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Abstract: Caatinga biome, located in the Brazilian semi-arid region, is the most populous semi-arid
region in the world, causing intensification in land degradation and loss of biodiversity over time.
The main objective of this paper is to determine and analyze the changes in land cover and use, over
time, on the biophysical parameters in the Caatinga biome in the semi-arid region of Brazil using
remote sensing. Landsat-8 images were used, along with the Surface Energy Balance Algorithm
for Land (SEBAL) in the Google Earth Engine platform, from 2013 to 2019, through spatiotemporal
modeling of vegetation indices, i.e., leaf area index (LAI) and vegetation cover (VC). Moreover, land
surface temperature (LST) and actual evapotranspiration (ETa) in Petrolina, the semi-arid region of
Brazil, was used. The principal component analysis was used to select descriptive variables and
multiple regression analysis to predict ETa. The results indicated significant effects of land use and
land cover changes on energy balances over time. In 2013, 70.2% of the study area was composed of
Caatinga, while the lowest percentages were identified in 2015 (67.8%) and 2017 (68.7%). Rainfall
records in 2013 ranged from 270 to 480 mm, with values higher than 410 mm in 46.5% of the study
area, concentrated in the northern part of the municipality. On the other hand, in 2017 the lowest
annual rainfall values (from 200 to 340 mm) occurred. Low vegetation cover rate was observed by
LAI and VC values, with a range of 0 to 25% vegetation cover in 52.3% of the area, which exposes the
effects of the dry season on vegetation. The highest LST was mainly found in urban areas and/or
exposed soil. In 2013, 40.5% of the region’s area had LST between 48.0 and 52.0 ◦C, raising ETa

rates (~4.7 mm day−1). Our model has shown good outcomes in terms of accuracy and concordance
(coefficient of determination = 0.98, root mean square error = 0.498, and Lin’s concordance correlation
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coefficient = 0.907). The significant increase in agricultural areas has resulted in the progressive
reduction of the Caatinga biome. Therefore, mitigation and sustainable planning is vital to decrease
the impacts of anthropic actions.

Keywords: tropical dry forest; surface energy balance; Brazilian semi-arid; SEBAL; actual evapotranspiration

1. Introduction

The Caatinga biome occupies a large portion of the Brazilian semi-arid region. It has
a high ecological diversity of plant species, and it is considered the largest in the world
under semi-arid conditions [1,2]. It occupies an area of 900,000 km2, which corresponds
to approximately 70% of the northeast region of Brazil (NEB). However, only 7.5% of this
habitat is protected by law [3–5]. The municipality of Petrolina, PE, Brazil, is located in
the semi-arid region of the Caatinga biome. It is within the hydrographic basin of the São
Francisco river, which favors the development of irrigated agriculture in the region, mainly
fruit-growing (e.g., grapes and mangoes) [6–8], and it leads to positive socioeconomic
implications, but also increases conflicts regarding water use [2,9].

Caatinga is located in the world’s most populated dry area, with more than 53 million
inhabitants and a population density close to 34 inhabitants per km2. This biome has
been affected by environmental degradation and loss of biodiversity over the last decades,
mainly by the intensification of agriculture (e.g., rainfed and irrigated crops cultivation),
urban expansion, and the advance of pasture areas replacing the natural vegetation [10–12].
Expanding agricultural activities has led to the deforestation of native areas, soil distur-
bance, changes in the hydrological cycle, and higher carbon emissions [13–15]. Together
with climate changes, such as reduced rainfall and intensified drought events, this makes
the Caatinga biome and the Brazilian ecosystem the most threatened and susceptible to
desertification. Furthermore, these changes have been increasingly compromising natural
resources and environmental sustainability [16–19] due to the changes in surface properties
and biophysical variables, such as vegetation cover (VC), land surface temperature (LST),
and evapotranspiration (ET) [20–22]. ET is one of the main response parameters of vege-
tated areas as a function of local water conditions, and it is also an important component of
the hydrological cycle [23,24].

Therefore, monitoring physical–water indicators of environmental change conditions,
such as the loss of biodiversity of biomes and land use and occupation, is vital in managing
scarce water resources. Furthermore, these indicators may be helpful in the planning of
agricultural activities, as well as in the management of dry areas and the sustainable use
and management of natural resources [17,25–30].

In this scenario, remote sensing has been used as a tool that presents fast and low
operational costs, being efficient in calculating the biophysical parameters used in the
energy, water, and vegetation balances (e.g., [31–33]). In recent years, remote sensing has
also been considered a good alternative for replacing expensive and difficult-to-obtain
equipment used in in situ studies [34]. Furthermore, the modeling used in these balances
is performed with the help of algorithms, which are essential techniques in the extraction
of information from satellite images on a regional and global scale [27,28,33,35]. It may
have its efficiency improved by the use of open-source cloud programming languages, e.g.,
Google Earth Engine (GEE). In GEE, the user can effectively implement algorithms and
process large data volumes [36].

In this context, there are several surface energy balance models, such as Mapping
EvapoTranspiration at high Resolution with Internalized Calibration (METRIC), Surface En-
ergy Balance System (SEBS), Simple Algorithm for Evapotranspiration Retrieving (SAFER),
Atmosphere–Land Exchange Inverse (Alexi), and the Energy Balance Algorithm for Land
(SEBAL), based on remote sensing data. The approach is substantiated on biophysical
parameters, such as LST, albedo, Normalized Difference Vegetation Index (NDVI), and
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emissivity, that are crucial for estimating ET [16,37–42]. The SEBAL algorithm has been
widely and successfully applied to various world ecosystems, including semi-arid condi-
tions in Brazil [43–46]. Moreover, this method seeks to eliminate the propagation of errors
in the partitioning of the energy balance and the need for atmospheric correction in the
estimate of surface temperature. These interactions allow the generation of the sensible heat
flux corrected for atmospheric stability and instability conditions [47–51]. NDVI is one of
the most widely used indices in the literature for vegetation cover analysis, environmental
degradation, and vegetation primary production resilience, and it also helps in monitoring
agricultural crops, forest ecosystems, and drought assessments [52–55]. With applications
in several countries, Bastiaanssen et al. [49] have obtained highly accurate results using the
SEBAL algorithm on different vegetated surfaces with forests, agricultural crops (irrigated
and rainfed), and even extreme landscapes, such as desert areas. Previous studies have
shown that the SEBAL can be used in Petrolina, PE, Brazil, for the algorithm has already
been calibrated and validated for the region in various ecosystems with good agreement
between orbital images and field measurements [44,56–59].

Based on the above, the main objective of this paper is to determine and analyze the
changes in land cover, land use, and occupation on biophysical parameters in the Caatinga
biome in the semi-arid region of Brazil. In the present study, the changes were assessed
from 2013 to 2019 using Landsat imagery, and biophysical parameters (net radiation, energy
balance, LAI, VC, ETa, and LST) were estimated by utilizing remote sensing. Additionally, the
SEBAL model was applied to determine the surface energy balance in different vegetation
environments. After applying the model, the dataset provided by SEBAL allowed us to
determine the turbulent fluxes and actual evapotranspiration (ETa) of the different land
use and land cover (LULC) types. Thus, through the SEBAL products, the spatiotemporal
variation patterns of ETa in agricultural and forestry areas were evaluated.

2. Materials and Methods
2.1. Study Area

The study was carried out in the municipality of Petrolina, located in the State of
Pernambuco, Brazil. The region comprises the domain of the Caatinga biome and it belongs
to the semi-arid region of the sub-mean of the São Francisco Valley. The town is considered
the largest fruit-growing center of the Brazilian semi-arid region due to the easy access
to the São Francisco river, which supplies the irrigated perimeters. The municipality
comprises a territorial area of 4561.870 km2 (Figure 1), with an estimated population of
349,145 inhabitants [38].

A characteristic of the Caatinga biome is the presence of different floristic mosaics, con-
sisting of an area of tree and shrub vegetation, which presents its distribution conditioned
to climatic and environmental variations, especially rainfall intensity and frequency [60],
as well as geological configurations and soil properties [5]. The vegetation of this biome
presents deciduous species adapted to water deficit conditions and with expressive biomass
production in rainy seasons, resulting from the local climatic conditions [40,61]. The canopy
cover of the species of the Caatinga biome presents discontinuous characteristics, making
possible the soil exposure in dry periods, presence of herbaceous stratum, cactus species,
and shrubs [23,61]. It is worth noting that this region presents an expressive modification
of the native landscape (Caatinga) in areas of irrigated agricultural cultivation.
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Figure 1. Spatial location of the study area, municipality of Petrolina, Pernambuco, Northeast Brazil.

According to the Köppen–Geiger climate classification, the region’s climate is of the
BSh type, characterized as semi-arid tropical, with an average air temperature of 26.4 ◦C,
average relative humidity of 62%, and annual rainfall of 520 mm [62,63]. Rainfall pattern is
irregular throughout the year, resulting from its geographical location and the Intertrop-
ical Convergence Zone (ITCZ) influence, with rainfall predominating from February to
May [10,64,65]. The predominant soils in the municipality are Typic Quartzipsamment,
Ultisol Plinthic, Arenosol, and Haplic Acrisol [66–68].

2.2. Satellite Images and Weather Datasets

Annual records of average air temperature (◦C), global radiation (MJ m−2), relative
humidity (%), atmospheric pressure (kPa), wind speed (m s−1), and rainfall (mm) were
obtained from the database of the National Institute of Meteorology [69] (Figure 2). The
average air temperature (Ta) ranged between 24.1 and 30.7 ◦C, in which 2015 and 2019 were
the warmest years studied (Ta 28 ◦C). Overall, November, December, January, February,
and March presented Ta values above 28 ◦C (Figure 2).

The years 2013 (334.4 mm) and 2019 (221.6 mm) showed the highest rainfall rates.
Most of the rainfall recorded for Petrolina was concentrated from December to March
(Figure 2). Such climatic conditions concerning the municipality were also reported in the
literature (e.g., [2,70]).

Rainfall data corresponding to the 30 days prior to the four imaging dates studied
used were obtained from the Climate Hazards Group InfraRed Precipitation with Station
(CHIRPS). CHIRPS are new precipitation products covering the coordinates 50◦S–50◦N
and 180◦E–180◦W, with 0.05◦ (±5.3 km) spatial resolution and daily to seasonal, temporal
resolutions, available worldwide since 1981 [71]. CHIRPS data were extracted from the
Google Earth Engine platform (https://earthengine.google.com/, accessed on 20 August
2021) using JavaScript programming language. Then, they were exported in spreadsheet
format (*.xls), using the dataset since 1981 from the collection ee.ImageCollection (“UCSB-
CHG/CHIRPS/DAILY”).

https://earthengine.google.com/
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Figure 2. Monthly meteorological variations (rainfall, average air temperature, and global solar
radiation) of the municipality of Petrolina, Brazil, from 2013 to 2019.

We used Operational Land Imager (OLI) Collection 1 Level 1 bands 2 (0.450–0.51 µm),
3 (0.53–0.59 µm), and 4 (0.64–0.67 µm) in the visible spectrum, 5 (0.85–0.88 µm) in the
near-infrared, and 6 (1.57–1.65 µm) and 7 (2.11–2.29 µm) in the shortwave infrared, all
with a spatial resolution of 30 m, as well as band 10 from the Thermal Infrared Sensor
(TIRS) with a 100 m spatial resolution. Besides this, we used four Landsat-8 OLI/TIRS
images, path 217 and row 66, corresponding to the years 2013, 2015, 2017, and 2019 (for
the dates and times of the satellite overpass, see Table 1). The choice criteria adopted
were the absence of clouds (10%) and the images corresponding to the transition period
between the dry and rainy seasons in the region under study, from the years of 2013 to
2019. This period presented severe and extreme drought events in the northeast [23,72].
All the images were obtained from the United States Geological Survey (USGS) platform
(https://earthexplorer.usgs.gov/, accessed on 10 August 2021) and processed through the
Land Surface Reflectance Code (LaSRC).

Table 1. Date of the Landsat-8 satellite pass, followed by the Julian day (JD), Earth–Sun distance
(dr, astronomical units—AU), local time of the equator pass (h, hour; min, minutes), zenith angle
(θ, ◦), solar elevation angle (E, ◦), and sun azimuth angle (ϕ, ◦) for the municipality of Petrolina,
Pernambuco, Brazil.

Acquisition Date JD dr Local Time θ E ϕ

5 October 2013 278 0.99 9 h 49 min a.m. 0.90 65.12 82.93
12 November 2015 316 0.99 9 h 48 min a.m. 0.90 64.85 113.46

16 October 2017 289 0.99 9 h 48 min a.m. 0.91 65.81 92.82
7 November 2019 311 0.99 9 h 48 min a.m. 0.90 65.41 110.36

Note: zenith angle (θ) = sin(E). Source: USGS/NASA [73].

2.3. Vegetation Indices

The Normalized Difference Vegetation Index (NDVI) was calculated to represent the
amount and quality of vegetation present on the surface, characterized as an indicator of
wet conditions, calculated using Equation (1).

NDVI =
ρNIR − ρRed
ρNIR+ρRed

(1)

where ρNIR and ρRed are the reflectances measured in the near-infrared and red bands (i.e.,
Landsat-8 multispectral bands 5 and 4 of the OLI sensor), respectively, they range from −1
to +1. Values close to 1 on a positive scale correspond to high photosynthetic activity, and
when negative, generally correspond to water bodies.

https://earthexplorer.usgs.gov/
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Based on the NDVI, we calculated the vegetation cover (VC) of the study area (Equation (2)),
according to Gao et al. [54].

VC =
NDVI − NDVIS

NDVIV − NDVIS
· 100 (2)

where VC is the vegetation cover, NDVIS is the minimum NDVI value from bare soil
pixels obtained in the study area, and NDVIV is the maximum NDVI value found in
vegetated areas, i.e., from fully vegetated pixels. The NDVIS and NDVIV used to calculate
VC were obtained from the domain of each NDVI image percentile map obtained from the
NDVI histograms.

Soil-Adjusted Vegetation Index (SAVI) was calculated to observe the vegetation cover
of the area (Equation (3)).

SAVI =
(1 + L) · (ρNIR − ρRed)

(L + ρNIR+ρRed)
(3)

where L is the adjustment factor to the soil, which varies between 0 and 1. The value 0 does
not reach change, and resembles the NDVI. In areas with low-density vegetation, the value
1 is assigned; for intermediate-density vegetation areas, the value of 0.5; and for areas with
high-density vegetation, the value 0.25 is assigned [74]. The adjustment factor of 0.5 was
adopted due to the study region indicating an intermediate vegetation coverage in most of
the year, with predominant vegetation of the Caatinga biome, in the Brazilian semi-arid
region [75–77].

To evaluate changes in vegetation biomass, the leaf area index (LAI, m2 m−2) was
determined (Equation (4)), a fundamental biophysical variable for monitoring studies of
agricultural land and vegetation moisture conditions [50].

LAI =
− ln

(
0.69−SAVI

0.59

)
0.91

(4)

2.4. Methodology for Estimating Evapotranspiration Using Satellite Images

Evapotranspiration was estimated using the Energy Balance Algorithm for Land
(SEBAL). For this, routine meteorological data and spectral bands from the Landsat-8
satellite were used. The SEBAL algorithm was implemented using JavaScript code through
the Google Earth Engine (GEE) platform. The data were exported in spreadsheet format
(*.xls). SEBAL uses mathematical modeling and operations to calculate the surface energy
balance components and determine evapotranspiration. Thus, energy balance components
are computed pixel-by-pixel, as described in Figure 3. Here, we show that the algorithm
has a good performance and high accuracy, as well as being calibrated and validated with
simultaneous field and Landsat satellite measurements [47–49,56,59,61,78,79].
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Figure 3. Flowchart of the SEBAL model for estimating evapotranspiration. Note: LST and LSE
are the land surface temperature and land surface emissivity, respectively, NDVI is the Normalized
Difference Vegetation Index, εa is the atmospheric emissivity, u* is the friction velocity, Ta is the
air temperature, Rn is the net radiation, G is the soil heat flux, zom is the momentum roughness
length, z1 and z2 are the two heights between the surface of the anchor pixels, rah is the near-surface
aerodynamic resistance to heat transport, DEM is the digital elevation model, dT is the near-surface air
temperature gradient, a and b are the calibration coefficients, LST or Ts is the land surface temperature,
ρair is the air density, Cp is the specific heat of air, H is the sensible heat flux, ψm and ψh are the stability
correction factors for momentum and sensible heat, respectively, k is the von Karman constant, u200 is
the wind speed at the height of 200 m, and Λ is the evaporative fraction. These pre- and processing
steps were performed inside Google Earth Engine (GEE) cloud platform. The acronyms and symbols
used in this study are summarized in the Abbreviations section.

Surface Albedo Adjustment

The surface albedo (αsup) corresponds to a measure of the reflectivity of the Earth’s
surface, for each pixel, with atmospheric correction obtained according to Equation (5) [50,80].

αsup =
αtoa − αpath

τsw2 (5)

where αtoa is the albedo at the top of the atmosphere, that is, before atmospheric correction,
αpath is the atmospheric reflectance (set to 0.03, as used by Silva et al. [80]), and τsw is the
atmospheric transmissivity for clear sky conditions, according to Equation (6) [50,80]:

τsw= 0.35 + 0.627 · exp

[
−0.00146 · Pa

Kt · cos(θ)
− 0.075

(
W

cos(θ)

)0.4
]

(6)

where Pa is the atmospheric pressure (kPa), with dataset available freely in https://portal.
inmet.gov.br/ (accessed on 10 August 2021), Kt is the turbidity coefficient of the atmosphere
(Kt = 1.0, for a clear sky day), according to Allen et al. [47] and Silva et al. [80], θ is the solar
zenith angle, and W is the precipitable water (mm), estimated from Equation (7) [81].

W = 0.14 · ea · Pa+2.1 (7)

where ea is the actual atmospheric water vapor pressure (kPa), estimated from Equation (8).

ea =
HR · es

100
(8)

https://portal.inmet.gov.br/
https://portal.inmet.gov.br/


Remote Sens. 2022, 14, 1911 8 of 27

where HR is the instantaneous relative humidity (%), and es is the water vapor saturation
pressure (kPa), estimated from Equation (9).

es= 0.6108 · exp
(

17.27 · T0

237.3 + T0

)
(9)

where T0 is the instantaneous air temperature (◦C) at the moment of the satellite pass.
For obtaining αtoa, a linear combination of the spectral reflectance of the six reflective

OLI bands was performed according to Equation (10) [80]:

αtoa = 0.300 r2 + 0.277 r3 + 0.233 r4 + 0.143 r5 + 0.036 r6 + 0.001 r7 (10)

where r2, r3, r4, r5, r6, and r7 are the surface spectral reflectances for bands 2, 3, 4, 5, 6, and 7
of the Landsat-8 OLI, respectively.

We use Equation (11) to obtain each of the spectral reflectances.

rb =

(
Addb+Multb · DN

cos(θ) · dr

)
(11)

where the terms Addb and Multb belong to the radiometric rescaling group, specifically
reflectance_add_band (equal to −0.1) and reflectance_mult_band (equal to 0.00002), respec-
tively, presented in the metadata of each OLI—Landsat-8 image, DN is the digital number
value corresponding to the pixel, θ is the solar zenith angle at the data acquisition time,
and dr is the Earth–Sun distance in astronomical units.

2.5. Determination of Surface-energy Partitioning

Based on the surface energy balance components, the evaporative fraction was de-
termined. Initially, the surface radiation balance or net radiation—Rn was calculated,
which is distributed by the energy partitioning in front of the sensible heat fluxes—H,
latent—LE, and soil heat flux—G [47–50,61,78,79]. By performing this process, a linear
relationship between the surface and air temperature gradient was considered to exist.
From this relationship and the internal calibration process for extreme conditions such as
temperature and humidity, it was established the need for obtaining the knowledge of
the so-called “anchor pixels”, i.e., hot and cold pixels, which are indicative of zero and
maximum evapotranspiration, respectively [47,48,61] (Figure 3).

The land surface temperature (LST) in K (Kelvin) was obtained using the spectral
radiance in band 10 of the TIRS sensor and the emissivity in the nearest band—εnb by the
modified Planck’s Law [82], as described in Equation (12).

LST =
K2

ln
(
”nb·K1

L10
+1
) (12)

where K1 and K2 are radiation constants specific for the Landsat-8 TIRS band 10, equaling
774.89 W m−2 sr−1 µm−1 and 1321.08 K, respectively, provided by NASA/USGS; and L10
is the radiance at the wavelength received by the sensors (band 10, the thermal band).

The εnb was calculated based on the LAI for each pixel according to Equation (13) [41].

”nb= 0.97 + 0.0033 · LAI (13)

Initially, the temperature variation and aerodynamic resistance to heat transport in
all pixels of the study area (Petrolina, Pernambuco) were determined. The atmosphere was
initially assumed to be in a neutral stability condition. For this study, the hot pixel was
considered in the exposed soil plots (i.e., no vegetation cover and/or little vegetation and
low moisture content), assuming LE equal to zero. The cold pixel was considered in grape
orchard plots irrigated by micro-sprinklers, when H can be considered zero [47,48,61,78,79,83]
(see Figure 3). Since turbulent effects affect atmospheric conditions and air resistance, the
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Monin–Obukhov similarity theory was applied and considered in the computation of H in
all pixels of the study area. It is worth noting that the Monin–Obukhov length was used for
corrections to the initial stable condition of the atmosphere [47–49,78,79].

Calculation of Energy Fluxes (H and LE) and Evaporative Fraction

The sensible heat flux (H) in SEBAL is calculated using an iterative procedure from
the aerodynamic function (Equation (14)) [47–49,78,79].

H = ρair · Cp ·
(a + b · LST)

rah
(14)

where ρair is the moist air density (kg m−3), Cp is the air specific heat at constant pres-
sure (1004 J kg−1 K−1), a and b are calibration constants of the temperature difference
between two heights (i.e., between the roughness length for heat transfer and the reference
height, usually 0.1 and 2.0 m above the displacement plane), and rah is the near-surface
aerodynamic resistance to heat transport (s m−1). Fundamentally, the coefficients a and
b are determined through an internal calibration for each satellite image by interactive
processes. We consider extreme pixels of wet/cold and dry/hot spots. They were selected
to develop a linear relationship between the aerodynamic temperature of the surface and
the air temperature difference, and the LST.

By knowing the components of the surface energy balance, such as the net radiation
(Rn, W m−2), sensible heat flux (H, W m−2), and soil heat flux (G, W m−2), the latent heat
flux (LE, W m−2) was determined, both corresponding to the time of the satellite pass over
the study area, according to Equation (15).

LE = Rn − H − G (15)

Subsequently, we determined the evaporative fraction (Λ) according to Equation (16).

Λ =

(
LE

Rn − G

)
(16)

2.6. Estimate of ETa Using SEBAL Method

Finally, as a SEBAL product, we determine the actual evapotranspiration (ETa,
mm day−1) [84] based on Equation (17) below, for each satellite image used. In this study,
the implemented SEBAL model had already been extensively validated and calibrated
under forests and agricultural land conditions [56,61,85].

ETa =

(
Λ · Rn24 · 86, 400

˘

)
(17)

where Rn24 is the daily net radiation (W m−2), 86,400 is a constant for daily timescale
conversion (i.e., converts from seconds to days), and λ is the latent heat of vaporization
of water (J kg−1). Then, the latent heat of vaporization allows the ETa expression in mm
day−1. Hence, accurate estimation of Rn24 (Equation (18)) was determined according to
Bastiaanssen et al. [49], and Lee and Kim [86]:

Rn24= Λ ·
[
(1 − αsup) · Rn − a · τsw

]
(18)

where a is a regression coefficient of the relationship between net longwave radiation
and atmospheric transmissivity on a daily scale, to which we assigned the value 143,
as proposed by Teixeira et al. [61]. The acronyms and symbols used in this study are
summarized in the Abbreviations section.
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2.7. Land Use and Land Cover Dynamics

In the present study, we sought to evaluate the impacts of changes in land use and
land cover (LULC) under the biophysical variables in the municipality of Petrolina. Thus,
we performed the extraction of descriptive statistical parameters (i.e., minimum, maxi-
mum, mean, median, and standard deviation) for the variables LAI, VC, ETa, LE, H, LST,
emissivity, and Rn in each class of LULC, from the maps available on the MapBiomas
Brazil platform [87]. This collection is highly reliable and it includes annual land use and
land cover (LULC) data for the period 1985–2019 and it prioritizes the following classes:
(1) arboreal Caatinga, (2) shrub Caatinga, (3) herbaceous Caatinga, (4) pasture, (5) agri-
culture, (6) mosaic of agriculture and pasture, (7) urban area, and (8) water bodies with a
spatial resolution of 30 meters [27,88].

The MapBiomas classification is a hierarchical system combining land use and land
cover. This classification is based on a pixel-by-pixel classification of Landsat images,
where we use the machine learning algorithm random forest. Thus, the LULC classes
for 2013, 2015, 2017, and 2019 were converted from raster files to vector files. We use
the “polygonise” tool, which transforms classes into polygons with the help of QGIS 3.16
software [89]. After the new datasets were converted, the vector files were used to extract
the statistical parameters by using the “zonal statistics” tool of the QGIS 3.16 software [89].
This procedure provided a basis with greater data amplitude and greater coverage of the
region’s surface under study, making it possible to compare the different land use and land
cover types. In addition, as a result of this process, four maps were generated, indicating
the land use and land cover changes.

2.8. Statistical Analyses

In this study, we applied a principal component analysis (PCA) on the biophysical
variables—e.g., LAI, VC, ETa, LE, H, LST, albedo, emissivity, and Rn—for 2013, 2015, 2017,
and 2019. Principal component analysis was performed to reduce the large dataset and
convert the data series into sets of uncorrelated linear values without losing relevant
information [35,65]. PCA consists of computing the eigenvalues and eigenvectors of the
covariance matrix. Moreover, in the generation of PCA, diverse components are created,
and the first component is the most important, as it explains the highest percentage of
the data variance, while the later components created in the analysis represent a lower
variation of the data. Thus, the data were standardized, subtracting the minimum values
from each value and dividing by their interval in order to obtain the maximum amount
of information extracted. Only eigenvalues greater than 1.0 were taken into account, for
they present expressive information from the newly created dataset [90]. The generated
loadings indicate the relative importance of a given raw variable from the data sample
in the principal component (PC) [65]. Moreover, 400 random points were generated to
compose the data of our regression model. One hundred random points were generated
across the study area (for variables LST, H, and ETa using SEBAL) for each assessment
date [2] through the QGIS (e.g., using the “random points inside polygon” and “point
sampling” functions [89]).

Subsequently, we built a multiple linear regression model to determine ETa (predic-
tand) in a simplified way. The selected variables were LST and H (predictors) due to their
strong correlation over the years with land use and land cover classes (results obtained
using PCA). This type of regression model assumes that there is a linear relationship be-
tween the response variable y and the predictor variables (e.g., x1, x2, . . . , xn); it may be
described as follows: y = β0 + β1x1 + β2x2 + . . . + βnxn + εrr, wherein β0 is the constant
value, β1, . . . , βn are regression coefficients, and εrr is the random error. The threshold for
predictor variable inclusion was p < 0.05.

Goodness of Fit

The model performance analysis was based on the root mean square error (RMSE,
the values close to zero reduce error and increase accuracy), the mean absolute error
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(MAE), percent bias (PBIAS), Nash–Sutcliffe efficiency coefficient (NSE), Lin’s concordance
correlation coefficient (LCCC), Willmott’s index of agreement (d), which ranges from 0
to 1 (i.e., indicates no agreement at all and perfect agreement, respectively) [91–94], and
coefficient of determination (R2, i.e., indicates the model’s accuracy in the prediction of
response for a dataset) above 0.90. These metrics allowed us to evaluate the models’ quality
and enabled the extraction of relevant information in terms of applicability. Therefore,
the lower the PBIAS and RMSE values, the better the model prediction performance.
Furthermore, NSE is a reliable criterion for evaluating the model’s predictive ability. We
also used LCCC to measure precision and accuracy between predicted and measured
values. Moreover, it indicates the degree of agreement between two methods by measuring
the variation of their linear relationship from the 45-degree line through the origin. Thus,
good models have LCCC equal or close to 1 [92–94]. Additionally, we applied analysis
of variance (ANOVA) and the F-test (p < 0.05, Fisher’s F-test) to investigate the statistical
significance between ETa values measured by the SEBAL algorithm and predicted by
the model proposed in this study. All statistical analyses were performed using the R
software [95].

3. Results and Discussion
3.1. Comparisons of Land Use and Land Cover (LULC)

Based on the classification via the MapBiomas platform and on the Landsat-8 satellite,
the thematic maps of land use and land cover for the years 2013, 2015, 2017, and 2019 were
highlighted, with the main classes represented in Figure 4.

Figure 4. Thematic classification of cover and land use and occupation from MapBiomas between the
years 2013 and 2019 for Petrolina, Pernambuco, Brazil.

The advances in exploration of agricultural areas for the municipality of Petrolina
occurred mainly in areas nearby the São Francisco river, with a predominance of irrigated
fruit farming. Moreover, the irrigated perimeters “Senador Nilo Coelho” and “Bebedouro”
in these areas are located there, which, in the 1970s with the construction of the Sobradinho
dam, boosted the exploitation and change in land use, impacting the Caatinga [37,96].
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In 2013, 70.20% of the area (320,265.44 ha) of Petrolina was composed of Caatinga, being
51.60% shrub, 18.48% herbaceous, and the other 0.12% arboreal (see Figure 4 and Table 2).

Table 2. Annual quantification of land use and land cover conditions from 2013 to 2019 for the
semi-arid region of Petrolina, Pernambuco, Brazil.

Classes
Annual Quantification of Land Use/Land Cover Types (ha year−1)

2013 2015 2017 2019

Arboreal
Caatinga 540.96 356.43 467.77 878.15

Shrub Caatinga 235,450.18 233,919.88 234,688.22 238,445.74
Herbaceous

Caatinga 84,274.3 74,985.47 78,138.28 78,797.94

Pasture 53,346.49 55,356.09 60,156.62 60,176.26
Agriculture 31,919.62 34,209.91 35,678.87 36,718.13
Mosaic of

Agriculture and
Pasture

39,420.48 45,494.96 34,884.41 29,371.88

Urban area 4855.57 5496.18 5829.13 5825.78
Water bodies 6375.49 6364.17 6339.79 5969.21

Total 456,183.09 456,183.09 456,183.09 456,183.09
Source: Adapted from MapBiomas Brazil.

The lowest percentages of areas occupied by Caatinga vegetation were observed in
2015 (67.8%) and 2017 (68.7%), respectively. Compared to 2013, there was an average
reduction of 2%, equivalent to 9123.65 ha of native forest (Caatinga), while in 2019, the
reduction was only 0.45% (Table 2). It is important to emphasize that the reduction in
Caatinga refers to herbaceous native vegetation. Such phenomena are related to the increase
in areas of agriculture, pasture, and urban infrastructure, along with the occurrence of
lower rainfall rates recorded between 2015 and 2017. However, between 2013 and 2019, an
increase of 0.07 and 0.66% was observed in the native trees and shrubs vegetation areas,
respectively (Figure 4 and Table 2). Furthermore, the expansion of arboreal vegetation
areas occurred close to water bodies; on the other hand, the expansion of shrub vegetation
occurred to replace areas previously occupied by agricultural activities (3234.56 ha), mainly
pasture or in the ecological succession of areas of herbaceous vegetation (3679.17 ha)
(Supplementary Table S1 and Figure S1). Silva et al. [97] studied the spatial–temporal
evolution of agricultural activity in the Brazilian semi-arid region from 1998 to 2018, seeking
to investigate the resilience of the Caatinga biome during the dry season. The authors
mention that the expansion of the Caatinga biome occurred mainly with the reduction of
agricultural activity, which reinforces the results obtained in the present study.

In 2013, the areas occupied with pasture represented 11.7%, agriculture 7.0%, and the
mosaic of agriculture and pasture 8.64%, while areas with urban infrastructure and water
bodies presented an occupation of 1.06 and 1.40%, respectively (Figure 4 and Table 2). From
2013 to 2019, there was an increase in areas with agricultural activity in the region, while
a decrease in native herbaceous vegetation (Caatinga) was observed, which caused the
conversion of 10,972.34 ha of native herbaceous vegetation to areas of agricultural activity
(see Supplementary Table S1 and Figure S1). The types of LULC indicated the different
intensities of human activities in the area. Several authors have reported the occurrence
of severe drought events in NEB in the period between 2012 to 2016, in addition to the
intensification of anthropic activities in the study region [10,23,27,72,98,99]. Those factors
are responsible for significant changes in the phytosociology and floristic composition of
the biome [10,23,27,72,98,99].

Drought is costly to Brazil, for it causes strong impacts on agriculture and cattle ranching.
For example, the 2012–2013 drought resulted in economic losses of USD 1.5 billion for more
than ten important crops in the region and USD 1.6 billion in cattle mortality [100]. Fur-
thermore, Marengo et al. [10] emphasize that among adverse natural climate phenomena,
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drought is the factor that most affects society, as it impacts large territorial extensions of
NEB, with intensified and increasingly long-lasting events over the years.

The agricultural and cattle ranching activity were significant in 2015, 2017, and 2019
with 29.6, 28.7, and 27.7%, respectively. Among the agricultural activities, the class of
pastures (in this study, there is no detailed distinction between irrigated and non-irrigated
pasture areas) was responsible for the largest occupied area, with values of 55,356 ha in
2015; 60,156 ha in 2017, and 60,176 ha in 2019 (see Table 2). The expansion of pasture areas
resulted from the growing demand for food and for animal production, which favored
changes in land use and occupation and, consequently, it increased the deforestation rate of
the Caatinga biome [19]. Fleischer et al. [101] reported that the constant changes in land
use and land cover might cause a significant impact on the flux and carbon stock since they
are responsible for changing the sink capacity or carbon source of the ecosystem.

The agriculture class in 2015, 2017, and 2019 showed territorial occupation of 34,209,
35,678, and 36,718 ha, respectively, with an average increase of 0.80% (3616 ha) compared to
2013 (Table 2). This growth was favored by the development of irrigated agriculture in the
region, due to the proximity of the São Francisco river’s channel, maximizing mainly fruit
farming, e.g., grape and mango [6,7]. Most of the times, irrigated fields are inserted in areas
previously occupied by Caatinga, which results in changes in the physical, chemical, and
biological soil properties [6,66]. In addition, changes in greenhouse gas (GHG) emission
fluxes resulting from anthropogenic modifications on native vegetation are also reported in
the literature [19,101].

3.2. Rainfall Variability in Land Cover Classes

Analyzing the spatiotemporal rainfall dynamics in the region over the 30 days pre-
ceding the passage of the Landsat-8 satellite on the four assessment dates (5 October 2013,
12 November 2015, 16 October 2017, and 7 November 2019) allowed us to observe the
variation in rainfall distribution and volume, whose average accumulated values were 5.63,
1.7, 0.59, and 10.4 mm, for the respective dates. Despite the low rainfall volume observed
in the region, some areas showed a tendency for higher rainfall occurrence, which may be
conditioned to the native vegetation and orographic effects of the region (Figure 5).

Figure 5. Spatiotemporal rainfall distribution (mm) for the CHIRPS satellite product in the munici-
pality of Petrolina, Pernambuco, Brazil, in the 30-day period before the imaging dates 5 October 2013
(a), 12 November 2015 (b), 16 October 2017 (c), and 7 November 2019 (d).
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Variations in rainfall distributions and volumes may have caused changes in vegetation
cover, surface temperature, and evapotranspiration of the land portions observed in this
study. Predominant vegetation of the Caatinga biome is quickly responsive to rainfall
regimes, reducing foliage in the dry period (through deciduousness) and gaining biomass
by the arrival of a new rainy period, which is considered a condition of defense and
physiological adaptation of these highly efficient plants [102,103].

3.3. Vegetation Cover Indices of the Municipality

Figure 6 shows the percent vegetation cover (VC) in Petrolina. The first three imaging
dates in the study showed that, on average, 52.26% of the territorial area of the region had
0 to 25% vegetation cover (Figure 6a–c), revealing the direct effects of low rainfall volumes
resulting from the dry season on native vegetation.

Figure 6. Condition of the different types of vegetation cover in the Caatinga agroecosystem in the
municipality of Petrolina, Pernambuco, Brazil, on the imaging dates 5 October 2013 (a), 12 November 2015
(b), 16 October 2017 (c) and 7 November 2019 (d).

Under these conditions, variations in NDVI values are strongly linked to biomass
production [102]. In studies carried out in the Caatinga, Cunha et al. [22], Leivas et al. [21],
and Leivas et al. [104] reported that monitoring large-scale variations of water indicators
and vegetation status is of crucial importance to minimize the adverse effects of climate
and land use changes on mixed agroecosystems. Moreover, it can help in planning and
decision-making processes for rational use of natural resources to mitigate the effects and
duration of large-scale drought events.

The results reported here contribute to understanding water limitations and vegetation
behavior. Due to the proximity of the São Francisco river, which supplies the irrigation
systems, the areas of higher vegetation cover are found in the irrigated agriculture sites in
the southern part of the municipality and the few remaining fragments of arboreal Caatinga,
reaching average values of 58.71 ± 22.18% and 59.78 ± 18.94%, respectively, throughout
the period under study (Figure 6). However, it can be observed that in areas dominated by
pasture, herbaceous, and shrub Caatinga, the mean values of VC for the dates studied are
lower (22.84 ± 6.70%, 27.17 ± 5.45%, and 24.56 ± 4.74%, respectively) (see also Figure 4).
The advanced stage of pasture degradation and the intense grazing activity in natural areas
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of Caatinga also impact the vegetation density and, hence, its spatiotemporal dynamics
and related surface variables such as NDVI, LST, albedo, and emissivity [2,72,105].

Santos et al. [103] emphasize that the arboreal vegetation is less susceptible to climatic
variations than shrub and herbaceous vegetation, leading to less drastic reductions in VC
throughout the dry season. This characteristic is intrinsically linked to the adaptive capacity
of species, favoring them to withstand the stressful effects of abiotic factors [106].

It is essential to highlight that on 7 November 2019, there was an average increase
of 46.81% of areas with VC higher than 50% in the northern part of the municipality
(Figure 6d), which indicates a response of vegetation to the behavior of rainfall in this
period, since this was the fraction of the polygon with the highest rainfall index during the
30 days prior to this evaluation date (Figures 5 and 6). The interrelationship of vegetation
with meteorological variables plays a crucial role in the ability to slow the advance of
aridity, loss of soil quality, and ecological diversity. In areas with consolidated vegetation,
soil exposure to solar radiation becomes lower, causing the maintenance of soil moisture
and consequently favoring the water availability in the environment for species. The
intensification of anthropic activities can directly cause damage to native vegetation, such
as soil and vegetation degradation; however, these changes can also influence climatic
conditions and cause severe damage to ecosystem services.

During the studied dates, the LAI varied between 0.00 and 3.3 m2 m−2 (Figure 7).
However, in 97% of the region under study, the LAI values were lower than 0.825 m2 m−2,
for in periods with low water availability, the Caatinga usually presents low LAI [107]. The
low LAI values can be justified not only by drought events but also by the characteristics of
the soils, which, in general, are shallow and have low water storage capacity. In addition, it
is worth noting that factors such as deforestation and intensive grazing activity in areas of
native vegetation, as well as a high degree of degradation of pasture areas, historically, are
common in this region, causing an imbalance of natural ecosystems [108,109].

Figure 7. Spatiotemporal distribution of leaf area index (LAI, m2 m−2) in the municipality of Petrolina,
Pernambuco, Brazil, on the imaging dates 5 October 2013 (a), 12 November 2015 (b), 16 October 2017
(c), and 7 November 2019 (d).

The highest heterogeneity in LAI values was seen on 7 November 2019
(0.24 ± 0.22 m2 m−2) (Figure 7d), increasing from the greater variability in the spatial
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distribution of rainfall accumulation in the previous days. On the other hand, during
the dates studied here, the highest mean LAI values stood out only in areas of arboreal
Caatinga (0.58 ± 0.45 m2 m−2) and agriculture (0.75 ± 0.49 m2 m−2), with the maximum
values being associated with irrigated agricultural areas, more specifically orchards, with
increased biomass production. However, in areas of pasture, urban infrastructure, and areas
of arboreal and herbaceous Caatinga, the LAI values were close to or equal to zero, making
its variation more homogeneous, that is, closer to the daily mean, with standard deviation
(SD) ranging between 0.05 and 0.10 m2 m−2 within the land cover classes (Figure 7).

3.4. Land Surface Temperature (LST) in the Studied Classes

In the present study, the minimum LST values were seen in areas of water bodies,
while the maximum LST values were seen in areas of exposed soils, located at points
of pasture and degraded Caatinga, urban infrastructure (asphalt, concrete, and gravel
surfaces), and agricultural areas undergoing soil preparation for cultivation (Figure 8).
This result is expected in bare soil locations under intense anthropic activity due to the
transformation of land use/land cover classes into non-evaporating surfaces. This makes
the place’s temperature higher and reduces water availability in the soil, which causes
serious problems in agricultural crops. The computed LST map is shown in Figure 8.

Figure 8. Spatiotemporal distribution of the land surface temperature—LST (◦C) in the municipality
of Petrolina, Pernambuco, Brazil, on the imaging dates 5 October 2013 (a), 12 November 2015 (b),
16 October 2017 (c) and 7 November 2019 (d).

Due to the replacement of primary vegetation with pastures, agricultural crops, and
urban occupation, changes in land use can substantially affect the heat and mass exchange
in the soil–plant–atmosphere system, propitiating the retention of a higher amount of heat
by the Earth’s surface [2,52]. Land abandonment and excessive mechanical disturbance of
the soil may also alter the heat exchange with the environment and cause lower thermal
and radiant energy lag; thus, the land conversion had increased LST in the area of the
non-evaporating surfaces.

It can be observed that the average LST values for the dates studied were higher in
the areas dominated by pasture (47.69 ± 1.47 ◦C), herbaceous Caatinga (47.28 ± 1.27 ◦C),
and shrub Caatinga (46.07 ± 1.44 ◦C), even higher than those observed in areas with urban
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infrastructure (45.80 ± 1.52 ◦C) (Figure 8). According to Zhao et al. [110,111], sites with
different land cover types may have an LST increase gradient along the urban to rural
profile. The high LST in the pasture, herbaceous, and shrub Caatinga areas is related to the
lower percentage of ground covering by vegetation (see Figure 6), which results in drier
exposed soil, with higher albedos and lower evaporative cooling flux rates, a factor that
increases LST. Another related factor contributing to the high LST of pastures is that grasses
have shallower roots. Therefore, they can only access the water available in the superficial
soil layers, which depletes faster than in deeper layers [2]. Vegetation canopy can retain
rainwater and decrease groundwater recharge by altering evaporative flux and raising the
land surface temperature.

On the other hand, it is observed, in general, that in areas dominated by arbo-
real Caatinga and agriculture, the average LST values are lower (38.99 ± 2.48 ◦C and
43.11 ± 2.30 ◦C, respectively) (Figure 8). The highest vegetation cover and the highest
soil humidity in the areas dominated by these classes favor LST reduction. However, they
present the greatest spatial variations of LST among all land use and land cover classes,
according to the standard deviation values (±SD). The main advantage of using LST data
from satellite images is the total surface coverage. In this way, each time series of pixels of
the LST map can be considered a “virtual weather station” [112].

3.5. Variations of the Actual Evapotranspiration (ETa) of Land Use Classes

Rainfall regime directly influenced ETa, so that on 16 October 2017 (Figure 9c), the
date with the lowest rainfall accumulation in the previous days, the lowest ETa rates were
found, with an average value of 2.02 mm day−1. On the other hand, on 7 November 2019
(Figure 9d), the period with the highest rainfall accumulation, average ETa rates were
2.62 mm day−1 (Figure 9). According to Teixeira et al. [20], high evapotranspiration values
in Caatinga areas occur right after rains. Therefore, the previous rainfall raises soil water
availability and keeps native species with turgid structures and greener canopy.

Figure 9. Spatiotemporal distribution of actual evapotranspiration (ETa, mm day−1), calculated with
Surface Energy Balance Algorithm for Land (SEBAL), in the municipality of Petrolina, Pernambuco,
Brazil, on the imaging dates 5 October 2013 (a), 12 November 2015 (b), 16 October 2017 (c), and
7 November 2019 (d).
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The ETa estimated by the SEBAL model showed variation both within and between
land use and land cover classes. The lowest ETa observations in all the evaluated dates were
observed in the areas occupied by pasture and mosaic of agriculture and pasture classes,
with average values of 0.70 ± 0.73 mm day−1 and 1.01 ± 0.96 mm day−1, respectively
(Figure 9). These areas have dryland cultivation practices, which causes the lower water
availability to affect the evapotranspiration rates; moreover, the heterogeneity of the areas
causes sudden variations in ETa.

On the other hand, due to the effect of the increase in air temperature and atmospheric
demand verified throughout the dry season in Petrolina, combined with the presence of
preserved riparian forests along stretches of water bodies and continuous irrigation in crops,
higher mean ETa values were observed in the arboreal Caatinga (4.73 ± 0.49 mm day−1)
and agriculture (3.07 ± 1.23 mm day−1) classes. For presenting areas with irrigated and dry
cultivation, the average values of this class become more variable. When there is a greater
contribution of moisture added to more dense vegetation, there is a favoring of the local
microclimate in the region [113,114], a phenomenon reported in areas of arboreal vegetation.

The shrub and herbaceous Caatinga classes showed greater heterogeneity indicated
by the largest standard deviations (2.42 ± 0.76 mm day−1) and (1.46 ± 0.71 mm day−1),
respectively, relative to the arboreal Caatinga class (Figure 9). Folhes et al. [115] reported
that the evapotranspiration values (2.0 mm day−1) during the dry season for species of
herbaceous–shrubby Caatinga. In dry periods, the Caatinga vegetation uses the available
energy as sensible heat flux (H), limiting transpiration and photosynthesis, thus reducing
evapotranspiration values [20]. However, arboreal vegetation is able to compensate the
high vapor pressure deficit in the air, even in dry periods, when compared to shrub and
herbaceous vegetation, due to the deep root system keeping up with the water stored in
the soil [70,116,117].

The arboreal and shrub species play a fundamental eco-hydrological role, maintaining
soil humidity and structuring its porosity, guaranteeing the maintenance of infiltration
capacity and favoring the survival of species [116].

3.6. Statistical Relations between the Variables Studied and Land Use

In this study, we performed a PCA of the environmental variables in relation to land
use and land cover classes. Therefore, the first two components with eigenvalues greater
than 1.0 were extracted separately for the years 2013, 2015, 2017, and 2019 (Figure 10). In
2013, the two principal components explained 94.77% of the total variation, with 70.39%
in the principal component 1 (PC1) and 24.38% in the principal component 2 (PC2). On
the other hand, in 2015, 2017, and 2019, when added together, PC1 and PC2 represented
94.01, 92.34, and 94.56% of the total variation, respectively (Figure 10). In addition, it can
be seen that the LULC class, with the least influence on components 1 and 2 in all years,
is shrub Caatinga, with average eigenvalues (0.31 and 0.37, respectively). In addition, the
classes with the greatest influence on PC1 with positive and negative eigenvalues are water
bodies (2.69), agriculture (−2.35), arboreal Caatinga (−1.92), pasture (0.34), mosaic (0.16),
and urban area (0.35). In PC2, the classes of LULC were water bodies (−4.36), mosaic (2.10),
agriculture (−1.0), and arboreal Caatinga (−3.40) (Figure 10).
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Figure 10. Scores obtained by principal component analysis (PCA) of environmental variables and
land use and land cover. PC1 and PC2 are the first and second dimensions of PCA data, respectively.
The four inserted panels below the PCA scores plots refer to the loadings plots of the first two
principal components from 2013 to 2019.

Through PCA, we observed that the ordering of variables in each principal component
(PC) of the axes was influenced by the degree of vegetation cover and surface water status
of the LULC classes (Figure 10). Thus, PC1 contributed more to the variability of the
response of variables related to energy balance. Therefore, in PC2, the land use and land
cover classes (i.e., pasture, mosaic, urban area, and herbaceous Caatinga) influenced the
variables Rn, LE, ETa, and emissivity with higher mean loadings (−0.95, −0.94, −0.99, and
−0.80, respectively). On the other hand, they showed a high correlation with the variables
H, LST, and albedo. For these LULC classes, this may be related to the presence of bare soil
and thin vegetation covers that affect the regional microclimate and soil–plant–atmosphere
system fluxes, resulting in higher albedos, lower rates of evaporative cooling fluxes, and
highest LST [2,105].

On the other hand, PC2 contributed more to the variability of the responses of the
variables regarding the canopy interactions (LAI and VC) due to the strong negative
correlation with cultivated land (i.e., agriculture class) (Figure 10). In all years, there was
a predominance for LE and LAI in areas with arboreal Caatinga and agriculture, with
agriculture presenting the highest VC. Caatinga presents a strong relationship with LAI
in rainy periods due to the greater availability of water in the soil [118]. In the present
study, the samples were taken in the period with low rainfall, so the LAI was not expressive
compared to agricultural areas, which use irrigation and therefore increase the LAI. Thus,
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the emissivity in the Caatinga vegetation is lower, for the emissivity of the soil is generally
lower than that of the leaves [2].

The results of the analysis of variance (ANOVA) and multiple regression analysis of
the established model are presented in Table 3. For the combination of two-variable models,
the two best pre-established parameters based on the PCA results were the variables
LST and H, used to build the regression model. In particular, these two variables are
of great relevance in transferring energy to the atmosphere. The ANOVA results also
showed that the model values are significant. Due to the observations, a joint analysis of the
coefficient of determination obtained (R2 = 0.98) can be performed, emphasizing the P-value
obtained from our regression model, which was less than 0.001, thus indicating greater
model accuracy and reliability (Table 3). Notably, it can be seen that the model’s F-value
was 16,692.84, being greater than the critical value of F0.05 = 3.018, which confirms the
significance of the proposed model. In addition, the variables used provided a high R2 and
LCCC, being essential for the model’s accuracy. Furthermore, the results showed that the
multiple linear regression model to determine ETa achieved a coefficient of determination
of 0.98, RMSE of 0.498, MAE of 0.413, and d equal to 0.9620. It also resulted in PBIAS, NSE,
and LCCC values averaged between −13.32%, 0.826, and 0.907, respectively (Table 3). From
the statistical analysis, this model is described as ETa = 6.89 − 0.0527LST − 0.0120H. Based
on the RMSE, LCCC, and d of this application, the use of the ETa model, besides presenting
a strong correlation between the variables H and LST, as seen in Figure 10, expresses a
biophysical model with enough efficiency and high agreement to determine ETa.

Table 3. Analysis of variance (ANOVA) and regression coefficients results for the suggested model.

Source of Variation df SS MS F-Value p-Value

Regression 2 464.41 232.21 16,692.84 0.0001
LST 1 335.29 335.29 24,103.8 0.0001
H 1 129.12 129.12 9281.9 0.0001

Error 397 5.52 0.01
Total 399 469.93

Regression statistics

Predictors in model
Regression coefficients

β0 β1 β2 R2

LST, H 6.89 −0.0527 −0.0120 0.98

Model

Statistical metrics

RMSE MAE PBIAS
(%) NSE LCCC d

0.498 0.413 −13.32 0.826 0.907 0.9620
df: degrees of freedom, SS: sum of squares, MS: mean square, LST: land surface temperature, H: sensible heat flux,
β0: intercept, β1 and β2: estimated coefficient for the factor x, R2: coefficient of determination, RMSE: root mean
square error, MAE: mean absolute error, PBIAS: percent bias, NSE: Nash–Sutcliffe efficiency coefficient, LCCC:
Lin’s concordance correlation coefficient, and d: Willmott’s index of agreement. Based on F-test, at a probability of
0.05 (p < 0.05), significance of equation parameters for each response variable was determined.

The high d (0.9620) values for ETa indicated that there was a good agreement between
simulated and measured ETa. In general, the ETa model showed excellent agreement (LCCC
0.9), high performance, and low RMSE (0.498) (Table 3). The PBIAS and MAE values for
ETa were between −13.32% and 0.413, confirming the close agreement. Consequently, this
result describes the ability to simplify and accurately predict ETa in deficit environments.
Applications of regression model analysis with environmental variables are common in the
literature in dry forests [118–120]. However, these implementations of variables in previous
studies may be challenging to acquire for specific locations, requiring more simplified
models. Our results also indicate the relationship between H and the LST of ecosystems to
determine ETa, an important variable in the energy balances of environments worldwide.
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4. Conclusions

In this study, we point out a significant tendency to increase the agricultural areas,
which results in the progressive decrease of the Brazilian Caatinga biome. The vegetation
cover is directly influenced by the soil–water regime; years of higher rainfall result in
a lower percentage of suppression of the native forest in the municipality of Petrolina,
Pernambuco (Brazil). The areas with pasture class presented hotspots due to degradative
processes and higher surface temperatures, influenced by the sensible heat flux. A gradual
increase in LST is observed in the municipality and it may cause future risks to forest areas.

The SEBAL algorithm used in a semi-arid environment is a helpful tool to determine
the energy and mass fluxes in different ecosystems. Notably, the Caatinga biome has
particularities in biophysical parameters, according to the land cover and soil exposure
on intra and inter-annual scales. The heterogeneity of the surface of the municipality of
Petrolina, as a function of land use and land cover patterns, alters the energy exchange
with the atmosphere. Our results also suggest a simplified and validated model for ETa
determination in a semi-arid environment. The regression model could accurately predict
the spatial distribution of ETa, with high R2 and LCCC and low RMSE value.

Thus, it is possible to suggest that the implementation of agricultural activities in
the Petrolina should be carried out in a planned and sustainable way in order to mitigate
the impacts that anthropic action causes on the Caatinga, especially with the increased
vulnerability of this biome to the desertification process. However, further research is
needed to investigate the spatial variations of the types of crops covering the soil in the
municipality, as well as the dynamics of fires and their impacts on the diversity of the
Caatinga biome. Field surveys and the use of unmanned aerial systems (UAS) could
provide more detailed information at an intermediate and fine scale.
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land use/land cover changes; Table S1: Areas of expansion and contraction of land use/land cover
changes in Petrolina between 2013 and 2019. Positive values indicate an expansion of the respective
land cover, negative values a contraction. The values are in million hectares (Mha).
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Abbreviations
Summary of all the symbols and acronyms used in this paper.

Item Description

a and b Are the calibration coefficients
Cp Specific heat of air
d Willmott’s index of agreement

DEM Digital elevation model
dT Near-surface air temperature gradient
ea Actual atmospheric water vapor pressure
es Water vapor saturation pressure

ETa Actual evapotranspiration
G Soil heat flux

GEE Google Earth Engine
H Sensible heat flux

HR Instantaneous relative humidity
k von Karman constant

LAI Leaf area index
LCCC Lin’s concordance correlation coefficient

LE Latent heat flux
LSE Land surface emissivity
LST Land surface temperature

LULC Land use and land cover
MAE Mean absolute error
NDVI Normalized Difference Vegetation Index
NSE Nash-Sutcliffe efficiency coefficient

PBIAS Percent bias
PCA Principal component analysis
rah Near-surface aerodynamic resistance to heat transport

RMSE Root mean square error
Rn Net radiation

Rn24 Daily net radiation
R2 Coefficient of determination

SAVI Soil-Adjusted Vegetation Index
T0 Instantaneous air temperature
Ta Air temperature
u* Friction velocity

u200 Wind speed at the height of 200 m
VC Vegetation cover
W Precipitable water
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Item Description

z1 and z2 Are the two heights between the surface of the anchor pixels
zom Momentum roughness length
αsup Surface albedo
εa Atmospheric emissivity
Λ Evaporative fraction
λ Latent heat of vaporization of water
ρair Air density

ψm and ψh Stability correction factors for momentum and sensible heat, respectively
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