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1. Introduction

Since the 1960s, the theory of finite semigroups and their pseudovarieties has seen substantial developments motivated
by its applications in computer science through the theories of finite automata and regular languages [9,17,18,23]. Since the
mid 1980s, profinite semigroups, and particularly relatively free profinite semigroups, have been shown to play an important
role in the study of pseudovarieties: free profinite semigroups over a pseudovariety V capture the common properties of
semigroups in V; formal equalities between elements of free profinite semigroups over V serve to define subpseudovarieties
of V; V-recognizable languages are the traces over finite words of the clopen subsets of free profinite semigroups over V [5].
Yet, one of the main difficulties in the profinite approach is that, in general, very little is known about the structure of
relatively free profinite semigroups.

Symbolic dynamics first came into this picture as a toolkit to exhibit elements of relatively free profinite semigroups
with suitable properties [2,7] and to explore structure features of such semigroups [7,4]. Conversely, profinite conjugacy
invariants have been found in relatively free profinite semigroups and some finite computable conjugacy invariants for
sofic subshifts were deduced [14,15].

Through the work of Tilson [34], see also [31], finite categories and semigroupoids (categories without the requirement of
local identities) have been shown to play a crucial role in the study of certain operations on pseudovarieties, such as various
forms of semidirect products. The merger of this idea with the profinite approach was first attempted in [8]. At first sight,
there is for categories and semigroupoids a similar theory of pseudovarieties and their relatively free profinite structures
over given profinite graphs [22,8]. But, as this paper shows, there are some significant differences in case the set of vertices
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is infinite. In many applications, the finite-vertex case is sufficient [3,35]. Nevertheless, the general case is also of interest
[6,29].

This paper brings together symbolic dynamics and relatively free profinite semigroupoids. The latter is used to establish
some profinite conjugacy invariants, a theme which will be further explored in forthcoming papers. The former serves as a
tool to construct examples which clarify some difficulties in the theory of profinite semigroupoids, which is the main subject
of this work.

Given a profinite graph I, let 't denote the semigroupoid freely generated by I" and £2Sd the profinite semigroupoid
freely generated by I'. For a subshift X, the graph X' () of the shift function on a subshift X, whose discrete connected
components are the orbits of X, is a profinite graph. Using examples from this special class of graphs, we exhibit profinite
graphs I' such that I"'" is not dense in §2-Sd. Their existence is apparently noted here for the first time. This leads to the
consideration of the iterative procedure of taking the topological closure of the subsemigroupoid generated by a graph.
Starting in I, this procedure, iterated transfinitely, eventually stops in £2;-Sd, but we prove that there are examples where
an arbitrarily large countable ordinal number of steps is required. In these examples I" is the graph of a countable two-letter
subshift.

On the other hand, it is straightforward to prove that if X is a subshift of finite type then X (X)* is dense in the free
profinite semigroupoid generated by X' (). This result also holds for minimal subshifts, but the proof is much more involved.
It is a derivative of the development of techniques for obtaining upper bounds for the number of steps, starting at X'(X),
needed to reach the free profinite semigroupoid generated by X' (X) through the operation of taking the topological closure
of a subsemigroupoid generated by a graph. The core idea is that we can label in a natural way the edges of X' (X)) and extend
this labeling in a canonical way to the projective limit of the free profinite semigroupoids generated by finite approximations
of X (X) called Rauzy graphs. The free profinite semigroupoid generated by X (X) embeds into this projective limit (we do
not know if they are actually always equal). The set M (X) of edge labels in such a projective limit is the set of elements of the
free profinite semigroup over the alphabet of X whose finite factors belong to the set L(X) of finite blocks in X. On the other
hand the topological closure L(X) in the free profinite semigroup is precisely the set of edge labels in the topological closure
of X(X)™. In this framework, we prove that if M(X) = L(X) then X (X)" is dense in the free profinite semigroupoid
generated by X' (X).

Many results are valid not only for free profinite semigroupoids, but also for their counterparts relatively to proper
subpseudovarieties under suitable assumptions.

This paper is divided into six sections. Section 2 presents some preliminaries on semigroups, subshifts and graphs.
Section 3 is dedicated to the construction of a good definition of relatively free profinite semigroupoids generated by
profinite graphs. Section 4 specializes to relatively free profinite semigroupoids generated by the graph of a subshift. There
we study fundamental properties of the labeling map which we apply in Section 5 to investigate upper and lower bounds
for the ordinal number of steps, starting at X (X), needed to reach 2 5(x)Sd using the algebraic and topological operators
we mentioned. Finally, in Section 6 we focus on the case where X is minimal, and as a consequence of our main results we
prove that Qz(x)Sd \ X (X)T is a connected compact groupoid.

Our basic reference for symbolic dynamics is the book of Lind and Marcus [24]. For background on profinite semigroups
and semigroupoids see the introductory text [5].

2. Preliminaries

2.1. Some remarks about topology

Throughout this article all topologies are considered to be Hausdorff. In the absence of confusion, finite sets are endowed
with the discrete topology. Familiarity with nets is assumed. Let I be a directed set (that is, I is endowed with a partial order
<suchthat foreveryi,j € I thereisk € I suchthati < kandj < k). A directed system of topological spaces (X;)c, is a family
(¢;.i - Xj = X)ijel, i<j of continuous maps such that ¢; ; is the identity map and ¢; jo¢y j = ¢ ; wheneveri,j, ke l,i <j <k
The corresponding projective limit is the topological space

limX; = {(51‘)1‘ € l_[xi li<j= ¢i(s) = Si} .
iel iel

Note that if ¢; is the canonical projection of l(ir_niel X; into X;, then ¢; = ¢;; o ¢;. If the maps ¢;; are onto then we speak
about an onto directed system and an onto projective limit. It is well known that l(ig]iel Xi is a closed subset of [ [,., X;, which

is nonempty if the spaces X; are compact, and that the canonical projections of an onto projective limit are onto: see [19,
Section 3.2], for instance. The following proposition is easy to prove.

Proposition 2.1. Let Y be a subset of l(ig]iel X;. If for every i € I there is k > i such that the canonical projection of Y into X is
onto, then Y is dense in l<i£1iel Xi.



J. Almeida, A. Costa / Journal of Pure and Applied Algebra 213 (2009) 605-631 607

2.2. Pseudovarieties of semigroups

We require some very basic knowledge about the definitions of semigroup, topological semigroup, alphabet, rational
language. This can be found in [23,27,12]. Anyway, we shall recall some of the terminology and notation. For instance, given
a semigroup S which is not a monoid, S' denotes the monoid obtained from S by adding an extra neutral element 1; if S is a
monoid then S' = S. The length of a word u is denoted by |u|. The cardinal of a set X is also denoted by |X|. As usually, the
free semigroup generated by an alphabet A is denoted by A™, the empty word is denoted by 1, and A* is the monoid A™ U {1}.
Recall that a language L of AT is recognized by a semigroup S if there is some semigroup homomorphism ¢ : AT — S such
that L = ¢~ 'g(L). If € is a class of semigroups, then we say that L is @-recognizable if L is recognized by some element of €.

A pseudovariety of semigroups is a class of finite semigroups closed under taking homomorphic images, subsemigroups
and finite direct products. Denote by 'VA™ the set of V-recognizable languages, and by ‘V the family (VB*)z where B runs
in the class of finite alphabets. Eilenberg proved that the correspondence V — V is a lattice isomorphism between the set
of pseudovarieties of semigroups and the set of the so-called varieties of rational languages, thus opening a vast research
program linking the algebraic theory of finite semigroups with the combinatorial theory of languages.

In contrast with Birkhoff’s varietal theory of free algebras [11], a theory of free objects in a pseudovariety V leads to the
consideration of topological semigroups. A map i : X — F separates two elements x and y of the set X if ¥ (x) # ¥ (y).
A topological semigroup S is residually in V if every pair of distinct elements of S is separated by a continuous semigroup
homomorphism into a semigroup of V. We say that a topological semigroup S is pro-V if it is compact and residually in V. A
semigroup is pro-V if and only if it is the projective limit of an onto directed system of semigroups of V [26]. If V is the class S
of all finite semigroups then one usually uses the designation profinite instead of pro-S. We shall use the fact that for every
element s of a profinite semigroup the sequence (s™), converges to an idempotent denoted by s [5, pg. 20].

A map « from A into a topological semigroup T is a generating map of T if the subsemigroup of T generated by « (A) is
dense in T. A pro-V semigroup T is a free pro-V semigroup generated by A, with generating map « : A — T, if for every map ¢
from A into a pro-V semigroup S there is a unique continuous semigroup homomorphism ¢ : T — S satisfying p ox = ¢
(which means that Diagram (2.1) commutes).

(2.1)

A*K>T
|
| @
N
S

By the usual abstract nonsense, up to isomorphism of topological semigroups, there is no more than one free pro-V
semigroup generated by A. In fact there is always such a semigroup: roughly speaking, it is the projective limit of all A-
generated semigroups of V. It is denoted by £2,V. By relatively free profinite semigroup we mean a semigroup of the form
£2,V, for some pseudovariety V. If V has nontrivial semigroups then A embeds into §2,V, and if V contains the pseudovariety
N of finite nilpotent semigroups (semigroups whose idempotents are all equal to a zero element) then At embeds as a dense
subset of £2,V, and the elements of AT are isolated points in 24V for these reasons the elements of $24V are also called
pseudowords (or profinite words), and the elements of 2,V \ A are the infinite pseudowords. The following proposition [1,
Theorem 3.6.1] establishes an important connection between the topology of £2,V and V-recognizable languages, when V
contains N.

Proposition 2.2. Let V be a pseudovariety of semigroups containing N. Let A be a finite alphabet. A language L of AT is V-
recognizable if and only if its topological closure in 2,4V is open. The topology of $24V is generated by the topological closures of
V-recognizable languages of AT, and is defined by a metric.

2.3. Two special types of pseudovarieties

A semigroup whose subgroups are trivial is called aperiodic. Let A be the pseudovariety of finite aperiodic semigroups.
Note that N C A. A variety of languages 'V is closed under concatenation product if VA" contains the concatenation of
its elements, for every finite alphabet A. We say that a pseudovariety of semigroups is closed under concatenation if the
corresponding variety of languages is closed under concatenation product. The pseudovarieties closed under concatenation
are precisely those of the form A™ v, where @ denotes the Mal'cev product (see [27] for the definition of the Mal'cev
product); this result is a particular instance of a more general result from [13], which in turn generalizes a similar
result from [32] proved for pseudovarieties of monoids. In particular, A is contained in every pseudovariety closed under
concatenation and is itself a pseudovariety closed under concatenation.

Lemma 2.3. Let V be a pseudovariety of semigroups containing N. The multiplication in £,V is an open map for every finite
alphabet A if and only if V is closed under concatenation.
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Proof. Let V be the variety of V-recognizable languages. Then L]Le VA™} is a basis for the topology of QaV, by
Proposition 2.2. Therefore {L x K | L,K € VA"} is a basis for the topology of £,V x §,V. For all subsets P and Q of
At we have P - Q = PQ. Hence the multiplication in 2,4V is an open map if and only if LK is open for every L, K € VAT,
The set LK is open if and only if LK € VAT, by Proposition 2.2. Hence the multiplication in £2,4V is an open map if and only
if VA* is closed under concatenation. O

Given an alphabet A and k > 1, consider the alphabet A* of words on A of length k; to avoid ambiguities, we represent an

element wy - - - wy, of (A (with w; € AX) by (wq, ..., wy); for k > 0 the map @, from AT to (A¥*1)* is given by
1 ifn<k
d(a---0a,) = N -
(@ - ) {(a[l,k+1]a A k4215 - - - » An—k—1,n—1]; An—k,m)) ~ if 0>k,

where a; € Aand aj; ) = ai@iy1 - - - Gj—14j.

For every pseudovariety of semigroups W, the class £ W of all finite semigroups whose subsemigroups that are monoids
belong to W is a pseudovariety of semigroups. Let V be a pseudovariety of semigroups containing £I, where | is the
pseudovariety of singleton semigroups. We say that V is block preserving if for every finite alphabet A and nonnegative
integer k, the map @, : A* — (A**1)* has a unique continuous extension from 2,V to (£2,4+1V)", which we denote by
@,/ The first author proved that the pseudovariety S of all finite semigroups is block preserving [1, Lemma 10.6.11]. In [1,
Chapter 10] one can see that there are close connections between the map &y and the semidirect products of the form V * D,
where D is the pseudovariety of semigroups whose idempotents are right zeros (we shall not need to recall the definition
of semidirect product: the interested reader may consult [1, Chapter 10] for details). Using these connections, the second
author proved that every pseudovariety of semigroups V such that .£1 C Vand V = VxD is block preserving [ 16, Proposition
1.59]. Moreover, it is easy to prove the converse using Proposition 2.2, the characterization of .LI-recognizable languages,
and Straubing’s characterization of W * D-recognizable languages for a pseudovariety W of semigroups [33].

Since V * D = (V % D) *x D, it is very easy to give examples of block preserving pseudovarieties. Namely .£ V is block
preserving for every pseudovariety V of semigroups, since £V = (£ V) * D.

There are several examples of pseudovarieties of semigroups that are simultaneously block preserving and closed under
concatenation. If H is a pseudovariety of groups then the pseudovariety H of semigroups whose subgroups lie in H is such
an example. Note that A is among this set of examples, since A = I. The complexity pseudovarieties C,, recursively defined
by Co = Aand C;, = A% G * C,_q if n > 1, where G is the pseudovariety of finite groups, are also block preserving and
closed under concatenation (see [30] for details and a recent account on the complexity pseudovarieties). These two sets of
examples have only A in common, since H = .£LH, while every complexity pseudovariety different from A is not of the form
LV [30].

On the other hand, if £V C A then £V is not closed under concatenation, and in [16, Appendix C] we can find some
examples of pseudovarieties closed under concatenation which are not block preserving.

2.4. Subshifts

Suppose the alphabet A is finite. Let AZ be the set of sequences of letters of A indexed by Z. The shift in A is the bijective
map oy (or just o) from A% to A® defined by o4((X))icz) = (Xi+1)icz. The orbit of x € A% is the set O(x) = {c*(x) | k € Z)}.
We endow A” with the product topology with respect to the discrete topology of A. Note that AZ is compact, since A is finite.
A symbolic dynamical system of AZ is a nonempty closed subset X of AZ that contains the orbits of its elements. Symbolic
dynamical systems are also called shift spaces or subshifts.

Two subshifts X € A” and Y C BZ are topologically conjugate if there is a homeomorphism ¢ : X — Y commuting with
shift: ¢ o o4 = op 0 ¢. Such a homeomorphism is also called a topological conjugacy. Since we will consider no other form of
conjugacy, we drop the reference to its topological nature.

Let x € A%. By a factor of (x;)icz We mean a word XiX;11 - - - Xiyn—1Xi+n (briefly denoted by xj; ;1nj), Where i € Z and n > 0.
If X is a subset of AZ then we denote by L(X) the set of factors of elements of X, and by L,(X) the set of elements of L(:X)
with length n. A subset K of a semigroup S is factorial if it is closed under taking factors, and it is prolongable if for every
element u of K there are a, b € S such that aub € K. It is easy to prove that the correspondence X +— L(X) is a bijection
between the subshifts of AZ and the nonempty factorial prolongable languages of A* [24, Proposition 1.3.4].

Let X be a subshift of A* and V a pseudovariety of semigroups containing N. Since K N At = K for every language K
of At (where K is the closure of K in .(_ZA_V), the correspondence X +— L(X) is one-to-one. This suggests the exploration of
the algebraic-topological properties of £24V (in general much richer than those of A™) to obtain information about X. This
program has been implemented by both the authors in previous papers [4,5,14,15]. The following result has not appeared
before, and its interest is obvious in this context.

Proposition 2.4. Let V be a pseudovariety of semigroups closed under concatenation. If L is a factorial language of A* then Lis
a factorial subset of §2,V.

For proving Proposition 2.4 we first prove a useful lemma.
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Lemma 2.5. Let S be a topological semigroup whose topology is defined by a metric. Suppose the multiplication is an open map.
Let u, v € S. Let (wn)n be a sequence of elements of S converging to uv. Then there is a subsequence (wy, ) and sequences ()i,
(vi)k such that wy, = ugvy for all k, and lim uy, = u and lim v, = v.

Proof. We denote by B(t, €) the open ball in S with center t and radius ¢. Let k be a positive integer. Since the multiplication
is an open map, the set B (u, k) B (v, 1) is an open neighborhood of uv. Hence there is p such that w, € B (u, 1) B (v, 1) if
n > py. Let ny be the strictly increasing sequence recursively defined by n; = p; and n, = max{n,_; + 1, p¢} if k > 1. For
each positive integer k there are u; € B (u, 1) and vy € B (v, 1) such that wy, = v We have limu, = u and lim v = v.

O

Proof of Proposition 2.4. Suppose uv € L. Let (w,), be a sequence of elements of L converging to uv. By Lemmas 2.3 and
2.5 there are a subsequence (wp, ) and sequences (ug)k, (v)k such that wy,, = ugyy for all k, limu, = v and limv, = v.

Since wy, € AT, necessarily uy, vy € AT. And since wy, € Land Lis factorial in AT, we have uy, vy € L. Henceu,v e L. O

2.5. Prefixes and suffixes of pseudowords

Take [1, Sections 3.7 and 5.2] as reference for this subsection. By a prefix of an element t of a semigroup T we mean a left
factor of t, that is, an element p of T such that t = px for some x € T'. Dually, a suffix is a right factor.

Let w be a word of AT and n a positive integer. If |w| > n then we denote by t,(w) (respectively i,(w)) the unique suffix
(respectively prefix) of w with length n; if |[w| < n then we let t,(w) = i,(w) = w.If V is a pseudovariety of semigroups
containing D, then the map t,, : A¥ — A* has a unique extension to a continuous homomorphism from 2,V to A* relatively
to the discrete topology of A™. We also denote this extension by t,.. Replacing D by its dual pseudovariety, usually denoted
by K, similar considerations hold for i,. The least pseudovariety containing D and K is .LI.

We denote by N the set of nonnegative integers, and by Z~ the set of negative integers. Endow AY U A* (respectively
A” U A1) with the topology defined as follows: AY (respectively AZ ) is closed and endowed with the product topology,
the elements of A* are isolated points, and a sequence (u,), of elements of A* converges to an element x of AY (respectively
A% if and only if for all k the words i (u,) and Xp0,k—1] (respectively ti(u,) and X, _17) are equal for all sufficiently large n.
The topological space AN UA* becomes a compact semigroup if we declare the elements_ofAN as left zeros and the remaining
possible products as given by concatenation. In this way, AN U AT is isomorphic with §2,K. The dual characterization holds
for §£2,D.

Take the natural identification between AZ and AZ  x AN. Endow AZ U A with the topology where AZ is closed and
endowed with the product topology, the elements of A™ are isolated points, and a sequence (u,), of elements of A* converges
to an element x of AZ if and only if (uy, u,), converges to (Xj_so,—1], X[0.+00[) iINAZ  x AN. Consider in A U A* the following

multiplication: for w € A*,x, ¥ € AZ andy,y € AY, we have

(Xsy)'w:(xw7y)v w'(X7Y):(xa wy)7 (X,y)'(x/,y/):(x/,y).

With this multiplication, AZ U A* becomes a compact semigroup isomorphic with 24.£I.

If V contains .£1 then §2,K is pro-V. Let w W denote the canonical projection of 2,V in 24K, that is, the unique
continuous homomorphism from 2,V to 24K extendmg the identity in A. Dually, denote by w + % the canonical
projection of 24V in £2,D. Note that iy(w) = i,(W) and t,(w) = t,(¥) for all n. An element (x, y) of A x AV will
also be denoted by x.y.

For a word u, the left infinite sequence . . . uuuu is denoted by u=%°; dually, u™° = uuuu . . .; and u=*.v™> denotes the
bi-infinite sequence . . . uuuu.vvvv . . .. Finally, u™ denotes u=>.u™>.

2.6. Graphs

By a graph we mean a directed multigraph, that is a disjoint union G = V;UE; of a set V; of vertices with a nonempty set E¢
of edges together with two incidence maps o, w from E; to V. The pictorial meaning of the incidence maps is best described
by writing a (e) 5 w(e), (or alternatively e : @(e) — w(e)), and by saying that e goes from «(e) to w(e), or that the edge e
starts at «(e) and ends at w(e), and so on. Two edges e and f on a graph are co-terminal if ¥ () = «(f) and w(e) = w(f). The
set of edges from a vertex x to a vertex y is denoted by E¢(x, y). Two edges e and f are said to be consecutive (in this order) if
w(e) = a(f). A pathon a graph is a finite nonempty sequence of consecutive edges. Occasionally we also consider the empty
path at a vertex.

A function between graphs is a graph homomorphism if it maps vertices to vertices, edges to edges, and respects incidence
maps. A graph homomorphism is faithful if it maps co-terminal edges injectively, and it is quotient if it is bijective in the set
of vertices and onto in the set of edges.

A labeled graph on A is a pair (G, A) where G is a graph and X is a mapping assigning to each edge of G a letter of A. One
can regard a labeled graph as an automaton whose vertices are all both initial and final states. A subshift X is called sofic if
the language L(X) is recognized by a finite labeled graph. In fact, X is sofic if and only if L(X) is a rational language. Such
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b

b

Fig. 1. Presentation of the even subshift.

a graph is said to be a presentation of the symbolic system. The graph of Fig. 1 labeled with the letters a and b presents a
familiar sofic system called the even subshift.

Let X be a subshift of A%. The Rauzy graph of order n of X [28] is the graph X,(X) where the vertices are the elements
of L, (X), the edges are the elements of L, (%), and the incidence maps are given by «(aa; - - - a,a,4+1) = a1a; - - - a, and
@(ayy - - - Apny1) = g - - - Al 1.

By a (compact) topological graph we mean a graph G endowed with a (compact) topology such that «¢ and wg are
continuous maps, and V; and E; are closed sets. Note that V; and E; are also open sets, since G is the disjoint union of
V¢ and Eg. The product of topological graphs is a topological graph with respect to the product topology.

For a subshift X, let X' (X) denote the graph whose set of vertices is X, whose set of edgesis {(x, o(x)) € X x X | x € X},
and such that the edge (x, o (x)) starts in x and ends in o (x). Considering in Ex(x, the topology induced from the product
topology of X x X, the maps « and w are continuous, whence X' (X) has a structure of topological graph determined by the
topology of X. We call X' (X) the graph of X. If two subshifts are conjugate then X'(X) and X (Y) are isomorphic topological
graphs.

A compact graph is profinite if every pair of distinct elements is separated by a continuous graph homomorphism into a
finite graph. This is equivalent to being the projective limit of an onto directed system of finite graphs.

Let n and m be positive integers such that m > n. The following map, denoted by 7, ,,, is an onto graph homomorphism:

Zom(X)  — Zn(X)
X[—m.m—l] € LZm(x) = X[—n,n—l] € LZn(x)a X € xa
X[—m,m] € Lyny1(X) = X[—n,n] € Lynt1(X), xe X.

The family of graph homomorphisms {7, , | n < m} defines an onto directed system. Its projective limit and X' () will be
identified, according to the fact that the map

Z(X)  —  lim 25, (X)
X = (X[—n,n—ll)n
x,0(x) = X—nn)n, xeX

is a continuous graph isomorphism. The graph X' (X) is therefore profinite.
3. Relatively free profinite semigroupoids

3.1. Semigroupoids

Let S be a graph. Denote by Ds the set of pairs of consecutive edges of S. We say that S is a semigroupoid if the set of edges
of S is endowed with a partial binary operation “- " usually called composition, such that:

1. given edges s and t of S, the product s - t is an edge which is defined if and only if (s, t) € Ds;
2. if (s,t) € Dsthena(s-t) = a(s) and w(s - t) = w(t);
3.if (s,t) € Dsand (t,r) € Dsthen (s-t) -r =s- (t-r).

The product s - t of two consecutive edges will be denoted by st whenever it is clear that we are not speaking about the path
made of s and t.

A subgraph T of a semigroupoid S is a subsemigroupoid of S if T is a semigroupoid whose composition is the restriction
of the operation of S. Given a subgraph X of the semigroupoid S, the intersection of all subsemigroupoids of S containing X
is a semigroupoid, called the subsemigroupoid of S generated by X, and denoted by (X). Note that Vixy = Vx and that

Exy = U{5132 ---Sy | 81,52, ..., Sy are consecutive edges of X}. (3.1)

n>1

Given two semigroupoids S and T, a homomorphism of semigroupoids from S to T is a homomorphism of graphs¢ : S — T
such that ¢(s-t) = ¢(s) - p(t) for every (s, t) € Ds. If the restriction of ¢ to the set of vertices of S is injective then for every
subsemigroupoid R of S the set ¢ (R) is a subsemigroupoid of T. However, it may happen that ¢(S) is not a subsemigroupoid
of T.
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Fig. 2. The homomorphic image of S in T is not a subsemigroupoid.

a Z)—»{a E b b z)—p(b j a

Fig. 3. A sofic subshift Z such that X (Z)* is not a subsemigroupoid of any compact semigroupoid in which X' (Z)* embeds.

Example 3.1. Consider the graphs S and T represented in Fig. 2. The set Ds is empty, hence S is a semigroupoid for the
empty binary operation. On the other hand, D = {(c,d)} and T is a semigroupoid for the operation (c,d) + e. Since
Ds = 4, any graph homomorphism from S to T is a semigroupoid homomorphism. That is the case of themap¢ : S — T
such that ¢(y1) = ¢(y2) = y and ¢(s) = sforalls € S\ {y1,y-}. The graph ¢(S) is not a subsemigroupoid of T, because

@) -p(d) =c-d=e g p(S).

Given a set C, it is convenient to identify C with the graph G(C) with a single vertex x not belonging to C and such that
Egc)(x, x) = C. Accordingly, if H is a graph, a graph homomorphism from H to C will be understood as a map from Ey to C.
Likewise, a semigroup S will be identified with the semigroupoid having G(S) as underlying graph and whose composition
is the semigroup operation of S. Conversely, if T is a semigroupoid and Er(x, x) # @, then Er(x, x) is a semigroup for the
composition operation, called the local semigroup of T in x.

Let I" be a graph. The graph I' " is the graph whose vertices are those of I" and whose edges from a vertex x to a vertex
y are the paths of I from x to y. Note that I” is a subgraph of I"*. Under the operation of concatenation of paths, I'" is
the free semigroupoid generated by I'. In fact, if I is a set then I"t is actually the free semigroup generated by I'. Given a
homomorphism ¢ of graphs from I" to a semigroupoid S, we shall denote by ¢ the unique semigroupoid homomorphism
from I'" to S extending ¢.

A congruence on a semigroupoid S is an equivalence relation 6 on S such that:

1. if x is a vertex of S then x/0 = {x}.

2. forall edgessand t of S, if s6 t then s and t are co-terminal edges;
3. for all edges s, t and r of S, if s@ t and w(r) = «(s) thenrsf rt;

4, for all edges s, t and r of S, if s6 t and a(r) = w(s) then sr O tr.

The relation identifying co-terminal edges is a congruence, called co-terminality congruence. If 6 is a congruence on a
semigroupoid S then the quotient graph S/ is naturally endowed with a structure of semigroupoid. The usual isomorphism
theorems hold in this context. It is important to note that if 6 is an equivalence relation on S identifying distinct vertices
albeit satisfying the remaining three conditions we gave for defining a congruence, then it may be impossible to endow the
graph S/6 with a semigroupoid structure. For instance, in Example 3.1 the quotient graph S/Ker ¢ is not a semigroupoid
because c/Ker ¢ and d/Ker ¢ are consecutive edges, but there is no edge in S /Ker ¢ from «(c/Ker ¢) to w(d/Ker ¢).

Let G be a topological graph. Then, for any x, y € V, the set E¢(x, y) is closed; the set D is also closed. If the topology
of Vi is the discrete one then E;(x, y) and Dg are open. A (compact) topological semigroupoid is a semigroupoid S whose
underlying graph is a (compact) topological graph and whose composition is continuous, which means that if (s;, t;)i¢ is a
net of elements of Ds converging to (s, t), then (s;t;);c; converges to st (note that Ds is closed, hence (s, t) belongs to Ds).
The product of topological semigroupoids is a topological semigroupoid with respect to the product topology and to the
composition defined componentwise.

3.2. The closed subsemigroupoid generated by a graph

Let R be a topological semigroupoid and X a subgraph of R. Let @ be the set of closed subsemigroupoids of R containing X.
Note thatR € @.Let [X] be the intersection of all elements of @. Then [X] € @.We say that [X] is the closed subsemigroupoid

of R generated by X. It is routine to check that if Dy is open then [X] = (X).

Proposition 3.2. For a two-letter alphabet {a, b}, let Z be the sofic subshift of {a, b}? presented in Fig. 3. Suppose X (Z)" is a

subsemigroupoid of a compact semigroupoid S such that Z is a topological subspace of Vs. Then X' (Z)* is not a subsemigroupoid
of S.

Proof of Proposition 3.2. For each positive integer n, let s, be the unique edge of X (Z)* from a=*.b** to o™ (a~>®.h*>),
and let t, be the unique edge of X (Z)™ from o ~"(b=>.a™) to b=>°.a™>. Since S is compact, the sequences (s,), and (t;),
have accumulation points s and t in S, respectively. Due to the continuity of « and w, we have

as) =a @b, o) =b® =a), o) =b"C.a".

Since s and t are consecutive edges, the product s - t exists in S.
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Suppose X' (Z)* is a subsemigroupoid of S. Then, since s,t € X (Z)*, we haves -t € X (Z)*. Hence, there is a net
(e))ier of edges of X (Z)* converging to s - t. Due to the continuity of & and w, the nets («(e;))ic; and (w(e;));e; converge to
a=%.b** and b~>°.a*®°, respectively. Note that a~>°.b™> and b~*°.a™* are isolated points of Z, hence there is i € I such
that a(e;) = a~*>°.b™ and w(e;) = b~*.a™. But in X' (Z)™" there is no edge from a=>.b*> to b=>°.a™>°. We thus reach a
contradiction, which shows thats -t ¢ X(Z)*. O

Later on we shall verify that the semigroupoid X (Z)* indeed embeds into a compact semigroupoid (cf. Proposition 3.24).
Once this is done, Proposition 3.2 gives an example of a subgraph X of a compact semigroupoid R such that (X) G [X]: just
take X = ¥ (Z)" and note that (X(2)") = X(2)™.

Returning to an abstract setting, let X be a subgraph of a topological semigroupoid R. Consider the following definition,
by transfinite recursion, of sets denoted by [X7 4, where § is an ordinal:

e X1y =X;
e [X]g+ is the closure in R of the subsemigroupoid generated by [X]4;
e if B is a limit ordinal then [X]; = Uyeﬂ X1,.

Note that X C [X14 C [X] for every ordinal 8, which is easily proved by transfinite induction.
For the sake of conciseness, in the following lines the set [X 4 is denoted by yg.

Lemma 3.3. Let Sy be an ordinal such that Y = Yhor Then [X] = yg,.

Proof. We have (yg,) € (yg,) =Yg, thus yg, € @. Moreover, yg, € [X]. O

Lemma 3.4. If 0 is a cardinal greater than the cardinal of [X] then there is an ordinal By belonging to o such that Vo = Yy

Proof. Let 8 and y be distinct ordinals. Then 8 € y or y € B.Suppose 8 € y.Then 8T C y. One can easily prove by
transfinite induction that the operator y preserves order, thus yg+ C y,. Similarly, if y € g theny,+ C yg. Anyway, we
have (yg+ \ y5) N (¥,+ \ y,) = @. Therefore the following correspondence is a well-defined function:

f: X1 = o

B ifpevandx e ypr \yg,

X > . L
0 inthe remaining cases.

Suppose the lemma is false. Then, by Lemma 3.3, for every ordinal 8 belonging to v, there is an element x4 of yg+ \ yg. Note
that x4 € [X7, sincey, C [X] for every ordinal y. Therefore 8 = f(x3), for every ordinal 8 belonging to d. Hence f is onto,
and therefore 0 < |[X7]. This contradicts the hypothesis |[[X]] <2. O

Lemma 3.5. Let Rand S be topological semigroupoids. Consider a subgraph X of R such that R = [X7. Let ¥ and n be continuous
homomorphisms of semigroupoids from R to S. If ¥r|x = n|x theny = n.

Proof. By Lemmas 3.3 and 3.4, it is sufficient to prove by transfinite induction that v/|y, = nly, for every ordinal g, which
is a pure routine task. O

3.3. Pseudovarieties of semigroupoids

A semigroupoid S is a divisor of a semigroupoid T if there are a faithful homomorphism ¢ : R — T and a quotient
homomorphism ¢ : R — S for some semigroupoid R. A pseudovariety of semigroupoids is a class of finite semigroupoids
containing the trivial semigroup and the divisors and finite direct products of its elements.! The intersection of semigroupoid
pseudovarieties is also a semigroupoid pseudovariety. The pseudovariety generated by a class € of finite semigroupoids is the
intersection of those pseudovarieties containing C, and its elements are the divisors of finite direct products of members of
C (cf. [8, Section 2]). The pseudovariety of semigroupoids generated by a pseudovariety V of semigroups, called the global
of V, is denoted by gV.

Let V be a pseudovariety of semigroupoids. A topological semigroupoid S is residually in V if every pair of distinct
elements of S is separated by a continuous semigroupoid homomorphism into a semigroupoid of V. We say that a topological
semigroupoid S is pro-V if it is compact and residually in V. If V is the class of all finite semigroupoids then S is said to be
residually finite and profinite, respectively.

Note that the projective limit of a directed system of compact semigroupoids is a compact semigroupoid. We call a
directed system of quotient homomorphisms of semigroupoids a directed quotient system.

1 Tilson’s original definition [34] includes the need of a pseudovariety of semigroupoids to contain the finite disjoint unions of its elements. This
results from Tilson’s preference for an equational theory with graph-identities on finite connected graphs. In [8] it is not imposed any restriction about
connectedness. However, in the same article the definition of semigroupoid pseudovariety is Tilson's one. Tilson’s hypothesis about unions can be dropped
in order to have a coherent equational theory with graph-identities over non-connected graphs. Indeed the proof of the version of Theorem 2.7 of [8] for
semigroupoids works without change if we do not require that pseudovarieties of semigroupoids are closed under finite disjoint unions; on the other hand,
if we adopt Tilson’s definition, then for a proper equational theory one must restrict to connected graphs. Anyway, choosing or not Tilson’s definition is
irrelevant for our purposes.
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Theorem 3.6 (cf.[22, Theorem 4.1]). Let V be a pseudovariety of semigroupoids. Let S be a finite-vertex topological semigroupoid.
Then S is pro-V if and only if S is isomorphic to a projective limit of a directed quotient system of semigroupoids of V, if and only
if S is isomorphic to a projective limit of a directed system of semigroupoids of V.

The hypothesis of finiteness of the number of vertices is essential in Theorem 3.6. Indeed, in a personal communication,
B. Steinberg observed that an unpublished example due to G. Bergman (which is already mentioned in [29]) is in fact an
example of a residually finite compact semigroupoid which is not the projective limit of finite semigroupoids.

The consolidate of a semigroupoid S is the semigroup S,; whose elements are the edges of S and, if S has pairs of
nonconsecutive edges, an extra element 0, the product in S.4 of two consecutive edges of S being their composition, and
the remaining products being equal to 0. If S is a topological semigroupoid then we endow S.; with the topology of Es
together with 0 as an isolated point.

Remark 3.7. If S is a finite-vertex topological semigroupoid then S, is a topological semigroup.

Proof. Let (s;, t;)ic; be a net of pairs of elements of S,y converging to (s, t).
If st = 0 then (s, t) & Ds. Since Ds is closed and 0 is an isolated point, the set

U = ((Es x Es) \ Ds) UEs x {0} U {0} x Es U {(0, 0)}

is an open neighborhood of (s, t) in Sy x Scq. Hence there is iy € I such thatif i > iy then (s;, t;) € U, thus s;t; = 0. Therefore
(siti)ie; converges to st.

If st # 0 then (s,t) € Ds. Since Ds is open, there is iy € I such that ifi > iy then (s;, t;) € Ds, thus s;t; € Es. By the
definition of topological semigroupoid, the net (s;t;);c; converges tost. O

The semigroup B, is the syntactic semigroup (see [23] for the definition) of the language (ab)™ on the two-letter alphabet
{a, b}.

Proposition 3.8. Let V be a pseudovariety of semigroups containing B,. Let S be a finite semigroupoid. Then S € gV if and only
lf Sed € V.

See [8, Corollary 7.7] for a proof of Proposition 3.8. The converse implication is trivial, and it follows from it that gS is the
pseudovariety Sd of all finite semigroupoids.

Suppose ¢ : S — T is a continuous quotient homomorphism of topological semigroupoids. Clearly 0 € S, if and only if
0 € T,4. Consider the map ¢q4 : Scg — Teq such that ¢.4(s) = ¢(s) for every s € Es, and ¢4(0) = 0if 0 € S,y Then ¢q is
a continuous homomorphism. If ¢ : S — T separates s and t then so does ¢.4. Conversely, if a semigroup homomorphism
Y : Seg — F separates s and t then so does ¥ o y, where y : S — S is the identity map on the edges. These simple facts
justify the following corollary of Proposition 3.8.

Corollary 3.9. Let V be a pseudovariety of semigroups containing B,. Let S be a finite-vertex topological semigroupoid. Then S is
pro-gV if and only if S.4 is pro-V.

3.4. Relatively free profinite finite-vertex semigroupoids

Consider a finite-vertex graph I" and a pseudovariety V of semigroupoids. A map « from I' into a topological
semigroupoid T is a generating map of T if the subsemigroupoid generated by its image is dense in T. A pro-V semigroupoid
T is a free pro-V semigroupoid generated by I", with generating map k : I’ — T, if for every graph homomorphism ¢ from I”
into a pro-V semigroupoid S there is a unique continuous semigroupoid homomorphism ¢ : T — S satisfying ¢ o k = ¢.
Note that it suffices to suppose that S is finite-vertex. By the usual abstract nonsense, up to isomorphism of topological
semigroupoids, there is no more than one free pro-V semigroupoid generated by I".

For the case where I" is finite-vertex, we describe in the following lines a semigroupoid that turns out to be the free
pro-V semigroupoid generated by I". Note that when I is a one-vertex graph and V = gW for some pseudovariety W of
semigroups, such a semigroupoid is the free pro-W semigroup generated by E-. Let Con -V be the set of congruences on I'*
such that "t /6 belongs to V. If ¢ is the co-terminality congruence then I"* /% divides the trivial semigroup, hence ConjV
is nonempty if and only if I” is finite-vertex. The intersection of congruences is also a congruence, hence Con,V endowed
with the partial order D is a directed set. The family

{qo.p : TF/60 — I'"/p | p,6 €ConpV, p 206}

is a directed system of quotient homomorphisms. Its projective limite is a pro-V semigroupoid, denoted by QrVv.IfIis
finite then ConV is countable, and therefore the topological space §2V is defined by a metric [36, Theorem 22.3].

Let: : I' — 2,V be the map defined by ¢(a) = ([alg)pecon,-v- The subsemigroupoid of 21V generated by «(I") is the set
(T (r't), denoted by £21V.

Theorem 3.10 (cf. [22, Theorem 6.3]). Let V be a pseudovariety of semigroupoids and let I" be a finite-vertex graph. The
semigroupoid 2V is a free pro-V semigroupoid generated by I", with generating map t.
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Lemma 3.11. Let I" be a graph and u a path on I". Then there is a semigroup S in N and a semigroupoid homomorphism
@ : 't — Ssuchthat o~ 'p(u) = {u}.

Proof. Let A be the set of edges of I" which are factors of u. Let F be the set of paths of A with length less than or equal
to that of u. Then I = E,JE \ F is an ideal of Elf (for the definition of semigroup ideal and Rees quotient see [23]). The Rees
quotient E}L/I belongs to N. The natural semigroupoid homomorphism ¢ : 't — Ep%/I satisfies o 'o(u) = {u}. O

Proposition 3.12. Let V be a pseudovariety of semigroupoids and let I" be a finite-vertex graph. If V contains nontrivial
semigroups then ¢ : I' — §2pV is an embedding. If V contains N, then (* is a semigroupoid isomorphism from I'* to 2V,
and the elements of 2V are isolated points of $2rV.

Proof. Letu and v be distinct edges of I". Suppose V contains a nontrivial semigroup S. Then there is a graph homomorphism
¥ : I' = Ssuch that ¥ (u) # v (v). There is a unique continuous semigroupoid homomorphism ¥ : £,V — S such that

12/ ot = 1, thus ¢«(u) # «(v). Hence ¢ is an embedding.

Suppose V contains N. The map ™ : I't — £V is a quotient semigroupoid homomorphism. We want to prove
that it is injective. Let u and v be distinct edges of I"*. By Lemma 3.11 there are a semigroup S in N and a semigroupoid
homomorphism ¢ : I't — S such that ¢(u) # ¢@(v). Since N C V, there is a unique continuous semigroupoid
homomorphism ¢ from 2,V to S such that $ot = ¢|.Then port = ¢, thus(+(u) # ¢ (v). Therefore (* is an isomorphism.

We identify I with £,V through (™. Take an arbitrary edge u of I'*. Let (u; ).<s be a net of edges of '™ converging to
u. Let ¢ be as in Lemma 3.11. Since ¢ is continuous and @|+ = ¢, thereis 7y € 7 such that if 7o < 7 then ¢(u;) = @(u).

Since ¢ 'o(u) = {u},if To < 7 then u, = u. Since I' " is dense in £V, this proves the last assertion. O

3.5. Relatively free profinite semigroupoids generated by profinite graphs

Let I" be a profinite graph. A pro-V semigroupoid T is a free pro-V semigroupoid generated by I', if there is a continuous
generating map « : I" — T such that for every continuous graph homomorphism ¢ from I" into a pro-V semigroupoid S
there is a unique continuous semigroupoid homomorphism ¢ : T — S satisfying ¢ ok = ¢. Note that, up to isomorphism of
topological semigroupoids, there is at most one free pro-V semigroupoid generated by I". We shall prove in this section that
such a semigroupoid always exists when I" is profinite. If I' is finite, then we already know that this is true by Theorem 3.10.

From hereon, I' is a projective limit of finite graphs defined by a directed system {§;; : I; — I3 | i,j € I, i < j} of onto
graph homomorphisms. The canonical projection I" — [ is denoted by §;.

Lemma 3.13. If ¢ is a continuous graph homomorphism from I' into a finite graph S then the set I, = {i € I | Vx,y €
I, 8i(x) = &i(y) = @(x) = ¢(y)} is nonempty.

Proof. Suppose I, = . Then for every i € I there are x;,y; € I" such that §;(x;) = §;(y;) and ¢(x;) # @(y;). Since
I' is compact, the nets (x;)ic; and (¥;)ier have subnets (x,(j))je and (¥i())je; converging to some elements x and y of I,

respectively. Since ¢ is continuous and S is finite, ¢ (x) # ¢(y). Hence x # y. Therefore there is k € I such that §; (x) # 8¢ (y).
The set {(u, v) € I, x I, | u=v}isclosedin I} x I. Hence, since

ljigl((Sk(Xw)), 8 Wr)) = (8, 8k (),

there is jo € J such thatif jo < jthen 8k (x;j)) # dk(Va)- Thereisj; € J such thatjo < j; and k < A(j1). Let I = A(j1). Then
31k (81 (%) = 8k (xp) # k(1) = 81, (81 (Y1))-
But this contradicts the equality §;(x;) = §;(y;)). O

Corollary 3.14. Let ¢ be a continuous graph homomorphism from I’ into a finite graph S. There is i € I for which there is a
unique continuous graph homomorphism ¢; : I — S such that ¢; o §; = ¢.
Proof. Takeicl,. O

If i and j are elements of I such that i < j then, by Theorem 3.10, there is a unique continuous semigroupoid
homomorphism §;; such that the following diagram is commutative, where ¢, denotes the generating map of £2, V:

Li —

5j,il \ng.i
i _

I ——Qryv

The family {Sj,,- : S_ijv — 2V |i,j €l,i<j}is therefore a directed system of continuous homomorphisms of profinite
semigroupoids. Denote by §; the canonical projection of LiLnje' ijv on £V, and by « the map from I" into l(ir_njel 2 riVv
defined by t(x) = (4 o 8;(X));c;. Note that §; ot = ¢; 0 §;.
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Lemma 3.15. Let ¢ be a continuous graph homomorphism from I" into a finite semigroupoid S. Then there is a continuous
semigroupoid homomorphism ¢ from l(ir_njel 2rjVinto S such that ¢ o1 = ¢.

Proof. Let ¢; : I7 — S be as in Corollary 3.14. By Theorem 3.10 there is a unique continuous semigroupoid homomorphism
@i from £2 ;V into S such that ¢; o (; = ¢;. The following diagram is commutative:

S
Y

It suffices to take @ = Py 0 8. O

Theorem 3.16. Let ¢ be a continuous graph homomorphism from I into a semigroupoid S of V. Then there is a unique continuous
semigroupoid homomorphism ¢ : [¢(I")] — S such that p ot = ¢.

Proof. It is an immediate consequence of Lemmas 3.5 and 3.15. O

We denote [¢(I")] by £2V. This notation is not ambiguous when I' is a finite-vertex graph. Indeed, by Theorem 3.10 and
the next result, if I" has a finite number of vertices then £2-V and [¢(1")] are isomorphic compact semigroupoids. We shall
also denote by §2V, the subsemigroupoid of §2-V generated by «(I").

Theorem 3.17. Let V be a pseudovariety of semigroupoids and let I" be a profinite graph. The semigroupoid 2V is a free pro-V
semigroupoid generated by I', with generating map t.

For proving Theorem 3.17 we need some auxiliary results.
Lemma 3.18. If S is a pro-V semigroupoid then there are a family ¥ of semigroupoids of V and a continuous embedding
Y S — [lres F

Proof. Let 5, (S) be the set of the subsets of S with two elements. Since S is pro-V, for each element {u, v} of #,(S) there is
a continuous semigroupoid homomorphism vy, ,j from S to a semigroupoid Fy, ) of V such that ¥, ) (1) 7# Yy, (v). The
map

v: § — 1_[ F{u,v}

{s,t}eP2(5)
S = (W{u,v}(s))[u,v}e,‘/’z(S)

is a continuous embedding of semigroupoids. O

Lemma 3.19. Let v : S — T be a continuous homomorphism of topological semigroupoids. Let X be a subgraph of S. Then, for
every ordinal §3,

¥ ([XTg) S TY(X)1g (3.2)
and

¥ ((1X15)) S (T¥ (X)14)- (3.3)
If ¥rlvg is injective then ¥ ([X15) = [V (X)14 and ¥ (([X15)) = ([¥ (X)14).

Proof. Let us prove (3.2) by transfinite induction on S. The case 8 = 0 is trivial. Suppose (3.2) is verified. Since ¥ is a
continuous map of compact spaces, we have

¥ (IX15+) = ¥ ((TIXTp)) = ¥ ((1X1p))- (3.4)
And since ¢ is a homomorphism of semigroupoids, according to equality (3.1) we have
v ((IX1p)) < (v (TX1p)) - (3.5)

Hence, from (3.4) and (3.2) we deduce
¥ (IXTg+) S (¥ (1X15)) S (T¥ XD 1p) = T¥ XD g+




616 J. Almeida, A. Costa / Journal of Pure and Applied Algebra 213 (2009) 605-631

concluding the successor case of the inductive step of (3.2). The limit case is immediate.

By (3.2) and (3.5), we have ¥ ({[X74)) C { w(fx1ﬁ)) {I'¥ (X)1p) for every ordinal 8, which proves (3.3).

If v |y, is injective then the proof ofa the equalities in the statement is similarly done, the difference being that in Eq. (3.5)
we now have an equality. O

Corollary 3.20. Let v : S — T be a continuous homomorphism of compact semigroupoids. Let X be a subgraph of S. Then
Y (XD S [¥ X1 If ¥y is injective then ¢ ([X1]) = [¢ (X)]. O

Proof of Theorem 3.17. Let S be a pro-V semigroupoid. Let ¥ and # be as in Lemma 3.18. For each T € F, let pr be the
canonical projection [ [ F — T.Take an arbitrary continuous graph homomorphism ¢ : I" — S. By Theorem 3.16, for

eachT € ¥ there is a unique continuous semigroupoid homomorphism ¢r from Q2rVtoT suchthat ot = pro ¥ o g.
Consider the map ¢ : 2,V — [[p., F such that ¢ (u) = (5 (u))Fer.

r 2rv (3.6)
RS

¢
N [Tres F or T

Since forallT € ¥ wehave prof ot ={,rot = proW¥ o, we conclude that { ot = ¥ o ¢, thus Diagram (3.6) commutes.
Then, by Corollary 3.20 and Lemma 3.18,

£(2rV) = ¢ (DD S [CWINT = TP (@) S ¥ ()] =¥ (S).

Hence we can consider the map = ¥~ o ¢, a continuous semigroupoid homomorphism from £2,VtoS. Then ¢ o 1 = ¢.
The uniqueness of ¢ follows from Lemma 3.5. O

Problem 3.21. Is there some projective limit I" = lim _ I of finite graphs such that QrV # lim,_, 2rV?

3.6. Pseudovarieties containing the finite nilpotent semigroups
Ifi <j,let 8;- be the unique semigroupoid homomorphism for which the following diagram commutes:
N1
5j<il iﬁjfr
n——rn"

The family {8; : Fj+ — I“ﬁ | i,j € I,i < j}is a directed system of semigroupoid homomorphisms. Denote by 5,* the
canonical projection from lim_ I"" to I;*. The graph I'" is a subgraph of lim I,
<—jel ~J ! <—jel ~J

Lemma 3.22. The semigroupoids '™ and l(ir_nie, I’fr can be identified, in the sense that the unique semigroupoid homomorphism
jfrom 't to 1<ir_niel I"f extending the inclusion is an isomorphism.

Proof. Clearly is a bijection between the sets of vertices. Let w = w; - - - wy be a path on I, where wy, ..., wy are edges
of I'. Giveni € I, we have

8 og(w) = §i(wy) - - - Si(wy). (3.7)
Suppose u = uy---uy and v = vy - - - vy, are paths on I", where uq, ..., u,, vy, ..., Uy, are edges of I". If j(u) = j(v) then
8i(uq) - - - 6i(uy) = §i(vy) - - - 8i(vy) by (3.7). Hence n = m and Sf(ul) = 6i+(v1), forany ! € {1, ..., n}. Since i is arbitrary,
we conclude that u; = v, forany ! € {1, ..., n}. Thatis,u = v.

On the other hand, let g be an element of l(ir_niel F+ Since the directed system defining I is surjective, for every i € |
there are g1, ..., Gin, € I" such that 87 (q) = 8i(gi1) - - - 8i(qi.n,). If i < j then, since §;" = &7 o 8", we have
8i(qi,1) - - - 8i(qiny) = 8i(qj,1) - - - 8i(Gjny)-
Therefore
j > i = (le =n; and (S,‘(q“) = 51‘((]]',[) Vil e {1, ey Tli}) . (38)

In particular, if i; and i, are arbitrary elements of I, then n;, = n;, = n;,, for every ip such thati; < ip and i < io. Since I is
directed, such i always exists, thus the net (n;);c; has constant value n. Let F be a finite subset of I. Then there is k € I such
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thati < kforanyi € F.By (3. 8) foralli € F we have qi; € (i 6 1s; (gi1)- The set 8_18 (q,',,) is closed for every i € I. Then,

since I is compact and [ —1s; (gi1) # O for every finite subset F of I, the set () Si(qi,,) is nonempty. Let q; be one
of its elements. For [ < n,

o(q) = (@(Si(qD)ier = (@(8i(qi.)))ier = (@(8i(qi1+1)))ier = -+ - = (qig1)-
Since qy, . . ., g, are consecutive edges, we can consider the element j(q; - - - g,) of the image of ). Then

8" 0(qr -+ ) = 8i(@D) -+~ 8i(qn) = 8i(qi,1) - - 8i(qin) = & (@)

Since i is arbitrary, we conclude that ¢ = j(q; - - - q»). Hence is surjective. O

ieF 1 iel 1

Proposition 3.23. Let V be a pseudovariety of semigroupoids and let I" be a profinite graph. If V contains nontrivial semigroups
thent: I' — 2pVis an embedding. If V contains N then (™ is a semigroupoid isomorphism from I'"™ onto V.
Proof. Suppose V contains nontrivial semigroups. Let u and v be distinct elements of I". Then there is i € [ such that
8i(u) # 6i(v). The graph homomorphism ¢; is an embedding, by Proposition 3.12. Hence ¢;(§;(u)) # ¢i(8;(v)). Since
t(w) = (1 o 8;(w))jes, this proves ¢ is an embedding.

Suppose V contains N. The map ™ : '™ — £V is a quotient homomorphism of semigroupoids. We want to prove that
itis injective. Let w = wy ... wy, be a path on I, where wy, ..., w, are consecutive edges of I". Then, for every i € I,

§i(t(w)) = &(t(uu)) S wn) = G (wy)) - - aiwn)) = (8 (w)).

Hence if u and v are edges of I'* and ¢ (u) = " (v) then ;" (§;" (u)) = ¢ (8;" (v)) for all i € I. From Proposition 3.12 we
deduce §;" (u) = 8 (v) foralli € I. Thenu = v by Lemma 3.22. O
We could not prove Proposition 3.23 directly using the arguments in the proof of Proposition 3.12 because in general one

cannot expect the homomorphism in Lemma 3.11 to be continuous. According to Proposition 3.23, one may consider I” T as
a subsemigroupoid of 2, V.

Proposition 3.24. For every pseudovariety of semigroupoids V containing N, there are profinite graphs I" such that I'* is not
dense in V.

Proof. Take the graph X' (Z) in Proposition 3.2 and apply Propositions 3.2 and 3.23. O
4. Relatively free profinite semigroupoids defined by subshifts

From here on X designates a generic subshift of A and V a pseudovariety of semigroups containing .£I. This allows us
to define the maps i, and t; with domain $£24V. The canonical projection X' (X) — X,(X) will be denoted by 7,. We
shall denote by X (X) and 22,,(36) the semigroupoids ch)gv and 25y, (x)gV, respectively. Since gV contains N, we can
consider X (X)* as a subgraph of Z(X), andAEZ,,(DC)ﬂL as a subgraph of X, (X), by Proposition 3.23. Note that since X' (X)
is a complete conjugacy invariant then so is X (X).

4.1. Labeling

Assignto eachedge q = ay - - - 02,1 (Where a; € A) of X, (X) the letter a1, denoted by 1, (q). We say that X is a 2n-
step subshift of finite type if L() is recognized by the labeled graph (X,,(X), ft,). This means that X = {x € A%: Ly, (x) C
L(X)}. A system is of finite type if it is 2n-step finite type for some n.

According to Proposition 3.2, there is a subshift Z such that X (Z)* # f(z). This situation is in contrast with the
following proposition:

Proposition 4.1. If X is a finite type subshift then l(in 22,,(36) = E(X) =X

Proof. There is an integer N such that X is 2n-step for every n > N. Consider a path ¢ = ¢ - - - g in X5,(X). There is
x € X such that ¢ = X[_pti—1.n+i—1]- Let p be the unique path in ¥'(X) from x to o*(x). We have 7,(p) = q. Hence
(T (X)) = X (X)T, thus 7, (X (X)) = 2y,(X)T. Moreover, X5,(X)T = X,,(X) by Theorem 3.10, because X,(X)
is finite-vertex. The result follows from Proposition 2.1. O

We shall denote by u the continuous graph homomorphism from X' (X) to A mapping each edge (x, o (x)) of X (X) to the
letter xo. We have ppom, = p,andifn < mthen pyomy n = m. Since §£24V is a pro-V semigroup, by Theorem 3.10 there is a
unique continuous semigroupoid homomorphism /i, from EZH(AZ) to £2,V such that /1, Sy = Mp-1fn <m then fi 07 n
is a continuous semigroupoid homomorphism whose restriction to X, (A%) coincides with i, thus ft, o oy = fim. Then

llmOﬁm = (,al Oﬁml)Oﬁ'm =,ljl«1 O(ﬁmIOﬁ'm) _lll o 1.
Therefore if q is an edge ofllm 22n (A7) then the sequence ({i,(,(q)))n has a constant value which we call the label of q and
denote by fi(q). The mappmg 1 thus defined is a continuous semigroupoid homomorphism from 11m EZn (A%) to 2,V.
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Lemma 4.2. Let q : X{_nn—1] — Y[—n.n—1] be an edge of 1(1r_n EZH(X), where x,y € X. Let u = [1(q). If k = min{|u]|, n} then
X0 k—11 = ix(u) and y_y, 11 = te(w).

Proof. The result is clear if ¢ € 35,(X)T. The general case is straightforwardly proved once we realize that X,,(X)™ is
dense in EZH(X) which is true by Theorem 3.10 because X,,(X) is finite-vertex. O

Lemma 4.3. Let q : x — y be an edge of ](El 22,,(96). Let u = ji(q). If u € 2,V \ At then T = X[0,-+oo[ ANd T = V]—oco,—1]-
If u € A* then q is the unique edge of X (%)% from x to o*! ().

Proof. Let n be a positive integer. We have «(7,(q)) = 7n(@(q)) = X(—nn—1]. Likewise, o(7n(q)) = Y[—n.n—1. Let
k = min{|u[, n}. Since i,(7,(q)) = u, by Lemma 4.2 we have xo x—1] = i (1) and y(_x.—1] = te(W).

Ifu ¢ A" then k = n. Since n is arbitrary, we deduce that T = x|o +oof and T = = Y}—00,~1]-

Suppose u € A*. Let (q;); be a sequence of elements of X,,(X)" converging to 7,(q). Then n(q)) = u for I sufficiently
large. Hence, taking subsequences if necessary, we may suppose that |q;|; is constant equal to |u|. Since there is only a finite
number of elements of X,,(X)™ with length |u|, we deduce that 77,(q) € X,,(X)".Henceq € X (X)", because nis arbitrary
(cf. Lemma 3.22). Clearly q is the unique edge of X (X)* from x to ¢'9(x). Finally, |q| = |2(q)| = |u|. O

Denote by M, (X) the set of pseudowords of 24V whose finite factors of length n belong to L(). Note that Mo, 1 (X)NAT
is the language recognized by (X,(X), in). As observed in [14, Section 3.2], if V contains £LSI, where SI denotes the
pseudovariety of finite semilattices, then M, () is both closed and open. We denote by M () the intersection (). ; Mn(X),
which in [14,15] was called the mirage of X. One always has L(X) € M(X), and the equality holds if X is of finite type;
however if Z is the symbolic system presented in Fig. 1 then L(Z) # M(Z) if L(Z) is V-recognizable [14].

Clearly, M () is factorial. It is also easy to see that if u € M (X) then there are a, b € A such that aub € M(X):ifu g AT
and x,y € X are such that T = X[0,-+oo[ and T = Y]-00.—1]» take a = x_1 and b = y,. And since M (X) is closed, one
deduces the following:

Lemma 4.4. If u € M(X) then there are v, w € 2,V \ A* such that vuw € M(X).

Since lim sz(X) is a projective limit of a countable family of metric spaces, its topology is defined by a metric [36,
Theorem 22.3]. Hence one can use sequences instead of nets, as we do in the proof of the following proposition.

Proposition 4.5. Consider a pseudovariety of semigroups V containing £SI. Then L(X) = [ (E(X)+) and M(X) =
i (1im S0() ).

Proof. Clearly [i(X (X)) = L(X), thus L(X) = (E(Xﬁ) by continuity of .
Let g be an edge of l(@ 22,1(96). Let u = j1(q). Consider an arbitrary positive integer n. Then u = [i,(7,(q)). Since

(X2 (X)) C Mapyq1(X), T (X))t = Son(X) and Mo 1(X) is closed, it follows from the continuity of i, that
U € Mant1(X). Therefore u € (o1 Mant1(%) = M(X).

Conversely, suppose u belongs to M (). By Lemma 4.4 there are v, w € 24V \ A" such that vuw € M(X). Let (v,
(u)x and (wy) be sequences of elements of A* converging to v, u and w, respectively. For each k, the graph X (A%) has
consecutive paths py, gi and r such that f(py) = vk, 1(qe) = u and fi(ry) = wy. Let n be an arbitrary positive integer.
Since vuw € Ma,11(X) and Mapy1(X) is open, and since v and w have infinite length, there is N such that if k > N then
Velewg € Many1(X) and vy, wy have length greater than n. Then the edges forming the path 7,(qi) belong to Lap11(%).
Hence 7,(qx) € X2,(X)". Let g be an accumulation point of (gy). Then 7,(q) € X»,(X), forevery n. Thatis,q € l(in 20 (X0).
Finally, note that ii(q) = u. O

4.2. Fidelity

Two co-terminal edges of X (%)™ with the same length are equal, by Lemma 4.3. Next we generalize this property by
proving that two co-terminal edges of 11m 22n(X) with the same label are equal.

Proposition 4.6. Let V be a block preserving pseudovariety of semigroups containing B,. Then the homomorphism fi,
on (ALY — QaVis faithful.

Proof. Since EZH(AZ) has a finite number of vertices, we can consider the topological semigroup T = (EZH(AZ))M
(cf. Remark 3.7). By Corollary 3.9, we know that T is pro-V. Hence there is a unique continuous homomorphism & :
.QAzn+1 V — T such that ®(u) = u for every u € A*"! = Es, (7). By the definition of block preserving pseudovariety,
the graph homomorphism ¥ : 22,1 (A%) — 2,201V assigning to each edge q of 22,., (A%) the pseudoword o) 2[in (a(q))
(@) - ta(w(q))] is well defined and continuous. One easily verifies by induction on the length of g that @(lI/(q))
forany q € Ey, (42)+. Since ¥ is a continuous map and X,(A%)* = o0 (A%), we conclude that @ (¥ (q)) = q, for every
q € Es, (a2 Clearly, if q; and g3 are co-terminal edges with the same label then ¥ (q1) = ¥ (q2), thusq1 = q2. O
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Corollary 4.7. Let V be a block preserving pseudovariety of semigroups containing B,. Then the homomorphism [i
lim on(A%) — Q,Vis faithful. O

The pseudovariety LS| contains B,. Conversely, if V is block preserving and contains some nontrivial semilattice (which
is the case if it contains B,, since B, has a nontrivial subsemigroup in SlI) then V contains £SI, but we shall not need to use
this fact.

4.3. Good factorizations

Let g be an edge 0f1<ir_n fzn(x). Suppose q1, . . . , qn are consecutive edges ofl(ir_n fz,,(X) such thatq = q; - - - qn. Let G be

a subgraph Ofl<il‘_n EZH(X). If the set {]_[ﬁzk gi | 1 < k <1 < n} of factors of q is contained in E; then we say thatq; - - - g, isa
good factorization of q in G. Note that q € G if g has a good factorization in G.

Lemma 4.8. Let V be a pseudovariety of semigroups that is closed under concatenation. Let u, v, w,t € 24V be such that
uv = wt. Then there is z € (£24V)! for which at least one of the following situations occurs: u = wz and zv = t, or uz = w and
v =zt

Proof. Let (u,), and (v,), be sequences of elements of AT converging to u and v, respectively. The sequence (u,v,),
converges to wt. Then, by Lemmas 2.3 and 2.5, there is a subsequence (uy, vy, )« and sequences (w;), and (t;), of elements
of At such that Up, Un, = Wiy, limw, = w and lim ¢, = t. It is clear that for every k there is z, € A* such that one of the
following situations holds: u,, = wyzx and zxvy, = ti, OI Uy, 2, = wy and vy, = zty. Therefore at least one of the sets

P = {k: uy, = wizx and zxv,, = ti}, Q = {k: upzx = wy and vy, = zxty},

is infinite. Suppose P is infinite. Let z be a limit point of the subsequence (zy)kep. Then u = wz and zv = t. Similarly, if Q is
infinite then uz = w and v = zt forsome z € (2,V)!. O

Theorem 4.9. Consider a pseudovariety of semigroups V closed under concatenation. Let q € 1(1r_n fzn(x). Suppose j1(q) =

Uy - - - Uy, where u; € §2,V. For an ordinal 8, let G be one of the graphs [Z(X)p or ([X(X)1p)-If q € G then there is a good
factorization q = q1 - - - g, in G such that 1(q;) = u;, foreveryi € {1,...,n}.

Proof. Consider the following propositions:

P(G, g, n): “Suppose {i(q) = uy - --u,, where u; € $24V. Then there is a good factorization ¢ = q; - - - q, in G such that

a(q) = u;, foreveryie {1,...,n}".

R(B):Vq € [Z(X)1g, Vn, P(TZ(X) 1. q, n).

5(B):Vq € ([X (X)), Vn, PUTZ (X)), g, n).

We want to prove R(8) A S(B) for every ordinal 8. We shall do it by transfinite induction on 8. The case 8 = 0 s trivial,
and the limit case of the inductive step offers no difficulties.

Let us see the successor case. Take an ordinal 8 such that R(8) AS(B) is true. Letq € [ X' (X)] 4+ and let Q) =uy---uy,
where u; € £2,V. Then there is a sequence (qi); of elements of (TZ(%)1p) converging to g. By Lemma 2.5, there is a

subsequence (qy,); and sequences (u;;); of elements of 2,V converging to u; such that /l(qk,) = Uq,jUp, -+ * Up—1,iUp,. SINCE
S(B) is true, there is a good factorization ¢ = qq- - gn in ([X(X)1g) such that a(qi)) = uyy, foreveryi € {1,...,n}.
Since ([ X'(X)]g) is compact, the sequence (1, - - - » qn,k)x has some subsequence converging to an n-tuple (qs, - - . , gn)

of consecutive edges of ([X'(X)]g). Clearly g1 - - - g, is a good factorization of g in [ X(X)74+ and (q;) = u; for every
ie{1,...,}. Hence R(BT) is true.

Let g € ({[X(X)T4+). There are consecutive edges qy, ..., q; of [X(X)]4+ such that ¢ = ¢qq---q;. Let A(q) be the
least possible value for I. Next we prove P({[ X'(X)14+), g, n) by transfinite induction on A(q) + n.If A(q) = 1thengq €
[ X (X)]4+, hence P({[ X (X)14+), g, n) is true for every n, because R(B™) is true. On the other hand, P({ [X()1g+), ¢, s
obviously true, for every g. Therefore P({[ X' (X)14+), ¢, n) is true when min{A(q), n} = 1. For a positive integer k, suppose
P({TZ(X)1g+), g, n) is true when A(q) + n < k. Let g and n be such that A(q) + n = k and min{A(q), n} > 1. Suppose
A(q) = uq - up, where u; € 24V. Letqy, ..., q1.(q) be consecutive edges of [ X'(X)]4+ such that g = ¢; - - - gs(q)- Consider
the edge ¢ = q; - - - @y (q)—1. Since (q") i (qr(q)) = (U7 - - - Uy—1)Up, by Lemma 4.8 thereis z € (£24V)" for which at least one
of the following conditions holds:

1. (@) = uq -+ - up—1z and zji(qa(g)) = Un,
2. i(q)z =uy---up_q and ﬂ(q;h(q)) = ZU,.
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Suppose the first condition holds. Since A(q") +n < A(q) + n, by the induction hypothesis ¢’ has a good factorization
1+ Sp—1tin ([ Z(X0)] g+) such that a(si) = u;(fori e {1,...,n— 1})and i(t) = z (if z = 1 then consider t as an empty
path). Let s, = tqy ). Then s; - - - 5,_1s, is a good factorization of q'qsq = q in ([ X (X)]4+). Since (s)) = u; for every
ie{1,...,n}, this proves P({[ X (X)1g+), g, ).

Suppose the second condition holds. Since R(B™) is true, there are edgesr, t € [X(X)] g+ such that g, q) = rt, ar) =z
and i(t) = u,. We have A(q'r) < A(¢") + 1 < A(q), thus A(¢'r) + (n — 1) < A(q) + n. Since a(q'r) = uq---uy_q, by
inductive hypothesis q'r has a good factorization sy - - - s,_1 in ([ X (X)] g+) such that a(s;) = u;, foreveryi e {1,...,n—1}.
Hences; - - - s;_1t is a good factorization of g in ([ X'(X)] 4+ ) whose ith factor has label u;. Hence P({[ X (%X)]4+), g, n) holds,
concluding the inductive step on A(q) -+ n. Therefore S(87) is true.

Recapitulating, we proved that R(8T) A S(BT) is true, concluding the proof verification of the successor case of the
inductive stepon 8. O

Corollary 4.10. Consider a pseudovariety of semigroups V block preserving and closed under concatenation. For an ordinal B, let
G be one of the graphs [ X (X)1g or ([ X (X)14)- Let p, q, T € l(in on(X) besuchthat p = qr.If p € Gthengq,r € G.

Proof. If p € G then there is a good factorization p = ¢'r" in G such that fi(q) = (q") and (r) = (r’). By Lemma 4.3, q
and ¢’ are co-terminal, and r and r’ are also co-terminal. Hence ¢ = ¢’ and r = r’, since i is faithful by Corollary 4.7. O

A subshift X is irreducible if for every u, v € L(X) there is a word w such that uwv € L(X) (cf. [24]).

Corollary 4.11. Consider a pseudovariety of semigroups V closed under concatenation. If X is irreducible then X (0)*\ X (%)™
is a strongly connected graph.

Proof. Let x and y be arbitrary elements of X. Since X is irreducible, for each n > 1 there is z, € A™ such that the
word wp, = X[—nnZnY[—nn belongs to L(X). Let w be an accumulation point of (w,),. Then w = uquyusz for some
accumulation points of the sequences (X{_n,—11)n, (X[0,112ZnY[—n,—1])n aNd (V[0,n1)n, TE€SPectively. Since w € L(X) \ AT, there is
g€ X (%)t \ X(X)* such that f1(q) = w, by Proposition 4.5. Then by Theorem 4.9 there is a good factorization ¢ = ¢1¢,qs3
in X (X)* such that fi(q;) = u;, foralli € {1, 2, 3}. By Lemma 4.3, we have a(q;) = fﬁﬁ; = x. Similarly, w(q,) = y. Since
(q2) € AT, gz isan edge of X (X)* \ T(X)T fromxtoy. O

The converse of Corollary 4.11 is false. For an example see the subshift of Proposition 3.2 and the corresponding proof.

5. The ordinal o (X (X))

Let I" be a subgraph of a compact semigroupoid. By Lemmas 3.3 and 3.4 the set of those ordinals 8 such that |8| < |[T"]|
and [I"g = [I'] is nonempty. Its infimum is denoted by o(I").

Since X' (X) is a conjugacy invariant, the ordinal o(X' (X)) is also a conjugacy invariant. According to Proposition 4.1, if X
is a finite type subshift then o (X' (X)) = 1.In Proposition 3.2, we saw a sofic subshift Z such that o(X'(Z)) > 1. We proceed
to try to determine o(X' (X)) for some cases, or at least to find lower and upper bounds for o (X' (X)).

5.1. The ordinal o(X' (X)) can be very large

We first need some lemmas on word combinatorics.

Lemma 5.1. Let u, v, z € A" be such that z>u = vz? and |u| < |z|. If the length of z is a prime number then z € a* for some
aeA

Proof. Since z>u = vz?, there is v/ € A* such that zu = v’z. Since [v'| = |u| and |u| < |z|, the prefix of z with length
lu| is v". Since z2u = vz, it is also true that the prefix of z with length |u| is v. Therefore v/ = v and vz?> = z%u = zvz.
Hence vz = zv, which by [23, Corollary 5.3] implies that there is w € A* and k, | > 0 such that z = w* and v = w'. Since
|z| = k|w| and |z| is prime, we have k = 1or |w| = 1.1If k = 1thenz = w and |v| = [|w| > |z|, a contradiction. Hence
weA O

Lemma 5.2. Let z be a word of AT whose length is a prime number, and suppose that z is not a power of a letter of A. Let k > 4
and u, v € A*. If uand v are respectively a suffix and a prefix of some elements of Az* then uv & Az*.

Proof. Suppose the lemma is false. That means that there are a, b, ¢ € A such that u is a suffix of az*, v is a prefix of bz¥, and
uv = cz*. Since v # 1, there are i > 0 and a strict prefix v’ of z such that v = bz'v’; and there are j > 1 and a strict suffix v’
of z such that u = u’Z/. Hence

¢ = u'Zbzv'.

If = 1 then z is a prefix of cz, thus z is a power of the letter ¢, which is impossible. Hence v’ # 1. We have
kiz| = G+ j)lz| + || + |[v'], thus |u'| + |v/| is a multiple of |z|. Since 0 < |u| + |v/| < |z| + |z] = |2z|, we have
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|| + |v'| = |z|. Thereforei +j = k — 1.1fi > 2 then z?v' is a suffix of z¥, which is impossible by Lemma 5.1. Therefore
j > 2,since k > 4.Since u’ # 1, there is u” € A* such that u’ = cu”. Then z* = u"Z/bz'v/, and u"z? is a prefix of z*. Hence
u” = 1 by Lemma 5.1. Therefore z¥~/ = bz'v'. If i # 0 then bz € zA, thus z is a power of b, which cannot happen. Hence

i=0,j =k— 1and bv' = z. But v’ is a prefix of z, thus bv’ € v'A. This implies v’ € b™, and therefore z € b™, which is
impossible. 0O

It follows from Lemma 5.2 that the set Az in its statement is a circular code [10].
Given v € A*, denote by v, the following mapping from AZ to AZ:

oo XX _1.X0X1X2X3 ... > L UX_2UX_1V.XgUX1UXUX3D . . ..
Note that v is the identity on AZ. Observe also that ¥, o o = ¢!"I*1 o ,. It is easy to prove that X, = Usex © (¥ (%)) is
the least subshift of A” containing v, (X).

Lemma 5.3. Let z be aword of AT whose length is a prime number, and suppose z is not a power of a letter. Let k > 4.1f x,y € X
and n € Z are such that Yk (y) = o™ (Y, (x)) then n is a multiple of k|z| + 1.

Proof. There are q, r € Z such thatn = q(k|z| + 1) +rand 0 < r < k|z| 4 1. Note that
Yu(y) = 0" oY (x) = 0" 0 D oy (%) = 0" 0 Yk 0 0(X).
Ify = (a;)iez and 09(x) = (by)iez then

Vo ((@)icz) = ... a_sza_rz%a 1% a2 arzxas2" . .. =
oo l[fzk((bi)iez) =... b,32kb722kb,1Zku.vb12kb22kb32k e

where u, v are elements of A™ such that boz* = uv and |u| = r. Since u is a suffix of a_;z* and v is a prefix of ayz*, from
Lemma 5.2 we deduce thatr = 0. O

Lemma 5.4. Let z be a word of AT whose length is a prime number, and suppose z is not a power of a letter. Let k > 4. Let x € X..
If (y'™),, is a sequence of elements of X,k converging to v/,x(x) then there is a sequence (x™™),, of elements of X converging to
x and a subsequence (y™)),, such that y™™ = v (x'™), for any m.

Proof. Since y™ € X, there are xX™ € X and an integer r, such that y™ = o™y« (x™) and 0 < r, < k|z| + 1. The

sequence (x™), has some subsequence (x); converging to an element x’ of X. Since (rn;)i is a bounded sequence, it has
some subsequence (rnij ); with constant value C. Then

o“Y®) = lim oy ") = lim y™ = yu).
Jj—>+o0 Jj—+00
Hence C = 0, by Lemma 5.3. Since ¥« is injective, we deduce that X = x. Therefore (x("if))]- converges to x and
Yo"y =y" forallj, O

Let v € AT and x € X. According to Lemma 4.3, there is a unique path of X' (X,)™ with length |v| + 1 from v, () to
o "1y, () = ¥, (0 (x)). Denote it by (W, (x), ¥, (o (x))). Clearly, the mapping

v, : (X)) —> X(x,)t
x = Py
x,0() = (X, P(0X)), xe X,

is a graph homomorphism. Let ¥, be the unique continuous semigroupoid homomorphism from E(X) to E(Xv) extending
v,

Proposition 5.5. Consider a pseudovariety of semigroups V closed under concatenation. Let z be a word of A™ whose length is a
prime number, and suppose that z is not a power of a letter. Let k > 4. For every ordinal 8 we have

W (Erzaeyy (%) = Erzec, (Vo (), ¥4 9),
!i/zk(Eﬂ'Z(X)-\ﬂ)(X’ ) = E<r2(xzk)1ﬂ)(1ﬁzk *), Y (¥)),

forallx,y € X.
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Proof. For every ordinal 8 and for every word v, by Lemma 3.19 we know that !f/v((E(x)lﬂ) C [¥,(X(X))]s and
tf/u(( [Z(X)Tg)) € (W (X (X))]4)- Hence it remains to prove the conjunction of the following properties:

P(B): Vx.y € X Erzcxn, (W), Y (0)) € Por(Erzcon, (¢ 3),
Q(B): Vx,y e X, E(I'Z(sz)‘\ﬁ)(wzk(x)v Y (y)) ‘f’zk(qu(xnﬁ)(Xa ).

We shall prove P(8) A Q(B) by transfinite induction on .

By Lemma 5.3, we have Y (y) # o (¥xk(x)), thus Exx) (¥,x(x), ¥,k (¥)) = @, which proves P(0). Suppose s €
Es (5 )+ (W (%), Yk (v)). Then ¥k (y) = o83,k (x)). By Lemma 5.3, there is a positive integer n such that |s| = n(k|z| + 1).
Thenz Yx(y) = V(0" (x)). Since Y« is injective, it follows thaty = o"(x). Hence Egy)+ (%, y) has an element s’ with
length n. The length of lf/zk (s") is equal to |s'|(k|z] + 1), by the definition of ¥,x. Hence s and lflzk (s") are elements of
E):(xzk)Jr (Y (%), ¥k (y)), with the same length, thus s = @Zk (s") (cf. Lemma 4.3). This proves P(0) A Q(0).

Suppose P(B8) A Q(B) is true. Let s be an element of EFE(XZI<)15+ (Y,k(x), Yk (¥)). Then there is a sequence (s,), of
elements of ([ X' (%)]4) converging to s. The sequences (a(sy))n and (w(sn))n converge respectively to ¥, (x) and ¥ (). By

Lemma 5.4, taking subsequences if necessary, we may assume that «(s,) = ¥« (x™) and w(s,) = Yk (y™) for every n, for
some sequences (x™), and (y™), of elements of X converging to x and y, respectively. Since Q (8) is true, for each n there is

si € Eqrzoon ) (x™, y™) such thats, = @i (s,).1f s’ is a limit point of (s), thens’ € Erseoy,. (x.y) and @, (s') = lims, =5,
which proves P(87).

For each positive integer [ let ([ X'(%,k)]4+ ) be the set of all edges of E(X) of the form ¢q; - - - q;, where q4, ..., q; are
consecutive edges of (E(sz)1ﬂ+. Note that

(I26,074) = JIZ607 50 0

=1

Hence Q (8) shall be proved once we prove by induction on [ the following sentence:
Q(ﬁv l) . VX, ye xv E(rZ(ka)]ﬁ+>,(Wzk (X), lpzk (_y)) g lﬁz"’ (E<|'Z'(x)-\ﬁ+)1(xv y))

The initial step | = 1 corresponds to proposition P(8™), which we know is true. Suppose [ > 1and that Q (8, I) is true when
I' < L. Let r be an element of EWZ(XZM/;HI (Y, (%), ¥« (¥)). Then there are consecutive edges rq, ..., 1, of fE(XZk)1ﬂ+ such
thatr = r; - - - r.. Since Q(0) is true, we may assume that r ¢ X (X)*. Then thereisi € {1,...,1} such thatr; & ¥ (X)™.
Sincel > 1,wehavei < lori > 1.Let us suppose thati < [(the casei > 1is similar). There is a positive integer m such that
o(r;)) = ™Y (x)) for some x’ € X. Letu = t(j2(r;)). Since r; ¢ X(X)™, the word u has length m. Let (pn), and (gy), be
sequences of elements of ([ X'(X)14) converging to r; and r;, 1, respectively. Since (£24V)u is open, we may assume that for
every n there is w, € £2,V such that ji(p,) = wyu. By Theorem 4.9, there are edges p;, e p, belonging to (TZ(%)1p) such
that p, = p,,p’, u(p,) = wy and i(p)) = u. For each n, let g/, be the unique edge of X (%)* from o ™ (a(qs)) to a(gy). Let
(', p”, q') be alimit point of the sequence (p},, p;,, q,)n. Since (|q,|)n is the sequence with constant value m, and since there
is only a finite number of paths on X' (X) with length m, we deduce that q’ is a path of X (X) from o "™ (w(q')) to w(q"). On
the other hand, since (p”") = u € A", by Lemma 4.3 we know that p” is the unique path of X (X) from ¢ ™ (w(p")) to
w(p”). Since

o(p") = o(r) = a(iiy) = lim o(q,) = (@),
one concludes that p” = ¢q'. Therefore

r=(r 1) (@ rig )iz - 1)
Note thatp’ € [2(X)] 4+ and that

w@) =a@") =0 M(w@") =0 M (W) = X)),
whence

i riop € E([Z'(sz)]ﬁ+>i(l//zk (x), Y e(x)).

v i

On the other hand, since q,q, € ([X(X)]4) and q'ri+1 is a limit point of the sequence (q,q;)n, we have q'ri; € [Z(0)] g+
Therefore

@102 =110 € Eqrscn o (W (), Y ().
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Since properties Q (8, i) and Q (8, | — i) hold by the induction hypothesis, we conclude that
rq--- ri,1p’ (S] 'j’zk (E([};(xﬂ/#)i(x, X/)),

(@Tig)lig2 -+ 11 € Yk (sz(xnﬁ),_i(x/, ),

thusry---1 € lf/zk (Eq;(xﬂﬁ),(x, ¥)), proving Q (8, I). Hence Q (8™) is true.
The limit case of the inductive step of the proof of P(8) A Q(B) is trivial. O

Lemma 5.6. Let z be a word of AT which is not the power of a letter. Let k and | be integers such that 0 < k < I, and k|z| + 1
and l|z| + 1 are coprime. Then there is ng > 0 such that if n > ng then L,((A%) ) N L,((A%) 1) = .

Proof. What we want to prove can be reformulated as (A%),x N (AZ),1 = @ (the statement’s formulation will be convenient
later). Suppose (A%),x N (A%),1 # (. Then there are sequences (¢;);>1 and (b;);=1 of elements of A such that *aiz%ayzka; . .. =
vz'b1z'b,2'bs . .. for some v € A%, Since k|z| + 1 and I|z| + 1 are coprime, there are integers r,s > 1 such that

r(klz| +1) — s(ljz| + 1) = |v|. Hence
|Z%a1z%a 2 - ap_1Z¥ = rklz] + 1) — 1= |v| +sUlz| + 1) = 1 = |vz'biz'byz! - - - be_17'],
thus z¥a1z¥a,z% - - - a,_1z% = vz'b1z'byz! - - - bs_1Z'. Since 0 < k < I, there is ¢ € A such that za,_; = cz, thusz = c¥,

contradicting the hypothesis. O

The following lemma can be proved quite similarly.

Lemma 5.7. Let z be a word of A™ which is not the power of a letter. For every k > 0, there is ng > 0 such that if n > ng then
Ly ((A%) 1) N Ly (z°) = 0.

Theorem 5.8. Consider a pseudovariety of semigroups V closed under concatenation. Let A be a two-letter alphabet. If B is a
countable ordinal then there is a countable subshift X of AZ such that o(X (X)) > B.

Proof. Take A = {a, b}. Let ¥ be the subshift {a*>}. Consider the following property:

Q(B, X, Z, ¢): B is a countable ordinal, X and Z are subshifts of A%, and ¢ € AT, such that
. YUZ <X, YNZ=Pand X is countable;

. b*® e Xandc™® € Z;

. the graphs [ X (Y)], and [ ¥ (Z)1, are strongly connected,;

{S (S E(rz(x)}ﬁ)i Ol(S) € y and a)(s) € Z} 75 @;

. {S (S E("z(x)"ﬁ+>2 Ol(S) € y and a)(s) € Z} N <|—E(X)-|ﬁ) = 0.

—_

voN W N

We denote the set {s € E<r2(x)1ﬂ+> ta(s) € Yand w(s) € Z} by Eg(X, Y, Z).

Let P(B) be the proposition “3X3Y3IZ3c: Q(B, X, Z,c)". If Q(B, X, Z, ¢) is true then X is a countable subshift of AZ
such that o(X' (X)) > B. Therefore the theorem will be proved once we prove P(8) by transfinite induction.

Let us verify the initial step § = 0. Consider the subshifts Z = {b*°} and X = @ (a=>°.b+*°). The set of edges of f(x)
from a® to b> does not contain any element of X (X)* = ([X(X)],), thus Eo(X, ¥, Z) N ([ Z(X)],) = @. On the other
hand, denoting by g, the unique path of X ()™ from ¢ ™" (a~>.b">) to " (a~>.b"°), if ¢ is an accumulation point of (q,)x
then g belongs to Eo (X, Y, Z). Hence P(0) is true.

Suppose P(B) holds. Take subshifts X and Z of AZ and a word c of A* such that Q (8, X, Z, ¢) is true. Since | X| < |AZ|,
there is z € AT \ L(X). If necessary prolonging z, we can suppose |z| is a prime number. By Dirichlet’s Theorem [21, Section
16.1], the sequence (n|z| + 1), has infinitely many prime numbers. For each positive integer k, let e, be the kth positive
integer greater than 3 such that e;|z| 4+ 1 is prime. We let ey = 0.

Leth > 0andcy,...,cy € Abesuchthatc = c; - - - ci. For each nonnegative integer k, take

j— o0
tr = Yok (€)oo, —11- ¥, ek+1 (@) [0, 4-00f
= ...C1Z%Cyz% ... ch_1z%cpztkc1z% Cpz% . . . cp_1Z%k cpz®* .aztk+1azbk+1qzlk+1 | |

Denote by Z' the subshift [Uyca. ¢is 2 factor orc @ @~°-d27>)] U ©(z). The least subshift X’ containing | . o(%,e U {t})
is the set -

X = [U(xzek U O(tk))i| uz.
k>0

Note that YUZ' C X/, YNZ’' = Pandthat [ X (Z')], is strongly connected. Moreover X' is countable. These observations
are the first steps for proving Q (8™, X', Z', 2).
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Oz

Fig. 4. One step in the proof of Theorem 5.8.

Foreachk > O and n > 0, let gy , be the unique path on X (X')* from o ~"(t;) to 6" (t,). Let g be an accumulation point
of the sequence (qy.n)n. Then the origin of gy is an element of the orbit of 1/,¢ (c*), and its terminus is an element of the
orbit of ¥,e41 (a*°). Note that g, € [X(X)];.

According to items (3), (4) describing Q(8, X, Z, ¢), there is an edge so of ([ X' (X)14+) from an element of Y to an
element of a(qo). By the same items, and by Proposition 5.5, for each k > 1 there is an edge sy of ([ X' (%) 14+) from w(qx—1)
to a(qy) (see Fig. 4). For each k, the sequence soqoS1915292 - - - SkqGx iS an element of (IZ(X)1p+). Letq be a limit point of
(09051915292 - - - Skqik- Then w(q) € Z"and q € [ X (X')] 4+, thus Eg+ (X', Y, Z') is nonempty.

Suppose there is an element of Eg+ (X', %, Z') belonging to (IZ(%)1+)- Such an element has some factor p belonging
to [ X (X)] g+ starting at some element of X'\ Z’ and ending at some element of Z'. There is k > 0 such that «(p) € Uy, =
O(ty—1) U X U O(ty), where O (t_1) designates the empty set. By Lemmas 5.6 and 5.7, if k # [ then X, N X,e = @, and
X NZ =@, forall k, | > 0. Therefore, relatively to the topology of X', the sets U, and

Vi = [ U e v O(tr))} vz,

r>k+4

are open neighborhoods of & (p) and w(p), respectively. Let (p; ), be a sequence of edges of ([ X'(X)]z) converging to p. Since
o and w are continuous maps, there is N such that if n > N then a(py) € Uy and w(py) € Vi. If necessary changing the
value of k by adding one, we can suppose that

a(py) € O(te_1) U X,ee and w(py) € Xyer UO(L) U Zz,

for somer > k + 3.
Let us start by the case k > 0. Let m be a positive integer. Since a(py) € O (ty—1) U X, every finite prefix of fi(py) with
sufficiently large length has some factor belonging to (Az)™ (cf. Lemma 4.3). And since

AT (AZ)"AT = (AT (AZ%)™) (A" \ AZ*A"),

there are p, € (£245)(Az%)™ and vy, € (£245)' \ Az%(£24S)! such that 2(py) = pmVm. Note that if m > n then
om € (£24S)(Az%)". Let p and v be limit points of the sequences (01;)m and (vy)m, respectively. Then

p €[ )(248)(Az%)" and v € (248)" \ Az ($248)".

n>1

The pseudoword has factors of length n for all n > 1, thus it is infinite. By Lemma 4.3 we have fo_v = 0(PN)j-c0,—1] €
X,er U O(t;) U Z/. If v is finite then (Az%)" C L((A%),er) for alln > 1, or (Az%)" C L(Z') for all n > 1. But the first case
contradicts Lemma 5.6, and the second contradicts Lemma 5.7. Hence v is an infinite pseudoword.
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Letx = .7 Since [1(py) € M(X') by Proposition 4.5, we know that x € X’. We have
X)—0o,—1] = - ..0_32%a_»z%a_1z%, forsomea_q,a_y,a_3,... €A, (5.1)
and
X(0.eylzl] & AZ*. (5.2)

From (5.1) and Lemma 5.7 we deduce thatx & Z'.
Suppose there is [ > 0 such that x € X,¢. Then, by (5.1),

Az N LX) £ 9, ¥n> 1. (5.3)

Hence k = I, by Lemma 5.6. Therefore there is a sequence (b;);cz of elements of A and words u, v € A* such that uv = byz%
and

X=... b,3Zekb,228kb,]ZekU.Ub]Zekbzzekb3Zek R (54)

By (5.1), there is a suffix w of b_1z% such that wu = a_1z%:. By (5.2) and (5.4), we have u, w # 1. But since e, > 4, this is
impossible by Lemma 5.2. The absurd resulted from supposing that x € X,¢ for some [ > 0. Therefore x € O(t;), for some
[ > 0. Then by (5.1) we have (5.3), thus k = [ by Lemma 5.6.

Until now we supposed that k > 0. Next take k = 0. Then z is not a factor of «(py). Since z is a factor of w(pn)|—co.—1],
and A*zA* = (AT \ A*zA*)zA*, there are pseudowords p € 245 \ (£245)'2(£24S)! and v € z(£2,S)" such that fi(py) = pv.
Since a(py) € X, the word z is not a factor of any prefix of ft(py), by Lemma 4.3. Hence p is infinite. If v were finite then
z would be a factor of w(pn);—oo,—1; Only a finite number of times (by Lemma 4.3), which is impossible. Hence v is infinite.
Since z is a factor of 7{7.7 but not of ?7 necessarily (ﬁ._v) € O(tp).

In any case, k = 0 or k > 0, there are infinite pseudowords p, v such that ji(py) = pv and 77._1)) € O(ty). Hence the
idempotent f = (az®+1)“ is a factor of v, whence 1 (py) = p'fV’ for some pseudowords " and v’. By Theorem 4.9, there is
a good factorization py = s15; in (Erx(x)7,) such that a(s1) = p'f and ji(s;) = fv'. Then a(sy) = <f_? = Va1 (a*) €
Xzek+1 .

Applying to s, the same arguments that where applied to py, we conclude that fi(s;) = p”v”

for some pseudowords p”
and v” such that p”.v" € O(ty+1). The idempotent

g= (clze’”‘czzek*‘ e Ch_]zekﬂchzekﬁ)w

is a factor of p”. Hence, applying again Theorem 4.9, one concludes that there is a good factorization s, = s}s; in
(Erz(x)1,) such that w(s)) = .7 = Y ees1 (€2°). Therefore s} belongs to Eirx 001 (W21 (@), Yerin (¢)). Then, by
Proposition 5.5, the set EU;(xﬂﬁ)(ao“, c*) is nonempty. This contradicts item (5) describing Q (8, X, Z, c). The absurd
resulted from the assumption that Eg(X', %, Z') N ([X(X)]15) # . Hence property Q (8", X', Z', z) holds. Therefore
P(B7) is true.

Suppose now that § is a countable limit ordinal and that P(y) is true for every ordinal y € B.Foreachy € g,let X,,
Z, be subshifts of A% and let ¢, € AT be such that Q (8, X,,Z,, c,) is true. Since B is countable, the set X = Uye/s Xy
is countable. Hence there is z € AT such that z ¢ L(X) and |z| is prime. Likewise in the proof of the successor case of the
inductive step, we define the sequence (e) as follows: eg = 0, and if k > 0 then ey is the kth positive integer greater than
3 such that eg|z| 4 1 is prime. Take an enumeration y1, )5, ¥3, . . . of the elements of 8. For each nonnegative integer k, let
tk = Ve (Cyp ) =00, —11- Wekt1 (@) [0, 400 - Let D the set of letters d of A such that {y € B | ¢, € A*dA*} is infinite. Let Zg be
the subshift [(Jyep @(z=>°.dz+t*°)] U @(z*). Consider the countable subshift X = [Uyzq(%).¢% U O (t)] U Zg. Then
the proposition Q (8, Xg, Zg, z) is true, which one proves similarly as we did for the successor case of the inductive step.
Therefore P(8) holds for every ordinal 8. 0O

5.2. Upper bounds for o(X (X))

We seek properties on X that imply upper bounds for o(X'(X)). We attack this problem using the trivial observation
thatif [X(X)15 = 1(&1 29n(6) then [X(X)] = 1(121 3on(X) and o(X(X)) < B.

Theorem 5.9. Consider a pseudovariety of semigroups V block preserving and closed under concatenation. Let G be a subgraph
of 1(£n 2on(X) equal to [ X(X)] g or to ([ X (X)1 ), for some ordinal B. If A(G) = M(X) thenG = l(in o (X0).

Proof. Suppose [i(G) = M(X). Consider an edge q : x — y of 1(@22,1(96). Let u = j(q). Thenu € M(X), by
Proposition 4.5. We want to prove that ¢ € G. We have X (X)* C G, since (X (X)) = L(X) # M(X). Hence we can
suppose that g & X (%)™. Therefore u ¢ A™, by Lemma 4.3. Let v and w be accumulation points of (X[ —1])n and (V{o.n)n
in £2,V, respectively. Then vuw € M (). By hypothesis, there is an edge p of G such that f.(p) = vuw. By Theorem 4.9,
there is a good factorization p = PiPaps in G such that ji(p1) = v, (pz) = uand i(p3) = w. By Lemma 4.3, we have
a(py) = .7 =xand w(p) = U W= y. Therefore p, = g, since i is faithful, by Corollary 4.7. Henceq € G. O
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It would be interesting to know if there is some subshift X such that [ X' (X)] # ](E] fz,,(x). Its existence would solve
Problem 3.21. If X is such a system and V is block preserving and closed under concatenation then, since /fl.(l(iﬂl 22,,(96)) =

M(X), by Theorem 5.9 there would exist pseudowords in M(X) quite “far away” from L(X), in the sense that they would
not belong to ji([ X (%)] ) for every ordinal 8.

Lemma 5.10. Let (f (k))x be a bounded sequence of integers greater than 1. Take a sequence (u 1, U2, - - - » Uk f(k)—1> Uk.f(k) )k OF
tuples of words of A" such that

1. limgos oo min{|ugili: 1 < i < f(k)} = 400,
2. Uy ilg,iv1 € L(X), foreveryie {1,...,f(k) — 1}.

Then the accumulation points of the sequence (U U2 - - - Uk s —1Ukf k) )k belong to L({XZ (X)+)).

Proof. Let w, = ]_[{ik]) uy.i. Let w be an accumulation point of the sequence (wy). Taking subsequences if necessary, one
may assume that limy_, 1o, wx = w and that (f (k)) is a constant sequence of value n.

Foreveryi € {1,...,n}, let px;, sx; € A* be such that ug; = pisk; and [|[pril — Iskill < 1. Let (vkj)j=1,..2q be the
sequence of words given by:
Vk,2i—1 = Pkis Vkoi = Ski» 1€{l,...,n}
Then w, = ]_[12:"1 vj. Let vgo = vronpr = 1. Foreachj e {1,...,2n} the word vy j_qvxjvrj+1 belongs to L(X), by

Condition (2). Hence there are z,; € A and ty; € A" such that zy jvy j_1.UkjVk j+1tkj is an element of X, briefly denoted by
Xk j- Let gy j be the unique edge of X (%) from x j to o kil (%kj). Note that ft(qx ;) = vy ;. Taking subsequences if necessary,
we may assume that the following limit exists:

lim (qr1, Gk.2, - - - » Gk.2n—15 Qk.2n) = (G1, G2, - - - » Gan—1> G2n)-
k——+o00
Moreover, for everyj € {1, ..., 2n — 1} we have limy_, 4o |Vk j| = limy_, 40 [Vkj+1| = 400, by Condition (1). Hence

o(qj) = kEToow(Qk,j) = kgTooxk,jH = I{ETOOQ(Qk,jJr]) = a(gjz1).

Therefore ¢ = q1q2 - * - Gan—1q2n is an edge of (X () T). Finally,
(@) = 1(q)a(qa) - - - f1(qan—1) it (qzn) = kETM Vk1Vk2 " - Uk2n—1Vk2n = W. O

Lemma 5.11. If S is a finite semigroup then for every finite collection sy, . . ., s, of elements of S there is a subset {iy, ..., iy} of
{1, ..., n} with at most |S| elements such that s, - - - s, = Sj; - - - S;.

Proof. Apply the pigeon-hole principle. O
Proposition 5.12. Let V be a pseudovariety of semigroups containing LS. Suppose (f (n)),>1 is an unbounded sequence of

positive integers. Let L¢ () be the set | J,_ {u € L(X): [u| = f(n)}. Suppose there are families of words (Pu)uet;(x), (Zu)uety (x)
and (Swluets () such that: -

1. u = pyzys, forevery u € Ly (X);

2. forevery u, v € Ly (X), if |u| = |v| then z,s, € L(X);

3. i o (Mt 0 Pul) = 1Mo (MiRuety 00 12ul) = 1Mo (Minger, o0 1) = +oc.
Then M(X) = ([ X (X)],).

Proof. Let v € M(X).Ifv € AT, then v € L(X) and therefore v € 1 (X (X)™).
Suppose v &€ AT. Let (vy), be a sequence of elements of AT converging to v. Since Mss ) (X) is an open neighborhood of
v, there is an integer N, such that

n> Ny = (vp € Mgy (X) and |v,| > 3f (k).

Let n, be the sequence of integers recursively defined by ny = N; and ny, = max{n,_; + 1, N¢} if k > 1. Then (v, ) is
a subsequence of (vy), such that v,, € Msry)(X) and |v,,| > 3f(k), for every k. The word v, has a factorization of the
following type:

Un, = Uk 1Vk,2 * ** Vkre—1Vk, 1y v 1l = gl = - = |vk,r,,1| =fl), f) =< |Uk,r,| < 2f(k), re = 3.
k k k ke k

Then

rk—2
Une = Pug1Zv1 | | SueiPog 12k st | Sk -1 Vkoree

i=1
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Let K be a V-recognizable language of A*. Then there is a homomorphism ¢ : AT — S from A* into a semigroup S of V
such that K = ¢~ '¢(K). By Lemma 5.11 there exists t;, < |S| and a subset {i1, ..., i} of {1,..., 1, — 2} such that

tk
pug) =9 (pvk,lzvk,l : (1—[ Svk,ijpvk.ij+12vk,ij+1> .svk.rk—lvkvrk> . (5.5)

j=1
The equality (5.5) suggests that we consider the following tuple:
A= (pvk,l s Zug 1 SUk,il ’ p”k.i1+1 ’ ZUk,i1+1 ’ SUk,iz ’ pvk,i2+1 ’ ka.i2+1 ’ svk.i3 (AR Svk.i[k ’ pvk,itk+1 ’ ka,irk+1 ’ Svk,rk—l ’ U’<~,rk)'

The number of components of Ay is 3ty +4 < 3|S|+4. The product of any two consecutive components of ) is either a factor
of a word of the form vy ;vy ;11 — which belongs to L(X) because |vy jvk i+1] < 3f (k) and vy, € M3r (X) — or of the form
Zy, Su, With uq, Uy € Ly (X). Applying Condition (2), we conclude that the product of any two consecutive components of
Ak belongs to L(X). On the other hand, since

lim min{jvg;l:1<i<n}= lim f(k) = 4oo,
k——+o00 k—+o00

by Condition (3), we deduce

lim min{|(Ag)il: 1 <i <3t + 4} = +o0.
k—+o00

Let wy = 1_[?2{]+4()\.k),‘. Then by Lemma 5.10 there is an element w of /1 ({ X (X)*)) which is the limit of a subsequence (wy,),

of (wy)r. Let ¢ be the unique continuous homomorphism from £2,V to S extending ¢. From (5.5) we deduce that
¢() = lim ¢(v,) = lim g(wy) = @(w).
|—+o00 [—+o0
Hence
b o n i ((TE07)) 0. (56)

Since " '@(K) is closed and open in §2;V, and AT is dense in £2,V, we have

¢7lo(K) = 9~ lp(K) NAY = ¢~ 1p(K) =K. (5.7)
Therefore, if K contains v then K N L((X(X)T)) # ¥, by (5.6) and (5.7). According to Proposition 2.2 the topology of 2,V
is generated by the closure of the V-recognizable languages, whence v € A ({(X(X)*)) = A([X(X)],). O

Corollary 5.13. Let V be a pseudovariety of semigroups containing [£SI. Let X be a sofic subshift presented by a labeled graph G
for which there are a vertex i and an integer N such that every path on G with length N contains i. Then M(X) = ([ X (X)],).

Proof. Let u be an element of L(X) with length greater than 4N. Take a path q on G labeled u. Then there are paths q;,
q2, g3 and r such that ¢ = q1492rqs, 1911 = 192]1 = |r| = N e |gs| > N. By hypothesis, there are paths r; and r, such
that w(ry) = a(rp) = iand r = ryry. Let py, z, and s, be the labels of g1, g2r1 and r,qs, respectively. Consider the map
f(n) =n+ 4N, n > 1. The families (Puduetyx)r (Zu)uety ) and (Su)ueL;(x) satisfy the conditions of Proposition 5.12. O

A word u of a language L is uniformly recurrent in L if there is a positive integer m such that u is a factor of every word of
L with length m.

Corollary 5.14. Let V be a pseudovariety of semigroups containing [£SI. Let X be a subshift such that for each positive integer n
there is a word of length n uniformly recurrent in L(). Then M (%) = ([ X (56)7,)-

Proof. For each positive integer n let w, be a word of length n uniformly recurrent in L(X). Let g(n) be a positive integer
such that every word of L(X) with length g(n) has w, as factor. Let (f (n)), be the strictly increasing sequence recursively
defined by f(1) = 2 4+ g(1) and f(n) = max{f(n — 1) + 1,2n + g(n)} if n > 1. For each u € Ls;(X) there are words
Uy, Uy, uz such that u = uquyus, |uq| = |us| = nand |uy| > g(n). Then w, is a factor of u,, thus u = p,wys, for some words
pu and s, with length greater than or equal to n. Letting z, = wj, the families (pu)u€Lf<x), (Zu)ueLf(X) and (su)udf(x) satisfy
the conditions of Proposition 5.12. O

Corollary 5.15. Whenever V is block preserving and closed under concatenation, and X satisfies the conditions described in
Corollary 5.14 or in Corollary 5.13, then o (X (X)) < 2.

Proof. Apply Theorem 5.9 together with Corollary 5.14 or Corollary 5.13 O

The following result gives an example of a subshift Z such that o(X(Z)) = 2. Note that the language a™ U a*ba*, being
factorial and prolongable, is the language of the finite factors of a unique subshift of AZ.
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Proposition 5.16. Consider a block preserving pseudovariety of semigroups V containing A. Let A be the two-letter alphabet
{a, b}. Let Z be the subshift of A” such that L(Z) = a® U a*ba*. Then

T@T S (T@T) S 2@, = 2@ = lim (2). (58)

Proof. Suppose ba®b € L(Z). The languages L(Z) and ba*b are A-recognizable, thus L(Z) Nba*b is an open neighborhood of
ba®b by Proposition 2.2. Hence L(Z) Nba*b N AT £ @, because A* is dense in §24V. But L(Z) Nba*bNA* = L(Z) Nba*b = @.
Therefore ba”b ¢ L(Z).

Since ba™*" belongs to L(Z), there are consecutive paths gy, p, on X (Z) such that /i(g,) = ba™ and ji(p,) = a". Let q
and p be accumulation points of (g,), and (p,), respectively. Then q and p are edges of X' (Z)* such that w(q) = @ (p) = a*°,
and j1(q) = ba®. Similarly, there is an edge r of X (Z)* such that a(r) = a* and [i(r) = a®b. Then q and r are consecutive
edges of X (Z)* such that i(qr) = ba®b. Therefore ba®b is an element of L({X (Z)*)) not in L(Z).

Next, let u = b(a®b)® = limb(a™b)™. Let K, be the language b(A*b)". Then u € K. Suppose u € L(Z)". The languages
K, and L(Z)" are A-recognizable, since they are the concatenation of the A-recognizable languages L(Z), A" and {b}. Hence
K,NL(Z)"is open, and since A* is dense in £24V, we conclude that K,NL(Z)"NA* # @.But K,NL(Z)"NAT = K,NL(Z)" = 0.
Hence u ¢ L(Z)", for all n. Having in mind Proposition 4.5 and that L(Z)" = (L(2))", we conclude that u g i({(X(Z)*)).0On
the other hand, u € M(Z).

Recapitulating,

1@ s i ((F@7)) ¢ M@

The word a" is uniformly recurrent in L(Z). We have L(Z) = 4(X(Z)*) and M(Z) = ([ X (Z)],) by Proposition 4.5 and
Corollary 5.14. Then we deduce (5.8) using Theorem 5.9. O

For certain pseudovarieties (like the pseudovariety of all finite semigroups), the property described in Proposition 5.16
also holds for the even subshift. This is proved with Corollary 5.13 and similar arguments as detailed in [16].

6. Minimal subshifts

A subshift X is minimal if X does not contain subshifts different from X. The subshift X is minimal if and only if all
words in L(X) are uniformly recurrent in L(X) [20]. Using Corollary 5.14, we shall prove that o( X' (X)) = 1, whenever X is
minimal and V is block preserving and closed under concatenation.

Two elements of a semigroup are g-equivalent if they are a factor of each other. A g-class is regular if it contains an
idempotent. If moreover it contains the idempotent factors of its elements then it is called maximal regular. Since every
infinite pseudoword has idempotent factors [1, Corollary 5.6.2], the maximal regular g-classes of £2,V are the g-classes of
infinite pseudowords whose factors not g-equivalent with them are finite words.

Using the uniform recurrence property, it is not difficult to prove that if X is minimal then L(X) \ A" is contained in
a regular g-class, which we denote by J(X), whenever V 2 .£ SI. More precisely, the correspondence X +— J(X) is a
bijection between the set of minimal subshifts and the set of maximal regular g-classes of £2,V. This was proved in [4]
under the hypothesis V = S, but the proof also holds for V O .£ SI. A rather different proof appears in [16].

The algebraic structure of a semigroup is normally described in terms of Green’s relations, one of which is the relation
4. We describe the others. Two elements of a semigroup are R-equivalent (respectively, £L-equivalent) if they are a prefix
(respectively, suffix) of each other. The intersection of the R- and £-equivalences is called the #¢-equivalence and their join,
which by associativity is also their composite in any order, is called the D-equivalence. A D-class contains an idempotent
if and only if each of its R-classes and £-classes contains an idempotent. The #-classes of a semigroup S which contain
idempotents are precisely the maximal subgroups of S. Green’s Lemma states that if s and st are R-equivalent then the
correspondence x — xt defines a bijection between the .£-classes of s and st. The following propositions are applications of
Green’s Lemma:

Proposition 6.1. For two D-equivalent elements s and t, s R st L t if and only if there is an idempotent e such that s L eR t.

Proposition 6.2. If e and f are idempotents of a semigroup, then for allx € e/ R N f /L there is a uniquey € f/R Ne/L such
that xy = e and yx = f.

Another application of Green’s Lemma is that all maximal subgroups within a £-class are isomorphic.

It is well known that, in a compact semigroup, if s is a prefix of t and t is a factor of s then ¢ is also a prefix of s. This
property, which is known as right stability, together with its dual imply that the D- and g-equivalences coincide. For further
information and the significance of Green’s relations in semigroup theory see, for instance, [23].

The following theorem was proved in [4, Theorem 2.6] by the first author in a substantially different manner. The new
proof exemplifies how the semigroupoid ](El 35»(X) may be useful for studying relatively free profinite semigroups.
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Theorem 6.3. Consider a pseudovariety of semigroups V containing £SI. Suppose X is a minimal subshift. Then J(X) =
M(X) \ AT

Proof. Since L(X) \ AT C J(X), we have J(X) C M(X) \ A*.

Let u and v be elements of J(X) such that uv € M (X). Let s and p be accumulation points of the sequences (t,(u)), and
(i (v))n, respectively. Then u = u's and v = pv’, for some pseudowords v’ and v’. Note also that sp € L(X). Since s and p
are infinite pseudowords, there are factorizations s = syes; and p = p1fp» such that e and f are idempotents |1, Corollary
5.6.2]. Consider the pseudowords x = u'sie,y = es;p:f and z = fp,v”. The elements of the set W = {e, f, x,y, z} are
infinite factors of elements of J(X), thus W C J(X). Since x = xe, y = ey and §2,V is stable, we have x.Le and yRe. Hence
xy € J(X), by Proposition 6.1. Similarly, since xy = xyf and z = fz, we have xyz € J(X). Note that xyz = uv. Therefore,

(u,v € J(X) and uv € M(X)) = uv € J(X). (6.1)

Suppose next that u € L(X), v € J(X) and uv € M(X) (the case vu € M(X) is similar). Since J(X) is regular, there is
an idempotent e such that vRe. There is t € £2,4V such that v = et. It follows that ev = et = v. Let w be an accumulation
point of the sequence (ui,(e)),. Then w € L(X) \ A", and hence w € J(X); on the other hand, uv = uev = wsv for some
suffix s of e. The pseudoword sv is an infinite factor of v, thus belongs to J(X). Hence wsv = uv € J(X), by (6.1). This
concludes the proof of the following implication:

(u,v € L(X) UJ(X) and uv € M(X)) = uv € L(X) UJ(X). (6.2)

Let g1, ..., q; be consecutive edges of X'(X)*. We shall prove by induction on n that ft(q; - - - qn) € L(X) U J(X). By
Proposition 4.5 we have (X (X)*) = L(X). Since L(X) C L(X) U J(X), the initial step is proved. Suppose n > 1 and that
(g1 quo1) € LX) UJF(X). Since i(q,) € L(X) UJ(X) and, by Proposition 4.5, ft(q; - - - qn—1qn) € M(X), from (6.2) we
deduce j1(q1 - - - @n_1Gn) € L(X) U J(X). That is,

i ((F07)) < 1o vao),

Since /1 is continuous, J(X) is closed and L(X) C L(X) U J(X), it follows that
i ((2<X)+>> < L() U3 ().
Hence M(X) \ AT = J(X), by Corollary 5.14. O

Corollary 6.4. Consider a pseudovariety of semigroups that is closed under concatenation. If X is a minimal subshift then
M(X) = L(X).

Proof. We already know that L(X) € M(X) and L(X) N J(X) #£ @. The set L(X) is factorial, by Proposition 2.4, thus
J(X) C L(X). Since M(X) NAT = L(X), the result follows from Theorem 6.3. O

Corollary 6.5. Consider a pseudovariety of semigroups that is block preserving and closed under concatenation. If X is a minimal
subshift then lim Ton(X) = 2(X) = T(X).

Proof. Apply Corollary 6.4, Proposition 4.5 and Theorem 5.9. O

The two previous corollaries exhibit properties of minimal subshifts shared by finite type subshifts (cf. Proposition 4.1).
However, differently from the finite type case, it is not reasonable to expect a proof of Corollary 6.5 using Proposition 2.1.
Let us see why. Suppose there is a positive integer n such that 7,(X (X)) = X,,(X). Then

L(X) = & (Fn(Z (%)) = ft (Z2n(X)) = Mans1(X).

That is, L(X) = Ma,1(X) N AT, thus X is of finite type. But if |A] > 1 then there are ¥ finite type subshifts of AZ, while
there are 2% minimal subshifts of A% [25, Chapter 2].

Iﬁmm(a_ﬁ.s. Suppose X is a minimal subshift. Let u, v € J(X). Then uRv if and only if T =. Dually, uLv if and only if
u=nuv.

Proof. Suppose U = U.Let w be an accumulation point of the sequence (i, (u)),. By hypothesis i, (u) = i,(v), for every n.
Hence w is a common prefix of u and v. By the g-maximality of J(X) and the stability of £2,V, we conclude that w, u, v are
R-equivalent. The converse is immediate. O

A semigroupoid C is a category if for every vertex x of C there is an edge 1, such that 1,s = sand t1, = t, for all edges s
and t of C such that «(s) = x and w(t) = x. A groupoid is a category G such that for every edge s : x — y there is an edge
s’ 1 y — xfor which ss’ = 1, and s’s = 1,. Note that the local semigroups of groupoids are groups.

The graph f(x) \ X(%)* will be briefly denoted by Yoo (26). Note that ﬁoo(x) is a closed subsemigroupoid of E(X).
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Theorem 6.7. Consider a pseudovariety of semigroups that is block preserving and closed under concatenation. If X is a minimal
subshift then X, (X) is a connected groupoid.

Proof. Every minimal subshift is irreducible, hence f]oo (X) is strongly connected by Corollary 4.11. It remains to prove that
Em(X) is a groupoid.

Let z be an arbitrary element of X. Since Soo(X) is strongly connected, there are edges from z to z, hence one can consider
the local semigroup S, of ﬁw(x) at z. Since S, is compact, it contains at least one idempotent ¢, [12, Theorem 3.5].

~ — —
Let g : x — y be an arbitrary edge of X, (X). Then @(sxq) = X[0.-+oo[ = [(q), and so [i(&xq) is R-equivalent to ft(q) by
Lemma 6.6. Therefore fi(q) = ft(sxq)w for some w € (£24V)!. Hence

[1(exq) = (e 1(@) = Ae)LExw = (g Dw = iE@w = ().

Then g,q = q, since £ is faithful. Dually ge, = q. This proves )Soo(x) is a category.

By Proposition 6.2, there is v € ji(&y)/L N ft(gy)/R such that vii(q) = [i(ey) and ji(q)v = [t(gy). Since [i(ex) and [i(ex)
are idempotents, v € fi(ey)/LNfi(gy)/R implies that v = fi(e,)viL(ey). By Proposition 4.5 there is an edge p of X (X)* such
that /t(p) = v. Then by Theorem 4.9 there is a good factorizatiiip = p1p2ps in X (X)* such that fu(py) = fi(ey), (p2) = v

< <
and [1(p3) = j1(gy). We have a(p;) = [L(sy)._v) = ji(gy).f1(gy) = y, by Lemma 4.3. Hence q and p, are consecutive. And
a(gp2) = f(q)v = fu(gy). Similarly, w(p,) = x and ft(p2q) = vii(q) = fi(ey). Since gp, and &, are co-terminal and equally
labeled, one has gp, = &y, because fi is faithful. Similarly, p,q = &y,. O

In a forthcoming paper we will show that the local groups of foo(x) are isomorphic to the maximal subgroup of J(X).
Note that this implies that the maximal subgroup of J(X) is a conjugacy invariant, a fact that is a particular case of a more
general result proved by the second author using rather different methods [14]. The maximal subgroup of J(X) has been
computed for several classes of minimal subshifts by the first author [4]. Hopefully, the groupoid Soo(X) may add a new
geometric perspective on J(X), and X itself.
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