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1. Introduction

For J a Hermitian involutive matrix, that is, J∗ = J, J2 = In, we consider Cn
endowed with an indef-

inite inner product [., .] defined by [ξ , η] = η∗Jξ , ξ , η ∈ Cn
. Let Mn denote the algebra of n × n complex

matrices. A matrix A ∈ Mn is said to be J-Hermitian if A = A#, where A# = JA∗J denotes the J-adjoint of

A. A matrix U ∈ Mn, is said to be J-unitary if U#U = In. For a Hermitian involutive matrix J of signature
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(r,n − r), 0 < r < n, the J-unitary matrices form a locally compact group Ur,n−r , called the J-unitary

group. The J-Rayleigh ratio of a J-Hermitian matrix A ∈ Mn is the real valued function defined by

RJ(x) = x∗JAx
x∗Jx

, x∗Jx /= 0. (1)

If J = In, then (1) reduces to theRayleigh ratio of aHermitianmatrix. The set of all thepossible values

for a nonscalar J-Hermitianmatrix is unbounded, since the set {RJ(x) : x ∈ Cn
, x∗Jx /= 0} is neither lower

boundednor upper bounded. However, the set of all values of the J-Rayleigh ratiomay be semibounded

for some classes of J-Hermitian matrices when we restrict its domain as X+ = {x ∈ Cn
, x∗Jx > 0} or

X− = {x ∈ Cn
, x∗Jx < 0}.

In [1], Ando presented a Löwner inequality of indefinite type, and in [2,11] indefinite versions of

well known matrix inequalities were given. These inequalities were obtained in the context of the

theory of numerical ranges of operators in spaces with an indefinite inner product, a subject which is

being investigated by some authors (see, e.g. [5,6,7,10,12] and the references therein).

This note is organized as follows. In Section 2, an extension of the classical theory of Courant

and Fischer on the Rayleigh ratio of Hermitian matrices [3,4,8,9,13,14] is obtained. In Section 3, an

application to Hamiltonian dynamics is presented.

2. Courant–Fischer theory for Krein spaces

In [11], the following result was proved.

Lemma 2.1. Let A ∈ Mn be J-Hermitian. The set {RJ(x) : x ∈ X+} is lower bounded (upper bounded) if and

only if the set {RJ(x) : x ∈ X−} is upper bounded (lower bounded). If the former is lower bounded with the

greatest lower bound L1 and the latter is upper bounded with the least upper bound L2, then these optimal

values satisfy L2 � L1.

Necessary and sufficient conditions for a J-Hermitian matrix A to satisfy the above semibound-

edness were provided in [11]. To state them, we consider the generalized eigenspace Xλ = {x ∈ Cn :
(A − λIn)

nx = 0}, and recall that the spectrum of a J-Hermitian matrix is symmetric relatively to the

real axis. The following conditions (I) or (II) are necessary for A to satisfy the semiboundedness.

(I) The spectrum σ(A) of A is real and (A − λIn)x = 0, ∀λ ∈ σ(A), ∀x ∈ Xλ;
(II) The spectrum of A is real, there exists a unique λ0 ∈ σ(A) such that Ax = λx, ∀λ ∈ σ(A)\{λ0}, ∀x ∈

Xλ, and (A − λ0In)
2x = 0, ∀x ∈ Xλ0 .

Throughout,weuse the notation σ0
J (A) = {λ0} in the cases of existence of the exceptional eigenvalue

λ0, otherwise we write σ0
J (A) = ∅.

If (I) occurs, there exist a set of eigenvectors {u1, . . . ,ur ,ur+1, . . . ,un} of A such that Auj = αjuj(j =
1, . . . ,n), where u∗

j
Juj = 1(j = 1, . . . , r), u∗

j
Juj = −1(j = r + 1, . . . ,n), and u∗

k
Juj = 0(1 � k /= j � n), and

so A is J-unitarily diagonalizable. We assume that α1 � α2 � · · · � αr and αr+1 � αr+2 � · · · � αn. If A

is nonscalar, then min{αr ,αn} /= max{α1,αr+1}. Denoting by σ+
J (A)(σ−

J (A)) the set of eigenvalues of A,

λ ∈ R, such that Ax = λx for some x ∈ X+(X−), we have

σ+
J (A) = {α1, . . . ,αr}, σ−

J (A) = {αr+1, . . . ,αn}.
The set {RJ(x) : x ∈ X+} is semibounded if and only if one of the conditions α1 � αn or αr+1 � αr is

satisfied. If one of these conditions is satisfied, the eigenvalues of A are said to not interlace. Otherwise,

they are said to interlace.

If (II) occurs, the condition for the semiboundedness is more complicated. Under the condition (II),

the linear operator A restricted to Xλ0 is represented as the direct sum of an operator matrix

(
λ0Is + A1 −A1

A1 λ0Is − A1

)
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acting on a Krein space of type (s, s) and a scalar operator λ0Is1+s2 acting on a Krein apace of type (s1, s2),

where A1 is a positive, or negative, Hermitian matrix. Thus, σ+
J (A)\{λ0} is the set of all λ ∈ R such that

Ax = λx for some x ∈ X+(x ∈ X−), and x∗Jy = 0, for y ∈ Xλ0 . Let σ+
J (A)\{λ0} = {α1, . . . ,αr−s−s1 }, σ−

J (A)\
{λ0} = {αr+s+s2+1, . . . ,αn}, be decreasingly ordered. The set σ+

J (A) (σ−
J (A)) contains λ0 if and only if

s1 � 1(s2 � 1).

If σ+
J (A)\{λ0} /= ∅ and σ−

J (A)\{λ0} /= ∅, the set {RJ(x) : x ∈ X+} is semibounded if and only if one of

the conditions (I′) or (II′) is satisfied:

(I′) α1 � λ0 � αn and the Hermitian matrix A1 is negative definite.

(II′) αr+s+s2+1 � λ0 � αr−s−s1 and the Hermitian matrix A1 is positive definite.

The eigenvalues of A are said to not interlace if one of the above conditions (I′) or (II′) is satisfyed.
Otherwise, they are said to interlace.

If σ+
J (A)\{λ0} = ∅ and σ−

J (A)\{λ0} = ∅, then the above conditions are relaxed as−A1, orA1, is positive

definite.

If σ+
J (A)\{λ0} /= ∅ and σ−

J (A)\{λ0} = ∅, then the conditions (I′), (II′) are relaxed as the following:

(I′′) α1 � λ0 and the Hermitian matrix A1 is negative definite.

(II
′′
) λ0 � αr−s−s1 and the Hermitian matrix A1 is positive definite.

If σ−
J (A)\{λ0} /= ∅ and σ+

J (A)\{λ0} = ∅, then:

(I
′′′
) λ0 � αn and the Hermitian matrix A1 is negative definite.

(II
′′′
) λ0 � αr+s+s2+1 and the Hermitian matrix A1 is positive definite.

For an arbitrary linear subspace S of Cn
, let S+ = {x ∈ S : x∗Jx > 0} and S− = {x ∈ S : x∗Jx < 0}.

The following results were obtained in [2,11].

Theorem 2.1. Let J = Ir ⊕ −In−r , 0 < r < n,and letA ∈ Mn be J-Hermitianwithnoninterlacingeigenvalues.

(I0) The case σ0
J (A) = ∅. Let σ+

J (A) = {α1, . . . ,αr} and σ−
J (A) = {αr+1, . . . ,αn} be decreasingly ordered.

The following holds:

(a) If αn > α1, thenmaxx∗Jx=1 x
∗JAx = α1,minx∗Jx=−1 x

∗JAx = αn, and conversely.

(b) If αr > αr+1, thenmaxx∗Jx=−1 x
∗JAx = αr+1, minx∗Jx=1 x

∗JAx = αr ,

and conversely.

(II′) The case σ0
J (A) = {λ0}. Let σ+

J (A)\{λ0} = {α1, . . . ,αr−s−s1 }, σ−
J (A)\{λ0} = {αr+s+s2+1, . . . ,αn} be

decreasingly ordered. Let the multiplicities of the eigenvalue λ0 ∈ σ+
J (A) and λ0 ∈ σ−

J (A) be s1 and s2,

respectively. Let the pure part of A on Xλ0 be acting on a Krein space of type (s, s). The following holds:

(a′) Let αn � λ0 � α1.

If s1 � 1, thenmaxx∗Jx=1x
∗JAx = λ0.

If s1 = 0, then RJ(x) < supy∗Jy=1y
∗JAy = λ0, ∀x ∈ X+.

If s2 � 1, thenminx∗Jx=−1(−x∗JAx) = λ0.

If s2 = 0, then infy∗Jy=−1(−y∗JAy) = λ0 < RJ(x), ∀x ∈ X−.

(b′) Let αr−s−s1 � λ0 � αr+s+s2+1.

If s2 � 1, thenmaxx∗Jx=−1(−x∗JAx) = λ0.

If s2 = 0, then RJ(x) < supy∗Jy=−1(−y∗JAy) = λ0, ∀x ∈ X−.

If s1 � 1, thenminx∗Jx=1x
∗JAx = λ0.

If s1 = 0, then infy∗Jy=1y
∗JAy = λ0 < RJ(x), ∀x ∈ X+.
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Nextwe consider the J-Rayleigh ratio of a vector x ranging over an arbitrary (n − i + 1)- dimensional

subspace of Cn
, and we extend Theorem 2.1 to subspaces. We investigate how far this J-Rayleigh ratio

is from the bounds obtained in the above mentioned theorem.

Theorem 2.2. Let J = Ir ⊕ −In−r , 0 < r < n, and let A ∈ Mn be a J-unitarily diagonalizable J-Hermitian

matrix with noninterlacing eigenvalues satisfying αn � α1 or αr � αr+1.

(a) If αn > α1 or αr > αr+1, then the sets {RJ(x) : x ∈ S+} and {RJ(x) : x ∈ S−} are closed for an arbitrary

linear subspace S of Cn
.

(b) If {u1, . . . ,ur ,ur+1, . . . ,un} is a J-orthonormal system of eigenvectors of Awith associated eigenvalues

α1, . . . ,αr ,αr+1, . . . ,αn and S is the linear subspace spanned by {ui1 , . . . ,uis ,uis+1
, . . . ,uim }, then the

sets {RJ(x) : x ∈ S+} and {RJ(x) : x ∈ S−} are closed under the condition αn � α1 or αr � αr+1.

Proof. (a) Let αn > α1 and consider a sequence of vectors xm in S such that x∗
m J xm = −1 and

RJ (xm) = −x∗
m JA xm → R0 � αn (2)

as m → ∞. We observe that the last inequality in (2) is a consequence of Theorem 2.1 (a). Expressing

xm in the J-orthonormal basis {u1, . . . ,ur ,ur+1, . . . ,un} as xm = ∑n
j=1 a

(m)

j
uj , we claim that the set

{a(m)

j
∈ C : m = 1, 2, 3, . . .} (3)

is bounded for each 1 � j � n. Assuming that the claim is proved, by taking a subsequence of (3) we

may conclude that there exists a vector x∞ = ∑n
j=1 a

(∞)

j
uj ∈ S satisfying |a(m)

j
− a

(∞)

j
| → 0 as m → ∞.

Thus, the vector x∞ ∈ S satisfies x∗∞Jx∞ = −1 and −x∗∞JAx∞ = R0.

We prove the claim by contradiction. Indeed, suppose that (3) is unbounded and assume that the

sequence (mp)
∞
p=1

satisfies

n∑
k=r+1

∣∣∣a(mp)

k

∣∣∣2 =
r∑

k=1

∣∣∣a(mp)

k

∣∣∣2 + 1 → ∞

as p → ∞. Then, we have

−x∗
mp

JAxmp =
n∑

k=r+1

αk

∣∣∣a(mp)

k

∣∣∣2 −
r∑

k=1

αk

∣∣∣a(mp)

k

∣∣∣2

� αn + αn

r∑
k=1

∣∣∣a(mp)

k

∣∣∣2 − α1

r∑
k=1

∣∣∣a(mp)

k

∣∣∣2

= αn + (αn − α1)

r∑
k=1

∣∣∣a(mp)

k

∣∣∣2 → ∞

as p → ∞, which contradicts (2). Thus, (3) is bounded. The case αr > αr+1 is treated similarly.

(b) In this case, A(S) ⊂ S and by considering the restriction of A to S, we may assume that S = Cn
.

Let αn = α1 > αror αr+1 > αn = α1. We show that under the condition αr+1 > αn, we necessarily have

{RJ(x) : x ∈ X+} = (−∞,α1], {RJ(x) : x ∈ X−} = [αn,∞).

In fact, for w(t) = (cosh tu1 + sinh tur+1) we get w(t)∗Jw(t) = 1 and

w(t)∗JAw(t) = α1 − (αr+1 − α1) sinh
2 t,

(0 � t < ∞). For v(t, s) = (sinh tu1 + cosh t(
√
sur+1 + √

1 − sun)) we find v(t, s)∗Jv(t, s) = −1 and

v(t, s)∗JAv(t, s) = −(1 − s)α1 − s(αr+1 + (αr+1 − αn) sinh
2 t),

(0 � t < ∞, 0 � s � 1). Thus, we obtain the desired relation. �
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We treat three classes of J-Hermitian matrices with noninterlacing eigenvalues:

(I0): σ0
J (A) = ∅ and αn > α1 or αr > αr+1.

(I1): σ0
J (A) = ∅, A is nonscalar and αn = α1 or αr = αr+1.

(II1): σ0
J (A) = {λ0} and the pure part of A on Xλ0 acts on a Krein space of type (s, s) with s � 1, being

s1 � 0 and s2 � 0 the multiplicities of λ0 ∈ σ+
J (A) and λ0 ∈ σ−

J (A), respectively.

Sometimes, it is convenient to consider the class (I1) as a degenerate class of (II1)with λ0 = αn = α1

or λ0 = αr = αr+1, s = 0, s1 � 1, s2 � 1. We represent by (II′) the union of (I1) and (II1).

Theorem 2.3. For J = Ir ⊕ −In−r , 0 < r < n, let A ∈ Mn be a J-Hermitianmatrix with noninterlacing eigen-

values. Let Si(1 � i � n) be an arbitrary (n − i + 1)-dimensional linear subspace of Cn
.

(I0) The case σ0
J (A) = ∅. Let σ+

J (A) = {α1, . . . ,αr}, σ−
J (A) = {αr+1, . . . ,αn} be decreasingly ordered. The

following holds:

(a) Let αn > α1.

If i � n − r, thenminx∈S−
i
RJ(x) � αn−i+1, andmaxSi minx∈S−

i
RJ(x) = αn−i+1.

If i � r, thenmaxx∈S+
i
RJ(x) � αi andminSi

maxx∈S+
i
RJ(x) = αi.

(b) Let αr > αr+1.

If i � r, thenminx∈S+
i
RJ(x) � αr−i+1 andmaxSi minx∈S+

i
RJ(x) = αr−i+1.

If i � n − r, thenmaxx∈S−
i
RJ(x) � αr+i andminSi

maxx∈S−
i
RJ(x) = αr+i.

(II′) The case σ0
J (A) = {λ0} or σ0

J (A) = ∅ and σ+
J (A) ∩ σ−

J (A) = {λ0}. Let σ+
J (A)\{λ0} = {α1, · · · ,

αr−s−s1 }, σ−
J (A)\{λ0} = {αr+s+s2+1, · · · ,αn}, be decreasingly ordered. Let A restricted to Xλ0 be the direct

sum of λ0Is1+s2 on a Krein space of type (s1, s2) and a pure nondiagonalizable part on a Krein space of type

(s, s). The following holds:

(a′) Let αn � λ0 � α1.

If s + s2 + 1 � i � n − r, then infx∈S−
i
RJ(x) � αn−i+s+s2+1, andmaxSi infx∈S−

i
RJ(x) = αn−i+s+s2+1.

If s � 1 and s2 + 1 � i � s2 + s, then infx∈S−
i
RJ(x) = λ0, and supSi infx∈S−

i
RJ(x) = λ0.

If s2 � 1 and 1 � i � s2, thenminx∈S−
i
RJ(x) = λ0, andmaxSi minx∈S−

i
RJ(x) = λ0.

If s + s1 + 1 � i � r, then supx∈S+
i
RJ(x) � αi−s−s1

, andminSi
supx∈S+

i
RJ(x) = αi−s−s1

.

If s � 1 and s2 + 1 � i � s1 + s, then supx∈S+
i
RJ(x) = λ0, and infSi supx∈S+

i
RJ(x) = λ0.

If s1 � 1 and 1 � i � s1, thenmaxx∈S+
i
RJ(x) = λ0, andminSi

maxx∈S+
i
RJ(x) = λ0.

(b′) Let αr−s−s1 � λ0 � αr+s+s2+1.

If s + s1 + 1 � i � r, then infx∈S+
i
RJ(x) � αr−i+1, andmaxSi infx∈S+

i
RJ(x) � αr−i+1.

If s � 1 and s1 + 1 � i � s1 + s, then infx∈S+
i
RJ(x) = λ0, and supSi infx∈S+

i
RJ(x) = λ0.

If s1 � 1 and 1 � i � s1, thenminx∈S+
i
RJ(x) = λ0, andmaxSi minx∈S+

i
RJ(x) = λ0.

If s + s2 + 1 � i � n − r, then supx∈S−
i
RJ(x) � αr+i andminSi

supx∈S−
i
RJ(x) = αr+i.

If s � 1 and s2 + 1 � i � s2 + s, then supx∈S−
i
RJ(x) = λ0, and infSi supx∈S−

i
RJ(x) = λ0.

If s2 � 1 and 1 � i � s2, thenmaxx∈S−
i
RJ(x) = λ0, andminSi

maxx∈S−
i
RJ(x) = λ0.

Proof. (I0) The case σ0
J (A) = ∅. Let {u1, . . . ,un} be a standard J-orthonormal system of eigenvectors of

A associated with the eigenvalues α1, . . . ,αn. We prove (a). Suppose that i � n − r. Let Ti be the linear

space spanned by the set of vectors {un−i+1, . . . ,un}, where r + 1 � n − i + 1. There exists a nonzero

vector u ∈ Cn
belonging to Si and Ti, because dim Si + dim Ti = (n − i + 1) + i = n + 1. Since u ∈ Ti, it

follows that there exist aj ∈ C, j = 1, . . . , i, such that u = ∑n
j=n−i+1 ajuj . Since i � n − r, all the vectors

un−i+1, . . . ,un have negative J-norm. Therefore, u∗Ju < 0. We clearly have
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u∗JAu
u∗Ju

= − ∑n
k=n−i+1 αj|aj|2

− ∑n
k=n−i+1 |aj|2

=
∑n

k=n−i+1 αj|aj|2∑n
k=n−i+1 |aj|2

.

Thus, since we are assuming that αn > α1

αn � RJ(u) � αn−i+1.

Recalling that u also belongs to Si, from Lemma 2.2 (I0) it follows that

inf
x∈S−

i

RJ(x) � RJ(x) � αn−i+1

and by Theorem 2.1 the greatest lower bound of RJ(x) is attained at some vector x ∈ S−
i
.

To prove thatmaxSi minx∈S−
i
RJ(x) = αn−i+1, it suffices to show the existence of an (n − i + 1)-dimen-

sional subspace such that minRJ(x), when x ranges over all nonzero vectors of this subspace, is equal

to αn−i+1. Consider the linear space Vi spanned by the vectors u1, . . . ,ur ,ur+1, . . . ,un−i+1. For any u ∈ Vi

such that u∗Ju < 0, there are complex numbers c1, . . . , cn−i+1 such that u = ∑n−i+1
k=1

ckuk . We have

u∗JAu
u∗Ju

=
∑n−i+1

k=1
c∗
k
ckαkjk∑n−k+1

k=1
c∗
k
ckjk

� αn−i+1.

Hence minu∈Vi RJ(u) = αn−i+1, being the minimum attained when cn−i+1 /= 0 and c1 = c2 = · · · =
cn−i+2 = 0. That is, the minimizing vector is an eigenvector of A associated with αn−i+1.

Now, let i � r. Considering the i-dimensional linear space Ti spanned by u1, . . . ,ui, wemay conclude

that there exists a vector u′ ∈ Cn
belonging simultaneously to Si and Ti, because dimSi + dimTi =

(n − r + i) + i = n + 1. Since i � r, we have u′ = ∑i
j=1 a

′
j
uj , for a

′
j
not all zero (j = 1, . . . , i). So u′∗Ju′ > 0,

because all the vectors u1, . . . ,ui have positive J-norm. We easily find

u′∗JAu′

u′∗Ju′ =
∑i

j=1 αj|a′
j
|2∑n

j=1 |a′
j
|2 .

Hence, under the assumption αn > α1, we obtain αi � RJ(u
′) � α1. Recalling that u′ belongs to Si, from

Theorem 2.1 (I0) it follows that

sup
x∈S+

i

RJ(x) � Rj(u
′) � αi.

By Theorem 2.2, it can be shown that the minimum is attained at a certain xi ∈ S+
i
.

The other statement is proved similarly.

(b) The proof follows analogous steps to (a).

(II′) The proof is similar to that of (I0). �

In the next theorem we denote by RA+B
J (x) the J-Rayleigh ratio associated with A + B.

Proposition 2.4. Let J = Ir ⊕ −In−r , 0 < r < n, and let A,B ∈ Mn be J-unitarily diagonalizable J-Hermi-

tianmatrices with noninterlacing eigenvalues, α1 � · · · � αr ∈ σ+
J (A),αr+1 � · · · � αn ∈ σ−

J (A) and β1 �
· · · � βr ∈ σ+

J (B), βr+1 � · · · � βn ∈ σ−
J (B). Let Si be an (n − i + 1)-dimensional linear subspace of Cn

.

(a) Let αn > α1 and βn > β1. Then A + B is J-unitarily diagonalizable and the following holds.

If n − i � r, thenmaxSi minx∈S−
i
RA+B
J (x) � αn−i+1 + βn.

If i � r, thenminSi
maxx∈S+

i
RA+B
J (x) � αi + β1.

(b) Let αr > αr+1 and βr > βr+1. Then A + B is J-unitarily diagonalizable and the following holds.

If i � r, thenmaxSi minx∈S+
i
RA+B
J (x) � αr−i+1 + βr .

If r + i � n, thenminSi
maxx∈S−

i
RA+B
J (x) � αr+i + βr+1.
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Proof. (a) Let αn > α1 and βn > β1.

For any x, y such that x∗Jx = 1, y∗Jy = −1 we get

−y∗J(A + B)y = −y∗JAy − y∗JBy � αn + βn

> α1 + β1 � x∗JAx + x∗JBx = x∗J(A + B)x

and so the J-Hermitian matrix A + B is J-unitarily diagonalizable.

If n − i � r, by Theorem 2.3 (a) we have

max
Si

min
x∈S−

i

x∗J(A + B)x

x∗Jx
� max

Si
min
x∈S−

i

x∗JAx
x∗Jx

+ βn = αn−i+1 + βn.

Analogously, if i � r

min
Si

max
x∈S+

i

RA+B
J (x) � αi + β1

and (a) follows. The proof of (b) is similar. �

For i = 1, . . . ,n, λi(X) denotes the eigenvalues of X ∈ Mn decreasingly ordered.

Theorem 2.5. Suppose that A,B are J-Hermitian matrices with noninterlacing eigenvalues. Let σ+
J (A)\

{λ0} = {α1, . . . ,αr−s−s1 }, σ−
J (A)\{λ0} = {αr+s+s2+1, . . . ,αn} and σ+

J (B)\{γ0} = {β1, · · · ,βr−t−t1 }, σ−
J (B)\

{γ0} = {βr+t+t2+1, . . . ,βn}, be decreasingly ordered and satisfy

αn > α1, βn > β1.

Then all the eigenvalues of A + B are real and the following inequalities hold

n−r+k∑
j=n−r+1

λj(A + B) �
n−r+k∑

j=n−r+1

(λj(A) + λj(B)), k = 1, . . . , r

and

k−r∑
j=1

λj(A + B) +
n∑

j=n−r+1

λj(A + B)

�
k−r∑
j=1

(λj(A) + λj(B)) +
n∑

j=n−r+1

(λj(A) + λj(B)), k = r + 1, . . . ,n.

Proof. To prove the theorem, we recall the extremal representation obtained in Theorem 3.1 of [2].

Suppose that A is a J-diagonalizable J-Hermitianmatrix with noninterlacing eigenvalues α1 � · · · � αr

in σ+
J (A) and αr+1 � · · · � αn in σ−

J (A) satisfying αn > α1.

Let k be an arbitrary natural number satisfying 1 � k � n. Then there exists a J-orthonormal system

of vectors {u1, . . . ,ur ,ur+1, . . . ,uk} such that the form

Fk(A;u1, . . . ,ur ,ur+1, . . . ,uk) :=
r∑

j=1

u∗
j JAuj −

k∑
j=r+1

u∗
j JAuj

attains the maximum λn−r+1(A) + · · · + λn−r+k(A) at this system when k � r. If k > r, the maximum is

replaced by λ1(A) + · · · + λk−r(A) + (λr+1(A) + · · · + λn(A)).

Next we use a perturbative method. We consider the case σ0
J (A) /= ∅ or σ0

J (B) /= ∅. The J-Hermitian

matrix(
λ0 + 1 −1

1 λ0 − 1

)
,
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which is nondiagonalizable under a J-unitary transformation, is approximated by the J-Hermitian

matrix(
λ0 + 1 + ε −1

1 λ0 − 1 − ε

)
,

where ε > 0, which is J-unitarily diagonalizable. We also perturbe the eigenvalues of A and B so that

they satisfy the condition (I), having in mind that the eigenvalues of a matrix depend continuously on

its entries. So we may assume that A,B are J-unitarily diagonalizable and satisfy αn > α1 and βn > β1.

Then from the inequality

max
u1,...,uk

Fk(A + B;u1, . . . ,ur ,ur+1, . . . ,uk)

� max
u1,...,uk

Fk(A;u1, . . . ,ur ,ur+1, . . . ,uk) + max
u1,...,uk

Fk(B;u1, . . . ,ur ,ur+1, . . . ,uk)

the desired inequality follows. �

Theorem 2.6. Let J = Ir ⊕ −In−r , 0 < r < n, and let A ∈ Mn be a J-Hermitian matrix with noninterlacing

eigenvalues. Then any principal submatrix A′ of A has real spectrum and its eigenvalues do not interlace.

Moreover, if A satisfies the condition (I′) or (II′) and A′ acts on a Krein space of type (s,n − i + 1 − s), then

the following inequalities hold:
λr−i+1−t(A) � λs−t(A

′)

for s − t � 1, r − i + 1 − t � 1, and

λs+1+t(A
′) � λr+i+t(A),

for s + 1 + t � n − i + 1, r + i + t � n.

Proof. Byusing a perturbativemethod,wemay assume thatA is J-unitarily diagonalizable and satisfies

αr > αr+1. As an operator defined on a nondegenerate subspace of Cn
, the submatrix A′ of A is J-

Hermitian. Since the J-Rayleigh ratio relative to A′ satisfies the semiboundedness, the eigenvalues of A′
are real. The J-Rayleigh ratio relative to A′ is a restriction of the J-Rayleigh ratio of A, so the inequalities

λs(A
′) � λr(A) and λs+1(A

′) � λr+1(A) hold. Thus, the eigenvalues of A′ do not interlace.

Letw1, . . . ,ws−t ,ws+1, . . . ,wn−i+1 be the J-orthonormal eigenvectors ofA′ associatedwith the eigen-

valuesλ1(A
′), . . . , λs−t(A

′),λs+1(A
′), . . . , λn−i+1(A

′), respectively.Consider the (n − i + 1 − t)-dimensional

linear subspace Si generated by these eigenvectors. By Theorem 2.3 (I0), we have

λs−t(A
′) = min

x∈S+
i

RJ(x) � λr+1−i−t(A).

The theorem easily follows using similar arguments.

Theorem 2.7. If A is a J-Hermitian matrix, then RJ(x) for any x ∈ X+(x ∈ X−) has a stationary value with

respect to x at an eigenvector x0 associated with a real eigenvalue α0, x
∗
0
Jx0 = 1(x∗

0
Jx0 = −1) and RJ(x0) =

α0.

Proof. Let x = x + i�x ∈ X+,x = (ξ1, . . . , ξn)
T = ∑n

k=1 ξke
T
k
and �x = (η1, . . . , ηn)

T = ∑n
k=1 ηke

T
k
, be-

ing {e1, . . . , en} the standard basis of Cn
. Viewing RJ(x) as a real valued function of the 2n-independent

real variables ξ1, . . . , ξn and η1, . . . , ηn, we write RJ(x) = RJ(ξ1, . . . , ξn, η1, . . . , ηn). Consider the bilinear

form

�(ξ1, . . . , ξn, η1, . . . , ηn) = x∗JAx − τx∗Jx,

where τ is a real Lagrange multiplier fixing the norm of x, that is, x∗Jx = 1. It is equivalent to require

that the partial derivatives of RJ , or of �, vanish. We easily find that
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∂�
∂ξk

= eTk JAx − τeTk Jx + x∗JAeK − τx∗Jek = 0,

∂�
∂ηk

= −ieTk JAx + iτeTk Jx + ix∗JAeK − iτx∗Jek = 0, k = 1, . . . ,n.

Thus, there exist x = x0 and τ = α0 such that

Ax0 = α0x0, x∗
0JA = α0x

∗
0J.

Clearly, RJ(x0) = α0. �

3. The indefinite Rayleigh ratio in Hamiltonian dynamics

The concept of Krein space is encountered in Hamiltonian dynamics. The dynamical state of an

n-dimensional Hamiltonian system is characterized by a time dependent vector v = v(t) ∈ R2n
, whose

components are the canonical momenta and coordinates, respectively, pk , qk , k = 1, . . . ,n,

v = (p1, . . . , pn, q1, . . . , qn)
T .

Denoting the Hamiltonian function by H = H(p, q) = H(p1, . . . , pn, q1, . . . , qn), the time evolution of the

components of v is determined by the Hamilton equations,

ṗk = − ∂H

∂qk
, q̇k = ∂H

∂pk
, k = 1, . . . ,n.

For physical consistency, the Hamiltonian should be bounded from below, so that it is natural to

suppose that it has a minimum at a finite point. Assume that the minimum is attained at the origin

(v = 0), and so the above partial derivatives vanish at the origin. For small amplitude oscillations the

Hamiltonian may be expanded as

H(p, q) = H(0, 0) + 1

2

∂2H

∂p2

∣∣∣∣∣
p=q=0

p2 + ∂2H

∂p∂q

∣∣∣∣∣
p=q=0

pq + 1

2

∂2H

∂q2

∣∣∣∣∣
p=q=0

q2 + · · ·

Thus, H is a bilinear form with real coefficients in the coordinates and momenta, and so

H = 1

2

n∑
k,l=1

(aklpkpl + bklqkql + 2cklpkql), akl = alk , bkl = blk.

For the n × n real matrices A = (akl),B = (bkl),C = (ckl), let us consider the Hermitian matrices

K =
(
A C

CT B

)
, L = −i

(
0n −In
In 0n

)
,

where On denotes the null matrix of size n and L2 = I2n. Then H = vTKv, and the Hamilton equations

may be compactly written as

iLv̇ = Kv

It is natural to interpret the Hermitian involutive matrix L as a metric matrix endowing C2n
with a

Krein space structure. We associate dynamical states with vectors of this Krein space. The so-called

normal modes are associated with an exponential time evolution, i.e., a time evolution given by the

exponential factor exp(iωt), where ω is a normal frequency. Normalmodes and normal frequencies are

the eigenvectors and the eigenvalues of LK, respectively, being determined by the eigenvalue problem

ωLu = Ku,u ∈ C2n
. (4)

The Rayleigh ratio

RL(u) = u∗Ku
u∗Lu

= u∗L(LK)u

u∗Lu
, u ∈ C2n
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is stationary at the normal modes and its minimum for u ∈ C2n
such that u∗Lu > 0, is the frequency

of the fundamental harmonic. For simplicity we consider the model with C = 0, which ensures time-

reversal invariance. Under this assumption, it follows that

Au = −iωv, Bv = iωu

so that

Au = iω(−v), B(−v) = −iωu.

This implies that the eigenvalues of LK in (4) occur in symmetric pairs ±ωj . Moreover, the norms of the

eigenvectors associated with positive and negative eigenvalues have opposite signs. Since the origin

is a minimum, K is positive definite and so the eigenvalues of LK do not interlace. Thus, consider-

ing the L-Rayleigh quotient relative to the matrix LK, we conclude, by Theorem 2.1 (I0), that the set

{RL(x) : x∗Lx > 0} is a half-line. Conversely, if {RL(x) : x∗Lx > 0} is a half-line, then, by Theorem 2.1 in

[2], the matrix LK does not have complex eigenvalues and, henceforth, dynamical stability is ensured.
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