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Abstract: A growing interest has been expressed in the issue of building adaptability over the past
decade, perceiving it as an intrinsic criterion for sustainability. In light of the circular economy (CE)
and its application in the construction sector, more attention has been paid to buildings’ design for
adaptability (DfA) towards the realization of circular buildings. DfA is considered a key enabler
for other circular design strategies such as design for disassembly (DfD), multi-functionality, spatial
transformability, and design reversibility. However, implementation and assessment frameworks,
and design-support tools for the circular building, are still in development as the characterization of
circular buildings continues with endeavors to draw a defined shape by identifying the prerequisites
for circularity where the design takes an important place. For the sake of objectifying the role of DfA
in circularity frameworks in buildings, this paper carries out an analytical review and discussion on
two types of assessment and design-support frameworks; the first addresses adaptability criteria
and considerations in assessment frameworks that handle the concept individually while the second
classifies existing circularity assessment endeavors into four main categories under which multiple
tools are reviewed. A reflection on the scope and objectives for both types is later performed, illus-
trating the state of adaptability evaluation and criteria as well as its role in circularity frameworks.
Results show that the concept of building adaptability lacks quantitative methods that quantify a
building’s capacity to adapt as well as empirical data that prioritize the most valuable criteria facili-
tating adaptations. Moreover, many circularity assessment frameworks fail to consider adaptability
criteria at all hierarchal levels of a building composition. To address this shortcoming, a series of
conceptual considerations and requirements is proposed towards a potential establishment of an
inclusive framework of a circularity design-support tool in buildings. The study is concluded by
identifying gaps and recommendations for further developments in the field.

Keywords: circular economy; circular building; adaptability; DfA; assessment framework; design-support
tool; criteria; indicators

1. Introduction

The world’s population is constantly growing, facing needs for new constructions,
which keeps putting enormous stress on our environment and resources. The intensified
pressure on resources that are becoming increasingly scarce has largely contributed to
inflaming costs overall and creating uncertainty in the short term [1]. The construction
industry is responsible for circa 33% of greenhouse gas (GHG) emissions, 40% of waste
generation, and 40% of raw material consumption [2,3]. These figures are results of the
linear economic model of “take-make-dispose” which has dominated production and con-
sumption patterns for the last decades. In response to the growing environmental crisis
and resource scarcity, among other modern-day challenges, the concept of circular econ-
omy (CE) has emerged as a new paradigm of innovative practice towards more sustainable
economic growth [4]. It aims at making the most of resources and therefore eliminating
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waste, reducing GHG emissions, and addressing resource scarcity. All are achieved by cre-
ating value through slow-moving, closed-loop supply chains where resources are reduced,
reused, and recycled (the 3Rs of waste management hierarchy in a CE).

The CE has been explored by several scholars (e.g., [5–8]) and organizations (e.g., the
Ellen MacArthur Foundation—EMF [9]) who tried to define the concept with emphasis
on different aspects of resource preservation and sustainable development [10]. The Ellen
MacArthur Foundation (EMF), through a series of reports [9,11–13], explored the CE
concept and its ideas. Since 2010, EMF has acted as a collaboration hub for policymakers,
market players, and academia to raise awareness and motivate the current generation to
employ the CE approach to re-think, re-design, and build a positive future. EMF describes
the circular economy as: “an industrial system that is restorative or regenerative by intention
and design. It replaces the ‘end-of-life’ concept with restoration, shifts towards the use of renewable
energy, eliminates the use of toxic chemicals, which impair reuse, and aims for the elimination
of waste through the superior design of materials, products, systems, and, within this, business
models” [9] (p. 8). In addition to the environmental benefits of implementing the CE model,
other social and economic benefits include delivering larger gross domestic product (GDP)
values, cutting down material prices [14], creating up to 50,000 jobs [15], and saving
200 billion EUR from primary resources by 2030 [16]. The circular economic model has been
gaining momentum in academic research as well as industry and policy plans [5,9,10,17],
making its way to the top of international and European political agendas. In this respect,
the European Commission (EC) launched the first Circular Economy Action Plan (ECEAP)
in 2015, including measures covering the whole lifecycle of products and materials. ECEAP
promoted principles of; 1- “closing the loop” through intensified reuse and recycling [18],
2- “slowing the loop” through preserving products’ and materials’ values to a maximum
extent, and 3- “narrowing the loop” through using fewer resources per product. ECEAP
held particular promise for achieving multiple Sustainable Development Goals (SDGs),
including SDG 6 on energy, SDG 8 on economic growth, SDG 11 on sustainable cities,
SDG 12 on sustainable consumption and production, and SDG 13 on climate change. A new
Circular Economy Action Plan (CEAP) was adopted in 2020 with more concrete measures
to reduce the pressure on natural resources and create sustainable development. Circular
economy (CE) action plans entail gradually decoupling economic activity from consuming
finite resources and designing resources’ second life which target seven priority sectors
including “construction and buildings” due to their massive share of responsibility in
existing environmental crises. Recent endeavors for delivering more concrete measures
also include the development of new standardization activities such as CEN/TC 350/SC
1—‘Circular Economy in the Construction Sector’, ISO/WD 59004—‘Circular Economy’,
and BS ISO 20887:2020—‘Sustainability in buildings and civil engineering works—Design
for disassembly and adaptability’.

Circular Buildings and Design for Adaptability (DfA)

Reassessing building operations, activities, and processes in consideration of the CE
principles (as generally described by the EMF) promises significant benefits to the sector,
including resource efficiency, energy conservation, and carbon footprint reduction, con-
tributing to the mitigation policies of climate change [19,20]. However, adopting a more
circular approach requires shifting the design culture, including improving construction
processes, materials, and products, and creating new business model innovations. Design-
ing buildings for a CE puts a major focus on the end-of-life (EoL) phase of buildings and
their components and materials (as highlighted by the EMF definition), which must be
maintained in a closed-loop through reuse, disassembly, and reintegration in new buildings.
These concepts should apply to both new constructions as well as existing buildings which
should be regarded as important assets where huge amounts of resources are embedded.
An important aspect that should be regarded when designing circular buildings is the
change impact. Change is increasingly inevitable and today, buildings are prompted to
change more than ever before. Designing buildings with adaptive capacity to respond to
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the different variables throughout their life span, therefore, becomes an insistent prereq-
uisite for sustainability and circularity. The concept of Design for Adaptability (DfA) is
considered as an important enabler to the circular building strategies [20–22], including
design for disassembly/deconstruction (DfD) [21,23,24], design for longevity and durabil-
ity [2], design for change (DfC) [25], and reversible building design [26,27], among others.
DfA is the intentional design of buildings to be easily modified throughout their lifecycle
in response to emerging needs and future circumstances [17,28]. By this meaning, it is a
preconfigured condition embedded in the design stage of buildings. Adaptability manifests
spatial, structural, and functional capacities that allow the building a level of physical
flexibility against changing operational variables over time. Seeking today’s sustainability
demands, i.e., circularity induces us to rethink our building practices towards embracing a
new vision of buildings that can flexibly change in response to the ever-changing societal
needs and preferences [20,29]. Buildings that do not support change and reuse cannot be
considered truly sustainable [30]. What makes adaptability in buildings recognized as an
intrinsic criterion for sustainability and CE is its potential in addressing issues of buildings’
obsolescence and premature demolition [20]. This happens by extending the life service of
buildings, contributing to slowing resource input and waste in the built environment [17].
Previsions of increased scarcity of raw resources and therefore more elevating costs further
emphasize the importance of adaptability to achieve a CE.

The capacity of a building to respond to emerging changes stems from early design
decisions [31]. With this perspective, DfA relies on visualizing the end by developing
evidence on possible end-of-life (EoL) scenarios early in the design process. Still, its role
continues during the entire building lifecycle allowing viable durability [20]. Furthermore,
this lifecycle perspective enables accommodating change at any point in time in a build-
ing’s and materials’ life, ensuring a prolonged service life of a building and facilitating
maintenance and replacement for its elements.

However, designing buildings for adaptability and simultaneously for circularity
faces multiple challenges for which a paradigm shift is necessary to meet the modern-
day sustainability demands. Most of Europe’s existing building stock was built a few
decades ago. At the time, buildings were regarded as fixed objects of permanent status
until the end of their service life. When new demands emerge and different societal needs
arise, these buildings turn out to be obsolete for not having the capacity to keep up with
changing standards, demands, or functional programs [29]. As a result, they either need
to undergo extensive renovations or be demolished and replaced. Major renovation and
rehabilitation projects require huge investments and interventions, engaging high input
flows of materials and energy, as well as producing significant amounts of waste [20].
Construction and demolition waste (CDW) represents approximately 30% to 40% of global
waste production [32]. Moreover, the inability to support change can have impacts beyond
the building level, reaching the urban ecosystem in its wholeness [32]. Design challenges
include how all components and materials are integrated into one entity in a way that
facilitates its future adaptation, disassembly, and safe recovery of its components and
materials as societal, technological, economic, and legal needs arise.

Nevertheless, the application of CE and DfA design strategies in buildings is still
challenging due to the scarcity of practical guidelines and design-support tools that facilitate
their implementation and enable their performance assessment and simulation of their
added value along a full lifecycle of a building, particularly when their service life comes
to an end. Although building adaptability mechanisms (e.g., open building [33] and
shearing layers [34,35]) as well as some of the circularity design strategies, e.g., design for
deconstruction, have existed for decades, their application in a fragmented approach has
resulted in limited efficiency and kept the concepts in the theoretical perception.

Moreover, the actual implementation of CE principles in building design and manage-
ment has been so far limited to the application of individual strategies that regard certain
aspects of circularity, for example, the development of circular materials and management
of CDW and recycling [4,14]. Meanwhile, less attention has been paid to the reuse of
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products and components [36]. This is because reuse faces challenges at a building scale
which still suffers from a shortage in interdisciplinary research for implementing circularity
principles [37]. The majority of research on CE at a building scale has mainly addressed
techniques for measuring and assessing lifecycle outcomes of buildings and their materials
or innovative materials for circularity; on the other hand, less has been said regarding the
design aspect of circular buildings and the role of architects and building professionals in
embodying the CE principles into the building sector [38]. A circular building approach
is not limited to material circularity or any other individually applied strategies. It rather
transcends these single aspects to include the dynamic total of all processes that allow
a circular flow of all materials and products including planning, management, design,
operation, maintenance, and end-of-life aspects taking into consideration all value chain
factors as well as policies that support implementation and economic value creation [39].

The current focus on certain CE strategies without others in buildings can also be
justified by existing supportive legislations, which rarely address the technical aspects
and rather focus on ensuring higher rates of recycling and waste management issues. In
this case, the demonstration of circularity strategies’ implementation and impact on waste
hierarchy promotion (reduce, reuse, recycle) —which is at the heart of CE— is necessary to
prompt other policies and incentives toward a holistic implementation for all stakeholders
involved. Moreover, the economic viability of applications is another major challenge
against the practical implementation of some circular strategies illustrated by the lack of
business models and market mechanisms.

Existing frameworks to implement and assess circularity suffer from a mismatch
between supply and need. There is an oversupply of theoretical guidelines and tools that
illustrate the basic principles of the circular building. However, most of the tools serve the
same purpose, while there is a need for practical evidence about the utility of these tools
and their impact on the design process to highlight best practices and compare multiple
alternatives. The reason can be attributed to the lack of technical criteria characterizing the
circular building design [40] as well as practical guidelines of inclusive implementation.

The present paper aims at providing an overview of the existing models and frame-
works on the concepts of adaptability and circularity giving their strong relationship with
the former being a key enabler to the latter. The study design is presented in Figure 1.
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2. Materials and Methods

This study aims to answer the following research questions:

• What are the objectives and criteria of existing adaptability frameworks/tools? Which
of these criteria are empirically proved to be most efficient in facilitating adaptations?

• What is the current role of DfA in existing circularity frameworks in buildings?
• How can the role of DfA be objectified in circularity frameworks, and what are the

requirements that ensure an inclusive implementation of circularity in buildings?

The paper builds on the recognition of DfA as an essential prerequisite for circularity
realization in buildings and subsequently for developing design-support tools to promote
circular buildings and evaluate end-of-life options. However, in order to have insights into
the different adaptability criteria, indicators, and rating methods, as well as emphasize the
critical role of DfA in circularity frameworks for buildings, the study is done in two phases.
First, an analytical review on two types of assessment frameworks is carried out; the first
consists of eight assessment models of adaptability in buildings as a stand-alone objective.
The second classifies the different categories of circularity assessment frameworks and
tools outlined by the ongoing main research tracks on the development of design support
tools for circular building design. Five main categories of circularity implementation in
buildings are considered in the study:

• Models for circular materials and products
• Design-support tools for whole buildings
• Circularity integration in sustainability frameworks
• MFA and LCA-based tools
• Circularity criteria and guidelines

Each category is further discussed and elaborated with different examples of promi-
nent representative tools. The tools for both framework types are collected based on the
authors’ own knowledge of the existence of such tools, as well as analytical literature
search. The objective of reviewing the two above-mentioned types of frameworks is to
first understand the objectives and various factors and criteria that enhance the adapt-
ability of buildings then establish a linkage with circularity frameworks. By this means,
integration paths are envisaged within other dimensions and important aspects of circu-
larity, allowing to identify trade-offs when evaluating design alternatives and simulating
end-of-life options. Thus, the study’s second phase is a discussion and analysis of the
reviewed tools/frameworks. The discussion addresses four main aspects; first, a reflection
on the scope and objectives of adaptability evaluation frameworks and identification of
key considerations and gaps for integration in the broader spectrum of sustainability and
circularity in buildings. The second aspect is an analysis of the five categories of circularity
assessment frameworks in terms of objectives and level of implementation in buildings.
The analysis realizes the relation between aspects covered by current frameworks and
the pressing needs of designers and professionals. The third aspect addresses the current
state of the design role in general and the role of DfA in particular in existing circularity
frameworks. It, therefore, identifies opportunities for a more activated role. The fourth
aspect aims at identifying clear criteria for the circular building by setting key requirements
and considerations for inclusive implementation and assessment.

3. Results

The following sections present an analytical review of two types of assessment tools
and frameworks: adaptability assessment tools and circularity assessment frameworks.

3.1. Adaptability Assessment Tools and Models

Eight existing tools and models evaluating the adaptability of different building
typologies are discussed below in chronological order from the oldest to the newest.
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3.1.1. Adaptive Reuse Potential Model (ARP), 2007

The ARP model was developed by Langeston et al. [41] to assist the industry in
identifying and evaluating buildings potentially adequate for adaptive reuse before they
reach a demolition point. By this meaning, a candidate building for ARP assessment should
be at a point in its age near the end of its useful life. The tool framework suggests that a
building’s useful life can be determined by multi-nature obsolescence criteria that manifest
as reductions in its physical life. Conducting an ARP assessment requires an estimation of
the expected physical life of the building and its current age. Evaluation of the physical,
economic, functional, technological, social, and legal obsolescence is also required. In this
respect, the authors developed a measurement methodology for each of the obsolescence
criteria and created a scale to calculate each criterion’s physical life reduction percentage.
These data requirements allow users to determine the useful life of the building in question
using Equation (1).

(Lu) =
Lp(

1 + ∑6
i=1 Oi

)Lp
(1)

where Lu = useful life (years); Lp = expected physical life (years); O1 = physical obsoles-
cence (%); O2 = economic obsolescence (%); O3 = functional obsolescence (%); O4 = technical
obsolescence (%); O5 = social obsolescence (%); and O6= legal obsolescence (%).

According to the equation, the useful life is only a fraction of the physical life reduced
by the sum of obsolescence factors’ rates. The ARP index is then calculated using a
mathematical algorithm and expressed in a percentage. The higher the percentage, the
higher the potential for adaptive reuse.

The utilization of this method allows for prioritizing buildings with a higher potential
for adaptive reuse. Although the ARP model was first developed considering Hong Kong’s
context, it has been tested on case studies in different cities worldwide; examples can be
found in [42]. ARP has also been used to validate later adaptability assessment models such
as the IconCUR [43] and AdaptSTAR [44], which will be discussed in the following sections.

The ARP model considers that all obsolescence criteria have an identical influence on
a building’s useful life which contradicts other literature findings that usually give more
importance to technical, physical, and economic factors.

3.1.2. The Adaptable Building Design (ABD) Framework, 2010

The Adaptable Building Design (ABD) Framework [45] introduces a design-support
tool relying on predictive uncertainty modeling to deliver buildings with adaptive capacity
to change and therefore increased longevity. The framework aims to integrate multiple
flexibility options in the design phase that address a variety of future uncertainties. Then,
the value of these options is assessed for decision-making. The framework consists of four
main phases: in phase 1, possible future uncertainties are identified, including market
conditions, performance and technology, policies and standards, and climate conditions.
In phase 2, based on the uncertainties identified in phase 1, flexibility options are ana-
lyzed, and necessary ones are embedded in the design of several building systems, e.g.,
spatial, structural, and service systems. In phase 3, a mathematical logic decision-making
mechanism is applied to formulate design rules that identify when to use each embedded
flexibility option. Establishing design rules relies on multiple parameters that assess the
building’s real estate performance at a particular time. In phase 4, value analysis and
calculation are conducted using the Real Option Analysis (ROA) methodology, which
allows evaluating the capacity of accommodating future uncertainties of the project as well
as its economic value by carrying out probabilistic simulations of future scenarios. The
simulation outcomes suggest lifecycle planning, including the initial construction and the
later incremental adaptations to achieve the maximum value of the project. Although adapt-
ability options are embedded in the early design stage of the project, the ABD methodology
allows for re-evaluation during the redesign phases to refine these options [46].
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The authors used an illustrative case study project to demonstrate their approach.
However, due to the commercial nature of the studied project (multi-use building with
office and retail spaces), only market uncertainties were addressed and evaluated for
integration of flexibility options. Further cases of buildings with varying uses should be
considered to validate the practical implementation of the method.

3.1.3. IconCUR, 2012

IconCUR [43] is a conceptual framework to support decision-making regarding the
adaptive reuse of built assets using a methodological approach combining Adaptive Man-
agement (AM) and Multiple Criteria Decision Analysis (MCDA). The model uses primary
criteria of condition, utilization, and reward to create a 3D modeling of a space where the
property status can be mapped using three coordinates (x,y,z) corresponding to the three
initial criteria condition, utilization, and reward, respectively. The decision strength (z)
is based on the type of relationship existing between the property’s physical condition
(x-axis) and the current level of utilization (y-axis). The following relationship patterns
are expected:

• Low condition and low utilization—reconstruct or dispose
• High condition and high utilization—retain or extend
• Low condition and high utilization—renovate or preserve
• High condition and low utilization—reuse or adapt

Condition and utilization are measured on a scale of 0 (low) to 5 (high). Reward (z-axis)
quantifies the intervention value based on its financial, social, and environmental impacts.
It is also measured on a scale of 0 (low) to 5 (high). However, the difference between reward
values before and after the intervention determines the value of the decision.

The framework relies on a weighted matrix to objectify and justify the measurements.
Each of the model’s criteria (condition, utilization) and sub-criteria (collective utility, stake-
holder interest) embraces a number of key attributes provided in columns and weighted
according to their impact with a total equal to 100%. In turn, each of the key attributes
consists of key elements provided in rows with a total also equal to 100%. Performance
is measured at the intersection of each attribute and element using a scale of 0 (weak) to
5 (strong). The score for each criterion and sub-criterion can subsequently be calculated. To
overcome the subjectivity of the assessments, a risk sensitivity analysis must be carried out
to ensure the stability of the key variables. The criterion of reward is then calculated by
multiplying the score of the two sub-criteria, collective utility and stakeholder interest, and
divided by 5.

3.1.4. AdaptSTAR Model, 2013

AdaptSTAR is a design-rating tool developed by Conejos et al. [44] to deliver an
assessment model of future adaptation potential at the design stage of new buildings. The
model development is intended to aid designers in making critical design decisions by
calculating an adaptive reuse star rating for newly designed buildings that adds value to
urban sustainability. The AdaptSTAR model for adaptation offers 26 design criteria that
comprehensively cover aspects of buildings with adaptive reuse potential. The criteria are
built upon seven drivers of obsolescence: physical, technological, economic, functional,
social, legal, and political. The scoring system is composed of a weighted checklist devel-
oped based on a survey of twenty-nine experienced architects. The scores are summed
to calculate the number of stars. The survey was conducted using a Likert system with
a scale of 5 assessment values, 1 (unimportant), 2 (not very important), 3 (no opinion),
4 (important), and 5 (very important), that evaluate the impact of the seven categories of
obsolescence against the adaptive reuse of new buildings. According to the survey, physical
obsolescence, including three design criteria: structural integrity and foundation, material
durability, and workmanship, maintainability is found to be the most important.
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3.1.5. Preliminary Assessment Adaptation Model (PAAM), 2014

Preliminary Assessment Adaptation Model (PAAM) [42] is a predictive model to sup-
port the decision-making regarding adaptations of existing office buildings. The research
by Wilkinson [42] addresses six levels of adaptations designated as level 1 ‘minor’, level 2
‘alterations’, level 3 ‘change of use’, level 4 ‘alterations and extensions’, level 5 ‘new build’,
and level 6 ‘demolition’. Together with six labels of property attributes influencing adap-
tation (physical, social, economic, environmental, legal, and technological), these levels
are utilized to form the PAAM conceptual model. The model aims to conduct an initial
assessment of building suitability for level 4 of adaptation, i.e., alteration and extensions.
The author built upon previous models (e.g., Chudley (1981) [47]) and case study approach,
governmental data, and building permits to identify adaptation criteria that fall into the
labels of the property attributes database. The author relied on cross-sectional data of
adaptation events corresponding to the period between 1998 and 2008 in a central business
district in Melbourne, Australia. The Principle Component Analysis (PCA) mathematical
technique was applied to 5290 adaptation events to create loadings of the individual factors
of each property attribute category and therefore identify an order of relative importance
on the different attributes. The PCA identified a checklist of 12 attributes falling into three
categories of attributes: physical and size, land, and social. The answers to the checklist
questions determine the adaptation potential ranging from very low to very high. The
PAAM’s checklist is applied to an illustrative case study of a 27-story existing office tower to
demonstrate its practical application. The checklist delivers a simple instrument for stake-
holders and non-experts to determine the overall potential of an existing office building
focusing on the property attribute that develops the most variance in adaptation. However,
the tool is oriented to the Australian context. Another limitation is that the PAAM model
does not address functional or use changes; it rather provides an assessment tool for minor
adaptation actions.

3.1.6. Flex 4.0, 2016

Based on the concept of “Open Building” by Habraken [33], the FLEX 4.0 instrument
developed by Geraedts [48] introduces a holistic assessment model with key performance
indicators to assess the level of adaptability of buildings. FLEX 4.0 is an advanced version
of FLEX 2.0 and FLEX 3.0 tools and consists of two sets of indicators corresponding to the
support-infill theory of Habraken [33]. The support set consists of 12 indicators that are
generally applicable regardless of the type and use of the assessed building. A second
category comprising 32 performance indicators and focusing on the infill components
is particularly applicable to schools and office buildings. The assessment value for all
indicators is expressed as; 1 (Bad), 2 (Normal), 3 (Better), and 4 (Best). The two sets of
indicators are categorized into Brand’s shearing layers combining the space plan and stuff
layers: site, structure, skin, services, space plan, and stuff. The indicators can be used to
perform a gap analysis between the adaptability level desired by stakeholders and the
actual adaptability level of a building. However, weights are assigned to each indicator in
relation to the others ranging from 1 (not important) to 4 (very important). This represents
the default system set by the authors, which the users can change as they see fit. The final
score of each indicator is determined by multiplying the weighting by the assessment value.
All scores are summed to determine the final flexibility score and corresponding class.

3.1.7. The SAGA Method, 2019

The Spatial Assessment of Generality and Adaptability (SAGA) Method [32] delivers
an assessment model of a building’s capacity to support changes using a combination
of unweighted and weighted graphs. The method introduces a set of five quantitative
indicators that are mathematically reproducible to measure a building’s passive capacity to
change (generality) as well as the active capacity to change (adaptability) in terms of the
spatial configuration of layouts. The SAGA method aims to analyze and compare large
sets of plan graphs of a building or even at an urban scale, allowing to map generality and
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adaptability throughout those. It can also inform design decisions, enabling architects and
designers to improve the capacity to accommodate change through layout configuration.
For example, SAGA can calculate which parts of a unit the use of removable walls would
have the highest impact (i.e., the highest increase in generality). The central premise of
the method is that graph permeability can serve as a measurement tool for functional
uses a layout can accommodate. The method is tested on six representative floor plans
of residential typologies. The SAGA model stands out among existing tools for fully
automated indicators within Rhinoceros 3D BIM software.

The method is limited to evaluating the spatial configuration of floor plans (spatial
adaptability) which only partially support functional changes. Moreover, although the
method was developed for all building typologies, it was only tested for validation on six
representative floor plans of residential use.

3.1.8. Adaptive Reuse Assessment Model (ARAM), 2021

Adaptive Reuse Assessment Model (ARAM) [49] is an assessment model of adaptive
reuse and adaptation potential in heritage buildings at different life cycle stages. The
model relies on identifying challenge categories for adaptive reuse of heritage buildings
and critically analyzing existing decision-making tools and assessment models [49]. The
authors identify 32 challenges related to the adaptive reuse of heritage buildings categorized
into eight groups: environmental, social, economic, legal, political, physical, locational,
and technical. The ARAM model is based on two previous models: Chudley’s model of
decision-making in building adaptation [47] and the PAAM assessment model for office
buildings, as it relies on a comprehensive database for important attributes of adaptation
projects. However, in the ARAM model, authors consider modifying the sequence and
importance of attributes’ categories to fit the value-representative characteristics of heritage
buildings and the legal obligation to preserve them. They also considered adding the
political category, and heritage value and authentic features not addressed by previous
frameworks. The assessment methodology starts with identifying the key values, which
are the ones corresponding to heritage significance and authenticity, then confirms that
the adaptive reuse actions are capable of preserving those. The next step is to consider the
economic viability, followed by the technical and legal considerations. The model does not
view the remaining categories, i.e., locational, physical, and environmental challenges. The
ARAM model was applied to two illustrative case studies of heritage-listed city halls in
Queensland, Australia, to demonstrate its practical application and test its validity. The case
studies’ findings suggest that the physical category is the third most important challenge to
adaptive reuse, which does not correspond to the reviewed literature findings. This finding
resulted in alteration in the initial model by placing the physical category at the last stage
after the legal consideration.

The ARAM presents a simple model of assessment that can be carried out by stakehold-
ers regardless of their level of expertise. The model does not suggest technical solutions. It
rather acts as a decision-support tool for involved stakeholders.

3.2. Circularity Assessment Frameworks

This study uses five types of circularity assessment frameworks for buildings and
their components: 1. models for circular materials and products, 2. design-support tools,
3. circularity integration in sustainability frameworks, 4. LCA-based tools, and 5. circularity
criteria and guidelines. The types along with examples of renowned tools, are discussed in
the following paragraphs.

3.2.1. Models for Circular Materials and Products

Several metrics and assessment models have been developed to evaluate individual
aspects of the circularity of products relying on the calculation of certain aspects of their
composing materials circularity. These models/indicators often target companies to sup-
port the decision-making regarding the circularity versus economic viability of the products
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they design and manufacture. However, they can also apply to construction and building
products. Some of these models are discussed below:

1. The Circularity Calculator. Tha circularity calculater was developed by IDEAL and
CO Explore BV [50]. The calculator uses the bill of materials of a product to compare
the impacts of different circularity scenarios (e.g., reuse, refurbishment, remanufac-
ture, and recycling) and consequently choose the best design options and business
models relying on experimental trade-offs between circularity and value capture. The
calculator provides four quantitative key performance indicators (KPIs): circularity
indicator, value capture indicator, recycled content indicator, and reuse index, which
help companies to determine the economic viability of potential design ideas for
products [51].

2. Material Circularity Indicator (MCI). MCI was developed by the Ellen McArthur
Foundation (EMF) and Granta Design [13] to assess the ability of material flows of a
product or company to be restorative. The calculation of the MCI for a product relies
on a detailed bill of materials and three types of inputs:

• Amount of virgin, recycled, or reused content V;
• Mass of unrecoverable waste W;
• Product utility factor X.

The indicator is developed to assess the circularity of single products. However, it can
be utilized at a company scale by using the sum of the material circularity of its products
after normalization.

The MCI can be utilized to access the material circularity of construction and building
products. However, other indicators should be used to assess the overall circularity of a
building, taking into consideration its complexity, including design aspects and hierarchical
composition of systems, components, and materials.

3. The Material Reutilization Score (MRS). MRS was proposed by the Environmental
Protection Encouragement Agency through the Cradle-to-Cradle certification scheme
to address the recycling value of materials. A material reutilization score is estimated
based on the end-of-life strategy considering the performance of input materials and
reutilization options. MRS is calculated using two variables: the intrinsic recyclabil-
ity (IR) and the recycled content (RC), according to the following formula:

MRS = (2 · IR + RC)/3 (2)

4. Longevity and resource duration. Longevity is a value-based performance indicator
that relies on the length of time a resource is used in a product system, which can
be measured in time units [52,53]. The idea is that the higher the material reten-
tion, the slower the loop and consequently, the higher the contribution to a circular
economy [53]. According to the authors, the indicator can be measured using three pa-
rameters that are the three drivers for longevity: 1. the initial lifetime, 2. lifetime after
refurbishment, 3. lifetime after recycling. These parameters fell short in considering
the number of times a resource can be utilized, which is essential to measure resource
efficiency and eventually close the loop. Moreover, the indicators do not address the
complexities of refurbishment and recycling processes and assume that a resource is
refurbished, recycled, and reused through a similar product which is not always the
case [52]. Still, the longevity indicator provides a simple tool companies can use to
determine the value chain of a product.

3.2.2. Design-Support Tools for Whole Buildings

The models presented under this category provide tools to assess whole building
performance in terms of circular economy aspects.
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1. The CE Meter, 2015

Geraedts and Prins [54] proposed a conceptual framework of circularity assessment in
buildings; the tool is built upon a previous tool developed by the first author Flex 2.0 to
measure the adaptive capacity of buildings. In the framework of the CE Meter, the authors
identify the relationship between the level of circularity and the adaptive capacity of
buildings. For this, the authors propose to use the shearing layers concept by Duffy [34] and
Brand [35] to identify resources and components that are most valuable for conservation.
However, the conceptual framework does not present a well-defined tool that can be used
to measure circularity aspects of buildings.

2. Building Circularity Indicator (BCI) frameworks, (2016, 2018, 2019, 2020).]

Verberne [55] proposed the Building Circularity Indicators (BCI), an improved ap-
proach of the MCI by EMF and Granta Design to measure a whole building’s circularity.
However, in addition to materials specifications, the model considers design aspects (De-
sign for Disassembly). The BCI is based on the MCI measures for each building product
with consideration of design factors (disassembly determining factors) to calculate circular-
ity indicators based on a hierarchal composition of a building: first, the Product Circularity
Indicator (PCI) is calculated to be used in the System Circularity Indicator (SCI), which in
turn is used to calculate the BCI for the whole building. By this meaning, each material has
an impact on the whole building’s environmental assessment since a 100% circular building
is one that is fully made of non-virgin materials that should also have a second life.

A second version of the first BCI was introduced by van Vliet [56], who proposed
improvements on the disassembly factors resulting in a more comprehensive weighting
system. A third and a fourth version of the BCI were discussed by Alba Concepts [57]. Alba
Concepts developed a new BCI based on three levels, a Product Circularity Index (PCI),
an Element Circularity Index (ECI), and a Building Circularity Index (BCI), all relying on
material use and material detachability considerations. Lastly, Van Schaik [58] proposed an
improvement to the Alba Concept indicator in what concerns building foundations.

3. Circular Building Assessment Prototype (CBA)

CBA is a building-level integrated decision-making model to evaluate resource pro-
ductivity considering the material choice and design options [59]. The model aims at
assessing the reuse potential and transformation capacity throughout the different lifecycle
stages for both new and existing buildings. The model uses a BIM-compliant prototype
online tool that uses an information exchange file generated from a BIM model allowing for
data extraction for the assessment. The CBA method was also connected to the Reversible
Building Design strategies—also developed within BAMB—to assess the applicability of
major CE building-related techniques. However, CBA remained a prototype yet not an
open-access tool to support the CE practitioners.

4. Disassembly and Deconstruction Analytics System (D-DAS), 2019

The disassembly and deconstruction analytics system [60] is a decision-support tool
developed to provide buildings’ end-of-life performance assessment from the design stage.
An efficient end-of-life sustainability performance of buildings relies on efficient material
selection during design to later facilitate effective material use and reduce the end-of-life
waste in the built environment.

The innovation of this tool is the use of Building Information Modeling (BIM) for
assessing the impacts of end-of-life options through the development of a plug-in to Au-
todesk Revit. The plug-in has three functionalities; (i) Building Whole Life Performance
Analytics (ii) Building Element Deconstruction Analytics; and (iii) Design for Deconstruc-
tion Advisor. The plug-in also provides alternative design specifications that support better
end-of-life performance of buildings. The interface provides the means for architects and
design engineers to try various combinations of materials on different building compo-
nents and select a combination that is optimized for end-of-life performance. The plug-in
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supports the decision-making regarding the most valuable materials for recoverability DfD
by calculating the score of deconstructability.

D-DAS was tested and validated through a case study building design. However,
the scenarios considered for the validation process were based on three types of materials:
steel, timber, and concrete, which are material choice alternatives. All other aspects and
design specifications were kept the same for the three scenarios. For example, the same
amount and volume of the three materials were considered to be required to build the same
structure. The case study results show that steel structure is the best material choice. The
non-realistic specifications of the alternatives considered for testing question the adequacy
of the case study and, consequently, the tool’s validity.

5. Design criteria for circular buildings, 2021

Attia et al. [40] recognize functional adaptability as one of four primary design criteria
for increased circularity, including 1. carbon footprint, 2. reused content, 3. disassembly
potential, and 4. design for flexibility and adaptability. They concluded their criteria based
on a systematic literature review, deconstruction audits, and structured interviews with
waste management contractors. Each criterion is evaluated on a 0 to 100 scale. Each of the
four criteria is weighted equally. The final circularity score is calculated by adding up the
individual scores of each criterion. This methodology does not define the influence of each
criterion on the overall circularity of a building. In addition, the authors did not provide
clear guidelines on evaluating each criterion which affects the scores’ objectivity. However,
the model is still useful to assess and compare different design alternatives.

6. Circular Construction Evaluation Framework (CCEF), 2021

The Circular Construction Evaluation Framework (CCEF) introduced by Dams et al. [61]
relies on the principles of Design for Disassembly (DfD) and Design for Adaptability (DfA)
as keys to enhance the circularity of the building elements as well as the building itself as a
whole. This happens by embracing a lifecycle perspective that allows future changes, e.g.,
disassembly, reuse, and reconfiguration. The framework can be utilized to perform two
levels of assessment i.e., elemental and building levels, for which two sets of indicators are
developed. For a whole building level, the CCEF suggests 14 criteria grouped under four
groups, while for an element level of assessment, the CCEF suggests six groups of criteria
encompassing 14 factors in total. However, the framework does not deliver an overall
circularity score that combines both assessment levels.

The CCEF is a comprehensive framework that takes into consideration that circularity
is required for multiple aspects and processes throughout the lifecycle of a building and the
products composing it, including material impact, construction techniques, manufacturing
styles, and a combination of several circularity strategies such as simplicity, standardization,
prefabrication, and connection reversibility with respect to design codes. Limitations of
the CCEF include stakeholders’ subjectivity in evaluating the different criteria according to
their priorities.

3.2.3. Circularity Integration in Sustainability Frameworks

1. BREEAM

Building Research Establishment’s Environmental Assessment Method (BREEAM) is
the world’s leading sustainability rating scheme for building design, construction, and use,
focusing mainly on the UK context where a national BREEAM scheme applies. Circularity
inclusion within BREEAM covers requirements on energy, water, materials, waste, reuse,
and recycling within construction, refurbishment and fit-out, in-use, home quality mark,
and CEEQUAL schemes. The circularity measures taken into consideration by BREEAM
developers include resource reuse and efficiency, consideration of renewable resources,
designing for disassembly, reuse and recycling, durable and adaptable design, material
banking, and passports [62].
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2. LEED

Leadership in Energy and Environmental Design (LEED) is a renowned green building
certification system. The Materials and Resources (MR) credit category in LEED associates
the implementation of circular economy principles with higher credits reward. Circularity
measures include optimized use of buildings, building products, and materials throughout
the project life cycle, from construction and demolition, waste management planning to
product selection and ongoing sustainable procurement.

The latest versions of LEED keep advancing the circular economy. Circularity-related
concepts have been introduced into the rating system, such as whole-building life cycle
assessment and material ingredient reporting and optimization, which demand quantifica-
tion and perception of the impacts of material use on human and environmental health.
These new concepts harmonized with long-standing LEED sustainability criteria for con-
struction waste management and responsible sourcing of materials. A novel scheme of
LEED was released to advance circularity in existing buildings’ operation and maintenance
to support the decision-making regarding purchasing, maintenance, waste diversion, and
recycling [63].

3. Level(s) framework

The Level(s) framework is developed to be a common EU framework for a holistic
approach towards sustainability assessment in new and existing, mainly office and resi-
dential buildings. The framework is designed in view of the circular economy action plan
adopting a lifecycle thinking from cradle to cradle reflected in the utilization of value and
risk rating system [64]. The core sustainability indicators constituting Level(s) primarily
focus on the environmental performance of buildings along their lifecycle. However, the
framework also addresses some other aspects concerning comfort and health as well as
lifecycle costs. The framework adopts six macro-objectives translated into nine measuring
indicators contributing to EU target areas, including energy, resource use, waste production
water, and indoor comfort. The framework can be used to report building performance at
multiple project stages: design, implementation, completion, and operation, supporting
three levels of performance assessment, common, comparative, and optimized, that allow
a progression in terms of accuracy and expertise.

From a resource efficiency perspective (macro-objective 2: resource-efficient and circu-
lar material life cycles), the concept of adaptability is considered by Level(s) as an essential
lifecycle tool addressing the aspects of design optimization and aiming at supporting
circular flows and extending system, component and material utility. Macro-objective 2
generally proposes three strategies called scenarios for assessing a building’s long-term
potential and future performance. The three scenarios are:

• Scenario 1: Building and elemental service life planning.
• Scenario 2: Design for adaptability and refurbishment.
• Scenario 3: Design for deconstruction, reuse, and recyclability.

These scenarios are not indicators by themselves. Instead, they are tools that simulate
future possibilities at the end-of-life of buildings. Furthermore, they are important to
determine several other indicators such as indicator 1.2 Life cycle global warming potential
and 2.3 Construction and demolition waste. Each scenario has different impacts on input
and output flows along a building’s lifecycle.

Evaluating the three scenarios enables comparisons in terms of resource efficiency and
allows defining advantages and barriers for each and identifying potential trade-offs.

The Level(s) framework delivers comprehensive insights into process management of
sustainability/circularity evaluation of buildings and their elements. However, it does not
come up with solutions; instead, it provides detailed steps and aspects for sustainability
assessment. In terms of adaptability, Level(s) helps in supporting the decision-making
regarding measures adopted to realize a particular solution. The framework, in this regard,
recommends the utilization of available tools and pre-existing assessment models, which
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raise questions regarding the compatibility of those with the objectives and other indicators
stated by the framework.

3.2.4. MFA- and LCA-Based Tools

1. Material Flow Analysis Tools (MFA). MFA is an analytical method that captures the
state and changes of materials’ stocks and flows in a particular system by calculating the
mass balances over time within a defined space [65]. MFA-based tools focus on specific
aspects of material circularity, namely the amount of materials used by calculating their
mass. However, they fail to address other aspects such as material quality and resource
scarcity. The main challenges inherent to MFA analysis are data uncertainty and infor-
mation availability. Still, it can be applied at every analysis level due to its flexibility
and simplicity [65]. An example is STAN (subSTance flow ANalysis) tool [66] which is
free software that helps to perform material flow analysis according to the Austrian stan-
dard ÖNorm S 2096 (Material flow analysis—Application in waste management) under
consideration of data uncertainties.

2. Lifecycle-Based Tools. LCA is a tool to assess the environmental impacts of a
product, process, or service along the entire life cycle. LCA is one of the tools mainly
applied to quantify and evaluate the benefits/impacts of CE strategies and/or to choose
between different circular strategies. Case studies in the built environment literature can be
found on waste management systems and materials such as concrete and steel. Lately, LCA
has been used to assess the environmental impacts of different end-of-life (EoL) alternatives
for products and services [65]. However, conducting a transparent, effective LCA requires
a longtime experience and holistic methodology on EoL assessments.

Similarly, LCC-based tools are used to address the economic aspect of circularity in
buildings, investigate the feasibility of circular solutions, and conduct financial impact
analysis of circular business models.

Integrating the lifecycle-based tools within other schemes such as sustainability certifica-
tion systems helps to complement those and deliver more inclusive circularity assessments.

3.2.5. Circularity Criteria and Guidelines

This type of framework delivers descriptive criteria and recommendations to deliver
more creative solutions for a circular economy. Multiple guides aim to provide general
guidelines that apply to different areas to develop a circular mindset and design culture for
practitioners and young professionals (e.g., the circular design guide). Other guides deliver
design criteria particularly for buildings (the reversible building protocols).

1. The Circular Design Guide

The Circular Design Guide is developed in collaboration between the Ellen MacArthur
Foundation (EMF) and IDEO to help designers create more effective solutions for a circular
economy. The guide is not dedicated to building designers or the construction industry. It
rather targets whichever designer and product developers in any industry can benefit from
the circular economy approach. This guide consists of a series of methods to build up a
circular mindset and reframe questions to get started with the circularity challenge. The
value of this guide lies in experiencing, exercising, and training through multiple methods
to transform designers into being intuitive about circularity. The reason is that design
practice is largely based on experience and less on tools [67].

2. The reversible building protocols

Based on the principle of closed-loop systems and resource productivity in a circular
building, Durmisevic [26] approached the concept of adaptability by developing what
she called the “Reversible Building”. Building reversibility manifests at three different
levels: spatial, structural, and material happening through transformation actions such
as separation, elimination, addition, relocation, and substitution of parts. Durmisevic
considers the level of building reversibility a key indicator of circular buildings and is
measured by transformation capacity on three levels and reuse potential of all parts at a
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building, system/component, and element levels. Durmesivic argues that transformable
buildings’ elements cannot be attributed to a fixed number of layers as different scenarios
might occur. Each scenario calls for a different number configuration and hierarchy of
changing layers.

The reversible building approach introduces a comprehensive framework of multi-
ple complementary strategies taking place concurrently, including design for adaptabil-
ity (DfA), design for disassembly (DfD), and material reuse and recycling. These strategies
support the waste hierarchy assumed by the circular economy by questioning the end-of-life
options to maintain closed-loop value chains.

To understand the physical capability of buildings to cover as many scenarios as possi-
ble, Durmesivic [26] proposes four forms of spatial reversibility of transformable buildings:

1. Trans-functional: switching between four functional scenarios: housing, office, educa-
tion, and public buildings.

2. Adaptable mono-functional block: when the main use persists while the habitants’
requirements change as the family members increase or grow older.

3. Transportable from one location to another.
4. Transformable: when it has the capacity to perform all of the three previous changes.

As for structural reversibility and reuse potential, the type of transformation required
informs the type of reversibility required. For example, a simple, functional adjustment
requires a partial level of reversibility. In contrast, a high level of reversibility assumes
dismantling the structure to the initial set of elements so they can be reconfigured to create
a new structure of new function or to perform major alterations. Key indicators are the
functional independence of a building’s elements and parts and the exchangeability of
its systems, components, and elements with minimal interface interactions, causing no
damage to juxtaposition parts.

The reversible building model has been further developed through the European
project of BAMB (2015–2019) where the protocols were implemented and tested on several
pilot projects.

4. Discussion
4.1. Adaptability Assessment Frameworks—Scope and Objectives

Existing adaptability assessment frameworks in large part, act in support of the
decision-making at a lifecycle point when a building reaches obsolescence due to different
factors (physical, social, economic, environmental, legal, technological, etc.). At this point,
it is critical to choose between two alternatives (to demolish or to adapt) in terms of which
would be more beneficial and economically viable. Adaptive reuse frameworks often
apply to buildings that were not designed for future adaptability in the first place. These
buildings often require huge interventions to be adapted to new functions or rehabilitated
to carry out similar functions. Adaptive reuse tools are important to advance the circularity
of existing buildings. However, other considerations are required to make more efficient
decisions (e.g., the possibility of material recovery and waste management). The majority
of the reviewed adaptability tools, particularly adaptive reuse models (e.g., ARP, ABD,
PAAM, and ARAM), rely on the analysis of obsolescence causes being the trigger to take
an adaptive reuse action (see Table 1). They, therefore, use the obsolescence criteria in their
methodologies to address future uncertainties (ARP, ABD, IconCUR, AdaptSTAR, PAAM,
ARAM). The literature places technical, physical, and economic factors on top of the most
influential on a building’s useful life. However, this study shows that prioritizing factors
mainly depends on the building typology and function, tool purpose, and stakeholders’
willingness to preserve it. For example, social, political and economic factors are prioritized
over physical aspects for heritage buildings (as shown in the ARAM model). Table 1.
presents a comparative analysis of the reviewed tools in terms of indicators’ categories,
prioritization and weighting methods in addition to the tools’ outcomes and lifecycle
stage intervention.
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Table 1. Comparative analysis of existing adaptability models and tools (lifecycle intervention,
indicators and outcomes).

Tool
Designation

Lifecycle
Intervention

Criteria/Indicators
Tool

Purpose/OutcomesCategories Prioritized
Criteria/Indicators

Weighting
Methods

ARP Use stage

1. Physical
2. Economic
3. Functional

4. Technological
5. Social
6. Legal

Equally
weighted criteria

User
subjective decision

ARP index: a
percentage of a

building potential for
adaptive reuse

ABD

Design stage and
later incremental
adaptations for

full lifecycle

1. Market conditions
2. Performance &

technology
3. Policies and standards

4. Climate conditions

Case-sensitive
Case-sensitive

predictive
uncertainty modeling

Lifecycle planning

IconCUR Use stage
1. Condition
2. Utilization

3. Reward
Not well-established

-Weighted matrix
-Pairwise

comparison for
assigning weights to

each sub-criterion
-Risk

sensitivity analysis

Conceptual decision-
making support

AdaptSTAR Design stage

1. Physical
2. Technological

3. Economic
4. Functional

5. Social
6. Legal

7. Political

Physical criteria:
1. Structural integrity

and foundations
2. Material durability

and workmanship
3. Maintainability

Practitioner survey
using a five-point

Likert scale

Star-rating scheme
for design evaluation

PAAM Use stage

1. Physical
2. Social

3. Economic
4. Environmental

5. Legal
6. Technological

1st Physical and size
2nd Land
3rd Social

Principal
Component Analysis

Assessment of minor
adaptation actions’
potential ranging

from very low to very
high

FLEX 4.0
All lifecycle

stages

Brand’s layers:
1. Site

2. Structure
3. Skin

4. Facilities
5. Space plan

Two possibilities:
1. default:
Structure

Author subjective
relative weighting

Classification
according to

flexibility score

2. Case sensitive

SAGA All lifecycle stages Space Plan layer Spatial configuration

Plan graph
permeability using a

combination of
unweighted and
weighted graphs

Evaluation of
buildings’ Spatial

configuration
of layouts

ARAM Use stage

1. Environmental
2. Social

3. Economic
4. Legal

5. Political
6. Physical

7. Locational
8. Technical

1st Political and
social factors

(heritage significance
and authenticity)

2nd Economic
3rd Technical

4th Legal
5th Physical

Revision and
adaptations of

previous models

Conceptual
decision-

making support

Predicting future changes is a common attribute in adaptability assessment frame-
works. However, from a circular economy perspective, the future is unpredictable. Build-
ings should therefore be prepared to accommodate any type of change that might run at
any stage against making the maximum use of the full potentials of its life and the life of
its components.

Adaptive reuse tools target a later use stage of buildings to make decisions between
two end-of-life options adaptation or demolition. Meanwhile, design-support tools for new
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buildings considering a whole lifecycle perspective are still in short supply (see Table 1).
Existing ones only focus on specific dimensions of adaptability (e.g., layout adaptability
in SAGA model) or specific typologies of buildings (e.g., commercial and office typology
in ABD, office, and school building in FLEX 4.0). Table 2 synthesizes the results of the
analysis of existing frameworks and methods in terms of target building typology and
status, indicator type, and methodology’s system and validation. The consideration of
residential building typology is another shortcoming of existing models and only addressed
in general adaptability frameworks with no specific tool or framework addressing the
specific requirements of residential building adaptability. The focus is mostly given to
commercial and office buildings because adaptations in these cases do not imply large
transformations as those usually use simple layouts. Moreover, existing tools have not
addressed radical functional shifts as the adaptability in these tools addresses alterations
within the original use of the building.

Table 2. Comparative analysis of existing adaptability models and tools (domain, indicator type
and methodology).

Tool
Designation

Domain Indicators/Criteria Methodology

New Buildings Existing Buildings Typology Qualitative Quantitative Mixed Weighting System Validation

ARP x General x Mathematical algorithm Case studies

ABD x Office
commercial x ROA and Monte

Carlo simulations One case study

IconCUR x General x
Multi-Criteria

Decision Analysis
Adaptive Management

Case study
Inter-

model comparison

AdaptSTAR x General x Weighted checklist of
26 design criteria

Case study
Inter-

model comparison

PAAM x Office
commercial x Weighted checklist of

12 indicators
Illustrative
case study

FLEX 4.0 x
General
Office
School

x x

The sum of indicators
values after

multiplying by
assigned weights

Case study

SAGA x x Residential x

No final score
Indicators are
individually

calculated using
BIM software

Case study of
6 representa-
tive layouts

ARAM x Heritage x

A sequence of
conditions needs to

be met for a building
to be considered

suitable
for adaptation

Case study
Inter-

model comparison

Criteria and indicators in the reviewed tools are often of qualitative and/or qualita-
tively quantified nature. Moreover, tools’ frameworks were only tested on illustrative single
case studies representing certain scenarios. Some of the frameworks also used inter-model
comparisons for validation. As a result, most of the tools do not provide evidence on which
design strategies/indicators most influence the overall adaptability performance. Multiple
empirical studies addressed this aspect (e.g., [28]). However, only a few of those were
quantitative [17].

The tools reviewed in Section 3.1 are developed to measure adaptability as a stand-
alone objective. However, other building operational and design aspects also influence the
decision-making processes and the overall adaptability performance. The findings and
their implications should therefore be discussed in the broadest context possible. This calls
for an integrated approach within wider spectrum frameworks, i.e., building circularity,
where results can be interpreted from the perspective of the working hypotheses and the
experiments of case-sensitive trade-offs.
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An emerging yet important issue is the visual simulation of building adaptation and
the use of Building Information Modelling (BIM) technologies. Although it is still in an
early stage (only the SAGA model 2019 established a BIM linkage), the development of
data-driven quantitative modeling forms a potential future research direction for more
efficient and multi-perspective assessments.

4.2. Circularity Assessment Frameworks—Scopes and Objectives

The application of CE principles in real estate, building design, and use (adaptability,
durability, waste reduction, and high-quality management according to the European
Commission [68]) is mainly focused on new buildings where circularity can be embedded
and facilitated since the early design stage and consequently throughout the whole life
cycle of a building and its components and materials. Conversely, circularity in the context
of existing buildings is not yet defined [69]. The multitude of definitions of CE, particularly
circularity in the built environment, does not contribute to a coherent, systematic approach.
CE needs to be viewed as a business strategy, not only waste management or a design
strategy. Optimizing buildings’ use should also be spotlighted instead of only viewing
those as potential material banks where components and materials can be recovered, reused,
or recycled for new constructions [14,69]. Still, recovered materials from existing buildings
face a critical barrier in their technical compatibility and quality appraisal, which put their
direct reuse in question, leading to down-cycling processes, engaging extra resources, and
energy flows. On the other hand, less has been said about the design aspect of circularity
integration in buildings (e.g., design for disassembly (DfD), design for adaptability (DfA),
design for change (DfC), etc.) and the role of building professionals and supply chain
elements in embodying the CE principles into the building sector [38]. In other words,
existing practices and concerns focus on the CE principle of “closing the loop” which
assumes intensified reuse and upcycling of materials and components.

Meanwhile, the CE principle of “slowing the loop” that suggests increasing building
and product longevity by preserving their value, quality, and efficiency to the highest
possible extent has received less attention so far. This can be justified by the influence of the
prevailing construction and design culture during the last decades of viewing buildings as
temporal products of limited life service and predefined destiny—demolition. Another key
principle of CE that is rarely addressed by existing frameworks is “narrowing the loop”
which relies on using fewer resources per product. This principle is inspired by nature’s
processes that mainly use a limited chemical palette, often consisting of six elements: carbon,
hydrogen, oxygen, nitrogen, phosphorus, and sulfur, while industrial manufacturers follow
a different approach, seeking out rare and toxic elements to reach the desired functional
properties. Narrowing the loop delivers conditions for recycling by allowing efficient and
facilitated material separation and recovery.

Moreover, several tools have been developed to support the decision-making of
designing or/and assessing buildings for circularity. However, many of these tools serve
the same purpose with slight differences in goal and scope. The majority were developed to
focus on specific aspects of circularity without considering other aspects, such as supporting
products and materials choice by only substantiating material-related indicators based on
their environmental impacts (e.g., aspects of health, non-toxic composition) and reuse and
recycling potential, such as Materials Passports (MP), Circular Materials Platforms, Material
Circularity Index (MCI) developed by the Ellen McArthur Foundation [13], and material
flow analysis (MFA) tools. However, these tools fail to address a comprehensive circularity
conception and lead to a loss of criticality when used individually since they do not appraise
all the other important design aspects, e.g., building composition and connectivity between
elements, durability, and service life of building components. This is because circularity
values come up when specified intrinsic properties (material and product characteristics)
cross with relational properties (building design and use characteristics) [25]. For example,
a building, e.g., can be made of 100% circular materials and products, but when those are
unreachable for replacement or maintenance, the building system becomes non-circular.
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Multiple sustainability rating tools were used to assess circularity considering it as
an added value to sustainability. LCA-based tools such as SimaPro, ReCiPe, and Open
LCA are widely used for the sustainability assessment of buildings. The use of LCA tools
in the context of circularity assessment considering end-of-life options results in more
comprehensive assessments. Yet, these tools only addressed the environmental results
without other aspects. Similarly, LCC-based tools are used to address the economic aspect of
circularity in buildings, investigate the feasibility of circular solutions and conduct financial
impact analysis of circular business models. Still, LCA and LCC methods are considered
time-consuming and complex to base design choices on [67]. They also rely in part on
inaccessible data. S-LCA or Social Lifecycle Assessment is a relatively recent type of LCA,
which has been investigated to complement the triple bottom line of sustainability towards
a common framework of sustainability. However, S-LCA has been rarely investigated
to calculate the social and socio-economic impacts of products circularity. Furthermore,
renowned sustainability certification schemes such as BREEAM and LEED continuously
include different aspects of circularity in their assessment models. Although these tools
are constantly being upgraded, they are often adapted to marketing purposes and rarely
consider the critiques posed by the theoretical and empirical research [70,71]. Moreover,
their accessibility and costs are in question for young designers.

Some frameworks provide strategies to implement circularity through practical guide-
lines and successful practices supporting the concept of learning by doing. A prominent
example is the circular design guide put forward by the Ellen McArthur Foundation (EMF)
and IDEO [72]. Another guide that targets building designers and professionals, in particu-
lar, is introduced by VUB Architectural Engineering [73]. This guide illustrates 16 design
qualities and principles for a circular economy implementation in buildings. Although use-
ful to establish a circular mindset, these guides do not provide evidence on what circularity
measures are the best fit for a certain case.

More recent tools have been developed in the spectrum of the CE, such as Circular
Building Assessment Prototype (CBA) developed by the European Union (EU) project
of BAMB, Circularity Calculator [50], and Building Circularity Index [57]. These tools
introduce rating systems to calculate a circularity score aiming at objectifying the circularity
performance of a building or a building element. However, they are criticized for their lack
of a participatory and practice-oriented approach, which is fundamental to the need to
appraise the impact of rating tools on the design process. Moreover, there is no clear link
between the outcome of these tools and the actual environmental impact of the investigated
solution. The Level(s) framework developed by the European Commission introduced a
more inclusive approach towards circularity in this regard. However, the consideration
of circularity here is mainly featured in macro-objective 2—resource efficiency and cir-
cular material lifecycles—consisting of three lifecycle tools. Although Level(s) provides
guidelines for doing simplified, detailed, or optimization studies, it delivers a less concrete
framework for circular design strategies such as DfA, which is assessed relying on simple
checklists. Moreover, the market uptake of Level(s) is still limited, and a strong position
still has to be found in the playing field of international frameworks such as LEED and
BREEAM and other national frameworks.

The multiple aspects addressed by the different types of tools and the similarities
among most objectives point out the need to create complementarity rather than establish
new ones from scratch. Still, most existing tools are developed to support design decisions
and perform comparative analyses. They do not develop solutions and strategies to
implement circularity in buildings nor sufficiently consider the role of design which is not
merely at the initial planning process but rather persisting along the lifecycle of products
and services and remains relevant at any point.

Indicators and circularity evaluation methods for building are still under develop-
ment [40]. The emergence of Building Information Modeling (BIM) has created new
opportunities to improve process efficiency and productivity, which have already been
considered in multiple tools frameworks, e.g., the Design Criteria for Circular Buildings [40]
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and C-Calc [74]. However, the application of BIM to address these issues is still in its early
stages. Among the tools presented above, only one tool has been found using the tool of
BIM to track information flows: the D-DAS. Among the several applications of BIM for
the construction industry, authors have recognized its influence on building sustainability,
mainly on decision support, material information storage, managing the building end of
life scenarios, and waste minimization [60,75]. Despite the great opportunity to link BIM
with CE principles, it is still a growing topic with few related investigations. BIM has been
widely integrated into some circularity-related fields, such as automated LCA, LCC, or
sustainability assessment [76]. The role of BIM for circular thinking concerns the ability
to accumulate multidisciplinary lifecycle information about a building, together with the
possibility of process automation [77]. Lately, Akanbi et al. [77] developed a BIM-based
Whole-life Performance Estimator to forecast the end-of-life performance of building mate-
rials by simulating their reusability or recovery scenarios. They have also contributed to a
BIM-based disassembly and deconstruction system to manage the end-of-life performance
of buildings during the design and construction stages [60]. A couple of attempts have been
made in another CE-related field to develop BIM-based Material Passports [78,79]. Con-
cerning the practical assessment of circularity, Di Biccari et al. [80] developed a BIM-based
framework to evaluate circularity through an Autodesk Revit add-in, based on MP, circular
business models, LCA, and LCC. Still, researchers have recognized the infancy and barriers
of BIM integration on CE, as well as the lack of circularity-oriented tools, the existence of
different material databases and data gaps during the early modelling stage [78,80].

4.3. DfA Role in Circularity Frameworks

Generally, the role of design has been recognized by existing circularity assessment
models for buildings where DfA has been identified as a key criterion for circularity and,
consequently, sustainability. This can be found in the examples of categories addressed in
Sections 3.2.2, 3.2.3 and 3.2.5. However, DfA has been dealt with in different manners. The
CE meter [54] introduces a conceptual framework for circularity assessment in buildings
where DfA is the core component. The authors consider that circularity criteria should
be based on the DfA criteria provided by a previous model developed by the authors to
assess the adaptability of buildings (FLEX 2.0 Light). Although the DfA principles were
discussed by Verberne [55] to create the BCI, aspects of life expectancy and duration were
not considered as much as aspects of multiple-life products. The calculation of the BCI
helps determine the level of circularity. However, it does not aid in comparing design
alternatives. Attia et al. [40] recognize functional adaptability as one of four primary design
criteria for increased circularity. C-Calc [74] evaluates three aspects equally weighted in all
projects: material use, adaptability, and information flow. The adaptability in this model
relies on a building’s passive capacity to change its use, limiting the scale of intervention
and minimizing engagement of extra resources and energy. The adaptive capacity relies on
the reversibility of the component which allows safe recovery of materials with minimal
damage. Transformation capacity and functional adaptability are not considered as much.
Another aspect about this tool is the emphasis on information tracking during the project’s
full lifecycle, which is important to establish a closed-loop feedback system ensuring more
efficient end-of-life options; i.e., future adaptability, disassembly, and components recovery.

As for sustainability rating systems such as BREEAM and LEED, aspects related to
buildings’ adaptive capacity are considered a consequence of integrating the circular econ-
omy perspective into these schemes. However, these tools are developed for commercial
purposes and certifications, limiting their adequacy for comparison design alternatives. The
European common framework Level(s) provide a promising method with an integrated
approach accessible for all. The use of the DfA lifecycle tool can be carried out at three levels
of performance assessment: common, comparative, and optimized. The common level
provides a simple checklist of design aspects that facilitate a building’s adaptability. Two
forms of the checklist are available for office and residential buildings. The comparative
performance assessment relies on using a pre-existing index or assessment tool to deliver
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a numerical score. In this regard, the Level(s) framework provides some guidance and
recommendations regarding the tool to be utilized for the assessment. The optimization
assessment includes more complex modeling and consideration of various factors to ensure
comprehensive reporting on the improvement potential of the considered adaptability
measures. At this level, the framework recommends using a simulation software tool to
analyze adaptability scenarios. Given all, the framework is not self-sufficient in terms of
adaptability. The reliance on external models brings up questions of compatibility with the
scope and objectives of the framework. Since the framework is still under development,
future research may address this question together with others related to possible trade-offs
among the three lifecycle scenarios and the utilization of BIM tools.

An overall shortcoming of the frameworks reviewed in this study is that they have not
addressed the magnitude of DfA’s impact on the overall building circularity rates. They
also fail to compile and embed DfA principles altogether into the four hierarchal levels of a
building composition, i.e., materials, products, systems, and building design.

4.4. Outline of Requirements for Inclusive Circularity Assessment

It can be concluded that circularity in buildings can be incorporated at different
yet interconnected scales: materials, products, systems, and building design. The most
comprehensive requirements for circularity assessment in buildings are delivered by
Dams et al. [61], who took into account factors of life cycle assessment for materials and
multiple factors for DfA and DfD, including varying durability of elements, prefabrication,
connections, element reuse, and foundation design. However, the authors used these
requirements to develop two levels of assessment, elementary and building levels, which
are conducted separately.

This study identifies the circularity requirements on four assessment levels, presented
in Figure 2.
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A holistic framework to create, rate, and benchmark circularity in buildings must
consider all the lifecycle stages from planning to end-of-life options with all the associ-
ated input–output flows of materials as well as the engagement of a diverse group of
stakeholders with interlocking specialties.

5. Conclusions

The existing adaptability assessment frameworks often address changes within the
same building typology and function, relying on methods and indicators mostly sub-
jective. In addition, the effectiveness and validity of those are not sufficiently tested or
verified. Therefore, more empirical data prioritizing the most valuable criteria that facilitate
adaptations are required for all building typologies.

The wide variety of existing CE frameworks’ objectives and scopes can be attributed to
the open nature of the CE definition and conceptualization, which has led to controversial
understanding by the different stakeholders.

Integrating DfA assessment in building circularity frameworks helps objectify its
role as a key enabler to circularity strategies. It also informs more accurate and inclusive
decision-making as well as performance assessment.

One of the major shortcomings of most circularity frameworks developed so far is
the lack of integration of the triple bottom line of sustainable development, which is
supposed to be the ultimate goal for the circular economy. However, it is not the case
for sustainability assessment frameworks that recognize circularity as the contemporary
enabler to sustainability which upgrades its requirements over time.

An integrated approach to benchmark the new generation of sustainable buildings,
therefore, requires measures that address the complexity of a building system consisting of
different hierarchal levels with their adaptability and circularity respective requirements.
Furthermore, the technical integration of circularity must be coupled with value chain
management and reconciliation with the other sustainability factors.

From the review and analysis presented in this study, the following gaps are identified:

1. There is a lack of quantitative models for adaptability assessment as well as evi-
dence on the effectiveness of their indicators and criteria on the different typologies
of buildings.

2. There is a lack of multi-criteria approaches supporting design that allow to deal with
conflicting situations, as well as assess design options and advise better circularity
scenarios at whatever point throughout a building’s lifecycle. More automated indi-
cators are essential to evaluate design options and facilitate necessary trade-offs for
enhanced circularity.

3. Future research should tackle the practicality questions of some of the application of
the prominent tools on real-life case studies and identify further obstacles and rooms
for innovation that on-desk research methods could not identify.
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