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Abstract: The radio stripe (RS) system is a practical implementation of cell-free mMIMO, in which
a set of multi-antenna access points (APs) serves at the same time-frequency resources the user
equipment (UE) in the network. The APs are sequentially connected in a stripe, sharing the same
fronthaul link to the central processing unit. This work considers an uplink power optimization
problem that aims to enhance the network spectral efficiency (SE) by considering two metrics—the
max–min fairness and the max–sum rate. We employ a meta-heuristic based on the differential
evolution algorithm to solve the bi-objective optimization problem. The SE performances of the full
power along with the single-objective and multiple-objective scenarios are analyzed and compared
for the optimal sequential linear processing detection scheme. The bi-objective approach is able to
unveil the trade-offs to identify solution balancing the SE distribution resulting from the optimization
of the max–min fairness and the max–sum rate objective functions.

Keywords: massive MIMO (mMIMO); cell-free (CF); radio stripe (RS); power optimization; max–min;
max–sum; multi-objective (MO); differential evolution (DE)

1. Introduction

The conventional massive multiple-input–multiple-output (mMIMO) fifth-generation
(5G) communication systems are cell-centric, in which a single base station (BS) contains
the electronic components of all antennas while serving the user equipment (UE) in a
cell. This configuration has low-capacity requirements in the fronthaul along with the
possibility of covering large areas. The UE are multiplexed in the spatial domain through
the reception of very directive signals, a technique known as beamforming. mMIMO
also explores multipath propagation to boost overall data rates, spectral efficiency (SE)
and power efficiency by increasing the number of data streams that are simultaneously
transmitted (spatial multiplexing) or by improving reliability of the communication link
through a redundant data transmission (spatial diversity) [1–3]. The channel hardening
and favorable propagation conditions allow for the implementation of simple precoding
and equalization techniques [2,3]. However, the network performance is bounded by the
inter-cell interference [3,4]. This means that the spatial multiplexing of UE requires more
complex techniques to separate the data streams. Additionally, due to the constraints on
the number of radio frequency chains and in order to meet the traffic requirements for
the next generation of communications, new mMIMO network configurations are being
proposed [5,6].
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The combination of mMIMO with cloud radio access network leads to the concept of
distributed mMIMO which aims to provide an UE-centric approach allowing an ubiqui-
tous service experience to all UE, reducing inter-cell interference. A practical distributed
mMIMO system is known as cell-free (CF) mMIMO [4,7–9]. In CF mMIMO, the antennas
are grouped in access points (APs) that are geographically spread out. These APs jointly
cooperate in transmission and reception by having an independent fronthaul link and
power supply [9]. In this network configuration, the UEs are served by the same time and
frequency resources. Nevertheless, the main bottleneck for a practical implementation
of a CF mMIMO network is the need for a the large fronthaul capacity and signaling
requirements along with a high network implementation cost (with a huge density of
long cables) of the connections from APs to the central processing unit (CPU). This way,
practical CF mMIMO systems with decentralized processing algorithms have been recently
proposed [10–12].

The radio stripe (RS) concept [10–12] is a realistic implementation of a CF mMIMO
network. It consists of a stripe, connected to a CPU, where a high number of antennas
are connected and cooperate phase-coherently. The APs are sequentially located inside
the same cable, providing synchronization, data transfer and power supply via a shared
link [12], thereby avoiding the need for dedicated fronthaul links between each AP and the
corresponding CPU.

1.1. Related Work

The existing work in the literature has focused in developing sequential uplink (UL)
processing algorithms to be employed in the APs over the fronthaul that are capable of
increasing the UE SE [10,11]. For this purpose, in [10], each AP computes local channel
state information (CSI) and makes soft estimates of the desired signals using normalized
linear minimum mean square error (NLMMSE) combining and then forwards the soft
estimates, CSI and error statistics to the next AP, until the last AP is reached. In [11], a UL
optimal sequential linear processing (OSLP) algorithm for an RS network is proposed and
compared to the standard sequential maximum ratio combining (MRC), with the former
being able of maximizing the SE and achieving the same performance of a centralized
scheme [9,13], while reducing the fronthaul signaling.

Furthermore, CF mMIMO systems should be supported by efficient power control
algorithms [14,15]. Several SE metrics can be considered in the power optimization methods:
max–min fairness, maximum overall sum rate, total power radiated, etc. In [16], the
max–min fairness optimization problem is exploited in CF mMIMO by adapting the UE
power coefficients and the AP receiver filter coefficients. Since the resulting problem is
not convex, the original problem is divided into two optimization sub-problems that are
iteratively solved. This means that the optimization problem is transformed into two
decoupled single-objective (SO) optimization problems. In [17], the same optimization
problem is explored with a zero-forcing combining scheme at the APs. In [18], a max–min
fairness problem is considered by taking into account quality of service (QoS) constraints
on specific UE, while in [19] the system total energy efficiency is optimized subject to
per-UE power and per-UE QoS constraints. In [15], the downlink max–min fairness power
optimization is performed using a deep neural network. The authors in [20] proposed
the use of deep learning to employ the max–sum rate and max–min power allocation in
the UL of CF mMIMO. In this case, the deep learning method is individually employed
to solve each power optimization problem, which means that the max–sum rate and
max–min fairness optimization problems are solved independently, i.e., there are two
independent SO optimization problems. Finally, in [21], the authors proposed the use of
three meta-heuristics (MHs) as alternative optimization approaches to solve the UL max–
min fairness power optimization problem in CF mMIMO with a per-UE power constraint
and MRC at APs. They showed that these algorithms are adaptive and capable of providing
near-optimal solutions with affordable computation complexity, when compared to exact
schemes, such as the bisection and geometric-programming-based algorithms.
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1.2. Contributions

Power allocation algorithms are essentially methods that solve an optimization prob-
lem where the decision variables are the power coefficients that are allocated at each UE
terminal, in case of UL. The constraints are usually related to the maximum transmission
power that each UE can support, and the objective function (OF) is related to a network
metric that should be optimized. In all papers mentioned in the previous subsection, the
power optimization is performed in CF mMIMO systems. Moreover, only one metric is
considered at a time, i.e., the UL power optimization problem is SO. The state-of-the-art
solutions have focused on the development of exact algorithms that are able to compute
the optimal solution for a given SO optimization problem. However, in practical scenar-
ios, multiple network metrics must be optimized. Thus, in order to enhance the system
performance and provide flexibility, we consider multi-objective (MO) optimization for
the RS scenario. In this work, we deal with two competing OFs, max–min fairness and
max–sum rate, which means that a non-dominated solution front should be sought rather
than an optimal solution. The output of the MO UL power optimization model is a set of
power coefficients vectors for UL transmission, each one assigned to an UE. Each vector
provides a specific trade-off between the OFs. To the best of the authors’ knowledge, there
is no prior work focusing on MO UL power optimization in an RS network. Thus, the
main contribution of our work is considering a MO UL power optimization approach
simultaneously taken into account two metrics of evaluation of solution quality.

In order to tackle the computation costly nature of such optimization problems, cus-
tomized MO programming using a MH approach [21] can output high quality solutions
displaying network performance trade-offs. In this work, we adopt the differential evolu-
tion (DE) MH approach [22] to solve a MO optimization problem aiming to optimize the
UE SE considering the max–min fairness and the maximum sum rate metrics, in a UL RS
scenario, while employing the OSLP combining scheme [11]. Since no exact algorithm can
efficiently solve this bi-objective optimization problem, the main motivation for the use of
DE is its good performance in continuous optimization problems, capability of making the
solution population to evolve towards the non-dominated front, and easiness of implemen-
tation. The computational complexity of the DE algorithm is much lower than the one of
exact algorithms, with DE being capable of finding high-quality and near-optimal solutions
much faster, as shown in [21] for an SO problem. This is critically important when the
number of UE is high, which significantly increases the computation complexity. The SE of
each UE is an important key performance indicator that depends on the power coefficient,
equalization vector, noise and channel estimation. Since the DE algorithm only relies on
the UE SE measurements across the network, this means that the set of possible solutions
provided by the algorithm is reasonable for multiple time-frequency intervals, i.e., those
solutions are valid for a coherent block wherein the channel stays constant. This means
that DE lends itself well to (near) real-time applications that can adapt to the network
environment and only needs to update the power vectors once per coherent block.

1.3. Outline and Notations

Section 2 presents the main concepts of an RS network, including the UL channel
estimation and the payload transmission and reception. Section 3 formalizes the UE power
allocation problem, which is modeled as a resource allocation optimization problem where
both the previously mentioned metrics are combined into a bi-objective approach. A
detailed description of the DE MH and the MO methods are also presented. Section 4
includes the simulation results and critical analysis. Finally, Section 5 draws the main
conclusions.

Throughout this paper the following notation will be employed: bold lettering (e.g.,
sn) is used to denote a vector of samples at the time domain, while non-bold lettering (e.g.,
sn) are used to denoted the samples of those vectors, respectively. d.e is the ceiling-taking
operator and the superscripts AT , A∗ and AH denote transpose, complex-conjugate, and
Hermitian of matrix A, respectively. Additionally, tr(A) and diag(A) denote the trace
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and diagonal elements of A. In is a n× n identity matrix and E{.} is the expected value
operation. Finally, NC(0, R) is a circularly symmetric complex Gaussian distribution with
correlation matrix R, U (a, b) represents the standard uniform distribution in the interval
[a, b] and N (γ, α) represents normal distribution with γ mean and standard deviation
(std) α.

2. Radio Stripes Network Model

A practical sequential implementation of the CF mMIMO network is obtained through
the deployment of an RS which comprises L multi-antenna APs consisting on a linear
array of N antennas. The APs are sequentially connected in the same stripe which is then
connected to a CPU, allowing for the APs to share the same fronthaul link. It is assumed
that there are K single-antenna UE randomly distributed within the area covered by the RS
network [10,12].

The channel between UE k = 1, · · · , K, and AP l = 1, · · · , L is hkl ∼ NC(0, Rkl),
which follows a block flat-fading model, described by an independent correlated Rayleigh
fading distribution, being constant and flat-fading in block intervals of τc samples [2,9];
where Rkl ∈ CN×N is the spatial correlation matrix that describes both the channel spatial
correlation characteristics and the large-scale fading coefficients (path loss and shadow
fading) between AP l and UE k by βkl =

tr(Rkl)
N [2].

This paper focuses on the UL and the frame format is based on the time-division-
duplex protocol with two phases: a channel estimation phase leveraging on a pilot training
sequence of τp samples and a payload data sequence of τc − τp samples [12].

2.1. Channel State Information Estimation Phase

In this phase, the set of mutually orthogonal pilot signals {Φt : Φt ∈ Cτp ∧ t =
1, · · · , τp} with power ||Φt||2 = τp is assigned to each UE and transmitted to the APs to
estimate the transmission channel [9,11]. Assuming that tk denotes the index of the pilot
assigned to UE k and Pk ⊂ {1, · · · , K} is the subset of UE that shares tk, the MMSE channel
estimator is [2]

ĥkl =
√

p̌kτpRklΓ
−1
tk l ztk l , (1)

where p̌k ≥ 0 is the power of the pilot signal allocated to the kth UE, ztk l is the pilot signal
received at AP l after being projected into tk, i.e.

ztk l =
√

p̌kτphkl + ∑
i∈Pk ,i 6=k

√
p̌iτphil + ntk l . (2)

and
Γtk l = ∑

i∈Pk

p̌iτpRil + IN , (3)

while ntk l is the resulting noise. It is worth mentioning that the CSI estimate ĥkl ∼
NC

(
0, R̂kl

)
and the corresponding error h̃kl = hkl − ĥkl ∼ NC

(
0, R̃kl

)
are statistically

independent, with correlation matrices given by [2,11]

R̂kl = p̌kτpRklΓ
−1
tk l Rkl , (4)

and
R̃kl = Rkl − R̂kl . (5)

2.2. Payload Transmission and Reception

Let si ∈ C denote the signal transmitted by the ith UE, with power pi and let s =

[s1, · · · , sK]
T . The received signal at AP l, yl ∈ CN , includes the data transmitted by all K

users, being written as
yl = Hls + nl , (6)
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where Hl = [h1l , · · · , hKl ] ∈ CN×K is the channel matrix and s = [s1, · · · , sK]
T ∼ NC(0, Q)

is the signal vector, with Q = diag(p1, · · · , pk) and nl ∼ NC
(
0, σ2IN

)
denotes the receiver

noise. Equation (6) can be rewritten as

yl = Ĥls + wl , (7)

where Ĥl = Hl − H̃l =
[
ĥ1l , · · · , ĥKl

]
is the matrix of CSI and H̃l denotes the matrix of

channel estimation errors. Additionally, wl = H̃ls + nl represents a vector containing both
the estimation error and the noise term, and wl ∼ NC(0, Σl) where

Σl =
K

∑
i=1

piR̃il + σ2IN . (8)

The RS requires a UL sequential linear processing algorithm to obtain the signal
estimation vector for each AP l along the sequential network, i.e., ŝl = [ŝ1l , · · · , ŝKl ]

T ,
where ŝkl denote the individual estimates for each UE k. The starting point of the sequential
algorithm, after receiving y1, is the computation of the signal’s estimation vector for AP 1,
i.e., ŝ1. This information is then sent to AP 2 which performs its own estimation, ŝ2, which
is based, not only on y2, but also relies on the information embedded in ŝ1. Thus, each
AP l along the network, after receiving the signal estimation vector from AP l − 1, ŝl−1,
performs their estimation, ŝl , and forwards this information to AP l + 1. This process is
iterative until AP L is reached, forwarding the final signal vector estimate, ŝL, to the CPU.
The sequential algorithm proceeds as follows: AP l, upon receiving the signal estimation
vector from AP l − 1 computes its own soft estimate following

ŝl = Al ŝl−1 + Blyl , (9)

where Al ∈ CK×K is a receiver combining matrix that allows the local detection to leverage
on the estimate computed from previous AP, ŝl−1, while Bl ∈ CK×N depends on the
local received signal, yl . Assuming that ŝ0 = 0K, Equation (9) can be generalized for
l ∈ {1, · · · , L} as

ŝl = B̄lzl , (10)

where zl =
[
yH

1 , · · · , yH
l
]H is the augmented received signal at AP l and the augmented

receiver matrix combining is defined as [10,11]

B̄l =

{
[AlB̄l−1 Bl ], if l > 1
B1, if l = 1.

(11)

Equation (11) can be rewritten as B̄l =
[
B̃l1, B̃l2, · · · , B̃ll

]
∈ CK×Nl where{

B̃lξ = AlAl−1 · · ·Aξ+1Bξ , 1 ≤ ξ < l
B̃ll = Bl .

(12)

The OSLP combining scheme has shown to outperform the MRC approach [11], where{
Al = IK
Bl = Ĥl .

(13)

Furthermore, it can achieve the same performance as the optimal centralized imple-
mentation based on MMSE [9], but in a decentralized fashion and, thus, it allows for a
considerable reduction in fronthaul requirements. The combining matrices of the OSLP
scheme are [11] {

Al = IK − TlĤl
Bl = Tl ,

(14)
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where {
Tl = Pl−1ĤH

l

(
Σl + ĤlPl−1ĤH

l

)−1

Pl−1 =
(
IK − Tl−1Ĥl−1

)
Pl−2.

(15)

At the end of the RS sequential processing the final estimate of AP L, ŝL, is forwarded
to the CPU for final decoding. Along the RS network, the achievable SE of UE k in AP l is
given by [9]

SEkl =

(
1−

τp

τc

)
E{log2(1 + SINRkl)} (16)

where the effective signal-to-interference-and-noise ratio (SINR) is [9,11]

SINRkl =
pk

∣∣∣BlkĤkl

∣∣∣2
∑K

i=1,i 6=k pi

∣∣∣BlkĤil

∣∣∣2 +BlkKlBlk

, (17)

while Ĥkl =
[
ĥ

H
k1, · · · , ĥ

H
kl

]
H ∈ CNl,Blk ∈ CNl relates to Equation (11) as B̄l = [Bl1, · · · ,BlK]

T,
and the term Kl = diag(Σ1, · · · , Σl) is the correlation matrix of the augmented error esti-
mation plus noise term.

3. Uplink Power Optimization Problem

In this section, the multi-objective UL power optimization problem, P1, is formalized
in a general correlated Rayleigh fading channel context with the OSLP scheme. From
Equations (16) and (17), the decision variables of the optimization problem are the power
coefficients allocated to each UE k, i.e., pk, or in vector form, p. These are restricted between
0 and a maximum value Pmax, ∀k. The MO approach includes two metrics, which are
operationalized as OFs to maximize the overall system capacity, while ensuring minimum
user bit rates. The solution given by the bi-objective optimization problem allows to grasp
the trade-offs between the throughput and the fairness. To maximize the SE of the worst
UE and maximize the total sum SE, SE values must be evaluated at the CPU, i.e., the values
of Equation (16) for l = L. Therefore, P1 can be formulated as

P1 : max
pk

f1(p) =
K

∑
k=1

SEkL (Throughput)

max
pk

f2(p) = min
k=1,··· ,K

SEkL (Fairness)

s.t. 0 ≤ pk ≤ Pmax, k = 1, · · · , K.

(18)

The throughput OF is non-convex and, therefore, the global optimum is usually
approximated through the employment of successive approximation algorithms that find
locally optimal solutions [2]. The fairness OF is quasi-linear and can be solved to optimality
by a bisection approach for a given tolerance ε > 0 [2,4]. This means that, for both OFs, the
process of obtaining the global optimal power distributions can be time consuming and
computationally complex as the number of UE grows. The need to identify non-dominated
solutions increases the computational effort with respect to just having the optimal solution
to each SO problem. Therefore, instead of pursuing the global optimal solution, a less
complex yet accurate approach based on the DE MH is employed [21–23].

3.1. Differential Evolution

The DE [21,22] is a population-based MH algorithm based on a differential mutation
operator between pairs of existing individuals (solutions) in the current population and
then applied to a third individual, denoted as base vector. The population is randomly
initialized, being P(t) =

{
p(t,i), i = 1, · · · , Npop

}
, where t is the index of the generation, i is

the index of each individual and Npop is the population size. We adopt as stopping criteria
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the maximum number of iterations, Nm, or a the maximum number of iterations, Ni, with
no improvement of both OFs within tolerance ε.

The mutant population P̃(t) with mutant individuals, p̃(t,i), is generated according
to [21,22]

p̃(t,i) = p(t,i) + λ
(

p(t,ibest) − p(t,i)
)
+ F

(
p(t,r2) − p(t,r3)

)
, (19)

where r2, r3 ∈
{

1, · · ·Npop
}

are randomly selected individuals with i 6= r2 6= r3, p(t,ibest) de-
notes the best individual in the population at generation t, λ ∈ [0, 1] and F = [F1, · · · , FK]

T

is a scaling parameter that acts as a weight coefficient of the difference vectors, defined as

Fk = F0 +Zα (20)

with Zα ∼ N [0, α] and α� 1. The next step includes a discrete recombination operation
between P(t) and P̃(t), producing the offspring population, P̄(t) whose individuals are

p̄(t,i)k =

{
p̃(t,i)k , if X ≤ C ∨ k = δi

p(t,i)k , otherwise,
(21)

where X ∼ U [0, 1], δi ∈ {1, · · · , K} is a random index. Additionally, C ∈ [0, 1] is a
parameter that controls the fraction of decision variables that are copied from the mutant
individual to the offspring individual. It starts with a maximum value Cmax, and is reduced
according to a rate Cr. Finally, the selection process for individual survival for the next
generation, P(t+1), involves the evaluation of the OF for p̄(t,i) and p(t,i), with the worst ones
being discarded and the best ones surviving

p(t+1,i) =

{
p̄(t,i), if eval

(
p̄(t,i)

)
≥ eval

(
p(t,i)

)
p(t,i), otherwise.

(22)

3.2. Multi-Objective Optimization Based on DE

In MO mathematical programming there are multiple OFs to be optimized. The solu-
tions in the decision variable space are mapped onto the OF space, where their components
are the corresponding values of each OF. In general, the purpose of MO optimization is to
find efficient solutions in the decision variable space leading to non-dominated solutions
in the OF space. These are characterized by the absence of another feasible solution that
improves simultaneously all OFs, i.e., the improvement of an OF value can only be achieved
by accepting that, at least, another OF value is degraded [23]. The non-dominated front
includes the solutions from which a final choice (or ranking) should be made, considering
the underlying trade-offs between the competing OFs [23].

The DE algorithm can be employed in MO optimization with the same solution
generation and selection mechanisms to those used in the SO case. However, the OF
assignment and archiving functions will require specific structure. The OF assignment
must guarantee a correct ordering between non-dominated solutions according to their
preference relations.

In this work, the ranking approach is completed through a front index similar to the
one employed in the non-dominated sorting genetic algorithm II (NSGA-II) [24]. In this
approach, the index 0 is assigned to all non-dominated solutions in the population, forming
the non-dominated front. The set of solutions with index 0 is denoted as G0. A new front is
created from the remaining solutions, where the non-dominated solutions relative to this
set are determined and assigned index 1, G1. The subsequent front, G2, is assigned with
index 2, and so on, increasing the index by one unit for each new front, until all points
of the population are labeled. The set Gj denotes non-dominated front that contains all
solutions that are dominated by at least one solution from set Gj−1.

In order to generate a representative distribution of the non-dominated set it is also
necessary to add a factor to untie the solutions that have the same index, while preserv-
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ing the relative order between the solutions that have different indices. The NSGA-II
algorithm [24] proposed the use of crowding distance, $, in which the ordering of solutions
with the same index, Gj with cardinality Gj = card

(
Gj
)
, is performed in ascending order of

one OF, being labeled with indices x = 1 to x = Gj. Then, for each solution from x = 2 to
x = Gj − 1, $ is obtained

$
(

p(t,x)
)
= Cp

[
f1

(
p(t,x−1)

)
− f1

(
p(t,x+1)

)]
+
[

f2

(
p(t,x+1)

)
− f2

(
p(t,x−1)

)]
. (23)

This factor is proportional to the perimeter of a rectangle whose opposite vertices are
the neighboring solutions of p(t,x). Cp is a constant that takes into account the different

orders of magnitude between the OFs. The larger $
(

p(t,x)
)

the further away solution p(t,x)

is from its neighbors, and therefore the more important is this solution to guarantee the
representativeness of the set of solutions. Finally, the archiving operation leverages on the
NSGA-II solution ordering mechanism by keeping a set of Narch solutions from multiple
non-dominated frontiers at each generation. This means that in every generation t, the same
ranking approach is performed on the set

{
Narch, Npop

}
, that contains both the Npop new

solutions and the Narch non-dominated solutions saved in the archive from the previous
generation t − 1. From this procedure, the Narch best ranking solutions are kept in the
archive in generation t.

4. Simulation Results

In this section, the SE performances are evaluated while considering both the SO and
the MO optimization for the OSLP detection scheme. The path loss and shadow fading
included in the propagation model follow the 3rd Generation Partnership Project (3GPP)
Urban Microcell model ([25] Table B.1.2.1-1) where the large-scale fading coefficient takes
into consideration the APs and the UE antenna’s heights, being defined in dB by

βkl = −36.7 log10

(√
d2

kl + h2
d

)
− 22.7− 26 log10( fc) + Fkl , (24)

where dkl is the horizontal distance between UE k and AP l, fc denotes the carrier frequency
in GHz and hd represents the height difference (in meters) between the AP and UE antennas.
The term Fkl ∼ N

(
0, σ2

sh
)

only appears when dkl > dsh and follows a shadowing correlation
model [4] given by

E
{

Fkl Fij
}
= σ2

sh

(
∆2−

νki
dc + (1− ∆)2−

ζl j
dc

)
, (25)

where νki is the distance between UE k and UE i, ζl j is the distance between AP l and
AP j and 0 ≤ ∆ ≤ 1 denotes the AP/UE shadowing contributions. The RS network is
deployed around the perimeter of a squared D× D m2 area and consists on L equidistant
APs equipped with N antennas. Furthermore, K UE are concentrated in a smaller squared
Du × Du m2 area within the far-field regarding the antenna’s operation region. It is also
assumed that there are τp orthogonal pilots available. Additionally, the maximum UE
transmission power in mW is Pmax, the communication bandwidth in MHz is B and the
coherence block has τc samples. The total noise power in dBm is [4]

σ2 = BkBT0σ2
f (26)

where σ2
f = 1.9741 dB is the noise figure, kB = 1.381× 10−23 J/K is the Boltzmann constant

and T0 = 290 K is the noise temperature. The UE pilot assignment is performed according
to a greedy algorithm described in ([4] Sec. IV.A) with p̌ = Pmax. Each multi-antenna AP
includes a uniform linear array with antenna spacing dH . Moreover, each AP antenna
receives multipath components which follow a Gaussian distribution in the angular domain
with a σφ degree std around the nominal angle to the UE [2,9,11].
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The results were obtained by considering Na = 10 independent realizations in Nin = 3
different independent instances with randomly placed UE. The constant of Equation (23),
Cp, is calculated by the quotient between the average value of f2(p) for the max–min
fairness optimization and the average value of f1(p) for the max–sum rate optimization
considering the Na realizations. All simulations were performed in the same machine
(Intel i5-10300H@2.50 GHz) using Matlab. The DE algorithm parameters are displayed in
Table 1. The network simulation parameters are presented in Table 2, where λ denotes the
wavelength.

Table 1. DE parameters.

Variable Value Description

Npop 40 Population size

Cmax 1 Maximum value of the control parameter

Cr 0.9/100 iter. Decreasing rate of the control parameter

λ 0.5 Weighting factor to the best population individual

F0 0.8 Nominal value of the scaling parameter

α 0.01 Std value of the scaling parameter

Nm 1000 Maximum number of iterations

Ni 100 Maximum number of iteration with no improvement of
both OFs

ε 10−5 Algorithm’s tolerance

Narch 100 Population archive size

Table 2. System parameters.

Variable Value Description

fc 2 GHz Carrier frequency

hd 5 m AP/UE height difference

σ2
sh 4 dB Variance of the shadow fading term

∆ 0.5 AP/UE shadowing contributions

dc 9 m Decorrelation distance

dsh 50 m Shadow fading distance

D 125 m Size of simulation area

Du 100 m Size of the UE positioning area

L 12 Number of APs

dH
λ
2 m Antenna spacing

N 2 Number of antennas per AP

K {6, 12, 20} Number of UE

τp {5, 10, 16} Number of orthogonal pilots

τc 2000 Number of samples per coherent block

Pmax {5, 50}mW UE maximum power

B 100 MHz Communication bandwidth

σ2 −92 dBm Noise power

σφ 15 º Std of the angle from multipath components
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The RS networks employed in the simulation assessment allow for the evaluation
of the SO and MO optimization algorithms in Nin different instances with distinct UE
densities:

• One with high UE density (scenario 1) of approximately 80% of the total antennas
LN = 24, i.e., K = 20.;

• One with a medium UE density (scenario 2), with 50% of UE with respect to LN, i.e.,
K = 12;

• One with a low UE density (scenario 3), by considering that the total number of UE is
equal to 25% of LN, i.e., K = 6.

Figure 1 shows the three different RS networks considered in this section. It should
be mentioned that to also take into account the pilot contamination interference, the
total number of orthogonal pilots, τp, is adjusted to 80% of the total number of UE. This
means that τp = d0.8× Ke. Furthermore, to evaluate the performance of the optimization
procedures with different UE technologies, in each RS scenario from Figure 1, two different
values of Pmax are considered: one with low maximum power of Pmax = 5 mW and one
with high maximum power of Pmax = 50 mW.

Figure 1. AP and UE positions in a high (a) medium (b) and low (c) UE density RS network.

In Figures 2–4 the max–min fairness, max–sum rate and bi-objective power optimiza-
tion are performed in a high, medium and low UE density RS network with high and
low maximum power, respectively. The SE values in both axis are obtained by taking the
mean value for the Na realizations. The 95% confidence intervals are presented. Along
with the main SE results, a tendency curve is presented to illustrate an approximation of
the non-dominated front. This curve is plotted through a quartic (4th degree) polynomial
fitting function.

Figure 2a shows the advantage of using an MO approach to unveil the trade-offs
between the OFs. The max–min fairness optimization leads to a solution in which the
network operates in a state where the worst UE has 1.21 bit/s/Hz. However, this is
achieved at the expense of the sum rate, which is 24.2 bit/s/Hz for this solution. At the
other end, the max–sum rate optimization achieves a total UL throughput of 104 bit/s/Hz,
but the worst UE has 2.67× 10−7 bit/s/Hz of SE. The MO optimization approach enables
unveiling SE trade-offs between these two extreme operation points. Figure 2a presents all
Narch states of network operation computed using the MO version of the DE developed.
For reference, it is also displayed the case where there is no power optimization, which
means that all UE employ the maximum power, Pmax, (which in this case is 50 mW) in the
UL. For this case, the worst UE has a SE of 0.318 bit/s/Hz, while the network sum rate is
56.8 bit/s/Hz. In the non-dominated front, we can obtain a point with the same SE for the
worst UE, but with a total sum rate of approximately 96.7 bit/s/Hz, and the same sum
rate of 56.8 bit/s/Hz, with the worst UE having a SE of approximately 0.976 bit/s/Hz. In
these cases, there is a 70.2% gain in the sum rate and a 207% gain in the max–min fairness,
respectively, if the network is optimized using the bi-objective approach.
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Figure 2. Bi-objective power optimization, max–min fairness and max–sum rate OF in a high UE
density RS network with (a) high and (b) low maximum power.

Figure 3. Cont.
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Figure 3. Bi-objective power optimization, max–min fairness and max–sum rate OF in a medium UE
density RS network with (a) high and (b) low maximum power.

Figure 4. Bi-objective power optimization, max–min fairness and max–sum rate OF in a low UE
density RS network with (a) high and (b) low maximum power.
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In Figure 2b the max–min fairness optimization has a SE of 1.17 bit/s/Hz for the worst
UE and a sum rate of 23.5 bit/s/Hz, while the max–sum rate optimization achieves a total
of 67 bit/s/Hz with the worst UE having 3.09× 10−7 bit/s/Hz. The point with no power
optimization, with Pmax = 5 mW, has 0.139 bit/s/Hz for the worst UE and a sum rate of
43.2 bit/s/Hz. The bi-objective approach obtains the same SE for the worst UE with a sum
rate of approximately 63.7 bit/s/Hz and the same sum rate with the worst UE having a SE
of approximately 0.875 bit/s/Hz. This represents a 47.5% gain in the sum rate and a 529%
gain in the max–min fairness, respectively.

The same trade-offs are observable in Figure 3a where the max–min fairness opti-
mization provides the worst UE with 3.68 bit/s/Hz but a poor sum rate of 44.1 bit/s/Hz,
while the max–sum rate optimization achieves a total of 75 bit/s/Hz with the worst UE
having 3.58× 10−7 bit/s/Hz of SE. For reference, the point with no power optimization
for Pmax = 50 mW is able to obtain 1.64 bit/s/Hz for the worst UE and 51.5 bit/s/Hz of
network throughput. The MO approach can obtain the same SE for the worst UE with
approximately 71 bit/s/Hz of sum rate, and the same throughput with the worst UE having
a SE of approximately 3.53 bit/s/Hz. In both cases, there is a 37.9% gain in the sum rate
and a 115% gain in the max–min fairness, respectively.

In Figure 3b the max–min fairness outputs 2.26 bit/s/Hz for the worst UE and a sum
rate of 27.1 bit/s/Hz, while the max–sum rate outputs 46 bit/s/Hz, with the worst UE
having 4.14× 10−7 bit/s/Hz. The point with full power, with Pmax = 5 mW, outputs
1.46 bit/s/Hz for the worst UE and a sum rate of 36.8 bit/s/Hz. With the MO approach,
the same SE for the worst UE is obtained with a sum rate of approximately 40.9 bit/s/Hz,
and the same sum rate is obtained with the worst UE having a SE of approximately
1.84 bit/s/Hz. The gains are 11.1% and 26% for the max–sum rate and the max–min
fairness, respectively.

Figure 4a displays the max–min fairness optimization providing 5.03 bit/s/Hz for
the worst UE with a total sum rate of 30.2 bit/s/Hz, while the max–sum rate optimization
achieves a total of 40.4 bit/s/Hz, with the worst UE having 2.96 bit/s/Hz. In this case, by
transmitting with full power, with Pmax=50 mW, a SE of 4.57 bit/s/Hz is obtained for the
worst UE and the network has a total of 33.6 bit/s/Hz. The bi-objective approach for the
same SE of the worst UE increments the sum rate to approximately 37 bit/s/Hz and for the
same throughput increments the SE of the worst UE to approximately 4.89 bit/s/Hz, thus
obtaining gains of about 10.1% and 7% in the sum rate and max–min fairness, respectively.

Finally, Figure 4b shows that it is possible to obtain the extreme points with
4.12 bit/s/Hz for the worst UE and 24.7 bit/s/Hz sum rate for the max–min fairness
optimization and 28.5 bit/s/Hz for sum rate combined with 2.36 bit/s/Hz for the worst UE
for the max–sum rate optimization. When transmitting with full power, with Pmax = 5 mW,
the worst UE obtains 1.76 bit/s/Hz and the network is capable of supporting 27.3 bit/s/Hz.
However, this operation point can be optimized in terms of fairness, where for the same
total throughput the worst UE is able to transmit with 3.62 bit/s/Hz, denoting a gain of
about 106%. It should be noted that all operation points obtained with the bi-objective
optimization approach allows for the worst UE to transmit with SE ≥ 2.36 bit/s/Hz, which
means gains ≥ 34.1% in terms of max–min fairness.

Table 3 summarizes this discussion, where the points of the bi-objective rows are
presented with respect to the full power point.
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Table 3. SEs obtained through the optimization procedures in bit/s/Hz and the respective gains in %.

No Single-Objective Bi-Objective
Optimization Optimization Optimization

Full Power Max–Min Max–Sum Sum Rate Gain Worst UE SE Gain
(Pmax) Fairness Rate Keeping Worst UE SE Keeping Sum Rate

Scenario 1 High Pmax
Worst UE SE 0.318 1.21 2.67× 10−7

70.2% 207%
Sum Rate 56.8 24.2 104

Scenario 1 Low Pmax
Worst UE SE 0.139 1.17 3.09× 10−7

47.5% 529%
Sum Rate 43.2 23.5 67

Scenario 2 High Pmax
Worst UE SE 1.64 3.68 3.58× 10−7

37.9% 115%
Sum Rate 51.5 44.1 75

Scenario 2 Low Pmax
Worst UE SE 1.46 2.26 4.14× 10−7

11.1% 26%
Sum Rate 36.8 27.1 46

Scenario 3 High Pmax
Worst UE SE 4.57 5.03 2.96

10.1% 7%
Sum Rate 33.6 30.2 40.4

Scenario 3 Low Pmax
Worst UE SE 1.76 4.12 2.36

106% ≥ 34.1%
Sum Rate 27.3 24.7 28.5

5. Conclusions

In this work, an MO MH approach based on the DE algorithm is developed to perform
a UL UE power optimization in an RS network. The optimization problem is defined by
two metrics to be maximized, the minimum SE of the UE with the worst channel conditions,
max–min fairness, and the overall network throughput, max–sum rate. The bi-objective
approach is able to provide balanced solutions unveiling relevant trade-offs between the
SE performances to assist design decision-making.
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Abbreviations
The following abbreviations are used in this manuscript:

mMIMO Massive Multiple-Input-Multiple-Output
5G Fifth Generation
BS Base Station
UE User Equipment
CF Cell-Free
AP Access Point
CPU Central Processing Unit
RS Radio Stripe
UL Uplink
SE Spectral Efficiency
CSI Channel State Information
NLMMSE Normalized Linear Minimum Mean Square Error
OSLP Optimal Sequential Linear Processing
MRC Maximum Ratio Combining
QoS Quality of Service
OF Objective Function
SO Single-Objective
MO Multi-Objective
MH Meta-Heuristic
DE Differential Evolution
std Standard Deviation
SINR Signal-to-Interference-and-Noise Ratio
NSGA-II Non-Dominated Sorting Genetic Algorithm II
3GPP 3rd Generation Partnership Project
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