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We study both existence and nonexistence of nonnegative solutions
for nonlinear elliptic problems with singular lower order terms that
have natural growth with respect to the gradient, whose model is

{
−�u + |∇u|2

uγ
= f in Ω,

u = 0 on ∂Ω,

where Ω is an open bounded subset of R, γ > 0 and f is a
function which is strictly positive on every compactly contained
subset of Ω . As a consequence of our main results, we prove that
the condition γ < 2 is necessary and sufficient for the existence of
solutions in H1

0(Ω) for every sufficiently regular f as above.
© 2009 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we are going to study existence and nonexistence of nonnegative solutions for the
following boundary value problem
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{−div
(
M(x, u)∇u

) + g(x, u)|∇u|2 = f in Ω,

u = 0 on ∂Ω.
(1.1)

Here Ω is a bounded, open subset of R
N , N � 3, M(x, s)

def= (mij(x, s)), i, j = 1, . . . , N , is a matrix
whose coefficients mij :Ω × R → R are Carathéodory functions (i.e., mij(·, s) is measurable on Ω for
every s ∈ R, and mij(x, ·) is continuous on R for a.e. x ∈ Ω) such that there exist constants 0 < α � β

satisfying

α|ς |2 � M(x, s)ς · ς and
∣∣M(x, s)

∣∣ � β, for a.e. x ∈ Ω, ∀(s, ς) ∈ R × R
N . (1.2)

The function g :Ω × (0,+∞) → R is a Carathéodory function (i.e., g(·, s) is measurable on Ω for
every s ∈ (0,+∞), and g(x, ·) is continuous on (0,+∞) for a.e. x ∈ Ω) such that

g(x, s) � 0, for a.e. x ∈ Ω, ∀s > 0. (1.3)

We will be mainly interested to the case of a function g which is singular near s = 0, such as, for

example, g(x, s) = 1/sγ , γ > 0. On the datum f , we first suppose that it belongs to L
2N

N+2 (Ω) and that
it satisfies

mω( f )
def= ess inf

{
f (x): x ∈ ω

}
> 0, ∀ω � Ω. (1.4)

Note that (1.4) implies that f � 0 in Ω and that f �≡ 0 in Ω .
There are several papers concerned with existence and nonexistence of solutions for (1.1). If g is

nonsingular, that is if g is a Carathéodory function on Ω ×[0,∞), problem (1.1) has been exhaustively
studied by Boccardo, Murat and Puel [15], Bensoussan, Boccardo and Murat [7] and Boccardo, Gallouët
[11] with data f in suitable Lebesgue spaces.

On the contrary, as stated before, in this paper we shall focus our attention on problem (1.1)
with g(x, s) having a singularity at s = 0 (uniformly with respect to x). More precisely, we look for
a distributional solution of problem (1.1), i.e. a function u ∈ W 1,1

0 (Ω) which solves the equation in
the sense of distributions, u > 0 almost everywhere in Ω , and such that g(x, u)|∇u|2 in L1(Ω). If
moreover u ∈ H1

0(Ω), we say that u is a finite energy solution for problem (1.1). A possible motivation
for the study of these problems arises from the Calculus of Variations. If 0 � f ∈ Lq(Ω), q > N

2 and
γ ∈ (0,1), a purely formal computation shows that the Euler–Lagrange equation associated to the
functional

J (v) = 1

2

∫
Ω

(
1 + |v|1−γ

)|∇v|2 −
∫
Ω

f v,

is

−div
((

1 + |u|1−γ
)∇u

) + 1 − γ

2

u

|u|1+γ
|∇u|2 = f .

Observe that this is a nonlinear elliptic equation that involves a singular natural growth gradient term.
Therefore, it is natural to wonder whether we can handle general not necessarily variational prob-

lems whose simplest model is ⎧⎨⎩−�u + |∇u|2
uγ

= f in Ω,

u = 0 on ∂Ω,

(1.5)

and to determine the optimal range of γ > 0 for which solutions exist.
Please cite this article in press as: D. Arcoya et al., Existence and nonexistence of solutions for singular quadratic quasilinear
equations, J. Differential Equations (2009), doi:10.1016/j.jde.2009.01.016
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Recently, existence of solutions for (1.5) has been proved in [1–3] for 0 < γ � 1. We also quote
the even more recent papers [8] and [20]. Specifically, the existence of positive solutions of (1.1) is
proved in [8] provided 0 �≡ f ∈ Lq(Ω) (q > 2N/(N + 2)) with f � 0 and provided g(x, s) = 1/sγ with
γ � 1. On the other hand, a related different problem is studied in [20]. Namely, if χ{u>0} denotes
the characteristic function of the set {x ∈ Ω: u(x) > 0}, 0 � f ∈ L∞(Ω), μ ∈ R and λ,γ > 0, the
differential equation

−div
(
M(x, u)∇u

) + λu + μ
|∇u|2

uγ
χ{u>0} = f

is considered. The given results about existence of nonnegative solutions in H1
0(Ω) depend on γ .

Indeed, existence is proved for every μ ∈ R if γ < 1, while the case γ � 1 requires that μ < 0. Thus,
if γ � 1 the term with quadratic dependence in ∇u is negative (i.e., the opposite assumption with
respect to (1.3)). In this direction, result for similar equations can be also found in [21] and [34] (see
also references cited therein).

The purpose of this paper is twofold. First of all, we will extend the above results to a more
general class of nonlinearities both in the principal part of the operator and in the lower order term,
as well as to general, possibly L1(Ω), data. Then, we will give a sharp range of nonlinearities g(x, s)
for which these problems admit a solution for every datum f ∈ Lq(Ω), with q > N/2, satisfying (1.4).

In order to prove our results, we will have to strengthen assumption (1.3). Specifically, for the
results of existence of solutions, we will suppose that the function g(x, s) satisfies

0 � g(x, s) � h(s), for a.e. x ∈ Ω, ∀s > 0, (1.6)

where h : (0,+∞) → [0,+∞) is a continuous nonnegative function such that

lim
s→0+

1∫
s

√
h(t)dt < +∞,

h(s) is nonincreasing in a neighborhood of zero. (1.7)

Our result of existence of finite energy solutions (proved in Section 2) is the following.

Theorem 1.1. Let f in L
2N

N+2 (Ω) be such that (1.4) holds, and suppose that (1.2), (1.6) and (1.7) hold. Then
there exists a finite energy solution u for problem (1.1). Furthermore, ug(x, u)|∇u|2 ∈ L1(Ω).

Note that the fact u g(x, u)|∇u|2 ∈ L1(Ω) implies that the solution u itself is allowed as test func-
tion (since f ∈ H−1(Ω)) in the weak formulation of (1.1) (see (2.1) in Section 2). With respect to the
proof, due to the fact that the lower order term g(x, u)|∇u|2 is (possibly) singular as the solution
is near 0, we will approximate the function g(x, s) by nonsingular ones gn(x, s) in such a way that
the corresponding approximated problems have finite energy solutions un for every n in N. The main
difficulty in the proof of Theorem 1.1 relies on a suitable local uniform estimate from below of these
solutions. To do it, it suffices by (1.6) to prove that any supersolution z > 0 for the equation

−div
(
M(x, z)∇z

) + h(z)|∇z|2 = f in Ω

is above some positive constant in every ω � Ω , i.e.

∀ω � Ω ∃cω > 0: z(x) � cω > 0. (1.8)
Please cite this article in press as: D. Arcoya et al., Existence and nonexistence of solutions for singular quadratic quasilinear
equations, J. Differential Equations (2009), doi:10.1016/j.jde.2009.01.016
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This is proved in Proposition 2.3 via a suitable change of variable which turns the goal into a local L∞
estimate for solutions of quasilinear problems. The local L∞ estimate is then obtained using a result
of [27] (see also the pioneering paper [17] and also [13,19]) on an equation whose model is

−div
(
M̃(x, v)∇v

) + f (x)b(v) = 0 in Ω, (1.9)

where M̃ satisfies (1.2) and b(s) is a function with b(s)/s increasing for large s > 0 and satisfying the
Keller–Osserman condition

+∞∫
dt√

2
∫ t

0 b(τ )dτ
< +∞.

For the convenience of the reader, the exact result that we need is proved in Appendix A (see The-
orem A.1). For such type of L∞ estimates we refer to the “classical” literature on the so-called large
solutions (see, among others, [5,31,32,38]) and on local estimates (see, among others, [13,17,19,27,37]).

Section 3 of this paper will be concerned with some extensions of the existence result. First of all,
combining the above ideas with those in [35] (see also [26]), we handle the case of data f in L1(Ω),
proving the existence of distributional solutions u of (1.1), with u in W 1,q

0 (Ω) for every q < N
N−1 .

More precisely, in Section 3.1, we shall prove the following result.

Theorem 1.2. Let f in L1(Ω) be such that (1.4) holds and suppose that (1.2), (1.6) and (1.7) hold. Then there
exists a distributional solution u of (1.1), with u in W 1,q

0 (Ω), for every q < N
N−1 . If, in addition, there exist

s0 > 0 and μ > 0 such that

g(x, s) � μ for a.e. x ∈ Ω, ∀s � s0, (1.10)

then u ∈ H1
0(Ω) (i.e., it is a finite energy solution).

On the other hand, in Section 3.2, we will also provide an analogous of Theorem 1.1 involving
more general differential operators whose principal part is not in divergence form and data in Lq(Ω)

with q > N
2 . Namely, we consider the following problem

⎧⎪⎨⎪⎩−
N∑

i, j=1

aij(x)
∂2u

∂xi∂x j
(x) +

N∑
i=1

bi(x)
∂u

∂xi
(x) + g(x, u)|∇u|2 = f in Ω,

u = 0 on ∂Ω,

(1.11)

where the coefficients aij(x) satisfy the ellipticity condition

0 < α|ς |2 �
N∑

i, j=1

aij(x)ςiς j � β|ς |2, ∀ς ∈ R
N , (1.12)

for some 0 < α � β . We prove the following result.

Theorem 1.3. Suppose that ∀i, j = 1, . . . , N, aij ∈ W 1,∞(Ω) satisfy (1.12), and that bi ∈ L∞(Ω). Assume that
f (x) satisfies (1.4) and belongs to Lq(Ω) with q > N

2 . Suppose moreover that g(x, s) satisfies (1.3), (1.6) (with h
such that (1.7) holds). Then there exists a solution u ∈ H1

0(Ω)∩ L∞(Ω) for (1.11). Furthermore, g(x, u)|∇u|2 ∈
L1(Ω).
Please cite this article in press as: D. Arcoya et al., Existence and nonexistence of solutions for singular quadratic quasilinear
equations, J. Differential Equations (2009), doi:10.1016/j.jde.2009.01.016
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We are also concerned with nonexistence of positive solutions for problem (1.1) for data f in
Lq(Ω) for some q > N

2 , with f � 0 and f �≡ 0. In contrast with the previous existence results, we will
assume in this case that the nonlinearity g(x, s) is above a function h(s) whose square root is not
integrable in (0,1). Specifically, we assume that

0 � h(s) � g(x, s), for a.e. x ∈ Ω, ∀s > 0, (1.13)

where h : (0,+∞) → [0,+∞) is a nonnegative continuous function such that

lim
s→0+ h(s) = +∞, lim

s→0+

1∫
s

√
h(t)dt = +∞, (1.14)

and

lim
s→0+

√
h(s)e

∫ s
1

√
h(t)dt = h0 � 0. (1.15)

Among others, we are going to prove in Section 4 that if λ1( f ) denotes the first positive eigenvalue of
the Laplacian operator −� with zero Dirichlet boundary conditions and weight f ∈ Lq(Ω), (q > N/2),
then the following result holds.

Theorem 1.4. Let f in Lq(Ω), with q > N
2 , be such that f � 0 and f �≡ 0, and assume that (1.2), (1.13)–(1.15)

hold. If λ1( f ) >
β
α , then (1.1) does not have any finite energy solution.

As an easy consequence of Theorem 1.4, we will prove (see Corollary 4.5) that the model problem
(1.5) does not have any finite energy solution provided γ � 2. By gathering together this nonexistence
result and Theorem 1.1 we conclude immediately that, in the case of the model problem (1.5), we
have a sharp range of values of γ for which there exist solutions. In addition, if γ is not in this range,
we prove also what happens if we try to approximate problem (1.5) with a sequence of problems for
which solutions exist.

Theorem 1.5. Problem (1.5) has a finite energy solution for every f ∈ Lq(Ω) (q > N
2 ) satisfying (1.4) if and

only if γ < 2. Moreover, let λ1 be the first eigenvalue of the Laplacian in the N-dimensional unit ball (i.e. the
first positive zero of the Bessel function Jm with m = N/2 − 1), assume f ∈ L∞(Ω), and either

γ > 2 or γ = 2 and ‖ f ‖L∞(Ω) <
λ1

diam (Ω)2
. (1.16)

Then the sequence {un} of solutions of⎧⎨⎩−�un + |∇un|2
(un + 1

n )γ
= f in Ω,

un = 0 on ∂Ω,

tends to 0 in H1
0(Ω), and the sequence |∇un|2

(un+ 1
n )γ

converges to f in the weak-∗ topology of measures.

To conclude this introduction, some remarks are in order. First, we have to mention that unique-
ness of solutions for (1.5) is proved in [4] for the case 0 < γ < 1. Secondly, let us explicitly state that
we have chosen to present the results and to perform the proofs in the case N � 3. However, all the
results but Theorem 1.1 hold true also in the case N = 2 (with easier proofs). In addition, if N = 2

(which implies 2N
N+2 = 1), Theorem 1.1 is also true provided we replace the assumption f ∈ L

2N
N+2 (Ω)

with f ∈ Lm(Ω), and assume m > 1.
Please cite this article in press as: D. Arcoya et al., Existence and nonexistence of solutions for singular quadratic quasilinear
equations, J. Differential Equations (2009), doi:10.1016/j.jde.2009.01.016



ARTICLE IN PRESS YJDEQ:5830

JID:YJDEQ AID:5830 /FLA [m1G; v 1.79; Prn:11/02/2009; 14:31] P.6 (1-37)

6 D. Arcoya et al. / J. Differential Equations ••• (••••) •••–•••
The plan of the paper is the following: in Section 2 we will prove a local estimate from below
for the solutions, together with Theorem 1.1. Section 3 is devoted to provide further existence results
for L1 data (Theorem 1.2) and operators in non-divergence form (Theorem 1.3). In Section 4 we prove
the nonexistence result (both Theorems 1.4 and 1.5). Finally we present in Appendix A some results
related to the local estimate (1.8). For instance, we show in detail how to get the lower bound for
solutions of (1.1), through a suitable change of variable, proving a local bound from above for solutions
of a semilinear equation whose model is (1.9) (Theorem A.1). Such topic is strictly related to the
possibility of constructing estimates for solutions of (1.9) that do not depend on the behavior at
the boundary: and indeed in Theorem A.8 we prove the existence of solutions that blow up at the
boundary (i.e., the so-called “large solutions”) for such equations.

Notation. For any k > 0 we set Tk(s) = min(k,max(s,−k)) and Gk(s) = s − Tk(s). Moreover, for any
q > 1, q′ = q

q−1 will be the Hölder conjugate exponent of q, while for any 1 < p < N , p∗ = Np
N−p is the

Sobolev conjugate exponent of p. As usual, S denotes the best Sobolev constant, i.e.,

S = sup
{‖u‖L2∗

(Ω): ‖u‖H1
0(Ω) = 1

}
.

In Section 3 we will use some ideas related to Marcinkiewicz spaces; for the convenience of the
reader we recall here their definition and some properties. For s > 1, we denote by Ms(Ω) the space
of measurable functions v : Ω → R such that there exists c > 0, with

meas
{

x ∈ Ω:
∣∣v(x)

∣∣ � k
}

� c

ks
, ∀k > 0. (1.17)

The space Ms(Ω) is a Banach space, and it can be defined the pseudo-norm

‖v‖s
Ms(Ω) = inf

{
c > 0: (1.17) holds

}
.

We also recall that, since Ω is bounded, for every ε ∈ (0, s − 1], there exists a positive constant C
such that

‖v‖Ms(Ω) � ‖v‖Ls(Ω), ∀v ∈ Ls(Ω),

‖w‖Ls−ε(Ω) � C‖w‖Ms(Ω), ∀w ∈ Ms(Ω). (1.18)

Finally, following [15], we set ϕλ(s) = seλs2
, λ > 0; in what follows we will use that for every a,

b > 0 we have

aϕ′
λ(s) − b

∣∣ϕλ(s)
∣∣ � a

2
, (1.19)

if λ > b2

4a2 . We will also denote by ε(n) any quantity that tends to 0 as n diverges.

2. Finite energy solutions

In this section we will prove the existence of finite energy solutions for problem (1.1). Let us recall
its definition.

Definition 2.1. A supersolution (resp. subsolution) for problem (1.1) is a function u ∈ W 1,1
loc (Ω) such that

(1) u > 0 almost everywhere in Ω ,
(2) g(x, u)|∇u|2 belongs to L1

loc(Ω),
Please cite this article in press as: D. Arcoya et al., Existence and nonexistence of solutions for singular quadratic quasilinear
equations, J. Differential Equations (2009), doi:10.1016/j.jde.2009.01.016
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(3) for every 0 � φ ∈ C∞
c (Ω), it holds∫

Ω

M(x, u)∇u · ∇φ +
∫
Ω

g(x, u)|∇u|2φ �
(�)

∫
Ω

f φ.

A function u ∈ W 1,1
0 (Ω) is a distributional solution for (1.1) if g(x, u)|∇u|2 belongs to L1(Ω), and u is

both a supersolution and a subsolution for such a problem.
If moreover u ∈ H1

0(Ω), we say that u is a finite energy solution for problem (1.1). In this case, we
have ∫

Ω

M(x, u)∇u · ∇ψ +
∫
Ω

g(x, u)|∇u|2ψ =
∫
Ω

f ψ, ∀ψ ∈ H1
0(Ω) ∩ L∞(Ω). (2.1)

The proof of Theorem 1.1 relies on approximating the datum f ∈ L
2N

N+2 (Ω) by its truncatures
fn = Tn( f ) and the nonlinearity g by a suitable sequence of Carathéodory functions gn (for n ∈ N).
Specifically, we define

gn(x, s)
def=

⎧⎪⎨⎪⎩
g(x, s), s � 1

n ,

nh( 1
n ) s

h(s) g(x, s), 0 < s � 1
n ,

0, s � 0.

Since h is nonincreasing in a neighborhood of zero, we observe that there exists n0 ∈ N, such that gn

satisfies, for a.e. x ∈ Ω , ∀s > 0, ⎧⎪⎨⎪⎩
lim

n→+∞ gn(x, s) = g(x, s),

gn(x, s) � g(x, s), ∀n � n0,

gn(x, s) � 0.

(2.2)

Since for fixed n both functions fn(x) (x ∈ Ω) and |ς |2
1+ 1

n |ς |2 (ς ∈ R
N ) are bounded, classical results

allow us to deduce that problem

⎧⎨⎩−div
(
M(x, un)∇un

) + gn(x, un)
|∇un|2

1 + 1
n |∇un|2 = fn in Ω,

un = 0 on ∂Ω,

(2.3)

has a solution un that belongs to H1
0(Ω) (see [30]) and to L∞(Ω) (see [36]).

We are going to prove now some properties of the sequence un that we will use in the sequel.

Lemma 2.2. Assume that 0 �≡ f ∈ L
2N

N+2 (Ω) satisfies f � 0 and that M(x, s) satisfies (1.2). If, for every n ∈ N,
the function un ∈ H1

0(Ω) is a solution of problem (2.3), then:

1. The sequence {un} is bounded in H1
0(Ω) and

un gn(x, un)
|∇un|2

1 + 1
n |∇un|2 is bounded in L1(Ω).

2. The functions un are continuous in Ω and un(x) > 0 for every x ∈ Ω and n ∈ N.
Please cite this article in press as: D. Arcoya et al., Existence and nonexistence of solutions for singular quadratic quasilinear
equations, J. Differential Equations (2009), doi:10.1016/j.jde.2009.01.016
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Proof. 1. Taking un as test function in (2.3) and using Hölder and Sobolev inequalities we obtain that∫
Ω

M(x, un)∇un · ∇un +
∫
Ω

gn(x, un)un
|∇un|2

1 + 1
n |∇un|2 =

∫
Ω

fnun

� S‖ f ‖
L

2N
N+2 (Ω)

‖∇un‖L2(Ω).

By the ellipticity condition (1.2) and the nonnegativeness of gn(x, s)s, we conclude that the sequences

un and un gn(x, un)
|∇un|2

1+ 1
n |∇un|2 are bounded, respectively, in H1

0(Ω) and in L1(Ω).

2. We take u−
n

def= min(un,0) as test function in (2.3), so that, by (1.2),

α

∫
Ω

∣∣∇u−
n

∣∣2 +
∫
Ω

gn(x, un)
|∇un|2

1 + 1
n |∇un|2 u−

n �
∫
Ω

fnu−
n .

Using that fn � 0 and gn(x, s) is zero for every s � 0, we obtain

α

∫
Ω

∣∣∇u−
n

∣∣2 �
∫
Ω

fn u−
n � 0.

Thus u−
n ≡ 0 and so un � 0. Moreover, for every n ∈ N,

−div
(
M(x, un)∇un

) = fn − gn(x, un)
|∇un|2

1 + 1
n |∇un|2 ∈ L∞(Ω).

Hence un belongs to the space of the Hölder continuous functions in Ω (see for instance [25, Theo-
rem 1.1 in Chapter 4]).

We are now going to prove that un > 0 in Ω . Let Cn > 0 be such that gn(x, s) � Cns, for
s ∈ [0,‖un‖L∞(Ω)]. Thus the nonnegative function un satisfies in the sense of distributions in Ω

−div
(
M(x, un)∇un

) + nCnun � −div
(
M(x, un)∇un

) + gn(x, un)|∇un|2
1 + 1

n |∇un|2
= fn.

Observing that fn is nonnegative and not identically zero (since f �≡ 0), by the strong maximum
principle (see [23] for instance) we deduce that un > 0 in Ω . �

In the next proposition we will prove that the sequence {un} is uniformly bounded from below,
away from zero, in every compact set in Ω . This result will be crucial in order to prove the existence
of a solution for (1.1).

Proposition 2.3. Suppose that f ∈ L∞
loc(Ω) satisfies (1.4), and that h is such that (1.7) holds. Let ω be a

compactly contained open subset of Ω . Then there exists a constant cω > 0 such that every supersolution
0 < z ∈ H1

loc(Ω) ∩ C(Ω) of the equation

−div
(
M(x, z)∇z

) + h(z)|∇z|2 = f in Ω, (2.4)

satisfies

z � cω in ω.
Please cite this article in press as: D. Arcoya et al., Existence and nonexistence of solutions for singular quadratic quasilinear
equations, J. Differential Equations (2009), doi:10.1016/j.jde.2009.01.016
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Remark 2.4. The above proposition will be crucial in the proofs of both Theorems 1.1 and 1.2. In fact,
we will use the following consequences:

(i) Let un be a solution of (2.3) with n � n0 (n0 given by (2.2)). By Lemma 2.2, un > 0 in Ω and it
is continuous. In particular h(un)|∇un|2 ∈ L1

loc(Ω). Thus, from the inequalities gn(x, s) � g(x, s) �
h(s) for every s > 0 and fn � f1 we obtain that un is a supersolution for

−div
(
M(x, z)∇z

) + h(z)|∇z|2 = f1 in Ω.

Therefore, by the above proposition (with f = f1 and z = un ∈ H1
0(Ω) ∩ C(Ω) (Lemma 2.2-2)) for

any ω � Ω we get the existence of a positive constant cω such that un � cω in ω. Taking k > 0
and m0 > max{n0,

1
cω

}, we deduce, by the definition of gn , that for all n � m0

gn
(
x, un(x)

) = g
(
x, un(x)

)
� ck(ω)

def= max
s∈[cω,k]

h(s),

for every x ∈ ω such that un(x) � k.
(ii) If 0 < un ∈ H1

0(Ω) ∩ C(Ω) is a finite energy solution of

−div
(
M(x, un)∇un

) + g(x, un)|∇un|2 = fn in Ω,

then, using again that g(x, s) � h(s), fn � f1 and h(un)|∇un|2 ∈ L1
loc(Ω), we derive that un is also

a supersolution of

−div
(
M(x, z)∇z

) + h(z)|∇z|2 = f1 in Ω.

Consequently, if ω � Ω and cω has been defined above (with f = f1), then un � cω in ω. There-
fore,

g
(
x, un(x)

)
� ck(ω)

def= max
s∈[cω,k]

h(s),

for every x ∈ ω such that un(x) � k.

Proof of Proposition 2.3. Let z > 0 be a supersolution of (2.4). We are going to consider a suitable
change of variable. In order to make it, since in general the function h may be integrable in (0,1), we
set h̃(s) = h(s) + α

s , and define, for s > 0, the nondecreasing function

H(s) =
s∫

1

h̃(t)dt =
s∫

1

h(t)dt + log sα, (2.5)

and the nonincreasing function

ψ(s) =
1∫

s

e− H(t)
α dt =

1∫
s

t−1e−
∫ t

1 h(τ )dτ

α dt. (2.6)

Observing that

lim+ ψ(s) = +∞, lim
s→+∞ ψ(s)= ψ∞ ∈ [−∞,0),
Please cite this article in press as: D. Arcoya et al., Existence and nonexistence of solutions for singular quadratic quasilinear
equations, J. Differential Equations (2009), doi:10.1016/j.jde.2009.01.016
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we can define

v
def= ψ(z). (2.7)

Since z is continuous and strictly positive in Ω , we get that z is bounded away from zero (with the
bound depending on z) in every open set ω compactly contained in Ω . Consequently, by the chain
rule, we have

∇v = −e− H(z)
α ∇z ∈ L2(ω), ∀ω � Ω, (2.8)

and thus v ∈ H1(ω) for every ω � Ω , i.e., v ∈ H1
loc(Ω).

Let 0 � φ ∈ C∞
c (Ω), and take (as in [8]) e− H(z)

α φ as test function in (2.4) to deduce from the
inequality h(s) � h̃(s) that

−
∫
Ω

M(x, z)∇z · ∇z
h̃(z)

α
e− H(z)

α φ +
∫
Ω

M(x, z)∇z · ∇φe− H(z)
α

+
∫
Ω

h̃(z)|∇z|2e− H(z)
α φ �

∫
Ω

f e− H(z)
α φ.

Using (1.2) together with (2.8) we get,

−
∫
Ω

M(x, z)∇ψ(z) · ∇φ �
∫
Ω

f e− H(z)
α φ�

∫
Ω

(
e− H(z)

α − 1
)

f φ.

If we define M̃(x, s) = M(x,ψ−1(s)) and

b(s) = e− H(ψ−1(s))
α − 1 for every s ∈ (ψ∞,+∞), (2.9)

then v is subsolution of

−div
(
M̃(x, v)∇v

) + f (x)b(v) = 0 in Ω.

Observe that b(s)
s is nondecreasing for large s > 0; indeed, this is equivalent to prove that Υ (t) =

e− H(t)
α −1

ψ(t) is nonincreasing in a neighborhood of t = 0. To show this, let w0 ∈ (0,1) be such that h̃(t)
is nonincreasing in (0, w0], and, note that

−e
H(t)
α ψ2(t)Υ ′(t) = h̃(t)

α
ψ(t) − (

e− H(t)
α − 1

) =
1∫

t

[h̃(t) − h̃(s)]
α

e− H(s)
α ds

�
1∫

w0

[h̃(t) − h̃(s)]
α

e− H(s)
α ds = h̃(t)M1 − M2,

where

M1 = 1

α

1∫
w

e− H(s)
α ds and M2 = 1

α

1∫
w

h̃(s)e− H(s)
α ds.
Please cite this article in press as: D. Arcoya et al., Existence and nonexistence of solutions for singular quadratic quasilinear
equations, J. Differential Equations (2009), doi:10.1016/j.jde.2009.01.016
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Thus, if t belongs to the interval (0, h̃−1(min{w0, M2/M1})), then the right-hand side of the above
inequality is positive, and consequently Υ (t) is nonincreasing in this interval.

We also claim now that since
∫ 1

0

√
h(s)ds < +∞ and h is nonincreasing in a neighborhood of

zero, then the function b(s) satisfies the well-known Keller–Osserman condition (see [24] and [33] for
instance), i.e., there exists t0 > 0 such that

+∞∫
t0

dt√
2
∫ t

0 b(s)ds
< +∞. (2.10)

We postpone the proof of the claim for the moment, and we show how to conclude the proof by
using the claim. Indeed, by applying [27, Theorem 7] (see also Theorem A.1 in Appendix A where, for
the convenience of the reader, we have also included a proof of the precise result that we need here)
we derive that for every ω � Ω , there exists Cω > 0 such that

v � Cω in ω.

Therefore, undoing the change

z � ψ−1(Cω) = cω > 0 in ω,

as desired.
Consequently, to conclude the proof it suffices to show (2.10) or, equivalently, that

+∞∫
t0

dt√
2
∫ t

0 e− H(ψ−1(s))
α ds

< +∞.

Using the change τ = ψ−1(s), we obtain

+∞∫
t0

dt√
2
∫ t

0 e− H(ψ−1(s))
α ds

=
+∞∫
t0

dt√
2
∫ ψ−1(0)

ψ−1(t)
e−2 H(τ )

α dτ

.

Now we apply the change w = ψ−1(t) to deduce that

+∞∫
t0

dt√
2
∫ t

0 e− H(ψ−1(s))
α ds

�
w0∫

0

dw√
2
∫ w0

w e
2
α [H(w)−H(τ )] dτ

,

with 0 < w0 = ψ−1(t0) < 1 = ψ−1(0) since ψ is nonincreasing, and we choose t0 � 1 such that h is
nonincreasing in (0, w0].

Since h satisfies (1.7), also h̃ satisfies it, so that we conclude the proof if we show that there exists
a positive constant c0 such that

h̃(w)

w0∫
w

e
2
α [H(w)−H(τ )] dτ � c0 > 0, ∀w ∈ (0, w0). (2.11)

Indeed, the only difficulty is near zero. To overcome it, we use that h (hence h̃) is nonincreasing in
(0, w0], to obtain
Please cite this article in press as: D. Arcoya et al., Existence and nonexistence of solutions for singular quadratic quasilinear
equations, J. Differential Equations (2009), doi:10.1016/j.jde.2009.01.016
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h̃(w)

w0∫
w

e
2
α [H(w)−H(τ )] dτ �

w0∫
w

h̃(τ )e
2
α [H(w)−H(τ )] dτ

= −αe
2
α H(w)

2

w0∫
w

− 2

α
h̃(τ )e− 2

α H(τ ) dτ

= −αe
2
α H(w)

2

[
e− 2

α H(τ )
]w0

w = −α

2

e
2
α H(w)

e
2
α H(w0)

+ α

2
.

Using the above inequality and the fact that e
2
α H(w) is close to zero for w small enough, we can

choose w ∈ (0, w0) such that

h̃(w)

w0∫
w

e
2
α [H(w)−H(τ )] dτ � α

4
,

for 0 < w < w . Thus the existence of c0 such that (2.11) holds is deduced. �
Remark 2.5. If h is such that

lim
s→0+

1∫
s

h(t)dt = +∞,

there is no need to define the above function h̃. Indeed, in this case, the proof of the above theorem
works by using directly h instead of h̃.

Proof of Theorem 1.1. We are going to prove that, up to a subsequence, the sequence {un} of finite
energy solutions of (2.3) converges to a finite energy solution of (1.1).

By Case 1 of Lemma 2.2, we obtain the existence of constants C1, C2 > 0 such that

‖un‖H1
0(Ω) � C1 and

∫
Ω

un gn(x, un)
|∇un|2

1 + 1
n |∇un|2 � C2. (2.12)

Thus, up to a subsequence, we can assume that un converges to some u ∈ H1
0(Ω) weakly in H1

0(Ω)

and, by Rellich’s theorem, strongly in L2(Ω) and a.e. in Ω .
Choosing 1

ε Tε(un) as test function in (2.3) and taking into account that fn � f in Ω , we deduce
that ∫

Ω

Tε(un)

ε
gn(x, un)

|∇un|2
1 + 1

n |∇un|2 �
∫
Ω

fn �
∫
Ω

f .

If we take the limit as ε tends to zero, and we use that, by Lemma 2.2, un > 0 in Ω , we get∫
Ω

gn(x, un)
|∇un|2

1 + 1
n |∇un|2 =

∫
{un>0}

gn(x, un)
|∇un|2

1 + 1
n |∇un|2 �

∫
Ω

f . (2.13)

The proof will be concluded by proving the following steps:
Please cite this article in press as: D. Arcoya et al., Existence and nonexistence of solutions for singular quadratic quasilinear
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Step 1. For every k > 0, Tk(un) → Tk(u) strongly in H1
loc(Ω).

Step 2. un is strongly convergent in H1
loc(Ω).

Step 3. We pass to the limit in (2.3).

Step 1. Here we want to prove that

lim
n→+∞

∫
Ω

∣∣∇(
Tk(un) − Tk(u)

)∣∣2
φ = 0, ∀φ ∈ C∞

c (Ω) with φ � 0. (2.14)

Reasoning as in [12], we consider the function ϕλ(s) defined in (1.19) and we choose ϕλ(Tk(un) −
Tk(u))φ as test function in (2.3): we have

∫
Ω

M(x, un)∇un · ∇(
Tk(un) − Tk(u)

)
ϕ′

λ

(
Tk(un) − Tk(u)

)
φ

+
∫
Ω

M(x, un)∇un · ∇φϕλ

(
Tk(un) − Tk(u)

)

+
∫
Ω

gn(x, un)
|∇un|2

1 + 1
n |∇un|2 ϕλ

(
Tk(un) − Tk(u)

)
φ

=
∫
Ω

fnϕλ

(
Tk(un) − Tk(u)

)
φ.

Since Tk(un) → Tk(u) weakly in H1
0(Ω) and strongly in L2(Ω), we note that∫

Ω

fnϕλ

(
Tk(un) − Tk(u)

)
φ −

∫
Ω

M(x, un)∇un · ∇φϕλ

(
Tk(un) − Tk(u)

) = ε(n).

Moreover, choosing ωφ � Ω with suppφ ⊂ ωφ , we deduce, by case (i) of Remark 2.4 and by the
nonnegativeness of both gn and ϕλ(k − Tk(u)), that

∫
Ω

gn(x, un)
|∇un|2

1 + 1
n |∇un|2 ϕλ

(
Tk(un) − Tk(u)

)
φ

�
∫

{un�k}
gn(x, un)

|∇un|2
1 + 1

n |∇un|2 ϕλ

(
Tk(un) − Tk(u)

)
φ

� −ck(ωφ)

∫
Ω

∣∣∇Tk(un)
∣∣2∣∣ϕλ

(
Tk(un) − Tk(u)

)∣∣φ.

Thus ∫
Ω

M(x, un)∇un · ∇(
Tk(un) − Tk(u)

)
ϕ′

λ

(
Tk(un) − Tk(u)

)
φ

− ck(ωφ)

∫ ∣∣∇Tk(un)
∣∣2∣∣ϕλ

(
Tk(un) − Tk(u)

)∣∣φ � ε(n). (2.15)
Please cite this article in press as: D. Arcoya et al., Existence and nonexistence of solutions for singular quadratic quasilinear
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Note that

∫
Ω

M(x, un)∇un · ∇(
Tk(un) − Tk(u)

)
ϕ′

λ

(
Tk(un) − Tk(u)

)
φχ{un�k}

= −
∫
Ω

M(x, un)∇un · ∇Tk(u)ϕ′
λ

(
k − Tk(u)

)
φχ{un�k} = ε(n),

so that, adding

−
∫
Ω

M(x, un)∇Tk(u) · ∇(
Tk(un) − Tk(u)

)
ϕ′

λ

(
Tk(un) − Tk(u)

)
φ = ε(n)

in both sides of (2.15) and since

∫
Ω

∣∣∇Tk(un)
∣∣2∣∣ϕλ

(
Tk(un) − Tk(u)

)∣∣φ
� 2

∫
Ω

∣∣∇(
Tk(un) − Tk(u)

)∣∣2∣∣ϕλ

(
Tk(un) − Tk(u)

)∣∣φ + 2
∫
Ω

∣∣∇Tk(u)
∣∣2∣∣ϕλ

(
Tk(un) − Tk(u)

)∣∣φ
= 2

∫
Ω

∣∣∇(
Tk(un) − Tk(u)

)∣∣2∣∣ϕλ

(
Tk(un) − Tk(u)

)∣∣φ + ε(n),

we find, using also (1.2) (for the sake of brevity, we omit writing the argument Tk(un) − Tk(u) for ϕλ

and ϕ′
λ),

∫
Ω

∣∣∇(
Tk(un) − Tk(u)

)∣∣2[
αϕ′

λ − 2ck(ωφ)|ϕλ|
]
φ � ε(n).

Choosing λ such that (1.19) holds with a = α and b = 2ck(ωφ), we obtain (2.14).

Step 2. We prove now that the sequence un is strongly convergent in H1
loc(Ω).

Let us choose Gk(un) as test function in (2.3) and drop the positive integral involving the lower
order term. By using (1.2), and Hölder and Sobolev inequalities, we have

∫
Ω

∣∣∇Gk(un)
∣∣2 � S 2

α2

( ∫
{un�k}

f
2N

N+2

)1+ 2
N

,

and the right-hand side of the previous inequality is arbitrarily small if k is large enough. This and
the convergence proved in Step 1 of Tk(un) in H1

0(Ω) implies that |∇un|2 is equiintegrable in every
ω � Ω .

Moreover, since

−div
(
M(x, un)∇un

) = fn − gn(x, un)
|∇un|2

1 + 1 |∇u |2 ,
Please cite this article in press as: D. Arcoya et al., Existence and nonexistence of solutions for singular quadratic quasilinear
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and the right-hand side is bounded in L1(Ω) by the assumptions on f and by (2.13), we can apply
Lemma 1 of [9] (see also [14]) to deduce that, up to (not relabeled) subsequences, ∇un converges to
∇u a.e. in Ω . Hence, by Vitali theorem

un → u in H1
loc(Ω).

Step 3. Let us observe that, by applying Fatou lemma in (2.12) and (2.13), we deduce that∫
Ω

ug(x, u)|∇u|2 � C2 and
∫
Ω

g(x, u)|∇u|2 �
∫
Ω

f ,

respectively. Therefore, to conclude the proof we only have to prove that u is a distributional solution
of the problem (1.1). We begin by passing to the limit on n in the equation satisfied by un , i.e., in∫

Ω

M(x, un)∇un · ∇φ +
∫
Ω

gn(x, un)
|∇un|2

1 + 1
n |∇un|2 φ =

∫
Ω

fnφ, ∀φ ∈ C∞
c (Ω).

First of all, the weak convergence of un to u and the weak-∗ convergence of M(x, un) to M(x, u) in
L∞(Ω) implies that

lim
n→+∞

∫
Ω

M(x, un)∇un∇φ =
∫
Ω

M(x, u)∇u∇φ, ∀φ ∈ C∞
c (Ω). (2.16)

On the other hand, if we fix ω � Ω , then, by Remark 2.4,

gn
(
x, un(x)

)
� ck(ω), ∀n � 1, and ∀x ∈ ω satisfying un(x) � k.

Consequently, if E � ω we have∫
E

∣∣gn
(
x, un(x)

)∣∣ |∇un(x)|2
1 + 1

n |∇un(x)|2

�
∫

E∩{un�k}
gn(x, un)

|∇un|2
1 + 1

n |∇un|2 +
∫

E∩{un�k}
gn(x, un)

|∇un|2
1 + 1

n |∇un|2

� ck(ω)

∫
E∩{un�k}

∣∣∇Tk(un)
∣∣2 +

∫
{un�k}

gn(x, un)
|∇un|2

1 + 1
n |∇un|2 . (2.17)

Let ε > 0 be fixed. Observe that if, for k > 1, we use T1(Gk−1(un)) as test function in (2.3) and drop
positive terms, we deduce that∫

{un�k}
gn(x, un)

|∇un|2
1 + 1

n |∇un|2 �
∫

{un�k−1}
fn �

∫
{un�k−1}

f .

Thus, since the right-hand side tends to 0 uniformly in n as k diverges, we obtain the existence of
k0 > 1 such that ∫

{u �k}
gn(x, un)

|∇un|2
1 + 1

n |∇un|2 � ε

2
, ∀k � k0, ∀n ∈ N.
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Moreover, since Tk(un) is strongly compact in H1
loc(Ω), there exist nε , δε such that for every E � Ω

with meas(E) < δε we have ∫
E∩{un�k}

∣∣∇Tk(un)
∣∣2

<
ε

2ck(ω)
, ∀n � nε.

In conclusion, by (2.17), taking k � k0 we see that meas(E) < δε implies∫
E

∣∣gn
(
x, un(x)

)∣∣ |∇un(x)|2
1 + 1

n |∇un(x)|2 � ε, ∀n � nε,

i.e., the sequence gn(x, un)
|∇un|2

1+ 1
n |∇un|2 is equiintegrable. This, together with its a.e. convergence to

g(x, u)|∇u|2, implies by Vitali theorem that

lim
n→+∞

∫
Ω

gn(x, un)
|∇un|2

1 + 1
n |∇un|2 φ =

∫
Ω

g(x, u)|∇u|2φ, ∀φ ∈ C∞
c (Ω).

Therefore, using the above limit, (2.16) and since fn tends to f strongly in L1(Ω) we conclude that∫
Ω

M(x, u)∇u∇φ +
∫
Ω

g(x, u)|∇u|2φ =
∫
Ω

f φ, ∀φ ∈ C∞
c (Ω). �

Remark 2.6. In addition, if f ∈ Lq(Ω) with q > N/2, then the solution u given by Theorem 1.1 is
continuous in Ω . Indeed, by using ψ = Tm(Gk(u)), with m > k, as test function in (2.1), it is easy
to adapt the idea of Stampacchia [36] in order to obtain that u ∈ L∞(Ω). Now, consider a function
ζ ∈ C∞(Ω) with 0 � ζ(x) � 1, for every x ∈ Ω and compacted supportly in a ball Bρ of radius ρ > 0,
and set Ak,ρ = {x ∈ Bρ ∩ Ω: u(x) > k}. Following the idea of the proof of Theorem 1.1 of Chapter 4 in
[25], take φ = Gk(u)ζ 2 as test function in (2.1) to deduce by (1.2) and Hölder’s inequality that

α

∫
Ak,ρ

|∇u|2ζ 2 � ‖ f ‖Lq(Ω)‖u‖L∞(Ω)(meas Ak,ρ)
1− 1

q + 2β

∫
Ak,ρ

|∇u||∇ζ |ζ Gk(u).

Using again Young’s inequality we get∫
Ak,ρ

|∇u|2ζ 2 � 2‖ f ‖Lq(Ω)‖u‖L∞(Ω)

α
(meas Ak,ρ)

1− 1
q + 4β

α2

∫
Ak,ρ

|∇ζ |2G2
k (u).

In particular, if for σ ∈ (0,1) we choose ζ such that it is constantly equal to 1 in the concentric ball
Bρ−σρ (to Bρ ) of radius ρ − σρ and |∇ζ | < 1

σρ , we obtain

∫
Ak,ρ−σρ

|∇u|2 � γ

(
1 + 1

σ 2ρ
2(1− N

2q )
max
Ak,ρ

(u − k)2
)

(meas Ak,ρ)
1− 1

q ,

where γ = max{ 2‖ f ‖Lq (Ω)‖u‖L∞(Ω)

α ,
4β

α2 ω
1
q
N } with ωN denoting the measure of the unit ball of R

N .
This means that for δ > 0 small enough and every M � ‖u‖L∞(Ω) , the function u belongs to the

class B2(Ω, M, γ , δ, 1
2q ) with 2q > N (see [25, p. 81]). Applying Theorem 6.1 of [25] we deduce that

u is Hölder continuous in Ω .
Please cite this article in press as: D. Arcoya et al., Existence and nonexistence of solutions for singular quadratic quasilinear
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3. Further existence results

3.1. Existence for data in L1(Ω)

In this section we prove Theorem 1.2. In this case, taking advantage of Theorem 1.1, we approxi-
mate problem (1.1) by {−div

(
M(x, un)∇un

) + g(x, un)|∇un|2 = fn in Ω,

un = 0 on ∂Ω,
(3.1)

where fn = Tn( f ).
Note that the existence of a nonnegative finite energy solution un ∈ H1

0(Ω) ∩ C(Ω) such that
g(x, un)|∇un|2 ∈ L1(Ω) follows from Theorem 1.1 and Remark 2.6.

Lemma 3.1. If f ∈ L1(Ω) satisfies (1.4), g(x, s) satisfies (1.6) (with h(s) satisfying (1.7)), and un is a solution
of (3.1), then

(i) un is bounded in M
N

N−2 (Ω) and |∇un| is bounded in M
N

N−1 (Ω);
(ii) up to subsequences, the sequence un is weakly convergent to some u in W 1,q

0 (Ω) for every q ∈ [1, N
N−1 );

(iii) for any k > 0 and for any ω � Ω ,

Tk(un) → Tk(u) in H1(ω).

Proof. (i) Taking Tk(un) as test function in (3.1) and using (1.2), we have

α

∫
Ω

∣∣∇Tk(un)
∣∣2 +

∫
Ω

g(x, un)Tk(un)|∇un|2 � k‖ fn‖L1(Ω).

Since 0 � fn � f and g(x, un) � 0, we have

α

∫
Ω

∣∣∇Tk(un)
∣∣2 � k‖ f ‖L1(Ω). (3.2)

Standard estimates (see [6, Lemmas 4.1 and 4.2]) imply that un is bounded in M
N

N−2 (Ω) and that

|∇un| is bounded in M
N

N−1 (Ω).
(ii) Let 1 � q < N

N−1 . By the preceding case and by the embedding (1.18), we deduce that un is

bounded in W 1,q
0 (Ω) and thus, passing to a subsequence if necessary, there exists u such that un ⇀ u

weakly in W 1,q
0 (Ω).

(iii) Our aim is to show that

lim
n→+∞

∫
Ω

∣∣∇(
Tk(un) − Tk(u)

)∣∣2
φ = 0, ∀φ ∈ C∞

c (Ω), φ � 0.

Here we adapt to our case a technique to obtain the strong convergence of truncations first intro-
duced in [26] (see also [35]). Let us choose ϕλ(wn)φ as test function in (3.1) where ϕλ(s) has been
defined in (1.19) and

wn = T2k
[
un − Tl(un) + Tk(un) − Tk(u)

]
, 0 < k < l.

Thus we have
Please cite this article in press as: D. Arcoya et al., Existence and nonexistence of solutions for singular quadratic quasilinear
equations, J. Differential Equations (2009), doi:10.1016/j.jde.2009.01.016
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∫
Ω

M(x, un)∇un · ∇wnϕ
′
λ(wn)φ +

∫
Ω

M(x, un)∇un · ∇φϕλ(wn) +
∫
Ω

g(x, un)|∇un|2ϕλ(wn)φ

=
∫
Ω

fnφϕλ(wn). (3.3)

Observing that ∇Tk(un) = 0 if un > k and ∇wn ≡ 0 if un � 2k + l ≡ K (we recall that l > k), we have∫
Ω

M(x, un)∇un · ∇wnϕ
′
λ(wn)φ =

∫
Ω

M(x, un)∇Tk(un) · ∇(
Tk(un) − Tk(u)

)
ϕ′

λ(wn)φ

+
∫

{un�k}
M(x, un)∇T K(un) · ∇T2k

(
Gl(un) + k − Tk(u)

)
ϕ′

λ(wn)φ.

Moreover, using that

∇T K(un) · ∇(
Gl(un) − Tk(u)

) = ∇T K(un) · ∇Gl(un) − ∇T K(un)∇Tk(u)

� −∇T K(un) · ∇Tk(u),

we have ∫
{un>k}∩{Gl(un)−Tk(u)�k}

M(x, un)∇T K(un) · ∇(
Gl(un) − Tk(u)

)
ϕ′

λ(wn)φ

� −
∫

{Gl(un)+k−Tk(u)�2k}

∣∣M(x, un)∇T K(un) · ∇Tk(u)
∣∣ϕ′

λ(wn)φχ{un>k},

and thus, since the above integral tends to zero as n diverges,∫
Ω

M(x, un)∇un · ∇wnϕ
′
λ(wn)φ

�
∫
Ω

M(x, un)∇Tk(un) · ∇(
Tk(un) − Tk(u)

)
ϕ′

λ(wn)φ + ε(n). (3.4)

On the other hand, since Gl(un) + k − Tk(u) � 0,∫
Ω

g(x, un)|∇un|2ϕλ(wn)φ �
∫

{un�k}
g(x, un)|∇un|2ϕλ(wn)φ.

Thanks to case (ii) of Remark 2.4 applied to a subset ωφ � Ω with suppφ ⊂ ωφ , we have
g(x, un(x)) � ck(ωφ) for every x ∈ ω with un(x) � k. Then, we get∣∣∣∣ ∫

{un�k}
g(x, un)|∇un|2ϕλ

(
Tk(un) − Tk(u)

)
φ

∣∣∣∣
� ck(ωφ)

∫ ∣∣∇Tk(un)
∣∣2∣∣ϕλ

(
Tk(un) − Tk(u)

)∣∣φ

Please cite this article in press as: D. Arcoya et al., Existence and nonexistence of solutions for singular quadratic quasilinear
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� 2ck(ωφ)

∫
Ω

∣∣∇(
Tk(un) − Tk(u)

)∣∣2∣∣ϕλ

(
Tk(un) − Tk(u)

)∣∣φ
+ 2ck(ωφ)

∫
Ω

∣∣∇Tk(u)
∣∣2∣∣ϕλ

(
Tk(un) − Tk(u)

)∣∣φ.

Note that the last integral tends to 0 as n diverges since ϕλ(Tk(un) − Tk(u)) converges to zero in the
weak-∗ topology of L∞(Ω) and Tk(u) ∈ H1

0(Ω). Therefore, we deduce from this, (3.3) and (3.4) that∫
Ω

M(x, un)∇Tk(un) · ∇(
Tk(un) − Tk(u)

)
ϕ′

λ(wn)φ

− 2ck(ωφ)

∫
Ω

∣∣∇(
Tk(un) − Tk(u)

)∣∣2∣∣ϕλ(wn)
∣∣φ

�
∫
Ω

fnφϕλ(wn) −
∫
Ω

M(x, un)∇un · ∇φϕλ(wn) + ε(n),

and adding to both sides of the previous inequality

−
∫
Ω

M(x, un)∇Tk(u) · ∇(
Tk(un) − Tk(u)

)
ϕ′

λ(wn)φ = ε(n),

we find from (1.2), ∫
Ω

∣∣∇(
Tk(un) − Tk(u)

)∣∣2[
αϕ′

λ(wn) − 2ck(ωφ)
∣∣ϕλ(wn)

∣∣]φ
�

∫
Ω

fnφϕλ(wn) −
∫
Ω

M(x, un)∇un · ∇φϕλ(wn) + ε(n).

Choosing λ such that ϕλ satisfies (1.19) with a = α and b = 2ck(ωφ), we get

α

2

∫
Ω

∣∣∇(
Tk(un) − Tk(u)

)∣∣2
φ

�
∫
Ω

fnφϕλ(wn) −
∫
Ω

M(x, un)∇un · ∇φϕλ(wn) + ε(n).

Moreover, wn a.e. (and weakly-∗ in L∞(Ω)) converges towards w = T2k(Gl(u)) and thus, recalling
that ∇un → ∇u weakly in (Lq(Ω))N , q < N/(N − 1),

lim
n→+∞

∫
Ω

fnφϕλ(wn) −
∫
Ω

M(x, un)∇un · ∇φϕλ(wn)

=
∫
Ω

f φϕλ(w) −
∫
Ω

M(x, u)∇u · ∇φϕλ(w).

Consequently, using (1.2)
Please cite this article in press as: D. Arcoya et al., Existence and nonexistence of solutions for singular quadratic quasilinear
equations, J. Differential Equations (2009), doi:10.1016/j.jde.2009.01.016
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α

2

∫
Ω

∣∣∇(
Tk(un) − Tk(u)

)∣∣2
φ �

∫
Ω

f φϕλ(w) −
∫
Ω

M(x, u)∇u · ∇φϕλ(w) + ε(n)

� ϕλ(2k)

∫
{u�l}

(
f + β|∇u||∇φ|) + ε(n).

Since the last integral tends to zero as l diverges, (iii) is proved. �
Now, we prove our main result concerning L1(Ω) data:

Proof of Theorem 1.2. We begin by proving the first part of the theorem, i.e. that there exists a
solution u ∈ W 1,q

0 (Ω), for every q < N
N−1 , of problem (1.1). We first observe that we deduce from the

results of [14] that ∇un → ∇u a.e., and from Lemma 3.1 the estimates on un and |∇un| in M
N

N−2 (Ω)

and M
N

N−1 (Ω) respectively. Thus un → u strongly in W 1,q
0 (Ω), for every q < N

N−1 . Arguing as in the

proof of Theorem 1.1, we can show that, choosing 1
ε Tε(un) as test function in (3.1) and applying Fatou

lemma, we have g(x, u)|∇u|2 ∈ L1(Ω).
In order to prove that for all ω � Ω , {g(x, un)|∇un|2} is strongly convergent in L1(ω) to

g(x, u)|∇u|2, it suffices to show the local uniform equiintegrability of such sequence. To prove the
claim, we choose T1(Gk−1(un)) (for k > 1) as test function in Eq. (3.1) and we deduce, by dropping
the first positive term (in virtue of (1.2)), and since fn � f , that

∫
{un�k}

g(x, un)|∇un|2 �
∫

{un�k−1}
f . (3.5)

By a similar argument to the one used in Step 3 of the proof of Theorem 1.1, we prove the claim.
Indeed, let E ⊂ ω � Ω be a measurable set. By Remark 2.4(ii) and (3.5), we have, for every k � 1,

∫
E

g(x, un)|∇un|2 =
∫

E∩{un�k}
g(x, un)|∇un|2

+
∫

E∩{un�k}
g(x, un)|∇un|2 � ck(ω)

∫
E∩{un�k}

∣∣∇Tk(un)
∣∣2

+
∫

{un�k}
g(x, un)|∇un|2 � ck(ω)

∫
E

∣∣∇Tk(un)
∣∣2 +

∫
{un�k−1}

f .

Since meas({x ∈ Ω: un � k − 1}) tends to zero (uniformly with respect to n) as k tends to +∞ (be-
cause of the boundedness of {un} in the space MN/(N−2)(Ω) by Lemma 3.1(ii)), we obtain that the
last integral in the above inequalities tends to zero as k goes to +∞. This, and the local equiintegra-
bility of |∇Tk(un)|2 (by Lemma 3.1(iii)), then show the local equiintegrability of {g(x, un)|∇un|2}.

Using moreover that ∇un → ∇u a.e., we conclude by Vitali theorem that

g(x, un)|∇un|2 → g(x, u)|∇u|2 in L1(ω), ∀ω � Ω. (3.6)

Now, using (3.6) and the strong convergence of ∇un to ∇u in (Lq(Ω))N , for every q < N
N−1 , we can

pass to the limit in (3.1) to show that u is a solution for (1.1).
Please cite this article in press as: D. Arcoya et al., Existence and nonexistence of solutions for singular quadratic quasilinear
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In order to prove the second part of the theorem, we simply note that we can fix k � max{s0,1}
so that (1.10) and (3.5) imply

μ

∫
Ω

∣∣∇Gk(un)
∣∣2 = μ

∫
{un�k}

|∇un|2 �
∫

{un�k−1}
f � ‖ f ‖L1(Ω). (3.7)

Hence, taking into account both (3.2) and (3.7), we have∫
Ω

|∇un|2 =
∫
Ω

∣∣∇Tk(un)
∣∣2 +

∫
Ω

∣∣∇Gk(un)
∣∣2 �

(
k

α
+ 1

μ

)
‖ f ‖L1(Ω),

i.e., the boundedness of the sequence {un} in H1
0(Ω). This implies that the solution u, which is the

limit of (a subsequence of) {un}, belongs to H1
0(Ω). �

Remark 3.2. Actually, if (1.10) holds, it is possible to prove, in this latter case, that the approximate se-
quence un is strongly convergent to u in H1(ω), for every ω � Ω . Indeed, due to the a.e. convergence
of ∇un to ∇u in Ω , it suffices to check the equiintegrability of |∇un|2 in every ω � Ω . To do that, we
take a measurable set E ⊂ ω � Ω , and we observe that, thanks to (3.7), for any k � max{s0,1}, we
can write ∫

E

|∇un|2 =
∫
E

∣∣∇Tk(un)
∣∣2 +

∫
E

∣∣∇Gk(un)
∣∣2

�
∫
E

∣∣∇Tk(un)
∣∣2 + 1

μ

∫
{un�k−1}

f . (3.8)

Therefore, using again both the boundedness of un in M
N

N−2 (Ω) and the equiintegrability of
|∇Tk(un)|2 in ω given by Lemma 3.1, we see that (3.8) yields the desired result.

3.2. Non-divergence operators

In this section we sketch the proof of Theorem 1.3 without giving all the details since they are
straightforward adaptations of the applied arguments in the proof of Theorem 1.1.

Proof of Theorem 1.3. We denote by P (x) the vector field whose ith component is Pi(x) = bi(x) +∑N
j=1

∂aij
∂x j

(x) (i = 1, . . . , N) and by M(x) the transpose of the matrix (aij(x))i, j=1,...,N . Let gn(x, s) also

be given by (2.2). Consider the sequence un ∈ H1
0(Ω) ∩ L∞(Ω) of solutions for the problem

{−div
(
M(x)∇un

) + P (x) · ∇un + gn(x, un)|∇un|2 = f in Ω,

un = 0 on ∂Ω.
(3.9)

The proof is divided into several steps.

Step 1. L∞(Ω) estimate. Using the ideas of [16], we choose v = e2λGk(un) − 1, with λ � 1 as test
function in the weak formulation of (3.9) to prove that the sequence {un} is bounded in L∞(Ω).

Step 2. H1
0(Ω) estimate. By the previous L∞(Ω) estimate, it is easy to see that {un} is bounded in

H1
0(Ω), and so un weakly converges in H1

0(Ω) to a function u in H1
0(Ω) ∩ L∞(Ω). Moreover, arguing

as in Remark 2.6, it is clear that both un (for every n ∈ N) and u are continuous in Ω .
Please cite this article in press as: D. Arcoya et al., Existence and nonexistence of solutions for singular quadratic quasilinear
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Step 3. Estimate on the lower order term. Choosing Tε(un)
ε as test function in (3.9) and taking limit

as ε tends to zero, we deduce, for some C1 > 0, that∫
Ω

gn(x, un)|∇un|2 �
∫
Ω

| f | + C1.

Step 4. Uniform bound from below for un in compact sets. Observe that un are supersolutions of
the equation

−div
(
M(x)∇u

) + P (x) · ∇u + h(u)|∇u|2 = f in Ω. (3.10)

If, for H(s) defined in (2.5) and φ ∈ C∞
c (Ω), we take e− H(u)

α φ as test function in (3.10), we see that
vn = ψ(un) are subsolutions of

−div
(
M(x)∇v

) + P (x) · ∇v + b(v) f (x) = 0 in Ω, (3.11)

where b(s) has been defined in (2.9) and we recall that it satisfies the Keller–Osserman condition
(see (2.10)). Hence, by Theorem A.1 in Appendix A, we conclude that for every ω � Ω , there exists
Cω such that vn = ψ(un) � Cω in ω. Therefore, un � cω > 0 in ω, with cω = ψ−1(Cω).

Step 5. Compactness of {un} in H1
loc(Ω). For ϕλ(s) defined in (1.19) and φ ∈ C∞

c (Ω), we choose
ϕλ(un − u)φ as test function in the weak formulation of (3.12) and we note that the ideas of Theo-
rem 1.1 work since the new term that appears in the equation does not lead to any further difficulty
because it has linear growth with respect to ∇u. Thus we conclude that, up to a subsequence,

un → u in H1
loc(Ω).

Step 6. Passing to the limit. By Step 5, we pass to the limit in the weak formulation of (3.9) to
deduce that u is a solution for{−div

(
M(x)∇u

) + P (x) · ∇u + g(x, u)|∇u|2 = f in Ω,

u = 0 on ∂Ω.
(3.12)

Since the coefficients aij are Lipschitz continuous on Ω , we see that u solves (1.11). Finally, by Step 3
we conclude that g(x, u)|∇u|2 ∈ L1(Ω). �
4. Nonexistence results

This section is devoted to study nonexistence of solutions for (1.1). We begin by observing that
if the function g(x, s) satisfies condition (1.13) with h such that (1.14) and (1.15) hold, then we can
change h by a smaller function h which, in addition to (1.14) and (1.15), also satisfies h(s) = 0 for
every s > 1. Indeed, if s0 is the point where h attains its minimum value in [ 1

2 ,1], then it suffices to
define

h(s) =
{

(h(s) − h(s0))
+ if s ∈ (0, s0],

0 if s > s0.

Consequently, without loss of generality, we will assume in the following that condition (1.13) holds
with h satisfying (1.14), (1.15), and

h(s) = 0, ∀s � 1. (4.1)
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Let us consider the function G : (0,+∞) → (0,+∞) given by

G(s) = e
∫ s

1
h(t)
β

dt
, for every s > 0,

where β is given by (1.2). Observe that, by (1.14), the function G can be continuously extended to
[0,+∞) setting G(0) = 0. Moreover, we also define the function σ : [0,+∞) → [0,+∞) by setting
σ(0) = 0 and

σ(s) = e
∫ s

1

√
h(t)dt , for every s > 0.

Observe that, thanks to (1.14) and (1.15), we have that σ ∈ C1([0,+∞)), σ ′(0) = h0 and σ(s) = 0
if and only if s = 0. As a consequence of (4.1), σ(s) = 1 for every s > 1 and σ(s) � 1 for every s � 0.
The next lemma is the key for the proof of Theorem 1.4.

Lemma 4.1. Assume (1.14) and (1.15). Then the function

ϕ(s) =
{ ∫ s

0 G(t)[σ ′(t)]2 dt
G(s) if s > 0,

0 if s = 0,
(4.2)

is a continuously differentiable function on [0,+∞) that satisfies the ordinary differential equation⎧⎨⎩ϕ′(s) + h(s)

β
ϕ(s) = [

σ ′(s)
]2

on [0,+∞),

ϕ(0) = 0.

(4.3)

Moreover, the following inequality holds:

ϕ(s) � β
[
σ(s)

]2
, ∀s > 0. (4.4)

Proof. The first part of the proof is straightforward except for checking that ϕ is differentiable at zero
and ϕ′ is continuous at zero. In order to do it, we note firstly that ϕ is continuous at zero. Indeed,
since G is nondecreasing and [σ ′]2 is continuous in [0,+∞) we have

0 � lim
s→0+ ϕ(s) = lim

s→0+

∫ s
0 G(t)[σ ′(t)]2 dt

G(s)
� lim

s→0+

s∫
0

[
σ ′(t)

]2
dt = 0.

Now we observe that, using the L’Hôpital Rule, (1.14) and (1.15),

ϕ′(0) = h2
0 − lim

s→0+
h(s)

∫ s
0 G(t)[σ ′(t)]2 dt

βG(s)

= h2
0 − h2

0 lim
s→0+

G(s)[σ ′(s)]2

2βσ (s)σ ′(s)G(s) + h(s)[σ(s)]2G(s)

= h2
0 − h2

0 lim
s→0+

1

2β 1√
h(s)

+ 1
= h2

0 − h2
0 = 0.

Hence ϕ is differentiable at zero and ϕ′ is continuous at zero.
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In order to prove inequality (4.4), we observe that since [σ ′(s)]2 = [σ(s)]2h(s), then

ϕ(s) = β

G(s)

s∫
0

G(t)
h(t)

β

[
σ(t)

]2
dt.

Since

G(t)
h(t)

β
= d

dt
G(t),

we can integrate by parts to find (recall that G(0) = σ(0) = 0)

ϕ(s) = β

G(s)

[
G(t)

[
σ(t)

]2]t=s
t=0 − 2β

G(s)

s∫
0

G(t)σ (t)σ ′(t)dt

= β
[
σ(s)

]2 − 2β

G(s)

s∫
0

G(t)
[
σ(t)

]2√
h(t)dt

� β
[
σ(s)

]2
,

since all the functions in the last integral are nonnegative. �
Proof of Theorem 1.4. Let u ∈ H1

0(Ω) be a positive solution for (1.1) and ϕ ∈ C1([0,+∞)) be given
by (4.2). Observing that ϕ(0) = 0, that ϕ′ is bounded and that, by (4.4) and since σ(s) � 1, we have
ϕ(s) � β , we derive that ϕ(u) ∈ H1

0(Ω) ∩ L∞(Ω). Therefore, we can take v = ϕ(u) as test function in
(2.1) to obtain, by using (1.13), that

∫
Ω

M(x, u)∇u · ∇uϕ′(u) +
∫
Ω

h(u)|∇u|2ϕ(u) �
∫
Ω

f ϕ(u).

Thus, adding and subtracting 1
β

∫
Ω

M(x, u)∇u · ∇uh(u)ϕ(u), we derive from (1.2) and (4.3) that

∫
Ω

M(x, u)∇u · ∇u
[
σ ′(u)

]2 �
∫
Ω

M(x, u)∇u · ∇u

[
ϕ′(u) + h(u)

β
ϕ(u)

]

+
∫
Ω

[
I − M(x, u)

β

]
∇u · ∇uh(u)ϕ(u)

�
∫
Ω

f ϕ(u).

Using now (1.2), (4.4) and the fact that f � 0, we have

α

∫ ∣∣∇σ(u)
∣∣2 = α

∫
|∇u|2[σ ′(u)

]2 �
∫

f ϕ(u) � β

∫
f
[
σ(u)

]2
. (4.5)
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Hence, recalling (see [18]) that, since f belongs to Lq(Ω) with q > N
2 , and f + �≡ 0, the first positive

eigenvalue λ1( f ) of the eigenvalue boundary value problem{−�u = λ f u in Ω,

u = 0 on ∂Ω,

is such that

λ1( f )

∫
Ω

f v2 �
∫
Ω

|∇v|2, ∀v ∈ H1
0(Ω),

we deduce from (4.5) that

α

∫
Ω

∣∣∇σ(u)
∣∣2 � β

λ1( f )

∫
Ω

∣∣∇σ(u)
∣∣2

.

Recalling the assumption β
α < λ1( f ), this implies that

∫
Ω

∣∣∇σ(u)
∣∣2 = 0,

which yields

σ(u) = 0, for a.e. x ∈ Ω.

Therefore, recalling that σ(s) = 0 if and only if s = 0, we have u ≡ 0, contradicting u > 0 in Ω:
therefore, there are no positive solutions of (1.1). �
Remark 4.2. Theorem 1.4 can be extended to more general operators. Specifically, if a(x, s, ς) is a
Carathéodory function such that

∃α > 0: a(x, s, ς) · ς � α|ς |2, for a.e. x ∈ Ω, ∀s ∈ R, ∀ς ∈ R
N ,

∃β > 0:
∣∣a(x, s, ς)

∣∣ � β|ς |, for a.e. x ∈ Ω, ∀s ∈ R, ∀ς ∈ R
N ,

and 0 � f ∈ Lq(Ω) with q > N
2 and f �≡ 0, then problem

{−div
(
a(x, u,∇u)

) + g(x, u)|∇u|2 = f in Ω,

u = 0 on ∂Ω,

has no finite energy solutions provided λ1( f ) >
β
α and conditions (1.13)–(1.15) hold.

Remark 4.3. Let 0 � f ∈ Lq(Ω) with q > N
2 and f �≡ 0. Assume (1.2) and that g(s) satisfies (1.13).

Observe that if u ∈ H1
0(Ω) is a solution of (1.1) and R > 0, then v = Ru is a solution of

⎧⎨⎩−div

(
M

(
x,

v

R

)
∇v

)
+ 1

R
g

(
x,

v

R

)
|∇v|2 = R f in Ω,
Please cite this article in press as: D. Arcoya et al., Existence and nonexistence of solutions for singular quadratic quasilinear
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with

g(x, s
R )

R
�hR(s)

def= 1

R
h

(
s

R

)
.

Therefore, by Theorem 1.4, and since λ1(R f ) = λ1( f )/R , if hR(s) satisfies conditions (1.14) and (1.15),
then a necessary condition for the existence of finite energy solutions of (1.1) is that λ1( f ) � Rβ/α.

In the following result, as a consequence of Theorem 1.4 (and Remark 4.3), we give conditions to
assure the nonexistence of solutions of (1.1) for every datum f .

Corollary 4.4. Let 0 � f ∈ Lq(Ω) with q > N
2 and f �≡ 0. Assume (1.2) and that g(s) satisfies (1.13). If there

exists R0 > 0 such that the function hR(s) = 1
R h( s

R ) satisfies (1.14) and (1.15) for every R ∈ (0, R0), then (1.1)
does not have any finite energy solution.

As a consequence of the above results we also have the following.

Corollary 4.5. Let 0 � f ∈ Lq(Ω) with q > N
2 and f �≡ 0. Suppose that (1.2) holds and that for some constants

s0,Λ > 0 and γ � 2 we have

Λ

sγ
� g(x, s), for a.e. x ∈ Ω, ∀s ∈ (0, s0].

If either

(i) γ > 2, or
(ii) γ = 2 and λ1( f ) >

β
Λα ,

then (1.1) does not have any finite energy solution.

Proof. Consider a continuous function h(s) such that

h(s) =

⎧⎪⎨⎪⎩
Λ
sγ if 0 < s � s0

2 ,

� Λ
sγ if s0

2 < s < s0,

0 if s0 � s.

Observing that hR(s) = ΛRγ −1

sγ for every s ∈ (0,
s0
2 ), and using that γ � 2, we have that hR(s) is not

integrable in (0,
s0
2 ), i.e., it satisfies (1.14).

In addition, if γ > 2, then hR(s) satisfies (1.15) for every R > 0, so that Corollary 4.4 concludes the
proof in this case.

On the other hand, if we assume that γ = 2, then

√
hR(s) e

∫ s
1

√
hR (t)dt =

√
ΛR

s
e
∫ s

s0/2

√
ΛR
s dt+∫ s0/2

1

√
hR (t)dt = C s

√
ΛR−1,

for some C > 0. Thus, hR(s) satisfies (1.15) if and only if

lim
s→0+ s

√
ΛR−1 � 0,

i.e., R � 1
Λ

. Therefore, Remark 4.3 implies the nonexistence of solutions provided that λ1( f ) >
β

Λα . �
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As a consequence of this result, we have that the first part of Theorem 1.5 is proved. We are now
going to prove the second part of it.

Proof of Theorem 1.5. We first note that if γ < 2, then Theorem 1.2 guarantees the existence of a
solution. Conversely, if γ > 2 or if γ = 2 and ‖ f ‖L∞(Ω) is large enough, Theorem 1.4 applies and no
solutions exist for (1.5).

On the other hand, if f ∈ L∞(Ω) and (1.16) holds, we recall that existence and uniqueness of a
solution un in H1

0(Ω) ∩ C(Ω) for

⎧⎨⎩−�un + |∇un|2
(un + 1

n )γ
= f in Ω,

un = 0 on ∂Ω

(4.6)

(with γ � 2) follow by the results of [16] (existence) and [4] (uniqueness). Taking un , Gk(un), and
Tε(un)/ε as test functions and working as in Lemma 2.2-1, it is easy to see that un is bounded in
H1

0(Ω) and in L∞(Ω), and that there exists C > 0 (independent on n) satisfying

∫
Ω

|∇un|2
(un + 1

n )γ
� C .

Therefore, up to subsequences, there exists a nonnegative bounded Radon measure ν such that

|∇un|2
(un + 1

n )γ
converges to ν in the weak-∗ topology of measures.

Since un is bounded in H1
0(Ω) then it converges, up to subsequences, to some function u weakly

in H1
0(Ω), strongly in L2(Ω), and almost everywhere in Ω . Moreover, since f − |∇un|2

(un+ 1
n )γ

is bounded

in L1(Ω), the result of [14] yields that (up again to subsequences) ∇un converges to ∇u almost

everywhere in Ω . Then we have, by Fatou lemma, that |∇u|2
uγ χ{u>0} belongs to L1(Ω), and that

ν = |∇u|2
uγ

χ{u>0} + ν0,

where ν0 is a nonnegative bounded Radon measure on Ω . Therefore, u ∈ H1
0(Ω) is a finite energy

solution of {
−�u + |∇u|2

uγ
χ{u>0} = f − ν0 in Ω,

u = 0 on ∂Ω.

Note also that since un+1 is a subsolution for (4.6), we can apply the comparison principle of [4] so
that, for every x ∈ Ω , we have

un(x) � un+1(x) � · · · � u(x),

and thus we can assume that un(x) is converging to u(x) for every x ∈ Ω . We claim that u ≡ 0, so
that un converges to zero in L2(Ω). Indeed, we divide the proof of this assertion in two steps:

Step 1. The case in which Ω is a ball of radius R > 0, Ω = B R , and f = T > 0 is a constant.
Step 2. The general case.
Please cite this article in press as: D. Arcoya et al., Existence and nonexistence of solutions for singular quadratic quasilinear
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Step 1. Assume that Ω = B R and f = T > 0 is a constant. In this case, (1.16) means that, if γ = 2,
then the first eigenvalue λ

B R
1 (T ) of the Laplacian operator with weight T in B R is greater than one,

i.e., λ
B R
1 (T ) > 1. We first observe that u is radially symmetric (and thus continuous for |x| �= 0). Indeed,

if we define

ψn(s) =
s∫

0

e−Hn(t) dt, where Hn(t) = nγ −1

γ − 1

[
1 − (1 + nt)1−γ

]

and we set vn = ψn(un), it is easy to check that vn is the unique solution of

{−�vn = T e−Hn(ψ−1
n (vn)) in B R ,

vn = 0 on ∂ B R .

Since the nonlinearity 0 � e−Hn(ψ−1
n (s)) is C1, we can apply the result of Gidas, Ni and Nirenberg (see

[22]) in order to deduce that vn is radially symmetric (hence vn = vn(r)), monotone decreasing with
respect to r and such that v ′

n(0) = 0. Since ψn and Hn are smooth and increasing, the functions un

have the same properties as vn . Passing to the limit with respect to n we deduce that u is radially
symmetric and monotone nonincreasing.

We argue by contradiction assuming that u is not identically zero. In this case, using that u(r) is
nonincreasing in (0, R),

r1 = inf
{

0 < r � R: u(r) = 0
}

> 0,

and then

u � cε := u(r1 − ε) in Br1−ε.

Therefore, repeating the proof of Theorem 1.1, we prove that

lim
n→+∞

|∇un|2
(un + 1

n )γ
= |∇u|2

uγ
strongly in L1

loc(Br1 ),

so that ν0 is zero on Br1 and, by the continuity of u for r �= 0, u is a solution of

⎧⎨⎩−�u + |∇u|2
uγ

= T in Br1 ,

u = 0 on ∂ Br1 ,

and this contradicts the result of Theorem 1.4 (note that, if γ = 2, we have λ
Br1
1 (T ) > λ

B R
1 (T ) > 1).

Therefore u ≡ 0.

Step 2. Ω is an open set and f is nonnegative and belongs to L∞(Ω).
By (1.16), we can fix R > diam Ω with λ1 > ‖ f ‖L∞(Ω)R2 provided that γ = 2. Let vn be also the

solution of ⎧⎨⎩−�vn + |∇vn|2
(vn + 1

n )γ
= ‖ f ‖L∞(Ω) in B R ,
Please cite this article in press as: D. Arcoya et al., Existence and nonexistence of solutions for singular quadratic quasilinear
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By definition of diam Ω , we have Ω ⊂ B R . Our aim is to prove that vn is a supersolution for (4.6).
Indeed, let 0 � ψ ∈ C∞

0 (Ω) and we use it as test function in the formulation of vn . Thus

∫
B R

∇vn · ∇ψ +
∫
B R

|∇vn|2
( 1

n + un)γ
ψ =

∫
B R

‖ f ‖L∞(B R )ψ,

and since the support of ψ is contained in Ω we deduce∫
Ω

∇vn · ∇ψ +
∫
Ω

|∇vn|2
( 1

n + un)γ
ψ =

∫
Ω

‖ f ‖L∞(B R )ψ �
∫
Ω

f ψ,

for every nonnegative ψ in H1
0(Ω) ∩ L∞(Ω) (by an easy density argument). Using again the compar-

ison principle of [4], un � vn in Ω . Now, observing that by the choice of R , if γ = 2, we have

λ
B R
1

(‖ f ‖L∞(Ω)

) = λ1

R2‖ f ‖L∞(Ω)

> 1, (4.7)

we are able to apply the previous Step 1, so that vn tends to 0 strongly in L2(B R), which implies that
un tends to zero in L2(Ω) and the claim has been proved.

Finally, we conclude the proof by taking un as test function in (4.6) and dropping the nonnegative
quadratic term to deduce that the convergence to zero is strong in H1

0(Ω); using this fact in the weak
formulation of (4.6) then yields that ν = f , as desired. �
Remark 4.6. Let us emphasize that the condition ‖ f ‖L∞(Ω) � λ1

(diam Ω)2 imposed in assumption (1.16)

for the case γ = 2 is not optimal. We use it for the sake of simplicity. However, as shown in the proof
of Theorem 1.5 (see (4.7)), a sharper condition can be used in this case.

More precisely, if we consider the Chebyshev radius R(Ω) of Ω , i.e. the greatest lower bound of
the radii of all balls containing Ω , then the result of Theorem 1.5 with γ = 2 holds provided that

‖ f ‖L∞(Ω) <
λ1

R(Ω)2
.
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Appendix A. Local a priori estimates and large solutions

We devote this appendix to recall some results concerning the following equation

−div
(
a(x, u,∇u)

) + B(x, u) = F (x,∇u), x ∈ Ω, (A.1)

where F (x, ς) and a(x, s, ς), B(x, s) are Carathéodory functions. Suppose that there exist constants
β � α > 0 such that

a(x, s, ς) · ς � α|ς |2, (A.2)∣∣a(x, s, ς)
∣∣ � β|ς |, (A.3)(

a(x, s, ς) − a(x, s, η)
) · (ς − η) > 0, (A.4)

for a.e. x ∈ Ω , for every s ∈ R and for every ς,η ∈ R
N , ς �= η.
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We suppose that F (x, ς) satisfies∣∣F (x, ς)
∣∣ � F0(x) + p0|ς |2, a.e. x ∈ Ω, ∀ς ∈ R

N , (A.5)

where F0 belongs to Lq
loc(Ω) with q > N

2 and p0 > 0. We also suppose that there exists a continuous
nonnegative function b : [0,+∞) → [0,+∞) such that

b(s) is increasing and satisfies the Keller–Osserman condition (2.10),

b(s)/s is nondecreasing for large s,

and for every ω � Ω there exists mω > 0 such that

B(x, s) � mωb(s) � 0, for a.e. x ∈ ω, for every s ∈ R
+. (A.6)

Then the subsolutions of Eq. (A.1) are uniformly bounded from above in ω � Ω . This result is essen-
tially contained in [27].

Theorem A.1. Suppose that a(x, s, ς) satisfies (A.2)–(A.4), B(x, s) satisfies (A.6) and assume that (A.5) holds.
Then, for every ω � Ω there exists Cω > 0 such that any distributional subsolution u ∈ H1

loc(Ω) of (A.1) such

that u+ ∈ L∞
loc(Ω) and B(x, u+) ∈ L1

loc(Ω) satisfies

u(x) � Cω, ∀x ∈ ω.

In order to prove this theorem, we need the following two lemmas.

Lemma A.2. (See [28, Lemma 3.3].) Let b : [0,+∞) → [0,+∞) be a continuous function, satisfying the

Keller–Osserman condition (2.10), such that b(s)
s is nondecreasing for large s. Then, for any C > 0 and γ � 0,

there exist a positive constant Γ and a smooth function ϕ : [0,1] → [0,1] (Γ and ϕ depending only on b, C
and γ ), with ϕ(0) = ϕ′(0) = 0, ϕ(1) = 1 and ϕ(s) > 0 for every s > 0, satisfying

tγ +1 ϕ′(τ )2

ϕ(τ )
� 1

C
tγ b(t)ϕ(τ ) + Γ, ∀τ ∈ (0,1], ∀t � 0.

Remarks A.3.

1. In Lemma 3.3 of [28] it is imposed that b(s) is increasing, b(0) = 0, and the function b(s)
s is

nondecreasing in R
+ . However, it is easy to see that the proof (see also [27]) works by using the

weaker assumptions of Lemma A.2.
2. In addition, also in [27], the Keller–Osserman condition is replaced by the following one:

+∞∫
ds√
sb(s)

< +∞.

Note that, as a consequence of the monotonicity of b(s) for large s, the above assumption is
equivalent to (2.10).

Let us recall a local version of a classical result by Stampacchia we will use in the following.

Lemma A.4. (See [36].) Let τ ( j,ρ) : [0,+∞) × [0, R0) → R be a function such that τ (·,ρ) is nonincreasing
and τ ( j, ·) is nondecreasing. Moreover, suppose that there exist K0 > 0, μ > 1, and C, ν,γ > 0 satisfying

τ ( j,ρ) � C
τ (k, R)μ

ν γ
, ∀ j > k > K0, ∀0 < ρ < R < R0.
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Then for every δ ∈ (0,1), there exists d > 0 such that:

τ
(

K0 + d, (1 − δ)R0
) = 0,

where dν = 2(ν+γ )
μ

μ−1 C (τ (K0,R0))μ−1

δγ R
γ
0

.

Idea of the proof of Theorem A.1. The proof of this result is essentially contained in [27], but for the
convenience of the reader, we include here the proof of the exact result that we have used in the
proof of Proposition 2.3 and in the proof of Theorem 1.3.

Actually we deal with equation

−div
(
M̃(x, u)∇u

) + P (x) · ∇u + f (x)b(u) = 0 in Ω,

where M̃(x, s) satisfies (1.2), P (x) is a bounded vector field, b(s) is increasing and satisfies the Keller–
Osserman condition (2.10), b(s)

s is nondecreasing for s large, and f satisfies (1.4). Consequently all
the assumptions of the theorem are satisfied. We remind that the above assumptions are satisfied
by the functions M̃(x, s), b(s) and f (x), appearing in Proposition 2.3 as well as by the functions
M(x), P (x),b(s) and f (x) appearing in Theorem 1.3.

Suppose now that u+ ∈ L∞
loc(Ω) and b(u+) ∈ L1

loc(Ω). We set ω � ω′ � Ω and a cut-off function
η(x) such that 0 � η � 1 and

η(x) =
{

1, x ∈ ω,

0, x ∈ Ω \ ω′. (A.7)

We denote p0 = ‖P (x)‖(L∞(Ω))N and we fix σ >
2p0
α and the constants C,k0 such that

‖∇η‖2
L∞(Ω)

8σ 2

[
β2

α
+

(
α − p0

σ

)]
1

C
+ p0

4σb(k0)
� mω′ ( f )

2σ
,

and we also consider the function ϕ given by Lemma A.2 with γ = 1 and this constant C . Note that
if ξ = √

ϕ(η), then uξ2 = uϕ(η) ∈ H1
0(Ω) and

∇(
uξ2) =

{
ξ2∇u + 2ξu∇ξ if ξ(x) > 0,

0 if ξ(x) = 0,
(A.8)

a.e. in Ω . Moreover f (x)(e2σ Gk(u+) − 1)b(u+) ∈ L1
loc(Ω) and consequently v = 1

2σ (e2σ Gk(u+) − 1)ξ2,

σ >
2p0
α , is an admissible test function. Using this test function as well as (1.2), (1.4) and Young’s

inequality we deduce that

α

∫
ω′

∣∣∇Gk(u+)
∣∣2

e2σ Gk(u+)ξ2 + mω′ ( f )

2σ

∫
ω′

b(u+)
(
e2σ Gk(u+) − 1

)
ξ2

� β

σ

∫
ω′

|∇ξ |∣∣∇Gk(u+)
∣∣(e2σ Gk(u+) − 1

)
ξ + p0

∫
ω′

∣∣∇Gk(u+)
∣∣v

� α

2

∫
ω′

∣∣∇Gk(u+)
∣∣2

e2σ Gk(u+)ξ2 + β2

2ασ 2

∫
ω′

|∇ξ |2(e2σ Gk(u+) − 1)2

e2σ Gk(u+)

+ p0

2σ

∫
′

∣∣∇Gk(u+)
∣∣2(

e2σ Gk(u+) − 1
)
ξ2 + p0

4σ

∫
′

(
e2σ Gk(u+) − 1

)
ξ2
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� σα + p0

2σ

∫
ω′

∣∣∇Gk(u+)
∣∣2

e2σ Gk(u+)ξ2 + β2

2ασ 2

∫
ω′

|∇ξ |2(e2σ Gk(u+) − 1
)2

+ p0

4σ

∫
ω′

(
e2σ Gk(u+) − 1

)
ξ2.

In other words,

1

4σ 2

(
α − p0

σ

)∫
ω′

∣∣∇[(
eσ Gk(u+) − 1

)
ξ
]∣∣2 + mω′ ( f )

2σ

∫
ω′

b(u+)
(
e2σ Gk(u+) − 1

)
ξ2

�
[

β2

2ασ 2
+ 1

2σ 2

(
α − p0

σ

)]∫
ω′

|∇ξ |2(e2σ Gk(u+) − 1
)2 + p0

2

∫
ω′

v.

Applying Lemma A.2 with γ = 1, together with the monotonicity of b(s) we get

1

4σ 2

(
α − p0

σ

)∫
ω′

∣∣∇[(
eσ Gk(u+) − 1

)
ξ
]∣∣2

� Γ
‖∇η‖2

L∞(Ω)

8σ 2

[
β2

α
+

(
α − p0

σ

)]
meas

{
x ∈ ω′: u(x) � k

}
,

for every k > k0(mω′ ( f ), p0). We deduce by Sobolev’s inequality that

(∫
ω

∣∣(eσ Gk(u+) − 1
)
ξ
∣∣2∗

) 2
2∗

� C0 meas
{

x ∈ ω′: u(x) � k
}
,

where C0 = S 2Γ
‖∇η‖2

L∞(Ω)

8σ 2 [ β2

α + (α − p0
σ )]. Hence, using that et − 1 � t , for every t � 0, and that

Gk(s) � j − k for s � j > k we derive that

( j − k)2 meas
{

x ∈ ω: u(x) � j
} 2

2∗ � C0

σ
meas

{
x ∈ ω′: u(x) � k

}
. (A.9)

Now, if ω � Ω is fixed, we consider R = dist (ω, ∂Ω)/2, the set

ωr = {
x ∈ Ω: dist(x,ω) < r

}
� Ω

and the function

τ (k, r) = meas
{

x ∈ ωr: u(x) � k
}
,

for every r ∈ (0, R] and k > 0. Taking ω = ωr and ω′ = ωR in (A.9) and choosing η such that
‖∇η‖L∞(Ω) � c

R−r , we obtain

( j − k)2τ ( j, r)2/2∗ � c1
τ (k, R)

(R − r)2
,

for some c1 > 0 and the proof is concluded by applying Lemma A.4. �
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Remarks A.5.

1. We remark explicitly that in the above proof the constant Γ obtained by applying Lemma A.2
depends on mω′ ( f ). In particular, since mω′( f ) � mω( f ) for ω � ω′ , if mω( f ) tends to zero, then
this constant Γ and hence the a priori estimate Cω given by Theorem A.1 diverge to +∞.

2. By adding a condition on the function b(s) for negative s and using similar ideas to the ones in
the above proof, it is possible to give also a priori estimates of the whole L∞ norm of the solution
in every compact subset ω of Ω . More precisely, if, in addition to the hypotheses of Theorem A.1,
we strengthen (A.6) by imposing that

b(s) is increasing and satisfies (2.10), b(s)/s is nondecreasing,

for large s and for every ω � Ω there exists mω > 0 such that

∀s ∈ R, B(x, s) sign s � mωb
(|s|) � 0 for a.e. x ∈ ω, (A.10)

then for every ω � Ω there exists Cω > 0 such that

∣∣u(x)
∣∣ � Cω, ∀x ∈ ω.

Theorem A.1 is an extension to quasilinear equations of the well-known local a priori estimate of
Keller [24] and Osserman [33] (see also [5,31,32,37,38] and the references cited therein) for semilinear
operators. This semilinear a priori estimate was the crucial tool in order to prove the existence of a
large solution, i.e., a solution u of the semilinear equation satisfying u = +∞ at ∂Ω in the sense that

lim
dist(x,∂Ω)→0

u(x) = +∞.

Thus, it is natural to ask whether it is also possible to prove the existence of a large solution for (A.1).
Clearly, in this nonlinear framework we have to specify the meaning we give to “infinity” at ∂Ω ,
since it has no sense pointwise. Actually we will assume such a condition in a weak sense, through a
condition on the trace on the boundary of the truncation of the solution. Specifically we consider the
following equation

−div
(
a(x, u,∇u)

) + B(x, u) = F (x), x ∈ Ω. (A.11)

Definition A.6. An a.e. finite function u(x) such that Tk(u) ∈ H1(Ω) ∀k > 0 is a distributional large
solution for (A.11) with F ∈ L1

loc(Ω), if:

(i) |a(x, u,∇u)| ∈ L1
loc(Ω), B(x, u) ∈ L1

loc(Ω);

(ii)
∫
Ω

a(x, u,∇u) · ∇ϕ +
∫
Ω

B(x, u)ϕ =
∫
Ω

Fϕ, ∀ϕ ∈ C∞
c (Ω);

(iii) ∀k > 0, k − Tk(u) ∈ H1
0(Ω).

Remark A.7. In the above definition, (iii) has the meaning of “infinity at ∂Ω”. We mention that this
definition of explosive boundary condition has already been introduced in [29], for a different class of
nonlinear elliptic equations involving nonlinear “coercive” gradient terms.

We conclude by observing that even if not explicitly written in [27], all the estimates that we need
in order to prove the existence of large solutions for (A.11) have been proved and thus we have the
following result.
Please cite this article in press as: D. Arcoya et al., Existence and nonexistence of solutions for singular quadratic quasilinear
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Theorem A.8. Suppose that a(x, s, ς) and B(x, s) satisfy (A.2)–(A.4), (A.10) and

sup
|s|�k

∣∣B(x, s)
∣∣ ∈ L1(Ω), ∀k > 0. (A.12)

Assume also that F ∈ L1
loc(Ω) with F − ∈ L1(Ω). Then there exists a distributional large solution for (A.11).

Proof. We consider the following sequence of problems{−div a(x, un,∇un) + B(x, un) = Fn in Ω,

un − n ∈ H1
0(Ω),

where Fn = Tn(F ). Since B(x, s + n)s � 0 for large |s|, the existence of a weak solution un ∈ H1(Ω) ∩
L∞(Ω) is a consequence of [6, Theorem 6.1], i.e. un − n ∈ H1

0(Ω) and it satisfies∫
Ω

a(x, un,∇un) · ∇v +
∫
Ω

B(x, un)v =
∫
Ω

Fn v, ∀v ∈ H1
0(Ω) ∩ L∞(Ω). (A.13)

Observing that for any n � k, k − Tk(un) ∈ H1
0(Ω) ∩ L∞(Ω), we can choose v = k − Tk(un) as test

function in (A.13) and we obtain

−
∫
Ω

a(x, un,∇un) · ∇Tk(un) +
∫
Ω

B(x, un)
[
k − Tk(un)

] =
∫
Ω

Fn
[
k − Tk(un)

]
.

Using (A.2), and (A.6) and (A.12) we have

α

∫
Ω

∣∣∇Tk(un)
∣∣2 � 2k

∫
Ω

sup
|s|�k

∣∣B(x, s)
∣∣ + 2k

∥∥F −
n

∥∥
L1(Ω)

.

Thus, for every k ∈ N, we can now extract a subsequence (not relabeled) of {Tk(un)}n∈N that weakly
converges in H1(Ω) and, by Rellich theorem, strongly in L2(Ω).

Now, consider any sets ω � ω′ � Ω , a cut-off function η(x) chosen as in (A.7) and ξ = √
ϕ(η).

Arguing as in (A.8), we deduce that v = Tk(unξ2) is an admissible test function for (A.13). Thus we
have ∫

Ak

a(x, un,∇un) · ∇[
unξ2] +

∫
Ω

B(x, un)Tk
(
unξ2) � k‖F‖L1(ω′),

where Ak = {x ∈ Ω: |un|ξ2 � k and ξ(x) > 0}, and so, using (A.2) and (A.10), we get

α

∫
Ak

|∇un|2ξ2 + mω′
∫
Ak

∣∣b(un)
∣∣Tk

(
unξ2)

� k‖F‖L1(ω′) + 2β

∫
Ak

|∇un||∇ξ |unξ.

By applying Young inequality, (A.3) and Lemma A.2 (with γ = 1 and for any fixed C >
α2+4β2

8αmω′ ×
‖∇η‖L∞(ω′) and taking into account Remarks A.5-2) we deduce that there exists c > 0 such that∫ ∣∣∇Tk

(
unξ2)∣∣2 � c(k + 1).
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Then, using that ξ = 1 in ω, by Lemmas 4.1 and 4.2 of [6] it follows that un and |∇un| are bounded

respectively in M
N

N−2 (ω) and M
N

N−1 (ω), for any ω � Ω . Combining this information with the strong
convergence of Tk(un) in L2(Ω) we deduce that un is a Cauchy sequence in measure and so, up to
subsequences (not relabeled), it converges for a.e. x ∈ Ω to a function u ∈ W 1,q

loc (Ω). This, in particular,
implies that

lim
n→+∞k − Tk(un) = k − Tk(u) weakly in H1

0(Ω),

i.e. u satisfies the boundary condition.
On the other hand, we prove that the lower order term is bounded in L1

loc(Ω); indeed, if, for ε > 0,

we take v = 1
ε Tε(un)ξ as test function in (A.13) (as before, such a function it is admissible). Thus, by

(A.2), (A.3), and dropping positive terms, we get∫
Ω

B(x, un)
Tε(un)

ε
ξ � ‖F‖L1(ω′) + β‖∇ξ‖L∞(ω′)

∫
ω′

|∇un|.

Since the right-hand side is bounded being {|∇un|} bounded in M
N

N−1
loc (Ω) and F ∈ L1

loc(Ω), letting
ε → 0, we deduce by Fatou lemma that there exists cω > 0 such that∫

ω

∣∣B(x, un)
∣∣ � cω.

On the other hand, choosing v = T1(Gh(unξ2)) as test function, where ξ2 = ϕ(η) we have, by using
(A.2), (A.3), (A.10) and (A.12),

α

2

∫
h�|unξ2|�h+1

|∇un|2ξ2 + 1

2

∫
Ω

B(x, un)T1
(
Gh

(
unξ2))

�
∫

ω′∩{unξ2�h}
|Fn| + 2β2

α
‖∇η‖2

L∞(Ω) meas
{

x ∈ ω′: ξ2|un| � h
}
.

By the strong compactness of {Fn} in L1(ω′) and the local uniform estimate of {un}n∈N in M
N

N−2
loc (Ω),

we derive then that

lim
h→+∞

sup
n∈N

∫
{x∈ω: |un|�h}

∣∣B(x, un)
∣∣ = 0.

As a consequence of Vitali theorem we deduce that {|B(x, un)|}n∈N is strongly compact in L1(ω′),
where ω′ � Ω is arbitrary. Moreover, since the lower order term is bounded in L1

loc(Ω), we can
apply Lemma 1 in [10] in order to prove that ∇un converges to ∇u a.e. in Ω . This, and the weak
convergence of un in W 1,q(ω′), ∀ω′ � Ω , imply

un → u in W 1,q(ω), ∀1 � q <
N

N − 1
, ∀ω � Ω,

and, thanks to (A.3), we also have that

a(x, un,∇un) → a(x, u,∇u) in L1(ω)N , ∀ω � Ω. (A.14)
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Now we can pass to the limit in the distributional formulation: indeed choosing any φ ∈ C∞
c (Ω)

in (A.13) we have ∫
Ω

a(x, un,∇un) · ∇φ +
∫
Ω

B(x, un)φ =
∫
Ω

Fnφ.

Using (A.14) we deduce that

lim
n→+∞

∫
supp φ

a(x, un,∇un) · ∇φ =
∫

supp φ

a(x, u,∇u) · ∇φ.

Moreover, by the strong convergence of {B(x, un)} and {Fn} in L1
loc(Ω), we deduce that

lim
n→+∞

∫
supp φ

Fnφ =
∫

supp φ

Fφ

and

lim
n→+∞

∫
suppφ

B(x, un)φ =
∫

supp φ

B(x, u)φ

and this concludes the proof. �
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