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Abstract

Percutaneous absorption of a drug delivered by a vehicle source is usually modeled by
using diffusion Fick’s law. In this case, the model consists in a system of partial differential
equations of diffusion type with a compatibility condition on the transition boundary between
the vehicle and the skin. Using this model, the fractional drug release in both components -
vehicle and skin - is proportional to the square root of the release time. Often experimental
results show that the predicted drug concentration distribution in the vehicle and in the skin
by the Fick’s model does not agree with experimental data. In this paper we present a non-
Fickian mathematical model for the introduced percutaneous absorption problem. In this
new model the Fick’s law for the flux is modified by introducing a non-Fickian contribution
defined with a relaxation parameter related to the properties of the components. Combining
the flux equation with the mass conservation law, a system of integro-differential equations is
established with a compatibility condition on the boundary between the two components of
the physical model. The stability analysis is presented. In order to simulate the mathematical
model, its discrete version is introduced. The stability and convergence properties of the
discrete system are studied. Numerical experiments are also included.

1 Introduction

Percutaneous drug delivery is the penetration of drugs from an outside source - the vehicle -
through the skin passing the viable epidermis into the blood capillaries and the lymphatic system.
The delivery device is a polymeric system which can be a hydrophilic polymer, a hydrogel or
another polymeric matrix containing the drug. The polymeric matrix plays the major role
as it should keep the drug available on the skin surface with a constant concentration over a
long time period. In monolithic systems, the transdermal system has three different layers, an
impermeable backing, an intermediate polymer matrix containing the drug and a skin adhesive
layer. The polymeric matrix is designed to control the drug diffusion through the system to the
skin ([32]).

Let us consider the vehicle-skin system represented in Figure 1. The objective is to calculate
the concentration of the drug, in the vehicle and in the skin, at time t in the transversal sections
T (x′) and T (x′′), respectively, which are parallel to the yoz plane.

∗This work was partially supported by Project:PTDC/MAT/74548/2006
†email:silvia@mat.uc.pt,webpage-http://www.mat.uc.pt/˜silvia
‡email:ferreira@mat.uc.pt, webpage-http://www.mat.uc.pt/˜ferreira
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Figure 1: The vehicle-skin system

Assuming that both system components are homogeneous the vehicle-skin system presented
in Figure 1 can be modeled as a one-dimensional system. Then our problem consists of the
computation of the drug concentration c(x, t) at spatial point x and at time t ≥ 0 for x ∈
[−Lv, Ls], where Lv and Ls are the vehicle and the skin lengths and the origin is the transition
point. We assume that the left boundary of the vehicle is isolated and the boundary of the
skin in contact with the right boundary of the vehicle does not offer any resistance to the drug
passage. This means that the drug that arrives to the right boundary of the vehicle passes to the
skin. The drug concentration that passes to the blood is proportional to the drug concentration
at the right boundary of the skin.

Traditionally the introduced diffusion problem is modeled by the classical diffusion equation

∂c

∂t
(x, t) = Di

∂2c

∂x2
(x, t), x ∈ Ii, t > 0, (1)

with i = v when x ∈ Iv = (−Lv, 0) and i = s when x ∈ Is = (0, Ls). As the left boundary of the
vehicle is isolated, the flux at x = −Lv is null which implies for the drug concentration at this
point the next condition

∂c

∂x
(−Lv, t) = 0, t > 0. (2)

In the physical model it was assumed that the drug concentration that passes to the blood at
x = Ls is proportional to the drug concentration at this point which means that

∂c

∂x
(Ls, t) = −rc(Ls, t), t > 0, (3)

where r is a positive constant.
Furthermore, as the drug flux that arrives to the right boundary of the vehicles passes to

the skin, for the drug concentration at x = 0 we have

Dv
∂c

∂x
(0, t) = Ds

∂c

∂x
(0, t), t > 0. (4)

Finally we can assume that
c(x, 0) = c0(x), x ∈ (−Lv, Ls), (5)

because the initial drug distribution is known.
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The classical diffusion model (1) - (5) was considered for instance in [20], [28], [38], [39].
This model is established by using the Fick’s law for the flux Ji(x, t) at point x at time t, which
states that

Ji(x, t) = −Di
∂c

∂x
(x, t), (6)

with i = v if x ∈ Iv = (−Lv, 0) and i = s if x ∈ Is = (0, Ls), where Di > 0, for i = v, s,
represents the diffusion coefficient in the vehicle and skin media respectively.

The solution of the classical diffusion equation (1) has the unphysical property that if a
sudden change in the concentration is made at a point in the polymer or in the skin, it will be
felt instantly everywhere. This property, known as infinite propagation speed, is not present in
drug conduction phenomena and it is a consequence of the violation of principle of casuality by
the Fick’s law (6) for the flux. This problem was also observed in heat conduction problems in
mathematical models based on the Fourier law for heat flux for instance in [8], [29], [40]. For
reaction-diffusion systems the same drawback was observed in [18], [19].

The Fick’s law for the flux is based on Brownian motion in fluid systems. The assumptions
of the Brownian motion are not compatible with biological barriers such as the human skin.
In fact the transport of substances across this membrane is a complex phenomenon comprising
physical, chemical and biological interactions. It is evident from the published results that Fick’s
law often does not offer a good approximation to dermal absorption (see e.g. [1], [27], [30]). The
concentration profiles obtained with the classical diffusion model do not agree with experimental
results. A delay effect appears in this data.

It should be also pointed out that the movement of the drug particles in the polymeric
device is not of Brownian type since the particle flux is not well described by Fick’s law. For
instance, the structure of the polymer chains of hydrogel based devices can change in contact
with water or can depend on the pH and on the ionic strength of the surrounding environment.
At the same time the drug trapped inside of the hydrogel starts to diffuse out of the network.
Often the transport mechanism in this type of systems does not behave according to Fickian
diffusion. In fact, the results obtained in experimental context support the previous sentence
([6], [10], [25], [31], [33], [34], [36], [37], see also [35] and the references contained in the last
paper). However, often we find in the literature mathematical models for percutaneous drug
absorption considering the system vehicle-skin established by using Fick’s law (see e.g. [20], [22],
[23], [28]).

Let us consider that the flux Ji has two main contributions: one of the Fickian type,

Ji,F (x, t) = −D1,i
∂c

∂x
(x, t),

and another, −Ji,M (x, t), taking into account the memory effect of the diffusion phenomena.
This means that Ji(x, t) = Ji,F (x, t) + Ji,M (x, t).

The flux Ji,M at point x and at time t is considered as being a consequence of the concen-
tration variation at point x and at some passed time,

Ji,M (x, t) = −D2,i
∂c

∂x
(x, t− τi),

where i = v, s, τv and τs are the relaxation time associated with the vehicle and with the skin,
respectively. The relaxation parameters represent the time needed for one part of the media -
vehicle, skin - to change in neighboring parts. We assume that the delay parameters are very
small.
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Taking a first order approximation to the flux and integrating the first order differential
equation, we obtain

∂Ji,M

∂t
(x, t) +

1
τi

Ji,M (x, t) = −D2,i

τi

∂c

∂x
(x, t)

with

Ji,M (x, t) = −D2,i

τi

∫ t

0
e
− t−s

τi
∂c

∂x
(x, s) ds. (7)

Note that, when τi → 0, the flux Ji(x, t) defined by (7) tends to the classical Fick’s flux. The
previous deduction can be avoided defining the new flux by (7). In fact we can argue that the
flux is not proportional to the gradient of the drug concentration but it is proportional to the
”average in time” of the gradient of the concentration.

Considering the mass conservation law

∂c

∂t
(x, t) = −∂Ji

∂x
(x, t)

we obtain for the drug concentration the following integro-differential equations

∂c

∂t
(x, t) = D1,i

∂2c

∂x2
(x, t) +

D2,i

τi

∫ t

0
e
− t−s

τi
∂2c

∂x2
(x, s) ds, x ∈ Ii, t > 0, (8)

with i = v when x ∈ Iv = (−Lv, 0) and i = s when x ∈ Is = (0, Ls).
Considering now the flux definition, the boundary conditions are rewritten in the following

form

D1,v
∂c

∂x
(−Lv, t) +

D2,v

τv

∫ t

0
e−

t−s
τv

∂c

∂x
(−Lv, s) ds = 0, (9)

D1,s
∂c

∂x
(Ls, t) +

D2,s

τs

∫ t

0
e−

t−s
τs

∂c

∂x
(Ls, s) ds + rc(Ls, t) = 0, (10)

The integro-differential equations for the vehicle-skin system are complemented with the initial
drug distribution (5) and with the transition condition at x = 0 defined now by

D1,v
∂c

∂x
(0, t) +

D2,v

τv

∫ t

0
e−

t−s
τv

∂c

∂x
(0, s) ds = D1,s

∂c

∂x
(0, t) +

D2,s

τs

∫ t

0
e−

t−s
τs

∂c

∂x
(0, s) ds, (11)

t > 0.
The boundary conditions (9), (10) and the transition condition (11) are the natural conditions

associated with the integro-differential model, as it will be explained in the next section.
Equation (8) can also be obtained if we assume that the vehicle and the skin have a vis-

coelastic response to the sudden strain induced by the penetration of the drug. In this case the
flux Ji,M is related with the viscoelastic stress σi by

Ji,M (x, t) = D2,i
∂σi

∂x
(x, t),

and
∂σi

∂t
(x, t) +

1
τi

σi = c(x, t). (12)

The definition (12) for the viscoelastic stress σi is a particular case of the definition given by
Cohen, White and Witelski in [9], where on the second member of (12) a linear combination of
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c(x, t) and
∂c

∂t
(x, t) was considered. The approach introduced in [9] was largely followed in the

literature. Without being exhaustive we mention [11]- [17], [24].
In heat conduction phenomena equation (8) was used in [8], [29] and [40] in order to avoid

the limitation of the traditional heat equation. In reaction-diffusion context equation (8) with
a reaction term was introduced in [18], [19] in order to avoid the drawback of the classical
Fisher-Kolmogorov-Petrovskii-Piskunov equation. Equation (8) was studied in [2], [3], [4] and
[21] being used to model the drug diffusion in the skin in [5].

In this paper, our aim is to study analytically and numerically the initial boundary value
problem (IBVP) (8)-(11). From an analytical view point, Section 2 focuses on the stability of
the mathematical model. In Section 3 a discrete version of the continuous model is proposed
and its stability and convergence properties are analyzed. Finally, in Section 4 we present some
numerical simulations to illustrate the theoretical results. The behavior of the Fickian model
and the non-Fickian model is compared numerically.

2 On the well-posedness of the non-Fickian model

In this section we analyse the stability of the IBVP (8)-(11) with respect to perturbations of the
initial condition.

We use the following notation: by v(t) we denote the x-function if v is defined in [−Lv, Ls]×
[0, T ] and t is fixed. We represent by (., .) the usual L2 inner product and by ‖.‖ the usual
L2-norm. When we consider each interval Ii, i = v, s, we adopt the following notations: (., .)Ii ,
‖.‖L2(Ii). By H1(−Lv, Ls) we represent the usual Sobolev space. Let L2(0, T, H1(−Lv, Ls)) be
the space of functions v defined in [−Lv, Ls]× [0, T ] such that, for t ∈ [0, T ], v(t) ∈ H1(−Lv, Ls)
and ∫ T

0
‖v(t)‖2

1 dt < ∞,

where ‖.‖1 denotes the usual norm in H1(−Lv, Ls). Let L2(0, T, L2(−Lv, Ls)) be defined as
L2(0, T, H1(−Lv, Ls)) replacing H1(−Lv, Ls) by L2(−Lv, Ls).

We establish, in the following result, an estimate for the energy functional

E(t) = ‖c(t)‖2 +
∑

i=v,s

(
D1,i

∫ t

0
‖ ∂c

∂x
(s)‖2

L2(Ii)
ds +

D2,i

τi
‖
∫ t

0
e
− t−s

τi
∂c

∂x
(s) ds‖2

L2(Ii)

)

for t ∈ [0, T ], depending on the behavior of the initial condition c0(x, t) for x ∈ [−Lv, Ls].

Theorem 1 Let c be a solution of (8)-(11) such that c ∈ L2(0, T, H1(−Lv, Ls)) and
∂c

∂t
,
∂2c

∂x2
∈ L2(−Lv, Ls), for each t ∈ (0, T ]. Then we have

E(t) ≤ ‖c0‖2, t ∈ [0, T ]. (13)

Proof: Multiplying (8) by c(t) with respect to the inner product (., .) and using integration

5
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by parts we get

1
2

d

dt
‖c(t)‖2 = −

∑

i=v,s

(
D1,i‖ ∂c

∂x
(t)‖2

L2(Ii)
+

D2,i

τi
(
∫ t

0
e
− t−s

τi
∂c

∂x
(s) ds,

∂c

∂x
(t))Ii

)

−c(−Lv, t)
(
D1,v

∂c

∂x
(−Lv, t) +

D2,v

τv

∫ t

0
e−

t−s
τv

∂c

∂x
(−Lv, s) ds

)

+c(0, t)
(
D1,v

∂c

∂x
(0, t) +

D2,v

τv

∫ t

0
e−

t−s
τv

∂c

∂x
(0, s) ds

−c(0, t)
(
D1,s

∂c

∂x
(0, t) +

D2,s

τs

∫ t

0
e−

t−s
τs

∂c

∂x
(0, s) ds

)

+c(Ls, t)
(
D1,s

∂c

∂x
(Ls, t) +

D2,s

τs

∫ t

0
e−

t−s
τs

∂c

∂x
(Ls, s) ds

)
.

Taking into account the boundary conditions (9), (10) and the transition condition (11) we
establish

1
2

d

dt
‖c(t)‖2 = −

∑

i=v,s

(
D1,i‖ ∂c

∂x
(t)‖2

L2(Ii)
+

D2,i

τi
(
∫ t

0
e
− t−s

τi
∂c

∂x
(s) ds,

∂c

∂x
(t))Ii

)

−rc(Ls, t)2. (14)

As we have

(
∫ t

0
e
− t−s

τi
∂c

∂x
(s) ds,

∂c

∂x
(t))Ii =

1
2

d

dt
‖

∫ t

0
e
− t−s

τi
∂c

∂x
(s) ds‖2

L2(Ii)

+
1
τi
‖

∫ t

0
e
− t−s

τi
∂c

∂x
(s) ds‖2

L2(Ii)
,

we deduce that

d

dt
E(t) = −

∑

i=v,s

(
D1,i‖ ∂c

∂x
(t)‖2

L2(Ii)
+

2
τi
‖
∫ t

0
e
− t−s

τi
∂c

∂x
(s) ds‖2

L2(Ii)

)
− 2rc(Ls, t)2

and we conclude (13).

The designation “natural conditions” for the boundary conditions (9), (10) and the transition
condition (11) is justified in the proof of Theorem 1. In fact such conditions enable us to
conclude that the total mass in the vehicle and in the skin is bounded in time. The same
behavior can be observed for the gradient of the concentration in both components of the
vehicle-skin system as well as for the weighed “past in time” of the concentration gradients

‖
∫ t

0
e
− t−s

τi
∂c

∂x
(s) ds‖2

L2(Ii)
, i = v, s. Furthermore, from the proof of Theorem 1 we conclude that

E(t) is decreasing in time.
We point out that for the Fickian model (1) - (5) we are not able to get any information to

the weighed ”past in time” of the concentration gradients ‖
∫ t

0
e
− t−s

τi
∂c

∂x
(s) ds‖2

L2(Ii)
, i = v, s.

If the boundary conditions (9)-(10) are replaced by the homogeneous Dirichlet boundary

conditions, then using the Poincaré-Friedrichs inequality in both terms D1,i‖ ∂c

∂x
(t)‖2

L2(Ii)
we

6
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obtain
d

dt

(
‖c(t)‖2 +

∑

i=v,s

D2,i

τi
‖

∫ t

0
e
− t−s

τi
∂c

∂x
(s) ds‖2

L2(Ii)

)

≤ C
(
‖c(t)‖2 +

∑

i=v,s

D2,i

τi
‖

∫ t

0
e
− t−s

τi
∂c

∂x
(s) ds‖2

L2(Ii)

) (15)

with
C = max{−2D1,v

L2
v

,−2D1,s

L2
s

,− 2
τv

,− 2
τs
}.

From (15) we deduce that

‖c(t)‖2 +
∑

i=v,s

D2,i

τi
‖

∫ t

0
e
− t−s

τi
∂c

∂x
(s) ds‖2

L2(Ii)
≤ eCt‖c0‖2, t ≥ 0, (16)

which allow us to conclude, in this case, that

lim
t→∞

(
‖c(t)‖2 +

∑

i=v,s

D2,i

τi
‖

∫ t

0
e
− t−s

τi
∂c

∂x
(s) ds‖2

L2(Ii)

)
= 0.

Estimate (16) characterizes the drug mass in the vehicle and in the skin at each time t as
well as the weighed “past in time” of the concentration gradients. Such characterization can not
be obtained for the Fickian model (1) - (5) even if homogeneous Dirichlet boundary conditions
are considered.

The following stability result is a natural consequence of Theorem 1.

Corollary 1 Let c and c̃ be solutions of (8)-(11) with initial conditions c0 and c̃0, such that

c, c̃ ∈ L2(0, T, H1(−Lv, Ls)) and
∂c

∂t
,
∂2c

∂x2
,
∂c̃

∂t
,
∂2c̃

∂x2
∈ L2(−Lv, Ls), for each t ∈ (0, T ]. Then we

have
E(t) ≤ ‖c0 − c̃0‖2 +

∑

i=v,s

D1,i‖dc0

dx
− dc̃0

dx
‖2

L2(Ii)
, t ∈ [0, T ].

If the variational problem: find c ∈ L2(0, T, H1(−Lv, Ls)) such that
∂c

∂t
∈ L2(−Lv, Ls), c

satisfies (9)-(11) and the following variational equality

(
∂c

∂t
(t), v) +

∑

i=v,s

(
D1,i(

∂c

∂x
(t),

dv

dx
)Ii +

D2,i

τi

∫ t

0
e
− t−s

τi (
∂c

∂x
(s),

dv

dx
)Ii ds

)
= 0, (17)

∀v ∈ H1(−Lv, Ls), has a solution c then, from Theorem 1, c is unique. In fact if we assume
that the previous variational problem has two solutions c and c̃ then w = c− c̃ is solution of the
same problem with null initial condition. By Theorem 1 for w we have E(t) = 0, for all t ≥ 0.
Consequently w = 0 almost every where which implies that c = c̃ in L2(−Lv, Ls).

3 A discrete model

Our aim in this section is to introduce a discretization of the IBVP (8)-(11) which mimics its
continuous counterpart. The discrete model is obtained discretizing the partial derivatives in
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equation (8) by using cell-centered finite-difference operators and considering for the integral
term the rectangular rule.

We define the time grid {tn, n = 0, 1, 2, . . . },
t0 = 0, tn+1 = tn + k, n = 0, 1, 2, . . .

where k is the time-step. In the space domain [−Lv, Ls] we introduce the grid

{x0 = −Lv, xi = xi−1 + h, i = 1, . . . ,M, xM = Ls},

where h =
Lv + Ls

M
and xN = 0 is the transition point. By xi+1/2 we represent the center of the

cell [xi, xi+1], i = 0, . . . , M−1, Ih and Īh denote, respectively, the sets {xi+1/2, i = 0, . . . , M−1}
and Īh = Ih ∪ {x0, xM}. Let Ih,v = Ih ∩ [−Lv, 0] and Ih,s = Ih ∩ [0, Ls]. Let x−1/2 and xM+1/2

be the auxiliary points x−1/2 = −Lv − h

2
, xM+1/2 = xM +

h

2
. For grid functions vh defined in

Īh ∪ {x−1/2, xM+1/2} we introduce the finite-difference formula ∆hvh(xi+1/2) defined as the
usual second-order finite difference quotient when i 6= 0, N − 1, N, N + 1,M − 1,M. ∆hvh(x0)
and ∆hvh(xM ) are defined using a boundary point, a cell-center point and the auxiliary points
x−1/2 and xM+1/2, respectively. If xi+1/2 is such that xi or xi+1 is a boundary point or xN

then ∆hvh(xi+1/2) is defined by using xi+1/2, the boundary point or xN and neighbor cell-center
point.

Let D−t be the backward finite difference operator with respect to the time variable and Dc

the first-order centered finite difference quotient defined with respect to the space variable x by
the auxiliary point and the cell-center point. D−x and Dx represent, respectively, backward and
forward finite difference operators defined using xN and neighbor cell-center points.

By cn
h(xi) we represent the approximation to c(xi, tn) defined by the system of equations

D−tc
n+1
h (xi) = D1,v∆hcn+1

h (xi) + k
D2,v

τv

n+1∑

j=1

e
tn+1−tj

τv ∆hcj
h(xi), xi ∈ Ih,v ∪ {x0},

D−tc
n+1
h (xi) = D1,s∆hcn+1

h (xi) + k
D2,s

τs

n+1∑

j=1

e
tn+1−tj

τs ∆hcj
h(xi), xi ∈ Ih,s ∪ {xM},

(18)

with the boundary conditions

D1,vDcc
n+1
h (x0) + k

D2,v

τv

n+1∑

j=1

e
tn+1−tj

τv Dcc
j
h(x0) = 0,

D1,sDcc
n+1
h (xM ) + k

D2,s

τs

n+1∑

j=1

e
tn+1−tj

τs Dcc
j
h(xM ) + rcn+1

h (xM ) = 0,

(19)

and the discrete transition condition on xN

D1,vD−xcn+1
h (xN ) + k

D2,v

τv

n+1∑

j=1

e
tn+1−tj

τv D−xcj
h(xN )

= D1,sDxcn+1
h (xN ) + k

D2,s

τs

n+1∑

j=1

e
tn+1−tj

τs Dxcj
h(xN ).

(20)

The initial values c0
h(xi) are given by

c0
h(xi) = c0(xi), xi ∈ Ih. (21)

8
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3.1 Stability analysis

In order to study the stability of the numerical methods, let us introduce some notation. We
denote by L2(Īh) the space of grid functions vh defined in Īh. In this space, we will consider the
discrete inner product

(vh, wh)h = (vh, wh)v + (vh, wh)s

where

(vh, wh)v =
h

4
vh(x0)wh(x0) +

3
4
hvh(x1/2)wh(x1/2) + h

N−2∑

i=1

vh(xi+1/2)wh(xi+1/2)

+
3
4
hvh(xN−1/2)wh(xN−1/2),

(vh, wh)s =
3
4
hvh(xN+1/2)wh(xN+1/2) + h

M−2∑

i=N+1

vh(xi+1/2)wh(xi+1/2)

+
3
4
hvh(xM−1/2)wh(xM−1/2) +

h

4
vh(xM )wh(xM ),

for vh, wh ∈ L2(Īh). We denote by ‖ · ‖h the norm induced by this inner product. We also need
to introduce the following notation

(vh, wh)h+ = (vh, wh)hv+ + (vh, wh)hs+

for grid functions defined on Ih ∪ {xN , xM}, where

(vh, wh)hv+ =
h

2
vh(x1/2)wh(x1/2) + h

N−1∑

i=1

vh(xi+1/2)wh(xi+1/2)

+
h

2
vh(xN )wh(xN ),

(vh, wh)hs+ =
h

2
vh(xN+1/2)wh(xN+1/2) + h

M−1∑

i=N+1

vh(xi+1/2)wh(xi+1/2)

+
h

2
vh(xM )wh(xM )

and
‖vh‖2

h+ = ‖vh‖2
hv+ + ‖vh‖2

hs+,

with
‖vh‖2

hi+ = (vh, vh)hi+,

for i = v, s.
The following lemma has a central role in the proof of the main stability result of this section

and it can be proved using summation by parts.

Lemma 1 Let wh, vh be grid functions defined in Īh ∪ {x−1/2, xN , xM+1/2}. Then

(αv∆hvh, wh)v+(αs∆hvh, wh)s =−αv(D−xvh, D−xwh)hv+ − αvDcvh(x0)wh(x0)
+αvD−xvh(xN )wh(xN )− αsDxvh(xN )wh(xN )
−αs(D−xvh, D−xwh)hs+ + αsDcvh(xM )wh(xM ).

9
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The main stability result is established in the next theorem.

Theorem 2 Let cn
h be a solution of the finite-difference problem (18)-(21). Then

‖cn+1
h ‖2

h + k
∑

i=v,s

D1,i‖D−xcn+1
h ‖2

hi+ + k2
∑

i=v,s

D2,i

τi
‖
n+1∑

j=1

e
− tn+1−tj

τi D−xcj
h‖2

hi+ ≤ ‖c0
h‖2

h. (22)

Proof: Multiplying (18) by cn+1
h with respect to the inner product (., .)h and using summa-

tion by parts we obtain

‖cn+1
h ‖2

h = (cn
h, cn+1

h )h − k
∑

i=v,s

D1,i‖D−xcn+1
h ‖2

hi+

−k2
∑

i=v,s

D2,i

τi

n+1∑

j=1

e
− tn+1−tj

τi (D−xcj
h, D−xcn+1

h )hi+

−kcn+1
h (x0)

(
D1,vDcc

n+1
h (x0) +

D2,v

τv
k

n+1∑

j=1

e−
tn+1−tj

τv Dcc
j
h(x0)

)

+kcn+1
h (xN )

(
D1,vD−xcn+1

h (xN ) +
D2,v

τv
k

n+1∑

j=1

e−
tn+1−tj

τv D−xcj
h(xN )

)

−kcn+1
h (xN )

(
D1,sDxcn+1

h (xN ) +
D2,s

τs
k

n+1∑

j=1

e−
tn+1−tj

τs Dxcj
h(xN )

)

+kcn+1
h (xM )

(
D1,sDcc

n+1
h (xM ) +

D2,s

τs
k

n+1∑

j=1

e−
tn+1−tj

τs Dcc
j
h(xM )

)
.

(23)

Taking the boundary conditions (19) and the transition condition (20) into account in (23)
we deduce that

‖cn+1
h ‖2

h = (cn
h, cn+1

h )h − k
∑

i=v,s

D1,i‖D−xcn+1
h ‖2

hi+

−k2
∑

i=v,s

D2,i

τi

n+1∑

j=1

e
− tn+1−tj

τi (D−xcj
h, D−xcn+1

h )hi+ − rcn+1
h (xM )2.

(24)

As we have

(
n+1∑

j=1

e
− tn+1−tj

τi D−xcj
h, D−xcn+1

h )hi+ =
1
2
‖

n+1∑

j=1

e
− tn+1−tj

τi D−xcj
h‖2

hi+

−e
−2 k

τi

2
‖

n∑

j=1

e
− tn−tj

τi D−xcj
h‖2

hi+ +
1
2
‖D−xcn+1

h ‖2
hi+,

using the Cauchy-Schwarz inequality, from (24) we obtain

1
2
‖cn+1

h ‖2
h +

k

2

∑

i=v,s

D1,i‖D−xcn+1
h ‖2

hi+ +
k2

2

∑

i=v,s

D2,i

τi
‖

n+1∑

j=1

e
− tn+1−tj

τi D−xcj
h‖2

hi+

≤ 1
2
‖cn

h‖2
h −

k

2

∑

i=v,s

D1,i‖D−xcn+1
h ‖2

hi+ +
k2

2

∑

i=v,s

e
− 2k

τi
D2,i

τi
‖

n∑

j=1

e
− tn−tj

τi D−xcj
h‖2

hi+

−k2

2

∑

i=v,s

D2,i

τi
‖D−xcn+1

h ‖2
hi+,
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which leads to

‖cn+1
h ‖2

h + k
∑

i=v,s

D1,i‖D−xcn+1
h ‖2

hi+ + k2
∑

i=v,s

D2,i

τi
‖

n+1∑

j=1

e
− tn+1−tj

τi D−xcj
h‖2

hi+

≤ ‖cn
h‖2

h − k
∑

i=v,s

D1,i‖D−xcn+1
h ‖2

hi+ + k2
∑

i=v,s

e
− 2k

τi
D2,i

τi
‖

n∑

j=1

e
− tn−tj

τi D−xcj
h‖2

hi+.

(25)

Inequality (25) holds for n ≥ 1 and we get

‖cn+1
h ‖2

h + k
∑

i=v,s

D1,i‖D−xcn+1
h ‖2

hi+ + k2
∑

i=v,s

D2,i

τi
‖

n+1∑

j=1

e
− tn+1−tj

τi D−xcj
h‖2

hi+

≤ ‖c1
h‖2

h + k
∑

i=v,s

D1,i‖D−xc1
h‖2

hi+ + k2
∑

i=v,s

D2,i

τi
‖D−xc1

h‖2
hi+. (26)

Following the proof of inequality (25) and considering (18) with n = 0, it can be shown that

‖c1
h‖2

h + k
∑

i=v,s

D1,i‖D−xc1
h‖2

hi+ + k2
∑

i=v,s

D2,i

τi
‖D−xc1

h‖2
hi+ ≤ ‖c0

h‖2
h. (27)

From (26) and (27) we conclude (22).

The following corollaries are consequence of Theorem 2.

Corollary 2 The finite difference scheme (18)-(21) has at most one solution.

Corollary 3 If cn
h, c̃n

h are solutions of the finite difference problem (18)-(21) with the same
boundary conditions and with the initial conditions c0

h and c̃0
h, respectively, then wn

h = cn
h − c̃n

h

satisfies

‖wn+1
h ‖2

h + k
∑

i=v,s

D1,i‖D−xwn+1
h ‖2

hi+ + k2
∑

i=v,s

D2,i

τi
‖

n+1∑

j=1

e
− tn+1−tj

τi D−xwj
h‖2

hi+

≤ ‖c0
h − c̃0

h‖2
h.

3.2 Convergence

Let en
h(xi) = c(xi, tn) − cn

h(xi) be the global error and let Tn
h (xi) be the correspondent

truncation error at xi ∈ Īh. We denote by Tn
h,v, Tn

h,s and Tn
h,t the truncation errors in Ih,v ∪{x0},

Ih,s ∪ {xM} and {xN}, respectively. These errors are related by the following finite-difference
equations

D−te
n+1
h (xi) = D1,v∆hen+1

h (xi) + k
D2,v

τv

n+1∑

j=1

e
tn+1−tj

τv ∆hej
h(xi) + Tn+1

h,v (xi),

xi ∈ Ih,v ∪ {x0},

D−te
n+1
h (xi) = D1,s∆hen+1

h (xi) + k
D2,s

τs

n+1∑

j=1

e
tn+1−tj

τs ∆hej
h(xi) + Tn+1

h,s (xi),

11
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xi ∈ Ih,s ∪ {xM}, with the boundary conditions

D1,vDce
n+1
h (x0) + k

D2,v

τv

n+1∑

j=1

e
tn+1−tj

τv Dce
j
h(x0) = Tn

h,v(x0),

D1,sDce
n+1
h (xM ) + k

D2,s

τs

n+1∑

j=1

e
tn+1−tj

τs Dce
j
h(xM ) + ren+1

h (xM ) = Tn+1
h,s (xM ),

and the discrete transition condition on xN

D1,vD−xen+1
h (xN ) + k

D2,v

τv

n+1∑

j=1

e
tn+1−tj

τv D−xej
h(xN )

= D1,sDxen+1
h (xN ) + k

D2,s

τs

n+1∑

j=1

e
tn+1−tj

τs Dxej
h(xN ) + Tn+1

h,t (xN ).

The initial values e0
h(xi) are given by

e0
h(xi) = 0, xi ∈ Ih.

Theorem 3 Let cn
h be defined by (18)-(21) and let c be the solution of (8)-(11). The error en

h

satisfies the following inequality

‖en
h‖2

h + k
∑

i=v,s

D1,i‖D−xen
h‖2

hi+ + k2
∑

i=v,s

D2,i

τi
‖

n∑

j=1

e
− tn−tj

τi D−xej
h‖2

hi+

≤ e
8η2(n−1)k

1−8η2k
1 + 8η2k

8η2(1− 8η2k)
max

i=1,...,n
T i

h ,

(28)

where η denotes a non zero constant provided that

1− 8η2k > 0, (29)

and T j
h is defined by

T j
h =

1
2η2

(
‖T j

h‖2
h +

1
h

(
(T j

h,v(x0))2 + (T j
h,s(xM ))2

)
+

2
h

(T j
h,t(xN ))2

)
+

Lv

2ε2
(T j

h,t(xN ))2.

where ε is such that
ε2 − D1,v

2
≤ 0. (30)

Proof: Following the proof of Theorem 2 it can be shown that for en
h we have

‖en+1
h ‖2

h +
k

2

∑

i=v,s

D1,i‖D−xen+1
h ‖2

hi+ +
k2

2

∑

i=v,s

D2,i

τi
‖
n+1∑

j=1

e
− tn+1−tj

τi D−xej
h‖2

hi+

≤ (en
h, en+1

h )− k

2

∑

i=v,s

D1,i‖D−xen+1
h ‖2

hi+ +
k2

2

∑

i=v,s

e
− 2k

τi
D2,i

τi
‖

n∑

j=1

e
− tn−tj

τi D−xej
h‖2

hi+

−k2

2

∑

i=v,s

D2,i

τi
‖D−xen+1

h ‖2
hi+ + k(Tn+1

h , en+1
h )−ken+1

h (x0)Tn+1
h,v (x0)

−ken+1
h (xN )Tn+1

h,t (xN ) + ken+1
h (xM )

(− ren+1
h (xM ) + Tn+1

h,s (xM )
)
.

(31)
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Using the following representation

en+1
h (xN ) = en+1

h (x0) +
h

2
en+1
h (x1/2)− en+1

h (x0)
h/2

+
N−1∑

i=1

hD−xen+1
h (xi+1/2)

+
h

2
en+1
h (xN )− en+1

h (xN−1/2)
h/2

it can be shown that

−en+1
h (xN )Tn+1

h,t (xN )≤ε2‖D−xen+1
h ‖2

hv+ + η2‖en+1
h ‖2

h + (Tn+1
h,t (xN ))2(

1
η2h

+
Lv

4ε2
)
, (32)

where η and ε are arbitrary non zero constants.
Considering (31), (32) and the inequalities

en+1
h (x0)Tn

h,v(x0) + en+1
h (xM )Tn

h,s(xM ) ≤ 2η2‖en+1
h ‖2 +

1
4η2h

(
(Tn+1

h,v (x0))2

+(Tn+1
h,s (xM ))2

)
,

(en
h, en+1

h ) ≤ 1
2
‖en

h‖2 +
1
2
‖en+1

n ‖2,

(Tn+1
h , en+1

h ) ≤ η2‖en+1
h ‖2 +

1
4η2

‖Tn+1
h ‖2,

we obtain

(1− 8η2k)‖en+1
h ‖2

h + k
∑

i=v,s

D1,i‖D−xen+1
h ‖2

hi+

+k2
∑

i=v,s

D2,i

τi
‖

n+1∑

j=1

e
− tn+1−tj

τi D−xej
h‖2

hi+

≤ ‖en
h‖2 + 2k(ε2 − D1,v

2
)‖D−xen+1

h ‖2
hv+ − kD1,s‖D−xen+1

h ‖2
hs+

+k2
∑

i=v,s

e
− 2k

τi
D2,i

τi
‖

n∑

j=1

e
− tn−tj

τi D−xej
h‖2

hi+

+k
( 1
2η2

(‖Tn+1
h ‖2

h +
1
h

(
(Tn+1

h,v (x0))2 + (Tn+1
h,s (xM ))2

)
+

2
h

(Tn+1
h,t (xN ))2

)

+
Lv

2ε2
(Tn+1

h,t (xN ))2
)
.

(33)

If ε is fixed and satisfies (30) then, from (33), we obtain

‖en+1
h ‖2

h + k
∑

i=v,s

D1,i‖D−xen+1
h ‖2

hi+ + k2
∑

i=v,s

D2,i

τi
‖
n+1∑

j=1

e
− tn+1−tj

τi D−xej
h‖2

hi+

≤ 1
1− 8η2k

(
‖en

h‖2
h+k

∑

i=v,s

D1,i‖D−xen
h‖2

hi++k2
∑

i=v,s

D2,i

τi
‖

n∑

j=1

e
− tn−tj

τi D−xej
h‖2

hi+

)

+
k

1− 8η2k
T n+1

h ,

(34)
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provided that k satisfies (29).
The inequality (34) implies that, for n ≥ 2,

‖en
h‖2

h + k
∑

i=v,s

D1,i‖D−xen
h‖2

hi+ + k2
∑

i=v,s

D2,i

τi
‖

n∑

j=1

e
− tn−tj

τi D−xej
h‖2

hi+

≤
( 1

1− 8η2k

)n−1(
‖e1

h‖2
h + k

∑

i=v,s

(
D1,i + k

D2,i

τi

)
‖D−xe1

h‖2
hi+ +

1
8η2

max
i=2,...,n

T i
h

)
.

(35)

As for e1
h it can be shown that the following estimate holds

‖e1
h‖2

h + k
∑

i=v,s

D1,i‖D−xe1
h‖2

hi+ + k2
∑

i=v,s

D2,i

τi
‖D−xej

h‖2
hi+ ≤

k

1− 8η2k
T 1

h ,

from (35) we deduce

‖en
h‖2

h + k
∑

i=v,s

D1,i‖D−xen
h‖2

hi+ + k2
∑

i=v,s

D2,i

τi
‖

n∑

j=1

e
− tn−tj

τi D−xej
h‖2

hi+

≤
( 1

1− 8η2k

)n−1 1 + 8η2k

8η2(1− 8η2k)
max

i=1,...,n
T i

h

)
,

which concludes the proof of (28).

We remark that if c, as a function of x, belongs to C3,1[−Lv, Ls]−{0}, then Th(xN ) = O(h)
and consequently T i

h = O(h) leading to

‖en
h‖2

h + k
∑

i=v,s

D1,i‖D−xen
h‖2

hi+ + k2
∑

i=v,s

D2,i

τi
‖

n∑

j=1

e
− tn−tj

τi D−xej
h‖2

hi+ = O(h) + O(k2).

If the concentration is known for all time t at x = −Lv, that is, if we assume a Dirichlet
boundary condition at x = −Lv, then en+1

h (x0) = 0. In what concerns the term en+1
h (xM ) of

(31) we can prove that

en+1
h (xM )Tn+1

h,s (xM ) ≤
∑

i=v,s

γ2
i ‖D−xen+1

h ‖2
hi+ + Tn+1

h,s (xM )2
∑

i=v,s

Li

4γi
,

where γi, i = v, s, denote positive constants. Then (33) is replaced by

(1− 4η2k)‖en+1
h ‖2

h+k
∑

i=v,s

D1,i‖D−xen+1
h ‖2

hi++k2
∑

i=v,s

D2,i

τi
‖
n+1∑

j=1

e
− tn+1−tj

τi D−xej
h‖2

hi+

≤ ‖en
h‖2

h + 2k(ε2 + γ2
v −

D1,v

2
)‖D−xen+1

h ‖2
hv+ + 2k(γ2

s −
D1,s

2
)‖D−xen+1

h ‖2
hs+

+k2
∑

i=v,s

D2,i

τi
‖

n∑

j=1

e
− tn−tj

τi D−xej
h‖2

hi+

+k
(
‖Tn+1

h ‖2
h +

Lv

2ε2
(Tn+1

h,t (xN ))2 + Tn+1
h (xM )

1
2
(Lv

γ2
v

+
Ls

γ2
s

))
.
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Let γi, i = v, s and ε be such that

ε2 + γ2
v −

D1,v

2
≤ 0, γ2

s −
D1,s

2
≤ 0.

Then, for k satisfying
1− 4η2k > 0,

we obtain

‖en+1
h ‖2

h + k
∑

i=v,s

D1,i‖D−xen+1
h ‖2

hi+ + k2
∑

i=v,s

D2,i

τi
‖

n+1∑

j=1

e
− tn+1−tj

τi D−xej
h‖2

hi+

≤ 1
1− 4η2k

‖en
h‖2

h + k
∑

i=v,s

D1,i‖D−xen+1
h ‖2

hi+

+k2
∑

i=v,s

D2,i

τi
‖

n∑

j=1

e
− tn−tj

τi D−xej
h‖2

hi+

+
k

1− 4η2k

(
‖Tn+1

h ‖2
h +

Lv

2ε2
(Tn+1

h,t (xN ))2 + Tn+1
h (xM )

1
2
(Lv

γ2
v

+
Ls

γ2
s

))
.

Following the proof of Theorem 3, it can be shown that

‖en+1
h ‖2

h + k
∑

i=v,s D1,i‖D−xen+1
h ‖2

hi+ + k2
∑

i=v,s
D2,i

τi
‖∑n+1

j=1 e
− tn+1−tj

τi D−xej
h‖2

hi+

= O(k2) + O(h4) + O(h2),

where the term O(h2) is associated with
Lv

2ε2
(Tn+1

h,t (xN ))2.

4 Numerical results

We first compare numerically the behaviour of the proposed model with the diffusion model
considered for instance in [20] and [28], which is defined by the diffusion equations (1), the
initial condition (5), the boundary conditions (2), (3) and the transition condition (4). The
discretization of the the diffusion equations are obtained using the same numerical method we
used for the integro-differential model, with D2,i = 0, i = v, s.

For the simulation we consider that initially there is no drug in the skin and the concentration
in the vehicle is 1, i.e.,

c(x, 0) = 1, −Lv < x ≤ 0, c(x, 0) = 0, 0 < x < Ls.

In all numerical experiments, we use the following constant values: Lv = 0.2, Ls = 0.8, Dv = 0.5
and Ds = 1. For the boundary condition we consider r = 0.5.

In the first example we took the parameters D1,v = 0.05, D2,v = 0.45, D1,s = 0.1 and
D2,s = 0.9, for the integro-differential model. The results are plotted in Figure 2.

The results considering D1,v = 0.25, D2,v = 0.25, D1,s = 0.5 and D2,s = 0.5 are plotted in
Figure 3.

As we expected, in both examples, the propagation velocity of the numerical approximations
to the solution of the integro-differential model is lower.

15



 

 

 

ACCEPTED MANUSCRIPT 

 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

0
0

0.2

0.4

0.6

0.8

1

x

C
on

ce
nt

ra
tio

n

 

 
I−D
D

0
0

0.2

0.4

0.6

0.8

1

x

C
on

ce
nt

ra
tio

n
 

 
I−D
D

0
0

0.2

0.4

0.6

0.8

1

x

C
on

ce
nt

ra
tio

n

 

 
I−D
D

T = 0.05 T = 0.1 T = 0.5
Figure 2: Concentration using the differential model (D) and the integro-differential model (I-
D), D1,v = 0.05, D2,v = 0.45, D1,s = 0.1, D2,s = 0.9, τv = 0.005, τs = 0.005, with k = 0.00001
and h = 0.0125.

0
0

0.2

0.4

0.6

0.8

1

x

C
on

ce
nt

ra
tio

n

 

 
I−D
D

0
0

0.2

0.4

0.6

0.8

1

x

C
on

ce
nt

ra
tio

n

 

 
I−D
D

0
0

0.2

0.4

0.6

0.8

1

x

C
on

ce
nt

ra
tio

n

 

 
I−D
D

T = 0.05 T = 0.1 T = 0.5
Figure 3: Concentration using the differential model (D) and the integro-differential model (I-
D), D1,v = 0.25, D2,v = 0.25, D1,s = 0.5, D2,s = 0.5, τv = 0.005, τs = 0.005, k = 0.00001 and
h = 0.0125.
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Figure 4: Concentration using the differential model (D) and the integro-differential model (I-D),
τv = 0.005, τs = 0.005 (left), τv = 0.00005, τs = 0.00005 (right) with D1,v = 0.25, D2,v = 0.25,
D1,s = 0.5, D2,s = 0.5, k = 0.0001, h = 0.0001 and T = 0.1.
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Figure 5: Time versus flux at the point x = Ls, D1,v = 0.25, D2,v = 0.25, D1,s = 0.5, D2,s = 0.5,
τv = 0.005, τs = 0.005, k = 0.00001 and h = 0.0125.

In Figure 4 the values of τv and τs change. We observe that for smaller values the two curves
are closer.

Figure 5 shows the flux along the time at the extreme point x = Ls.
In Tables 1 and 2, the rate of convergence is computed using the numerical solutions corre-

sponding to mesh-sizes h and h/2. The error is defined by the right hand side of (28). The error
is computed using a numerical solution obtained with a much finer mesh, taking h = 9.766e−05
and k = 1.000e− 08, since the exact solution is not available. In Table 1 we consider T = 0.01
and, in Table 2, T = 0.1.

h Nv Ns error rate
1.000e-01 2 8 7.896e-04 2.66
5.000e-02 4 16 1.247e-04 1.72
2.500e-02 8 32 3.790e-05 1.93
1.250e-02 16 64 9.969e-06 2.01
6.250e-03 32 128 2.483e-06 2.03
3.125e-03 64 256 6.064e-07 2.07
1.563e-03 128 512 1.446e-07 -

Table 1: Rate of convergence, D1,v = 0.25, D2,v = 0.25, D1,s = 0.5, D2,s = 0.5, τv = 0.01,
τs = 0.01, k = 1e− 08, T = 0.01.

Table 3 shows the variation of the rate of convergence with k.
Theorem 3 establishes that the convergence order is equal to one with respect to the time step

size and
1
2

with respect to space step size. The numerical estimates for the rate of convergence
presented in Tables 1,2 are bigger than the rate of convergence, with respect to the space
step size, theoretically established in Theorem 3. From Table 3, we conclude that the numerical
estimates confirm the theoretical estimate given in the previous result for the rate of convergence
with respect to the time step size.
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h Nv Ns error rate
1.000e-01 2 8 6.493e-04 1.99
5.000e-02 4 16 1.629e-04 2.02
2.500e-02 8 32 4.023e-05 1.99
1.250e-02 1.6 64 1.011e-05 1.95
6.250e-03 32 128 2.618e-06 1.88
3.125e-03 64 256 7.122e-07 1.76
1.563e-03 128 512 2.101e-07 -

Table 2: Rate of convergence, D1,v = 0.25, D2,v = 0.25, D1,s = 0.5, D2,s = 0.5, τv = 0.01,
τs = 0.01, k = 1e− 08, T = 0.1.

k error rate
1.000e-04 3.909e-04 1.82
5.000e-05 1.104e-04 1.91
2.500e-05 2.938e-05 1.95
1.250e-05 7.580e-06 1.98
6.250e-06 1.923e-06 1.99
3.125e-06 4.831e-07 2.00
1.563e-06 1.205e-07 -

Table 3: Rate of convergence, D1,v = 0.25, D2,v = 0.25, D1,s = 0.5, D2,s = 0.5, τv = 0.01,
τs = 0.01, h = 6.250e− 03, T = 0.1.

5 Conclusions

The coupled vehicle-skin system is usually modeled by using the classical diffusion equation.
The numerical results obtained from such a model lead to concentration profiles which do not
agree with experimental data. In fact experimental data profiles present a delay effect. In
order to introduce the delay effect in the diffusion phenomenon an integro-differential model
was introduced in this paper.

The integro-differential model is established replacing Fick’s law for the flux by a new law
where a delay parameter τ is introduced. Of course when τ → 0, the new law for the flux
coincides with Fick’s law and consequently the new model coincides with the classical diffusion
model.

The stability of the integro-differential model was established as a consequence of energy
estimates. These estimates enable us to characterize the qualitative behaviour of the drug
concentration in space and in time.

Numerical methods for drug concentrations were introduced and their stability properties
were established. The approximations obtained with these methods have the same qualitative
properties of the drug concentrations defined by the integro-differential model. In fact the results
proved for the discrete case can be seen as discretizations of the continuous counterpart. The
numerical experiments illustrate the delay effect of the new model.

The convergence properties of the numerical methods were analyzed and the numerical results
illustrate the proved convergence results.
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versitá de Modena,3, 3–21, 1948.

[9] D.S. Cohen, A. B. White Jr., T. P. Witelski, Shock Formation in a Multi-Dimensional
Viscoelastic Diffusive System, SIAM Journal on Applied Mathematics, 55, 348-368, 1995.

[10] C.A. Coutts-Lendon, N.A. Wright, E.V. Mieso, J.L. Koenig, The use of FT-IR imaging as
an analytical tool for the characterization of drug delivery systems, Journal of Controlled
Release, 93, 223-248, 2003.

[11] D.A. Edwards, D.S. Cohen, An unusual moving boundary condition arising in anomalous
diffusion problems, SIAM Journal on Appled Mathematics, 55, 662-676, 1995.

[12] D.A. Edwards, Constant front speed in weakly diffusive non-Fickian systems, SIAM Journal
on Appled Mathematics, 55, 1039-1058, 1995.

[13] D.A. Edwards, A mathematical model for trapping skinning in polymers, Studies in Applied
Mathematics, 99, 49-80, 1997.

[14] D.A. Edwards, Skinning during desorption of polymers: An asymptotic analysis, SIAM
Journal on Appled Mathematics, 59, 1134-1155, 1999.

[15] D.A. Edwards, A spatially nonlocal model for polymer-penetrant diffusion, Journal of Ap-
plied Mathematics and Physics, 52, 254-288, 2001.

19



 

 

 

ACCEPTED MANUSCRIPT 

 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

[16] D.A. Edwards, R. A. Cairncross, Desorption overshoot in polymer-penetrant systems:
Asymptotic and computational results, SIAM Journal on Applied Mathematics, 63, 98-
115, 2002.

[17] D.A. Edwards, A spatially nonlocal model for polymer desorption, Journal of Engineering
Mathematics, 53, 221-238, 2005.

[18] S. Fedotov, Traveling waves in a reaction-diffusion system: diffusion with finite velocity and
Kolmogorov-Petrovskii-Piskunov kinectics, Physical Review E, 4, 5143–5145, 1998.

[19] S. Fedotov, Nonuniform reaction rate distribution for the generalized Fisher equation: ig-
nition ahead of the reaction front, Physical Review E, 4, 4958–4961, 1998.

[20] M. Fernandes, L. Simon, N.W. Loney, Mathematical modeling of transdermal drug-delivery
systems: analysis and applications, Journal of Membrane Science, 26, 184-192, 2005.

[21] J.A. Ferreira, P. de Oliveira, Memory effects and random walks in reaction-transport sys-
tems, Applicable Analysis, 86, 99-118, 2007.

[22] K. George, A two-dimensional mathematical model of non-linear dual-sorption of percuta-
neous drug absorption, BioMedical Engineering OnLine, 4:40, 15 pages, 2005.

[23] K. George, K. Kubota, E.H. Twizell, A two-dimensional mathematical model for percuta-
neous drug absorption, BioMedical Engineering OnLine, 3:18, 13 pages, 2004.

[24] C.K. Hayes, D.S. Cohen, The evolution of steep fronts in non-Fickian polymer-penetrant
systems, J. Poly. Sci. B, 30, 145-161, 1992.

[25] A.L. Iordanskii, M. M. Feldstein, V.S. Markin, J.Hadgraft, N.A. Plate, Modeling of the
drug delivery from a hydrophilic transdermal therapeutic system across polymer membrane,
European Journal of Pharmaceutics and Biopharmaceutics, 49, 287-293, 2000.

[26] K. Yamaguchi, T. Mitsui, Y. Aso, K. Sugibayashi, Analysis of in vitro skin permeation of
22-oxacalcitriol from ointments based on a two- or three-layer diffusion model considering
diffusivity in a vehicle, International Journal of Pharmaceutics, 336(2), 310-318, 2007.

[27] F. Yamashita, M. Hashida, Mechanistic and empirical modelin of skin permeation of drugs,
Advanced Drug Delivery Reviews, 55, 1185-1199, 2003.

[28] K. Kubota, F. Dey, S.A. Matar, E.H. Twizell, A repeated-dose model of percutaneous drug
absorption, Applied Mathematical Modelling, 26, 529-544, 2002.

[29] D.Joseph, L. Preziosi, Heat waves, Reviews of Modern Physics, 61, 41–73, 1989.

[30] D. van der Merve, J.D.Brook, R. Gerhring, R.E, Baynes, N.A. Monteiro-Riviere, J.E. Riv-
iere, A physiological based pharmacokinetic model for organophostate dermal absorption,
Toxicological Sciences, 89, 118-204, 2006.

[31] A. Mourgues, L. Michele, C. Charmette, J. Sanchez, G. Marti-Mestres, Ph. Gramain, De-
salination, 127-129, 2006.

[32] E.M. Ouriemchi, T.P. Ghosh, J.M. Vergnaud, Transdermal drug transfer from a polymer
device: study of the polymer and the process, Polymer Testing, 19, 889-897, 2000.

20



 

 

 

ACCEPTED MANUSCRIPT 

 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

[33] E.M. Ouriemchi, J.M. Vergnaud, Process of drug transfer with three different polymeric
systems with transdermal drug delivery, Computational and Theoretical Polymer Science,
10, 391-401, 2000.

[34] S. Patachia, A.J.M. Valente, C. Baciu, Effect of non-associative electrolyte solutions on the
behaviour of poly(vinyl alcohol)-based hydrogels, European Polymer Journal, 43, 460-467,
2007.

[35] N. Peppas, R. Langer, Origins and development of biomedical engineering within chemical
engineering, Americal Institute of Chemical Engineering, 50, 536-546, 2004.

[36] F. Tirnaksiz, Z. Yuce, Development of transdermal system containing nicotine by using
sustained release dosage design, Il Farmaco, 60, 763-770, 2005.
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