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A B S T R A C T   

This study aims to present an empirical formulation to predict equivalent temperature for steel 
and concrete components of the innovative concrete-filled cold-formed steel (CF-CFS) built-up 
column sections. This paper (part A) presents a 2-dimensional (2D) finite element modeling 
technique to predict temperature evolution through the CF-CFS built-up column sections. Heat 
transfer analysis was undertaken considering existing models/data for thermal properties (ther-
mal conductivity and specific heat) of concrete and steel as a function of temperature. The 
resultant heat emissivity and the convective heat coefficient were defined to describe radiation 
and convection. The results of finite element modeling were calibrated against experimental data. 
The results showed a good agreement with experimental data for both steel and concrete tem-
perature evolution. Therefore, the 2D finite element can accurately predict the temperature of the 
CF-CFS sections and can be used as a reliable tool for further parametric study.   

1. Introduction 

Due to its superior structural performance in various scenarios such as fire, concrete-filled steel tubes (CFST) are widely utilized in 
multi-story buildings. These structural components have high structural fire performance. Recently studies were carried out on 
applying cold-formed steel profiles and lightweight concrete instead of hot-rolled and normal concrete [1,2]. The cold-formed steel 
profiles have advantages over hot-rolled profiles, such as less difficulty in transportation, high strength-to-weight ratio, ease of 
fabrication, less construction time, ability to generate various cross-section shapes [3–6]. Understanding the behavior of these columns 
subjected to accidental fire action is necessary further to enhance the fire performance of such structural members. In the last few 
decades, a great deal of experimental, computational, and analytical work has been done to better understand the behavior of com-
posite columns when subjected to fire [1-15]. Espinos et al. [8] numerically compared the fire resistance of concrete-filled steel tubular 
composite columns and concrete-filled steel tubular composite columns with a steel core. They calibrated their numerical modeling by 
comparing axial displacement history for experimental specimens and numerical simulations. Mao et al. [9] investigated the fire 
resistance of concrete-filled steel tubular composite columns. They showed an excellent agreement between finite element results and 
experimental data for the outer surface of the steel tube. However, remarkable differences were seen between experimental and 
numerical results for predicting the concrete core temperature. Zhou et al. [10] investigated the concrete-filled thin-walled circular 
steel tubular columns using experimental tests and numerical modeling. Their finite element modeling approach showed an acceptable 
prediction. Meng et al. [11] investigated the fire behavior of concrete-filled steel columns using experimental tests and numerical 
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Fig. 1. Geometry details of the profiles and composite sections.  

Fig. 2. a) steel thermal conductivity, b) steel specific heat [17,18]], c) concrete thermal conductivity, and d) concrete specific heat [19].  
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simulation. They compared the experimental results with the corresponding numerical model showing a remarkable disagreement in 
axial displacements and temperature evolution. 

Prior work by the authors [1,2] demonstrated the compression behavior of the CF-CFS column at both room temperature and 
increased temperatures. Even though extensive experimental and numerical investigations into the fire resistance of composite col-
umns have been carried out, advanced tools such as finite element analysis are still required to determine the temperature distribution 
in the cross-section and, therefore, to determine the fire resistance composite columns. Moreover, the design procedure for composite 
columns following EN 1994-1-2 [16] is incorporated with advanced heat transfer analysis. Moreover, the difficulty of EN 1994-1-2 
[16] methodologies (general method and simplified method (Annex H)) is to obtain accurate temperature distribution in steel com-
ponents and layers of the concrete section. This paper presents a 2D modeling approach as a verification tool for future studies (part B 
of this study). 

2. Finite element modeling 

2.1. Geometry details of the CF-CFS built-up sections 

Cold-formed steel profiles with cross-sections in the shapes of C, U, and Σ were used in this work as the numerical models for this 
investigation. All of the profiles have a plate thickness of 1.5 mm. The CF-CFS composite cross-sections are presented in Fig. 1. The 
tested CF-CFS composite sections were fully described in [2]. 

2.2. Thermal properties 

2.2.1. Steel 
All profiles were made of S280GD + Z structural steel (nominal yield strength of 280 MPa and ultimate tensile strength of 360 

MPa). The thermal parameters of this material (thermal conductivity (λc) and specific heat (cp)) were taken from the experimental 
study performed by Craveiro et al. [17,18], where the Transient Plane Source technique was used. The obtained experimental results 
are displayed in Fig. 2a and b. 

2.2.2. Concrete 
The thermal conductivity (λc) for the concrete was defined according to the expression presented by the EN1992-1-2 [19]; it in-

cludes lower and upper limits determined by Eq. (2). In this study, an average between lower and upper limits was considered for the 
numerical models. Fig. 2c depicts the upper and lower limits and their average thermal conductivity as a function of temperature. The 
specific heat (cp) was also defined as a function of temperature according to the EN1992-1-2 [19] as shown in Fig. 2d. Note that the 
moisture content of 3% was assumed for the concrete. 

{
λc = 2 − 0.2451(θ /100) + 0.0107(θ /100)2 20 ◦C ≤ θ ≤ 1200 ◦C (lower limit)

λc = 1.36 − 0.136(θ /100) + 0.0057(θ /100)2 20 ◦C ≤ θ ≤ 1200 ◦C (upper limit)
(2)  

2.3. Numerical modeling 

2D transient heat transfer analyses were conducted using Abaqus [20] to obtain the thermal gradient within the composite 
steel-concrete cross-section. 

The radiation and convection were defined to simulate the transferring temperature from the fire to the external surface of the 
sections (Fig. 3), hence determining the boundary conditions of the heat transfer analysis. The fire’s temperature was defined ac-
cording to the furnace air temperature based on an experimental study performed by Rahnavard et al. [2]. The resultant heat emis-
sivity of 0.23 was used to represent radiation. A value of 20 (W/m2 K) was also used for the convective heat coefficient [2]. The heat 
resistance at the interface can be described using the heat contact conductance parameter. The 200 (W/m2 K) heat contact conduc-
tances were defined for steel to concrete contact. Steel to steel contact conductances was defined as 2000 (W/m2 K). The initial ambient 
temperature was defined as 20 ◦C. 

Moreover, physical constants such as absolute zero temperature and the Stefan-Boltzmann constant were considered − 273.15 ◦C 

Fig. 3. Numerical modeling.  
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and 5.67 × 10− 8 W/(m [2]⋅k [4]), respectively. More information regarding the interaction definition is presented in [2]. For the 
meshing, DC2D4, a 4-node linear heat transfer quadrilateral from Abaqus [20] library, was selected for both steel and concrete 
components. Note that the mesh size for concrete and steel was considered as 0.5 mm. 

3. Verification of temperature evolution 

In this section, the 2D modeling approach is verified against experimental results in [2]. The temperature vs. time of specific 
positions on steel surface for 2D finite element (current study) and both 3D finite element modeling [2] and experimental tests [2] are 
plotted in Fig. 4. Note that the temperature evolution of the mid-height level of the column from the experimental study [2] was 
adopted for comparison purposes. The numerical results obtained using the 2D heat transfer analysis are in very good agreement with 
the experimental results. The current study’s 2D heat transfer analysis results were consistent with those from previous 3D heat 

Fig. 4. Comparison of experimental and finite element results for temperature history on steel surface; a) R–2C+2U, b) S–2C+2U, c) R-2Ʃ+2U, d) S-2Ʃ+2U.  
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transfer investigations [2]. As shown in Fig. 4a–c, the temperature on the steel surface for R–2C+2U and R-2Ʃ+2U cross-sections had 
lower temperatures on point B (U-channel flanges) than their webs (point A). This variation is because point B is located in the web, 
which is thinner (no overlapping steel plates). 

Fig. 4b shows the results for the square section S–2C+2U. The actual temperatures varied, while it was assumed that all surfaces in 
Fig. 4b would have the same temperature due to the section’s square shape and equal thickness in points A and B. This difference in the 
experimental results is because the furnace chamber is divided into two sections. There are no electrical resistances in the area where 
the two chambers link [2], which means that the two sides of the column were somewhat less exposed to heat radiation. Fig. 4d shows a 
close agreement between experimental results and the 2D heat transfer analysis for S-2+2U. 

The concrete core temperature history curves were compared to the temperature curves of the 2D heat transfer analysis, which are 
depicted in Fig. 5. Overall, all configurations were found in good agreement, resulting in finite element modeling that is both accurate 
and reliable. The maximum concrete core temperatures difference obtained from experimental and numerical 2D models is 6%, 9%, 
1%, and 8% for R-2+2U, S-2+2U, R-2Ʃ+2U, and S-2Ʃ+2U. The modest differences in the temperature between the finite element 
models and the experimental specimens may be due to variations in thermal property values. Note that the moisture content of the 
concrete infill was assumed uniform throughout the finite element. In contrast, the concrete infill in the cross-center section of the 

Fig. 5. Comparison of experimental and finite element results for temperature history in the concrete core; a) R–2C+2U, b) S–2C+2U, c) R-2Ʃ+2U, d) S-2Ʃ+2U.  
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experimental specimens may be higher than the moisture content of the concrete infill in the area adjacent to the steel tube. 
In sum, the 2D modeling techniques could precisely predict the steel temperature and the generated thermal gradient in the 

concrete infill. 

4. Conclusions and future work 

A 2D numerical modeling of heat transfer analysis was developed to investigate the temperature evolution of composite sections. 
The composite sections were made of cold-formed steel built-up sections and filled with concrete. The results of the 2D modeling 
approach showed a high accuracy against experimental and 3D finite element results in [2]. The 2D modeling approach had the 
advantage of being less complex than the 3D approach presented by authors [2]. Therefore, the adopted simulation techniques will be 
used in future parametric studies as a reliable verification tool for the development of empirical formulations (part B of this study) 
capable of estimating the temperature evolution of steel and concrete parts of the composite section for future application with existing 
structural design methodologies presented in the EN 1994-1-2 [19]. 
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