 102 50

SORT (WM) 43.30 81.19 13,252 6831 980 597 54.9 2.9 104 50
Deep-SORT (IoU) 23.61 81.36 13,041 9540 976 812 49.7 2.9 124 28
Deep-SORT (EIoU

D ) 16.07 81.32 13,147 10,764 870 812 56.6 2.9 93 29
Deep-SORT (A) 15.49 81.40 13,099 10,802 896 834 56.0 2.9 95 29

YM3

SORT (IoU) 65.25 81.34 13,637 3961 912 280 64.0 2.3 72 51
SORT (A) 65.03 81.32 13,653 4009 887 289 63.4 2.3 76 51

SORT (WM) 65.20 81.33 13,652 3983 896 281 64.0 2.3 71 51
Deep-SORT (IoU) 53.11 80.02 13,525 5649 932 372 58.9 1.1 124 30
Deep-SORT (EIoU

D ) 49.77 80.01 13,628 6248 815 386 64.0 1.1 99 30
Deep-SORT (A) 49.91 80.06 13,605 6204 825 399 66.3 1.1 109 30

YM4

SORT (IoU) 75.28 83.54 13,570 2406 1068 191 56.6 3.4 70 52
SORT (A) 75.30 83.54 13,584 2418 1058 187 57.1 2.9 69 51

SORT (WM) 75.34 83.54 13,585 2413 1057 187 57.1 3.4 68 51
Deep-SORT (IoU) 68.70 81.62 13,543 3355 1024 262 58.3 1.7 107 31
Deep-SORT (EIoU

D ) 66.95 81.56 13,629 3701 950 250 66.9 2.3 93 31
Deep-SORT (A) 66.82 81.58 13,629 3721 948 252 67.4 1.1 95 31

The bold value highlights the best value on each column (in this case, each MOT evaluation metric).



Appl. Sci. 2022, 12, 1319 16 of 18

5. Conclusions

In this paper, having in view navigation tasks in assistive mobile robot platforms,
an evaluation study of two MOTs by detection algorithms, SORT and Deep-SORT, was
presented. Moreover, eight new tracking data association metrics based on intersection
over union, Euclidean distances, and bounding boxes ratio were proposed. To evaluate
both tracking methods with the proposed data association metrics, the ISR Tracking dataset,
which represents the object conditions from an assistive mobile robot’s point of view, was
also proposed. The presented pipeline consists of using the YOLOv3 network to detect and
classify the objects available on RGB images, feeding the tracking algorithm. Promising
results were attained by the majority of the proposed tracking data association metrics
on the SORT, and also on the Deep-SORT. Overall, based on the performed experiments,
the SORT method was able to achieve higher results of accuracy and precision, while
the Deep-SORT method obtained the best values of FN, IDs, and MT. Moreover, the
proposed A data association metric achieved the best performance on both evaluated object
tracking methods. The A data association metric showed a significant improvement on
the MT evaluation metric, which could be crucial to successful navigation tasks on robotic
platforms. The results showed, as expected, that the object tracking overall performance has
a high dependency on the object detector performance. The SORT is faster than the Deep-
SORT, reaching 50 FPS on the overall pipeline (YOLOv3 + SORT). Therefore, considering
navigation tasks in assistive platforms, and also considering issues associated with an
object detector algorithm, the SORT method using the A data association metric obtained
more robust results and, as such, can be a more suitable approach.

As future work, it is intended to integrate the presented pipeline on the RobChair [21]
platform for assistive navigation tasks.
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