Existence and nonexistence of solutions for singular quadratic quasilinear equations

David Arcoya ${ }^{\text {a,* }}$, José Carmona ${ }^{\text {b }}$, Tommaso Leonori ${ }^{\text {c }}$, Pedro J. Martínez-Aparicio ${ }^{\text {a }}$, Luigi Orsina ${ }^{\text {d }}$, Francesco Petitta ${ }^{\mathrm{e}}$
${ }^{\text {a }}$ Departamento de Análisis Matemático, Campus Fuentenueva S/N, Universidad de Granada, 18071 Granada, Spain
${ }^{\text {b }}$ Departamento de Álgebra y Análisis Matemático, Universidad de Almería, Ctra. Sacramento S/N, La Cañada de San Urbano, 04120 Almería, Spain
${ }^{\text {c }}$ CMUC, Department of Mathematics of University of Coimbra, Largo D. Dinis, Apartado 3008, 3001-454 Coimbra, Portugal
${ }^{\text {d }}$ Dipartimento di Matematica, Università di Roma "La Sapienza", P.le Aldo Moro 2, 00185 Roma, Italy
${ }^{\mathrm{e}}$ CMA, University of Oslo, P.O. Box 1053, Blindern, NO-0316 Oslo, Norway

A R T I C L E I N F O

Article history:

Received 21 July 2008
Revised 5 January 2009
Available online xxxx

Keywords:

Nonlinear elliptic equations
Singular natural growth gradient terms
Large solutions

A B S T R A C T

We study both existence and nonexistence of nonnegative solutions for nonlinear elliptic problems with singular lower order terms that have natural growth with respect to the gradient, whose model is

$$
\begin{cases}-\Delta u+\frac{|\nabla u|^{2}}{u^{\gamma}}=f & \text { in } \Omega, \\ u=0 & \text { on } \partial \Omega,\end{cases}
$$

where Ω is an open bounded subset of $\mathbb{R}, \gamma>0$ and f is a function which is strictly positive on every compactly contained subset of Ω. As a consequence of our main results, we prove that the condition $\gamma<2$ is necessary and sufficient for the existence of solutions in $H_{0}^{1}(\Omega)$ for every sufficiently regular f as above.
© 2009 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we are going to study existence and nonexistence of nonnegative solutions for the following boundary value problem

[^0]0022-0396/\$ - see front matter © 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.jde.2009.01.016

$$
\begin{cases}-\operatorname{div}(M(x, u) \nabla u)+g(x, u)|\nabla u|^{2}=f & \text { in } \Omega, \tag{1.1}\\ u=0 & \text { on } \partial \Omega .\end{cases}
$$

Here Ω is a bounded, open subset of $\mathbb{R}^{N}, N \geqslant 3, M(x, s) \stackrel{\text { def }}{=}\left(m_{i j}(x, s)\right), i, j=1, \ldots, N$, is a matrix whose coefficients $m_{i j}: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ are Carathéodory functions (i.e., $m_{i j}(\cdot, s)$ is measurable on Ω for every $s \in \mathbb{R}$, and $m_{i j}(x, \cdot)$ is continuous on \mathbb{R} for a.e. $\left.x \in \Omega\right)$ such that there exist constants $0<\alpha \leqslant \beta$ satisfying

$$
\begin{equation*}
\alpha|\varsigma|^{2} \leqslant M(x, s) \varsigma \cdot \varsigma \quad \text { and } \quad|M(x, s)| \leqslant \beta, \quad \text { for a.e. } x \in \Omega, \forall(s, \varsigma) \in \mathbb{R} \times \mathbb{R}^{N} . \tag{1.2}
\end{equation*}
$$

The function $g: \Omega \times(0,+\infty) \rightarrow \mathbb{R}$ is a Carathéodory function (i.e., $g(\cdot, s)$ is measurable on Ω for every $s \in(0,+\infty)$, and $g(x, \cdot)$ is continuous on $(0,+\infty)$ for a.e. $x \in \Omega)$ such that

$$
\begin{equation*}
g(x, s) \geqslant 0, \quad \text { for a.e. } x \in \Omega, \quad \forall s>0 . \tag{1.3}
\end{equation*}
$$

We will be mainly interested to the case of a function g which is singular near $s=0$, such as, for example, $g(x, s)=1 / s^{\gamma}, \gamma>0$. On the datum f, we first suppose that it belongs to $L^{\frac{2 N}{N+2}}(\Omega)$ and that it satisfies

$$
\begin{equation*}
m_{\omega}(f) \stackrel{\text { def }}{=} \operatorname{ess} \inf \{f(x): x \in \omega\}>0, \quad \forall \omega \Subset \Omega \tag{1.4}
\end{equation*}
$$

Note that (1.4) implies that $f \geqslant 0$ in Ω and that $f \not \equiv 0$ in Ω.
There are several papers concerned with existence and nonexistence of solutions for (1.1). If g is nonsingular, that is if g is a Carathéodory function on $\Omega \times[0, \infty$), problem (1.1) has been exhaustively studied by Boccardo, Murat and Puel [15], Bensoussan, Boccardo and Murat [7] and Boccardo, Gallouët [11] with data f in suitable Lebesgue spaces.

On the contrary, as stated before, in this paper we shall focus our attention on problem (1.1) with $g(x, s)$ having a singularity at $s=0$ (uniformly with respect to x). More precisely, we look for a distributional solution of problem (1.1), i.e. a function $u \in W_{0}^{1,1}(\Omega)$ which solves the equation in the sense of distributions, $u>0$ almost everywhere in Ω, and such that $g(x, u)|\nabla u|^{2}$ in $L^{1}(\Omega)$. If moreover $u \in H_{0}^{1}(\Omega)$, we say that u is a finite energy solution for problem (1.1). A possible motivation for the study of these problems arises from the Calculus of Variations. If $0 \leqslant f \in L^{q}(\Omega), q>\frac{N}{2}$ and $\gamma \in(0,1)$, a purely formal computation shows that the Euler-Lagrange equation associated to the functional

$$
J(v)=\frac{1}{2} \int_{\Omega}\left(1+|v|^{1-\gamma}\right)|\nabla v|^{2}-\int_{\Omega} f v,
$$

is

$$
-\operatorname{div}\left(\left(1+|u|^{1-\gamma}\right) \nabla u\right)+\frac{1-\gamma}{2} \frac{u}{|u|^{1+\gamma}}|\nabla u|^{2}=f .
$$

Observe that this is a nonlinear elliptic equation that involves a singular natural growth gradient term.
Therefore, it is natural to wonder whether we can handle general not necessarily variational problems whose simplest model is

$$
\begin{cases}-\Delta u+\frac{|\nabla u|^{2}}{u^{\gamma}}=f & \text { in } \Omega, \tag{1.5}\\ u=0 & \text { on } \partial \Omega,\end{cases}
$$

and to determine the optimal range of $\gamma>0$ for which solutions exist.

Recently, existence of solutions for (1.5) has been proved in [1-3] for $0<\gamma \leqslant 1$. We also quote the even more recent papers [8] and [20]. Specifically, the existence of positive solutions of (1.1) is proved in [8] provided $0 \not \equiv f \in L^{q}(\Omega)(q>2 N /(N+2))$ with $f \geqslant 0$ and provided $g(x, s)=1 / s^{\gamma}$ with $\gamma \leqslant 1$. On the other hand, a related different problem is studied in [20]. Namely, if $\chi_{\{u>0\}}$ denotes the characteristic function of the set $\{x \in \Omega: u(x)>0\}, 0 \leqslant f \in L^{\infty}(\Omega), \mu \in \mathbb{R}$ and $\lambda, \gamma>0$, the differential equation

$$
-\operatorname{div}(M(x, u) \nabla u)+\lambda u+\mu \frac{|\nabla u|^{2}}{u^{\gamma}} \chi_{\{u>0\}}=f
$$

is considered. The given results about existence of nonnegative solutions in $H_{0}^{1}(\Omega)$ depend on γ. Indeed, existence is proved for every $\mu \in \mathbb{R}$ if $\gamma<1$, while the case $\gamma \geqslant 1$ requires that $\mu<0$. Thus, if $\gamma \geqslant 1$ the term with quadratic dependence in ∇u is negative (i.e., the opposite assumption with respect to (1.3)). In this direction, result for similar equations can be also found in [21] and [34] (see also references cited therein).

The purpose of this paper is twofold. First of all, we will extend the above results to a more general class of nonlinearities both in the principal part of the operator and in the lower order term, as well as to general, possibly $L^{1}(\Omega)$, data. Then, we will give a sharp range of nonlinearities $g(x, s)$ for which these problems admit a solution for every datum $f \in L^{q}(\Omega)$, with $q>N / 2$, satisfying (1.4).

In order to prove our results, we will have to strengthen assumption (1.3). Specifically, for the results of existence of solutions, we will suppose that the function $g(x, s)$ satisfies

$$
\begin{equation*}
0 \leqslant g(x, s) \leqslant h(s), \quad \text { for a.e. } x \in \Omega, \forall s>0 \tag{1.6}
\end{equation*}
$$

where $h:(0,+\infty) \rightarrow[0,+\infty)$ is a continuous nonnegative function such that

$$
\begin{equation*}
\lim _{s \rightarrow 0^{+}} \int_{s}^{1} \sqrt{h(t)} d t<+\infty \tag{1.7}
\end{equation*}
$$

$h(s)$ is nonincreasing in a neighborhood of zero.

Our result of existence of finite energy solutions (proved in Section 2) is the following.

Theorem 1.1. Let f in $L^{\frac{2 N}{N+2}}(\Omega)$ be such that (1.4) holds, and suppose that (1.2), (1.6) and (1.7) hold. Then there exists a finite energy solution u for problem (1.1). Furthermore, $u g(x, u)|\nabla u|^{2} \in L^{1}(\Omega)$.

Note that the fact $u g(x, u)|\nabla u|^{2} \in L^{1}(\Omega)$ implies that the solution u itself is allowed as test function (since $f \in H^{-1}(\Omega)$) in the weak formulation of (1.1) (see (2.1) in Section 2). With respect to the proof, due to the fact that the lower order term $g(x, u)|\nabla u|^{2}$ is (possibly) singular as the solution is near 0 , we will approximate the function $g(x, s)$ by nonsingular ones $g_{n}(x, s)$ in such a way that the corresponding approximated problems have finite energy solutions u_{n} for every n in \mathbb{N}. The main difficulty in the proof of Theorem 1.1 relies on a suitable local uniform estimate from below of these solutions. To do it, it suffices by (1.6) to prove that any supersolution $z>0$ for the equation

$$
-\operatorname{div}(M(x, z) \nabla z)+h(z)|\nabla z|^{2}=f \quad \text { in } \Omega
$$

is above some positive constant in every $\omega \Subset \Omega$, i.e.

$$
\begin{equation*}
\forall \omega \Subset \Omega \quad \exists c_{\omega}>0: \quad z(x) \geqslant c_{\omega}>0 \tag{1.8}
\end{equation*}
$$

This is proved in Proposition 2.3 via a suitable change of variable which turns the goal into a local L^{∞} estimate for solutions of quasilinear problems. The local L^{∞} estimate is then obtained using a result of [27] (see also the pioneering paper [17] and also [13,19]) on an equation whose model is

$$
\begin{equation*}
-\operatorname{div}(\widetilde{M}(x, v) \nabla v)+f(x) b(v)=0 \quad \text { in } \Omega, \tag{1.9}
\end{equation*}
$$

where \widetilde{M} satisfies (1.2) and $b(s)$ is a function with $b(s) / s$ increasing for large $s>0$ and satisfying the Keller-Osserman condition

$$
\int^{+\infty} \frac{d t}{\sqrt{2 \int_{0}^{t} b(\tau) d \tau}}<+\infty
$$

For the convenience of the reader, the exact result that we need is proved in Appendix A (see Theorem A.1). For such type of L^{∞} estimates we refer to the "classical" literature on the so-called large solutions (see, among others, [5,31,32,38]) and on local estimates (see, among others, [13,17,19,27,37]).

Section 3 of this paper will be concerned with some extensions of the existence result. First of all, combining the above ideas with those in [35] (see also [26]), we handle the case of data f in $L^{1}(\Omega)$, proving the existence of distributional solutions u of (1.1), with u in $W_{0}^{1, q}(\Omega)$ for every $q<\frac{N}{N-1}$. More precisely, in Section 3.1, we shall prove the following result.

Theorem 1.2. Let f in $L^{1}(\Omega)$ be such that (1.4) holds and suppose that (1.2), (1.6) and (1.7) hold. Then there exists a distributional solution u of (1.1), with u in $W_{0}^{1, q}(\Omega)$, for every $q<\frac{N}{N-1}$. If, in addition, there exist $s_{0}>0$ and $\mu>0$ such that

$$
\begin{equation*}
g(x, s) \geqslant \mu \quad \text { for a.e. } x \in \Omega, \forall s \geqslant s_{0} \tag{1.10}
\end{equation*}
$$

then $u \in H_{0}^{1}(\Omega)$ (i.e., it is a finite energy solution).
On the other hand, in Section 3.2, we will also provide an analogous of Theorem 1.1 involving more general differential operators whose principal part is not in divergence form and data in $L^{q}(\Omega)$ with $q>\frac{N}{2}$. Namely, we consider the following problem

$$
\begin{cases}-\sum_{i, j=1}^{N} a_{i j}(x) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}(x)+\sum_{i=1}^{N} b_{i}(x) \frac{\partial u}{\partial x_{i}}(x)+g(x, u)|\nabla u|^{2}=f & \text { in } \Omega, \tag{1.11}\\ u=0 & \text { on } \partial \Omega,\end{cases}
$$

where the coefficients $a_{i j}(x)$ satisfy the ellipticity condition

$$
\begin{equation*}
0<\alpha|\varsigma|^{2} \leqslant \sum_{i, j=1}^{N} a_{i j}(x) \varsigma_{i} \zeta_{j} \leqslant \beta|\varsigma|^{2}, \quad \forall \varsigma \in \mathbb{R}^{N} \tag{1.12}
\end{equation*}
$$

for some $0<\alpha \leqslant \beta$. We prove the following result.
Theorem 1.3. Suppose that $\forall i, j=1, \ldots, N, a_{i j} \in W^{1, \infty}(\Omega)$ satisfy (1.12), and that $b_{i} \in L^{\infty}(\Omega)$. Assume that $f(x)$ satisfies (1.4) and belongs to $L^{q}(\Omega)$ with $q>\frac{N}{2}$. Suppose moreover that $g(x, s)$ satisfies (1.3), (1.6) (with h such that (1.7) holds). Then there exists a solution $u \in H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega)$ for (1.11). Furthermore, $g(x, u)|\nabla u|^{2} \in$ $L^{1}(\Omega)$.

We are also concerned with nonexistence of positive solutions for problem (1.1) for data f in $L^{q}(\Omega)$ for some $q>\frac{N}{2}$, with $f \geqslant 0$ and $f \not \equiv 0$. In contrast with the previous existence results, we will assume in this case that the nonlinearity $g(x, s)$ is above a function $h(s)$ whose square root is not integrable in $(0,1)$. Specifically, we assume that

$$
\begin{equation*}
0 \leqslant h(s) \leqslant g(x, s), \quad \text { for a.e. } x \in \Omega, \forall s>0, \tag{1.13}
\end{equation*}
$$

where $h:(0,+\infty) \rightarrow[0,+\infty)$ is a nonnegative continuous function such that

$$
\begin{equation*}
\lim _{s \rightarrow 0^{+}} h(s)=+\infty, \quad \lim _{s \rightarrow 0^{+}} \int_{s}^{1} \sqrt{h(t)} d t=+\infty \tag{1.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{s \rightarrow 0^{+}} \sqrt{h(s)} \mathrm{e}^{\int_{1}^{s} \sqrt{h(t)} d t}=h_{0} \geqslant 0 . \tag{1.15}
\end{equation*}
$$

Among others, we are going to prove in Section 4 that if $\lambda_{1}(f)$ denotes the first positive eigenvalue of the Laplacian operator $-\Delta$ with zero Dirichlet boundary conditions and weight $f \in L^{q}(\Omega),(q>N / 2)$, then the following result holds.

Theorem 1.4. Let f in $L^{q}(\Omega)$, with $q>\frac{N}{2}$, be such that $f \geqslant 0$ and $f \not \equiv 0$, and assume that (1.2), (1.13)-(1.15) hold. If $\lambda_{1}(f)>\frac{\beta}{\alpha}$, then (1.1) does not have any finite energy solution.

As an easy consequence of Theorem 1.4, we will prove (see Corollary 4.5) that the model problem (1.5) does not have any finite energy solution provided $\gamma \geqslant 2$. By gathering together this nonexistence result and Theorem 1.1 we conclude immediately that, in the case of the model problem (1.5), we have a sharp range of values of γ for which there exist solutions. In addition, if γ is not in this range, we prove also what happens if we try to approximate problem (1.5) with a sequence of problems for which solutions exist.

Theorem 1.5. Problem (1.5) has a finite energy solution for every $f \in L^{q}(\Omega)\left(q>\frac{N}{2}\right)$ satisfying (1.4) if and only if $\gamma<2$. Moreover, let λ_{1} be the first eigenvalue of the Laplacian in the N-dimensional unit ball (i.e. the first positive zero of the Bessel function J_{m} with $\left.m=N / 2-1\right)$, assume $f \in L^{\infty}(\Omega)$, and either

$$
\begin{equation*}
\gamma>2 \quad \text { or } \quad \gamma=2 \text { and }\|f\|_{L^{\infty}(\Omega)}<\frac{\lambda_{1}}{\operatorname{diam}(\Omega)^{2}} . \tag{1.16}
\end{equation*}
$$

Then the sequence $\left\{u_{n}\right\}$ of solutions of

$$
\begin{cases}-\Delta u_{n}+\frac{\left|\nabla u_{n}\right|^{2}}{\left(u_{n}+\frac{1}{n}\right)^{\gamma}}=f & \text { in } \Omega, \\ u_{n}=0 & \text { on } \partial \Omega,\end{cases}
$$

tends to 0 in $H_{0}^{1}(\Omega)$, and the sequence $\frac{\left|\nabla u_{n}\right|^{2}}{\left(u_{n}+\frac{1}{n}\right)^{\gamma}}$ converges to f in the weak-* topology of measures.
To conclude this introduction, some remarks are in order. First, we have to mention that uniqueness of solutions for (1.5) is proved in [4] for the case $0<\gamma<1$. Secondly, let us explicitly state that we have chosen to present the results and to perform the proofs in the case $N \geqslant 3$. However, all the results but Theorem 1.1 hold true also in the case $N=2$ (with easier proofs). In addition, if $N=2$ (which implies $\frac{2 N}{N+2}=1$), Theorem 1.1 is also true provided we replace the assumption $f \in L^{\frac{2 N}{N+2}}(\Omega)$ with $f \in L^{m}(\Omega)$, and assume $m>1$.

The plan of the paper is the following: in Section 2 we will prove a local estimate from below for the solutions, together with Theorem 1.1. Section 3 is devoted to provide further existence results for L^{1} data (Theorem 1.2) and operators in non-divergence form (Theorem 1.3). In Section 4 we prove the nonexistence result (both Theorems 1.4 and 1.5). Finally we present in Appendix A some results related to the local estimate (1.8). For instance, we show in detail how to get the lower bound for solutions of (1.1), through a suitable change of variable, proving a local bound from above for solutions of a semilinear equation whose model is (1.9) (Theorem A.1). Such topic is strictly related to the possibility of constructing estimates for solutions of (1.9) that do not depend on the behavior at the boundary: and indeed in Theorem A. 8 we prove the existence of solutions that blow up at the boundary (i.e., the so-called "large solutions") for such equations.

Notation. For any $k>0$ we set $T_{k}(s)=\min (k, \max (s,-k))$ and $G_{k}(s)=s-T_{k}(s)$. Moreover, for any $q>1, q^{\prime}=\frac{q}{q-1}$ will be the Hölder conjugate exponent of q, while for any $1<p<N, p^{*}=\frac{N p}{N-p}$ is the Sobolev conjugate exponent of p. As usual, \mathcal{S} denotes the best Sobolev constant, i.e.,

$$
\mathcal{S}=\sup \left\{\|u\|_{L^{*}(\Omega)}:\|u\|_{H_{0}^{1}(\Omega)}=1\right\} .
$$

In Section 3 we will use some ideas related to Marcinkiewicz spaces; for the convenience of the reader we recall here their definition and some properties. For $s>1$, we denote by $\mathcal{M}^{s}(\Omega)$ the space of measurable functions $v: \Omega \rightarrow \mathbb{R}$ such that there exists $c>0$, with

$$
\begin{equation*}
\operatorname{meas}\{x \in \Omega:|v(x)| \geqslant k\} \leqslant \frac{c}{k^{s}}, \quad \forall k>0 . \tag{1.17}
\end{equation*}
$$

The space $\mathcal{M}^{s}(\Omega)$ is a Banach space, and it can be defined the pseudo-norm

$$
\|v\|_{\mathcal{M}^{s}(\Omega)}^{s}=\inf \{c>0:(1.17) \text { holds }\} .
$$

We also recall that, since Ω is bounded, for every $\varepsilon \in(0, s-1]$, there exists a positive constant C such that

$$
\begin{gather*}
\|v\|_{\mathcal{M}^{s}(\Omega)} \leqslant\|v\|_{L^{s}(\Omega)}, \quad \forall v \in L^{s}(\Omega), \\
\|w\|_{L^{s-\varepsilon}(\Omega)} \leqslant C\|w\|_{\mathcal{M}^{s}(\Omega)}, \quad \forall w \in \mathcal{M}^{s}(\Omega) . \tag{1.18}
\end{gather*}
$$

Finally, following [15], we set $\varphi_{\lambda}(s)=s e^{\lambda s^{2}}, \lambda>0$; in what follows we will use that for every a, $b>0$ we have

$$
\begin{equation*}
a \varphi_{\lambda}^{\prime}(s)-b\left|\varphi_{\lambda}(s)\right| \geqslant \frac{a}{2}, \tag{1.19}
\end{equation*}
$$

if $\lambda>\frac{b^{2}}{4 a^{2}}$. We will also denote by $\varepsilon(n)$ any quantity that tends to 0 as n diverges.

2. Finite energy solutions

In this section we will prove the existence of finite energy solutions for problem (1.1). Let us recall its definition.

Definition 2.1. A supersolution (resp. subsolution) for problem (1.1) is a function $u \in W_{\mathrm{loc}}^{1,1}(\Omega)$ such that
(1) $u>0$ almost everywhere in Ω,
(2) $g(x, u)|\nabla u|^{2}$ belongs to $L_{\mathrm{loc}}^{1}(\Omega)$,
(3) for every $0 \leqslant \phi \in C_{c}^{\infty}(\Omega)$, it holds

$$
\int_{\Omega} M(x, u) \nabla u \cdot \nabla \phi+\int_{\Omega} g(x, u)|\nabla u|^{2} \phi \underset{(\leqslant)}{\geqslant} \int_{\Omega} f \phi .
$$

A function $u \in W_{0}^{1,1}(\Omega)$ is a distributional solution for (1.1) if $g(x, u)|\nabla u|^{2}$ belongs to $L^{1}(\Omega)$, and u is both a supersolution and a subsolution for such a problem.

If moreover $u \in H_{0}^{1}(\Omega)$, we say that u is a finite energy solution for problem (1.1). In this case, we have

$$
\begin{equation*}
\int_{\Omega} M(x, u) \nabla u \cdot \nabla \psi+\int_{\Omega} g(x, u)|\nabla u|^{2} \psi=\int_{\Omega} f \psi, \quad \forall \psi \in H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega) \tag{2.1}
\end{equation*}
$$

The proof of Theorem 1.1 relies on approximating the datum $f \in L^{\frac{2 N}{N+2}}(\Omega)$ by its truncatures $f_{n}=T_{n}(f)$ and the nonlinearity g by a suitable sequence of Carathéodory functions g_{n} (for $n \in \mathbb{N}$). Specifically, we define

$$
g_{n}(x, s) \stackrel{\text { def }}{=} \begin{cases}g(x, s), & s \geqslant \frac{1}{n} \\ n h\left(\frac{1}{n}\right) \frac{s}{h(s)} g(x, s), & 0<s \leqslant \frac{1}{n} \\ 0, & s \leqslant 0\end{cases}
$$

Since h is nonincreasing in a neighborhood of zero, we observe that there exists $n_{0} \in \mathbb{N}$, such that g_{n} satisfies, for a.e. $x \in \Omega, \forall s>0$,

$$
\left\{\begin{array}{l}
\lim _{n \rightarrow+\infty} g_{n}(x, s)=g(x, s) \tag{2.2}\\
g_{n}(x, s) \leqslant g(x, s), \quad \forall n \geqslant n_{0} \\
g_{n}(x, s) \geqslant 0
\end{array}\right.
$$

Since for fixed n both functions $f_{n}(x)(x \in \Omega)$ and $\frac{|\zeta|^{2}}{1+\frac{1}{n}|\varsigma|^{2}}\left(\varsigma \in \mathbb{R}^{N}\right)$ are bounded, classical results allow us to deduce that problem

$$
\begin{cases}-\operatorname{div}\left(M\left(x, u_{n}\right) \nabla u_{n}\right)+g_{n}\left(x, u_{n}\right) \frac{\left|\nabla u_{n}\right|^{2}}{1+\frac{1}{n}\left|\nabla u_{n}\right|^{2}}=f_{n} & \text { in } \Omega \tag{2.3}\\ u_{n}=0 & \text { on } \partial \Omega\end{cases}
$$

has a solution u_{n} that belongs to $H_{0}^{1}(\Omega)$ (see [30]) and to $L^{\infty}(\Omega)$ (see [36]).
We are going to prove now some properties of the sequence u_{n} that we will use in the sequel.
Lemma 2.2. Assume that $0 \not \equiv f \in L^{\frac{2 N}{N+2}}(\Omega)$ satisfies $f \geqslant 0$ and that $M(x, s)$ satisfies (1.2). If, for every $n \in \mathbb{N}$, the function $u_{n} \in H_{0}^{1}(\Omega)$ is a solution of problem (2.3), then:

1. The sequence $\left\{u_{n}\right\}$ is bounded in $H_{0}^{1}(\Omega)$ and

$$
u_{n} g_{n}\left(x, u_{n}\right) \frac{\left|\nabla u_{n}\right|^{2}}{1+\frac{1}{n}\left|\nabla u_{n}\right|^{2}} \text { is bounded in } L^{1}(\Omega)
$$

2. The functions u_{n} are continuous in Ω and $u_{n}(x)>0$ for every $x \in \Omega$ and $n \in \mathbb{N}$.

Proof. 1. Taking u_{n} as test function in (2.3) and using Hölder and Sobolev inequalities we obtain that

$$
\begin{aligned}
\int_{\Omega} M\left(x, u_{n}\right) \nabla u_{n} \cdot \nabla u_{n}+\int_{\Omega} g_{n}\left(x, u_{n}\right) u_{n} \frac{\left|\nabla u_{n}\right|^{2}}{1+\frac{1}{n}\left|\nabla u_{n}\right|^{2}} & =\int_{\Omega} f_{n} u_{n} \\
& \leqslant \mathcal{S}\|f\|_{L^{2 N+2}(\Omega)}\left\|\nabla u_{n}\right\|_{L^{2}(\Omega)} .
\end{aligned}
$$

By the ellipticity condition (1.2) and the nonnegativeness of $g_{n}(x, s) s$, we conclude that the sequences u_{n} and $u_{n} g_{n}\left(x, u_{n}\right) \frac{\left|\nabla u_{n}\right|^{2}}{1+\frac{1}{n}\left|\nabla u_{n}\right|^{2}}$ are bounded, respectively, in $H_{0}^{1}(\Omega)$ and in $L^{1}(\Omega)$.
2. We take $u_{n}^{-} \stackrel{\text { def }}{=} \min \left(u_{n}, 0\right)$ as test function in (2.3), so that, by (1.2),

$$
\alpha \int_{\Omega}\left|\nabla u_{n}^{-}\right|^{2}+\int_{\Omega} g_{n}\left(x, u_{n}\right) \frac{\left|\nabla u_{n}\right|^{2}}{1+\frac{1}{n}\left|\nabla u_{n}\right|^{2}} u_{n}^{-} \leqslant \int_{\Omega} f_{n} u_{n}^{-} .
$$

Using that $f_{n} \geqslant 0$ and $g_{n}(x, s)$ is zero for every $s \leqslant 0$, we obtain

$$
\alpha \int_{\Omega}\left|\nabla u_{n}^{-}\right|^{2} \leqslant \int_{\Omega} f_{n} u_{n}^{-} \leqslant 0 .
$$

Thus $u_{n}^{-} \equiv 0$ and so $u_{n} \geqslant 0$. Moreover, for every $n \in \mathbb{N}$,

$$
-\operatorname{div}\left(M\left(x, u_{n}\right) \nabla u_{n}\right)=f_{n}-g_{n}\left(x, u_{n}\right) \frac{\left|\nabla u_{n}\right|^{2}}{1+\frac{1}{n}\left|\nabla u_{n}\right|^{2}} \in L^{\infty}(\Omega)
$$

Hence u_{n} belongs to the space of the Hölder continuous functions in Ω (see for instance [25, Theorem 1.1 in Chapter 4]).

We are now going to prove that $u_{n}>0$ in Ω. Let $C_{n}>0$ be such that $g_{n}(x, s) \leqslant C_{n} s$, for $s \in\left[0,\left\|u_{n}\right\|_{L^{\infty}(\Omega)}\right]$. Thus the nonnegative function u_{n} satisfies in the sense of distributions in Ω

$$
\begin{aligned}
-\operatorname{div}\left(M\left(x, u_{n}\right) \nabla u_{n}\right)+n C_{n} u_{n} & \geqslant-\operatorname{div}\left(M\left(x, u_{n}\right) \nabla u_{n}\right)+\frac{g_{n}\left(x, u_{n}\right)\left|\nabla u_{n}\right|^{2}}{1+\frac{1}{n}\left|\nabla u_{n}\right|^{2}} \\
& =f_{n} .
\end{aligned}
$$

Observing that f_{n} is nonnegative and not identically zero (since $f \not \equiv 0$), by the strong maximum principle (see [23] for instance) we deduce that $u_{n}>0$ in Ω.

In the next proposition we will prove that the sequence $\left\{u_{n}\right\}$ is uniformly bounded from below, away from zero, in every compact set in Ω. This result will be crucial in order to prove the existence of a solution for (1.1).

Proposition 2.3. Suppose that $f \in L_{\text {loc }}^{\infty}(\Omega)$ satisfies (1.4), and that h is such that (1.7) holds. Let ω be a compactly contained open subset of Ω. Then there exists a constant $c_{\omega}>0$ such that every supersolution $0<z \in H_{\mathrm{loc}}^{1}(\Omega) \cap C(\Omega)$ of the equation

$$
\begin{equation*}
-\operatorname{div}(M(x, z) \nabla z)+h(z)|\nabla z|^{2}=f \quad \text { in } \Omega, \tag{2.4}
\end{equation*}
$$

satisfies

$$
z \geqslant c_{\omega} \quad \text { in } \omega
$$

Remark 2.4. The above proposition will be crucial in the proofs of both Theorems 1.1 and 1.2. In fact, we will use the following consequences:
(i) Let u_{n} be a solution of (2.3) with $n \geqslant n_{0}$ (n_{0} given by (2.2)). By Lemma $2.2, u_{n}>0$ in Ω and it is continuous. In particular $h\left(u_{n}\right)\left|\nabla u_{n}\right|^{2} \in L_{\text {loc }}^{1}(\Omega)$. Thus, from the inequalities $g_{n}(x, s) \leqslant g(x, s) \leqslant$ $h(s)$ for every $s>0$ and $f_{n} \geqslant f_{1}$ we obtain that u_{n} is a supersolution for

$$
-\operatorname{div}(M(x, z) \nabla z)+h(z)|\nabla z|^{2}=f_{1} \quad \text { in } \Omega
$$

Therefore, by the above proposition (with $f=f_{1}$ and $z=u_{n} \in H_{0}^{1}(\Omega) \cap C(\bar{\Omega})$ (Lemma 2.2-2)) for any $\omega \Subset \Omega$ we get the existence of a positive constant c_{ω} such that $u_{n} \geqslant c_{\omega}$ in ω. Taking $k>0$ and $m_{0}>\max \left\{n_{0}, \frac{1}{c_{\omega}}\right\}$, we deduce, by the definition of g_{n}, that for all $n \geqslant m_{0}$

$$
g_{n}\left(x, u_{n}(x)\right)=g\left(x, u_{n}(x)\right) \leqslant c_{k}(\omega) \stackrel{\text { def }}{=} \max _{s \in\left[c_{\omega}, k\right]} h(s)
$$

for every $x \in \omega$ such that $u_{n}(x) \leqslant k$.
(ii) If $0<u_{n} \in H_{0}^{1}(\Omega) \cap C(\Omega)$ is a finite energy solution of

$$
-\operatorname{div}\left(M\left(x, u_{n}\right) \nabla u_{n}\right)+g\left(x, u_{n}\right)\left|\nabla u_{n}\right|^{2}=f_{n} \quad \text { in } \Omega
$$

then, using again that $g(x, s) \leqslant h(s), f_{n} \geqslant f_{1}$ and $h\left(u_{n}\right)\left|\nabla u_{n}\right|^{2} \in L_{\text {loc }}^{1}(\Omega)$, we derive that u_{n} is also a supersolution of

$$
-\operatorname{div}(M(x, z) \nabla z)+h(z)|\nabla z|^{2}=f_{1} \quad \text { in } \Omega
$$

Consequently, if $\omega \Subset \Omega$ and c_{ω} has been defined above (with $f=f_{1}$), then $u_{n} \geqslant c_{\omega}$ in ω. Therefore,

$$
g\left(x, u_{n}(x)\right) \leqslant c_{k}(\omega) \stackrel{\text { def }}{=} \max _{s \in\left[c_{\omega}, k\right]} h(s)
$$

for every $x \in \omega$ such that $u_{n}(x) \leqslant k$.

Proof of Proposition 2.3. Let $z>0$ be a supersolution of (2.4). We are going to consider a suitable change of variable. In order to make it, since in general the function h may be integrable in $(0,1)$, we set $\tilde{h}(s)=h(s)+\frac{\alpha}{s}$, and define, for $s>0$, the nondecreasing function

$$
\begin{equation*}
H(s)=\int_{1}^{s} \tilde{h}(t) d t=\int_{1}^{s} h(t) d t+\log s^{\alpha} \tag{2.5}
\end{equation*}
$$

and the nonincreasing function

$$
\begin{equation*}
\psi(s)=\int_{S}^{1} \mathrm{e}^{-\frac{H(t)}{\alpha}} d t=\int_{S}^{1} t^{-1} \mathrm{e}^{-\frac{\int_{1}^{t} h(\tau) d \tau}{\alpha}} d t \tag{2.6}
\end{equation*}
$$

Observing that

$$
\lim _{s \rightarrow 0^{+}} \psi(s)=+\infty, \quad \lim _{s \rightarrow+\infty} \psi(s)=\psi_{\infty} \in[-\infty, 0)
$$

we can define

$$
\begin{equation*}
v \stackrel{\text { def }}{=} \psi(z) \tag{2.7}
\end{equation*}
$$

Since z is continuous and strictly positive in Ω, we get that z is bounded away from zero (with the bound depending on z) in every open set ω compactly contained in Ω. Consequently, by the chain rule, we have

$$
\begin{equation*}
\nabla v=-\mathrm{e}^{-\frac{H(z)}{\alpha}} \nabla z \in L^{2}(\omega), \quad \forall \omega \Subset \Omega \tag{2.8}
\end{equation*}
$$

and thus $v \in H^{1}(\omega)$ for every $\omega \Subset \Omega$, i.e., $v \in H_{\text {loc }}^{1}(\Omega)$.
Let $0 \leqslant \phi \in C_{c}^{\infty}(\Omega)$, and take (as in [8]) $\mathrm{e}^{-\frac{H(z)}{\alpha}} \phi$ as test function in (2.4) to deduce from the inequality $h(s) \leqslant \tilde{h}(s)$ that

$$
\begin{aligned}
& -\int_{\Omega} M(x, z) \nabla z \cdot \nabla z \frac{\tilde{h}(z)}{\alpha} \mathrm{e}^{-\frac{H(z)}{\alpha} \phi+\int_{\Omega} M(x, z) \nabla z \cdot \nabla \phi \mathrm{e}^{-\frac{H(z)}{\alpha}}, ~} \\
& +\int_{\Omega} \tilde{h}(z)|\nabla z|^{2} \mathrm{e}^{-\frac{H(z)}{\alpha}} \phi \geqslant \int_{\Omega} f \mathrm{e}^{-\frac{H(z)}{\alpha}} \phi .
\end{aligned}
$$

Using (1.2) together with (2.8) we get,

$$
-\int_{\Omega} M(x, z) \nabla \psi(z) \cdot \nabla \phi \geqslant \int_{\Omega} f \mathrm{e}^{-\frac{H(z)}{\alpha}} \phi \geqslant \int_{\Omega}\left(\mathrm{e}^{-\frac{H(z)}{\alpha}}-1\right) f \phi .
$$

If we define $\widetilde{M}(x, s)=M\left(x, \psi^{-1}(s)\right)$ and

$$
\begin{equation*}
b(s)=\mathrm{e}^{-\frac{H\left(\psi^{-1}(s)\right)}{\alpha}}-1 \quad \text { for every } s \in\left(\psi_{\infty},+\infty\right), \tag{2.9}
\end{equation*}
$$

then v is subsolution of

$$
-\operatorname{div}(\widetilde{M}(x, v) \nabla v)+f(x) b(v)=0 \quad \text { in } \Omega .
$$

Observe that $\frac{b(s)}{s}$ is nondecreasing for large $s>0$; indeed, this is equivalent to prove that $\Upsilon(t)=$ $\frac{\mathrm{e}^{-\frac{H(t)}{\alpha}}-1}{\psi(t)}$ is nonincreasing in a neighborhood of $t=0$. To show this, let $w_{0} \in(0,1)$ be such that $\tilde{h}(t)$ is nonincreasing in ($0, w_{0}$], and, note that

$$
\begin{aligned}
-\mathrm{e}^{\frac{H(t)}{\alpha}} \psi^{2}(t) \Upsilon^{\prime}(t) & =\frac{\tilde{h}(t)}{\alpha} \psi(t)-\left(\mathrm{e}^{-\frac{H(t)}{\alpha}}-1\right)=\int_{t}^{1} \frac{[\tilde{h}(t)-\tilde{h}(s)]}{\alpha} \mathrm{e}^{-\frac{H(s)}{\alpha}} d s \\
& \geqslant \int_{w_{0}}^{1} \frac{[\tilde{h}(t)-\tilde{h}(s)]}{\alpha} \mathrm{e}^{-\frac{H(s)}{\alpha}} d s=\tilde{h}(t) M_{1}-M_{2},
\end{aligned}
$$

where

$$
M_{1}=\frac{1}{\alpha} \int_{w_{0}}^{1} \mathrm{e}^{-\frac{H(s)}{\alpha}} d s \quad \text { and } \quad M_{2}=\frac{1}{\alpha} \int_{w_{0}}^{1} \tilde{h}(s) \mathrm{e}^{-\frac{H(s)}{\alpha}} d s .
$$

Thus, if t belongs to the interval $\left(0, \tilde{h}^{-1}\left(\min \left\{w_{0}, M_{2} / M_{1}\right\}\right)\right)$, then the right-hand side of the above inequality is positive, and consequently $\Upsilon(t)$ is nonincreasing in this interval.

We also claim now that since $\int_{0}^{1} \sqrt{h(s)} d s<+\infty$ and h is nonincreasing in a neighborhood of zero, then the function $b(s)$ satisfies the well-known Keller-Osserman condition (see [24] and [33] for instance), i.e., there exists $t_{0}>0$ such that

$$
\begin{equation*}
\int_{t_{0}}^{+\infty} \frac{d t}{\sqrt{2 \int_{0}^{t} b(s) d s}}<+\infty \tag{2.10}
\end{equation*}
$$

We postpone the proof of the claim for the moment, and we show how to conclude the proof by using the claim. Indeed, by applying [27, Theorem 7] (see also Theorem A. 1 in Appendix A where, for the convenience of the reader, we have also included a proof of the precise result that we need here) we derive that for every $\omega \Subset \Omega$, there exists $C_{\omega}>0$ such that

$$
v \leqslant C_{\omega} \quad \text { in } \omega
$$

Therefore, undoing the change

$$
z \geqslant \psi^{-1}\left(C_{\omega}\right)=c_{\omega}>0 \quad \text { in } \omega
$$

as desired.
Consequently, to conclude the proof it suffices to show (2.10) or, equivalently, that

$$
\int_{t_{0}}^{+\infty} \frac{d t}{\sqrt{2 \int_{0}^{t} \mathrm{e}^{-\frac{H\left(\psi^{-1}(s)\right)}{\alpha}} d s}}<+\infty
$$

Using the change $\tau=\psi^{-1}(s)$, we obtain

$$
\int_{t_{0}}^{+\infty} \frac{d t}{\sqrt{2 \int_{0}^{t} \mathrm{e}^{-\frac{H\left(\psi^{-1}(s)\right)}{\alpha}} d s}}=\int_{t_{0}}^{+\infty} \frac{d t}{\sqrt{2 \int_{\psi^{-1}(t)}^{\psi^{-1}(0)} \mathrm{e}^{-2 \frac{H(\tau)}{\alpha}} d \tau}}
$$

Now we apply the change $w=\psi^{-1}(t)$ to deduce that

$$
\int_{t_{0}}^{+\infty} \frac{d t}{\sqrt{2 \int_{0}^{t} \mathrm{e}^{-\frac{H\left(\psi^{-1}(s)\right)}{\alpha}} d s}} \leqslant \int_{0}^{w_{0}} \frac{d w}{\sqrt{2 \int_{w}^{w_{0}} \mathrm{e}^{\frac{2}{\alpha}[H(w)-H(\tau)]} d \tau}}
$$

with $0<w_{0}=\psi^{-1}\left(t_{0}\right)<1=\psi^{-1}(0)$ since ψ is nonincreasing, and we choose $t_{0} \gg 1$ such that h is nonincreasing in ($0, w_{0}$].

Since h satisfies (1.7), also \tilde{h} satisfies it, so that we conclude the proof if we show that there exists a positive constant c_{0} such that

$$
\begin{equation*}
\tilde{h}(w) \int_{w}^{w_{0}} \mathrm{e}^{\frac{2}{\alpha}[H(w)-H(\tau)]} d \tau \geqslant c_{0}>0, \quad \forall w \in\left(0, w_{0}\right) \tag{2.11}
\end{equation*}
$$

Indeed, the only difficulty is near zero. To overcome it, we use that h (hence \tilde{h}) is nonincreasing in ($0, w_{0}$], to obtain

$$
\begin{aligned}
\tilde{h}(w) \int_{w}^{w_{0}} \mathrm{e}^{\frac{2}{\alpha}[H(w)-H(\tau)]} d \tau & \geqslant \int_{w}^{w_{0}} \tilde{h}(\tau) \mathrm{e}^{\frac{2}{\alpha}[H(w)-H(\tau)]} d \tau \\
& =-\frac{\alpha \mathrm{e}^{\frac{2}{\alpha} H(w)}}{2} \int_{w}^{w_{0}}-\frac{2}{\alpha} \tilde{h}(\tau) \mathrm{e}^{-\frac{2}{\alpha} H(\tau)} d \tau \\
& =-\frac{\alpha \mathrm{e}^{\frac{2}{\alpha} H(w)}}{2}\left[\mathrm{e}^{-\frac{2}{\alpha} H(\tau)}\right]_{w}^{w_{0}}=-\frac{\alpha}{2} \frac{\mathrm{e}^{\frac{2}{\alpha} H(w)}}{\mathrm{e}^{\frac{2}{\alpha} H\left(w_{0}\right)}}+\frac{\alpha}{2}
\end{aligned}
$$

Using the above inequality and the fact that $\mathrm{e}^{\frac{2}{\alpha} H(w)}$ is close to zero for w small enough, we can choose $\bar{w} \in\left(0, w_{0}\right)$ such that

$$
\tilde{h}(w) \int_{w}^{w_{0}} \mathrm{e}^{\frac{2}{\alpha}[H(w)-H(\tau)]} d \tau \geqslant \frac{\alpha}{4}
$$

for $0<w<\bar{w}$. Thus the existence of c_{0} such that (2.11) holds is deduced.

Remark 2.5. If h is such that

$$
\lim _{s \rightarrow 0^{+}} \int_{s}^{1} h(t) d t=+\infty
$$

there is no need to define the above function \tilde{h}. Indeed, in this case, the proof of the above theorem works by using directly h instead of \tilde{h}.

Proof of Theorem 1.1. We are going to prove that, up to a subsequence, the sequence $\left\{u_{n}\right\}$ of finite energy solutions of (2.3) converges to a finite energy solution of (1.1).

By Case 1 of Lemma 2.2, we obtain the existence of constants $C_{1}, C_{2}>0$ such that

$$
\begin{equation*}
\left\|u_{n}\right\|_{H_{0}^{1}(\Omega)} \leqslant C_{1} \text { and } \int_{\Omega} u_{n} g_{n}\left(x, u_{n}\right) \frac{\left|\nabla u_{n}\right|^{2}}{1+\frac{1}{n}\left|\nabla u_{n}\right|^{2}} \leqslant C_{2} . \tag{2.12}
\end{equation*}
$$

Thus, up to a subsequence, we can assume that u_{n} converges to some $u \in H_{0}^{1}(\Omega)$ weakly in $H_{0}^{1}(\Omega)$ and, by Rellich's theorem, strongly in $L^{2}(\Omega)$ and a.e. in Ω.

Choosing $\frac{1}{\varepsilon} T_{\varepsilon}\left(u_{n}\right)$ as test function in (2.3) and taking into account that $f_{n} \leqslant f$ in Ω, we deduce that

$$
\int_{\Omega} \frac{T_{\varepsilon}\left(u_{n}\right)}{\varepsilon} g_{n}\left(x, u_{n}\right) \frac{\left|\nabla u_{n}\right|^{2}}{1+\frac{1}{n}\left|\nabla u_{n}\right|^{2}} \leqslant \int_{\Omega} f_{n} \leqslant \int_{\Omega} f
$$

If we take the limit as ε tends to zero, and we use that, by Lemma $2.2, u_{n}>0$ in Ω, we get

$$
\begin{equation*}
\int_{\Omega} g_{n}\left(x, u_{n}\right) \frac{\left|\nabla u_{n}\right|^{2}}{1+\frac{1}{n}\left|\nabla u_{n}\right|^{2}}=\int_{\left\{u_{n}>0\right\}} g_{n}\left(x, u_{n}\right) \frac{\left|\nabla u_{n}\right|^{2}}{1+\frac{1}{n}\left|\nabla u_{n}\right|^{2}} \leqslant \int_{\Omega} f \tag{2.13}
\end{equation*}
$$

The proof will be concluded by proving the following steps:

Step 1. For every $k>0, T_{k}\left(u_{n}\right) \rightarrow T_{k}(u)$ strongly in $H_{\mathrm{loc}}^{1}(\Omega)$.
Step 2. u_{n} is strongly convergent in $H_{\text {loc }}^{1}(\Omega)$.
Step 3. We pass to the limit in (2.3).
Step 1. Here we want to prove that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \int_{\Omega}\left|\nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right)\right|^{2} \phi=0, \quad \forall \phi \in C_{c}^{\infty}(\Omega) \text { with } \phi \geqslant 0 \tag{2.14}
\end{equation*}
$$

Reasoning as in [12], we consider the function $\varphi_{\lambda}(s)$ defined in (1.19) and we choose $\varphi_{\lambda}\left(T_{k}\left(u_{n}\right)-\right.$ $\left.T_{k}(u)\right) \phi$ as test function in (2.3): we have

$$
\begin{aligned}
& \int_{\Omega} M\left(x, u_{n}\right) \nabla u_{n} \cdot \nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) \varphi_{\lambda}^{\prime}\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) \phi \\
& \quad+\int_{\Omega} M\left(x, u_{n}\right) \nabla u_{n} \cdot \nabla \phi \varphi_{\lambda}\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) \\
& \quad+\int_{\Omega} g_{n}\left(x, u_{n}\right) \frac{\left|\nabla u_{n}\right|^{2}}{1+\frac{1}{n}\left|\nabla u_{n}\right|^{2}} \varphi_{\lambda}\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) \phi \\
& =\int_{\Omega} f_{n} \varphi_{\lambda}\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) \phi
\end{aligned}
$$

Since $T_{k}\left(u_{n}\right) \rightarrow T_{k}(u)$ weakly in $H_{0}^{1}(\Omega)$ and strongly in $L^{2}(\Omega)$, we note that

$$
\int_{\Omega} f_{n} \varphi_{\lambda}\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) \phi-\int_{\Omega} M\left(x, u_{n}\right) \nabla u_{n} \cdot \nabla \phi \varphi_{\lambda}\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right)=\varepsilon(n) .
$$

Moreover, choosing $\omega_{\phi} \Subset \Omega$ with $\operatorname{supp} \phi \subset \omega_{\phi}$, we deduce, by case (i) of Remark 2.4 and by the nonnegativeness of both g_{n} and $\varphi_{\lambda}\left(k-T_{k}(u)\right)$, that

$$
\begin{aligned}
& \int_{\Omega} g_{n}\left(x, u_{n}\right) \frac{\left|\nabla u_{n}\right|^{2}}{1+\frac{1}{n}\left|\nabla u_{n}\right|^{2}} \varphi_{\lambda}\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) \phi \\
& \quad \geqslant \int_{\left\{u_{n} \leqslant k\right\}} g_{n}\left(x, u_{n}\right) \frac{\left|\nabla u_{n}\right|^{2}}{1+\frac{1}{n}\left|\nabla u_{n}\right|^{2}} \varphi_{\lambda}\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) \phi \\
& \geqslant-c_{k}\left(\omega_{\phi}\right) \int_{\Omega}\left|\nabla T_{k}\left(u_{n}\right)\right|^{2}\left|\varphi_{\lambda}\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right)\right| \phi
\end{aligned}
$$

Thus

$$
\begin{align*}
& \int_{\Omega} M\left(x, u_{n}\right) \nabla u_{n} \cdot \nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) \varphi_{\lambda}^{\prime}\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) \phi \\
& \quad-c_{k}\left(\omega_{\phi}\right) \int_{\Omega}\left|\nabla T_{k}\left(u_{n}\right)\right|^{2}\left|\varphi_{\lambda}\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right)\right| \phi \leqslant \varepsilon(n) . \tag{2.15}
\end{align*}
$$

Note that

$$
\begin{aligned}
& \int_{\Omega} M\left(x, u_{n}\right) \nabla u_{n} \cdot \nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) \varphi_{\lambda}^{\prime}\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) \phi \chi_{\left\{u_{n} \geqslant k\right\}} \\
& =-\int_{\Omega} M\left(x, u_{n}\right) \nabla u_{n} \cdot \nabla T_{k}(u) \varphi_{\lambda}^{\prime}\left(k-T_{k}(u)\right) \phi \chi_{\left\{u_{n} \geqslant k\right\}}=\varepsilon(n),
\end{aligned}
$$

so that, adding

$$
-\int_{\Omega} M\left(x, u_{n}\right) \nabla T_{k}(u) \cdot \nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) \varphi_{\lambda}^{\prime}\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) \phi=\varepsilon(n)
$$

in both sides of (2.15) and since

$$
\begin{aligned}
& \int_{\Omega}\left|\nabla T_{k}\left(u_{n}\right)\right|^{2}\left|\varphi_{\lambda}\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right)\right| \phi \\
& \quad \leqslant 2 \int_{\Omega}\left|\nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right)\right|^{2}\left|\varphi_{\lambda}\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right)\right| \phi+2 \int_{\Omega}\left|\nabla T_{k}(u)\right|^{2}\left|\varphi_{\lambda}\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right)\right| \phi \\
& \quad=2 \int_{\Omega}\left|\nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right)\right|^{2}\left|\varphi_{\lambda}\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right)\right| \phi+\varepsilon(n),
\end{aligned}
$$

we find, using also (1.2) (for the sake of brevity, we omit writing the argument $T_{k}\left(u_{n}\right)-T_{k}(u)$ for φ_{λ} and $\varphi_{\lambda}^{\prime}$),

$$
\int_{\Omega}\left|\nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right)\right|^{2}\left[\alpha \varphi_{\lambda}^{\prime}-2 c_{k}\left(\omega_{\phi}\right)\left|\varphi_{\lambda}\right|\right] \phi \leqslant \varepsilon(n) .
$$

Choosing λ such that (1.19) holds with $a=\alpha$ and $b=2 c_{k}\left(\omega_{\phi}\right)$, we obtain (2.14).
Step 2. We prove now that the sequence u_{n} is strongly convergent in $H_{\text {loc }}^{1}(\Omega)$.
Let us choose $G_{k}\left(u_{n}\right)$ as test function in (2.3) and drop the positive integral involving the lower order term. By using (1.2), and Hölder and Sobolev inequalities, we have

$$
\int_{\Omega}\left|\nabla G_{k}\left(u_{n}\right)\right|^{2} \leqslant \frac{\mathcal{S}^{2}}{\alpha^{2}}\left(\int_{\left\{u_{n} \geqslant k\right\}} f^{\frac{2 N}{N+2}}\right)^{1+\frac{2}{N}}
$$

and the right-hand side of the previous inequality is arbitrarily small if k is large enough. This and the convergence proved in Step 1 of $T_{k}\left(u_{n}\right)$ in $H_{0}^{1}(\Omega)$ implies that $\left|\nabla u_{n}\right|^{2}$ is equiintegrable in every $\omega \Subset \Omega$.

Moreover, since

$$
-\operatorname{div}\left(M\left(x, u_{n}\right) \nabla u_{n}\right)=f_{n}-g_{n}\left(x, u_{n}\right) \frac{\left|\nabla u_{n}\right|^{2}}{1+\frac{1}{n}\left|\nabla u_{n}\right|^{2}},
$$

and the right-hand side is bounded in $L^{1}(\Omega)$ by the assumptions on f and by (2.13), we can apply Lemma 1 of [9] (see also [14]) to deduce that, up to (not relabeled) subsequences, ∇u_{n} converges to ∇u a.e. in Ω. Hence, by Vitali theorem

$$
u_{n} \rightarrow u \text { in } H_{\mathrm{loc}}^{1}(\Omega)
$$

Step 3. Let us observe that, by applying Fatou lemma in (2.12) and (2.13), we deduce that

$$
\int_{\Omega} u g(x, u)|\nabla u|^{2} \leqslant C_{2} \quad \text { and } \quad \int_{\Omega} g(x, u)|\nabla u|^{2} \leqslant \int_{\Omega} f
$$

respectively. Therefore, to conclude the proof we only have to prove that u is a distributional solution of the problem (1.1). We begin by passing to the limit on n in the equation satisfied by u_{n}, i.e., in

$$
\int_{\Omega} M\left(x, u_{n}\right) \nabla u_{n} \cdot \nabla \phi+\int_{\Omega} g_{n}\left(x, u_{n}\right) \frac{\left|\nabla u_{n}\right|^{2}}{1+\frac{1}{n}\left|\nabla u_{n}\right|^{2}} \phi=\int_{\Omega} f_{n} \phi, \quad \forall \phi \in C_{c}^{\infty}(\Omega)
$$

First of all, the weak convergence of u_{n} to u and the weak-* convergence of $M\left(x, u_{n}\right)$ to $M(x, u)$ in $L^{\infty}(\Omega)$ implies that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \int_{\Omega} M\left(x, u_{n}\right) \nabla u_{n} \nabla \phi=\int_{\Omega} M(x, u) \nabla u \nabla \phi, \quad \forall \phi \in C_{c}^{\infty}(\Omega) \tag{2.16}
\end{equation*}
$$

On the other hand, if we fix $\omega \Subset \Omega$, then, by Remark 2.4 ,

$$
g_{n}\left(x, u_{n}(x)\right) \leqslant c_{k}(\omega), \quad \forall n \gg 1, \text { and } \forall x \in \omega \text { satisfying } u_{n}(x) \leqslant k
$$

Consequently, if $E \Subset \omega$ we have

$$
\begin{align*}
& \int_{E}\left|g_{n}\left(x, u_{n}(x)\right)\right| \frac{\left|\nabla u_{n}(x)\right|^{2}}{1+\frac{1}{n}\left|\nabla u_{n}(x)\right|^{2}} \\
& \quad \leqslant \int_{E \cap\left\{u_{n} \leqslant k\right\}} g_{n}\left(x, u_{n}\right) \frac{\left|\nabla u_{n}\right|^{2}}{1+\frac{1}{n}\left|\nabla u_{n}\right|^{2}}+\int_{E \cap\left\{u_{n} \geqslant k\right\}} g_{n}\left(x, u_{n}\right) \frac{\left|\nabla u_{n}\right|^{2}}{1+\frac{1}{n}\left|\nabla u_{n}\right|^{2}} \\
& \quad \leqslant c_{k}(\omega) \int_{E \cap\left\{u_{n} \leqslant k\right\}}\left|\nabla T_{k}\left(u_{n}\right)\right|^{2}+\int_{\left\{u_{n} \geqslant k\right\}} g_{n}\left(x, u_{n}\right) \frac{\left|\nabla u_{n}\right|^{2}}{1+\frac{1}{n}\left|\nabla u_{n}\right|^{2}} . \tag{2.17}
\end{align*}
$$

Let $\varepsilon>0$ be fixed. Observe that if, for $k>1$, we use $T_{1}\left(G_{k-1}\left(u_{n}\right)\right)$ as test function in (2.3) and drop positive terms, we deduce that

$$
\int_{\left\{u_{n} \geqslant k\right\}} g_{n}\left(x, u_{n}\right) \frac{\left|\nabla u_{n}\right|^{2}}{1+\frac{1}{n}\left|\nabla u_{n}\right|^{2}} \leqslant \int_{\left\{u_{n} \geqslant k-1\right\}} f_{n} \leqslant \int_{\left\{u_{n} \geqslant k-1\right\}} f .
$$

Thus, since the right-hand side tends to 0 uniformly in n as k diverges, we obtain the existence of $k_{0}>1$ such that

$$
\int_{\left\{u_{n} \geqslant k\right\}} g_{n}\left(x, u_{n}\right) \frac{\left|\nabla u_{n}\right|^{2}}{1+\frac{1}{n}\left|\nabla u_{n}\right|^{2}} \leqslant \frac{\varepsilon}{2}, \quad \forall k \geqslant k_{0}, \quad \forall n \in \mathbb{N} .
$$

Moreover, since $T_{k}\left(u_{n}\right)$ is strongly compact in $H_{\text {loc }}^{1}(\Omega)$, there exist $n_{\varepsilon}, \delta_{\varepsilon}$ such that for every $E \Subset \Omega$ with meas $(E)<\delta_{\varepsilon}$ we have

$$
\int_{E \cap\left\{u_{n} \leqslant k\right\}}\left|\nabla T_{k}\left(u_{n}\right)\right|^{2}<\frac{\varepsilon}{2 c_{k}(\omega)}, \quad \forall n \geqslant n_{\varepsilon} .
$$

In conclusion, by (2.17), taking $k \geqslant k_{0}$ we see that meas $(E)<\delta_{\varepsilon}$ implies

$$
\int_{E}\left|g_{n}\left(x, u_{n}(x)\right)\right| \frac{\left|\nabla u_{n}(x)\right|^{2}}{1+\frac{1}{n}\left|\nabla u_{n}(x)\right|^{2}} \leqslant \varepsilon, \quad \forall n \geqslant n_{\varepsilon},
$$

i.e., the sequence $g_{n}\left(x, u_{n}\right) \frac{\left|\nabla u_{n}\right|^{2}}{1+\frac{1}{n}\left|\nabla u_{n}\right|^{2}}$ is equiintegrable. This, together with its a.e. convergence to $g(x, u)|\nabla u|^{2}$, implies by Vitali theorem that

$$
\lim _{n \rightarrow+\infty} \int_{\Omega} g_{n}\left(x, u_{n}\right) \frac{\left|\nabla u_{n}\right|^{2}}{1+\frac{1}{n}\left|\nabla u_{n}\right|^{2}} \phi=\int_{\Omega} g(x, u)|\nabla u|^{2} \phi, \quad \forall \phi \in C_{c}^{\infty}(\Omega) .
$$

Therefore, using the above limit, (2.16) and since f_{n} tends to f strongly in $L^{1}(\Omega)$ we conclude that

$$
\int_{\Omega} M(x, u) \nabla u \nabla \phi+\int_{\Omega} g(x, u)|\nabla u|^{2} \phi=\int_{\Omega} f \phi, \quad \forall \phi \in C_{c}^{\infty}(\Omega) .
$$

Remark 2.6. In addition, if $f \in L^{q}(\Omega)$ with $q>N / 2$, then the solution u given by Theorem 1.1 is continuous in Ω. Indeed, by using $\psi=T_{m}\left(G_{k}(u)\right)$, with $m>k$, as test function in (2.1), it is easy to adapt the idea of Stampacchia [36] in order to obtain that $u \in L^{\infty}(\Omega)$. Now, consider a function $\zeta \in C^{\infty}(\Omega)$ with $0 \leqslant \zeta(x) \leqslant 1$, for every $x \in \Omega$ and compacted supportly in a ball B_{ρ} of radius $\rho>0$, and set $A_{k, \rho}=\left\{x \in B_{\rho} \cap \Omega: u(x)>k\right\}$. Following the idea of the proof of Theorem 1.1 of Chapter 4 in [25], take $\phi=G_{k}(u) \zeta^{2}$ as test function in (2.1) to deduce by (1.2) and Hölder's inequality that

$$
\alpha \int_{A_{k, \rho}}|\nabla u|^{2} \zeta^{2} \leqslant\|f\|_{L^{q}(\Omega)}\|u\|_{L^{\infty}(\Omega)}\left(\text { meas } A_{k, \rho}\right)^{1-\frac{1}{q}}+2 \beta \int_{A_{k, \rho}}|\nabla u \| \nabla \zeta| \zeta G_{k}(u) .
$$

Using again Young's inequality we get

$$
\int_{A_{k, \rho}}|\nabla u|^{2} \zeta^{2} \leqslant \frac{2\|f\|_{L^{q}(\Omega)}\|u\|_{L^{\infty}(\Omega)}}{\alpha}\left(\text { meas } A_{k, \rho}\right)^{1-\frac{1}{q}}+\frac{4 \beta}{\alpha^{2}} \int_{A_{k, \rho}}|\nabla \zeta|^{2} G_{k}^{2}(u) .
$$

In particular, if for $\sigma \in(0,1)$ we choose ζ such that it is constantly equal to 1 in the concentric ball $B_{\rho-\sigma \rho}$ (to B_{ρ}) of radius $\rho-\sigma \rho$ and $|\nabla \zeta|<\frac{1}{\sigma \rho}$, we obtain

$$
\int_{A_{k, \rho-\sigma \rho}}|\nabla u|^{2} \leqslant \gamma\left(1+\frac{1}{\sigma^{2} \rho^{2\left(1-\frac{N}{2 q}\right)}} \max _{A_{k, \rho}}(u-k)^{2}\right)\left(\text { meas } A_{k, \rho}\right)^{1-\frac{1}{q}},
$$

where $\gamma=\max \left\{\frac{2\|f\|_{L_{q(\Omega)}}\|u\|_{L^{\infty}(\Omega)}}{\alpha}, \frac{4 \beta}{\alpha^{2}} \omega_{N}^{\frac{1}{q}}\right\}$ with ω_{N} denoting the measure of the unit ball of \mathbb{R}^{N}.
This means that for $\delta>0$ small enough and every $M \geqslant\|u\|_{L^{\infty}(\Omega)}$, the function u belongs to the class $\mathcal{B}_{2}\left(\Omega, M, \gamma, \delta, \frac{1}{2 q}\right)$ with $2 q>N$ (see [25, p. 81]). Applying Theorem 6.1 of [25] we deduce that u is Hölder continuous in Ω.

3. Further existence results

3.1. Existence for data in $L^{1}(\Omega)$

In this section we prove Theorem 1.2. In this case, taking advantage of Theorem 1.1, we approximate problem (1.1) by

$$
\begin{cases}-\operatorname{div}\left(M\left(x, u_{n}\right) \nabla u_{n}\right)+g\left(x, u_{n}\right)\left|\nabla u_{n}\right|^{2}=f_{n} & \text { in } \Omega, \tag{3.1}\\ u_{n}=0 & \text { on } \partial \Omega\end{cases}
$$

where $f_{n}=T_{n}(f)$.
Note that the existence of a nonnegative finite energy solution $u_{n} \in H_{0}^{1}(\Omega) \cap C(\Omega)$ such that $g\left(x, u_{n}\right)\left|\nabla u_{n}\right|^{2} \in L^{1}(\Omega)$ follows from Theorem 1.1 and Remark 2.6.

Lemma 3.1. If $f \in L^{1}(\Omega)$ satisfies (1.4), $g(x, s)$ satisfies (1.6) (with $h(s)$ satisfying (1.7)), and u_{n} is a solution of (3.1), then
(i) u_{n} is bounded in $\mathcal{M}^{\frac{N}{N-2}}(\Omega)$ and $\left|\nabla u_{n}\right|$ is bounded in $\mathcal{M}^{\frac{N}{N-1}}(\Omega)$;
(ii) up to subsequences, the sequence u_{n} is weakly convergent to some u in $W_{0}^{1, q}(\Omega)$ for every $q \in\left[1, \frac{N}{N-1}\right)$;
(iii) for any $k>0$ and for any $\omega \Subset \Omega$,

$$
T_{k}\left(u_{n}\right) \rightarrow T_{k}(u) \quad \text { in } H^{1}(\omega)
$$

Proof. (i) Taking $T_{k}\left(u_{n}\right)$ as test function in (3.1) and using (1.2), we have

$$
\alpha \int_{\Omega}\left|\nabla T_{k}\left(u_{n}\right)\right|^{2}+\int_{\Omega} g\left(x, u_{n}\right) T_{k}\left(u_{n}\right)\left|\nabla u_{n}\right|^{2} \leqslant k\left\|f_{n}\right\|_{L^{1}(\Omega)}
$$

Since $0 \leqslant f_{n} \leqslant f$ and $g\left(x, u_{n}\right) \geqslant 0$, we have

$$
\begin{equation*}
\alpha \int_{\Omega}\left|\nabla T_{k}\left(u_{n}\right)\right|^{2} \leqslant k\|f\|_{L^{1}(\Omega)} \tag{3.2}
\end{equation*}
$$

Standard estimates (see [6, Lemmas 4.1 and 4.2]) imply that u_{n} is bounded in $\mathcal{M}^{\frac{N}{N-2}}(\Omega)$ and that $\left|\nabla u_{n}\right|$ is bounded in $\mathcal{M}^{\frac{N}{N-1}}(\Omega)$.
(ii) Let $1 \leqslant q<\frac{N}{N-1}$. By the preceding case and by the embedding (1.18), we deduce that u_{n} is bounded in $W_{0}^{1, q}(\Omega)$ and thus, passing to a subsequence if necessary, there exists u such that $u_{n} \rightharpoonup u$ weakly in $W_{0}^{1, q}(\Omega)$.
(iii) Our aim is to show that

$$
\lim _{n \rightarrow+\infty} \int_{\Omega}\left|\nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right)\right|^{2} \phi=0, \quad \forall \phi \in C_{c}^{\infty}(\Omega), \phi \geqslant 0
$$

Here we adapt to our case a technique to obtain the strong convergence of truncations first introduced in [26] (see also [35]). Let us choose $\varphi_{\lambda}\left(w_{n}\right) \phi$ as test function in (3.1) where $\varphi_{\lambda}(s)$ has been defined in (1.19) and

$$
w_{n}=T_{2 k}\left[u_{n}-T_{l}\left(u_{n}\right)+T_{k}\left(u_{n}\right)-T_{k}(u)\right], \quad 0<k<l .
$$

Thus we have

$$
\begin{align*}
& \int_{\Omega} M\left(x, u_{n}\right) \nabla u_{n} \cdot \nabla w_{n} \varphi_{\lambda}^{\prime}\left(w_{n}\right) \phi+\int_{\Omega} M\left(x, u_{n}\right) \nabla u_{n} \cdot \nabla \phi \varphi_{\lambda}\left(w_{n}\right)+\int_{\Omega} g\left(x, u_{n}\right)\left|\nabla u_{n}\right|^{2} \varphi_{\lambda}\left(w_{n}\right) \phi \\
& \quad=\int_{\Omega} f_{n} \phi \varphi_{\lambda}\left(w_{n}\right) . \tag{3.3}
\end{align*}
$$

Observing that $\nabla T_{k}\left(u_{n}\right)=0$ if $u_{n}>k$ and $\nabla w_{n} \equiv 0$ if $u_{n} \geqslant 2 k+l \equiv \mathcal{K}$ (we recall that $l>k$), we have

$$
\begin{aligned}
\int_{\Omega} M\left(x, u_{n}\right) \nabla u_{n} \cdot \nabla w_{n} \varphi_{\lambda}^{\prime}\left(w_{n}\right) \phi= & \int_{\Omega} M\left(x, u_{n}\right) \nabla T_{k}\left(u_{n}\right) \cdot \nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) \varphi_{\lambda}^{\prime}\left(w_{n}\right) \phi \\
& +\int_{\left\{u_{n} \geqslant k\right\}} M\left(x, u_{n}\right) \nabla T_{\mathcal{K}}\left(u_{n}\right) \cdot \nabla T_{2 k}\left(G_{l}\left(u_{n}\right)+k-T_{k}(u)\right) \varphi_{\lambda}^{\prime}\left(w_{n}\right) \phi .
\end{aligned}
$$

Moreover, using that

$$
\begin{aligned}
\nabla T_{\mathcal{K}}\left(u_{n}\right) \cdot \nabla\left(G_{l}\left(u_{n}\right)-T_{k}(u)\right) & =\nabla T_{\mathcal{K}}\left(u_{n}\right) \cdot \nabla G_{l}\left(u_{n}\right)-\nabla T_{\mathcal{K}}\left(u_{n}\right) \nabla T_{k}(u) \\
& \geqslant-\nabla T_{\mathcal{K}}\left(u_{n}\right) \cdot \nabla T_{k}(u),
\end{aligned}
$$

we have

$$
\begin{aligned}
& \int_{\left\{u_{n}>k\right\} \cap\left\{G_{l}\left(u_{n}\right)-T_{k}(u) \leqslant k\right\}} M\left(x, u_{n}\right) \nabla T_{\mathcal{K}}\left(u_{n}\right) \cdot \nabla\left(G_{l}\left(u_{n}\right)-T_{k}(u)\right) \varphi_{\lambda}^{\prime}\left(w_{n}\right) \phi \\
& \geqslant-\int_{\left\{G_{l}\left(u_{n}\right)+k-T_{k}(u) \leqslant 2 k\right\}}\left|M\left(x, u_{n}\right) \nabla T_{\mathcal{K}}\left(u_{n}\right) \cdot \nabla T_{k}(u)\right| \varphi_{\lambda}^{\prime}\left(w_{n}\right) \phi \chi_{\left\{u_{n}>k\right\},},
\end{aligned}
$$

and thus, since the above integral tends to zero as n diverges,

$$
\begin{align*}
& \int_{\Omega} M\left(x, u_{n}\right) \nabla u_{n} \cdot \nabla w_{n} \varphi_{\lambda}^{\prime}\left(w_{n}\right) \phi \\
& \quad \geqslant \int_{\Omega} M\left(x, u_{n}\right) \nabla T_{k}\left(u_{n}\right) \cdot \nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) \varphi_{\lambda}^{\prime}\left(w_{n}\right) \phi+\varepsilon(n) \tag{3.4}
\end{align*}
$$

On the other hand, since $G_{l}\left(u_{n}\right)+k-T_{k}(u) \geqslant 0$,

$$
\int_{\Omega} g\left(x, u_{n}\right)\left|\nabla u_{n}\right|^{2} \varphi_{\lambda}\left(w_{n}\right) \phi \geqslant \int_{\left\{u_{n} \leqslant k\right\}} g\left(x, u_{n}\right)\left|\nabla u_{n}\right|^{2} \varphi_{\lambda}\left(w_{n}\right) \phi .
$$

Thanks to case (ii) of Remark 2.4 applied to a subset $\omega_{\phi} \Subset \Omega$ with $\operatorname{supp} \phi \subset \omega_{\phi}$, we have $g\left(x, u_{n}(x)\right) \leqslant c_{k}\left(\omega_{\phi}\right)$ for every $x \in \omega$ with $u_{n}(x) \leqslant k$. Then, we get

$$
\begin{aligned}
& \left.\left|\int_{\left\{u_{n} \leqslant k\right\}} g\left(x, u_{n}\right)\right| \nabla u_{n}\right|^{2} \varphi_{\lambda}\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) \phi \mid \\
& \quad \leqslant c_{k}\left(\omega_{\phi}\right) \int_{\Omega}\left|\nabla T_{k}\left(u_{n}\right)\right|^{2}\left|\varphi_{\lambda}\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right)\right| \phi
\end{aligned}
$$

$$
\begin{aligned}
\leqslant & 2 c_{k}\left(\omega_{\phi}\right) \int_{\Omega}\left|\nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right)\right|^{2}\left|\varphi_{\lambda}\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right)\right| \phi \\
& +2 c_{k}\left(\omega_{\phi}\right) \int_{\Omega}\left|\nabla T_{k}(u)\right|^{2}\left|\varphi_{\lambda}\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right)\right| \phi
\end{aligned}
$$

Note that the last integral tends to 0 as n diverges since $\varphi_{\lambda}\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right)$ converges to zero in the weak-* topology of $L^{\infty}(\Omega)$ and $T_{k}(u) \in H_{0}^{1}(\Omega)$. Therefore, we deduce from this, (3.3) and (3.4) that

$$
\begin{aligned}
& \int_{\Omega} M\left(x, u_{n}\right) \nabla T_{k}\left(u_{n}\right) \cdot \nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) \varphi_{\lambda}^{\prime}\left(w_{n}\right) \phi \\
& \quad-2 c_{k}\left(\omega_{\phi}\right) \int_{\Omega}\left|\nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right)\right|^{2}\left|\varphi_{\lambda}\left(w_{n}\right)\right| \phi \\
& \leqslant \int_{\Omega} f_{n} \phi \varphi_{\lambda}\left(w_{n}\right)-\int_{\Omega} M\left(x, u_{n}\right) \nabla u_{n} \cdot \nabla \phi \varphi_{\lambda}\left(w_{n}\right)+\varepsilon(n),
\end{aligned}
$$

and adding to both sides of the previous inequality

$$
-\int_{\Omega} M\left(x, u_{n}\right) \nabla T_{k}(u) \cdot \nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) \varphi_{\lambda}^{\prime}\left(w_{n}\right) \phi=\varepsilon(n)
$$

we find from (1.2),

$$
\begin{aligned}
\int_{\Omega} & \left|\nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right)\right|^{2}\left[\alpha \varphi_{\lambda}^{\prime}\left(w_{n}\right)-2 c_{k}\left(\omega_{\phi}\right)\left|\varphi_{\lambda}\left(w_{n}\right)\right|\right] \phi \\
& \leqslant \int_{\Omega} f_{n} \phi \varphi_{\lambda}\left(w_{n}\right)-\int_{\Omega} M\left(x, u_{n}\right) \nabla u_{n} \cdot \nabla \phi \varphi_{\lambda}\left(w_{n}\right)+\varepsilon(n)
\end{aligned}
$$

Choosing λ such that φ_{λ} satisfies (1.19) with $a=\alpha$ and $b=2 c_{k}\left(\omega_{\phi}\right)$, we get

$$
\begin{aligned}
& \frac{\alpha}{2} \int_{\Omega}\left|\nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right)\right|^{2} \phi \\
& \quad \leqslant \int_{\Omega} f_{n} \phi \varphi_{\lambda}\left(w_{n}\right)-\int_{\Omega} M\left(x, u_{n}\right) \nabla u_{n} \cdot \nabla \phi \varphi_{\lambda}\left(w_{n}\right)+\varepsilon(n)
\end{aligned}
$$

Moreover, w_{n} a.e. (and weakly-* in $\left.L^{\infty}(\Omega)\right)$ converges towards $w=T_{2 k}\left(G_{l}(u)\right.$) and thus, recalling that $\nabla u_{n} \rightarrow \nabla u$ weakly in $\left(L^{q}(\Omega)\right)^{N}, q<N /(N-1)$,

$$
\begin{aligned}
& \lim _{n \rightarrow+\infty} \int_{\Omega} f_{n} \phi \varphi_{\lambda}\left(w_{n}\right)-\int_{\Omega} M\left(x, u_{n}\right) \nabla u_{n} \cdot \nabla \phi \varphi_{\lambda}\left(w_{n}\right) \\
& \quad=\int_{\Omega} f \phi \varphi_{\lambda}(w)-\int_{\Omega} M(x, u) \nabla u \cdot \nabla \phi \varphi_{\lambda}(w)
\end{aligned}
$$

Consequently, using (1.2)

$$
\begin{aligned}
\frac{\alpha}{2} \int_{\Omega}\left|\nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right)\right|^{2} \phi & \leqslant \int_{\Omega} f \phi \varphi_{\lambda}(w)-\int_{\Omega} M(x, u) \nabla u \cdot \nabla \phi \varphi_{\lambda}(w)+\varepsilon(n) \\
& \leqslant \varphi_{\lambda}(2 k) \int_{\{u \geqslant l\}}(f+\beta|\nabla u||\nabla \phi|)+\varepsilon(n)
\end{aligned}
$$

Since the last integral tends to zero as l diverges, (iii) is proved.

Now, we prove our main result concerning $L^{1}(\Omega)$ data:

Proof of Theorem 1.2. We begin by proving the first part of the theorem, i.e. that there exists a solution $u \in W_{0}^{1, q}(\Omega)$, for every $q<\frac{N}{N-1}$, of problem (1.1). We first observe that we deduce from the results of [14] that $\nabla u_{n} \rightarrow \nabla u$ a.e., and from Lemma 3.1 the estimates on u_{n} and $\left|\nabla u_{n}\right|$ in $\mathcal{M}^{\frac{N}{N-2}}(\Omega)$ and $\mathcal{M}^{\frac{N}{N-1}}(\Omega)$ respectively. Thus $u_{n} \rightarrow u$ strongly in $W_{0}^{1, q}(\Omega)$, for every $q<\frac{N}{N-1}$. Arguing as in the proof of Theorem 1.1, we can show that, choosing $\frac{1}{\varepsilon} T_{\varepsilon}\left(u_{n}\right)$ as test function in (3.1) and applying Fatou lemma, we have $g(x, u)|\nabla u|^{2} \in L^{1}(\Omega)$.

In order to prove that for all $\omega \Subset \Omega,\left\{g\left(x, u_{n}\right)\left|\nabla u_{n}\right|^{2}\right\}$ is strongly convergent in $L^{1}(\omega)$ to $g(x, u)|\nabla u|^{2}$, it suffices to show the local uniform equiintegrability of such sequence. To prove the claim, we choose $T_{1}\left(G_{k-1}\left(u_{n}\right)\right)$ (for $k>1$) as test function in Eq. (3.1) and we deduce, by dropping the first positive term (in virtue of (1.2)), and since $f_{n} \leqslant f$, that

$$
\begin{equation*}
\int_{\left\{u_{n} \geqslant k\right\}} g\left(x, u_{n}\right)\left|\nabla u_{n}\right|^{2} \leqslant \int_{\left\{u_{n} \geqslant k-1\right\}} f . \tag{3.5}
\end{equation*}
$$

By a similar argument to the one used in Step 3 of the proof of Theorem 1.1, we prove the claim. Indeed, let $E \subset \omega \Subset \Omega$ be a measurable set. By Remark 2.4(ii) and (3.5), we have, for every $k \geqslant 1$,

$$
\begin{aligned}
\int_{E} g\left(x, u_{n}\right)\left|\nabla u_{n}\right|^{2}= & \int_{E \cap\left\{u_{n} \leqslant k\right\}} g\left(x, u_{n}\right)\left|\nabla u_{n}\right|^{2} \\
& +\int_{E \cap\left\{u_{n} \geqslant k\right\}} g\left(x, u_{n}\right)\left|\nabla u_{n}\right|^{2} \leqslant c_{k}(\omega) \int_{E \cap\left\{u_{n} \leqslant k\right\}}\left|\nabla T_{k}\left(u_{n}\right)\right|^{2} \\
& +\int_{\left\{u_{n} \geqslant k\right\}} g\left(x, u_{n}\right)\left|\nabla u_{n}\right|^{2} \leqslant c_{k}(\omega) \int_{E}\left|\nabla T_{k}\left(u_{n}\right)\right|^{2}+\int_{\left\{u_{n} \geqslant k-1\right\}} f .
\end{aligned}
$$

Since meas $\left(\left\{x \in \Omega: u_{n} \geqslant k-1\right\}\right.$) tends to zero (uniformly with respect to n) as k tends to $+\infty$ (because of the boundedness of $\left\{u_{n}\right\}$ in the space $\mathcal{M}^{N /(N-2)}(\Omega)$ by Lemma 3.1(ii)), we obtain that the last integral in the above inequalities tends to zero as k goes to $+\infty$. This, and the local equiintegrability of $\left|\nabla T_{k}\left(u_{n}\right)\right|^{2}$ (by Lemma 3.1(iii)), then show the local equiintegrability of $\left\{g\left(x, u_{n}\right)\left|\nabla u_{n}\right|^{2}\right\}$.

Using moreover that $\nabla u_{n} \rightarrow \nabla u$ a.e., we conclude by Vitali theorem that

$$
\begin{equation*}
g\left(x, u_{n}\right)\left|\nabla u_{n}\right|^{2} \rightarrow g(x, u)|\nabla u|^{2} \quad \text { in } L^{1}(\omega), \quad \forall \omega \Subset \Omega . \tag{3.6}
\end{equation*}
$$

Now, using (3.6) and the strong convergence of ∇u_{n} to ∇u in $\left(L^{q}(\Omega)\right)^{N}$, for every $q<\frac{N}{N-1}$, we can pass to the limit in (3.1) to show that u is a solution for (1.1).

In order to prove the second part of the theorem, we simply note that we can fix $k \geqslant \max \left\{s_{0}, 1\right\}$ so that (1.10) and (3.5) imply

$$
\begin{equation*}
\mu \int_{\Omega}\left|\nabla G_{k}\left(u_{n}\right)\right|^{2}=\mu \int_{\left\{u_{n} \geqslant k\right\}}\left|\nabla u_{n}\right|^{2} \leqslant \int_{\left\{u_{n} \geqslant k-1\right\}} f \leqslant\|f\|_{L^{1}(\Omega)} \tag{3.7}
\end{equation*}
$$

Hence, taking into account both (3.2) and (3.7), we have

$$
\int_{\Omega}\left|\nabla u_{n}\right|^{2}=\int_{\Omega}\left|\nabla T_{k}\left(u_{n}\right)\right|^{2}+\int_{\Omega}\left|\nabla G_{k}\left(u_{n}\right)\right|^{2} \leqslant\left(\frac{k}{\alpha}+\frac{1}{\mu}\right)\|f\|_{L^{1}(\Omega)}
$$

i.e., the boundedness of the sequence $\left\{u_{n}\right\}$ in $H_{0}^{1}(\Omega)$. This implies that the solution u, which is the limit of (a subsequence of) $\left\{u_{n}\right\}$, belongs to $H_{0}^{1}(\Omega)$.

Remark 3.2 Actually, if (1.10) holds, it is possible to prove, in this latter case, that the approximate sequence u_{n} is strongly convergent to u in $H^{1}(\omega)$, for every $\omega \Subset \Omega$. Indeed, due to the a.e. convergence of ∇u_{n} to ∇u in Ω, it suffices to check the equiintegrability of $\left|\nabla u_{n}\right|^{2}$ in every $\omega \Subset \Omega$. To do that, we take a measurable set $E \subset \omega \Subset \Omega$, and we observe that, thanks to (3.7), for any $k \geqslant \max \left\{s_{0}, 1\right\}$, we can write

$$
\begin{align*}
\int_{E}\left|\nabla u_{n}\right|^{2} & =\int_{E}\left|\nabla T_{k}\left(u_{n}\right)\right|^{2}+\int_{E}\left|\nabla G_{k}\left(u_{n}\right)\right|^{2} \\
& \leqslant \int_{E}\left|\nabla T_{k}\left(u_{n}\right)\right|^{2}+\frac{1}{\mu} \int_{\left\{u_{n} \geqslant k-1\right\}} f \tag{3.8}
\end{align*}
$$

Therefore, using again both the boundedness of u_{n} in $\mathcal{M}^{N-2}(\Omega)$ and the equiintegrability of $\left|\nabla T_{k}\left(u_{n}\right)\right|^{2}$ in ω given by Lemma 3.1, we see that (3.8) yields the desired result.

3.2. Non-divergence operators

In this section we sketch the proof of Theorem 1.3 without giving all the details since they are straightforward adaptations of the applied arguments in the proof of Theorem 1.1.

Proof of Theorem 1.3. We denote by $P(x)$ the vector field whose ith component is $P_{i}(x)=b_{i}(x)+$ $\sum_{j=1}^{N} \frac{\partial a_{i j}}{\partial x_{j}}(x)(i=1, \ldots, N)$ and by $M(x)$ the transpose of the matrix $\left(a_{i j}(x)\right)_{i, j=1, \ldots, N}$. Let $g_{n}(x, s)$ also be given by (2.2). Consider the sequence $u_{n} \in H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega)$ of solutions for the problem

$$
\begin{cases}-\operatorname{div}\left(M(x) \nabla u_{n}\right)+P(x) \cdot \nabla u_{n}+g_{n}\left(x, u_{n}\right)\left|\nabla u_{n}\right|^{2}=f & \text { in } \Omega, \tag{3.9}\\ u_{n}=0 & \text { on } \partial \Omega\end{cases}
$$

The proof is divided into several steps.
Step 1. $L^{\infty}(\Omega)$ estimate. Using the ideas of [16], we choose $v=e^{2 \lambda G_{k}\left(u_{n}\right)}-1$, with $\lambda \gg 1$ as test function in the weak formulation of (3.9) to prove that the sequence $\left\{u_{n}\right\}$ is bounded in $L^{\infty}(\Omega)$.

Step 2. $H_{0}^{1}(\Omega)$ estimate. By the previous $L^{\infty}(\Omega)$ estimate, it is easy to see that $\left\{u_{n}\right\}$ is bounded in $H_{0}^{1}(\Omega)$, and so u_{n} weakly converges in $H_{0}^{1}(\Omega)$ to a function u in $H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega)$. Moreover, arguing as in Remark 2.6, it is clear that both u_{n} (for every $n \in \mathbb{N}$) and u are continuous in Ω.

Step 3. Estimate on the lower order term. Choosing $\frac{T_{\varepsilon}\left(u_{n}\right)}{\varepsilon}$ as test function in (3.9) and taking limit as ε tends to zero, we deduce, for some $C_{1}>0$, that

$$
\int_{\Omega} g_{n}\left(x, u_{n}\right)\left|\nabla u_{n}\right|^{2} \leqslant \int_{\Omega}|f|+C_{1} .
$$

Step 4. Uniform bound from below for u_{n} in compact sets. Observe that u_{n} are supersolutions of the equation

$$
\begin{equation*}
-\operatorname{div}(M(x) \nabla u)+P(x) \cdot \nabla u+h(u)|\nabla u|^{2}=f \quad \text { in } \Omega . \tag{3.10}
\end{equation*}
$$

If, for $H(s)$ defined in (2.5) and $\phi \in C_{c}^{\infty}(\Omega)$, we take $e^{-\frac{H(u)}{\alpha} \phi}$ as test function in (3.10), we see that $v_{n}=\psi\left(u_{n}\right)$ are subsolutions of

$$
\begin{equation*}
-\operatorname{div}(M(x) \nabla v)+P(x) \cdot \nabla v+b(v) f(x)=0 \quad \text { in } \Omega, \tag{3.11}
\end{equation*}
$$

where $b(s)$ has been defined in (2.9) and we recall that it satisfies the Keller-Osserman condition (see (2.10)). Hence, by Theorem A. 1 in Appendix A, we conclude that for every $\omega \Subset \Omega$, there exists C_{ω} such that $v_{n}=\psi\left(u_{n}\right) \leqslant C_{\omega}$ in ω. Therefore, $u_{n} \geqslant c_{\omega}>0$ in ω, with $c_{\omega}=\psi^{-1}\left(C_{\omega}\right)$.

Step 5. Compactness of $\left\{u_{n}\right\}$ in $H_{\mathrm{loc}}^{1}(\Omega)$. For $\varphi_{\lambda}(s)$ defined in (1.19) and $\phi \in C_{c}^{\infty}(\Omega)$, we choose $\varphi_{\lambda}\left(u_{n}-u\right) \phi$ as test function in the weak formulation of (3.12) and we note that the ideas of Theorem 1.1 work since the new term that appears in the equation does not lead to any further difficulty because it has linear growth with respect to ∇u. Thus we conclude that, up to a subsequence,

$$
u_{n} \rightarrow u \text { in } H_{\mathrm{loc}}^{1}(\Omega) .
$$

Step 6. Passing to the limit. By Step 5, we pass to the limit in the weak formulation of (3.9) to deduce that u is a solution for

$$
\begin{cases}-\operatorname{div}(M(x) \nabla u)+P(x) \cdot \nabla u+g(x, u)|\nabla u|^{2}=f & \text { in } \Omega, \tag{3.12}\\ u=0 & \text { on } \partial \Omega .\end{cases}
$$

Since the coefficients $a_{i j}$ are Lipschitz continuous on Ω, we see that u solves (1.11). Finally, by Step 3 we conclude that $g(x, u)|\nabla u|^{2} \in L^{1}(\Omega)$.

4. Nonexistence results

This section is devoted to study nonexistence of solutions for (1.1). We begin by observing that if the function $g(x, s)$ satisfies condition (1.13) with h such that (1.14) and (1.15) hold, then we can change h by a smaller function \bar{h} which, in addition to (1.14) and (1.15), also satisfies $\bar{h}(s)=0$ for every $s>1$. Indeed, if s_{0} is the point where h attains its minimum value in $\left[\frac{1}{2}, 1\right]$, then it suffices to define

$$
\bar{h}(s)= \begin{cases}\left(h(s)-h\left(s_{0}\right)\right)^{+} & \text {if } s \in\left(0, s_{0}\right], \\ 0 & \text { if } s>s_{0} .\end{cases}
$$

Consequently, without loss of generality, we will assume in the following that condition (1.13) holds with h satisfying (1.14), (1.15), and

$$
\begin{equation*}
h(s)=0, \quad \forall s \geqslant 1 . \tag{4.1}
\end{equation*}
$$

Let us consider the function $G:(0,+\infty) \rightarrow(0,+\infty)$ given by

$$
G(s)=\mathrm{e}^{\int_{1}^{s} \frac{h(t)}{\beta} d t}, \quad \text { for every } s>0
$$

where β is given by (1.2). Observe that, by (1.14), the function G can be continuously extended to $[0,+\infty)$ setting $G(0)=0$. Moreover, we also define the function $\sigma:[0,+\infty) \rightarrow[0,+\infty)$ by setting $\sigma(0)=0$ and

$$
\sigma(s)=\mathrm{e}^{\int_{1}^{s} \sqrt{h(t)} d t}, \quad \text { for every } s>0
$$

Observe that, thanks to (1.14) and (1.15), we have that $\sigma \in C^{1}([0,+\infty)), \sigma^{\prime}(0)=h_{0}$ and $\sigma(s)=0$ if and only if $s=0$. As a consequence of (4.1), $\sigma(s)=1$ for every $s>1$ and $\sigma(s) \leqslant 1$ for every $s \geqslant 0$. The next lemma is the key for the proof of Theorem 1.4.

Lemma 4.1. Assume (1.14) and (1.15). Then the function

$$
\varphi(s)= \begin{cases}\frac{\int_{0}^{s} G(t)\left[\sigma^{\prime}(t)\right]^{2} d t}{G(s)} & \text { if } s>0 \tag{4.2}\\ 0 & \text { if } s=0\end{cases}
$$

is a continuously differentiable function on $[0,+\infty)$ that satisfies the ordinary differential equation

$$
\left\{\begin{array}{l}
\varphi^{\prime}(s)+\frac{h(s)}{\beta} \varphi(s)=\left[\sigma^{\prime}(s)\right]^{2} \quad \text { on }[0,+\infty) \tag{4.3}\\
\varphi(0)=0
\end{array}\right.
$$

Moreover, the following inequality holds:

$$
\begin{equation*}
\varphi(s) \leqslant \beta[\sigma(s)]^{2}, \quad \forall s>0 \tag{4.4}
\end{equation*}
$$

Proof. The first part of the proof is straightforward except for checking that φ is differentiable at zero and φ^{\prime} is continuous at zero. In order to do it, we note firstly that φ is continuous at zero. Indeed, since G is nondecreasing and $\left[\sigma^{\prime}\right]^{2}$ is continuous in $[0,+\infty)$ we have

$$
0 \leqslant \lim _{s \rightarrow 0^{+}} \varphi(s)=\lim _{s \rightarrow 0^{+}} \frac{\int_{0}^{s} G(t)\left[\sigma^{\prime}(t)\right]^{2} d t}{G(s)} \leqslant \lim _{s \rightarrow 0^{+}} \int_{0}^{s}\left[\sigma^{\prime}(t)\right]^{2} d t=0
$$

Now we observe that, using the L'Hôpital Rule, (1.14) and (1.15),

$$
\begin{aligned}
\varphi^{\prime}(0) & =h_{0}^{2}-\lim _{s \rightarrow 0^{+}} \frac{h(s) \int_{0}^{s} G(t)\left[\sigma^{\prime}(t)\right]^{2} d t}{\beta G(s)} \\
& =h_{0}^{2}-h_{0}^{2} \lim _{s \rightarrow 0^{+}} \frac{G(s)\left[\sigma^{\prime}(s)\right]^{2}}{2 \beta \sigma(s) \sigma^{\prime}(s) G(s)+h(s)[\sigma(s)]^{2} G(s)} \\
& =h_{0}^{2}-h_{0}^{2} \lim _{s \rightarrow 0^{+}} \frac{1}{2 \beta \frac{1}{\sqrt{h(s)}}+1}=h_{0}^{2}-h_{0}^{2}=0
\end{aligned}
$$

Hence φ is differentiable at zero and φ^{\prime} is continuous at zero.

In order to prove inequality (4.4), we observe that since $\left[\sigma^{\prime}(s)\right]^{2}=[\sigma(s)]^{2} h(s)$, then

$$
\varphi(s)=\frac{\beta}{G(s)} \int_{0}^{s} G(t) \frac{h(t)}{\beta}[\sigma(t)]^{2} d t
$$

Since

$$
G(t) \frac{h(t)}{\beta}=\frac{d}{d t} G(t),
$$

we can integrate by parts to find (recall that $G(0)=\sigma(0)=0$)

$$
\begin{aligned}
\varphi(s) & =\frac{\beta}{G(s)}\left[G(t)[\sigma(t)]^{2}\right]_{t=0}^{t=s}-\frac{2 \beta}{G(s)} \int_{0}^{s} G(t) \sigma(t) \sigma^{\prime}(t) d t \\
& =\beta[\sigma(s)]^{2}-\frac{2 \beta}{G(s)} \int_{0}^{s} G(t)[\sigma(t)]^{2} \sqrt{h(t)} d t \\
& \leqslant \beta[\sigma(s)]^{2},
\end{aligned}
$$

since all the functions in the last integral are nonnegative.
Proof of Theorem 1.4. Let $u \in H_{0}^{1}(\Omega)$ be a positive solution for (1.1) and $\varphi \in C^{1}([0,+\infty)$) be given by (4.2). Observing that $\varphi(0)=0$, that φ^{\prime} is bounded and that, by (4.4) and since $\sigma(s) \leqslant 1$, we have $\varphi(s) \leqslant \beta$, we derive that $\varphi(u) \in H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega)$. Therefore, we can take $v=\varphi(u)$ as test function in (2.1) to obtain, by using (1.13), that

$$
\int_{\Omega} M(x, u) \nabla u \cdot \nabla u \varphi^{\prime}(u)+\int_{\Omega} h(u)|\nabla u|^{2} \varphi(u) \leqslant \int_{\Omega} f \varphi(u) .
$$

Thus, adding and subtracting $\frac{1}{\beta} \int_{\Omega} M(x, u) \nabla u \cdot \nabla u h(u) \varphi(u)$, we derive from (1.2) and (4.3) that

$$
\begin{aligned}
\int_{\Omega} M(x, u) \nabla u \cdot \nabla u\left[\sigma^{\prime}(u)\right]^{2} \leqslant & \int_{\Omega} M(x, u) \nabla u \cdot \nabla u\left[\varphi^{\prime}(u)+\frac{h(u)}{\beta} \varphi(u)\right] \\
& +\int_{\Omega}\left[I-\frac{M(x, u)}{\beta}\right] \nabla u \cdot \nabla u h(u) \varphi(u) \\
\leqslant & \int_{\Omega} f \varphi(u) .
\end{aligned}
$$

Using now (1.2), (4.4) and the fact that $f \geqslant 0$, we have

$$
\begin{equation*}
\alpha \int_{\Omega}|\nabla \sigma(u)|^{2}=\alpha \int_{\Omega}|\nabla u|^{2}\left[\sigma^{\prime}(u)\right]^{2} \leqslant \int_{\Omega} f \varphi(u) \leqslant \beta \int_{\Omega} f[\sigma(u)]^{2} . \tag{4.5}
\end{equation*}
$$

Hence, recalling (see [18]) that, since f belongs to $L^{q}(\Omega)$ with $q>\frac{N}{2}$, and $f^{+} \not \equiv 0$, the first positive eigenvalue $\lambda_{1}(f)$ of the eigenvalue boundary value problem

$$
\begin{cases}-\Delta u=\lambda f u & \text { in } \Omega, \\ u=0 & \text { on } \partial \Omega,\end{cases}
$$

is such that

$$
\lambda_{1}(f) \int_{\Omega} f v^{2} \leqslant \int_{\Omega}|\nabla v|^{2}, \quad \forall v \in H_{0}^{1}(\Omega),
$$

we deduce from (4.5) that

$$
\alpha \int_{\Omega}|\nabla \sigma(u)|^{2} \leqslant \frac{\beta}{\lambda_{1}(f)} \int_{\Omega}|\nabla \sigma(u)|^{2} .
$$

Recalling the assumption $\frac{\beta}{\alpha}<\lambda_{1}(f)$, this implies that

$$
\int_{\Omega}|\nabla \sigma(u)|^{2}=0
$$

which yields

$$
\sigma(u)=0, \quad \text { for a.e. } x \in \Omega .
$$

Therefore, recalling that $\sigma(s)=0$ if and only if $s=0$, we have $u \equiv 0$, contradicting $u>0$ in Ω : therefore, there are no positive solutions of (1.1).

Remark 4.2. Theorem 1.4 can be extended to more general operators. Specifically, if $a(x, s, \varsigma)$ is a Carathéodory function such that

$$
\begin{gathered}
\exists \alpha>0: \quad a(x, s, \varsigma) \cdot \varsigma \geqslant \alpha|\varsigma|^{2}, \quad \text { for a.e. } x \in \Omega, \quad \forall s \in \mathbb{R}, \forall \varsigma \in \mathbb{R}^{N}, \\
\exists \beta>0: \quad|a(x, s, \varsigma)| \leqslant \beta|\varsigma|, \quad \text { for a.e. } x \in \Omega, \quad \forall s \in \mathbb{R}, \forall \varsigma \in \mathbb{R}^{N},
\end{gathered}
$$

and $0 \leqslant f \in L^{q}(\Omega)$ with $q>\frac{N}{2}$ and $f \not \equiv 0$, then problem

$$
\begin{cases}-\operatorname{div}(a(x, u, \nabla u))+g(x, u)|\nabla u|^{2}=f & \text { in } \Omega, \\ u=0 & \text { on } \partial \Omega,\end{cases}
$$

has no finite energy solutions provided $\lambda_{1}(f)>\frac{\beta}{\alpha}$ and conditions (1.13)-(1.15) hold.
Remark 4.3. Let $0 \leqslant f \in L^{q}(\Omega)$ with $q>\frac{N}{2}$ and $f \not \equiv 0$. Assume (1.2) and that $g(s)$ satisfies (1.13). Observe that if $u \in H_{0}^{1}(\Omega)$ is a solution of (1.1) and $R>0$, then $v=R u$ is a solution of

$$
\begin{cases}-\operatorname{div}\left(M\left(x, \frac{v}{R}\right) \nabla v\right)+\frac{1}{R} g\left(x, \frac{v}{R}\right)|\nabla v|^{2}=R f & \text { in } \Omega, \\ v=0 & \text { on } \partial \Omega\end{cases}
$$

with

$$
\frac{g\left(x, \frac{s}{R}\right)}{R} \geqslant h_{R}(s) \stackrel{\text { def }}{=} \frac{1}{R} h\left(\frac{s}{R}\right)
$$

Therefore, by Theorem 1.4, and since $\lambda_{1}(R f)=\lambda_{1}(f) / R$, if $h_{R}(s)$ satisfies conditions (1.14) and (1.15), then a necessary condition for the existence of finite energy solutions of (1.1) is that $\lambda_{1}(f) \leqslant R \beta / \alpha$.

In the following result, as a consequence of Theorem 1.4 (and Remark 4.3), we give conditions to assure the nonexistence of solutions of (1.1) for every datum f.

Corollary 4.4. Let $0 \leqslant f \in L^{q}(\Omega)$ with $q>\frac{N}{2}$ and $f \not \equiv 0$. Assume (1.2) and that $g(s)$ satisfies (1.13). If there exists $R_{0}>0$ such that the function $h_{R}(s)=\frac{1}{R} h\left(\frac{s}{R}\right)$ satisfies (1.14) and (1.15) for every $R \in\left(0, R_{0}\right)$, then (1.1) does not have any finite energy solution.

As a consequence of the above results we also have the following.
Corollary 4.5. Let $0 \leqslant f \in L^{q}(\Omega)$ with $q>\frac{N}{2}$ and $f \not \equiv 0$. Suppose that (1.2) holds and that for some constants $s_{0}, \Lambda>0$ and $\gamma \geqslant 2$ we have

$$
\frac{\Lambda}{s^{\gamma}} \leqslant g(x, s), \quad \text { for a.e. } x \in \Omega, \forall s \in\left(0, s_{0}\right] .
$$

If either
(i) $\gamma>2$, or
(ii) $\gamma=2$ and $\lambda_{1}(f)>\frac{\beta}{\Lambda \alpha}$,
then (1.1) does not have any finite energy solution.
Proof. Consider a continuous function $h(s)$ such that

$$
h(s)= \begin{cases}\frac{\Lambda}{s^{\gamma}} & \text { if } 0<s \leqslant \frac{s_{0}}{2}, \\ \leqslant \frac{\Lambda}{s \gamma^{\gamma}} & \text { if } \frac{s_{0}}{2}<s<s_{0}, \\ 0 & \text { if } s_{0} \leqslant s .\end{cases}
$$

Observing that $h_{R}(s)=\frac{\Lambda R^{\gamma-1}}{s^{\gamma}}$ for every $s \in\left(0, \frac{s_{0}}{2}\right)$, and using that $\gamma \geqslant 2$, we have that $h_{R}(s)$ is not integrable in ($0, \frac{s_{0}}{2}$), i.e., it satisfies (1.14).

In addition, if $\gamma>2$, then $h_{R}(s)$ satisfies (1.15) for every $R>0$, so that Corollary 4.4 concludes the proof in this case.

On the other hand, if we assume that $\gamma=2$, then

$$
\sqrt{h_{R}(s)} \mathrm{e}^{\int_{1}^{s} \sqrt{h_{R}(t)} d t}=\frac{\sqrt{\Lambda R}}{s} \mathrm{e}^{\int_{s_{0}}^{s} / \frac{\sqrt{\Lambda R}}{s} d t+\int_{1}^{s_{0} / 2} \sqrt{h_{R}(t)} d t}=C s^{\sqrt{\Lambda R}-1},
$$

for some $C>0$. Thus, $h_{R}(s)$ satisfies (1.15) if and only if

$$
\lim _{s \rightarrow 0^{+}} s^{\sqrt{A R}-1} \geqslant 0
$$

i.e., $R \geqslant \frac{1}{\Lambda}$. Therefore, Remark 4.3 implies the nonexistence of solutions provided that $\lambda_{1}(f)>\frac{\beta}{\Lambda \alpha}$.

As a consequence of this result, we have that the first part of Theorem 1.5 is proved. We are now going to prove the second part of it.

Proof of Theorem 1.5. We first note that if $\gamma<2$, then Theorem 1.2 guarantees the existence of a solution. Conversely, if $\gamma>2$ or if $\gamma=2$ and $\|f\|_{L^{\infty}(\Omega)}$ is large enough, Theorem 1.4 applies and no solutions exist for (1.5).

On the other hand, if $f \in L^{\infty}(\Omega)$ and (1.16) holds, we recall that existence and uniqueness of a solution u_{n} in $H_{0}^{1}(\Omega) \cap C(\bar{\Omega})$ for

$$
\begin{cases}-\Delta u_{n}+\frac{\left|\nabla u_{n}\right|^{2}}{\left(u_{n}+\frac{1}{n}\right)^{\gamma}}=f & \text { in } \Omega, \tag{4.6}\\ u_{n}=0 & \text { on } \partial \Omega\end{cases}
$$

(with $\gamma \geqslant 2$) follow by the results of [16] (existence) and [4] (uniqueness). Taking $u_{n}, G_{k}\left(u_{n}\right)$, and $T_{\varepsilon}\left(u_{n}\right) / \varepsilon$ as test functions and working as in Lemma 2.2-1, it is easy to see that u_{n} is bounded in $H_{0}^{1}(\Omega)$ and in $L^{\infty}(\Omega)$, and that there exists $C>0$ (independent on n) satisfying

$$
\int_{\Omega} \frac{\left|\nabla u_{n}\right|^{2}}{\left(u_{n}+\frac{1}{n}\right)^{\gamma}} \leqslant C .
$$

Therefore, up to subsequences, there exists a nonnegative bounded Radon measure v such that

$$
\frac{\left|\nabla u_{n}\right|^{2}}{\left(u_{n}+\frac{1}{n}\right)^{\gamma}} \text { converges to } \nu \text { in the weak }-* \text { topology of measures. }
$$

Since u_{n} is bounded in $H_{0}^{1}(\Omega)$ then it converges, up to subsequences, to some function u weakly in $H_{0}^{1}(\Omega)$, strongly in $L^{2}(\Omega)$, and almost everywhere in Ω. Moreover, since $f-\frac{\mid \nabla u_{n}{ }^{2}}{\left(u_{n}+\frac{1}{n}\right) \gamma}$ is bounded in $L^{1}(\Omega)$, the result of [14] yields that (up again to subsequences) ∇u_{n} converges to ∇u almost everywhere in Ω. Then we have, by Fatou lemma, that $\frac{|\nabla u|^{2}}{u^{\gamma}} \chi_{\{u>0\}}$ belongs to $L^{1}(\Omega)$, and that

$$
v=\frac{|\nabla u|^{2}}{u^{\gamma}} \chi_{\{u>0\}}+v_{0},
$$

where ν_{0} is a nonnegative bounded Radon measure on Ω. Therefore, $u \in H_{0}^{1}(\Omega)$ is a finite energy solution of

$$
\begin{cases}-\Delta u+\frac{|\nabla u|^{2}}{u^{\gamma}} \chi_{\{u>0\}}=f-v_{0} & \text { in } \Omega, \\ u=0 & \text { on } \partial \Omega .\end{cases}
$$

Note also that since u_{n+1} is a subsolution for (4.6), we can apply the comparison principle of [4] so that, for every $x \in \Omega$, we have

$$
u_{n}(x) \geqslant u_{n+1}(x) \geqslant \cdots \geqslant u(x)
$$

and thus we can assume that $u_{n}(x)$ is converging to $u(x)$ for every $x \in \Omega$. We claim that $u \equiv 0$, so that u_{n} converges to zero in $L^{2}(\Omega)$. Indeed, we divide the proof of this assertion in two steps:

Step 1. The case in which Ω is a ball of radius $R>0, \Omega=B_{R}$, and $f=T>0$ is a constant. Step 2. The general case.

Step 1. Assume that $\Omega=B_{R}$ and $f=T>0$ is a constant. In this case, (1.16) means that, if $\gamma=2$, then the first eigenvalue $\lambda_{1}^{B_{R}}(T)$ of the Laplacian operator with weight T in B_{R} is greater than one, i.e., $\lambda_{1}^{B_{R}}(T)>1$. We first observe that u is radially symmetric (and thus continuous for $|x| \neq 0$). Indeed, if we define

$$
\psi_{n}(s)=\int_{0}^{s} \mathrm{e}^{-H_{n}(t)} d t, \quad \text { where } H_{n}(t)=\frac{n^{\gamma-1}}{\gamma-1}\left[1-(1+n t)^{1-\gamma}\right]
$$

and we set $v_{n}=\psi_{n}\left(u_{n}\right)$, it is easy to check that v_{n} is the unique solution of

$$
\begin{cases}-\Delta v_{n}=T \mathrm{e}^{-H_{n}\left(\psi_{n}^{-1}\left(v_{n}\right)\right)} & \text { in } B_{R} \\ v_{n}=0 & \text { on } \partial B_{R}\end{cases}
$$

Since the nonlinearity $0 \leqslant \mathrm{e}^{-H_{n}\left(\psi_{n}^{-1}(s)\right)}$ is C^{1}, we can apply the result of Gidas, Ni and Nirenberg (see [22]) in order to deduce that v_{n} is radially symmetric (hence $v_{n}=v_{n}(r)$), monotone decreasing with respect to r and such that $v_{n}^{\prime}(0)=0$. Since ψ_{n} and H_{n} are smooth and increasing, the functions u_{n} have the same properties as v_{n}. Passing to the limit with respect to n we deduce that u is radially symmetric and monotone nonincreasing.

We argue by contradiction assuming that u is not identically zero. In this case, using that $u(r)$ is nonincreasing in $(0, R)$,

$$
r_{1}=\inf \{0<r \leqslant R: u(r)=0\}>0,
$$

and then

$$
u \geqslant c_{\varepsilon}:=u\left(r_{1}-\varepsilon\right) \quad \text { in } B_{r_{1}-\varepsilon}
$$

Therefore, repeating the proof of Theorem 1.1, we prove that

$$
\lim _{n \rightarrow+\infty} \frac{\left|\nabla u_{n}\right|^{2}}{\left(u_{n}+\frac{1}{n}\right)^{\gamma}}=\frac{|\nabla u|^{2}}{u^{\gamma}} \quad \text { strongly in } L_{\mathrm{loc}}^{1}\left(B_{r_{1}}\right)
$$

so that ν_{0} is zero on $B_{r_{1}}$ and, by the continuity of u for $r \neq 0, u$ is a solution of

$$
\begin{cases}-\Delta u+\frac{|\nabla u|^{2}}{u^{\gamma}}=T & \text { in } B_{r_{1}} \\ u=0 & \text { on } \partial B_{r_{1}}\end{cases}
$$

and this contradicts the result of Theorem 1.4 (note that, if $\gamma=2$, we have $\lambda_{1}^{B_{r_{1}}}(T)>\lambda_{1}^{B_{R}}(T)>1$). Therefore $u \equiv 0$.

Step 2. Ω is an open set and f is nonnegative and belongs to $L^{\infty}(\Omega)$.
By (1.16), we can fix $R>\operatorname{diam} \Omega$ with $\lambda_{1}>\|f\|_{L^{\infty}(\Omega)} R^{2}$ provided that $\gamma=2$. Let v_{n} be also the solution of

$$
\begin{cases}-\Delta v_{n}+\frac{\left|\nabla v_{n}\right|^{2}}{\left(v_{n}+\frac{1}{n}\right)^{\gamma}}=\|f\|_{L^{\infty}(\Omega)} & \text { in } B_{R} \\ v_{n}=0 & \text { on } \partial B_{R}\end{cases}
$$

By definition of $\operatorname{diam} \Omega$, we have $\bar{\Omega} \subset B_{R}$. Our aim is to prove that v_{n} is a supersolution for (4.6). Indeed, let $0 \leqslant \psi \in C_{0}^{\infty}(\Omega)$ and we use it as test function in the formulation of v_{n}. Thus

$$
\int_{B_{R}} \nabla v_{n} \cdot \nabla \psi+\int_{B_{R}} \frac{\left|\nabla v_{n}\right|^{2}}{\left(\frac{1}{n}+u_{n}\right)^{\gamma}} \psi=\int_{B_{R}}\|f\|_{L^{\infty}\left(B_{R}\right)} \psi,
$$

and since the support of ψ is contained in Ω we deduce

$$
\int_{\Omega} \nabla v_{n} \cdot \nabla \psi+\int_{\Omega} \frac{\left|\nabla v_{n}\right|^{2}}{\left(\frac{1}{n}+u_{n}\right)^{\gamma}} \psi=\int_{\Omega}\|f\|_{L^{\infty}\left(B_{R}\right)} \psi \geqslant \int_{\Omega} f \psi,
$$

for every nonnegative ψ in $H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega)$ (by an easy density argument). Using again the comparison principle of [4], $u_{n} \leqslant v_{n}$ in Ω. Now, observing that by the choice of R, if $\gamma=2$, we have

$$
\begin{equation*}
\lambda_{1}^{B_{R}}\left(\|f\|_{L^{\infty}(\Omega)}\right)=\frac{\lambda_{1}}{R^{2}\|f\|_{L^{\infty}(\Omega)}}>1, \tag{4.7}
\end{equation*}
$$

we are able to apply the previous Step 1 , so that v_{n} tends to 0 strongly in $L^{2}\left(B_{R}\right)$, which implies that u_{n} tends to zero in $L^{2}(\Omega)$ and the claim has been proved.

Finally, we conclude the proof by taking u_{n} as test function in (4.6) and dropping the nonnegative quadratic term to deduce that the convergence to zero is strong in $H_{0}^{1}(\Omega)$; using this fact in the weak formulation of (4.6) then yields that $v=f$, as desired.

Remark 4.6. Let us emphasize that the condition $\|f\|_{L^{\infty}(\Omega)} \leqslant \frac{\lambda_{1}}{(\text { diam } \Omega)^{2}}$ imposed in assumption (1.16) for the case $\gamma=2$ is not optimal. We use it for the sake of simplicity. However, as shown in the proof of Theorem 1.5 (see (4.7)), a sharper condition can be used in this case.

More precisely, if we consider the Chebyshev radius $R(\Omega)$ of $\bar{\Omega}$, i.e. the greatest lower bound of the radii of all balls containing $\bar{\Omega}$, then the result of Theorem 1.5 with $\gamma=2$ holds provided that

$$
\|f\|_{L^{\infty}(\Omega)}<\frac{\lambda_{1}}{R(\Omega)^{2}} .
$$

Acknowledgment

The authors wish to express their thanks to Prof. Serrin for his suggestion of extending our existence main result to non-divergence operators.

Appendix A. Local a priori estimates and large solutions

We devote this appendix to recall some results concerning the following equation

$$
\begin{equation*}
-\operatorname{div}(a(x, u, \nabla u))+B(x, u)=F(x, \nabla u), \quad x \in \Omega, \tag{A.1}
\end{equation*}
$$

where $F(x, \varsigma)$ and $a(x, s, \varsigma), B(x, s)$ are Carathéodory functions. Suppose that there exist constants $\beta \geqslant \alpha>0$ such that

$$
\begin{gather*}
a(x, s, \varsigma) \cdot \varsigma \geqslant \alpha|\varsigma|^{2}, \tag{A.2}\\
|a(x, s, \varsigma)| \leqslant \beta|\varsigma|, \tag{A.3}\\
(a(x, s, \varsigma)-a(x, s, \eta)) \cdot(\varsigma-\eta)>0, \tag{A.4}
\end{gather*}
$$

for a.e. $x \in \Omega$, for every $s \in \mathbb{R}$ and for every $\varsigma, \eta \in \mathbb{R}^{N}, \varsigma \neq \eta$.

We suppose that $F(x, \varsigma)$ satisfies

$$
\begin{equation*}
|F(x, \varsigma)| \leqslant F_{0}(x)+p_{0}|\varsigma|^{2}, \quad \text { a.e. } x \in \Omega, \forall \varsigma \in \mathbb{R}^{N}, \tag{A.5}
\end{equation*}
$$

where F_{0} belongs to $L_{\text {loc }}^{q}(\Omega)$ with $q>\frac{N}{2}$ and $p_{0}>0$. We also suppose that there exists a continuous nonnegative function $b:[0,+\infty) \rightarrow[0,+\infty)$ such that
$b(s)$ is increasing and satisfies the Keller-Osserman condition (2.10),
$b(s) / s$ is nondecreasing for large s,
and for every $\omega \Subset \Omega$ there exists $m_{\omega}>0$ such that

$$
\begin{equation*}
B(x, s) \geqslant m_{\omega} b(s) \geqslant 0, \quad \text { for a.e. } x \in \omega \text {, for every } s \in \mathbb{R}^{+} \text {. } \tag{A.6}
\end{equation*}
$$

Then the subsolutions of Eq. (A.1) are uniformly bounded from above in $\omega \Subset \Omega$. This result is essentially contained in [27].

Theorem A.1. Suppose that $a(x, s, \varsigma)$ satisfies (A.2)-(A.4), $B(x, s)$ satisfies (A.6) and assume that (A.5) holds. Then, for every $\omega \in \Omega$ there exists $C_{\omega}>0$ such that any distributional subsolution $u \in H_{\mathrm{loc}}^{1}(\Omega)$ of (A.1) such that $u^{+} \in L_{\mathrm{loc}}^{\infty}(\Omega)$ and $B\left(x, u^{+}\right) \in L_{\mathrm{loc}}^{1}(\Omega)$ satisfies

$$
u(x) \leqslant C_{\omega}, \quad \forall x \in \omega .
$$

In order to prove this theorem, we need the following two lemmas.
Lemma A.2. (See [28, Lemma 3.3].) Let $b:[0,+\infty) \rightarrow[0,+\infty)$ be a continuous function, satisfying the Keller-Osserman condition (2.10), such that $\frac{b(s)}{s}$ is nondecreasing for large s. Then, for any $C>0$ and $\gamma \geqslant 0$, there exist a positive constant Γ and a smooth function $\varphi:[0,1] \rightarrow[0,1]$ (Γ and φ depending only on b, C and γ), with $\varphi(0)=\varphi^{\prime}(0)=0, \varphi(1)=1$ and $\varphi(s)>0$ for every $s>0$, satisfying

$$
t^{\gamma+1} \frac{\varphi^{\prime}(\tau)^{2}}{\varphi(\tau)} \leqslant \frac{1}{C} t^{\gamma} b(t) \varphi(\tau)+\Gamma, \quad \forall \tau \in(0,1], \forall t \geqslant 0 .
$$

Remarks A. 3 .

1. In Lemma 3.3 of [28] it is imposed that $b(s)$ is increasing, $b(0)=0$, and the function $\frac{b(s)}{s}$ is nondecreasing in \mathbb{R}^{+}. However, it is easy to see that the proof (see also [27]) works by using the weaker assumptions of Lemma A.2.
2. In addition, also in [27], the Keller-Osserman condition is replaced by the following one:

$$
\int^{+\infty} \frac{d s}{\sqrt{s b(s)}}<+\infty
$$

Note that, as a consequence of the monotonicity of $b(s)$ for large s, the above assumption is equivalent to (2.10).

Let us recall a local version of a classical result by Stampacchia we will use in the following.
Lemma A.4. (See [36].) Let $\tau(j, \rho):[0,+\infty) \times\left[0, R_{0}\right) \rightarrow \mathbb{R}$ be a function such that $\tau(\cdot, \rho)$ is nonincreasing and $\tau(j, \cdot)$ is nondecreasing. Moreover, suppose that there exist $K_{0}>0, \mu>1$, and $C, v, \gamma>0$ satisfying

$$
\tau(j, \rho) \leqslant C \frac{\tau(k, R)^{\mu}}{(j-k)^{v}(R-\rho)^{\gamma}}, \quad \forall j>k>K_{0}, \forall 0<\rho<R<R_{0} .
$$

Then for every $\delta \in(0,1)$, there exists $d>0$ such that:

$$
\tau\left(K_{0}+d,(1-\delta) R_{0}\right)=0,
$$

where $d^{\nu}=2^{(\nu+\gamma) \frac{\mu}{\mu-1}} C \frac{\left(\tau\left(K_{0}, R_{0}\right)\right)^{\mu-1}}{\delta \gamma R_{0}^{\gamma}}$.
Idea of the proof of Theorem A.1. The proof of this result is essentially contained in [27], but for the convenience of the reader, we include here the proof of the exact result that we have used in the proof of Proposition 2.3 and in the proof of Theorem 1.3.

Actually we deal with equation

$$
-\operatorname{div}(\tilde{M}(x, u) \nabla u)+P(x) \cdot \nabla u+f(x) b(u)=0 \quad \text { in } \Omega,
$$

where $\widetilde{M}(x, s)$ satisfies (1.2), $P(x)$ is a bounded vector field, $b(s)$ is increasing and satisfies the KellerOsserman condition (2.10), $\frac{b(s)}{s}$ is nondecreasing for s large, and f satisfies (1.4). Consequently all the assumptions of the theorem are satisfied. We remind that the above assumptions are satisfied by the functions $\widetilde{M}(x, s), b(s)$ and $f(x)$, appearing in Proposition 2.3 as well as by the functions $M(x), P(x), b(s)$ and $f(x)$ appearing in Theorem 1.3.

Suppose now that $u^{+} \in L_{\text {loc }}^{\infty}(\Omega)$ and $b\left(u^{+}\right) \in L_{\text {loc }}^{1}(\Omega)$. We set $\omega \Subset \omega^{\prime} \Subset \Omega$ and a cut-off function $\eta(x)$ such that $0 \leqslant \eta \leqslant 1$ and

$$
\eta(x)= \begin{cases}1, & x \in \omega, \tag{A.7}\\ 0, & x \in \Omega \backslash \omega^{\prime} .\end{cases}
$$

We denote $p_{0}=\|P(x)\|_{\left(L^{\infty}(\Omega)\right)^{N}}$ and we fix $\sigma>\frac{2 p_{0}}{\alpha}$ and the constants C, k_{0} such that

$$
\frac{\|\nabla \eta\|_{L^{\infty}(\Omega)}^{2}}{8 \sigma^{2}}\left[\frac{\beta^{2}}{\alpha}+\left(\alpha-\frac{p_{0}}{\sigma}\right)\right] \frac{1}{C}+\frac{p_{0}}{4 \sigma b\left(k_{0}\right)} \leqslant \frac{m_{\omega^{\prime}}(f)}{2 \sigma}
$$

and we also consider the function φ given by Lemma A. 2 with $\gamma=1$ and this constant C. Note that if $\xi=\sqrt{\varphi(\eta)}$, then $u \xi^{2}=u \varphi(\eta) \in H_{0}^{1}(\Omega)$ and

$$
\nabla\left(u \xi^{2}\right)= \begin{cases}\xi^{2} \nabla u+2 \xi u \nabla \xi & \text { if } \xi(x)>0 \tag{A.8}\\ 0 & \text { if } \xi(x)=0\end{cases}
$$

a.e. in Ω. Moreover $f(x)\left(\mathrm{e}^{2 \sigma G_{k}\left(u^{+}\right)}-1\right) b\left(u^{+}\right) \in L_{\text {loc }}^{1}(\Omega)$ and consequently $v=\frac{1}{2 \sigma}\left(\mathrm{e}^{2 \sigma G_{k}\left(u^{+}\right)}-1\right) \xi^{2}$, $\sigma>\frac{2 p_{0}}{\alpha}$, is an admissible test function. Using this test function as well as (1.2), (1.4) and Young's inequality we deduce that

$$
\begin{aligned}
& \alpha \int_{\omega^{\prime}}\left|\nabla G_{k}\left(u^{+}\right)\right|^{2} \mathrm{e}^{2 \sigma G_{k}\left(u^{+}\right)} \xi^{2}+\frac{m_{\omega^{\prime}}(f)}{2 \sigma} \int_{\omega^{\prime}} b\left(u^{+}\right)\left(\mathrm{e}^{2 \sigma G_{k}\left(u^{+}\right)}-1\right) \xi^{2} \\
& \quad \leqslant \frac{\beta}{\sigma} \int_{\omega^{\prime}}|\nabla \xi|\left|\nabla G_{k}\left(u^{+}\right)\right|\left(\mathrm{e}^{2 \sigma G_{k}\left(u^{+}\right)}-1\right) \xi+p_{0} \int_{\omega^{\prime}}\left|\nabla G_{k}\left(u^{+}\right)\right| v \\
& \leqslant \frac{\alpha}{2} \int_{\omega^{\prime}}\left|\nabla G_{k}\left(u^{+}\right)\right|^{2} \mathrm{e}^{2 \sigma G_{k}\left(u^{+}\right)} \xi^{2}+\frac{\beta^{2}}{2 \alpha \sigma^{2}} \int_{\omega^{\prime}}^{|\nabla \xi|^{2}\left(\mathrm{e}^{2 \sigma G_{k}\left(u^{+}\right)}-1\right)^{2}} \\
& \mathrm{e}^{2 \sigma G_{k}\left(u^{+}\right)} \\
& \quad+\frac{p_{0}}{2 \sigma} \int_{\omega^{\prime}}\left|\nabla G_{k}\left(u^{+}\right)\right|^{2}\left(\mathrm{e}^{2 \sigma G_{k}\left(u^{+}\right)}-1\right) \xi^{2}+\frac{p_{0}}{4 \sigma} \int_{\omega^{\prime}}\left(\mathrm{e}^{2 \sigma G_{k}\left(u^{+}\right)}-1\right) \xi^{2}
\end{aligned}
$$

$$
\begin{aligned}
\leqslant & \frac{\sigma \alpha+p_{0}}{2 \sigma} \int_{\omega^{\prime}}\left|\nabla G_{k}\left(u^{+}\right)\right|^{2} \mathrm{e}^{2 \sigma G_{k}\left(u^{+}\right)} \xi^{2}+\frac{\beta^{2}}{2 \alpha \sigma^{2}} \int_{\omega^{\prime}}|\nabla \xi|^{2}\left(\mathrm{e}^{2 \sigma G_{k}\left(u^{+}\right)}-1\right)^{2} \\
& +\frac{p_{0}}{4 \sigma} \int_{\omega^{\prime}}\left(\mathrm{e}^{2 \sigma G_{k}\left(u^{+}\right)}-1\right) \xi^{2} .
\end{aligned}
$$

In other words,

$$
\begin{aligned}
& \frac{1}{4 \sigma^{2}}\left(\alpha-\frac{p_{0}}{\sigma}\right) \int_{\omega^{\prime}}\left|\nabla\left[\left(\mathrm{e}^{\sigma G_{k}\left(u^{+}\right)}-1\right) \xi\right]\right|^{2}+\frac{m_{\omega^{\prime}}(f)}{2 \sigma} \int_{\omega^{\prime}} b\left(u^{+}\right)\left(\mathrm{e}^{2 \sigma G_{k}\left(u^{+}\right)}-1\right) \xi^{2} \\
& \quad \leqslant\left[\frac{\beta^{2}}{2 \alpha \sigma^{2}}+\frac{1}{2 \sigma^{2}}\left(\alpha-\frac{p_{0}}{\sigma}\right)\right] \int_{\omega^{\prime}}|\nabla \xi|^{2}\left(\mathrm{e}^{2 \sigma G_{k}\left(u^{+}\right)}-1\right)^{2}+\frac{p_{0}}{2} \int_{\omega^{\prime}} v .
\end{aligned}
$$

Applying Lemma A. 2 with $\gamma=1$, together with the monotonicity of $b(s)$ we get

$$
\begin{aligned}
& \frac{1}{4 \sigma^{2}}\left(\alpha-\frac{p_{0}}{\sigma}\right) \int_{\omega^{\prime}}\left|\nabla\left[\left(\mathrm{e}^{\sigma G_{k}\left(u^{+}\right)}-1\right) \xi\right]\right|^{2} \\
& \quad \leqslant \Gamma \frac{\|\nabla \eta\|_{L^{\infty}(\Omega)}^{2}}{8 \sigma^{2}}\left[\frac{\beta^{2}}{\alpha}+\left(\alpha-\frac{p_{0}}{\sigma}\right)\right] \operatorname{meas}\left\{x \in \omega^{\prime}: u(x) \geqslant k\right\},
\end{aligned}
$$

for every $k>k_{0}\left(m_{\omega^{\prime}}(f), p_{0}\right)$. We deduce by Sobolev's inequality that

$$
\left(\int_{\omega}\left|\left(\mathrm{e}^{\sigma G_{k}\left(u^{+}\right)}-1\right) \xi\right|^{2 *}\right)^{\frac{2}{2 *}} \leqslant C_{0} \text { meas }\left\{x \in \omega^{\prime}: u(x) \geqslant k\right\},
$$

where $C_{0}=\mathcal{S}^{2} \Gamma \frac{\|\nabla \eta\|_{L^{2}(\Omega)}^{2}}{8 \sigma^{2}}\left[\frac{\beta^{2}}{\alpha}+\left(\alpha-\frac{p_{0}}{\sigma}\right)\right]$. Hence, using that $\mathrm{e}^{t}-1 \geqslant t$, for every $t \geqslant 0$, and that $G_{k}(s) \geqslant j-k$ for $s \geqslant j>k$ we derive that

$$
\begin{equation*}
(j-k)^{2} \text { meas }\{x \in \omega: u(x) \geqslant j\}^{\frac{2}{2^{*}}} \leqslant \frac{C_{0}}{\sigma} \text { meas }\left\{x \in \omega^{\prime}: u(x) \geqslant k\right\} . \tag{A.9}
\end{equation*}
$$

Now, if $\omega \Subset \Omega$ is fixed, we consider $R=\operatorname{dist}(\omega, \partial \Omega) / 2$, the set

$$
\omega_{r}=\{x \in \Omega: \operatorname{dist}(x, \omega)<r\} \Subset \Omega
$$

and the function

$$
\tau(k, r)=\operatorname{meas}\left\{x \in \omega_{r}: u(x) \geqslant k\right\}
$$

for every $r \in(0, R]$ and $k>0$. Taking $\omega=\omega_{r}$ and $\omega^{\prime}=\omega_{R}$ in (A.9) and choosing η such that $\|\nabla \eta\|_{L^{\infty}(\Omega)} \leqslant \frac{c}{R-r}$, we obtain

$$
(j-k)^{2} \tau(j, r)^{2 / 2^{*}} \leqslant c_{1} \frac{\tau(k, R)}{(R-r)^{2}},
$$

for some $c_{1}>0$ and the proof is concluded by applying Lemma A.4.

Remarks A.5.

1. We remark explicitly that in the above proof the constant Γ obtained by applying Lemma A. 2 depends on $m_{\omega^{\prime}}(f)$. In particular, since $m_{\omega^{\prime}}(f) \leqslant m_{\omega}(f)$ for $\omega \Subset \omega^{\prime}$, if $m_{\omega}(f)$ tends to zero, then this constant Γ and hence the a priori estimate C_{ω} given by Theorem A. 1 diverge to $+\infty$.
2. By adding a condition on the function $b(s)$ for negative s and using similar ideas to the ones in the above proof, it is possible to give also a priori estimates of the whole L^{∞} norm of the solution in every compact subset ω of Ω. More precisely, if, in addition to the hypotheses of Theorem A.1, we strengthen (A.6) by imposing that
$b(s)$ is increasing and satisfies (2.10), $b(s) / s$ is nondecreasing,
for large s and for every $\omega \Subset \Omega$ there exists $m_{\omega}>0$ such that

$$
\begin{equation*}
\forall s \in \mathbb{R}, \quad B(x, s) \operatorname{sign} s \geqslant m_{\omega} b(|s|) \geqslant 0 \quad \text { for a.e. } x \in \omega \tag{A.10}
\end{equation*}
$$

then for every $\omega \Subset \Omega$ there exists $C_{\omega}>0$ such that

$$
|u(x)| \leqslant C_{\omega}, \quad \forall x \in \omega
$$

Theorem A. 1 is an extension to quasilinear equations of the well-known local a priori estimate of Keller [24] and Osserman [33] (see also [5,31,32,37,38] and the references cited therein) for semilinear operators. This semilinear a priori estimate was the crucial tool in order to prove the existence of a large solution, i.e., a solution u of the semilinear equation satisfying $u=+\infty$ at $\partial \Omega$ in the sense that

$$
\lim _{\operatorname{dist}(x, \partial \Omega) \rightarrow 0} u(x)=+\infty
$$

Thus, it is natural to ask whether it is also possible to prove the existence of a large solution for (A.1). Clearly, in this nonlinear framework we have to specify the meaning we give to "infinity" at $\partial \Omega$, since it has no sense pointwise. Actually we will assume such a condition in a weak sense, through a condition on the trace on the boundary of the truncation of the solution. Specifically we consider the following equation

$$
\begin{equation*}
-\operatorname{div}(a(x, u, \nabla u))+B(x, u)=F(x), \quad x \in \Omega \tag{A.11}
\end{equation*}
$$

Definition A.6. An a.e. finite function $u(x)$ such that $T_{k}(u) \in H^{1}(\Omega) \forall k>0$ is a distributional large solution for (A.11) with $F \in L_{\mathrm{loc}}^{1}(\Omega)$, if:

$$
\begin{equation*}
\int_{\Omega} a(x, u, \nabla u) \cdot \nabla \varphi+\int_{\Omega} B(x, u) \varphi=\int_{\Omega} F \varphi, \quad \forall \varphi \in C_{c}^{\infty}(\Omega) \tag{i}
\end{equation*}
$$

(iii) $\forall k>0, k-T_{k}(u) \in H_{0}^{1}(\Omega)$.

Remark A.7. In the above definition, (iii) has the meaning of "infinity at $\partial \Omega$ ". We mention that this definition of explosive boundary condition has already been introduced in [29], for a different class of nonlinear elliptic equations involving nonlinear "coercive" gradient terms.

We conclude by observing that even if not explicitly written in [27], all the estimates that we need in order to prove the existence of large solutions for (A.11) have been proved and thus we have the following result.

Theorem A.8. Suppose that $a(x, s, \varsigma)$ and $B(x, s)$ satisfy (A.2)-(A.4), (A.10) and

$$
\begin{equation*}
\sup _{|s| \leqslant k}|B(x, s)| \in L^{1}(\Omega), \quad \forall k>0 \tag{A.12}
\end{equation*}
$$

Assume also that $F \in L_{\mathrm{loc}}^{1}(\Omega)$ with $F^{-} \in L^{1}(\Omega)$. Then there exists a distributional large solution for (A.11).
Proof. We consider the following sequence of problems

$$
\left\{\begin{array}{l}
-\operatorname{div} a\left(x, u_{n}, \nabla u_{n}\right)+B\left(x, u_{n}\right)=F_{n} \quad \text { in } \Omega \\
u_{n}-n \in H_{0}^{1}(\Omega),
\end{array}\right.
$$

where $F_{n}=T_{n}(F)$. Since $B(x, s+n) s \geqslant 0$ for large $|s|$, the existence of a weak solution $u_{n} \in H^{1}(\Omega) \cap$ $L^{\infty}(\Omega)$ is a consequence of [6, Theorem 6.1], i.e. $u_{n}-n \in H_{0}^{1}(\Omega)$ and it satisfies

$$
\begin{equation*}
\int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla v+\int_{\Omega} B\left(x, u_{n}\right) v=\int_{\Omega} F_{n} v, \quad \forall v \in H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega) \tag{A.13}
\end{equation*}
$$

Observing that for any $n \geqslant k, k-T_{k}\left(u_{n}\right) \in H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega)$, we can choose $v=k-T_{k}\left(u_{n}\right)$ as test function in (A.13) and we obtain

$$
-\int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla T_{k}\left(u_{n}\right)+\int_{\Omega} B\left(x, u_{n}\right)\left[k-T_{k}\left(u_{n}\right)\right]=\int_{\Omega} F_{n}\left[k-T_{k}\left(u_{n}\right)\right] .
$$

Using (A.2), and (A.6) and (A.12) we have

$$
\alpha \int_{\Omega}\left|\nabla T_{k}\left(u_{n}\right)\right|^{2} \leqslant 2 k \int_{\Omega} \sup _{|s| \leqslant k}|B(x, s)|+2 k\left\|F_{n}^{-}\right\|_{L^{1}(\Omega)}
$$

Thus, for every $k \in \mathbb{N}$, we can now extract a subsequence (not relabeled) of $\left\{T_{k}\left(u_{n}\right)\right\}_{n \in \mathbb{N}}$ that weakly converges in $H^{1}(\Omega)$ and, by Rellich theorem, strongly in $L^{2}(\Omega)$.

Now, consider any sets $\omega \Subset \omega^{\prime} \Subset \Omega$, a cut-off function $\eta(x)$ chosen as in (A.7) and $\xi=\sqrt{\varphi(\eta)}$. Arguing as in (A.8), we deduce that $v=T_{k}\left(u_{n} \xi^{2}\right)$ is an admissible test function for (A.13). Thus we have

$$
\int_{A_{k}} a\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla\left[u_{n} \xi^{2}\right]+\int_{\Omega} B\left(x, u_{n}\right) T_{k}\left(u_{n} \xi^{2}\right) \leqslant k\|F\|_{L^{1}\left(\omega^{\prime}\right)}
$$

where $A_{k}=\left\{x \in \Omega:\left|u_{n}\right| \xi^{2} \leqslant k\right.$ and $\left.\xi(x)>0\right\}$, and so, using (A.2) and (A.10), we get

$$
\begin{aligned}
& \alpha \int_{A_{k}}\left|\nabla u_{n}\right|^{2} \xi^{2}+m_{\omega^{\prime}} \int_{A_{k}}\left|b\left(u_{n}\right)\right| T_{k}\left(u_{n} \xi^{2}\right) \\
& \quad \leqslant k\|F\|_{L^{1}\left(\omega^{\prime}\right)}+2 \beta \int_{A_{k}}\left|\nabla u_{n}\right||\nabla \xi| u_{n} \xi
\end{aligned}
$$

By applying Young inequality, (A.3) and Lemma A. 2 (with $\gamma=1$ and for any fixed $C>\frac{\alpha^{2}+4 \beta^{2}}{8 \alpha m_{\omega^{\prime}}} \times$ $\|\nabla \eta\|_{L^{\infty}\left(\omega^{\prime}\right)}$ and taking into account Remarks A.5-2) we deduce that there exists $c>0$ such that

$$
\int_{\Omega}\left|\nabla T_{k}\left(u_{n} \xi^{2}\right)\right|^{2} \leqslant c(k+1)
$$

Then, using that $\xi=1$ in ω, by Lemmas 4.1 and 4.2 of [6] it follows that u_{n} and $\left|\nabla u_{n}\right|$ are bounded respectively in $\mathcal{M}^{\frac{N}{N-2}}(\omega)$ and $\mathcal{M}^{\frac{N}{N-1}}(\omega)$, for any $\omega \Subset \Omega$. Combining this information with the strong convergence of $T_{k}\left(u_{n}\right)$ in $L^{2}(\Omega)$ we deduce that u_{n} is a Cauchy sequence in measure and so, up to subsequences (not relabeled), it converges for a.e. $x \in \Omega$ to a function $u \in W_{\text {loc }}^{1, q}(\Omega)$. This, in particular, implies that

$$
\lim _{n \rightarrow+\infty} k-T_{k}\left(u_{n}\right)=k-T_{k}(u) \quad \text { weakly in } H_{0}^{1}(\Omega)
$$

i.e. u satisfies the boundary condition.

On the other hand, we prove that the lower order term is bounded in $L_{\text {loc }}^{1}(\Omega)$; indeed, if, for $\varepsilon>0$, we take $v=\frac{1}{\varepsilon} T_{\varepsilon}\left(u_{n}\right) \xi$ as test function in (A.13) (as before, such a function it is admissible). Thus, by (A.2), (A.3), and dropping positive terms, we get

$$
\int_{\Omega} B\left(x, u_{n}\right) \frac{T_{\varepsilon}\left(u_{n}\right)}{\varepsilon} \xi \leqslant\|F\|_{L^{1}\left(\omega^{\prime}\right)}+\beta\|\nabla \xi\|_{L^{\infty}\left(\omega^{\prime}\right)} \int_{\omega^{\prime}}\left|\nabla u_{n}\right| .
$$

Since the right-hand side is bounded being $\left\{\left|\nabla u_{n}\right|\right\}$ bounded in $\mathcal{M}_{\text {loc }}^{\frac{N}{N-1}}(\Omega)$ and $F \in L_{\text {loc }}^{1}(\Omega)$, letting $\varepsilon \rightarrow 0$, we deduce by Fatou lemma that there exists $c_{\omega}>0$ such that

$$
\int_{\omega}\left|B\left(x, u_{n}\right)\right| \leqslant c_{\omega}
$$

On the other hand, choosing $v=T_{1}\left(G_{h}\left(u_{n} \xi^{2}\right)\right)$ as test function, where $\xi^{2}=\varphi(\eta)$ we have, by using (A.2), (A.3), (A.10) and (A.12),

$$
\begin{aligned}
& \frac{\alpha}{2} \int_{h \leqslant\left|u_{n} \xi^{2}\right| \leqslant h+1}\left|\nabla u_{n}\right|^{2} \xi^{2}+\frac{1}{2} \int_{\Omega} B\left(x, u_{n}\right) T_{1}\left(G_{h}\left(u_{n} \xi^{2}\right)\right) \\
& \quad \leqslant \int_{\omega^{\prime} \cap\left\{u_{n} \xi^{2} \geqslant h\right\}}\left|F_{n}\right|+\frac{2 \beta^{2}}{\alpha}\|\nabla \eta\|_{L^{\infty}(\Omega)}^{2} \operatorname{meas}\left\{x \in \omega^{\prime}: \xi^{2}\left|u_{n}\right| \geqslant h\right\} .
\end{aligned}
$$

By the strong compactness of $\left\{F_{n}\right\}$ in $L^{1}\left(\omega^{\prime}\right)$ and the local uniform estimate of $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ in $\mathcal{M}_{\text {loc }}^{\frac{N}{N-2}}(\Omega)$, we derive then that

$$
\left.\lim _{h \rightarrow+\infty} \sup _{n \in \mathbb{N}} \int_{\{x \in \omega:}\left|B\left(x, u_{n}\right)\right| \geqslant h\right\} .
$$

As a consequence of Vitali theorem we deduce that $\left\{\left|B\left(x, u_{n}\right)\right|\right\}_{n \in \mathbb{N}}$ is strongly compact in $L^{1}\left(\omega^{\prime}\right)$, where $\omega^{\prime} \Subset \Omega$ is arbitrary. Moreover, since the lower order term is bounded in $L_{\text {loc }}^{1}(\Omega)$, we can apply Lemma 1 in [10] in order to prove that ∇u_{n} converges to ∇u a.e. in Ω. This, and the weak convergence of u_{n} in $W^{1, q}\left(\omega^{\prime}\right), \forall \omega^{\prime} \Subset \Omega$, imply

$$
u_{n} \rightarrow u \quad \text { in } W^{1, q}(\omega), \quad \forall 1 \leqslant q<\frac{N}{N-1}, \quad \forall \omega \Subset \Omega
$$

and, thanks to (A.3), we also have that

$$
\begin{equation*}
a\left(x, u_{n}, \nabla u_{n}\right) \rightarrow a(x, u, \nabla u) \quad \text { in } L^{1}(\omega)^{N}, \forall \omega \Subset \Omega \tag{A.14}
\end{equation*}
$$

Now we can pass to the limit in the distributional formulation: indeed choosing any $\phi \in C_{c}^{\infty}(\Omega)$ in (A.13) we have

$$
\int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla \phi+\int_{\Omega} B\left(x, u_{n}\right) \phi=\int_{\Omega} F_{n} \phi
$$

Using (A.14) we deduce that

$$
\lim _{n \rightarrow+\infty} \int_{\operatorname{supp} \phi} a\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla \phi=\int_{\operatorname{supp} \phi} a(x, u, \nabla u) \cdot \nabla \phi
$$

Moreover, by the strong convergence of $\left\{B\left(x, u_{n}\right)\right\}$ and $\left\{F_{n}\right\}$ in $L_{\mathrm{loc}}^{1}(\Omega)$, we deduce that

$$
\lim _{n \rightarrow+\infty} \int_{\operatorname{supp} \phi} F_{n} \phi=\int_{\operatorname{supp} \phi} F \phi
$$

and

$$
\lim _{n \rightarrow+\infty} \int_{\text {supp } \phi} B\left(x, u_{n}\right) \phi=\int_{\text {supp } \phi} B(x, u) \phi
$$

and this concludes the proof.

References

[1] D. Arcoya, S. Barile, P.J. Martínez-Aparicio, Singular quasilinear equations with quadratic growth in the gradient without sign condition, J. Math. Anal. Appl. 350 (2009) 401-408.
[2] D. Arcoya, J. Carmona, P.J. Martínez-Aparicio, Elliptic obstacle problems with natural growth on the gradient and singular nonlinear terms, Adv. Nonlinear Stud. 7 (2007) 299-317.
[3] D. Arcoya, P.J. Martínez-Aparicio, Quasilinear equations with natural growth, Rev. Mat. Iberoamericana 24 (2008) $597-616$.
[4] D. Arcoya, S. Segura de León, Uniqueness of solutions for some elliptic equations with a quadratic gradient term, ESAIM Control Optim. Calc. Var. (2008), doi:10.1051/cocv:2008072.
[5] C. Bandle, M. Marcus, Large solutions of semilinear elliptic equations: Existence, uniqueness and asymptotic behavior, J. Anal. Math. 58 (1992) 9-24.
[6] P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre, J.L. Vázquez, An L^{1}-theory of existence and uniqueness of nonlinear elliptic equations, Ann. Sc. Norm. Super. Pisa Cl. Sci. 22 (1995) 241-273.
[7] A. Bensoussan, L. Boccardo, F. Murat, On a nonlinear PDE having natural growth terms and unbounded solutions, Ann. Inst. H. Poincaré Anal. Non Linéaire 5 (1988) 347-364.
[8] L. Boccardo, Dirichlet problems with singular and gradient quadratic lower order terms, ESAIM Control Optim. Calc. Var. 14 (2008) 411-426.
[9] L. Boccardo, T. Gallouët, Nonlinear elliptic and parabolic equations involving measure data, J. Funct. Anal. 87 (1989) 149169.
[10] L. Boccardo, T. Gallouët, Nonlinear elliptic equations with right-hand side measures, Comm. Partial Differential Equations 17 (1992) 641-655.
[11] L. Boccardo, T. Gallouët, Strongly nonlinear elliptic equations having natural growth terms and L^{1} data, Nonlinear Anal. 19 (1992) 573-579.
[12] L. Boccardo, T. Gallouët, F. Murat, A unified presentation of two existence results for problems with natural growth, in: Progress in Partial Differential Equations: The Metz Surveys 2, in: Pitman Res. Notes Math. Ser., vol. 296, Longman, Harlow, 1993, pp. 127-137.
[13] L. Boccardo, T. Gallouët, J.L. Vázquez, Nonlinear elliptic equations in \mathbb{R}^{N} without growth conditions on the data, J. Differential Equations 105 (1993) 334-363.
[14] L. Boccardo, F. Murat, Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations, Nonlinear Anal. 19 (1992) 581-597.
[15] L. Boccardo, F. Murat, J.-P. Puel, Existence de solutions non bornees pour certaines équations quasi-linéaires, Port. Math. 41 (1982) 507-534.
[16] L. Boccardo, F. Murat, J.-P. Puel, L^{∞} estimate for some nonlinear elliptic partial differential equations and application to an existence result, SIAM J. Math. Anal. 23 (1992) 326-333.
[17] H. Brezis, Semilinear equations in \mathbb{R}^{N} without condition at infinity, Appl. Math. Optim. 12 (1984) 271-282.
[18] Djairo G. De Figueiredo, Positive solutions of semilinear elliptic problems, in: Differential Equations, Proceedings of the 1st Latin American School of Differential Equations, São Paulo, Brazil, June 29-July 17, 1981, in: Lecture Notes in Math., vol. 957, Springer-Verlag, 1982.
[19] T. Gallouët, J.-M. Morel, The equation $-\Delta u+|u|^{\alpha-1} u=f$, for $0 \leqslant \alpha \leqslant 1$, Nonlinear Anal. 11 (1987) 893-912.
[20] D. Giachetti, F. Murat, An elliptic problem with a lower order term having singular behaviour, Boll. Unione Mat. Ital. Sez. B, in press.
[21] E. Giarrusso, G. Porru, Problems for elliptic singular equations with a gradient term, Nonlinear Anal. 65 (2006) $107-128$.
[22] B. Gidas, W.-M. Ni, L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (3) (1979) 209-243.
[23] D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1983.
[24] J.B. Keller, On solutions of $\Delta u=f(u)$, Comm. Pure Appl. Math. 10 (1957) 503-510.
[25] O. Ladyzenskaya, N. Ural'tseva, Linear and Quasilinear Elliptic Equations, translated by Scripta Technica, Academic Press, New York, 1968.
[26] C. Leone, A. Porretta, Entropy solutions for nonlinear elliptic equations in L^{1}, Nonlinear Anal. 32 (1998) 325-334.
[27] F. Leoni, Nonlinear elliptic equations in \mathbb{R}^{N} with "absorbing" zero order terms, Adv. Differential Equations 5 (2000) 681722.
[28] F. Leoni, B. Pellacci, Local estimates and global existence for strongly nonlinear parabolic equations with locally integrable data, J. Evol. Equ. 6 (2006) 113-144.
[29] T. Leonori, Large solutions for a class of nonlinear elliptic equations with gradient terms, Adv. Nonlinear Stud. 7 (2007) 237-269.
[30] J. Leray, J.L. Lions, Quelques résultats de Višik sur les problèmes elliptiques non linéaires par les méthodes de MintyBrowder, Bull. Soc. Math. France 93 (1965) 97-107.
[31] M. Marcus, L. Veron, Uniqueness and asymptotic behaviour of solutions with boundary blow-up for a class of nonlinear elliptic equations, Ann. Inst. H. Poincaré 14 (1997) 237-274.
[32] M. Marcus, L. Veron, Existence and uniqueness results for large solutions of general nonlinear elliptic equations, dedicated to Philippe Bénilan, J. Evol. Equ. 3 (2003) 637-652.
[33] R. Osserman, On the inequality $\Delta u \geqslant f(u)$, Pacific J. Math. 7 (1957) 1641-1647.
[34] G. Porru, A. Vitolo, Problems for elliptic singular equations with a quadratic gradient term, J. Math. Anal. Appl. 334 (2007) 467-486.
[35] A. Porretta, Existence for elliptic equations in L^{1} having lower order terms with natural growth, Port. Math. 57 (2000) 179-190.
[36] G. Stampacchia, Équations elliptiques du second ordre à coefficients discontinus, Les Presses de l'Université de Montréal, Montréal, 1966.
[37] J.L. Vázquez, An a priori interior estimate for the solutions of a nonlinear problem representing weak diffusion, Nonlinear Anal. 5 (1981) 95-103.
[38] L. Veron, Semilinear elliptic equations with uniform blow-up on the boundary, J. Anal. Math. 59 (1992) 231-250.

[^0]: * Corresponding author.

 E-mail addresses: darcoya@ugr.es (D. Arcoya), jcarmona@ual.es (J. Carmona), leonori@mat.uc.pt (T. Leonori), pedrojma@ugr.es (P.J. Martínez-Aparicio), orsina@mat.uniroma1.it (L. Orsina), francesco.petitta@cma.uio.no (F. Petitta).

