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The prognosis of Amyotrophic Lateral Sclerosis (ALS), a complex and rare disease,

represents a challenging and essential task to better comprehend its progression

and improve patients’ quality of life. The use of Machine Learning (ML) techniques

in healthcare has produced valuable contributions to the prognosis field. This article

presents a systematic and critical review of primary studies that used ML applied to

the ALS prognosis, searching for databases, relevant predictor biomarkers, the ML

algorithms and techniques, and their outcomes. We focused on studies that analyzed

biomarkers commonly present in the ALS disease clinical practice, such as demographic,

clinical, laboratory, and imaging data. Hence, we investigate studies to provide an

overview of solutions that can be applied to develop decision support systems and

be used by a higher number of ALS clinical settings. The studies were retrieved from

PubMed, Science Direct, IEEEXplore, and Web of Science databases. After completing

the searching and screening process, 10 articles were selected to be analyzed and

summarized. The studies evaluated and used different ML algorithms, techniques,

datasets, sample sizes, biomarkers, and performance metrics. Based on the results,

three distinct types of prediction were identified: Disease Progression, Survival Time,

and Need for Support. The biomarkers identified as relevant in more than one study were

the ALSFRS/ALSFRS-R, disease duration, Forced Vital Capacity, Body Mass Index, age

at onset, and Creatinine. In general, the studies presented promissory results that can

be applied in developing decision support systems. Besides, we discussed the open

challenges, the limitations identified, and future research opportunities.

Keywords: Amyotrophic Lateral Sclerosis, prognosis, Machine Learning, health informatics, literature review

1. INTRODUCTION

Amyotrophic Lateral Sclerosis (ALS) is a rare, incurable, and progressive disease that affects the
neurons of the human motor system. The communication between the brain and muscles is
gradually interrupted, leading patients to paralysis and death. Its causes are unknown, typically
commits men and women between the ages of 40 and 70. The average life expectancy is 3–5 years
after symptoms onset, and the worldwide incidence is about 1.9 cases per 100,000 individuals
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per year. ALS is clinically heterogeneous, presenting different
sites of disease onset, extra-motor involvements, progression
rates, and survival times among their patients (Andersen
et al., 2012; Chiò et al., 2014; Swinnen and Robberecht, 2014;
Hardiman et al., 2017). Being ALS a complex disease, providing
an accurate prognosis becomes a challenge to the physicians
(e.g., survival time, disease progression, moment to introducing
specific treatments). Thus, it is essential to identify relevant
biological markers (biomarkers) and understand how they are
related to ALS disease progression. Biomarkers are parameters
collected from the patients that can be used to confirm a
disease presence (diagnosis), follow up a disease progression
(prognosis) or treatment response (monitoring), and calculate
the probability of developing a disease (risk) (Group, 2001). They
can comprise different data types, such as clinical, biometric,
imaging, biofluid, and genetic. Previous studies identified helpful
biomarkers that can assist in ALS prognosis, such as age at
symptom onset, diagnosis delay, weight loss, bulbar site of
onset, rate of functional and respiratory impairment over time,
microRNAs, neurofilaments, and laboratory tests (ALS, 1996;
Cedarbaum et al., 1999; Kollewe et al., 2008; Chiò et al., 2009;
Varghese et al., 2013; Hardiman et al., 2017; Waller et al., 2017).

Researches using Artificial Intelligence techniques, like
Machine Learning (ML) algorithms, have been successfully
applied to improve the diagnosis and prognosis of diseases,
such as the recent advances in the oncology field (Kourou
et al., 2015; O’Shea et al., 2016). The ML field aims to
develop computer programs capable of learning using previous
experience (training data) without being explicitly programmed
for this. ML algorithms could extract information from the
training data, transform it into knowledge, and use it to solve
different categories of problems (e.g., classification, regression,
clustering, Samuel, 1988). In theory, the greater the amount
of training data available, the greater the algorithm’s learning
and performance (Mitchell, 1997; Kubat, 2017). In this sense,
having access to ALS patient data is crucial to perform relevant
studies in the prognostic area and create ML solutions to help
physicians in their daily work. The analysis of medical data
usually involves dealing with high-dimensional data, covering
a large number of biomarkers. Thus, some ML techniques
(e.g., Feature Selection, Dimensionality Reduction) can be
applied to transform a complex dataset into a simpler one by
identifying the more relevant biomarkers, which improve the
learning performance, data collecting efficiency, and algorithm
understanding (Lee and Verleysen, 2007; Brank et al., 2011). ML
algorithms can be used to develop Clinical Decision Support
Systems (CDSS). The CDSS are computer programs designed
to help physicians make more appropriate and timely decisions
about their patients (Berner et al., 2007; Beeler et al., 2014;
Gultepe et al., 2014; CDS, 2015; Rosati et al., 2020; Romeo
and Frontoni, 2022). These systems usually provide prognostic
predictions to improve the decision-making process and, thus,
improve the patient’s quality of life. Some benefits include
improving patients’ quality of care, treatment efficiency, resource
planning, and reducing costs. CDSS also represents a valuable
tool to promote knowledge dissemination among all interested
health workers. ML-based CDSS can improve clinical decisions

TABLE 1 | Research questions.

RQ Question

01 What are the ALS databases used in the study?

02 How many patients comprise the cohort of the study?

03 What are the types of prediction addressed by the study?

04 What are the ML algorithms and techniques used in the study?

05 What are the biomarkers evaluated and the most relevant identified by

the study?

06 What are the performances of the used ML algorithms?

by helping physicians analyze and make inferences on a large
amount of patient data. However, some ML approaches present
results that can not be easily understood, decreasing their
interpretability (e.g., Artificial Neural Networks or Support
Vector Machines). Interpretability refers to how well a person
can understand the decisions made by the ML algorithm (Miller,
2019). This issue can difficult the process of acceptance and
integration of a CDSS in the clinical environment routine.
Consequently, the development of a CDSS must have concerned
about interpretability issues, being transparent enough so
that health workers can understand how any support was
offered.

Many countries present financial limitations on their health
system. This fact makes it unfeasible to collect complex and costly
biomarkers (e.g., genetic) in primary care. In this manner, it is
essential to carry out studies considering these limitations to
develop computational solutions (e.g., CDSS) that can assist a
higher number of primary care units.

The main objective of this study is to investigate ML
approaches on ALS prognosis that analyzed less complex
biomarkers, which can be potentially applied to develop clinical
decision support systems to assist physicians in the real-world
ALS clinical setting. We focused on studies that analyzed
biomarkers commonly present in the ALS disease clinical
practice, such as demographic, clinical (including functional,
respiratory, and nutritional), laboratory, and imaging data.
Hence, we investigate studies using biomarkers obtained through
a less complex process, aiming to provide an overview of
solutions that can be applied to develop decision support systems
and be used on a large scale in primary care, considering
financial limitations. In this sense, we did not include studies
using omics data (i.e., genomic, transcriptomic, proteomic,
and metabolomic). We described the recent advances in this
area, the currently available datasets, the biomarkers analyzed,
the ML algorithms and techniques used, the most relevant
biomarkers identified, and their outcomes. Besides, we discussed
the open challenges, the limitations identified, and future
research opportunities.

2. METHODS

This systematic review aims to investigate ML solutions applied
to ALS prognosis. In this sense, we elaborated research questions
(RQ) to guide the conduct of this article, which are presented

Frontiers in Computer Science | www.frontiersin.org 2 April 2022 | Volume 4 | Article 869140

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles


Papaiz et al. Machine Learning Applied to ALS Prognosis

TABLE 2 | Inclusion criteria.

IC Description

01 Articles published in Journals

02 Articles written in English

03 Articles published between January 2011 and April 2021

04 Articles in the Information Technology, Computer Engineer, or

Computer Science related areas

TABLE 3 | Exclusion criteria.

EC Description

01 Review articles

02 Duplicate articles

03 Articles not related to Machine Learning applied to ALS prognosis

04 Articles using omics data (i.e., genomic, transcriptomic, proteomic, and

metabolomic)

in Table 1. Next, we performed the following stages: (i) search
articles related to ALS prognosis using ML in scientific databases,
(ii) apply the inclusion criteria, (iii) apply the exclusion criteria,
and (iv) analyze and summarize the selected articles.

In the first stage, the relevant literature was obtained
from the PubMed, Science Direct, IEEEXplore, and Web of
Science databases. The search was performed in April 2021
using the following search query: (“artificial intelligence” OR
“machine learning” OR “deep learning”) AND (“amyotrophic
lateral sclerosis” OR “motor neurone disease”) AND (“predict”
OR “prognosis” OR “progression”). We used the Rayyan Web
Application (Ouzzani et al., 2016) to organize the resulting
articles and also to perform the remaining stages.

In the second and third stages, we applied the Inclusion (IC)
and Exclusion (EC) Criteria to filter the articles according to the
scope of this article (see Tables 2, 3). We considered only articles
published in Journals, written in English, and published between
January 2011 and April 2021 (IC-01, IC-02, and IC-03). Articles
that did not belong to the Information Technology, Computer
Engineer, or Computer Science related areas were not included
(IC-04). Next, we carried out the removal of the review articles
(EC-01), the duplicate entries (EC-02), and articles not related to
ML applied to ALS prognosis (EC-03). Then, the articles using
omics data were removed (EC-04).

Finally, in the fourth stage, the select articles were thoroughly
read, which allowed the final analysis and accomplishment of the
objectives of this research.

3. RESULTS

Figure 1 illustrates the search and screening process for this
systematic review. The search query and all inclusion criteria
were used to perform the database searches. A total of 52 articles
were retrieved, where two review articles were immediately
excluded. After the removal of 15 duplicates, 35 articles were
chosen for abstract review. A total of 25 studies were excluded

due to the use of omic data (n = 6) and not being related to ML
applied to ALS prognosis (n = 19). After completing the searching
and screening process, 10 articles were selected to be analyzed
and summarized. The following sections present the results that
address the research questions defined in this study (Table 1).

3.1. ALS Datasets and Sample Sizes
Different datasets were analyzed and their sample sizes ranged
from 41 up to over 10,000 samples. Table 4 describes all the
datasets analyzed. Most of the studies (60%) analyzed data from
the PRO-ACT (Atassi et al., 2014) dataset, probably because it
was the only publicly available. The other datasets used were local
or proprietary. The data formats analyzed included tabular (all
studies) and image (van der Burgh et al., 2017). More detail about
the sample size used by each study are described in Tables 6–8.

3.2. Types of Prediction Addressed
Based on the included studies, three distinct types of prediction
were identified: Disease Progression, Survival Time, and Need for
Support (more detail in Table 5). Kueffner et al. (2019) addressed
the Disease Progression and Survival Time types simultaneously.

The Disease Progression prediction aimed to estimate the
patient’s state at a given moment in the future and was the type
most addressed by the studies included (70%). The Survival Time
prediction aimed to estimate the occurrence of death from a
baseline date to a point-time in the future, such as the probability
of death after 12 months from symptoms onset. The Need for
Support prediction aimed to estimate the moment when patients
will need more specialized support.

3.3. Predictive Machine Learning
Approaches
For Disease Progression prediction, most studies aimed to
estimate changes in the ALS Functional Rating Scale (ALSFRS)
or the Revised ALS Functional Rating Scale (ALSFRS-R) over
time. Two other studies aimed to classify patients concerning
their disease progression rates (Slow/Fast Kueffner et al.,
2019, Low/High Greco et al., 2021). Table 6 details the target
predictions, best ML algorithm, performance, datasets, samples
size, techniques, validation strategies, and biomarkers evaluated
for each study.

The studies that addressed the Survival Time prediction aimed
to classify the patients into survival groups and estimate the
probability of death after a specific time interval. van der Burgh
et al. (2017) aimed to classify patients into Short (<25 months),
Medium (25−50 months), or Long (>50 months) survival
groups. Kueffner et al. (2019) aimed to estimate the probability
of survival after 12, 18, and 24 months. Grollemund et al. (2020)
aimed to estimate the probability of patients being alive after 12
months. All three studies used the date of symptoms onset as
the baseline date. The characteristics of each study are detailed
in Table 7.

Pires et al. (2018) was the unique study that addressed the
Need for Support prediction, aiming to estimate the need for Non-
Invasive Ventilation (NIV) support after 3, 6, and 12months. The
characteristics of this study are detailed in Table 8.
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FIGURE 1 | PRISMA flow chart of this study.

3.4. Biomarkers Evaluated and the Most
Relevant Identified
As previously mentioned, we focused on the biomarkers
commonly present in the ALS disease clinical practice, being
obtained in a less costly and complex way. The biomarkers
evaluated comprise clinical, demographic, vital signs, respiratory,
functional, laboratory, imaging, neurophysiological, and
medication data. For more detail, please see column Biomarkers
Evaluated in Tables 6–8. All the selected studies evaluated the
ALS Functional Rating Scale (ALSFRS) or the Revised ALS
Functional Rating Scale (ALSFRS-R) biomarkers. This fact
highlights the importance of these biomarkers in monitoring
ALS patients.

Table 9 depicts the most relevant biomarkers identified in
the studies, with the information about their associated types
of prediction. They comprised clinical, imaging, functional,
respiratory, and laboratory data. The biomarkers identified as
relevant in more than one study were the ALSFRS/ALSFRS-R (n
= 7), disease duration (n = 5), Forced vital capacity (n = 4), Body
mass index (n = 2), age at onset (n = 2), and Creatinine (n = 2).

3.5. Description of the Studies
van der Burgh et al. (2017) demonstrated the positive impact

of using Magnetic Resonance Images (MRI) along with
clinical information to classify ALS patients into three survival

groups: Short (<25 months), Medium (25−50 months),

and Long (>50 months). The biomarkers evaluated were

clinical information (e.g., site of onset, age at onset, ALSFRS
slope, FVC) and MRI images (Structural Connectivity and
Brain Morphology data) from 135 ALS patients. They
developed Deep Neural Networks models and evaluate
them in four scenarios using different biomarkers sets: (i)
only Clinical Data, (ii) only Structural Connectivity MRI
Data, (iii) only Brain Morphology MRI Data, and (iv)
combining Clinical and MRI Data. The greater accuracy
was obtained using the Clinical-MRI combined data (84%)
compared to the other three strategies (Clinical: 69%; Structural
Connectivity MRI: 63%; Brain Morphology MRI: 63%). They
pointed out the power of Deep Neural Networks in making
predictions using complex data. However, the relationships
between input and output variables could not be easily
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TABLE 4 | List of datasets used in the studies, inversely ordered by the sample

size.

Dataset Samples References

PRO-ACT +10,000 Gordon and Lerner, 2019; Halbersberg

and Lerner, 2019; Kueffner et al., 2019;

Tang et al., 2019; Grollemund et al., 2020;

Hadad and Lerner, 2020

Ireland-Italia 1,479 Kueffner et al., 2019

Tel Aviv—Sourasky

Medical Center

1,328 Hadad and Lerner, 2020

Lisbon—Saint Mary’s

Hospital

1,214 Pires et al., 2018; Leão et al., 2021

Paris—Tertiary referral

Centre for ALS

646 Grollemund et al., 2020

Trophos Company 431 Grollemund et al., 2020

Exonhit Pharma 172 Grollemund et al., 2020

Utrecht—University

Medical Center

135 van der Burgh et al., 2017

Italia 41 Greco et al., 2021

TABLE 5 | Types of prediction addressed by the studies.

Type Number

of studies

References

Disease

progression

7 Gordon and Lerner, 2019; Halbersberg and

Lerner, 2019; Kueffner et al., 2019; Tang et al.,

2019; Hadad and Lerner, 2020; Greco et al.,

2021; Leão et al., 2021

Survival time 3 van der Burgh et al., 2017; Kueffner et al.,

2019; Grollemund et al., 2020

Need for support 1 Pires et al., 2018

recognized, needing more investigation to understand ALS
progression better.

Pires et al. (2018) developed a model to predict when a patient
will need NIV support according to a given time window (3,
6, and 12 months). They used the Portuguese ALS Dataset (n
= 1,070), combining the static and temporal data into a data
structure called snapshot, which contains all information about
a patient at a specific date. The patients were divided into three
disease progression groups (Slow, Neutral, and Fast) and, for
each group, their respective snapshots were used as learning
instances to evaluate several ML models. A Feature Selection
Ensemble approach was used to select the relevant biomarkers
for each group. The Random Forest model obtained the best
performance for 3, 6, and 12 months time window values. The
relevant biomarkers present in all groups were BMI, FVC, and
VC. Other relevant biomarkers (present in 75% of the time) were
age at onset, disease duration, and ALSFRS score. The authors
reported the advantage of using specialized ML models for
different patient groups (e.g., disease progression groups) rather
than create generalized models treating all the patients similarly.

Halbersberg and Lerner (2019) demonstrated the benefit of
using temporal modeling, sequence clustering, and sequential
pattern mining to predict the last patient state recorded

(ALSFRS score) based on his past information. To find relevant
deterioration patterns in temporal patients data they developed
a framework consisting of three stages: (i) group patients
with similar progression using hierarchical clustering based
on Dynamic Time Warping, (ii) perform pattern mining to
found out common functional deterioration patterns among
patients based on the SPADE sequence mining algorithm,
and (iii) develop a Random Forest model to classify patients
into their most similar cluster to predict their next disease
state. The performance obtained by the proposed framework
(Accuracy: 73, F1 score: 0.68, Mean Absolute Error: 0.3) was
superior related to two other benchmark models (Random
Forest and Long Short-Term Memory, both using no temporal
modeling). They used static (e.g., age at onset, time from
onset, gender) and longitudinal (ALSFRS scores and subscores)
data of 2,590 subjects from the PRO-ACT dataset. The most
important predictors reported were the previous ALSFRS score,
the previous ALSFRS Dressing subscore, the previous Climbing
Stairs subscore, the previous Turning in Bed subscore, the time
from disease onset, and the deterioration pattern termed <E,G,I>
(i.e., a sequential declining in theWriting, Dressing, andWalking
ALSFRS subscores).

Gordon and Lerner (2019) evaluated the capacity of ordinal
classifiers to predict the functional decline of the patients. They
used data about the first and last patient visits from the PRO-
ACT dataset (n = 3,772), analyzing the following biomarkers:
clinical, demographic, ALSFRS, FVC, medication, vital signs,
and laboratory tests. The target variables were all ten ALSFRS
items (questions) separately. The patient states were mapped
to the ALSFRS items, thus correlating patient state to disease
progression for each point in time. Addressing the ordinal nature
of the ALSFRS, they evaluated the following ordinal classifiers:
Cumulative Link Models (CLM), Ordinal Decision Trees (ODT),
and Cumulative Probability Tree (CPT). To evaluate their
performances, they defined a penalizing system that accounts
for various error severities differently. Thus, a classifier was less
penalized when it predicted the value of 2 instead of 1 when the
real value was 3. These three classifiers were compared with the
Random Forest (RF), a non-ordinal classifier. The results showed
that the CLM and ODT ordinal classifiers presented a similar
performance and outperformed the RF classifier regarding the
Mean Absolute Error measured in the best experiment scenario
(CLM: 0.62−1.06; ODT: 0.63−1.01; RF: 1.01−1.61). For feature
selection, the authors implemented an algorithm based on the J3
scattering matrix criterion for each ALSFRS item individually.
The most relevant predictors were the FVC, the site of onset,
the time from onset, and the laboratory tests Creatinine, CK,
Chloride, Phosphorus, and Alkaline Phosphatase.

A crowdsourcing strategy was presented in Kueffner et al.
(2019), where were selected 30 teams around the world to
participate in an ALS stratification challenge. They asked the
participants to create ML models to perform prediction tasks
using the PRO-ACT and the Irish-Italian Registries datasets. The
teams used patient data from the first three months and were
limited to evaluate only six of all biomarkers available. The target
predictions were the Disease Progression at 12months (decline of
the Functional Rate Scale) and the Probability of Survival at 12,
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TABLE 6 | Overview of ML approaches on disease progression.

References Target prediction Best algorithm Performance Biomarkers evaluated Dataset

(Samples)

Techniques Validation

Halbersberg and

Lerner (2019)

Last patient state

(ALSFRS score)

recorded based on his

past information

SPADE + DTW +

Clustering Method

Accuracy: 73

F1 Score: 0.68

MAE: 0.30

Tabular: Clinical,

demographic,

laboratory, ALSFRS

PRO-ACT

(2,590)

Hold-out

Gordon and Lerner

(2019)

Last patient state

(ALSFRS subscores)

recorded based on his

past information

CLM, and ODT MAE (min-max):

-CLM: 0.62−1.06

-ODT: 0.63−1.01

Tabular: Clinical,

demographic, vital

signs, laboratory,

ALSFRS

PRO-ACT

(3,772)

FS 10-Fold CV

Kueffner et al. (2019) -ALSFRS score at 12

months, using data from

the first 3 months and

only 6 biomarkers.

-Patients classification

into slow/fast

progression groups.

GBM, and RF GBM (PRO-ACT):

-Z-score: ≈12

RF (Ireland-Italia)

-Z-score: ≈6

Tabular: Clinical,

demographic, vital

signs, laboratory, FVC,

SVC, ALSFRS

PRO-ACT

(10,723)

Ireland-Italia

(1,479)

Hold-out

Tang et al. (2019) ALSFRS score and FVC

at 12 months, using 1st

visit and 3-month data

BART (ALSFRS),

and RF (FVC)

BART:

- R2: 0.22

- RMSE: 0.55

- Corr: 0.47

RF:

- R2: 0.68

- RMSE: 14.27

- Corr: 0.83

Tabular: Clinical,

demographic, pulse,

BMI, FVC, laboratory,

Riluzole medication,

ALSFRS

PRO-ACT

(2,424)

FS

MI

5-Fold CV

Hadad and Lerner

(2020)

ALSFRS score at several

time intervals, varying

from 6 up to 24 months

XGBoost RMSE: 2.65−5.57

MAE: 1.98−4.42

Tabular: Clinical,

demographic, vital

signs, FVC, laboratory,

ALSFRS

PRO-ACT

(3,171)

Tel Aviv (1,328)

FIA Hold-out

Greco et al. (2021) Patients classification

into low/high

progression rates

groups

SVM Accuracy: 87.25 Tabular: Clinical,

demographic,

laboratory, ALSFRS-R

Italia

(41)

FS LOO CV

Leão et al. (2021) Changes in the

ALSFRS-R score and

subscores (before and

after NIV)

Extension of DBN Accuracy: 74−88

Sensitivity: 57−95

AUC: 75−98

Tabular: Clinical,

demographic, El

Escorial, BMI, C9orf72,

FVC, MIP, MEP, PNRA,

ALSFRS, ALSFRS-R

Lisbon (1,214) MI 5-Fold CV

ALSFRS, ALS functional rating scale; ALSFRS-R, revised ALS functional rating scale; NIV, non-invasive ventilation; BMI, body mass index; FVC, forced vital capacity; SVC, slow vital

capacity; MIP, maximum inspiratory pressure; MEP, maximum expiratory pressure; PNRA, phrenic nerve response amplitude; SPADE, sequential pattern discovery using equivalence

class; DTW, dynamic time warping; CLM, cumulative link models; ODT, ordinal decision trees; GBM, generalized boosting model; RF, random forest; BART, Bayesian additive regression

tree; SVM, support vector machine; DBN, dynamic Bayesian network; AUC, area under the ROC curve; MAE, mean absolute error; MSPE, mean squared prediction error; R2,

coefficient of determination; RMSE, root mean square error; Corr, Pearson’s correlation coefficient; FS, feature selection; FIA, feature importance analysis; MI, missing data imputation;

CV, cross-validation; LOO, leave-one-out.

18, and 24 months. Regarding the survival prediction, one team
outperformed the others significantly using a Gaussian Process
Regression model, presenting a better approach in leading with
the right-censored patient outcome (dead or trial dropout). The
best models related to the disease progression prediction used the
Generalized Boosting Model and the Random Forest algorithms.
The more relevant biomarkers were disease duration, age at
onset, site of onset, gender, weight, BMI, respiratory exams
(FVC and SVC), laboratory tests (Creatinine and Segmented
Neutrophils), and ALSFRS scores and subscores. Based on the
relevant biomarkers chosen by the teams, the authors have
identified four distinct patient groups: Slow Progressing, Fast
Progressing, Early Stage, and Late Stage. The main biomarkers
related to each group were also detailed in this study, where

the authors highlighted the importance of the ALSFRS Bulbar
subscore (questions 1−3) in discriminating between groups.

Tang et al. (2019) addressed predictions in changing of
the ALSFRS score and in the FVC percentage. They used
static and longitudinal biomarkers from the PROC-ACT dataset
(n = 2,424), including only those patients with information
about ALSFRS scores over time. The longitudinal data were
transformed into signature vectors aggregating statistics values
(minimum, median, maximum, and slope). Using data from
the first visit and at the 3-month, the authors create models
to predict the changes in the ALSFRS slope at 12-month.
The evaluated models (Random Forest and Bayesian Additive
Regression Tree) achieved modest results (Correlation: 0.47;
RMSE: 0.55; R2: 0.22), thus, indicating the difficulty in predicting
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TABLE 7 | Overview of ML approaches on survival time.

References Target prediction Best algorithm Performance Biomarkers evaluated Dataset

(Samples)

Techniques Validation

van der Burgh et al.

(2017)

Patients classification

into Short (<25

months), Medium

(25−50), and Long

(>50) survival groups

Deep neural

networks

Accuracy: 84 Tabular: Clinical,

demographic, C9orf72,

FTD, El Escorial,

ALSFRS.

Image: MRI.

Utretch (135) FS

MI

Hold-out

Kueffner et al. (2019) Probability of death

within 12, 18, and 24

months

Gaussian

Regression

PRO-ACT:

-Z-score: ≈14.5

Ireland-Italia:

-Z-score: ≈13

Tabular: Clinical,

demographic, vital

signs, laboratory, FVC,

SVC, ALSFRS

PRO-ACT

(10,723)

Ireland-Italia

(1,479)

Hold-out

Grollemund et al.

(2020)

1-year survival

prediction, classifying

patients into high,

intermediate, and low

survival rates groups

UMAP BAcc: 91%

F1 Score: 96%

Tabular: Clinical,

demographic, ALSFRS

PRO-ACT (3971)

Trophos (431)

Exonhit (172)

Paris (646)

Hold-out

ALSFRS, ALS functional rating scale; ALSFRS-R, revised ALS functional rating scale; MRI, magnetic resonance image, FTD, frontotemporal dementia; FVC, forced vital capacity; SVC,

slow vital capacity; UMAP, uniform manifold approximation and projection; BAcc, balanced accuracy; FS, feature selection; MI, missing data imputation.

TABLE 8 | Overview of ML approach on need for support.

References Target prediction Best algorithm Performance Biomarkers evaluated Dataset

(Samples)

Techniques Validation

Pires et al. (2018) Patients need for NIV

support at 3, 6, and 12

months for three

progression groups

(slow, neutral, and fast)

RF Slow: (3/6/12

months)

- AUC: 81/87/91

- Sens: 70/72/78

- Spec: 76/83/86

Neutral: (3/6/12

months)

- AUC: 76/82/86

- Sens: 58/62/79

- Spec: 78/83/77

Fast: (3/6/12

months)

- AUC: 72/81/79

- Sens: 51/71/74

- Spec: 77/76/71

Tabular: Clinical,

demographic, El

Escorial, BMI, C9orf72,

VC, FVC, P0.1, SNIP,

MIP, MEP, NIV, PNRA,

PNRL, CE, CF, ALSFRS,

ALSFRS-R

Lisbon (1070) FS

DB

10-Fold CV

ALSFRS, ALS functional rating scale; ALSFRS-R, revised ALS functional rating scale; NIV, non-invasive ventilation; BMI, body mass index; FVC, forced vital capacity; SVC, slow vital

capacity; VC, vital capacity; P0.1, airway occlusion pressure; SNIP, sniff nasal inspiratory pressure; MIP, maximum inspiratory pressure; MEP, maximum expiratory pressure; PNRA,

phrenic nerve response amplitude; PNRL, phrenic nerve response latency; CE, cervical extension; CF, cervical flexion; RF, random forest; AUC, area under the ROC curve; Sens,

sensitivity; Spec, specificity; FS, feature selection; DB, data balancing; CV, cross-validation.

12-month ALSFRS slope using the only baseline and 3-months
data. Feature Selection was performed using the Random Forest
and the Knockoff Filter methods. After combining the top-
ranked biomarkers returned by both methods, the best predictive
biomarkers were the ALSFRS score, the disease duration, the
FVC, and the Absolute Monocyte Count. To predict the FVC
Percentage changes between 3 and 12 months, Random Forest
models were tested in two scenarios (either including the baseline
FVC or not). The best results were obtained using the FVC at
baseline data, demonstrating the power of this biomarker, which
increased the correlation from 0.67 to 0.83. The authors also
applied unsupervised classification (K-Means) to find distinct
phenotypes groups, founding four balanced clusters among
the patients. However, it was considered impractical to clearly

understand how the groups differ due to the high number of
biomarkers defined for each group during the clustering process.

Hadad and Lerner (2020) studied prediction of the ALSFRS
score in several time intervals, varying from 6 to 24 months.
Temporal (Long Short Term Memory—LSTM) and non-
temporal (Random Forest, XGBoost, and Multilayer Perceptron)
models were evaluated over the PRO-ACT dataset (n = 3,171).
To be used by the non-temporal models, the longitudinal
data were transformed into vectors containing aggregated
values (mean, standard deviation, slope, minimum, maximum).
Each model was tested using 60 different randomly generated
configurations, and their averaged performances were compared
(Root Mean Square Error and Mean Absolute Error). The
XGBoost model obtained superior performance for the most
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TABLE 9 | Most relevant biomarkers identified, associated predictions, and references.

Type Biomarker
Associated predictions/References

Disease progression Survival time Need for support

Clinical Age at disease onset Halbersberg and Lerner, 2019 Kueffner et al., 2019 –

Body Mass Index (BMI) Kueffner et al., 2019; Leão et al., 2021 Kueffner et al., 2019 –

Disease duration Gordon and Lerner, 2019; Halbersberg

and Lerner, 2019; Kueffner et al., 2019;

Tang et al., 2019; Leão et al., 2021

Kueffner et al., 2019 –

Site of onset Gordon and Lerner, 2019 – –

Imaging Magnetic Resonance Imaging – van der Burgh et al., 2017 –

Functional ALSFRS Halbersberg and Lerner, 2019; Kueffner

et al., 2019; Tang et al., 2019; Hadad and

Lerner, 2020

Kueffner et al., 2019; Grollemund et al.,

2020

Pires et al., 2018

ALSFRS-R Leão et al., 2021 – Pires et al., 2018

Respiratory Forced Vital Capacity (FVC) Gordon and Lerner, 2019; Kueffner et al.,

2019; Tang et al., 2019

Kueffner et al., 2019 Pires et al., 2018

Maximal expiratory pressure (MEP) Leão et al., 2021 – –

Maximal inspiratory pressure (MIP) Leão et al., 2021 – –

Slow vital capacity (SVC) Kueffner et al., 2019 Kueffner et al., 2019 –

Vital capacity (VC) – – Pires et al., 2018

Laboratory Absolute monocyte count Tang et al., 2019 – –

Alanine transaminase (ALT) Tang et al., 2019 – –

Alkaline phosphatase Gordon and Lerner, 2019 – –

Calcium Tang et al., 2019 – –

Chloride Gordon and Lerner, 2019 – –

Cholesterol—Total Greco et al., 2021 – –

Cholesterol—high-density (HDL) Greco et al., 2021 – –

Creatine kinase (CK) Gordon and Lerner, 2019 – –

Creatinine Gordon and Lerner, 2019; Kueffner et al.,

2019

– –

Hematocrit Tang et al., 2019 – –

Phosphorus Gordon and Lerner, 2019 – –

Potassium Tang et al., 2019 – –

Segmented neutrophils Kueffner et al., 2019 – –

Urine Ph Kueffner et al., 2019 – –

Vitamin B12 Greco et al., 2021 – –

time intervals evaluated (RMSE: 2.65−5.57, MAE: 1.98−4.42),
being more precise for shorter than longer intervals. The relevant
predictive biomarkers were the ALSFRS subscores. In another
experiment, these models were evaluated in two scenarios: (i)
trained with the PRO-ACT and tested with the TASMC dataset (n
= 1,328), and (ii) trained and tested using only the TASMC data.
The short-term predictions (up to 6 months) were more precise
using models trained with the PRO-ACT, and the XGBoost
obtained the best results again. The authors highlighted that
the PROC-ACT contains data from clinical trials that may not
reflect the reality presented by the clinical environment patients
due to the inclusion/exclusion criteria used. Thus, their patients
tend to be younger and to have a slower disease progression,
in addition to having more visits registered than the usual

clinical patients. To address this problem, they proposed a
final experiment applying the Domain Adaptation approach
to develop predictive models using the PRO-ACT data and
improve their performances using patient clinical data. Firstly,
LSTM and Multilayer Perceptron models were trained using
only data from the PRO-ACT. Then, the training phase was
complemented using the TASMC data to fine-tune the models
to the clinical data. The results demonstrated that the use of
domain adaptation improved the predictive performance for
both models.

Grollemund et al. (2020) presented a dimensionality reduction
model to predict 1-year survival rates. The biomarkers analyzed
were gender, site onset, age, weight, disease duration, ALSFRS
scores, ALSFRS slopes, and if died or not after one year. They
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combined data from four datasets (PRO-ACT, Trophos, Exonhit,
and Paris Tertiary Referral Center), totaling 5,220 samples.
The obtained dataset was further divided into development
and validation sets. After, the high-dimensional data from the
development set were reduced and projected onto 2D space
through the Uniform Manifold Approximation and Projection
(UMAP) algorithm. Thus, the authors were able to project
information about the patients into a 2D graph. The 2D data
were divided into three 1-year survival probability zones: High
(90%), Intermediate (80%), and Low (58%). Then, the validation
set was used to evaluate the proposed model, and the results were
compared with the Random Forest and the Logistic Regression
models. The UMAP model obtained better classification results
(F1 score: 96%, Balanced Accuracy: 91%) when compared to the
average results of the other models (F1 score: 50%, Balanced
Accuracy: 60%). The adopted approach also helped identify the
biomarkers with higher or lower correlation with the survival
prediction. For example, the age and ALSFRS score presented
a high correlation, while the gender and weight showed a low
correlation. However, the total comprehension of the relationship
between input and output variables cannot be obtained because
the adopted model is considered a black-box approach, which
degrades its interpretability.

Despite Greco et al. (2021) aimed to find blood analytes to
distinguish patients who have ALS from those with Lower Motor
Neuron Disease (LMND), they also studied the classification of
these patients with relation to their disease progression rates
(High or Low). They analyzed clinic, demographic, and blood
(108 analytes) data from 41 ALS patients. An SVM model was
developed, and the Recursive-Feature-Elimination algorithmwas
used as a feature selection method. This model obtained an
accuracy of 87.25% in classifying ALS patients into the High and
Low groups using the first 16 ranked analytes, indicating the
potential of using blood data as predictor biomarkers. Elevated
levels of Vitamin-B12, Total Cholesterol, and HDL were related
to a higher disease progression rate.

Leão et al. (2021) proposed a predictive model based on
Dynamic Bayesian Networks (DBN), including both static and
longitudinal data. They accessed data from the Portuguese ALS
dataset (n = 1,214), and the target prediction was the disease
progression (ALSFRS score and subscores) related to the need
for NIV support. To be processed by the DBN model, the
longitudinal data were converted into time-series data and then
divided into Before NIV and After NIV subsets. Thus, they were
able to determine the most relevant biomarkers related to these
two essential disease stages. The authors developed a predictive
model, termed stdDBN framework, which uses stationary DBNs
to predict disease progression and non-stationary DBNs to
determine how the biomarkers analyzed change over time in each
subset. The average results for predicting disease progression
were above 80% for both subsets regarding the Accuracy,
Sensitivity, and AUC metrics, demonstrating the potential of
the proposed methodology. Graphs were generated to visualize
how the biomarkers change over time, displaying their values
in different time steps for each stage (before and after NIV).
This approach allowed identifying some interesting relationships,
as following mentioned. The Maximum Expiratory Pressure

(MEP) was considered the most important respiratory exam to
predict the patient ventilatory decline before the need for NIV
support. The ALSFRS Bulbar subscore had more influence on
disease progression after NIV than before NIV. The BMI and
Disease Duration had a stronger influence than the other static
biomarkers for both subsets.

4. DISCUSSION

This study systematically reviewed the literature to identify
relevant studies that used ML approaches to assist ALS disease
prognosis. As explained before in Section 2, we focused on those
studies comprising biomarkers commonly present in the daily
ALS clinical practice. We identified 10 studies and detailed their
the target predictions, best ML algorithm, performance, datasets,
samples size, techniques, validation strategies, biomarkers
evaluated, and the most relevant biomarkers identified.

4.1. ALS Datasets and Data Preprocessing
Notably, the studies accessed datasets that concentrate ALS
patients from Europe and the United States of America. Data
from other regions were not analyzed (e.g., South America,
Africa, or Asia). We consider this analysis essential to confirm
(or not) if the predictive ML solutions can be broadly generalized
and if different datasets can be combined to compose an even
more relevant ALS dataset. Most of the studies (60%) analyzed
data from the PRO-ACT dataset. PRO-ACT is the largest public
ALS dataset available, containing over 10,000 samples, serving
as a basis for several studies on ALS disease, and suitable
for developing ML solutions. However, some studies included
advised that the PRO-ACT has limitations that can increase the
risk of creating biased models (Tang et al., 2019; Grollemund
et al., 2020; Hadad and Lerner, 2020). Previous studies also
reported these PRO-ACT limitations, and the risk of it does not
represent the clinical patient population due to the inclusion and
exclusion criteria used in the clinical trials (Chio et al., 2011;
Atassi et al., 2014). For instance, their patients tend to be younger
and present fewer functional impairments. In this sense, using
a validation strategy that includes an external dataset represents
an alternative to decrease bias risk and achieve a more reliable
ML algorithm evaluation. This strategy was utilized by Hadad
and Lerner (2020) and Grollemund et al. (2020). Hadad and
Lerner (2020) created a training dataset combining samples from
the PRO-ACT (100%) and Tel Aviv (90%) dataset. The samples
remaining (10%) of the Tel Aviv dataset were used to test the
model. Grollemund et al. (2020) performed the validation using
the Paris dataset, which was not used in the training and testing
stages. Preferably, the external dataset should contain data from
the clinical patient population.

When designing ML solutions, we need to be aware of
issues that can affect the performance and reliability of the
model, such as missing values or data imbalance. The PRO-
ACT dataset presented a considerable amount of missing values
what caused that only 32% of its samples could be used in
practice. Thus, it is valuable to evaluate how the missing data
imputation methods can help to increase the sample size.
van der Burgh et al. (2017) and Tang et al. (2019) used a more
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straightforward imputation method, calculating the average for
each feature and imputed it in the samples with missing values.
Leão et al. (2021) combined the results of Last Observation
Carried Forward and Linear Interpolation missing imputation
methods, eliminating posteriorly the samples that still presented
some missing values. However, the authors did not detail
the sample sizes increase by using these strategies. The data
imbalance problem occurs when the training data presents
an unequal distribution between samples regarding some class
of interest. Pires et al. (2018) combined Undersampling and
Oversampling techniques to achieve a balance of 50% between
the classes of interest. Grollemund et al. (2020) reported that
the data imbalanced related to the target prediction (1-year
survival probability) influenced the choice of adequate evaluation
metrics due to 75% of the patients had survived for more
than 1 year.

4.2. Predictive Biomarkers Analysis
Although some biomarkers evaluated are collected longitudinally
(e.g., ALSFRS, respiratory, laboratory), most studies modeled
these temporal data as non-temporal by summarizing
longitudinal data into single values (e.g., slope, minimum,
maximum, mean, standard deviation). This approach is
termed Summary Measures and has some advantages such
as being simple to comprehend, can be applied with unequal
time intervals between measurements, and being considered
statistically robust and valid (Matthews et al., 1990). It allowed
that longitudinal information could be processed by non-
temporal ML algorithms (e.g., Random Forest, XGBoost) to
develop predictive solutions. However, this approach can hide
some details about the biomarker changes over time because
the aggregated value represents a linear variation over time.
For example, an ALSFRS slope decline of 10 in 12 months can
be seen as a decline of 0.84 per month (i.e., a linear decline),
but the decline may have been accentuated only in the last
three months. Future ALS prognosis studies can address this
subject by comparing the results obtained using Summary
Measures and longitudinal data, depicting the advantages and
disadvantages of each approach. Approaches using temporal
ML algorithms were presented by Halbersberg and Lerner
(2019), Hadad and Lerner (2020), and Leão et al. (2021).
Pires et al. (2018) used a strategy to create several snapshots
representing the patient states over time by combining static and
longitudinal data.

Regarding the ALSFRS/ALSFRS-R biomarker, we consider the
approach of analyzing each subscore separately (e.g., swallowing,
walking, writing, respiratory) should be preferred instead of
analyzing the total score solely. A more precise analysis of the
functional loss characteristics among patients can be performed.
For example, two patients can have the same total score but
with different values in their subscores, indicating a different
disease progression for each patient. In the studies included, this
approach helped to find distinct biomarkers associated with each
subscore (Gordon and Lerner, 2019; Tang et al., 2019; Leão et al.,
2021).

Different FS strategies were used by the studies included,
which helped to find themore relevant biomarkers related to ALS
disease (see Table 9 for more detail). Some benefits reported were
described hereafter. The FS strategy used by Greco et al. (2021)
helped to select the 16 best predictors among 108 blood analytes
(a reduction of 85%). Two laboratory tests (Chloride andAlkaline
Phosphatase) were first associated with ALS progression due to
the FS strategy used by Gordon and Lerner (2019).

4.3. Predictive Machine Learning
Approaches
We identified three types of prediction addressed by the
studies included (Disease Progression, Survival Time, and Need
for Support). The studies evaluated and used different ML
algorithms, techniques, datasets, sample sizes, biomarkers, and
performance metrics. Consequently, a direct comparison of
their performances is difficult, even within a specific type of
prediction. In general, the results showed a considerable decrease
in the predictive performance when using data from the first 3
months to predict long-term patient functional changes (e.g., at
12 or 24 months). Therefore, performing long-term predictions
is still challenging due to ALS heterogeneity and complexity.
The high accuracies reported by van der Burgh et al. (2017)
(87.25%) andGreco et al. (2021) (84%) were overshadowed by the
reduced number of samples analyzed (135 and 41, respectively),
representing an elevated risk of model overfitting. Overfitting
occurs when the algorithm presents good performance when
using the training data but reduced performance when using the
validation data, occurring a super adjust to the training data.

BothML algorithms used by van der Burgh et al. (2017) (Deep
Neural Networks) and Grollemund et al. (2020) (Dimensionality
Reduction) presented interpretability issues by being considered
black-box approaches. In these studies, the total comprehension
of the relationship between input and output variables can not
be easily explained. Physicians will desire to understand how the
predictions were obtained to verify if they make sense and are
trustworthy to be used for prognostication. The complexity of
ALS disease makes a large number of biomarkers necessary to
obtain good model performances. This fact also complicates the
model interpretability when using black-box approaches. Thus,
FS strategies can become an important allied to increase the
model interpretability by reducing the number of biomarkers
necessary. Some ML frameworks also can be explored to explain
predictions obtained with black-box models, such as SHAP
(Lundberg and Lee, 2017) and LIME (Ribeiro et al., 2016). These
frameworks are part of a recent research field termed Explainable
Artificial Intelligence (XAI) (Adadi and Berrada, 2018).

Finally, the research efforts analyzed in this review, which
used only biomarkers commonly present in the ALS clinical
practice, demonstrated promissory results that can be applied
in developing CDSS. Unexpectedly, only Gordon and Lerner
(2019) reported the development of an information system based
on their predictive approach and its deployment in an ALS
clinical setting. This fact can indicate an absence of CDSS in
the ALS prognostic area. Thus, the massive knowledge produced
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is not used to build decision support systems effective to assist
physicians in their daily work. It is an essential step to verify
if the results obtained by the studies will be confirmed in a
real-world clinical environment. As the results are confirmed,
the CDSS will become more reliable to be used as a support
tool by the physicians, even when black-box approaches have
been utilized. From a practical point of view, a CDDS to
assist the ALS prognosis could provide numerous valuable
predictions. For example, based on the current patient disease
progression rate, the system can inform how much a functional
condition is estimated to decline in the following months (e.g.,
speech, respiratory, walking, swallowing). With this information,
physicians could plan adequate treatment for the patient and
determine if additional support will be needed (e.g., wheelchair,
non-invasive ventilation, gastrostomy, cough assist machine). It
could also be helpful to keep patients and families informed
to better prepare themselves for the changes resulting from the
worsening of the disease.

5. CONCLUSIONS

ALS is a devastating and incurable disease with no effective
treatments, leading patients to death within 3–5 years
from symptoms onset. Research efforts are essential to
understand better the progression of this complex disease
and improve patients’ quality of life. This study reviewed relevant
articles published between 2011 and 2021 that addressed the
development of ML solutions to support the ALS prognosis.

The studies are promising, but some aspects need special
attention. The datasets concentrated patients’ data mainly from
the USA and Europe. Thus, there is a need to collect and
analyze data from other world regions to ensure that the ML
solutions can be, in fact, generalized to all populations. When
analyzing medical data, the Missing Values and Data Imbalance
problems need to be addressed to avoid a negative impact on
models’ performance and reliability. The model interpretability
issue is another important point to consider when using ML
algorithms considered black-box, such as Neural Networks and
Dimensionality Reduction. Despite the research advances, there
is a probable lack of CDSS to assist the physicians in their daily
work on ALS disease prognosis.

LIMITATIONS OF THIS STUDY

This research was limited in terms of scope as it did not cover
studies that used more complex biomarkers, such as omics data
(i.e., genomic, transcriptomic, proteomic, and metabolomic).

The reduced number of studies included (n = 10) can increase
the risk of bias. We used a simplistic search query based on
keywords. Probably, the number of studies could be increased
by using more advanced search options, such as MeSH tags or
semantic search.
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