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Abstract

The complexity of modern software makes it nearly impossible to detect every
fault before deployment. Such faults can ultimately lead to failures at runtime,
compromising the business process and leading to non-negligible costs or losses.
Online Failure Prediction (OFP) is a fault-tolerance technique that attempts to
predict incoming failures to avoid or mitigate their consequences based on the ana-
lysis of past data and the current system state. The systems that can benefit the
most from these advances are large servers, including both cloud and virtualized
systems, where the costs and risks associated with a failure are not negligible. At
the same time, given recent technological developments, Machine Learning (ML)
algorithms have shown their ability to adapt and extract knowledge in a variety
of complex problems. Although there are already some works relying on ML for
OFP, most of them focus on local experiments with a small set of ML techniques
or targeting smaller components (e.g. hard-drives).

Given the reliability of modern systems, one challenge to the widespread use of
OFP is that failures are rare events, and thus adequate failure data for training
predictors is typically not available. To overcome this issue, fault injection has
been accepted as a viable alternative to generate realistic failure data. However,
despite the vast literature, fault injectors are still complex pieces of software that
are difficult to implement and use. Generating data through fault injection also
raises some challenges, such as how to properly process the data to create and as-
sess predictive models. The particular characteristics of fault injection campaigns
combined with those of OFP require specific considerations and techniques to
create representative predictors.

Another reason why OFP is not widely adopted is that processes and tools for
assessing and comparing failure prediction solutions are not available. Effectively
implementing failure prediction involves extremely accurate tuning, but also an
adequate selection of the most suitable models for a specific target system. More
precisely, selecting a particular predictor requires a rigorous assessment of altern-
ative solutions using appropriate metrics, and their comparison using well-defined
processes. Considering the complexity and interdisciplinarity of the various tech-
niques and research fields required to create accurate failure predictors, the exist-
ing body of related work is very limited. As a result, research and development
on OFP for complex systems have become stale over the years.

This thesis addresses the most relevant challenges to the use of OFP, by thor-
oughly exploring the problem and proposing a comprehensive framework to sup-
port the development of predictive models. The key contributions can be divided
into two groups. The first comprises techniques and artifacts to support OFP, in-
cluding a detailed procedure on the use of fault injection to generate failure data
to support OFP on modern systems. To make such a process feasible, guidelines
are provided on how to implement a testbed for complex experimental processes
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that can leverage modern computational power while ensuring the consistency
and repeatability of experiments. Also, given the plethora and complexity of
ML methods and the constant need to explore new problems and techniques, a
customizable and comprehensive ML toolbox was implemented to support the
exploration and development of predictive models.

The second group of contributions focuses on procedures and methodologies to
develop OFP solutions. This includes a thorough methodology on how to use
failure data generated using fault injection to properly develop predictive models,
taking into account the specific characteristics of the failure prediction domain.
As properly assessing and comparing the performance of ML models requires a
rigorous and well-defined process that takes into consideration the operational
needs of the system, a benchmarking approach for ML-based solutions for OFP
is proposed. The ML techniques considered, used, and implemented throughout
the work are in themselves significant contributions due to the extent and detail
into which they were analyzed and studied for the OFP problem. Ultimately, this
yields innovation on how to use and assess advanced ML solutions for problems
with similar characteristics.

To demonstrate usefulness and effectiveness, the framework was used to explore
and create accurate failure predictors for a modern system. This comprised an ex-
tensive fault injection campaign on a system based on an up-to-date Linux kernel,
considering different workloads representing different usage scenarios, several fault
types, and various failure modes. These data were then thoroughly explored and
an extensive study was conducted on the use of ML techniques, from traditional to
state-of-the-art algorithms, and their applicability to OFP. Also, a comprehensive
benchmarking campaign was conducted to achieve a fair and sound comparison of
alternative solutions, exploring the need to consider the technical requirements of
the system where the predictors will operate. Results demonstrate that not only
it is possible to create accurate failure predictors, but also that the techniques, ar-
tifacts, methodologies, and procedures proposed are essential to guide the process
and assure a representative and sound experimental process.

Keywords: Online Failure Prediction, Fault Injection, Dependability, Machine
Learning, Benchmarking
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Resumo

A crescente complexidade de produtos de software torna praticamente impossível
detetar todas as falhas antes de estes serem postos em produção. Estas falhas
podem levar a avarias durante a execução, o que compromete todo o processo de
negócio e acarreta custos ou perdas elevadas. Previsão de Avarias (PA) é uma
técnica de tolerância a falhas que tenta prever a ocorrência de avarias num futuro
próximo de modo a evitar ou mitigar as suas consequências, com base na análise de
dados de avarias ocorridas no passado e no estado atual do sistema. Os sistemas
que mais podem beneficiar com avanços nesta área são os servidores, incluindo
sistemas em nuvem e virtualizados, em que os custos e riscos associados a uma
avaria não são negligenciáveis. Ao mesmo tempo, devido aos recentes desenvol-
vimentos tecnológicos, os algoritmos de Aprendizagem Computacional (AC) têm
demonstrado capacidade de extrair conhecimento em múltiplos problemas com-
plexos. Embora já existam alguns trabalhos que aplicam AC para PA, a maioria
restringe-se a experiências ad-hoc, com um conjunto muito limitado de técnicas
de AC, ou é focado em componentes de pequena escala (e.g., discos rígidos).

Dada a confiabilidade dos sistemas atuais, as avarias são eventos raros, o que
constitui um desafio para o uso de PA, uma vez que dificilmente existem dados
suficientes para desenvolver modelos de previsão. Para ultrapassar esse problema,
a injeção de falhas foi aceite como uma alternativa viável para gerar dados de
avarias realistas. No entanto, apesar da vasta literatura existente, os injetores de
falhas ainda são ferramentas complexas, difíceis de implementar e usar. De facto,
a geração de dados através de injeção de falhas levanta alguns desafios, como, por
exemplo, processar os dados adequadamente para criar e avaliar modelos predit-
ivos. As características de dados gerados através de injeção de falhas combinadas
com as de PA requerem considerações e técnicas específicas para que os modelos
criados sejam representativos.

Outra razão pela qual PA não é amplamente adotada é a inexistência de pro-
cessos e ferramentas adequados para avaliar e comparar as soluções de previsão
de avarias. A implementação eficaz da previsão de avarias requer um ajuste ex-
tremamente preciso, mas também uma seleção sistematizada dos modelos mais
apropriados para um dado sistema. Mais concretamente, a seleção de um mod-
elo exige uma avaliação rigorosa de soluções alternativas com recurso a métricas
adequadas e à sua comparação através de processos bem definidos. Considerando
a complexidade e interdisciplinaridade das várias técnicas e campos de pesquisa
necessários para criar preditores de avarias, o número de trabalhos relacionados é
muito limitado. Como resultado, a investigação e o desenvolvimento em PA para
sistemas complexos estagnaram com o passar dos anos.

Esta tese aborda os desafios mais relevantes para o uso de PA, explorando por-
menorizadamente o problema e propondo uma abordagem para apoiar o desen-
volvimento de modelos preditivos. As contribuições principais podem ser dividi-
das em dois grupos. O primeiro compreende técnicas e ferramentas de suporte
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ao desenvolvimento para PA, incluindo um procedimento pormenorizado sobre o
uso de injeção de falhas para gerar dados de avarias. Para tornar esse processo
viável, são fornecidas diretrizes sobre como implementar um ambiente de teste
que permita alavancar o poder computacional atual, garantindo a consistência e
repetibilidade das experiências. Além disso, dada a abundância e complexidade
dos métodos de AC e a necessidade constante de explorar novos problemas e téc-
nicas, é apresentada uma ferramenta extensível de AC para apoiar a exploração
e o desenvolvimento de modelos preditivos.

O segundo grupo de contribuições, por sua vez, centra-se em procedimentos e
metodologias para desenvolver soluções de PA, incluindo uma metodologia para
a utilização de dados de avarias gerados através de injeção de falhas no desen-
volvimento de modelos preditivos, levando em consideração as características es-
pecíficas do domínio de previsão de avarias. Uma vez que avaliar e comparar
adequadamente o desempenho dos modelos de AC requer um processo rigoroso e
bem definido que leve em consideração as necessidades operacionais do sistema, é
proposta uma abordagem de benchmarking para soluções baseadas em AC para
PA. Para além disso, as técnicas de AC consideradas, utilizadas e implementa-
das ao longo do trabalho são, em si mesmas, contribuições significativas devido à
extensão e pormenores em que foram analisadas e estudadas para o problema de
OPF. Isto gera inovação sobre como usar e avaliar soluções avançadas de AC para
problemas com características semelhantes.

Para demonstrar a utilidade e eficácia, a abordagem proposta foi usada para ex-
plorar e criar preditores de avarias para um sistema moderno. Tal inclui uma
ampla campanha de injeção de falhas num sistema baseado num kernel Linux
atualizado, considerando diferentes cargas de trabalho que representam diferentes
cenários de utilização, vários tipos de falhas e diversos modos de avarias. Esses da-
dos foram posteriormente explorados e foi realizado um estudo aprofundado sobre
o uso de técnicas de AC, desde algoritmos tradicionais até algoritmos de última
geração, e a sua aplicabilidade para PA. Além disso, foi conduzida uma campanha
extensa de benchmarking para comparar de forma justa as soluções alternativas,
explorando a necessidade de considerar os requisitos técnicos do sistema no qual
os preditores irão funcionar. Os resultados demonstram que não só é possível criar
preditores de avarias precisos, mas também que as técnicas, ferramentas, metod-
ologias e procedimentos propostos nesta tese são essenciais para guiar o processo
e garantir um processo experimental representativo.

Palavras-chave: Previsão de Avarias, Injeção de Falhas, Confiabilidade,
Aprendizagem Computacional, Benchmarking
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Chapter 1
Introduction

Critical and sensitive tasks are executed through complex software systems on
a daily basis. Issues or failures on such systems can easily lead to considerable
financial losses or even loss of lives. At the same time, software size and complex-
ity have been growing considerably, reaching proportions that render traditional
validation techniques impractical. As a result, it has become virtually impossible
to detect all software faults before deployment. Software faults are in fact one of
the main causes of system outages [Dhanalaxmi et al., 2015].

Residual faults, which escaped the testing processes, may eventually lead to fail-
ures that impact availability and reliability and thus compromise the supported
business processes. Depending on the purpose of the system, such faults, and
consequent failures, may incur considerable risk or cost, either due to the re-
covery mechanisms or the resulting system interruption or corruption. In recent
years, system outages have cost significant amounts to numerous companies (e.g.,
Amazon outage in 2018 reportedly cost around $100 million [Ed Targett, 2018]
and Facebook outage in 2019 approximately $90 million [Brown, 2019]) and soft-
ware faults have also been identified as a major contributor to incidents leading
to loss of lives (e.g., Boeing 737 Max crashes [McFall-Johnsen, 2020]). Various
techniques have been developed with the purpose of avoiding and detecting such
faults, including coding practices, approaches for testing, and models for reliability
characterization [Avizienis et al., 2004].

Online Failure Prediction (OFP) is a fault-tolerance technique that intends to
mitigate the potential effects of residual faults, by using past data and the cur-
rent system state for predicting the potential occurrence of failures [Salfner et al.,
2010]. This allows taking preemptive measures to avoid such failures or mitigate
their consequences. By being able to predict failures, complex infrastructures can
reduce the associated risks, while at the same time improving dependability attrib-
utes, namely availability and reliability. In practice, even large and highly complex
infrastructures such as High-Performance Computing (HPC) systems (and even
exascale platforms) can benefit from failure prediction mechanisms [Bouguerra
et al., 2013]. Altogether, the systems that can benefit the most from these ad-
vances are large servers, including both cloud and virtualized systems, where
the costs and risks associated with a failure are not negligible. More precisely,
systems where existing fault-tolerance and failover mechanisms are not sufficient
(e.g., computation lost at the time of failure must be redone), as well as complex
systems where such techniques (e.g., redundancy) are not applicable.
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Despite the great potential of OFP, it is still not widely implemented. One reason
is that failures are rare events and thus collecting enough data to develop accurate
failure predictors is a complex (and expensive) endeavor. Moreover, considering
the current rate at which software evolves, existing failure data may quickly be-
come deprecated. Another reason for the limited use of OFP is that properly
creating representative and accurate predictive models is not trivial and requires
expert knowledge on various interdisciplinary subjects. In fact, effectively devel-
oping OFP solutions requires an adequate selection of the most suitable models
for a particular system installation. This calls for a rigorous assessment of altern-
ative solutions using appropriate metrics and techniques, and their comparison
using adequate datasets and procedures.

1.1 Problem Statement
Failure prediction is a technique that relies on data concerning past failures to
predict failures in the future. OFP is a specific case of failure prediction that also
takes the current state of the system into account to predict incoming failures
[Salfner et al., 2010]. OFP relies on the premise that the system will exhibit
some out-of-norm behavior before a failure event, which can be interpreted as a
symptom. Using such predictions, it is possible to take preemptive measures to
avoid, or at least mitigate, the consequences of a failure. Due to its complexity and
the interdisciplinarity of the knowledge required, developing accurate predictive
models for OFP remains an open issue.

A significantly growing investment into the ability to extract knowledge from data
has been observed in recent years. Large companies such as Google, Amazon, and
Netflix, invest millions to improve their businesses (e.g., recommendations, search
heuristics), while others, such as PayPal, Symantec, and Tesla, use it for more
critical applications (e.g., fraud detection, cyber-security, autonomous driving)
[Siegel, 2016; Elliott, 2019]. As a result of this demand for new and better al-
gorithms, Machine Learning (ML), a sub-field of Artificial Intelligence (AI), has
expanded considerably. Although it has been around for several years, the recent
technological developments have allowed the use of ML algorithms on significantly
larger and more complex datasets, bringing it back to the spotlight.

ML algorithms have shown their ability to adapt and extract knowledge in a
variety of complex problems. One of the main reasons is that they are able to find
intricate patterns in the data and learn from them, often without assumptions
about the underlying model. In practice, they can be used to make predictions on
new unseen data based on what was previously learned. Although there are many
different algorithms, it has been proven that they perform differently depending
on the nature of the problem. This led to the No Free Lunch Theorem [Wolpert
and Macready, 1997], which states that, on average, there is no algorithm that is
better for all instances of all classes of problems. This way, different algorithms
and techniques should be considered and experimented, to find the one that best
models the problem. However, such an approach is highly complex, as many of the
tasks required in the process, such as the feature selection and the choice of the
parameters and hyperparameters of the algorithms, are themselves optimization
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problems. In fact, a thorough ML approach is complex and problem-dependent
and thus requires a deep understanding of both the problem and its data to
select the most adequate algorithms and techniques. Furthermore, real-world
problems often present certain characteristics that need to be taken into account
(e.g., imbalanced data, high or low dimensionality), and properly assessing the
performance of the models is also not trivial. All these considerations lead to
the necessity of mastering both theory and practice, otherwise, the results and
subsequent conclusions may be compromised.

Developing accurate predictive models for OFP requires not only accurate tuning
but also assessing and comparing multiple alternative solutions using appropriate
metrics and adequate procedures. To make fair comparisons, this process must
be well-defined, such that the assessment of the performance of the predictors
provides confidence on how the results will hold in the operational scenario. Due
to the lack of such a procedure, existing works use ad-hoc approaches, consider
a diverse set of metrics without thorough consideration of the purpose/needs of
the system, and neither statistically validate differences nor assess how sensitive
the models are to minor variations in the data (similar to what occurs in the
real-world).

Different approaches based on ML have already been proposed for OFP [Salfner
et al., 2010]. Various sources of input data (e.g., symptoms monitoring, detected
error reporting) can be used, each with different techniques that better exploit
the information available. However, most existing works on OFP are limited,
as they are fairly dependent on the subject of a particular study. The main
problem is that, due to the inherent complexity of both OFP and ML, most
works focus on a small set of prediction algorithms and techniques (usually based
on what has previously been used on a similar problem), in a very specific context,
predicting specific failures, and using only limited fractions of the datasets. As
ML became widely adopted, various platforms that abstract some of the technical
details (e.g., Weka [Eibe et al., 2016]) have been developed. Still, most cannot
be easily customized or extended, contain small or limited libraries, have small
communities and consequently evolve slowly, or abstract on a lower level and still
require significant coding. In fact, albeit comprehensive tools such as Weka are
often used, there are many researchers that resort to lower-level libraries, such as
scikit-learn [Pedregosa et al., 2011]. This suggests that, although such tools are
adequate for certain purposes, they are not flexible or easily adaptable for many
others.

A prevalent challenge to the widespread adoption of OFP is the scarcity of failure
data, especially for complex systems (such as Operating Systems (OSs)). While
OFP can be used to predict the failures of individual components, system-level
OFP requires a more complete solution, able to predict failures of the system
as a whole. However, failures are rare and thus failure data (required to create
predictive models) is typically not available. Collecting failure from real systems
would take years (due to the reliability of modern systems) and by then would
already be outdated. There are various initiatives aiming at building failure data
repositories (e.g., the Computer Failure Data Repository [Usenix and University,
nd], Los Alamos National Laboratory [Laboratory, nd]), but using such datasets

— 3 —



CHAPTER 1. INTRODUCTION

is not enough, as they do not allow taking into consideration the system (and
workload) where the predictors will run. Additionally, OFP requires the sequen-
tial/continuous monitoring of the system both under non-failure (i.e., baseline)
and failure-prone states (i.e., before the failure occurs), which are typically not
considered in those datasets (e.g., most provide only the failure logs).

Fault injection has been accepted as a viable alternative to generate failure data in
a reasonable amount of time (e.g., [Irrera and Vieira, 2015; Cotroneo et al., 2019]).
In practice, fault injection is used to inject realistic programming faults, which
allows studying the response of the system to the presence of faults. Monitoring
the target system during the experiments allows capturing its behavior between
fault activation and subsequent (potential) failure. However, proper fault inject-
ors are usually complex pieces of software that are difficult to implement and use.
Even with a viable fault injector, considerable effort/knowledge is still required to
set it up (e.g., many require recompiling the system/kernel) and to implement the
whole experimental process (e.g., fault load, failure modes/monitors). Moreover,
conducting a fault injection campaign on a complex system requires executing
thousands of experiments to achieve statistical relevance. Recent technological
developments have led to an increase in computational power, and various tech-
niques have been developed to leverage it. Still, implementing a testbed that
can take advantage of the resources available without influencing the results is
not trivial. To expedite the experimental process and reduce costs researchers
often use modern techniques (e.g., hyperthreading) to run multiple experiments
simultaneously. This relies on a premise of non-interference, that is, simultaneous
execution should not alter the behavior of the individual experiments. While some
types of isolation are easier to attain (e.g., software isolation, the corruption or
misbehavior of one experiment should not influence other experiments) others are
quite difficult (e.g., performance isolation, where executing one or multiple exper-
iments simultaneously should lead to similar results). This poses a challenge to
the repeatability and validity of the experiments. As documentation, guidelines,
and examples are not usually available, the process requires significant effort and
expertise to identify all the relevant attributes, requirements, and implementation
solutions.

Due to all the open issues and knowledge/expertise required, most recent work on
OFP focuses on smaller components (e.g., hard-drives [Zhang et al., 2020]) with a
shorter lifespan (for which it is possible to find failure datasets). The fact is that
fault injection, ML, and OFP are all complex interdisciplinary subjects whose
combination poses considerable challenges, especially because there is little to no
related body of literature. Current related work focuses on each of the techniques
individually, and it is up to the researcher to find out how to use and combine
them to create failure predictors. As no thorough solutions, methodologies, or
procedures are available, advanced research on OFP for complex systems, which
relies on both fault injection and advanced ML, has become stale to non-existent.
Furthermore, due to the lack of well-defined and established procedures, the re-
search that has been made so far on the subject (e.g., [Irrera and Vieira, 2014])
relied on standard ML techniques which are not adequate for the specific charac-
teristics of the problem, and that ultimately lead to biased and unrepresentative
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observations.

1.2 Drivers and Framework
This work is mainly motivated by the pervasiveness and development of ML, the
growing complexity of modern software, and the unexplored potential of OFP as
a solution for increasing the reliability and availability of complex systems. It
focuses on identifying and characterizing the main challenges and limitations to
the use of OFP and searching, assessing, and devising potential solutions and
procedures. Overall, the main drivers of this work are:

• Online Failure Prediction (OFP) on specific systems and workloads
Failures are rare and, as a result, failure data are typically not available. Al-
though there have been some efforts into creating public datasets, failures are
dependent on the specific system where the predictors will operate. One of the
main drivers of this work is being able to study and create representative failure
predictors for a specific target system and workload.

• Machine Learning (ML) to create accurate failure predictors
Due to the complexity of modern systems, the ability to characterize and predict
incoming failures based on the current system state is not certain. Another
prevalent driver of this work is to assess and study the viability of using both
classic and state-of-the-art ML methods to create accurate failure predictors
and the impact and influence of the different techniques for OFP.

• Online Failure Prediction (OFP) parameters and characteristics
OFP has various parameters (e.g., lead-time, prediction-window) and presents
certain characteristics (e.g., time series with failures at the ‘end’) which influ-
ence the predictors. The last main driver of this work is to thoroughly explore
the problem of OFP, and how its parameters influence the creation of accurate
failure predictors. Additionally, it also includes studying how the specific char-
acteristics of OFP should be taken into consideration when creating predictive
models.

This work advances the state of the art on OFP by reducing the existing gap in
the literature concerning the use of fault injection and ML to create representat-
ive and accurate predictive models for OFP. To overcome the existing challenges
and limitations of OFP, a framework comprised of five interconnected elements
is proposed, as illustrated in Figure 1.1. It is divided into two groups, techniques
and artifacts and procedures and methodologies. Each contribution within these
groups focuses on a different aspect of the problem, namely: 1) configuring and
deploying a testbed for dependability experiments, 2) using fault injection tech-
niques to generate failure data, 3) exploring the problem and developing accurate
predictive models, 4) combining the use of fault injection to generate failure data
to create predictive models for OFP, and 5) benchmarking and properly assess-
ing and comparing failure predictors. Using the novel techniques and artifacts
and following the proposed methodologies and procedures will allow researchers
to explore the use of OFP in complex systems, further advancing the state of the
art.
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Methodologies and Procedures

Benchmarking
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Online Failure Prediction
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Methodology

1 2 3

4 5

Figure 1.1: Framework to Enable Advanced OFP

To demonstrate how it can be used in practice, an instantiation of the proposed
framework is presented, targeting an up-to-date Linux kernel. It comprises an
extensive fault injection campaign to generate failure data, considering multiple
workloads representing different usage scenarios, several fault types, and various
failure modes. Afterward, a detailed analysis of the viability and performance
of several ML methods, ranging from classic to state-of-the-art approaches, is
conducted. Results demonstrate that not only is it possible to create accurate
failure predictors but that the proposed techniques are essential to guide the
process and assure a representative and sound experimental process.

1.3 Contributions
The work presented in this thesis attempts to overcome the current challenges and
limitations to the widespread use of OFP, providing a comprehensive multi-
part framework and proposing techniques and tools to address the most
pressing open issues, from generating realistic failure data to developing
and benchmarking predictive solutions. This work fills an existing void in
the literature on combining advanced dependability and ML techniques to create
accurate failure predictors for modern complex systems.

Configuring and Deploying Testbeds
Our contribution dwells on how to design and implement a proper testbed for
experiment-based research. It focuses on assuring that the results of the exper-
iments are as consistent and repeatable as possible, regardless of external influ-
ences, while leveraging the computational power available. It provides guidelines
and reflections on the various techniques and steps required to achieve this. The
main contribution is a comprehensive overview of the various concerns and re-
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quirements of a testbed for generating data for OFP and clear guidelines on how
to implement it on the Linux OS. This allows researchers to properly leverage
their computational resources and expedite the experimental process, as well as
reduce hardware costs, without compromising the validity of the results.

Fault Injection to Generate Failure Data
Our contribution includes overviewing and providing guidelines on how to use
fault injection to generate representative failure data to support the development
of predictive models for OFP. The main advance is a well-defined process with a set
of guidelines and considerations that should be taken into account when devising
a fault injection campaign to generate data for OFP on an up-to-date complex
system. Combined with the previous contribution (configuring and deploying
testbeds), they provide all the necessary guidelines and processes to facilitate
researchers on using fault injection to generate failure data in a timely manner.

Propheticus: Machine Learning (ML) Toolbox
We propose Propheticus, a ML toolbox that attempts to abstract the complexity
of ML whilst being easy to use and accommodate the needs of the users in a de-
pendability research context. It includes functionalities for all the steps required
in a ML approach, from data analysis to model assessment and comparison. Due
to the variety of tasks and problems within dependability research, it is focused
on flexibility, using a plugin-based system that easily allows including new ML
techniques (from data splitting techniques to algorithms and performance met-
rics). Additionally, Propheticus implements a hook-based system, which allows
the user to seamlessly implement their own code and integrate it with the different
functions of the system without changing the source code. Ultimately, the main
contribution is a tool that can be used and adapted to explore and assess the
performance of the different ML techniques on a given problem, such as creating
failure predictors using data generated through fault injection.

Methodology for Developing Predictive Models
We propose a six-stage methodology for developing predictive models for OFP
that takes into consideration the specificity of using fault injection to generate
failure data. It highlights the need to consider the specific characteristics of such
data (e.g., repeated controlled experiments, where the failures only occur at the
end of the experiment) with those of OFP (e.g., time series) to train and assess the
performance of predictive models. It also focuses on how to explore and process
the failure data, such as identifying and refining the failure classes, and all the
potential iterations and feedback loops when working with a new, unexplored,
dataset. This contribution addresses a major open issue and gap in the literature,
on how to combine these three interdisciplinary subjects. This work intrinsically
leverages the previous contributions using fault injection to generate failure data
and Propheticus to create predictive models.

Benchmarking Predictive Models
We propose a conceptual framework for benchmarking failure predictors, ensuring
a sound assessment and comparison of the various solutions. It is comprised of
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several detailed phases, considering various concepts such as scenarios (a realistic
situation on failure prediction that depends on the criticality of the system, which
defines the level of dependability that should be satisfied at the cost of mitigating
predicted failures) and the robustness of the predictors to small variations in
the data (which gives credibility to the representativeness of the results obtained
in the benchmarking process). This contribution complements the methodology
previously described (which follows a more exploratory approach) by providing
the means to conduct a thorough and systematic comparison between alternative
solutions.

Experimental Evaluation
An experimental evaluation of the various contributions is presented. This com-
prises an extensive fault injection campaign on a system based on an up-to-date
Linux kernel, considering different workloads representing different usage scen-
arios, several fault types, and various failure modes. The data are then thoroughly
explored and a comprehensive study is conducted on the use of ML techniques,
from traditional to state-of-the-art algorithms, and their applicability to OFP.
To illustrate how the choice of the best solution should consider the needs of the
user, the performance of the various models is also benchmarked using metrics
that take into consideration the technical needs of the system where they will op-
erate. Results demonstrate that not only it is possible to create accurate failure
predictors, but also that the techniques, artifacts, methodologies, and procedures
proposed are essential to guide the process and assure a representative and sound
experimental process.

1.4 Outline of the Document
The remainder of the document is structured as follows.

Chapter 2 provides a background revision on dependability, focusing on OFP, fault
injection, testbeds, and benchmarking. It also includes a comprehensive revision
of ML concepts, from the ML workflow (which includes several items such as data
analysis and preparation, learning types and algorithms, and evaluation) to more
specific topics such as time series and adversarial ML. A thorough overview of
important related work in the literature is also included in this chapter.

Chapter 3 focuses on techniques and artifacts to support OFP. It covers how
to properly implement a testbed for dependability experiments, how to use fault
injection to generate failure data to support OFP, and a ML toolbox for exploring
and creating predictive models.

Chapter 4 proposes a multi-stage methodology for exploring and developing pre-
dictive models for OFP, from generating and processing the data, to identifying
and refining the failure classes of the problem and ultimately deploying the models,
while taking into consideration the specific characteristics of both fault injection
and OFP.

Chapter 5 introduces a benchmarking approach to properly assess and compare
ML solutions for OFP, with several considerations such as scenarios (realistic situ-
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ations of failure prediction that depend on the criticality of the system) and the
most adequate corresponding metrics, how to properly compare alternative solu-
tions, and the need to tolerate small unrepresentative variations in the data.

Chapter 6 presents the experimental evaluation of the framework, including an
instantiation of all the contributions, from configuring and deploying a testbed
and using fault injection, to applying the methodology to create accurate failure
predictors and properly benchmarking them.

Chapter 7 closes the thesis by presenting the final remarks and conclusions and
putting forward ideas for future research topics and directions.

Appendix A presents an exploratory study on using the proposed techniques to
develop failure predictors for the Windows OS. Appendix B presents the complete
set of metrics collected during the fault injection campaign targeting the Linux
OS and Appendix C details the subset of those metrics that were used to de-
velop the predictive models. Finally, Appendix D details the various failure modes
considered for the Linux dataset.
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Chapter 2
Background and Related Work

Advancing the state of the art on OFP requires mastering several concepts and
techniques from two interdisciplinary research fields: dependability and artificial
intelligence, more precisely, machine learning. This chapter introduces the most
relevant background concepts on dependability, with a focus on Online Failure Pre-
diction (OFP) and Machine Learning (ML), in sections 2.1 and 2.2, respectively.
Section 2.3 overviews literature related to the work presented in this thesis.

2.1 Dependability
The growing complexity of software makes it difficult or even impossible to de-
tect all faults before deployment. Although a significant effort is usually put
into testing the products to remove as many faults as possible, ‘testing shows the
presence, not the absence of bugs’, as once stated by Edsger W. Dijkstra. Such
residual faults, that escaped the testing processes, eventually lead to failures that
impact the availability and reliability of systems and thus compromise the suppor-
ted business processes. In fact, software faults have been recurrently recognized as
one of the main causes of system outages [Gray, 1986; Oppenheimer et al., 2003;
Dhanalaxmi et al., 2015].

A system is a complex concept, which has multiple definitions. Yet, within the
dependability community, one of the most accepted is that it is ‘an entity that
interacts with other entities, [...], including hardware, software, humans, and the
physical world with its natural phenomena’ [Avizienis et al., 2004]. The frontier
between the system and its environment is known as the system boundary. The
service provided by the system (i.e., its behavior as perceived externally) is de-
livered through service interfaces, which are the parts of the system boundary
where service delivery takes place. The part of its state that is perceived at the
interface is known as the external state, and the remaining is the internal state.
The delivered service is, in fact, the product of a sequence of external states of
the system that is perceivable at its interface [Avizienis et al., 2004].

Following the taxonomy used by Avizienis et al. [Avizienis et al., 2004], when the
service correctly implements the system function it is considered a correct service
delivery. The transition from the correct service into an incorrect service is known
as a service failure. The duration of the incorrect service is known as a service
outage, and its recovery is known as service restoration. There are multiple ways
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the service can deviate from its expected behavior, commonly known as service
failure modes (e.g., content, timing).

A service failure is due to the fact that the state of the system deviated from the
correct one. This deviation is known as an error. However, an error does not
necessarily lead to a failure, as it is not considered a failure until it reaches the
service interface or is detected by an external user. In fact, the system can amass
errors without compromising its service delivery, causing a partial failure, or even
running in degraded mode. Besides potentially leading to failure, an error may
cause out-of-norm behavior of the system parameters as a side effect, which are
known as symptoms [Salfner et al., 2010].

Faults, which can be either internal (i.e., originated within the system boundaries)
or external (i.e., originated outside the system but propagated by interaction
or interference), are the hypothesized cause of an error. In most cases, faults
are regularly dormant, until they become active and cause an incorrect system
state, which is why errors are known as the manifestation of faults [Salfner et al.,
2010]. Faults can have different classifications, such as transient, intermittent,
and permanent faults [Siewiorek and Swarz, 1998; Avizienis et al., 2004]. An
illustration of the relationship between fault, error, and failure (and subsequent
external fault in other system) can be seen in Figure 2.1.

Component BComponent A

System 
Interface

Failure

Activation Propagation

Unactivated 
Fault

Does not 
Propagate

Dormant 
Fault

Propagation
External 
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Undetected  
Error

Error

Activation
Activation

Service Status 
Component A Correct Service Failure

Incorrect  Service

Service Status 
Component B 

Correct Service

Incorrect  
Service
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Figure 2.1: Fault-Error-Failure-Fault, adapted from [Avizienis et al., 2004]

Dependability is ‘the ability to deliver service that can justifiably be trusted’, as
well as ‘the ability to avoid service failures that are more frequent and more severe
than is acceptable’ [Avizienis et al., 2004]. It is in fact, a composite concept that
comprises different attributes, such as availability, reliability, safety, integrity, and
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maintainability. Multiple techniques have been developed with the purpose of
avoiding and detecting faults. More precisely, they can be divided into four major
groups [Avizienis et al., 2004]:

• Fault prevention – part of general engineering, attempt to prevent the
existence of faults in the system (e.g., improvement of development processes
for both software and hardware);

• Fault tolerance – recognizing the inevitable existence of faults that will
lead to errors, are aimed at avoiding failures (e.g., use of redundancy of
systems, mitigating the effects of failures). Additionally, such techniques
can focus on detecting and handling errors (e.g., roll-back/forward) and on
fault detection (e.g., memory leaks);

• Fault removal – focus on removing faults, either during the development
life-cycle (e.g., verification and validation) or at runtime (e.g., symbolic
execution and online testing);

• Fault forecasting – attempt to predict the consequences of faults by evalu-
ating (qualitatively or quantitatively) the system behavior concerning fault
occurrence and activation, such as using system modeling (e.g., reliability
growth models).

2.1.1 Online Failure Prediction (OFP)
Failure prediction (also known as reliability modeling) relies on information re-
garding failures that happened in the past to predict future failures, making it
possible to estimate indicators such as Mean-Time-to-Failures (MTTF) and Mean-
Time-Between-Failures (MTBF). Yet, these techniques consider solely past data,
not taking into account the current state of the system, thus providing limited
prediction accuracy. To address this, approaches that take into the system state
at the time of the prediction started to appear around 1997 [Wolski et al., 1997]
and became known as Online Failure Prediction (OFP). As depicted in Figure
2.2, OFP intends to mitigate the potential effects of residual faults, by using past
data and the current system state to predict the potential occurrence of failures
in the near future [Salfner et al., 2010].

tSystem Monitoring

Learning

past

Predicting

present

T
future

Figure 2.2: Online Failure Prediction (OFP) Illustration

By using OFP to predict incoming failures, one can take preemptive measures to
avoid such failures or mitigate their consequences [Salfner et al., 2005]. In the
eventuality of not being possible to avoid them, such information can be used to
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initiate recovery mechanisms, expediting system recovery. As illustrated in Figure
2.3, anticipating recovery mechanisms reduces Mean-Time-to-Repair (MTTR),
thus improving availability, whilst avoiding failures increases MTBF, increasing
reliability [Irrera, 2016]. The improvement of these attributes directly influences
the trustworthiness of the system, by providing more reliable and available sys-
tems.

T

Failure

tdown tup
Time to Repair (TTR)

downtime

Failure

tdown

Time to Failure (TTF)

Time Between Failures (TBT)

uptime

Figure 2.3: Failures, Time-to-Recover (TTR), Time-to-Failure (TTF), and Time-
Between-Failures (TBF)

Multiple approaches have already been proposed for OFP, as surveyed by Salfner
et al. [Salfner et al., 2010]. By studying the literature, the authors proposed a
taxonomy based on the fault-error-failure model. The authors consider that the
system has four possible states (i.e., fault, undetected error, detected error, and
failure) in the path to failure, which can also be accompanied by symptoms (an
out-of-norm behavior of the system parameters caused by errors). The existing
approaches can be grouped based on the type of input data they use [Salfner et al.,
2010]:

• Undetected errors – can be found through auditing, which are techniques
that analyze the system to check if it is in an incorrect state;

• Detected errors – after an error detector detects an incorrect state it
records that information into a log file. These logs are then processed and
analyzed to predict incoming failures;

• Symptoms – are side effects of errors and can be identified by monitoring
the system parameters for out-of-norm behavior. Some types of errors affect
the system even before the failure occurs (sometimes referred to as service
degradation);

• Failures – can be made visible by tracking mechanisms, the idea is to make
conclusions about upcoming failures based on the occurrence of previous
ones.

Amongst the four, one of the most promising approaches is symptoms monitoring
(the work conducted in this thesis is focused on this approach). Various techniques
already exist that take advantage of analyzing the system parameters. One of
the most known is software rejuvenation, which is a proactive technique that
reduces the probability of failures through software aging (a phenomenon where
the performance of the system degrades over time leading to failure).
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The problem of OFP was formalized as a decision process for predicting at time
t if a failure is going to occur within a precise time, called lead-time, ∆tl. Such
prediction can be valid for a given time window, called prediction-window ∆tp

[Salfner et al., 2010]. In practice, at time t, the model (trained using previous
data on failures) should predict if a failure is going to occur in the interval [t +
∆tl, t + ∆tl + ∆tp]. An illustration of the problem can be seen in Figure 2.4.
The width of the ∆tl defines how far ahead the failure is to be predicted, and
represents the ideal lead time to avoid or initiate repair mechanisms, and must be
greater than the minimal warning-time, ∆tw, otherwise, there will not be enough
time to react. That prediction is valid for the period ∆tp, which if it is too large
will most likely increase the prediction ability, yet it may become useless, as it is
not clear when the failure will occur [Irrera, 2016]. For the prediction, some set of
data previous to the instant t, ∆td, can be used to account for the evolution of the
parameters. The purpose of the models can be to either predict if a failure will
occur or a continuous measure, indicating how failure-prone the system is.

td

Warning Interval

Tt

Lead Time Prediction WindowPast Data Window

tl tp

tw

Figure 2.4: OFP Problem Statement, adapted from [Salfner et al., 2010]

One of the problems with OFP and one of the main reasons why it is not widely
used is that it requires a significant amount of failure data. However, due to the
reliability of modern systems, failures are rare events and thus collecting data
for training and testing new methods is a complex (and expensive) endeavor.
To address this, various studies have been conducted on using fault injection to
generate representative failure data [Durães and Madeira, 2006; Irrera and Vieira,
2015; Irrera et al., 2015].

2.1.2 Fault Injection
Fault injection is a technique that intentionally introduces faults in the system in
an attempt to mimic real faults [Arlat et al., 1990], with the purpose of assess-
ing the behavior of the system. With it, it is possible to assess the impact that
residual faults have on the system (e.g., fault tolerance, dependability validation)
[Irrera, 2016]. Fault injection can be used to mimic both hardware (e.g., bit-flip)
and software (e.g., missing variable assignments) faults, and can also be injected
through hardware or software (also known as Software Implemented Fault Injec-
tion (SWIFI)) [Hsueh et al., 1997]. Yet, due to the recent ever-growing complexity
of software, in the last few years, the focus of research on fault injection has been
on software faults injected through software. It is possible to identify various
classes, such as injection of data errors (e.g., corrupting memory or registers), in-
terface error injection (e.g., corrupting input or output values at the component
interface), and injection of code changes (e.g., introducing wrong code to emulate
software faults) [Natella et al., 2016]. As the purpose of this thesis is to predict
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failures caused by residual faults, only the latter is considered. Note that, previ-
ous empirical studies have demonstrated that the injection of code changes can
realistically emulate software faults [Daran and Thevenod-Fosse, 1996; Andrews
et al., 2005].

Fault Injection Environment

MonitorWorkload Data CollectorFault Injector

Controller

Target System

Data Analyzer
Workload 

Library
Fault 

Library

Figure 2.5: Fault Injection Environment, adapted from [Hsueh et al., 1997]

A fault injection approach includes two main components: the fault injection
tool and the target system [Hsueh et al., 1997]. An illustration of the common
structure can be seen in Figure 2.5, which contains a controller (controls the
experiment), a fault injector (the tool that actually injects the faults), a fault
library (specifies which, where, and when to inject faults), a monitoring system
(monitors the system to detect the effects of the faults, which are then collected
by the data collector and data analyzer), and a workload generator (to exercise
the system).

The emulation of software faults presents several challenges, such as what, where,
and when to inject faults. Additionally, the very definition of the fault model,
which comprises the set of faults to inject, is complex. One of the first proposed
models was the Orthogonal Defect Classification (ODC) [Chillarege, 1996], which
defines software defects and triggers. In short, it classifies the way a programmer
would correct the faults: assignment, checking, interface, timing/serialization,
algorithm, function, build/package/merge, and documentation. Although this ap-
proach was used to guide fault injection research, it was later pointed out that it
was not adequate for fault injection, as it is not organized by how the faults should
be emulated [Durães and Madeira, 2006]. Duraes and Madeira then proposed an
extension to the ODC based on the premise that a defect is one or more program-
ming language constructs that are either missing, wrong, or in excess.

Faults can be injected at different levels. Injecting faults at the source-code level
is simpler and can be more precise as the whole context is preserved. However,
on many occasions, the source-code is not available and this approach does not
scale well to large code-bases [Van Der Kouwe and Tanenbaum, 2016]. It is also
possible to inject faults at the binary/machine-code level, which is easier to port,
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faster to execute, and scales better [Durães and Madeira, 2006]. However, this
approach is less accurate as it loses contextual information [Cotroneo et al., 2012].
In some cases, it is also possible to inject faults at an intermediate-code level (e.g.,
LLVM intermediate representation), which provides a balance between source-
and machine-code level fault injection.

The use of fault injection does not come without its risks, one of which is how
to properly assure that the injected faults are indeed representative of faults that
escaped the testing phases (i.e., residual faults). Although this does not have
an explicit and final answer, it has been addressed in several works, concerning
aspects such as fault load [Cotroneo et al., 2012], representativeness of the faults
[Durães and Madeira, 2006; Natella and Cotroneo, 2010; Natella et al., 2012; Irrera
and Vieira, 2015], code coverage [Van Der Kouwe et al., 2014], and elusiveness of
the faults as well as the relevance of their location [Natella et al., 2010]. Nonethe-
less, despite all the challenges and limitations, SWIFI has been considered as the
current best alternative to emulate realistic faults. It has been extensively used
for multiple purposes, such as the validation of fault-tolerant mechanisms and de-
pendability benchmarking [Durães and Madeira, 2006] in various contexts, from
device drivers [Cotroneo et al., 2018] to critical [Irrera et al., 2017] and blockchain
systems [Hajdu et al., 2020].

Due to its potential, over the years various techniques and tools have been pro-
posed for SWIFI. The Generic Software Fault Injection Technique (G-SWFIT)
injects realistic software faults in machine-code level using a fault library that
contains the emulators for each fault type based on machine-code level and the
corresponding code changes [Durães and Madeira, 2006]. The fault model and
library considered in G-SWFIT have been widely accepted and incorporated in
various other fault injectors. Costa et al. [Costa et al., 2003] propose a machine-
code level fault injector for the Linux OS that performs all the operations on
the fly (i.e., without requiring recompiling the kernel). It uses a flexible runtime
kernel upgrading algorithm to allow access to system spaces and was also later
extended to be compatible with G-SWFIT [Costa et al., 2009; Costa, 2013].

Ng and Chen [Ng and Chen, 1999] implemented a machine-code level fault in-
jector that injects bugs into the kernel of a running OS to study and assess the
dependability of OSs and that has since been used and updated in several works
[Swift et al., 2006; Depoutovitch and Stumm, 2010; Kwon et al., 2016; Cotroneo
et al., 2018]. The injected faults range from low-level (e.g., bit-flips) to high-level
(e.g., memory allocation) faults [Ng and Chen, 1999]. The latter are the most rel-
evant and intend to approximate the assembly-level manifestation of real C-level
programming errors. As these faults are context-dependent, the injector disas-
sembles the binary of a selected function in the kernel text segment and searches
for proper locations in which each type of fault can be injected [Yoshimura et al.,
2013]. A simplistic example of how a machine-code level fault injector operates is
illustrated in Figure 2.6. After disassembling the original code the fault injector
identifies a candidate location to inject an off-by-one fault, changing a jl (>=)
to jle (>), which in this architecture corresponds to changing the operator in
machine-code from 7C to 7E.
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Faulty Code

55 48 89 E5 89 7D
FC 89 75 F8 8B 45
FC 3B 45 F8 7E 06
8B 45 F8 89 45 FC
90 5D C3

Original Code

55 48 89 E5 89 7D
FC 89 75 F8 8B 45
FC 3B 45 F8 7C 06
8B 45 F8 89 45 FC
90 5D C3

func: 
        push    rbp
        mov     rbp, rsp
        mov     DWORD PTR [rbp-4], edi
        mov     DWORD PTR [rbp-8], esi
        mov     eax, DWORD PTR [rbp-4]
        cmp     eax, DWORD PTR [rbp-8]
        jl      L3
        mov     eax, DWORD PTR [rbp-8]
        mov     DWORD PTR [rbp-4], eax
L3:
        nop
        pop     rbp
        ret

 

void func(int a, int b) { 
    if(a >= b) {
        a = b;
    }
}

func:
        push    rbp
        mov     rbp, rsp
        mov     DWORD PTR [rbp-4], edi
        mov     DWORD PTR [rbp-8], esi
        mov     eax, DWORD PTR [rbp-4]
        cmp     eax, DWORD PTR [rbp-8]
        jle      L3
        mov     eax, DWORD PTR [rbp-8]
        mov     DWORD PTR [rbp-4], eax
L3:
        nop
        pop     rbp
        ret

Fault Injector

Disassemble

Identify Fault
Candidates  

(e.g., off-by-one)

Fault 
Model

void func(int a, int b) { 
    if(a > b) {
        a = b;
    }
}

Change

Original Source Code Faulty Source Code

Original Assembly Faulty Assembly

Figure 2.6: Machine-code Fault Injector

Several tools have also been developed for the other injection levels. Natella et
al. [Natella et al., 2012] assess a source-code level fault injection tool, SAFE,
and compare it with binary-code level fault injection. While it allows injecting
more representative faults, it does not scale well to large code-bases due to the
need to recompile. Gabor et al. [Gabor et al., 2019] leverage the Clang AST
Matcher to inject faults into the source-code, assessing the applicability of long-
used fault models and achieving higher accuracy, as well as allowing injection
in macros. Other approaches use hybrid solutions (e.g., Hybrid Software Fault
Injection (HSFI) [Kouwe and Tanenbaum, 2016]), combining both source-code
with machine-code level fault injection to overcome the individual limitations
(e.g., lack of context of machine-code level and lack of scalability of source-code
level). In short, it uses source-code level context to inject the faults, making it
possible to enable or disable them using machine-code modifications without the
need for rebuilding. The fact that it does not require recompiling the code for each
experiment and that multiple faults can be injected at once allows for substantial
savings when testing large systems (e.g., OSs). Other works also leverage recent
developments (such as the rise of Clang and LLVM) and explore injecting faults
at intermediate-code, which is closer to the source code and therefore easier to
inject realistic faults [Lu et al., 2015].
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Selecting and using a fault injector to conduct a comprehensive fault injection
campaign on complex software is a difficult task, as most of them require complex
installation procedures, some even including changes to the kernel that have to
be conducted offline, or require specific execution modes (e.g., debug).

2.1.3 Dependability and Experimental Testbeds
Dependability research typically requires executing large sets of experiments to be
representative and achieve statistical relevance. This requires devising and imple-
menting an experimental testbed to ensure proper execution and the repeatability
of the experiments.

In recent years the computational power available has increased considerably. To
leverage it, several techniques have been developed at hardware level, such as run-
ning multiple threads on a single core [Intel, nda], accelerating the processor for
peak loads [Intel, ndb], and hardware virtualization [Intel, ndc]. Such techniques
can, and should, be used to expedite the experimental process, often by running
multiple experiments simultaneously. This also allows reducing hardware exper-
imentation costs to run experiments simultaneously (an issue raised by Kanoun
and Spainhower [Kanoun and Spainhower, 2008]) which is a prominent concern in
research. Notwithstanding, while increasing throughput is relevant, the perform-
ance and behavior of the experiments should be as identical as possible, regardless
of other running experiments or tasks. Such techniques, as well as virtualization,
raise some concerns, such as if, and how much, interference exists between ex-
periments [Schwahn et al., 2019a] and how it affects the results [Novaković et al.,
2013].

While the need for performance isolation is easy to understand, achieving it is
far more complex. So many factors in modern computers non-deterministically
influence their performance that even identifying them is not trivial. Besides
differences between OSs and distributions, the architecture of the system also
influences the load distribution (e.g., Central Processing Units (CPUs) shared
L# caches, multiple Non-Uniform Memory Access (NUMA) nodes). To optimize
resource usage modern schedulers distribute the tasks over all the cores available in
the CPU depending on the current demand. Moreover, because energy efficiency
is nowadays an important factor in the design of CPUs their running frequency
is influenced by several factors (e.g., computational load, temperature). Besides
strict performance stability, running multiple experiments should not compromise
the execution of others. Concerning software isolation, virtualization has become
the go-to solution. If corruption occurs on a given machine, it should not affect
the host or other running applications. However, although it allows setting the
resources that can be used by each Virtual Machine (VM), this does not guarantee
performance isolation (e.g., overprovisioning) [Jing et al., 2014; Matthews et al.,
2007; Gupta et al., 2006].

There are two main types of hypervisors (i.e., Type-I and Type-II ), each with
various solutions with respective advantages and disadvantages. Type-I hyper-
visors (also called bare-metal, e.g., XEN [Xen, nd], VMware ESXi [VMWare, nda])
run on the underlying hardware, interacting directly with the components (e.g.,
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CPU, memory). As a result, they typically have better performance and security,
and also offer better isolation [Matthews et al., 2007]. However, they are mostly
focused on enterprise solutions (and thus usually have a higher cost), have lim-
ited hardware compatibility, and limit the machine to just using virtualization.
Moreover, these are specific applications/solutions that may not meet the needs
and flexibility required by researchers. On the other hand, Type-II hypervisors
(also known as hosted, e.g., Oracle VirtualBox [Oracle, nd], VMWare Worksta-
tion [VMWare, ndb]) run on top of an existing OS. They are considerably more
versatile, have wider hardware support, and are easier to use and to set up [IBM,
nd]. Although ‘traditional’ Type-II hypervisors are considerably slower (as they
emulate all the interactions with the hardware) modern hypervisors typically rely
on hardware-assisted virtualization, which allows reaching near-native perform-
ance [Palit et al., 2013]. One interesting hypervisor is KVM [KVM, nd], which
turns the Linux kernel into a Type-I hypervisor. [Hat, ndc]. Combined with
QEMU [QEMU, nd] it provides all the advantages of a Type-II hypervisor with
performances similar to those of Type-I.

In order to run large sets of experiments, automation is also necessary to minim-
ize the need for interaction. This is often achieved through scripting (e.g., Bash)
or programming languages (e.g., Python). However, complex automation (e.g.,
launching/interacting with VMs) requires more advanced solutions. Expect [Libes,
1995, nd] is a Tool Command Language (TCL) program that ‘talks’ to other in-
teractive programs, programmatically characterizing an interaction between user-
/program. Still, if one prefers/needs the functionalities/advantages of a program-
ming language, similar implementations have also been made over the years (e.g.,
Java [Gavrilov, 2018], Python [Spurrier, nd]).

Another relevant concern is how to monitor a system. Most OSs provide native
tools to obtain system metrics (e.g., sysstat [sysstat, nd] on Linux). Notwith-
standing, they often report the data in a rather unstructured format, and various
tools are necessary to monitor the most relevant resources. Concerning cent-
ralized (free/open-source) solutions, there are some well-known options such as
Munin [Munin, nd] and Nagios [Nagios, nd]. However, although they are very
comprehensive (their purpose is broader than just system monitoring), it is not
straightforward/possible to have easy access to ‘real-time’ metrics. Tools similar
to Netdata [Netdata, nd], which is designed to be a lightweight and highly optim-
ized tool that provides real-time monitoring by default, are likely more suitable
alternatives.

All these constraints, techniques, and configurations pose a considerable to con-
sistent and repeatable experiments. This is further aggravated by the lack of
proper and detailed guidelines on how to devise and implement an experimental
testbed for dependability experiments.

2.1.4 Benchmarking
A benchmark is an instrument that allows evaluating and comparing different
entities according to specific characteristics, under the same conditions, the same
workload, and the same procedure [Gray, 1992]. The work on performance bench-
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marking started long ago and ranges from simple benchmarks that target a very
specific hardware system or component to very intricate benchmarks focusing
on complex systems (e.g., databases, operating systems, web servers [Vieira and
Madeira, 2003]). Performance benchmarks have contributed to improving suc-
cessive generations of systems, and have boosted the research on dependability
benchmarking, with several works carried out by different groups following distinct
approaches (e.g., experimentation, modeling, fault injection) [Koopman et al.,
1997; Vieira and Madeira, 2003; Antunes and Vieira, 2010].

Benchmarking is an experimental procedure that aims at providing a practical way
to measure and compare properties of systems or components, ranging from per-
formance [Gray, 1992] to dependability and security aspects [Vieira and Madeira,
2003; Durães et al., 2004; Vieira and Madeira, 2005]. In practice, a benchmark re-
produces the observations and measurements either deterministically or on a stat-
istical basis (giving confidence in the results obtained), and allows generalizing the
results to a limited extent (becoming useful beyond the particular case analyzed),
which is attained by addressing the representativeness of the benchmarking pro-
cess and components. The concept of benchmarking can be summarized in three
words [Vieira and Madeira, 2003; Gray, 1992]:

1. Representativeness – include components (e.g., a dataset) that are rep-
resentative of a given domain (for this work, the failure prediction domain),
thus reducing the distance between the benchmarked and the real environ-
ment;

2. Usefulness – provide a useful representation of the entities under analysis,
capturing the essential elements of the domain and characterizing their fea-
tures, thus allowing one to use the results for choosing the best alternative
or to guide improvement;

3. Agreement – provide a standard procedure to assess relevant metrics re-
lated to an entity on which users can agree, allowing measurement results
to be accepted.

In order to analyze the different approaches for OFP, it becomes relevant to have
a way to fairly compare and assess their performance. Hence, a benchmark is
likely the most logical approach. A benchmark tool has different components,
mainly [Gray, 1992]:

• Metrics – are used to assess the entities under observation. The metrics are
one of the most important components to be defined, as it is based on them
that the alternatives will be compared. They should be computed during
the benchmark execution, and must be understood in relative terms, not as
absolute measures;

• Workload – represents the set of operations that will be executed by the
system while the benchmark is running. They are usually built to exercise
the specific system under benchmarking, and although there have been mul-
tiple works of their generation, it still remains a challenging task that can
influence the relevance of the benchmark;
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• Benchmarking Procedure – defines the setup and procedure required to
execute the benchmark and the various steps to be performed throughout
its execution.

Performance is no longer the only important factor when selecting alternative
systems or components, and dependability is playing a more and more determinant
role. Dependability benchmarks can be defined as a standard procedure to assess
the dependability-related measures of a given system in the presence of faults
[Vieira and Madeira, 2003; Crouzet and Kanoun, 2012]. Compared to performance
benchmarks, they have additional components, such as the faultload (a set of faults
and stressful conditions) and dependability measures (measures that characterize
the dependability of the system under benchmark) [Vieira and Madeira, 2003].
Dependability measures are associated with the various attributes that comprise
dependability and have been defined as [Crouzet and Kanoun, 2012; Avizienis
et al., 2004]: reliability measures the time to failure, availability measures the
fraction of time the system delivers correct service, maintainability measures the
time to service restoration (since the last failure), and safety measures the time
to catastrophic failures. Several dependability benchmarks have been proposed in
recent years (e.g., [Crouzet and Kanoun, 2012; Cotroneo et al., 2017]).

A benchmark for failure prediction must address specific properties for the results
to be sound, and to minimize inaccuracies due to the measurement procedure,
namely [Gray, 1992; Vieira and Madeira, 2003]:

1. Ease of installation and use – the benchmark should be composed of
a program ready to use or a document specifying how to implement the
benchmark, the tools needed, etc. The user should be able to analyze failure
prediction models with minimum effort;

2. Promptness – the benchmark execution should take the shortest time pos-
sible. Promptness increases the usability of the benchmark and of the failure
prediction models, and potentially reduces the cost that one has to allocate
for the benchmarking task;

3. Non-intrusiveness – the benchmark must require minimal or no changes in
the entities under analysis, which in this context are the predictive models;

4. Portability – the benchmark must allow comparing alternative failure pre-
diction models, which can be based on diverse approaches. Considering
different application scenarios and target systems should be allowed;

5. Repeatability – different executions of the benchmark must lead to the
same results on a deterministic basis or in statistical terms. The results
should not depend on a single execution of the benchmark;

6. Representativeness – the results from the benchmark must be represent-
ative of real scenarios, i.e., the prediction models must behave similarly (in
relative terms) when working on the target system in a real situation.

Another concept that has fairly recently been proposed is that of scenarios [An-
tunes and Vieira, 2015], which applied to OFP, are simply realistic situations
of failure prediction that depend on the criticality of the target system. As the
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usefulness of a benchmark is highly dependent on the metrics used to assess the
entities, it is also dependent on the adequacy of those metrics for a specific scen-
ario [Antunes and Vieira, 2015]. Scenarios should be based on the technical needs
and business impact of the systems in an organization (e.g., business-critical), by
means of requirements in terms of the level of dependability that should be satis-
fied and the cost of mitigating the predicted failures before their occurrence.

2.2 Machine Learning (ML)
Although there is no formal consensus on what intelligence really is, it can be
informally defined as the general ability of an agent to perceive, understand,
predict, and manipulate a world far more complicated than itself to achieve goals
in a vast range of environments [Legg and Hutter, 2006; Russell and Norvig,
2021]. Artificial Intelligence (AI) is concerned with ‘building intelligent entities,
machines that can compute how to act effectively and safely in a wide variety of
novel situations’ [Russell and Norvig, 2021]. Artificial Intelligence (AI) has already
been around for some time, and in conjunction with the previous definition, it can
be explained as the science of building intelligent machines, including intelligent
computer programs [McCarthy, 2007]. From that evolved the idea of creating
systems that can adapt and learn within an environment, which came to be known
as Machine Learning (ML). Briefly, ML is a subfield of Computer Science (CS)
that gives computers the ability to learn without being explicitly programmed
[Samuel, 1959]. Despite its recent intensive development, it has also been around
for quite some time. Depending on the type of feedback available to the learning
system, ML approaches can be classified into supervised learning (uses a set of
labeled data to learn a function that maps the data into the appropriate label),
unsupervised learning (tries to find the hidden structure of a set of unlabeled data),
and reinforcement learning (learns an optimal policy to solve a sequential decision
making problem, using rewards received from interactions with an environment)
[Ayodele, 2010; Duboue, 2020; Marsland, 2014].

The work conducted in this thesis relies almost entirely on supervised learning.
Thus, notwithstanding the importance of all the remaining types of learning, this
section will focus mostly on supervised concepts and techniques.

Different types of algorithms can be used to learn a computational model to solve
a given problem. However, to create an accurate model it is crucial to thoroughly
prepare the data, as it will directly influence its performance. Also essential to
the analysis of ML algorithms is the ability to compare them and be able to state
which are best at what.

A generic ML approach, based on and adapted from [Duboue, 2020], can be seen
in Figure 2.7. Duboue [Duboue, 2020] explicitly depicts the relevance of data
analysis in the whole process. The insights it provides allow for more informed
decisions, such as selecting the target ML algorithms and the evaluation metrics.
Although the various steps will be discussed in the next sections, another import-
ant consideration is the split of the data into different subsets, train and test. The
train data will be used to train the models and optimize their hyperparameters,
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also considering the impact of different ML techniques (e.g., data sampling, fea-
ture selection/extraction). The test set will ultimately be used to estimate the
performance of the best models.
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Figure 2.7: Generic ML Pipeline, adapted from [Duboue, 2020]

2.2.1 Data Analysis
To use ML it is necessary to explore and thoroughly identify characteristics to
transform raw data into working information. This will provide details and the
underlying characteristics of the problem.

Several techniques are available, which in general can be grouped into two ap-
proaches. Because data are organized in distributions, with descriptive statistics
it is possible to analyze them through some statistics that describe or summarize
them, taking into account its characteristics, such as centrality (mean, median,
and mode) and spread (standard deviation and variance). Exploratory Data Ana-
lysis (EDA) has its focus on the data, mainly using graphical tools that provide
a different perspective. Through EDA it is possible to visualize the centrality
and spread of the data, using boxplots, scatterplots, histograms, and runcharts,
amongst others. These graphical tools allow the user to perceive patterns, distri-
butions, outliers, and relationships between features that would otherwise not be
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easily detected or understood with other analyses.

2.2.2 Data Preparation
Due to the fact that nowadays most data gathering processes are loosely con-
trolled, many of the datasets usually have missing, noisy or unreliable, redundant
or invalid data. Moreover, if these data are not carefully prepared the model
may not be representative of the situation in study. Because of that, data pre-
processing is one the most important steps in ML, usually consuming a consid-
erable amount of development time. Preparing the data includes several tech-
niques, namely cleaning, transformation, feature reduction and extraction [Kotsi-
antis et al., 2006; Duboue, 2020].

In traditional ML the basic requirements of the data for its models are fairly
simple. It needs a dataset of examples of the scenario it represents as large as
possible/needed, containing enough detail to describe it and its outcome (for su-
pervised learning). It is a simple table where the columns are divided into a set
of descriptive features and a target, and each row represents an instance, that
contains a value for each feature and target [Kelleher et al., 2015]. Notwithstand-
ing, some of the most recent advances on ML use other sources of data, such as
images, signals, text, and speech [Duboue, 2020].

In order to prepare the data, some steps should be taken to maximize the per-
formance of the algorithms. Data cleaning techniques include noise reduction and
outliers detection [Aggarwal, 2013], handling missing values [Bruha and Franek,
1996; Grzymala-Busse and Hu, 2001; Lakshminarayan et al., 1999], and analyzing
the data for data inconsistency.

Data transformation techniques include discretization, aggregation/decomposition,
and normalization. Normalization is one of the most common techniques, and it
is the scaling of feature values so that they fall under a certain range or relate to
the feature values distribution. The most common methods to achieve this are
min-max scaling (the data is scaled to a fixed range, usually 0 to 1) and z-score
normalization (also known as standardization), where all features will be rescaled
so that they will have the properties of a standard normal distribution, with zero
mean and a standard deviation of one.

The complexity of any model usually depends on the number of inputs it has, as it
influences both the time and space complexity to train it. In order to facilitate the
development of a model, it may be important to reduce its dimensionality. Due
to the way most of the information is gathered nowadays, without a purpose and
controlled supervision, most of the datasets have irrelevant or redundant features
in them. The removal of these features is called feature selection. There are a few
methods to perform feature selection, although they are usually grouped in three:
filter, wrapper, and embedded. The other approach to reduce dimensionality is
feature extraction. The goal is to find a new set of dimensions that are a combin-
ation of the original ones. These methods can be supervised or unsupervised and
some of the most widely used are Principal Component Analysis (PCA) [Silipo
et al., 2014] and Linear Discriminant Analysis (LDA) [James et al., 2013]. In re-
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cent years deep learning algorithms (e.g., Convolutional Neural Network (CNN))
have also been shown to be very effective at extracting features from complex
data.

Instance selection methods are used in order to help the algorithms to cope with
the infeasibility of very large datasets. It becomes an optimization problem to
minimize the data size while keeping its quality and representativeness. Instance
selection can be achieved through sampling, boosting, prototype selection, and
active learning [Ghosh, 2004]. One of the major means of instance selection is
sampling (e.g., stratified sampling), whereby a sample is selected for testing and
analysis, and randomness is a key element in the process [Liu and Motoda, 2013].
Ultimately, a sophisticated procedure with a subset of the data can outperform a
less sophisticated one using the whole dataset [Friedman, 1997].

Imbalanced datasets may also lead to models that are not able to generalize (i.e.,
overfitting). Undersampling techniques seek to reduce the number of samples of
the majority class in the dataset [Duboue, 2020]. As a result, the overall number of
records in the dataset is decreased, also shortening training time. Whilst this can
lead to better performance on the underrepresented classes, it may also lose some
valuable information with the discarded items. Over time, several techniques have
been proposed such as Random Undersampling [Liu, 2004] and Instance Hardness
Threshold [Smith et al., 2014]. Oversampling, on the other hand, seeks to increase
the number of samples from the minority class. The obvious advantage is that it
does not lose information since all the samples are kept. It does, however, increase
the size of the dataset and consequently the time to train the model. Some of
the methods to achieve this are Random Oversampling [Liu, 2004] and Synthetic
Minority Over-sampling Technique (SMOTE) [Chawla et al., 2002].

2.2.3 Learning Types and Algorithms
The type of feedback available in the data determines the types of learning that can
be used, as illustrated in Figure 2.8. Three main types of learning exist: supervised
learning, unsupervised learning, and reinforcement learning [Russell and Norvig,
2021]. Due to the scope of the work conducted in this thesis, supervised learning
will be described in more detail.

2.2.3.1 Supervised

Supervised learning is by far the most common type of ML. This type of learning
contains the data and the expected output for every combination of inputs. The
goal is to learn a mapping between the input variables and their outputs in such
a way that for a new set of inputs it will be able to predict the output. Based on
the type of problem it can be either classification (predicting a categorical value)
or regression (predicting a continuous value). Most of the algorithms described in
this section can be used for both classification and regression problems.

Some of the most common supervised algorithms are Naive Bayes, Logistic Re-
gression, Linear Regression, Decision Tree (DT), Support Vector Machine (SVM),
Neural Network (NN), Convolutional Neural Network (CNN), and Ensemble
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Figure 2.8: Machine Learning Types

Methods. The most relevant for the work conducted on this thesis will be briefly
detailed further.

Decision Tree (DT)
Top-down, recursive, and one of the most intuitive prediction models. They con-
struct models based on attributes present in the training data (guided by a cri-
terion, such as entropy or information gain) using a decision tree as a predictive
model. It makes predictions of the value associated with an instance by traveling
from a root node to a leaf [Shalev-Shwartz and Ben-David, 2014]. If the target
variable is continuous the models are called regression trees and classification trees
otherwise.

Due to the computational cost of trying to cover the whole solution space to find
the tree that optimizes the problem, practical decision tree learning algorithms are
based on heuristics. Decision tree algorithms usually suffer from generating very
large trees, creating low empirical risk but having a high true risk. A solution to
avoid that is to limit the number of iterations, creating a bounded tree, or prune it,
reducing the size but keeping the empirical error [Shalev-Shwartz and Ben-David,
2014]. Some of the most well-known tree predictors are Iterative Dichotomizer 3
(ID3), C4.5, and Classification and Regression Trees (CART).

Support Vector Machine (SVM)
Classification algorithms that are able to predict both linear and non-linear data
in high dimensional feature spaces. This high dimensionality raises both com-
putation and sample complexity challenges. To face the sample complexity the
Support Vector Machine (SVM) searches for ‘large margin’ separators, by max-
imizing the distance between the samples of each class and the hyperplane that
separates them [Shalev-Shwartz and Ben-David, 2014].

If the data are not linearly separable it is also possible to map it to a high dimen-
sional space, where it is easier to classify with linear decision surfaces. Mapping
all the data to the high dimensional space may be too expensive, so it is possible
to use kernels, in order to avoid explicitly making the mappings. Some of the
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most used kernels are the polynomial and the gaussian.

Neural Networks (NNs)
A model of computation loosely inspired by the structure of neural networks in
the brain. NNs are universal function approximators, which means that they
can approximate any continuous function (to an arbitrary degree of accuracy)
[Russell and Norvig, 2021]. It can be described as a directed graph, where the
nodes are the neurons and the edges are the links between them. Each neuron has
as input a weighted sum of the outputs of the neurons connected to its incoming
edges [Shalev-Shwartz and Ben-David, 2014]. Deep learning refers to multi-layered
networks and is a subject that has been gaining relevance in recent years. Each
layer transforms the representation of the previous layers into deeper and more
abstract levels [Hosseini et al., 2020]. This process inherently allows and works as
feature selection/extraction.

For an NN with N number of layers, the layers H0, ..., HN−1 are usually called
hidden layers, H0 the input, and HN is the output layer. In general, the ar-
chitecture of a NN is comprised of a topology (e.g., feedforward, recurrent), an
activation function (e.g., sigmoid, Rectified Linear Units (ReLU)), a learning al-
gorithm (e.g., gradient descent, backpropagation), and layers (e.g., convolutional,
pooling). In recent years several deep learning architectures have been proposed
but most can be classified into high-level categories, such as CNNs and Recurrent
Neural Networks (RNNs) [Heaton, 2015; Hosseini et al., 2020].

Deep Neural Networks (DNNs) have achieved remarkable state-of-the-art results
in some fields, such as computer vision, speech recognition, and natural language
processing [Witten et al., 2016]. DNN can achieve good results when there is
spatial or sequential relation (e.g., adjacent pixels in an image, or words in a
sentence). While there have been some recent works on using DNN on tabular
data (e.g., [Arık and Pfister, 2020]) it has not yet been able to achieve as relevant
results. Additionally, DNNs are black-box models, as the combination of multiple
complex hidden layers means that it is hard/complex to properly interpret the
decisions of the model.

Ensemble Methods
Ensemble methods are a compilation of several independent algorithms whose pre-
dictions are gathered to work as a whole. They contain a number of learners called
base learners (or weak learners). Ensembles can be either homogeneous (i.e., use
a single base learning algorithm) or heterogeneous (i.e., use multiple base learn-
ing algorithms) [Zhou, 2012]. Some of the state-of-the-art algorithms currently
available are ensembles that use the Decision Tree (DT) as the base learner, such
as Random Forest (RF), based on the bagging paradigm, and Gradient Boost-
ing (and the specific implementation of eXtreme Gradient Boosting (XGBoost)),
based on the boosting paradigm. Notwithstanding, heterogeneous ensembles can
explore the different bias and diversity of each algorithm and often lead to better
results [Bian and Wang, 2007; Costa et al., 2018].

A good ensemble is made of base learners as diverse as possible and their outputs
should be combined in such a way that correct decisions are amplified and in-
correct ones are canceled out [Polikar, 2006]. However, measuring diversity (i.e.,
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the difference between the individual learners) is complex, as there is no con-
sensus or formal definition [Sesmero et al., 2015]. Several metrics have already
been proposed (e.g., Q Statistic, disagreement measure), although the correlation
between diversity and performance is not fully understood [Kuncheva and Whi-
taker, 2003]. The combination method also plays a crucial role. For classification
tasks the most common techniques are based on voting: i) plurality voting: each
classifier votes for one class label and the final prediction is the class with more
votes; ii) majority voting: the final prediction is the class that obtains more than
half of the votes (a rejection option will be given if there is no majority); iii)
soft voting: for algorithms that provide class probability outputs it averages the
predictions for each class and selects the one with the highest probability (thus
taking into consideration both the prediction and the confidence of the model in
the decision) [Zhou, 2012]. Another prominent approach is stacked generalization,
which uses the concept of a meta-learner trained using the outputs of the base
learners as the input features.

2.2.3.2 Unsupervised

Unsupervised learning has no supervision in the learning process, that is, for a
combination of inputs, there is no class or label for it. In this type of learning
the aim is to find a structure or distribution in the input space so that recurring
patterns can be found. The most common approaches are clustering, dimension-
ality reduction, and association. Clustering is by far the most common, and it
tries to find structures that exist in the data, grouping the samples into groups of
maximum commonality, by maximizing the intra-class similarity while minimizing
inter-class similarity [Jiawei Han, 2011]. Some of the most common algorithms
are Density-Based Spatial Clustering of Applications With Noise (DBSCAN) (a
density-based clustering algorithm that tries to identify and distinguish points in
clusters from noise, based on its density), Hierarchical Clustering (HC) (uses link-
age rules to produce a hierarchical sequence of clustering solutions), and k-Means
(a centroid adjustment algorithm). In recent years there have also been some in-
teresting developments on generative models (an unsupervised learning task that
tries to learn the statistical distribution of the data) using deep learning, such as
Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs)
[Hosseini et al., 2020].

Although unsupervised learning is useful for many real-world problems (which
are very often unlabeled), the work conducted in this thesis focuses mostly on
supervised learning.

2.2.3.3 Reinforcement Learning

Reinforcement learning algorithms create models that map situations to actions
through a series of reinforcements (rewards and punishments) obtained from inter-
actions with the environment. The model learns through those interactions and
observing the results they produce. It is not told explicitly which actions to take,
it must discover which actions yield the most reward by trying them, affecting not
only the immediate reward but all the subsequent rewards. Trial-and-error and
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delayed rewards are the two characteristics that distinguish this type of learning
from the remaining [Marsland, 2014]. Reinforcement learning has also been com-
bined with deep learning, leading to a field called deep reinforcement learning.
In recent years reinforcement learning has been very successfully used for various
problems, such as autonomous driving [Kiran et al., 2021], trading and finance
[Gao, 2018], Natural Language Processing (NLP) [Choi et al., 2017], and games
[Holcomb et al., 2018].

Over the years several different algorithms have been proposed, which can be
categorized into model-based and model-free reinforcement learning [Russell and
Norvig, 2021]. Briefly, model-based approaches use a transition model of the
environment to help interpret the reinforcements and make decisions. On the other
hand, model-free approaches neither know nor learn a model of the environment.
They learn a more direct representation of how to behave through action-utility
learning (learning a quality function) or policy search (learning a policy that maps
directly from states to actions) [Russell and Norvig, 2021].

2.2.4 Evaluation
A learning model is good if it produces correct predictions on unseen examples.
To do so, its performance is usually measured by its error/success rate. Albeit
some of the problems have undifferentiated costs for different errors, that is, the
cost of misclassifying A as B is the same as misclassifying it as C, that is not the
case for some more complex problems. It may be the case that wrong decisions
are not equally costly, requiring the implementation of a more complex error loss
function. Despite the fact that the errors are one of the main criteria for evaluating
an algorithm, it should be kept in mind that there are others (e.g., computational
time, interpretability), some of them being dependent on the problem at hand
[Turney, 2002].

Regardless of all the factors that can be taken into account when evaluating
an algorithm, one should not forget that whatever conclusions that may arise
are conditioned by the dataset with which the model was developed. Also, the
comparison that can be made using the results is not domain-independent, because
we are not comparing the expected error rates of a learning algorithm in general,
but rather for a specific application and only as long as the sample used represents
the target application. When it is said that a classification algorithm is good, it
is only a qualification of how well its inductive bias matches the properties of the
data [Alpaydin, 2014]. In fact, there is no universal algorithm that is on average
better than random search for every situation, as stated by the No Free Lunch
Theorem [Wolpert, 1994].

2.2.4.1 Training and Testing

A fundamental problem in ML is how to obtain a realistic estimate of the predic-
tion error of a model. This task is of particular relevance when the dataset is not
large and the underlying distribution is not known [Borra and Di Ciaccio, 2010].
This estimate is important as it is based on its value that a model will be chosen
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instead of others due to having a better prediction performance.

ML usually works with two main sets of data: training, and test. The training
set contains the data that are going to be used to fit the model while it is in
training. Within the training set, a validation subset may also be created to
evaluate the candidate models and control overfitting. The test set estimates
the generalization error of the final model. In theory, the test set should only
be used once to avoid data leakage and for each evaluation a new set of data
should be used. Notwithstanding, this is not feasible for many (if not most) real
problems, and thus it should be taken into consideration that by reusing the test
data the results will overfit to that set [Duboue, 2020]. The division between
these sets of data is not trivial, as when the model is in training it will not have
access to the test set, hence the selection of the subsets must be representative
of the problem. To create them there are some options [de Sá, 2012], such as
resubstitution, holdout, partition/leave-one-out, and bootstrap methods. One of
the most used techniques is a partition method, cross-validation. It can be used
to improve the prediction. Briefly, after the data is split into k disjoint subsets
the model is then trained k times. Each time one of the subsets is left out and
then used to compute the prediction error. Additionally, stratification can be
used to ensure that the representation of the classes is similar in all the resulting
folds. The final performance of the model is the average of the results of all the
folds.

With every model created using a dataset a problem arises that is known as the
bias/variance dilemma. Bias is a source of error derived from wrong assumptions
made by the algorithm, while variance is a source of error due to the sensitivity
to changes in the training set. When a model cannot fit the data it is known as
underfitting, and will usually have low variance and high bias. However, if the
bias is kept low the model may fit the data too well (noise and random events
included) and have a high variance, which is known as overfitting. Thus, there is
the need for a trade-off between minimizing the bias and the variance: a choice
between creating more complex models (low-bias hypotheses that fit the train-
ing data well) and simpler models (low-variance hypotheses that generalize well)
[Russell and Norvig, 2021]. While there is no silver bullet to find the optimal
trade-off, Ng [Ng, 2017] proposes a systematic approach. To address high bias
the following techniques can be used: train longer, train a more complex model,
obtain more features, decrease regularization, and ultimately consider a new model
architecture. On the other hand, to address high variance: obtain more data, de-
crease the number of features, increase regularization, and (once again) consider
a new model architecture. Finally, some techniques (e.g., ensemble learning, res-
ampling) can be used to manage bias and variance, and continuously assessing the
performance of the models (e.g., through a validation set) can be used to control
underfitting/overfitting.

2.2.4.2 Performance Metrics

In order to evaluate an algorithm, its performance must be measured. Several per-
formance metrics exist and are dependent on the type of task (e.g., classification,
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regression). However, which metrics to use should be carefully selected, as they
are not independent of the data, and thus can be influenced by their distribution
[Sokolova and Lapalme, 2009]. If this is not carefully considered, it may lead to
misleading conclusions.

Several metrics have been proposed for classification tasks. Some of the most
common and relevant are the confusion-matrix, error rate, accuracy, precision,
eecall, Fβ-Score, informedness, markedness, sensitivity, specificity, and Receiver
Operating Characteristics (ROC). Regression tasks predict continuous values, thus
metrics to assess their performance require a different approach. Some of the most
common are Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean
Square Error (RMSE), and coefficient of determination.

On the other hand, evaluating the performance of an algorithm for a cluster-
ing problem is not as straightforward as for classification or regression. Cluster-
ing metrics can be divided into internal validation (e.g., Sum of Squared Errors
(SSE) and silhouette coefficient) and external validation (e.g., rand index, mutual
information, homogeneity, completeness, and v-measure) [Tan et al., 2005].

2.2.4.3 Assessing and Comparing the Performance of Algorithms

After implementing and compiling the results of the target algorithms there is
a need to compare them. For that, there are several tests, depending on the
characteristics of the data (e.g., number of categories, parametric, dependency).
Two hypotheses are postulated: H0 (null hypothesis), the samples come from the
same population; and H1 (alternative hypothesis), the samples do not come from
the same population. Significance tests ensure whether or not the differences
are statistically significant, with some value of confidence [Juristo and Moreno,
2013].

Due to the representation available from the sample data, the conclusion about
accepting or rejecting H0 may be wrong. Those errors can be divided into two
types (which can be seen in Table 2.1): type II error is not rejecting H0 when
it should (it is false), and type I error is rejecting H0 when it should not, which
means wrongfully rejecting a previous idea of truth [Field, 2013].

Table 2.1: Error Types

Reality

H0 = true H0 = false

D
ec

isi
on H0 is not rejected OK Type II Error

H0 is rejected Type I Error OK

When there are multiple algorithms that need to be compared it is necessary
to use specific tests to do so. However, as multiple hypothesis testing requires
several comparisons the probability of getting a significant result by chance adds
up. To deal with that some corrections must be applied in order to adjust the
confidence level so that the probability of observing significant results remains
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below the defined level, such as the Bonferroni correction or Holm procedures
[Field, 2013].

It is worth noticing that when comparing different classification algorithms we
are only testing whether they have the same expected error rate. If they do, it
does not mean that they made the same mistakes. Additionally, the standard
applications of these tests usually consider that all the misclassifications have the
same cost. If it is not the case the tests need to take that into account.

2.2.5 Time Series
A time series is a collection of observations made sequentially in time. They exist
and can be studied in many scientific fields, such as meteorology and finance.
There are multiple reasons why the study of time series is important: i) the
ability to predict the future based on the past; ii) to control and understand the
process generating the time series; iii) the description of the prominent features
in the series [Bontempi et al., 2013]. Time series data and sequential data are
very similar, and although sequential data (e.g., gene sequences) does not have
reference to time, the order of the data is important. Thus, many of the approaches
used for time series can also be used for sequential data [Amr, 2012].

The first approaches for forecasting time series data (i.e., a prediction problem
in the context of time series) were statistical models, such as AutoRegressive In-
tegrated Moving Average (ARIMA) and Generalized AutoRegressive Conditional
Heteroskedasticity (GARCH) [Bontempi et al., 2013]. Although they perform well
with simple problems, due to their statistical nature they make assumptions about
the data and are not able to detect or extract knowledge from more complex data-
sets, which means they are not useful for many real applications [De Gooijer and
Hyndman, 2006]. A typical and important characteristic of time series is that the
sequence of the values is important, there is a dependence between observations.
This is called autocorrelation and it is a way of measuring and explaining the
internal associations between observations in a time series.

The prediction can be either one-step or multi-step (far more complicated due
to the accumulation of errors, reduced accuracy, and increased uncertainty [Tiao
and Tsay, 1994]) depending on the prediction horizon. Additionally, it can be
either univariate (only one independent variable) or multivariate (multiple inde-
pendent variables, increased complexity) [Santos and Kern, 2016]. Time series
data can also be divided into stationary and non-stationary. Being stationary
means that there is no systematic change in mean and variance [Chatfield, 2016].
Conversely, non-stationary is defined by their varying statistical properties with
time. Statistical models have tried to adapt to cover these data, yet, due to their
strong assumptions they still present limitations. On the other hand, some ML
algorithms can model the data with limited assumptions (e.g., NN, which have
been described as building the model based on the data without the necessity
of its previous specification [Zhang, 2003]) and may therefore be useful in such
scenarios.

Due to the amount of time series data nowadays (e.g., small scale devices and

— 33 —



CHAPTER 2. BACKGROUND AND RELATED WORK

every type of sensor) and the necessity to explore them, ML algorithms have
been used to improve time series analysis and have established themselves as
good (in some cases, better) alternatives to classical statistical models [Ahmed
et al., 2010; Palit and Popovic, 2006]. Although many algorithms are not able to
directly handle time series data, with some techniques they can be converted into a
standard supervised problem, which will then have all the plethora of supervised
ML algorithms available. Still, most algorithms will ignore the autocorrelation
structure [Vilar, 2009]. Other attributes, such as high dimensionality, correlation,
and noise, common in time series data also raise some challenges on the use of
ML algorithms.

One of the techniques to process time series data so that they can be viewed as a
supervised learning problem is to use previous time steps as features. This method
is called the sliding window (lag or lag method in statistics) and is exemplified in
Figure 2.9. The number of previous time steps to be considered, w, is called the
window width or size of the lag. Although this technique performs well, it does
not consider correlations between the predicted values [Dietterich, 2002]. Other
approaches (e.g., Recurrent Sliding Window, Hidden Markov Models) provide
different alternatives to consider past data [Dietterich, 2002].

T

x1

x2

x3

t

w = 1

a) Window Size: w = 1
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x1

x2
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w = 2

t-1

b) Window Size: w = 2

Figure 2.9: Sliding Windows-Based Time Series Analysis

The interdependence between time series instants (i.e., t+1 is related to t, autocor-
relation [Bisgaard and Kulahci, 2011]) may also raise some issues when splitting
the data to estimate the performance of the model, as it violates the i.i.d. (i.e.,
independent and identically distributed) assumption. Even within the ML field,
this remains somewhat of an open issue, as there are multiple approaches avail-
able but none is ideal (i.e., they all have advantages and disadvantages). The
main issue relies on the premise that ‘future’ data should not be used to make
predictions about the ‘past’. As overviewed by Bergmeir and Benítez [Bergmeir
and Benítez, 2012], to address this, several works reserve data at the end of the
series for prediction, to create a clear distinction between the ‘past’ (training) and
the ‘future’ (test) (often called out-of-sample [Tashman, 2000]). However, this ap-
proach has certain limitations, such as not using all the data and the fact that this
allows only for one forecast per series, a horizon that may not be representative.
While this may be mitigated by using multiple test periods (e.g., rolling-origin)
part of the issue (i.e., not using all the data) still remains. Although this premise
can be easily understood, some works (e.g., [Bergmeir et al., 2018]) contest its
relevance and argue that, in most uses of ML algorithms with time series, clas-
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sic cross-validation (which will mix both ‘past’ and ‘future’ data) can be used to
create accurate models while minimizing overfitting.

2.2.6 Adversarial Machine Learning (ML)
In recent years several works have shown that many (if not most) state-of-the-
art ML models are very sensitive to small/imperceptible variations in the data
[Szegedy et al., 2014; Goodfellow et al., 2015; Chen et al., 2019a]. Such data
samples became commonly known as adversarial samples [Goodfellow et al., 2015;
Biggio and Roli, 2018]. A simple example documented by Goodfellow et al.
[Goodfellow et al., 2015] is shown in Figure 2.10, where an image of a panda
with some imperceptible (but crafted) noise is predicted as a gibbon with high
certainty.

x
predicted: panda
57.5% confidence

+.007×

‘noise’

=

x + ‘noise’
predicted: gibbon
99.3% confidence

Figure 2.10: Adversarial Example [Goodfellow et al., 2015]

Adversarial environments have been extensively studied in several domains, from
image classification to speech recognition (e.g., [Szegedy et al., 2014; Carlini and
Wagner, 2018]), with a specific focus on NN-based algorithms. In fact, it has
been demonstrated that state-of-the-art image classification DNNs were fooled by
minor imperceptible changes (e.g., [Szegedy et al., 2014]) or carefully positioned
stickers (e.g., [Eykholt et al., 2018]). It has also been observed that other well-
known algorithms such as SVM and DT are also susceptible to adversarial samples
and that adversarial samples can often be transferred and compromise models us-
ing other architectures of even algorithms (e.g., [Wu et al., 2018; Papernot et al.,
2016]). Adversarial samples are typically studied from the perspective of an at-
tacker (i.e., intending to exploit/fool the system). However, they can also be used
to assess, and subsequently improve, the robustness of ML models to variations in
the data (such as those that will inevitably occur in production systems). Extens-
ive research has been done in recent years on adversarial environments, including
various surveys [Chakraborty et al., 2018].

For security purposes, it is logical to assume that the attacker will try to maximize
the confidence of the classifier on the desired output class. Still, a more common
goal is to find the minimal perturbation that leads to misclassification [Goodfellow
et al., 2015]. In general terms, adversarial samples are obtained by minimizing the
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distance of the adversarial sample x′ to the corresponding source sample x under
the constraint that the predicted label is different (i.e., minx′ d(x, x′) s.t. f(x) 6=
f(x′)) [Biggio and Roli, 2018]. The difference between the perturbed sample and
the original is typically measured using Lp-norms [Sharif et al., 2018]. Simplifying,
L0 measures how many features were perturbed, L1 measures the difference using
the Manhattan distance, L2 uses the Euclidean distance, and L∞ measures the
largest (feature) variation. Adversarial samples are crafted by minimizing one
of these norms. Notwithstanding, some works argue that Lp-norms are both
unnecessary and insufficient and thus this still remains an open issue [Sharif et al.,
2018].

There are two types of errors that can be leveraged [Biggio and Roli, 2018]: error-
generic (i.e., misleading classification regardless of the output class) and error-
specific (i.e., misclassifying as a specific output class) evasion attacks. While these
two goals have been significantly researched and can be solved through a gradient-
based attack for differential algorithms (e.g., NN, SVM with differentiable kernels),
non-differentiable algorithms (e.g., DT, RF) require considerably more complex
solutions (and do not have such a relevant related body of work). Additionally,
different levels of the attacker’s knowledge can also be considered [Biggio and Roli,
2018]:

• white-box – the attacker knows everything about the system/model (e.g.,
training data, learning algorithm, model hyperparameters) and can conduct
a worst-case evaluation;

• gray-box – the attacker has limited knowledge of the system (although vari-
ous scenarios can be devised, such as feature representation and/or learning
algorithm) but not the training data and model hyperparameters;

• black-box – the attacker has no knowledge of the system (such as the
feature space) and has only the feedback given through labels/confidence
and the idea of the task of the system and input features/representation
(i.e., it is partial, but not totally absent).

Several solutions have been developed over the years to create adversarial samples
within the various knowledge levels. More recently, some approaches have also
used generative models to create adversarial samples (e.g., GANs [Zhao et al.,
2018; Song et al., 2018] and VAEs [Ren et al., 2020]).

To improve the robustness of the models against adversarial samples, several tech-
niques (also known as defenses) have been developed [Biggio and Roli, 2018].
A ‘simple’ heuristic-based approach, adversarial training, relies on including ad-
versarial samples in the training data [Kantchelian et al., 2016; Goodfellow et al.,
2015]. Data augmentation (i.e., augmenting the training data with hard posit-
ives, samples that are not classified correctly with high confidence) has also been
used to improve stability to input changes [Zheng et al., 2016; Kuznetsova et al.,
2015; Zhao et al., 2020]. Additionally, several works are based on optimization ap-
proaches, thus providing formal robustness guarantees (e.g., game theory [Glober-
son and Roweis, 2006]; formulating adversarial learning as a minimax problem [Xu
et al., 2009]). Another type of defense is based on detecting and rejecting samples
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that are too far from training data (e.g., [Meng and Chen, 2017; Wild et al.,
2016]). Notwithstanding, several works have shown that the effectiveness of these
defenses is limited to the scenarios considered and fall short to different or novel
attacks. Ultimately, there is no single solution that can be used to improve the
robustness of the models, and this is still an open issue.

2.3 Related Work
This section presents and discusses the most relevant related work on fault injec-
tion and experimental testbeds, benchmarking, ML, and OFP.

2.3.1 Fault Injection and Dependability Testbeds
Over the years fault injection has been used to assess and improve the dependab-
ility of multiple systems, such as device drivers [Cotroneo et al., 2018], libraries
[Bhat et al., 2021], virtual machines [Cerveira et al., 2017], cloud platforms [Co-
troneo et al., 2019, 2020], and embedded [Jeong et al., 2017], critical [Irrera et al.,
2017], and blockchain systems [Hajdu et al., 2020]. However, due to its inherent
challenges, fault injection targeting large and complex systems is not so common.
Durães and Madeira [Durães and Madeira, 2006] proposed G-SWFIT and study
the use of fault injection on Windows 2000. The same tool was later used to inject
faults on Windows XP [Irrera and Vieira, 2014]. Due to its wide use on many
applications, some studies have also focused on Linux. Kikuchi et al. [Kikuchi
et al., 2014] studied the representativeness of failures caused through fault injec-
tion and Yoshimura et al. [Yoshimura et al., 2013] used fault injection to study
how errors propagate on Linux. To overcome some of the challenges of using fault
injection on large code-bases Van Der Kouwe and Tanenbaum [Van Der Kouwe
and Tanenbaum, 2016] presented a hybrid framework and evaluate it on Linux
and Minix. Some works have also focused on injecting faults on Android [Winter
et al., 2015].

One of the challenges with fault injection is finding an adequate fault injector
that can work on modern systems. In fact, many of the previous works rely on
the same base fault injector but made ad-hoc changes to fit their purposes but
typically do not make them available (e.g., [Swift et al., 2006; Depoutovitch and
Stumm, 2010; Kwon et al., 2016; Cotroneo et al., 2018] are all based on the fault
injector initially developed by Ng and Chen [Ng and Chen, 1999]). Other fault
injectors, such as the one used by Durães and Madeira [Durães and Madeira, 2006]
and Irrera and Vieira [Irrera and Vieira, 2014] have not been ported to recent ver-
sions and thus only work on old (and therefore no longer representative) systems.
Given the very complex nature of fault injectors and modern systems, creating or
updating fault injectors is not trivial and requires expert knowledge. As a result,
works that intend to leverage fault injection to conduct further studies on complex
systems are often limited to using deprecated systems (as is the case of OFP).
Notwithstanding, Yoshimura et al. [Yoshimura et al., 2012] updated and refact-
ored (and made available) the widely used fault injector from Ng and Chen [Ng
and Chen, 1999], allowing its use on more recent versions of Linux. Nonetheless,
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even with a viable fault injector, considerable effort/knowledge is still required
to set it up (e.g., many require recompiling the system/kernel) and implementing
the whole experimental process (e.g., fault load, failure modes, monitors). These
challenges and limitations are, in our opinion, the most prominent reasons why
failure prediction on complex systems (such as OSs) has not been researched as
much as it should.

Most existing work uses fault injection to directly assess the dependability of
systems. However, for OFP fault injection is used to generate failure data to
create failure predictors, similar to what Irrera and Vieira [Irrera and Vieira,
2014] did. This raises further challenges such as actually monitoring and timing
fault activation, workloads, and failures. Additionally, as the goal is to monitor
the target system, the behavior and performance of the experiments should be
as consistent and repeatable as possible. This requires carefully planning and
devising the testbed that will support the experiments.

A typical fault injection campaign requires a significant number of experiments
to cover all relevant faults and achieve statistically representative results [Winter
et al., 2015; Natella et al., 2012]. Moreover, fault injection can potentially corrupt
the system, and thus the execution environment used for each experiment should
be controlled. To address this, Banabic and Candea [Banabic and Candea, 2012]
proposed a framework to expedite the use of fault injection techniques, taking ad-
vantage of parallelization approaches. Winter et al. [Winter et al., 2013] explore
the use of simultaneous execution for multiple fault injections while Winter et al.
[Winter et al., 2015] assess the impact/validity of running multiple fault injection
experiments simultaneously. Schwahn et al. [Schwahn et al., 2019b] proposed
a framework for fault injection that accelerates the process by executing experi-
ments simultaneously and also avoiding redundant experiments. In fact, many of
the techniques used to develop dependable software require executing large sets
of experiments. Software testing, which consists of executing a program with the
intent of finding faults [Myers et al., 2011], typically requires the execution of a
considerable number of experiments [Hetzel and Hetzel, 1988; Kuhn et al., 2009].
Kapfhammer [Kapfhammer, 2001] parallelized his experiments for the problem of
regression testing. The need and demand for parallelization are so relevant that
there are studies on parallelizing test suites [Candido et al., 2017] and tools to ease
the execution of unit tests in a parallel/distributed manner [Gambi et al., 2017].
A variation of testing, robustness testing, attempts to assess to which degree the
program functions correctly in the presence of exceptional (e.g., range, invalid) in-
puts [Kropp et al., 1998]. Makai et al. [Makai et al., 2019] presented a case study
on the methods used to achieve automatic regression and robustness testing on
the CERN disk storage system, using GitLab-CI [GitLab, nd], which uses paral-
lelization. Work in large-scale European projects also made use of parallelization
to accelerate robustness testing [Fernández and Dullaert, 2018].

While some of the previous works actually parallelized experiments, others simply
made use of multithreading. Such techniques, as well as virtualization, raise
some concerns, such as if, and how much, interference exists between experiments
[Schwahn et al., 2019a] and how it affects the results [Novaković et al., 2013]. They
overlook the performance independence between experiments, as they were mainly
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focused on increasing throughput. Although some assess the profile of the exper-
iments between sequential/simultaneous execution (e.g., are the observed failures
similar [Winter et al., 2015]), they do not analyze the actual results/performance.
While increasing throughput is indeed relevant, if simultaneous execution com-
promises the experiments then the results may be invalidated. For example, if
the experiments are not isolated when assessing the performance impact in the
presence of faults (i.e., the performance results vary between running 1 or N ex-
periments simultaneously) then identifying variance due to the injected faults is
not possible. While the need for isolation is easy to understand, achieving it is far
more complex. As discussed in Section 2.1, so many factors in modern computers
non-deterministically influence their performance that even identifying them all
is not trivial. Besides differences between OSs and distributions, the architecture
of the system also influences the load distribution (e.g., CPUs shared L# caches,
multiple NUMA nodes). Moreover, to optimize resource usage and power con-
sumption modern systems have schedulers that distribute tasks depending on the
current demands and control the running frequency of the CPU depending on
several factors (e.g., computational load, temperature).

2.3.2 Benchmarking
Benchmarking has been used in various research areas, with performance bench-
marking likely being the most relevant domain (e.g., TPC and SPEC benchmarks),
ranging from simple (e.g., HW/component) to very comprehensive benchmarks
focusing on complex systems (e.g., databases [Vieira and Madeira, 2003]). They
have contributed to the improvement of successive generations of systems. How-
ever, a common issue with existing benchmarks is that they often include/define
a specific workload. How to assure that the results will hold in different contexts,
including deviations inherent to real-world scenarios, remains an open issue.

Recently there have been several works on dependability benchmarking following
different approaches (e.g., experimentation, modeling, fault injection) [Koopman
et al., 1997; Vieira and Madeira, 2003]. Cotroneo et al. [Cotroneo et al., 2017]
propose a dependability benchmark for Network Function Virtualization (NFV)
to determine which virtualization, management, and application-level solutions
provide the best dependability. Although not specifically a dependability bench-
mark, Nunes et al. [Nunes et al., 2018] propose a benchmark for Static Analysis
Tools (SATs) that considers the use of scenarios to take into account the envir-
onment in which the SATs will be used. While relevant, the guidelines/process
to create the predictive models is not very detailed and thus it becomes harder
to actually compare alternative solutions (different approaches to training and
assessing the models may lead to different and not comparable results). Other
details are also overlooked, such as statistically comparing the solutions to assure
the differences are significant.

Benchmarking ML algorithms is a known problem, typically addressed by using
generic datasets that can be used independently of any system configuration.
Notwithstanding, this is not a trivial task due to the wide variety of algorithms,
techniques, and hyperparameters. Moreover, properly assessing and comparing
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the performance of the models in a consistent, fair, and repeatable way is not
straightforward as various techniques can be used, which in turn depend on the
characteristics of the problem/dataset. However, benchmarking OFP algorithms
is different, as the failures observed likely depend on the particular system. This
way, to understand the effective performance of an algorithm it has to be tested
in the system where it will be used. In turn, this raises further challenges, such
as assuring that the collected data can, in fact, be used to properly benchmark
ML algorithms. Furthermore, the context in which the predictors will be used
influences the choice of the best solution.

Salfner et al. [Salfner et al., 2010] were the first to define comparability of failure
prediction approaches as a property that ‘can only be achieved if two conditions
are met: (i) a set of standard quality evaluation metrics is available, and (ii)
publicly available reference data sets can be accessed’. While the literature is rich in
metrics, they are not independent from the data [Sokolova and Lapalme, 2009] and
are often misused (e.g., using accuracy in imbalanced datasets). Over the years
there have been some initiatives for building repositories for failure datasets (e.g.,
the Computer Failure Data Repository [Usenix and University, nd], Los Alamos
National Laboratory [Laboratory, nd]) that publicly provide detailed failure data
from several systems. Notwithstanding, they are still not enough to assess and
compare failure prediction algorithms meant to be used in practice. In fact, to
understand the effective performance of a failure prediction algorithm, it has to
be tested on the system where it will be used.

Various works relying on ML for OFP have already been proposed. In recent
years predicting disk failures has been an active research topic, even considering
large-scale datacenters (e.g., [Zhu et al., 2013; Zhang et al., 2020]). Some work
has also been done on predicting job-failures (e.g., [Jassas and Mahmoud, 2020,
2018]) where the authors also found a clear correlation between failing jobs and
workload attributes. Irrera and Vieira [Irrera and Vieira, 2014] used fault injection
to generate failure data and study the applicability and limitations of such a
process in assessing and comparing failure prediction algorithms. However, from
a benchmarking perspective, these works have several limitations, such as the fact
that only a limited number of solutions were studied, and no guidance was given on
how to select adequate metrics. Additionally, no specific benchmarking procedures
are proposed nor validated to properly measure and compare the performance of
the various solutions, and no objective comparisons are made taking into account
the intended use of the models. This can be due to several reasons, such as the
fact that properly assessing and comparing different models in a repeatable and
consistent manner is not trivial.

2.3.3 Machine Learning (ML) and Dependability
Throughout the years, several techniques have been designed to increase depend-
ability, which can be mainly divided into two large groups: fault avoidance (aims
for fault-free systems) and fault acceptance (accepts and deals with the existence
of faults). Due to the growing complexity and sheer dimension of software, tra-
ditional techniques such as code reviews and testing typically do not scale well
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nor in an affordable manner. Following the recent trend of using ML in complex
problems, there has been some research on applying it to the dependability do-
main, as ML techniques can extract knowledge that would likely not be found
otherwise. Alsina et al. [Alsina et al., 2018] used ML algorithms to predict the
reliability of components and concluded that some achieve better results than the
equivalent traditional technique. Nie et al. [Nie et al., 2018] successfully used ML
to predict GPU errors in HPC systems. Alves et al. [Alves et al., 2016] use a
large vulnerability dataset and concluded that some ML algorithms were able to
predict all vulnerabilities using software metrics.

Although ML has been recurrently used in the dependability domain, most works
are both limited to a small set of methods and are specifically implemented ac-
cording to the scope of the experiment. This reduces the ability to compare results
and even minor decisions or bugs can drastically influence the resulting models.
As ML became widely used, various general-purpose tools have been developed
in both open-source and enterprise contexts. For research purposes, enterprise
solutions (e.g., Feedzai [Feedzai, nd], DataRobot [DataRobot, nd]) are not access-
ible, however, amongst the open-source tools, there is also no straightforward
choice.

One of such tools, H2O.ai [Cook, 2016], is a ML platform that has been gather-
ing support (mostly at enterprise level). It includes several ML algorithms and
techniques and a GUI, supported by several developers and a growing community.
However, although it is currently open-source, it is owned by a small company,
which can easily make it proprietary for profit. Additionally, its development
practices are not very strict, resulting in hundreds of branches with failed tests in
their Git repository, as well as some loose coding standards [H2O.ai, nd].

Weka [Eibe et al., 2016] is a well-known open-source ML tool and it contains a
wide array of algorithms and techniques for data mining tasks. It is mostly known
for its GUI (although it also provides a CLI and API) which allows the user to
experiment and visualize different techniques. However, concerning research, it
presents some disadvantages, which is why it is often used on an exploratory basis.
Although its GUI mostly removes the need to code, it is not intuitive, and less
common tasks are not easy to execute (e.g., combining multiple preprocessing
techniques). Moreover, Weka is implemented in Java, which has a steep learning
curve and often imposes a rigid and complex code structure. As a result, although
it also provides an API, customizing and expanding it is not that trivial. Weka
was initially developed in academia and is mostly maintained by a small team
(although there are also third-party packages). Thus, its code is often not clean
or efficient and the development and adoption of state-of-the-art techniques can
take some time. Combined with the fact that Weka does not have a very active
community, support is rather poor, which is only worsened by its documentation.
In fact, throughout the years, Weka has been losing relevance (as highlighted by
Saez et al. [Saez et al., 2017]) to more actively developed frameworks.

One of the most promising solutions currently available is scikit-learn [Pedregosa
et al., 2011], which is a comprehensive library of ML algorithms and techniques.
It has been widely adopted and thus has a large developer- and user-base. It is
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thoroughly documented which, combined with the active community, translates
into good support for use and development. Its large number of developers al-
lows it to steadily keep-up with advances in the state of the art, all the while
ensuring peer-reviewing of its code towards standards and performance. It has
an intuitive interface that is kept throughout the framework, allowing it to seam-
lessly integrate with other relevant ML packages (e.g., Keras [Chollet et al., 2015],
Tensorflow [Abadi et al., 2015], PyTorch [Paszke et al., 2019]), and makes use of
other scientific (e.g., numpy) and visualization packages (e.g., matplotlib). In fact,
it has been gathering support even within the scientific community [Eshete and
Venkatakrishnan, 2017; Saez et al., 2017]. However, it is made to be used only
as an API and, although it provides several ‘helper’ methods, it still requires
significant coding for a sound/comprehensive experimental process. Besides the
programming effort, this requires that the user has considerable ML knowledge to
properly conduct the experiments according to theory.

2.3.4 Online Failure Prediction (OFP)
OFP tries to predict incoming failures based on past failure data and the current
state of the system. Transposing the concepts of OFP to ML terms, the monitored
system variables are referred to as features. The set of values of those variables
at a given time t is known as a sample, and whether a failure will or not occur
for that sample is known as the class, label, or target of that sample. The work
conducted in this thesis focuses mostly on symptoms monitoring methods, where
the prediction is based on the continuous observation of the system state looking
for symptoms (i.e., the values of the features) that may indicate the potential
occurrence of failures. A key problem is that hundreds or thousands of features
may be required to characterize the system state in a precise manner.

Despite the potential of OFP, it is still not widely implemented, partially because
failures are rare events, and thus collecting data for training and testing new
methods is a complex endeavor. To mitigate this, several studies have been con-
ducted on the injection of software faults to generate representative failure data
[Durães and Madeira, 2006; Irrera and Vieira, 2015; Irrera et al., 2015; Jordan
et al., 2017; Pitakrat et al., 2018]. The use of virtualization and its impact on
the generated data has also been studied [Irrera et al., 2013a]. Notwithstanding,
conducting a proper fault injection campaign on a modern system is complex and
time-consuming, and therefore it is still not a common practice. As a result, most
recent work on OFP focuses on smaller components with a shorter lifespan (for
which it is possible to find, or easier to generate, failure datasets, e.g., hard-drives
[Zhang et al., 2020]). Various approaches relying on different sources of data (e.g.,
log files, system parameters) and ML have been proposed over the years [Salfner
et al., 2010]. Among them, Salfner and Malek [Salfner and Malek, 2007] used
a clustering approach based on the system state, alongside Hidden Semi-Markov
Models to predict failure-prone states. Predicting disk failures has also been an
active research topic (e.g., [Hughes et al., 2002; Zhu et al., 2013]), and, more re-
cently, Zhang et al. [Zhang et al., 2020] addressed the problem of disk failure and
replacement in large-scale data centers using a ML approach based on transfer
learning, which outperformed traditional approaches. Jassas and Mahmoud fo-
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cused on developing models to predict job-failures in large-scale cloud applications
[Jassas and Mahmoud, 2020] and have also studied the workload features of sim-
ilar job-failures and observed a clear correlation between failing jobs and workload
attributes [Jassas and Mahmoud, 2018] (agreeing with our argument that failure
data should be collected from the system where failure prediction is going to be
implemented).

Meanwhile, OFP for complex systems (such as OSs) has become stale. Pitakrat et
al. proposed a mechanism to classify and predict system events based on system
logs [Pitakrat et al., 2014] and later they proposed an architecture-aware OFP
approach that uses failure prediction at the component level and combines it with
architectural knowledge [Pitakrat et al., 2018]. While relevant, these approaches
are focused on well-defined hierarchical systems and accurate individual compon-
ent failure predictors, which are assumptions that typically do not scale well to
complex systems. Probably the most recent work that laid the groundwork for
this thesis is the work of Irrera et al. [Irrera et al., 2013b]. The authors thor-
oughly study the use of fault injection as a valuable technique to generate failure
data (using a G-SWFIT-based tool), which can be used for OFP. They use SVMs
to predict two failure modes on specific workloads on Windows XP. Later they
demonstrated the need to evolve predictive models [Irrera et al., 2014] and pro-
posed a conceptual framework to achieve this [Irrera et al., 2015]. Additionally,
they also analyze the influence of virtualized environments, as well as preliminary
techniques to account for the dynamic nature of software. However, concerning
the OFP problem, the authors did not conduct a thorough analysis of the different
tasks, using a limited set of techniques and algorithms.

While OFP is in essence a classification problem (i.e., predict if a failure will
occur based on the system variables at a given time) it can also be seen as a
time series problem by considering the evolution of the system (e.g., values from
previous instants) to predict an event in the future. Inherently, this means that
there is a correlation between sequential instances (i.e., t + 1 is related to t, auto-
correlation [Bisgaard and Kulahci, 2011]). As OFP relies on monitoring multiple
system variables, it is considered a multivariate time series. To use/extract this
information several techniques have been developed (e.g., statistical/windowed
feature extraction [Barandas et al., 2020]). However, OFP is not a typical time
series problem, as it is not trying to forecast the values of the system variables,
but rather an unwanted (discrete) event, whether or not the current state of the
system is indicative of a failure in the near future. As its data are typically
experiment-based, each experiment/run will have a different duration and there
is also no sequence between them (i.e., no ‘past’ or ‘future’ of the system between
experiments). Moreover, as failures will always be at the end of the experiment,
approaches such as out-of-sample are not applicable. Ultimately, the current body
of literature does not provide clear guidelines on how to combine these fields on
a complex problem such as OS-level OFP, which in turn may lead to wrongful
conclusions.

Overall, the main limitations of existing work on OFP are the following:

• due to lack of real failure data and the complexity of generating representat-
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ive and realistic failure data most existing works focus on smaller compon-
ents or on deprecated OSs. Moreover, among those that use fault injection
the specific characteristics of using such techniques to generate failure data
for OFP are ignored, which may ultimately compromise the results (e.g.,
false-predictors, such as system uptime, which do not have meaningful value
in fault injection campaigns but may indirectly leak information of the pro-
cess);

• most studies use the same prediction approaches, being limited to a few
commonly used techniques and algorithms (mostly SVMs with some ker-
nel variations) [Irrera et al., 2013b; Hoffmann et al., 2006; Jordan et al.,
2017]. As there is no algorithm that is best for every problem [Wolpert and
Macready, 1997], such a limited analysis does not take advantage of the
plethora of algorithms and techniques, as well as the computational power
that is available nowadays;

• the interpretation of the performance of the predictive models is limited,
often focusing on individual metrics that may not even be adequate for the
nature of the problem. Although there are many metrics and techniques to
assess their performance, depending on the data and purpose of the predict-
ors they should be conscientiously used, as they measure different things.
By using inadequate metrics, the analysis and choice of the models may
ultimately be wrong. Additionally, the ideal set of performance metrics also
depends on the needs of the target system, which has also not been taken
into consideration;

• studies are usually focused on a very specific experimental model, such as
a limited faultload, a specific workload, or a very focused failure mode.
Although when using a model the conclusions cannot be completely gener-
alized (i.e., it is only possible to say that for the problem represented by that
data, a model behaved as it did), by considering very specific contexts it is
not possible to have an insight into how they generalize to other contexts
(e.g., environments);

• finally, due to the ad-hoc nature of such studies and the nonexistence of
standardized support for assessment, they cannot be compared or general-
ized. As such, it is impossible to compare approaches from different works,
and any conclusions are constrained to the approach followed by the authors.

The lack of extensive use of ML techniques for OFP can partially be explained
by the fact that some of the required techniques (such as the ability to quickly
generate failure data and create sandbox environments) have only recently been
used for OFP and still remain open issues. The fact that there are various complex
interdisciplinary subjects involved (e.g., fault injection, OFP, ML) and no relevant
document exists on how to combine them is also be a contributing factor, as such
task requires extensive expertise and considerable effort.
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2.4 Summary
Over the years considerable work has been done towards advancing the state of the
art on both dependability, focusing on creating more dependable systems, and ar-
tificial intelligence, developing techniques that further allow extracting knowledge
on evermore complicated problems. Notwithstanding, as shown in this chapter,
both these fields are complex in nature and present several challenges when tack-
ling new problems, such as OFP. Because OFP depends on complex techniques
from both domains, and despite its potential, there is little research or document-
ation on how this can be achieved.

This chapter provided the necessary background knowledge and introduced the
basic concepts required to understand the scope of this thesis, as well as the chal-
lenges and open issues it addresses. This chapter also presented and discussed
existing relevant related work on the dependability and ML domains. It high-
lighted the various contributions that can be used to support the development of
OFP solutions for complex systems and the major issues that still have not been
properly solved.
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Chapter 3
Techniques and Artifacts to
Support OFP

Developing accurate failure predictors for modern complex systems is not a trivial
task. It requires mastering both theory and practice from multiple research fields.
As a result, tools and procedures to support research on OFP are not readily
available, which is in fact one of the main constraints to the use of OFP.

Regardless of how many works demonstrate that OFP can be used to create fail-
ure predictors, developing predictive models requires training them on failure data
from the target system. As it is not possible nor feasible to assume that failure
data is available, it becomes necessary to somehow generate realistic failure data
to overcome this issue. Fault injection has been accepted as the best alternative to
generate failure data, but conducting a fault injection campaign on a complex sys-
tem requires executing thousands of experiments to achieve statistical relevance.
Moreover, a sound fault injection campaign requires several considerations (e.g.,
injection level, fault model) and fault injectors are typically very complex and
system-specific (e.g., architecture-dependent). Fault injection also has limitations
(e.g., representativeness) that should be taken into account and mitigated.

Although recent technological developments have led to an increase in computa-
tional power, implementing a testbed that can take advantage of the resources
available without influencing the results is not trivial. To expedite the experi-
mental process and reduce costs researchers often use modern techniques (e.g.,
hyperthreading) to run multiple experiments simultaneously, which relies on a
premise of non-interference (i.e., executing multiple experiments simultaneously
should not alter the behavior of the individual experiments). While some types
of isolation are easier to attain (e.g., software isolation, the corruption or mis-
behavior of one experiment should not influence other experiments) others are
quite difficult (e.g., performance isolation, where executing one or multiple exper-
iments simultaneously should lead to similar results). This poses a challenge to
the repeatability and validity of the experiments.

Using ML techniques to create predictive models on a new dataset is also an intric-
ate endeavor. A thorough ML approach is a complex and problem-specific process
comprised of several steps. Each of these steps includes multiple tasks, from ex-
ploratory and statistical analysis, to feature selection and extraction, model con-
struction and selection, and performance assessment. The whole process must be
correctly implemented, otherwise, the performance estimates obtained will likely
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not be representative. This requires mastering both theory and practice, as even a
small mistake may inadvertently compromise the results. Various platforms have
been proposed over the years to facilitate this process, but most cannot be easily
customized, or have other limitations, such as restricted support or libraries. In
fact, although comprehensive and well-established tools are available (e.g., Weka
[Eibe et al., 2016]) there are still many researchers that rely on lower-level libraries
(e.g., scikit-learn [Pedregosa et al., 2011]).

This chapter presents techniques and artifacts to support the development of pre-
dictive models for OFP. It provides guidelines on how to use fault injection to
generate realistic failure data and how to configure a testbed that can leverage
modern computational power to expedite the process without compromising the
results. A comprehensive ML framework developed specifically for OFP and de-
pendability research is also presented. It encompasses all the necessary steps for
a thorough ML approach to create accurate and representative predictive models
while ensuring the correct implementation of the different techniques and meth-
ods, with specific considerations for dependability and OFP.

3.1 Configuring and Deploying a Testbed
One of the most critical challenges for OFP is having enough failure data to
create predictive models. Failures are rare events and thus failure data are often
not available. Even if it were possible to gather such data from real systems,
that would take years (due to the reliability of modern systems), and by then
they would likely be outdated. While there are initiatives to build failure data
repositories (e.g., Computer Failure Data Repository [Usenix and University, nd])
using such datasets is not enough as it does not take into account the system where
the predictor will run. Hence, over the years fault injection has been accepted as
a viable alternative to generate realistic failure data (e.g., [Irrera and Vieira, 2015;
Cotroneo et al., 2019]). However, conducting a proper fault injection campaign
on large code-bases is a complex and time-consuming task that requires executing
thousands of experiments to be representative and achieve statistical relevance. In
fact, this is a common issue across different subjects within dependability research,
which aims at assisting in the development of dependable systems (e.g., robustness
testing [Kropp et al., 1998]). To mitigate this, researchers often use heuristics to
minimize the test set, possibly compromising the results obtained. While some
works make use of distributed approaches to speed up the experimental process
(e.g., [Parveen et al., 2009; Oriol and Ullah, 2010]), such setups are often not
available for researchers.

Due to technological developments, there has been a considerable increase in
computational power. Moreover, various techniques have been developed at the
hardware-level, such as running multiple threads on a single core [Intel, nda], ac-
celerating the processor for peak loads [Intel, ndb], and hardware virtualization
[Intel, ndc]. To take advantage of the current computational power and accel-
erate the experimental process, as well as reduce hardware costs, several works
have used multithreading to execute experiments simultaneously on a single ma-
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chine (e.g., [Winter et al., 2015; Schwahn et al., 2019b]). However, this requires
a completely automated testbed, which is not always easy to set up, especially
when real-time monitoring functionalities and complex application interactions
are required. Additionally, it also relies on the premise of non-interference, such
as software containment and performance isolation. In short, executing experi-
ments simultaneously should not alter the observed behavior and results. In this
direction, virtualization techniques have been recurrently used for conducting ex-
periments in the dependability domain (e.g., [Irrera et al., 2013a; Gambi et al.,
2017]), as they facilitate the experimental process and its automation, as well as
provide software containment (i.e., the misbehavior or failure of a VM does not
influence other running VMs). However, performance isolation is not so trivial,
as, by default, running experiments simultaneously will lead to lower individual
performance. While this may not be a problem in some scenarios, it is often
necessary to guarantee that the experiments are as consistent and repeatable as
possible.

As a consequence of all the inherent experimental complexity and current tech-
nological solutions, devising and deploying an experimental testbed to assess the
dependability of software systems is not straightforward. Furthermore, docu-
mentation, guidelines, and examples are not usually available, and thus properly
implementing a testbed requires significant effort and expertise to identify all the
relevant attributes, requirements, and implementation solutions. This frequently
leads researchers to develop simplified testbeds focusing on their specific concerns,
often not taking advantage of the computational resources available or neglecting
aspects that may negatively influence the results of the experiments.

The work presented in this section attempts to overcome the aforementioned lim-
itations by overviewing the concerns and requirements of a testbed for experiment-
based dependability research. Additionally, we provide guidelines on how to cre-
ate, configure, and attain the various testbed attributes. Although some of the
commands presented in this section pertain to the Linux OS (as it is often the
chosen platform for research) the concepts and guidelines apply to most mod-
ern OSs. These guidelines focus on achieving experiment isolation and complete
automation so that multiple experiments can be executed simultaneously.

3.1.1 Drivers
OFP requires conducting large sets (e.g., thousands) of fault injection experi-
ments to generate failure data. Such experiments are time-consuming, and given
the computational power of modern systems, executing experiments simultan-
eously allows reducing both execution time and hardware experimentation costs
(a prominent concern in research, as highlighted by Kanoun and Spainhower [Ka-
noun and Spainhower, 2008]). Notwithstanding, examples or guidelines on how
to properly set up an adequate experimental testbed are not typically available.
The main drivers that we establish that should be taken into consideration when
devising a testbed for dependability experiments are the following:

• Containment and Monitoring – the main purpose of fault injection is to
study the behavior of the system in the presence of faults, which may easily
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lead to corruption. Hence, each experiment should start with a clean version
of the system. Additionally, it is also necessary to monitor the system under
test to assess the impact of the injected faults. Due to the risk of an abrupt
termination, it must be measured/stored every second.

• Automation – due to the potentially large number of experiments, the process
needs to be as automated as possible to avoid the need for user interaction. It
should be possible to automate the entire experimental setup: prepare/config-
ure the host machine, execute the experiments (e.g., launch target machine,
run fault injection/workloads, monitor/collect system metrics, detect failures),
and terminate/clean the process (e.g., store/process/validate the collected data,
restore host configurations).

• Simultaneous Execution and Isolation – the goal is to leverage the com-
putational power available to expedite the experimental process by running
multiple experiments simultaneously. However, identical experiments should
produce identical results (i.e., the focus is on consistency and not peak per-
formance). This premise should hold even if multiple experiments are running
simultaneously, within fair use and share of the resources.

While the previous drivers are easy to understand, developing a testbed to achieve
them is not straightforward. The following sections overview the most relevant
concepts and provide guidelines and reflections on how to develop a fully auto-
mated testbed. They detail how to: i) configure the system to attain performance
isolation; ii) leverage virtualization for software containment; iii) monitor the ex-
periments in real-time; and iv) automate the process. A high-level illustration of
the approach can be seen in Figure 3.1. Briefly, the host contains a controller
that is in charge of handling all the workflow (e.g., isolating and controlling the
experiments/VMs). Then, each VM sets up the required experiment configura-
tions (e.g., shared folders), injects the faults instructed by the host, and executes
the workload while monitoring the system.
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Figure 3.1: Experimental Process
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3.1.2 Simultaneous Execution and Isolation
Running multiple experiments simultaneously allows taking advantage of modern
computational power. However, for consistency and repeatability, it should not
influence the results of the experiments. Performance isolation is not easy to
attain and ultimately it will never be perfect without having dedicated hardware,
running the experiments sequentially, or running them on separate machines. As
an example, even if one ‘guarantees’ that a physical core from a multi-core CPU is
exclusively dedicated to an experiment, some of the CPU components may still be
shared (e.g., some architectures have shared L2 caches and most have shared L3
caches). Still, some solutions allow achieving decent performance isolation.

By default, when executing experiments simultaneously (e.g., through threads
or processes), the OS scheduler will distribute tasks across the cores as it sees
fit. Hence, to minimize interference and variations each experiment should be
allocated to a fixed set of cores. However, one thing is to limit a process to a
set of cores and another entirely different is to avoid any other processes from
being scheduled to those cores. Two other concepts should also be taken into
account. First, NUMA, a computer memory design where the memory access
time depends on its location relative to the processor (i.e., a processor can access
its own local memory faster than non-local memory) [Lameter, nd]. The cores
dedicated to an experiment should belong to the same NUMA node (although in
most architectures each CPU is a NUMA node, it is not always so, e.g., AMD
Threadripper 1950X has 2 NUMA nodes). Second, logical cores of a given physical
core share resources (e.g., L# caches) and should be used for the same experiment
to avoid latency spikes. Hence, each experiment should run in a separate physical
core.

A brief overview of the most relevant steps to achieve performance isolation can
be seen in Figure 3.2.
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CPUs
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CPU
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Execute 
Experiments

Restore 
Defaults

Figure 3.2: Performance Isolation Process

Isolating CPU Cores
To minimize interference, the logical cores required for the experiments should
be isolated from the process scheduler. This can either be done using the isol-
cpus kernel parameter (a static approach, which will take effect at boot time)
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or using cset-shield/cset-(set)(proc) functionalities (a runtime approach that cre-
ates/defines/isolates sets of cores, known as cpusets). While cset-shield/cset-
(set)(proc) is often the recommended approach, as it provides more control over
the isolation, it may not be able to move some processes already running on the
intended cores. Nonetheless, both approaches may not be able to completely
prevent kernel threads from being scheduled to the isolated cores.

The cset-shield program uses a concept of 3 cpusets [Ubuntu, ndd]: i) root: con-
tains all cores (unshielded); ii) system: contains cores used for system tasks (un-
shielded); and iii) user : contains cores used for dedicated tasks (shielded). All
userspace tasks will run in system, while user has nothing unless specifically set.
However, cset-shield is only useful if one wants to isolate a single experiment (only
one user cpuset). This way, it is necessary to use cset-set [Ubuntu, ndc] (create,
adjust, rename, move and destroy cpusets) and cset-proc [Ubuntu, ndb] (manage
threads and processes) to have finer control of cpusets. The concept is similar to
cset-shield, but various user cpusets should be created (one for each experiment).
Keep in mind that the logical cores in each cpuset must consider physical core
affinities and NUMA, otherwise, errors or unwanted fluctuations may occur.

CPU Pinning
After isolating the intended cores, it is necessary to pin specific tasks/processes to
them. Although there are various approaches (e.g., taskset), when using cset-set
it is better to use its counterpart, cset-proc, which allows running a program on a
given cpuset. Naturally, a cpuset should only be used for a single experiment at
each time.

Preallocating Memory
Another technique to minimize interference between experiments is related to
memory, which can have a noticeable impact on performance, especially in the case
of latency-sensitive applications. Thus, preallocating memory for the experiments
and increasing memory page size will help reducing memory access latencies and
increase overall performance. Briefly, preallocation dedicates a contiguous area of
memory so that it does not require to be dynamically allocated when needed. This
provides several advantages, such as guaranteeing that no other process will use
that memory, no allocation overhead exists, and no memory fragmentation occurs
[Grimm, 2017]. When using VMs (which will later be discussed as a way to achieve
software containment), a single configuration is often required to preallocate the
memory for the VM.

Another improvement concerns the size of system pages. In short, the kernel
needs to keep a table containing virtual-to-physical address mapping. Using small
pages (e.g., 2KB) increases the total amount of entries in the index and there-
fore increases the time to look up/manage pages. Hugepages (e.g., 1GB) means
that fewer pages will be required, reducing mapping, look-up, and maintenance
overhead. Hugepages can be dynamically allocated during runtime. While most
modern distributions have some high-level functionality that facilitates this, if the
system has multiple NUMA nodes some precautions should be taken. First, it is
necessary to define how many, and how, the experiments will be distributed across
the NUMA nodes, and to calculate how many hugepages are required per node.

— 52 —



CHAPTER 3. TECHNIQUES AND ARTIFACTS TO SUPPORT OFP

Then, one needs to check whether the pages are allocated as intended (not all
distributions allocate them evenly across the nodes), otherwise, issues may later
arise (e.g., starting a VM on a node that does not have enough hugepages left).

Limiting CPU Frequencies
Isolating cores, exclusively assigning them to experiments, and isolating memory
may give the (wrong) idea that it is enough. Because energy efficiency is nowadays
an important factor in the design of CPUs, cores can be completely turned off
temporarily and their running frequency constantly changes depending on several
factors (e.g., computational load, temperature). Additionally, specific techniques
can also increase the frequency for peak load performance (e.g., Intel®Turbo
Boost). This represents a challenge to systematic and repeatable experiments.

The goal is to disable/minimize variations of CPU frequency. While it could
be tempting to set it for maximum speed, this may still be overridden (e.g.,
when reaching threshold temperatures). The more reliable way is to set the CPU
frequency to its minimum, as it will not go below it. While this will force the
CPU to work slower, often the focus is on comparison and repeatability and
not on achieving the best performance possible. Thus, a performance penalty is
usually acceptable, as far as it is the same for all experiments.

Minor Optimizations
Although often not as significant, other optimizations can also be carried:

• Real-time Kernel – using a real-time kernel may further reduce/eliminate
latency and improve the predictability of thread scheduling. However, this
typically requires manually recompiling the kernel and expert knowledge is
advised. An alternative are low-latency kernels which are often available
in the repositories and provide good real-time characteristics while keeping
reliability [Ubuntu, nde].

• Process Scheduler Tuning – another approach to reduce latency is to
set a process (the experiment) to use a real-time scheduling policy (e.g.,
SCHED_FIFO[Ubuntu, nda]). This will assign a higher scheduling priority
to the process and therefore improve the predictability of thread scheduling.

• NOHZ Full – the kernel of modern OSs typically uses a scheduling clock
that interrupts running applications to run a scheduler. Concerning Linux,
version 3.10 introduced a full tickless mode (NOHZ full) that disables the
scheduling clock when only one application is running on a CPU [LWN.net,
nd].

• Interrupt Request (IRQ) Pinning – IRQs (hardware signals that trigger
kernel interrupts) have an affinity property that specifies which cores can
process them [Hat, nda]. This may be altered to avoid using isolated cores
(i.e., cores assigned to experiments).

• Offloading Ready-Copy-Update (RCU) Callbacks – RCU is a lockless
mechanism for mutual exclusion [Hat, ndb]. As a consequence, callbacks are
often queued to be performed afterward. Seemingly, the rcu_nocbs kernel
parameter avoids these callbacks on isolated cores [Hat, ndb].
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• Storage Optimizations – intensive use of data storage (even Solid-State
Drives (SSDs)) can lead to considerable wear and reduced performance. To
minimize this, dirty blocks on disk should be periodically cleaned.

3.1.3 Using Virtualization
The use of virtualization is becoming a common practice. Besides being able to
simulate machines running on different hardware and OS, it also has become the
de facto approach to contain experiments (i.e., in theory, corruption of a VM
does neither affect other VMs nor the host). Hence, it is a good solution for an
automated testbed for failure data generation.

The problem is that, although VMs allow specifying the guest resources, they
do not guarantee performance isolation [Jing et al., 2014; Matthews et al., 2007].
Bare-metal (i.e., Type-I ) hypervisors may offer better isolation [Matthews et al.,
2007] but they are not ideal for research (e.g., are mostly focused on enterprise
solutions, limit the machine to just using virtualization). Additionally, because
research is constantly evolving and often requires executing many experiments
in varying environments, a prerequisite is that the chosen hypervisor must be
flexible and easily scripted. While once again there are various alternatives,
QEMU[QEMU, nd] (using KVM[KVM, nd]) is likely the most adequate option.
QEMU may not be the easiest to get started, but it is highly flexible and can be
seamlessly scripted. Moreover, QEMU provides several useful options for research
and automation such as redirecting the output from the guest directly to the con-
sole and providing a separate kernel image. Additionally, combined with KVM,
it allows for near-native performance.

After creating the necessary cpusets, QEMU can be initialized using the cset-proc
command, specifying which cpuset to use. When pinning VMs to a cpuset one
needs to be sure to leave one logical core for QEMU/system processing (e.g., if
the cpuset has 2 logical cores, allocate just 1 to the VM). Concerning the other
optimizations previously described, QEMU can be instructed to use hugepages
(after properly allocating them) and which NUMA node to use (when applicable).
Additionally, to improve latency, the VMs can be run using a real-time process
scheduler. Kernel Same-page Merging (KSM), a memory-saving de-duplication
feature that merges/shares memory pages used by KVM, should also be disabled.
While this allows fitting more virtual machines into physical memory it may also
introduce unwanted and unpredictable latencies when assessing/modifying the
pages [Kernel, nd].

3.1.4 Monitorization
A key aspect is the capability of monitoring the target system. Although virtu-
alization eases some problems, it also creates new challenges, such as collecting
metrics/logs from the VMs. While in some scenarios it may be collected dur-
ing execution and made available at the end of the experiment, for others (e.g.,
fault injection, which may abruptly terminate the VM), it should be continuously
provided.
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One common approach to monitor the state of a system is through its metrics
(e.g., CPU/memory). This requires that a set of representative metrics (i.e., that
characterize the system) should be chosen and collected. While it is possible to
a priori select the most relevant metrics, this may require re-running the experi-
ments if they are not adequate. A more generic approach is to monitor as many
relevant metrics as possible (without impairing the system) and analyze them
post-hoc, enabling possible knowledge discovery (e.g., metrics or synergies that
would not have been inferred otherwise).

Most OSs provide native tools to gather system metrics (e.g., sysstat [sysstat,
nd] in Linux). Still, most report the data in an unstructured format, and various
tools are necessary to monitor the most relevant resources. Concerning free cent-
ralized solutions, while there are some well-known options (e.g., Munin [Munin,
nd], Nagios [Nagios, nd]), it is not straightforward to access ‘real-time’ metrics
(most are guided towards larger execution times). An adequate option is Net-
data [Netdata, nd], a comprehensive, lightweight, and highly optimized tool (with
negligible overhead) that provides real-time monitoring by default.

Concerning storage, although the easiest way to share data between the guest
and the host is using shared folders, it may generate too much I/O activity.
Instead, using the REST API provided by Netdata allows keeping the data in
memory and saving it in batch. Notwithstanding, it is possible that, with specific
configurations, other solutions may provide similar functionalities.

3.1.5 Process Automation
A testbed intended to run large sets of (simultaneous) experiments requires com-
plete automation. This is often achieved through simple scripting (e.g., Bash)
or programming languages (e.g., Python). However, more complex applications
(e.g., interacting with VMs) may require more specific solutions. For example,
Expect [Libes, 1995] is a TCL program that ‘talks’ to other programs, character-
izing an interaction between user/program. Over the years it has been ported to
various programming languages (e.g., Java [Gavrilov, 2018]).

Due to its flexibility, ease of use, and scientific packages, Python is one of the best
languages for research. Pexpect (Python’s implementation of Expect [Spurrier,
nd]) allows automatically spawning and controlling applications. Mainly, it is
comprised of two methods: expect and sendline. Briefly, sendline can be used
to send commands to the application and the expect method awaits a successful
match with the output given by the command. Pexpect also allows the use of
conditional expects to deal with multiple possible outputs (e.g., a sudo command
may or may not require a password).

3.2 Fault Injection to Generate Failure Data
Fault injection has become the de facto approach to generating representative fail-
ure data. For OFP, this allows overcoming one of the most prevalent limitations,
the scarcity of data. However, fault injectors are difficult to implement or develop
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(or even to use) and thus research on failure prediction for complex systems (such
as OSs) has become stale or relies on outdated datasets (e.g., [Irrera and Vieira,
2015]). Additionally, a typical fault injection campaign targeting complex sys-
tems also requires executing a large number of time-consuming experiments. In
the end, properly conducting a fault injection campaign requires a fully automated
and isolated testbed, which can be implemented following the guidelines described
in the previous section. This will allow executing and monitoring large fault in-
jection campaigns in feasible time without sacrificing representativeness.

Briefly revisiting some concepts, following the taxonomy proposed by Avizienis et
al. [Avizienis et al., 2004], when the delivered service deviates from what is expec-
ted, it is known as a failure. A failure is due to a deviation in its state, known as
an error. Errors are caused by faults, which can be internal (i.e., originated within
the system boundaries) or external (i.e., originated outside the system boundar-
ies). Fault injection intentionally introduces faults in the system to observe and
assess how it handles in their presence. The (types of) faults to be injected con-
stitute the fault model. Each fault type can only be injected in specific locations
in the code (e.g., missing initialization can only be injected in instructions where
a variable is being initialized), which are known as fault candidates.

In general, a fault injection environment is comprised of various components
[Hsueh et al., 1997]: i) a controller (which controls the experiment); ii) a fault
injector ; iii) a fault library/model; iv) a monitoring system; and v) a workload to
exercise the system. Although the concept of fault injection is easy to understand,
conducting a proper fault injection campaign is a complex task that encompasses
several design choices that must take into account the characteristics of the prob-
lem. Furthermore, using fault injection to generate failure data to support the
development of predictive models for OFP requires specific considerations to as-
sure the representativeness of the results. A high-level overview of the process can
be seen in Figure 3.3. It is comprised of three main steps: 1) Preparation: define
and select the relevant components; 2) Generate Data: execute the fault injection
experiments; and 3) Process Data: validate the generated data.

 

 

Fault Injector

Monitoring

 
 

Fault-load

Workload

Manage Exps
Monitoring
Failure Detectors 

...

Fault Inj. Runs

1 2 3

Generate Data 

Fault profiling

Host

Experiment 
Controller

 
 

Preparation 

Consistency

Time-to-Failure

Fault activation

Failures dist.

Process Data

...
...

Golden Runs

GR-1

GR-N

FI-1

Start 
VM

End 
VM

Start 
Wkl.

End 
Wkl.

Start 
Mon.

Stop 
Mon.

Setup 
Exp. 

FI-N

VM

VM

VM

VM

Start 
VM

End 
VM

Start 
Wkl.

End 
Wkl.

Start 
Mon.

Stop 
Mon.

Setup 
Exp. 

Inj. 
Fault

Figure 3.3: Data Generation Process

— 56 —



CHAPTER 3. TECHNIQUES AND ARTIFACTS TO SUPPORT OFP

3.2.1 Preparation
The first step of a fault injection campaign is selecting and defining which tech-
niques and configurations will be used. As can be seen in Figure 3.3, this includes
the workload that will be executed, the fault model defining which types of faults
will be injected, the fault injector to be used, the failure modes that will be mon-
itored, and how the target system will be monitored.

Workload
A workload is needed to exercise the system and study the impact of the injected
faults. As the workload influences the behavior of the system (with and without
fault injection) it must be selected considering the technical needs of the system.
The similarity of the workload to the operational scenario of the target system
influences the representativeness and confidence one can put in the results. The
duration of the workload execution should vary according to the needs of the
system, but it must be at least long enough to allow the activation of faults and
potential build-up to failure.

Fault Model
One of the premises of using fault injection to generate data is that they will
be representative of real failure data. To achieve this, fault injection relies on
injecting realistic faults (i.e., faults that have been proven to be recurrently made
by programmers).

The definition of the fault model (i.e., the faults that will actually be injected)
is one of the most relevant tasks of the first step. This model directly influences
the validity of the results and therefore must be as realistic and representative as
possible, otherwise, it can be argued that the failures (and subsequent predictors
trained on such data) are not representative. Thus, the fault types (‘what’) and
locations (‘where’) should be carefully defined. Moreover, depending on the re-
quirements and analyses for which the data will be used, it may be necessary to
consider additional factors (e.g., code coverage).

Injected faults range from low-level (e.g., bit-flips) to high-level (e.g., memory
allocation) faults, which are nowadays commonly injected through software (also
known as SWIFI) [Durães and Madeira, 2006]. The latter are the most relevant
and intend to approximate real programming errors. They emulate various types
of real faults, such as assignment faults, control faults, parameter faults, omission
faults, and pointer faults. It should also be noted that not all injected faults lead
to faulty behaviors (e.g., bugs inserted on a rarely/never executed path/condition
will rarely/never produce an error). In fact, when targeting large code-bases the
chance of injecting a fault in a path that will be executed is very low. Different
approaches can be used to mitigate this, from injecting multiple faults in each
experiment to profiling the execution of the workload to inject faults in places
that are more likely to be executed.

Fault Injector
The next major task is selecting an adequate fault injector that supports the
previously defined fault model. Faults can be injected at different levels, each
with its own advantages and disadvantages. Typically, the injection can be made
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at either the binary code (generic, less expensive, but loses context) or at the
source-code (less generic and more expensive as it may require recompiling and
source-code is often not available, but more accurate as it preserves context). To
take advantage of both approaches, over the years there have also been some works
on hybrid solutions (e.g., HSFI, which combines both source-code and binary-code
fault injection [Kouwe and Tanenbaum, 2016]). Other works also explore injecting
faults at other levels, such as intermediate-code [Lu et al., 2015].

Finding an adequate fault injector, that is both suitable and available, is not
always easy. Especially when targeting complex systems (which typically have a
large code-base), a trade-off must be considered among the viable alternatives,
between ease of use, scalability, and representativeness.

Failure Modes
It is also necessary to define which types of failure are going to be considered.
This is particularly relevant, as they often require developing and implementing
specific failure detectors and will ultimately determine which types of failures can
be predicted.

Failure modes can be based on historical or system-specific failures, or existing
failure taxonomies (e.g., C.R.A.S.H [Koopman et al., 1997]). Some of the most
common failure modes are system crash and hang, performance deviation, or di-
verse system corruption (e.g., filesystem). At a high-level, failures can also be
divided into fail-stop (i.e., the system cannot continue afterward, e.g., system
crash) and non-fail-stop (i.e., the system continues execution in a degraded mode,
also referred to as fail-soft failures [Tipton and Krause, 2007], e.g., delayed cpu
execution). While non-fail-stop failures may provide further granularity, it should
be taken into consideration that multiple failures may occur within a given time-
window.

Monitoring
The final major decision of this step is to determine how the state of the target
system will be monitored. These data will later be used to create predictive
models and thus should be thoroughly collected. Several sources of data can be
considered, such as the system metrics or/and logs. Notwithstanding, different
sources of data will influence the ML techniques that can/should be used to create
predictive models. As an example, while numeric system metrics can be used with
the most traditional ML algorithms (e.g., SVM), text-based data typically requires
NLP pre-processing techniques and algorithms.

3.2.2 Generate Data
A fault injection campaign typically includes executing many (e.g., thousands)
experiments with and without fault injection for a given workload. Given the
number of potential experiments, the whole process should be automated.

For OFP, several types of runs can be considered, as depicted in Figure 3.3.
Runs in which faults are injected are known as fault injection runs. They can
be either failing runs if a failure occurs, or non-failing runs otherwise. To create
predictive models that can distinguish between normal and failure-prone states it
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is also necessary to determine the baseline behavior of the system in the absence of
faults (i.e., experiments where no faults are injected), which are known as golden
runs.

Injecting faults may lead to the corruption of the target system. Thus, each
experiment must start with a clean version (which is typically discarded at the
end). Due to the stochastic nature of complex systems, and depending on the
number of candidate fault locations, multiple experiments should be conducted
for each fault. Moreover, it is not only relevant to assess whether a failure occurred
or not, but also when the injected fault was activated. This allows measuring how
long it takes between the fault activation and the failure occurrence and provides
a hard timestamp from when the symptoms may start to manifest (i.e., symptoms
cannot start prior to the fault activation). Injecting faults in complex systems is
a difficult task, both due to their complexity and their size. It is often common
that there are too many candidate locations and thus it is not possible to explore
all of them. Different approaches can be considered to guide the process (e.g.,
profiling the workload and injecting only in code likely to be executed) to make
it feasible without losing representativeness.

To detect failures, all the necessary failure detectors should be deployed and the
target system continuously monitored. If some failure modes require a time-
window to be considered (e.g., a hang failure is typically considered after the
system becomes unresponsive for n seconds) the time of failure should be the
first instant it occurred. Due to the complexity of modern systems, it is also
possible that some failures may pass undetected by the failure detectors deployed.
Depending on the purpose of the fault injection campaign, it may also be relevant
to check for such failures (e.g., by monitoring the logs of the system). If non-fail-
stop failures are considered, it is also necessary to define what will occur to the
experiment when they are detected. Ideally, and for completeness, the experiment
should execute until it ends (the workload execution duration is achieved) or a
fail-stop failure occurs. This means that it is possible that some experiments may
have multiple failures.

Ultimately, in the context of OFP, the main purpose of using fault injection
is to generate failure data to create predictive models. This requires that for
each experiment the system under test must be frequently monitored (e.g., every
second) to collect the intended data. While extremely short intervals may provide
a higher resolution (e.g., tenths-of-second) this adds a considerable overhead (i.e.,
each model would have to make predictions with the same interval) and it is likely
that changes at the system level are not reflected at this granularity. On the other
hand, larger sampling intervals may reduce the overhead, but may also result in
losing relevant data. Thus, a trade-off between the goal of the system and its
overhead/effectiveness must be considered. The most adequate tool to achieve
this depends on the source of data that is used to construct the predictive models
(e.g., system metrics can be collected through native applications, such as sysstat
[sysstat, nd]), or third-party, such as Munin [Munin, nd])). To avoid delays and
disruption, such requests should be made asynchronously and the time between
requests should be monitored to ensure the correct resolution of the data. As
fault injection may lead to an abrupt termination, these data should be safely
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stored (e.g., memory on the host, disk). Furthermore, because the amount of
data may not be negligible, it is necessary to take some precautions to avoid
overloading resources and inadvertently influencing the experiments. The logging
of the timestamps should be as precise as possible to allow the data that will be
used to train the models to be processed based on the timestamps of the different
events in the experiments (e.g., fault injection, failures).

3.2.3 Process Data
As shown in Figure 3.3, the final step of a fault injection campaign comprehends
validating the experiments. Typically, only a small fraction of the experiments
will lead to failures. Still, they are not all suitable for OFP. Runs where the
failure occurred immediately after injection (or activation) are considered invalid
for OFP as they are not representative of residual faults (i.e., such faults would
have likely been detected by traditional validation techniques), and would not
provide enough data points to create predictive models. Furthermore, for some
experiments it may not be possible to monitor the fault activation, and also, on
rare occasions, the system monitor may be compromised, and therefore cannot
be used for OFP. It is also possible that some failures are observed only after the
workload ended. Although such experiments may be useful for several scenarios,
if it is not possible to precisely identify when the failure occurred, it cannot be
used for OFP.

The outcome of the experiments should also be validated, such as golden runs not
having failures and whether their performance is still according to the established
baseline (as no faults were injected). Experiments where no failure was detected
but whose results or logs varied from the baseline should be analyzed to assess if
a failure has passed undetected (eventually leading to implementing a new failure
detector or updating an existing one). The integrity of the collected data should
be analyzed (e.g., time gaps between requests) to validate if they can be used
for OFP. Finally, the distribution of the faults and failures should be studied to
assess their representativeness.

3.3 Propheticus: Machine Learning Toolbox
An adequate and thorough ML approach is complex and problem-dependent. It
requires a deep understanding of the problem and its data to choose the more ad-
equate techniques and algorithms. Moreover, it is very common that the available
datasets present certain characteristics that make them difficult to process (e.g.,
imbalanced data, high/low dimensionality) and that must be adequately handled.
Besides defining which techniques to use, there are many other concerns, such
as how to estimate the performance of the models and how to properly compare
different solutions. All these choices lead to the necessity of mastering both the-
ory and practice, as implementing all the concepts and techniques is far from
trivial. Furthermore, a single small mistake in the experiment can be enough to
undermine the whole process.

As ML became widely adopted, various platforms have been developed (e.g., Weka
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[Eibe et al., 2016], H2O.ai [Cook, 2016]) that abstract its technical details. How-
ever, most cannot be easily customized or extended, contain small or limited
libraries, have small communities and consequently evolve slowly, or abstract on a
lower level and still require significant coding. Consequently, there is no commonly
accepted tool within the dependability community, where each researcher uses
ML differently, often limiting the extent of the experiment (e.g., both [Eshete and
Venkatakrishnan, 2017] and [Sauvanaud et al., 2016] use only a single algorithm,
based on similar work, without considering any other techniques). In fact, albeit
comprehensive tools such as Weka are often used, there are still many research-
ers that resort to lower-level libraries, such as scikit-learn [Pedregosa et al., 2011]
(e.g., [Eshete and Venkatakrishnan, 2017]). This suggests that, although such
tools are adequate for certain purposes, they are not flexible or easily adaptable
for many others.

We developed Propheticus1, a framework that includes functionalities for all the
steps in a ML work, from data analysis and preprocessing, to model assessment
and comparison. It was created to overcome the limitations of existing tools
towards research in the dependability area, which requires it to be flexible and
adaptable to fit the needs of the users. Propheticus can be applied to a variety of
problems (e.g., error detection, failure prediction, intrusion detection) to create
models whose predictions can then be used to develop and deploy more dependable
systems. To use it on a given problem, the user only needs to launch its Command
Line Interface (CLI) as a normal Python script. Then, he can navigate through
the menus to explore his data and execute the various tasks. Finally, the user
can analyze and compare the results of different approaches to determine the best
solution.

Propheticus emerged with the purpose of easing, automating, and assuring the
workflow of a ML approach applied to the dependability domain, but can also
be customized to fit unforeseen uses. It provides a data-centric approach so the
user can focus on the problem instead of the implementation. Propheticus does
not intend to replace (or be better than) other alternatives, but rather it was
developed based on the unfulfilled necessity of a tool focused on research in the
dependability community.

Although Propheticus does not attempt to remove the complexity of a ML work,
some of its processes and rules are fairly standard. As a result, one of the main
goals is that it should clearly define the workflow of the experiment, validating
and providing useful feedback to the user along the process. Additionally, it also
attempts to identify common issues that easily go undetected and may ultimately
compromise the validity of the experiments (e.g., data leakage, a feature that is
inadvertently directly related to the class/target but that has no meaning in the
real-world).

1Code and demo available at http://www.joaorcampos.com/propheticus
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3.3.1 Overall Architecture
A high-level overview of the architecture of Propheticus can be seen in Figure 3.4.
The different processes are encapsulated in modules, which are briefly described
in Section 3.3.3.
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Figure 3.4: Propheticus High-Level Architecture/Workflow

At the moment, the use of Propheticus is based on a simple, yet comprehensive,
CLI that allows the user to intuitively explore and flow through the different steps.
To accommodate user-specific configurations and code, the framework must be
instantiated (i.e., specific folders and files must be created to define the problem
scope and configurations) for each problem. As one of the main requirements is
for it to be flexible, Propheticus follows a hook-based design that allows the user
to easily add functionalities (e.g., create datasets) to the CLI as well as binding
to the core functions to add custom logic (e.g., running a specific task after each
validation phase). Propheticus also implements a plugin paradigm for all the ML
tasks so that new methods and techniques can be easily included in the framework
(e.g., data splitting, performance metrics, algorithms).

The framework expects the input datasets in a specific structure, comprised of
two files. The data file follows a straightforward structure: a simple table where
the columns are divided into a set of features and targets, and where each row
represents a sample that contains a value for each feature and its targets. The
second file is the headers file, which must contain a JSON object identifying the
details of the features.

For most functionalities, Propheticus creates reports that can later be used for
analysis. These reports are stored on the hard drive and their filenames are hashed
using all the configurations of the experiment. This allows generating the same
report for different configurations without conflict.
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3.3.2 Implementation
Propheticus is implemented in Python, a programming language that is flexible,
easy to use, and prevalent in several research areas. Additionally, some of the most
well-known ML libraries are implemented in Python (e.g., scikit-learn [Pedregosa
et al., 2011], Tensorflow [Abadi et al., 2015], PyTorch [Paszke et al., 2019]). Proph-
eticus leverages the research knowledge of open-source communities, and as such
strongly relies on scikit-learn for most of its ML tasks (e.g., algorithms). scikit-
learn includes several ML methods, is thoroughly documented, widely adopted
and its community is quite large and active, resulting in regular updates that
keep it up to date with stable state-of-the-art developments. Additionally, its
structure is clear and simple, allowing the users to develop and seamlessly integ-
rate with it. Other ML sources, such as Imbalanced-learn [Lemaître et al., 2017]
(i.e., sampling techniques), PyClustering [Novikov, 2018] (i.e., clustering meth-
ods), and SciPy [Jones et al., 01 ] (i.e., statistics-related functionalities), are also
used to complement the framework.

Propheticus runs on any system that supports Python. Currently, all processes are
handled in memory, which requires the machine to have enough memory to hold
the data. Other data management approaches will be considered in the future to
improve scalability (e.g., online learning).

3.3.3 Functionalities/Modules
Propheticus acts as a standalone application and its workflow is centered on the
interface module that controls all the process logic and calls the different modules.
Although Propheticus is intended to be used iteratively, an ‘initial’ use would
follow the numeric order identified in Figure 3.4.

The Data Management module handles the process of loading and preparing the
datasets. It allows the combination of multiple datasets (e.g., different sources)
as long as they share the same structure. Each dataset must have a headers file,
containing the details (e.g., name, type) of each feature. Additionally, it is also
possible to define other details (e.g., if a variable is categorical, which will be
automatically encoded) or domain knowledge (not yet implemented) that may be
used to improve the process (e.g., how to handle missing values).

The Data Analysis module encompasses the logic associated with exploring and
analyzing the datasets. It contains functionalities for both descriptive and ex-
ploratory analysis. These generate reports that are stored on the hard drive
for further analysis and comparison. Another module, Data Preprocessing, in-
cludes the logic required for preprocessing the data. It contains functionalities to
select/exclude a subset of features, define which feature to use as target, or select
only samples with certain values for given features. This module also includes the
logic for dimensionality reduction and data sampling.

Probably the most important module, Classification, encompasses the execu-
tion of the whole experiment. The data is preprocessed according to the configur-
ations and then passed to the selected ML algorithms. By default, it executes the
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same configuration 30 times under different random seeds (a number commonly
accepted as adequate under the Central Limit Theorem [Hogg and Tanis, 2009])
and performs 10-fold [Borra and Di Ciaccio, 2010] stratified cross-validation (both
configurations can be easily changed through the CLI). Several metrics are con-
sidered to assess the performance of the models (e.g., F1-score, Informedness).
These are computed fold-, run-, and experiment-wise. Upon finishing all the runs,
the confusion-matrix, the ROC curve, and the Precision-Recall curve are gen-
erated, alongside a spreadsheet containing all the metrics and logs, which can
then be used for further comparisons or analyses. As most algorithms contain
various hyperparameters which can take a plethora of values, Propheticus allows
fine-tuning them through grid-search. For this process, it uses a nested cross-
validation approach (i.e., inner cross-validation is used to choose the parameters
based on the training data) [Cawley and Talbot, 2010]. A similar, but smaller,
module, Clustering, focuses on clustering algorithms. Seemingly, various clus-
tering metrics (e.g., silhouette) and reports are stored on a spreadsheet.

After getting some insight into the problem, users frequently want to conduct sev-
eral experiments in an exploratory manner (e.g., various algorithms, datasets). As
executing all the combinations manually is not practical nor scalable, Propheticus
allows defining a list of configurations to execute in batch, which is used by the
Batch Execution module.

When all the experiments are finished it is necessary to compare the results and
identify the solution that best fits the needs of the users, which is implemented
by the Experiments Comparison module. One of its functionalities, Reduce Res-
ults, allows the user to (re)move (move to a separate folder) experiments that
have performances for certain metrics under given thresholds (e.g., move all ex-
periments with 0 recall). However, the more prominent functionality within this
module, Compare Results, allows the user to choose the experiments that match
given configuration parameters. This process generates a spreadsheet and vari-
ous complementary graphs comparing the results (e.g., metrics, time complexity).
Propheticus also explores the notion of application scenarios (a realistic situation
of the problem at hand that depends on the criticality of the system) [Antunes
and Vieira, 2015], which allows the user to compare and rank models based on a
specific set of metrics. Finally, it also supports statistical comparisons between the
experiments, informing the user if they are in fact different for a given significance
level.

3.3.4 Instantiation and Configuration
Propheticus aims at being generalizable and configurable. This is achieved by
having client-specific structures that allow the user to configure the framework to
his needs while minimizing the need to alter the code of the framework. Moreover,
it allows the user to have multiple projects under a single Propheticus installa-
tion. The customization of the framework is done mainly through three files:
InstanceConfig, InstanceGUI, and InstanceBatchConfiguration.

For basic use (e.g., binary classification), it is not necessary to define any con-
figurations. Still, framework- and problem-specific configurations (e.g., datasets
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location, binary/multi-class) can be specified in the InstanceConfig file.

The InstanceGUI file is not mandatory, but if it exists Propheticus will add a
custom menu at the first level of the CLI to allow calls to user-specific menus
(e.g., export datasets). Finally, the InstanceBatchConfiguration file can be
used to generate/store a list of configurations of experiments that will be used by
the Batch Execution module.

Propheticus also implements a plugin paradigm, which means that it is also pos-
sible to add new algorithms or techniques (e.g., dimensionality reduction, per-
formance metrics) without modifying the code of the framework. This can be
done by adding the new call details (e.g., package, method) to the existing list of
the respective available methods. To integrate techniques that do not follow the
scikit-learn structure, a wrapper extending the required corresponding interfaces
can be created in a folder specifically for that purpose (e.g., algorithms).

Propheticus follows a hook-based design. This allows users to seamlessly have
access or add functionalities to the internal methods (e.g., adding a custom
functionality after each fold). This can be achieved by creating a new file
named after the class it intends to access, using the prefix Instance (e.g.,
InstanceClassification to access the methods in Classification). Within
that file, it is possible to hook into each method before (with the prefix precall_)
or after (with the postfix postcall_) its execution (e.g., postcall_runModel
would be executed after the method runModel in class Classification). Both
precall and postcall methods have access and can alter the function paramet-
ers, and postcall also has access and can alter the returned values. If present,
these hooks will be automatically detected and executed.

3.4 Summary
This chapter presented three contributions to support the development of predict-
ive models for OFP. More precisely, it provided a well-defined process alongside
instructions on how to use fault injection to generate realistic failure data. It also
introduced detailed guidelines and reflections on how to configure and deploy an
experimental testbed that can leverage modern computational power to exped-
ite the experimental process without compromising the results. To assist in the
process of exploring the generated data and assessing the performance and im-
pact of different ML techniques, a comprehensive ML toolbox was also proposed.
This toolbox was developed considering the specific characteristics of OFP and
dependability research and includes all the necessary steps for a thorough ML
approach while ensuring the correct implementation and combination of different
techniques and methods.

The contributions presented in this chapter provide the necessary techniques and
artifacts to enable the development of predictive models for OFP. Notwithstand-
ing, using the data generated through this process is still not straightforward. For
example, there is no thorough related work on how to properly use failure data
generated through fault injection to develop accurate and representative failure
predictors. These data, as well as the OFP problem itself, present certain char-

— 65 —



CHAPTER 3. TECHNIQUES AND ARTIFACTS TO SUPPORT OFP

acteristics that must be taken into account, otherwise, the experimental results
may ultimately not be representative of the performance that the models will
have in production. Moreover, due to the complexity of modern systems, devel-
oping accurate predictive models is not straightforward, and even tasks such as
identifying and cataloging the failures observed may not be a trivial task. In the
end, using data generated through fault injection on a new, unknown, problem
is a complex task that often requires several iterations. Given the complexity
and interdisciplinary knowledge required, detailed procedures or methodologies
are needed.

The next chapter proposes a well-defined iterative methodology on how to use
data generated through fault injection to develop accurate and representative
predictive models for OFP. It takes into consideration the specific characteristics
of fault injection and OFP, and each stage provides detailed guidelines, from
generating and processing the data, to creating and deploying the predictors.
Due to the exploratory nature of such a process, several feedback loops are also
considered.
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Chapter 4
Methodology for Developing
Predictive Models

Developing accurate failure predictors for OFP is a complex task that includes
several open issues, such as collecting or generating realistic failure data and devel-
oping accurate and representative failure predictors. In an attempt to overcome
some of those limitations, recent works have combined fault injection and ML
to create predictive models for OS-level OFP (e.g., [Irrera and Vieira, 2015]).
However, such works focus mostly on fault injection and there is little research
on how to properly use the generated data to create failure predictors. Further-
more, failure data obtained through fault injection, as well as the OFP problem
itself, presents specific characteristics that must be taken into consideration when
creating predictive models.

Due to the lack of guidelines or related work, most studies rely on standard tech-
niques (e.g., k-fold cross-validation) which are often not adequate for the problem
at hand. This may compromise the results, as they will not likely be repres-
entative of the performance that the predictors will have in production. A less
direct consequence is that this can also affect the extent to which the problem is
explored, which can result in having inadequate or unpredictable failure classes.
Ultimately, this may lead to unrepresentative predictors that will not perform as
expected when deployed in production.

This chapter proposes an iterative six-stage methodology that takes into consid-
eration the particulars of using fault injection to generate failure data to develop
predictive models for OFP. Each stage, which will be detailed in the following sec-
tions, defines a process and provides guidelines that should be considered, from
generating and processing the data to ultimately creating and deploying the pre-
dictors. Given the complexity and exploratory nature of the problem, several
feedback loops are included as it may often be necessary to return to a previous
stage to expand the approach. A high-level illustration of the process can be seen
in Figure 4.1. The proposed methodology is intricately connected to the contri-
butions described in Chapter 3: it relies on the techniques used to generate failure
data through fault injection, as well as the ML toolbox to explore the data and
create accurate failure predictors using diverse ML methods.
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Figure 4.1: Methodology to Create Predictors for OFP

4.1 Generate Failure Data
The first phase of the methodology, focused on generating failure data, comprises
several decisions that directly influence the performance of the predictors. This
section does not go in-depth on the fault injection process, as this has already
been thoroughly documented in Section 3.2, focusing instead on the choices and
considerations that will affect the ability to create predictive models.

Recapitulating, a fault injection campaign is usually comprised of five components:
[Hsueh et al., 1997]: i) a controller (which controls the experiment); ii) a fault
injector ; iii) a fault library/model; iv) a monitoring system, and; v) a workload to
exercise the system. It requires executing multiple experiments with and without
injecting faults for a specific workload (experiments without faults injected are
meant to establish a baseline behavior of the system). The workload influences
the behavior of the system (and the potential failures) and therefore should be as
similar as possible to the technical needs of the target system.

One of the most relevant definitions is which failure modes should be considered
(that will later be mapped to different data classes). Several taxonomies have been
proposed over the years (e.g., C.R.A.S.H. [Koopman et al., 1997]). While some
failure modes are obvious (e.g., system hang and crash), nowadays most systems
have advanced monitoring tools that also detect other less severe (e.g., non-fail-
stop) failures, such as performance degradation. Thus, the failure detectors should
be carefully developed, as it is possible to have multiple failures being observed
in an experiment. To create accurate models, the logging of the timestamps (e.g.,
fault injection, failure detection) should be as precise as possible.
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Another crucial decision is how the system should be monitored throughout the
experiments. This has a significant impact on the performance of the models, as
these are the data that will be used to create them. Although there are various
alternative sources of data (e.g., logs [Salfner et al., 2010]) one of the most prom-
inent approaches is through system metrics. This choice dictates which ML meth-
ods can be used to create the predictors (e.g., system logs require text-oriented
techniques). Because the goal of OFP is to make a ‘continuous’ assessment and
prediction, these data should be collected and stored in short intervals (e.g., every
second). As discussed in Section 3.2, very short intervals provide more resolution
(with a higher overhead) but it is likely that changes at the system-level are not
reflected at this granularity. Larger sampling intervals may reduce the overhead,
but may also result in losing relevant data. Thus, a trade-off between the goal of
the system and its overhead/effectiveness must be defined.

4.2 Process, Cleanse, Augment Data
After conducting the fault injection campaign, it is necessary to process the gener-
ated data. Although a typical fault injection campaign comprises hundreds/thou-
sands of experiments, most of them may not be useful for OFP. A representative
activation/failure rate is accepted as being near 5% [Natella et al., 2010], which
means that ∼95% of the experiments do not lead to any failures. Even among the
5%, only a small percentage of experiments are suitable for OFP.

Experiments in which a failure occurred immediately after fault activation are
not valid, as they are not representative of residual faults (i.e., they would have
likely been detected through traditional validation techniques). Furthermore, as
there is no time gap between the activation and the failure there are no symptoms
to be learned. For a similar reason, experiments where it is not possible to re-
gister the fault activation should be excluded (as it is not possible to assure that
there was an interval between the fault activation and the failure occurrence).
Because OFP focuses on predicting failures during a typical system workload ex-
ecution, one should only consider experiments where the failure occurs during the
workload execution. In practice, only failures for which it is possible to precisely
identify a timestamp during the execution of the target business process should
be considered.

After selecting the experiments that can be considered, it is necessary to process
the data before creating predictive models. Every experiment should have the
same number of features. However, due to the stochastic nature of complex sys-
tems (e.g., OSs), some experiments may contain transient metrics, which should
be discarded for sake of consistency (it is not practical to use datasets with a
varying set of features). Metrics for which there is no variation in any of the
experiments should also be removed to reduce complexity, as they add no value
to the models. Another relevant concern due to the experiment-based nature of
the generated data is to identify and remove all ‘false-predictor’ features, that is,
features that may contain information related to what is meant to be predicted
but have no meaning in real systems (e.g., given the repetitive nature of the exper-
iments, metrics such as system uptime may leak information that does not have
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the same relevance on a real system). The data should be normalized (e.g., using
Z-score) to accommodate metrics that have different scales.

Given the inherent complexity of modern systems and workloads and the fact that
OFP is also a time series problem, it is likely that the absolute values of the system
metrics are not enough to create accurate predictive models. Several techniques
are available to augment and enrich the dataset considering the sequential nature
of the problem (e.g., 5s-average) [Barandas et al., 2020]. Notwithstanding, this
should be done with some caution as it will multiply the number of features (and
thus increase the complexity) by the number of intended indicators.

Each sample should be labeled according to the definition of the OFP problem,
as proposed by Salfner et al. [Salfner et al., 2010]. Figure 4.2 (which shows
the normalized values of all the collected system metrics of a failing experiment)
illustrates how the label of the samples of a failure experiment evolves over time
(for ∆tl = 20 and ∆tp = 30, tfailure is the time of the first failure, ∼110 seconds
after the workload began). In the end, this leads to different datasets for each
pair of ∆tl, ∆tp.

As shown in Figure 4.1, this stage divides the experiments into three categories:
failure runs (experiments where a fault was injected and a failure was observed),
non-failure runs (a fault was injected but no failure was detected), and golden
runs (the baseline experiments, without fault injection).
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Figure 4.2: Experiment Labeling [Salfner et al., 2010] for ∆tl = 20 and ∆tp = 30
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4.3 Parse Failures and Define Failure Classes
The severity of a (predicted) failure may determine which preemptive measures
should be taken. Thus, it is relevant to distinguish between different ‘classes’
of failure (e.g., fail-stop and non-fail-stop failures). While this may be easy to
determine for a simple system, for a complex one (with many different types of
failures) it is not trivial. After selecting which failure experiments can be used for
OFP, it is necessary to define the classes of the problem (i.e., which classes will
the models try to predict).

Over the years, several failure taxonomies have been developed (e.g., C.R.A.S.H.
[Koopman et al., 1997]), which can be used as a starting point. At a high-level,
failures can be divided into fail-stop and non-fail-stop (similar to the distinction
between catastrophic and non-catastrophic failures considered by Powell et al.
[Powell et al., 2001] and Crouzet and Kanoun [Crouzet and Kanoun, 2012]). Fail-
stop failures have severe implications, that abruptly halt the execution of the
system (e.g., the OS becomes corrupt and the system crashes or reboots; the OS
becomes unresponsive, i.e., hangs, and must be terminated by force), while non-
fail-stop failures (also referred to as fail-soft failures [Tipton and Krause, 2007])
typically have less perceptible consequences that allow the system to continue
execution, often in a degraded mode (e.g., memory failures such as segmentation
fault or execution failures such as invalid opcode that the system can tolerate).
As there are usually few types of fail-stop failures, it is acceptable to consider
each as a class of the problem. On the other hand, in complex systems (which
can be comprised of several components), multiple types of non-fail-stop failures
can be easily identified, making it difficult to create models that can predict
each one individually. There will typically be few examples/failures per failure
type, and different failures with a similar root cause will likely exhibit similar
symptoms, making the classification problem too complex/impossible. To make
this process feasible, the most intuitive approach is by grouping different types of
non-fail-stop failures into higher-level failure classes based on their (likely) root
cause/similarity (e.g., segmentation fault and Resident Set Size (RSS) counter
error failures are both memory-related). Another alternative used in ML for
similar tasks is clustering analysis, which can be used to identify classes with
similar characteristics through clustering algorithms [Gan et al., 2013].

Leveraging existing literature, the various failures must be assessed to determine
why they occur. Although partially ‘vague’, this process is always required when
assessing and exploring the different failures of a system. Furthermore, while it is
possible to simplify the problem by creating large groups of failures (e.g., simply
grouping fail-stop/non-fail-stop failures) this probably does not perform well due
to the fact that different types of failures likely have distinct symptoms. When
multiple failures occur simultaneously, their combination should be considered
as a whole (e.g., if kernel bug and invalid opcode failures occur simultaneously
they should be interpreted as a single failure kernel bug + invalid opcode and
not as two independent failures). Moreover, a threshold should be defined during
which sequential failures/alerts are considered as a single event (e.g., sequential
failures logged 1 second apart are likely related and should be considered as a
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single failure).

Although these failure classes will be further validated throughout the process,
they establish the baseline used to guide the development of the predictors in the
following phases of the methodology.

4.4 Tune Models per Failure/Class
Creating accurate predictive models requires well-defined failure classes and an
adequate method to estimate their performance. This stage focuses on properly
estimating the performance of the predictors and identifying/organizing the vari-
ous failures into classes that can be predicted (in the form of an iterative cycle).
As often the raw data are not enough, this stage also considers a feedback loop
to Stage 2 to enrich/augment the dataset when necessary. Next, we discuss three
key aspects: how to identify and define the failure classes, how to train and test
predictive models, and how to leverage ML techniques to develop accurate pre-
dictors.

Identifying/Defining Failures Classes
Defining failure classes in complex systems is not trivial. Failures may be wrongly
classified in an incorrect class and therefore affect the performance of the pre-
dictors. Additionally, given the complexity of modern systems, it is possible that
some failures cannot be predicted (e.g., there are no relevant symptoms) and thus
should not be considered. In practice, the failure taxonomy defined in the previous
stage must be validated/refined.

Two approaches can be considered to achieve this: i) top-down, starting with the
high-level taxonomy defined in the previous stage, try to identify which experi-
ments are being mispredicted in each class (and exploring to which, if any, class
they belong to); or ii) bottom-up, create predictors for each type of failure (e.g.,
segmentation fault, experiments with identical failures must be predicted by the
using the same model) and iteratively combine with other types of failure with
common characteristics (e.g., using the same ∆tl, ∆tp) guided by the high-level
taxonomy previously defined. While the first approach may seem ‘quicker’ (as
it already starts with an initial categorization), identifying which experiments in
which classes are wrong is not straightforward. Combined with the possibility
that some failures may not be modeled/predicted this may become an exhaustive,
time-consuming, search. On the other hand, the second approach allows estab-
lishing a baseline performance for each type of failure and iteratively refining the
classes of the problem according to the theoretical taxonomy. Moreover, it al-
lows identifying failures that cannot be modeled and (more) easily determining
misplacements from the previous stage. Notwithstanding, the classes identified
through this process must be logical from the perspective of the system, and di-
vergences from the previously defined taxonomy should be understood/validated.
To illustrate the process, let’s take a brief example from the experimental evalu-
ation that will be presented in Chapter 6. Using the bottom-up approach, the first
step was assessing/developing accurate failure predictors for each type of failure
(e.g., segmentation fault). Afterward, failure types whose best models had similar
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characteristics (e.g., lead-time, prediction-window) were iteratively combined into
higher-level classes (e.g., combining segmentation fault with RSS counter error,
and then with corrupt kernel paging as a memory-related failure class). Each
of these associations was validated against the initial taxonomy/classification to
assess whether the selected failure types shared a common likely root cause. This
process allowed identifying some issues with the initial taxonomy, when one of
the failure types was being included in a different high-level class than what was
initially defined. This was validated by inspecting the failure in more depth,
and concluding that the initial analysis was incorrect (e.g., one of the failures at
ext4_evict_inode was being considered as kernel-related but it was in fact related
to memory management). Additionally, this also allowed identifying three failures
(all due to the same fault) that could not be predicted. These failures occurred
precisely when the workload was ending and it was likely due to some corruption
that did not exhibit any symptoms.

Training/Testing Predictive Models
Given the specific characteristics of both OFP and failure datasets generated
through fault injection, creating accurate predictors entails several considerations,
in particular, regarding how to assess their performance (i.e., how should the data
be split for training and testing). As discussed in Section 2.2, OFP is a clas-
sification (or regression) problem and, at the same time, a time series problem.
However, it is not a typical time series, as instead of forecasting values of some
variables, it tries to predict whether the current state of the system indicates that
an event (failure) will occur in the near future. Additionally, failure data are typ-
ically experiment-based, where the failure occurs at the end of the experiment,
and there is no sequence between experiments (i.e., no ‘past’ or ‘future’ of the
system after each failure). As a result, although there is considerable literature
on how to assess models for classification and typical time series problems, OFP
falls in a gray area where there is no related work that supports its characteristics.
Furthermore, existing techniques are not adequate and may even provide a wrong-
ful performance estimate (e.g., as will be shown in Section 6.3, cross-validation
provides an overoptimistic estimate).

To address this issue and properly assess ML models for OFP, we propose
Experiment-wise Leave-one-out Cross-Validation (ELOOCV), a novel process
based on the leave-one-out cross-validation approach (where the test set is com-
prised of a single sample and the remainder data is considered for training, and
iterates over the whole dataset [Alpaydin, 2014]). In short, ELOOCV considers
every experiment except one for training and then tests on the held-out experi-
ment, iterating over all the experiments. A simple illustration of the process can
be seen in Figure 4.3. This process provides estimate assurances similar to that
of cross-validation techniques with the addition that it takes into consideration
the experiment-based nature of data generated through fault injection and the
potential knowledge leakage of other approaches. In this way, predictions are
only made on entire unseen experiments, which more realistically represents the
environment where the predictor will operate. While this process can be more
time-consuming than a traditional cross-validation approach, it is the most ef-
fective way to have an adequate estimate of how the model will perform against
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unseen experiments. In the unlikely event that one manages to generate a large
volume of failure data for each failure class, it is possible to adapt the proposed
approach to leave multiple experiments for test (if there are in fact enough and
representative experiments for training). Notwithstanding, the premise that no
sample (either failure or non-failure) from the experiments in the test set should
be used for training must hold.

expn

expn 
(k) 
 

Test set 
(hold-out experiment)

Train set  
(other experiments)

exp1 exp3 ...

Figure 4.3: Experiment-wise Leave-one-out Cross-Validation (ELOOCV)

When trying to create models for a specific failure class (target failure class), what
happens is that only the experiments where failures of the target failure/class were
observed are considered as ‘positive/failure’ (labeled according to the approach
proposed by Salfner et al. [Salfner et al., 2010] and illustrated in Figure 4.2). All
other experiments, even other failure runs, are considered as ‘negative/non-failure’
because the model is meant to predict a specific class of failures. Thus, a relevant
decision is to choose which experiments are considered for training. Logically, all
failures from the target failure/class (except those in the test set) should be used
for training. But concerning the remaining experiments (i.e., golden, non-failing,
and other failing runs), there can be multiple approaches. The naive solution is to
include all the experiments. However, this introduces several challenges as other
failures may have similar symptoms (e.g., it is plausible that some non-fail-stop
failures may have symptoms identical to fail-stop, as many non-fail-stop failures
ultimately lead to fail-stop failures) that may lower the ability of the algorithms
to model the target failure/class. Additionally, as the number of positive samples
for each failure/class is typically low, sampling from such a diverse dataset to
balance the classes distribution (which is often necessary for imbalanced datasets)
may lead to high variance in the results (e.g., one iteration may select samples
mostly from golden runs while a second may select only samples from other fail-
ing runs). To address this issue, heuristic/algorithm-based sampling techniques
should be considered to reduce the variation between multiple executions. Another
approach, which intends to simplify the task of modeling the target failure/class
and improving the repeatability/stability of the results, is to consider only the
golden runs for training (besides the experiments from the target failure/class
obviously). It is worth clarifying that this process concerns only the data used for
training, inside each loop of ELOOCV. ELOOCV should consider all the experi-
ments (i.e., every experiment should be considered for test in some fold) to have
a realistic estimate of the correct/incorrect predictions for each failure class.
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Creating Accurate Failure Predictors
As vastly shown in the literature, different ML methods create the best models
for different problems. Thus, to develop accurate failure predictors, the set of
algorithms and techniques to be studied should be comprehensive and able to
handle the characteristics of the dataset (e.g., data imbalance). First, an explor-
atory study should be conducted for the various methods to exclude algorithms
or techniques that do not meet a minimum acceptable performance (while this
may depend on the problem, a typical minimum could be predicting at least 50%
of failures and no more than 25% of false-positives). Then, the parameters of
the methods should be thoroughly explored. Although this may lead to a consid-
erable number of combinations, the most likely scenario is that after the initial
exploratory study it is possible to focus on a much smaller set of methods.

The parameters of OFP (i.e., ∆tl, ∆tp) should be studied carefully. It should
be noted that the values of ∆tl, ∆tp for each failure/class depend on the Time-
to-Failure (TTF) of the experiments (i.e., the time between fault activation and
failure), as it is not possible to use ∆tl, ∆tp that are too close/larger than the
TTF of the experiments (as this would leave no symptoms to model). Several
metrics can be used to measure the performance of the models, depending on
the intended use of the system. However, given the imbalance in the data, the
use of metrics that consider both the positive and the negative predictions, such
as Informedness (how consistently a predictor predicts the outcome of both the
failures and non-failures) or F2-score (which gives double the importance to recall
compared to precision), is advisable.

When using the top-down approach to define/refine the failure classes, we need to
explore the misclassifications (i.e., which failures/experiments were not predicted
or predicted as a different type) for the various failure classes. It is necessary to
assess if the misclassifications occurred because the experiments were included in
the wrong high-level failure class (and to which class they belong instead), or if
they refer to failures that cannot be predicted (e.g., no relevant symptoms prior
to failure). In practice, if there are several failure classes and many misclassified
experiments, this approach can easily become too cumbersome. Alternatively, for
the bottom-up approach it is necessary to identify common denominators, by ana-
lyzing the parameters of the best models for the various failures/classes. These
similarities should be studied and, if possible, the respective failures/classes should
be combined. This is an iterative process: after identifying similarities between
failures/classes, they are ‘grouped’ (i.e., considered as a class), and the whole
process is repeated until it is no longer possible/beneficial to combine more fail-
ures/classes (as the example previously provided, the best models to predict seg-
mentation fault failures presented similar characteristics with those of RSS counter
error and thus the failure types were grouped; afterward they were also grouped
with corrupt kernel paging into a high-level memory-related failure class). Each
iteration of the process should take into account the initial high-level taxonomy
and, when the resulting combinations differ from it, they should be explored to
understand why. If, however, it is not possible to find acceptably accurate models
for the failures in the dataset, it may be necessary to return to Stage 2 to enrich
it with more data.
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4.5 Analyze Experiment-wise Performance
The previous stage focused on validating the failure classes of the problem and
identifying the best techniques and parameters to create accurate predictors. How-
ever, the process focused on sample-wise prediction (i.e., predicting samples inde-
pendently, regardless of their impact on detecting failures or raising false-alerts),
which does not consider how many failures would have been predicted or how many
false-alerts would have been raised. Real-world scenarios are concerned with more
practical analyses, experiment-wise (i.e., how many failures are actually detected,
and how many false-alerts are thrown).

In practice, it does not make sense to take actions based on a single alert, but
rather on a sequence of closely time-related predictions. Thus, it is necessary to
define how many alerts are required in a given time window (incidence) to consider
it a ‘failure prediction’ (e.g., 4 alerts in the previous 5 seconds, as illustrated in
Figure 4.4). Besides providing more consistent behaviors (against a single alert),
it may also provide some tolerance to variations (e.g., a ‘non-failure’ prediction in
the middle of alerts). This concept also allows tuning the sensitivity of the model
per failure mode and according to the needs of the system. Ultimately, the goal
is to assess how effective the models would be in predicting the various failures,
from the perspective of the system or system administrator. Besides the obvious
requirement of predicting incoming failures, it is also necessary to interpret the
impact of the various incorrect predictions (e.g., a ‘healthy’ system state that is
predicted as failure prone, or a fail-stop being predicted as non-fail-stop).
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Figure 4.4: Experiment-wise Failure Prediction (4 alerts in the last 5 seconds)

While the ideal would be to perfectly differentiate between non-failure and every
failure class, due to the potential relationship between some failures this is un-
likely to occur (e.g., the symptoms of some non-fail-stop failures may be similar
to some fail-stop failures, representing a sort of ‘preceding’ symptoms). Thus,
the goal becomes to create models that can accurately predict failures with few
false-alerts (as it is not acceptable to regularly interrupt execution unnecessarily)
and that minimize the chance of underestimating the severity of the failure (and
subsequent preemptive measures). As an example, a fail-stop failure that is incor-
rectly predicted as non-fail-stop may put the system at risk because it may not
take the adequate preemptive measures, while a non-fail-stop being predicted as
fail-stop is not as problematic, as the ‘only’ downside is that the system will likely
take more conservative measures. Furthermore, if the predictors do not have a
high count of false positives it is also possible to establish a second prediction
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incidence to start preparing repair mechanisms (and thus reducing the time to
trigger mitigation techniques if it in fact predicts a failure).

Although sample-wise performance (from the previous stage) allows ranking the
various models, it is not guaranteed that the absolute best will also be the best for
experiment-wise prediction (e.g., they may have few false positives but scattered
over multiple experiments such as golden runs). Thus, the top N models for each
failure/class, ideally based on different techniques, should be analyzed. Still, even
then the set of chosen ML techniques may not be enough to create adequate
experiment-wise predictors. If this is the case, one should return to the previ-
ous stage and expand the set of ML techniques and/or parameters. If single
algorithms fail to create accurate predictors, exploring heterogeneous ensembles
(i.e., ensembles composed of different learners) may lead to better results by com-
bining distinct learners with different biases. It is worth noting that when return-
ing to the previous step it is no longer required to re-analyze the taxonomy of
failures: the results previously obtained, whilst not good enough, already allowed
identifying the failure classes.

4.6 Deploy the Best Model per Failure Class
The last stage of the methodology comprises deploying the predictors developed in
the previous stages and monitoring their performance throughout time. In short,
if at runtime any of the models matches the intended incidence (i.e., n alerts of
incoming failures in a given time window), the system should trigger preemptive
measures to avoid or mitigate the consequences of the incoming failure. Still, it
may encounter some failures that cannot be predicted.

The models created in the previous stages allow predicting (known) incoming
failures. However, making runtime predictions requires additional considerations.
For example, at runtime, the set of collected metrics may sometimes not directly
match the features used by the model. In this case, it is necessary to select only
those used by the model, and when they are not available, register the event and
skip the prediction (as it is not possible to make a prediction without the necessary
data). If this occurs for several (sequential) seconds, then likely the system is also
failing and preemptive measures should be taken. Given the complexity of the
systems (and inherent limitations/coverage of the training data), it is also possible
that some other failures may be missed. The logs and metrics from those failures
should be saved, analyzed, and when relevant, included in the dataset.

The estimated performance of the predictors is based on the premise that the data
used to train them is representative of the problem. If this is not the case, and the
predictors do not perform as expected at runtime, it may be necessary to return to
previous stages of the process to either generate new and more representative data
(Stage 1) or to expand the search space of ML methods to create more accurate
models (Stage 4). Furthermore, real systems are not stationary and often evolve,
and therefore it is also possible that the underlying problem changes over time
(concept drift [Webb et al., 2016]). There are several techniques to address this,
but in the end it resumes to a lower predictive performance which may require
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returning to previous stages (i.e., Stage 1 or Stage 4). This is in itself a complex
problem for specific cases and thus falls out of the scope of this methodology and
is considered for future work.

4.7 Summary
This chapter introduced an iterative multi-stage methodology that takes into con-
sideration the particulars of using fault injection to generate failure data to develop
predictive models for OFP. Each stage comprises a specific process and provides
guidelines that should be considered, from generating and processing the data,
to creating and deploying the predictors. Due to the exploratory nature of this
process, several feedback loops are included, as it may often be necessary to return
to previous stages to expand the approach. This methodology is closely related
to the contributions described in Chapter 3, as it relies on both fault injection to
generate failure data and the ML toolbox to explore the data and develop failure
predictors.

Effectively implementing failure prediction solutions also requires an adequate
selection of the most suitable models. It involves a strict assessment of alternative
solutions using appropriate metrics, which must represent the technical needs of
the target system, and their comparison using adequate datasets and procedures.
As there is no accepted procedure to achieve this, existing works present several
limitations, such as using ad-hoc and unreproducible approaches, or not taking
into consideration the needs of the system where the predictors will operate. To
address this, the following chapter introduces a conceptual framework for properly
benchmarking failure prediction models, assuring a fair and sound assessment and
comparison of alternative solutions. It provides detailed guidelines, from choosing
the adequate metrics for assessing the performance of the predictive models taking
into consideration the technical needs of the system, to comparing alternative
solutions and determining the sensitiveness of the models to variations in the
data.
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Chapter 5
A Benchmarking Approach for
ML-based OFP

Effectively implementing failure prediction involves not only extremely accurate
tuning, but also an adequate selection of the most suitable model(s) for a par-
ticular system installation. More precisely, selecting a prediction model requires
a rigorous assessment of alternative solutions using appropriate metrics (taking
into consideration the technical needs of the target system), and their comparison
using adequate datasets and procedures. This is a difficult task as the information
about the performance of failure prediction models available in the literature is
not sufficient to choose a predictor for a given system. To make fair comparisons,
this process must be well defined, such that the assessment of the performance
of the predictors provides confidence on how the results will hold in the opera-
tional scenario. Due to the lack of such a procedure, existing works use ad-hoc
approaches, consider a diverse set of metrics without thorough consideration of
the purpose/needs of the system, and neither statistically validate differences nor
assess how sensitive the models are to the data used for training. Several other
aspects should also be considered when benchmarking alternative solutions, such
as validating the dataset, conducting statistical comparisons, and assessing the
robustness of the models to variations in the data.

This chapter proposes a conceptual framework for benchmarking failure predic-
tion models, assuring a fair and sound assessment and comparison, while fulfilling
the following key properties [Vieira and Madeira, 2003; Gray, 1992]: ease of use
and implementation, promptness, repeatability, portability, representativeness, and
non-intrusiveness. It provides guidelines for implementing a procedure for bench-
marking failure prediction models, including choosing the adequate metrics for
the assessment depending on the application scenario, preparing and validating
the workload (while leaving out of scope the dataset generation as it has already
been thoroughly documented in Chapter 3), comparing the alternative models,
and selecting the best predictor. By exploring the notion of scenarios (a realistic
situation of failure prediction that depends on the criticality of the system) [An-
tunes and Vieira, 2015], this approach allows a better match between its outcomes
and the requirements for the failure predictor operation. Three representative
real-world scenarios are considered, from critical to lower-quality systems. The
framework also addresses the need to assess and improve the performance of the
models under small perturbations in the data (using adversarial and robustness
optimization techniques), which will inevitably occur in production systems. This
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is of utmost importance to establish the credibility of the models obtained through
the benchmarking procedure, as solutions that can only perform well on the ex-
isting data are not of interest. As this is not a typical benchmark, with specific
datasets and metrics that vendors can use to sell their products, this framework
is mostly for researchers and system administrators as it is intended to be used
on the specific systems (and their needs/usage scenarios) where the predictors are
needed. It is also possible to evolve the framework into a full-fledged benchmark
(that vendors can use) by including pre-generated datasets and specific use-case
scenarios, but this is left for future work.

The reasoning for proposing an approach, instead of referring to it as a benchmark,
stands in the fact that a benchmark for ML algorithms typically includes a dataset
against which the solutions are benchmarked. However, for OFP the dataset
should represent the intrinsic characteristics of a particular system (i.e., where
failure prediction will be done), thus it should be collected specifically for that
system.

The architecture of the approach is illustrated in Figure 5.1. It is inferred from the
structure of a ML approach and the organization of a dependability benchmark,
enhanced with specific considerations (e.g., scenarios, robustness verification) to
ensure the choice of the most adequate solution. In practice, a fair and sound
assessment and comparison of failure prediction models require:

WorkloadAlgorithms Measurements Rank

Scenarios RobustnessMetrics

Figure 5.1: General Architecture of the Framework

• Scenarios – requirements representing real contexts, having constraints
with different criticality, where failure prediction will be used.

• Metrics – allow characterizing the effectiveness of the algorithms. They
must be easy to understand and allow the comparison among alternative
algorithms from different perspectives and scenarios.

• Algorithms – a set of algorithms, techniques, and configurations that will
be used against the workload and then ranked according to the chosen scen-
ario/metrics.

• Workload (Dataset) – data needed to train and test the failure prediction
algorithms. It should mimic the behavior of the target system, taking into
account the hardware and software, workload, failure modes, etc.

• Procedure – rules that must be followed, including the phases that must be
conducted, towards the assessment of the performance (thus generating the
Measurements and subsequent Rank for the specified scenarios/metrics)
and of the Robustness of the models to variations in the data.
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Several properties were taken into consideration when designing the benchmark
for the results to be sound and to minimize inaccuracies due to the procedure,
namely [Vieira and Madeira, 2003; Gray, 1992]: i) Ease of installation and use: be
composed of a simple executable or a document specifying how to implement it; ii)
Promptness: the execution should take the shortest time possible, increasing the
usability of the benchmark and of the predictors; iii) Non-intrusiveness: require
minimal or no changes in the entities under analysis (i.e., the prediction models);
iv) Portability: allow comparing alternative failure prediction models based on
diverse approaches, scenarios, and systems; v) Repeatability: different executions
must lead to the same results on a deterministic or statistical basis; and vi)
Representativeness: the results must be representative of real scenarios, i.e., the
prediction models must behave similarly on the target system.

5.1 Scenarios
Scenarios should be based on the technical needs and business impact of the
systems in an organization. This is achieved by means of requirements in terms of
the level of dependability that should be satisfied and the cost of mitigating the
predicted failures before their occurrence. As an example, for a critical scenario
(e.g., home banking), one wants to select a predictor with a higher detection rate,
even if it raises more false-alarms than others (within some acceptable bounds),
since unpredicted failures may have serious consequences. On the other hand, for
a medium-quality scenario (e.g., corporate site), one may want a predictor with a
high detection rate, but that does not raise too many false-alarms, since the cost
of dealing with them may be high compared with the mitigation of failures.

This work considers three criticality levels representing realistic scenarios, inspired
by those described by Antunes and Vieira [Antunes and Vieira, 2015]:

• High-criticality – failures missed may be problematic due to the criticality
of the target system. However, a model that constantly raises false-alarms
is also not suitable, as these will trigger countermeasures to avoid the (non-
existing) failures. This way, the goal is to select a model that is able to
predict the highest number of failures but also taking the number of false-
alarms into some level of accountability. An example of a high-criticality
system is a home-banking system.

• Medium-criticality – failures may be missed at the cost of reducing false-
alarms. The goal is to select a model reporting few false-alarms at the cost
of missing some failures. An example of such a system is an email server.

• Minimum-criticality – every false-alarm is a cause of concern due to its
cost. The goal is to select the prediction model reporting the lowest number
of false-alarms while still predicting some failures. An example is a forum
server.

Scenarios are helpful for system administrators as they allow discerning the ac-
ceptable/expected outcomes of the failure prediction process for a system that
fits in a scenario. In this framework, the user should identify the scenario(s) that
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match the technical needs of his system and benchmark alternative ML solutions
according to its requirements (i.e., using the performance metrics that represent
the goals of each scenario, as will be discussed in the next section). This allows a
better match between the outcome (the predictors) and the requirements of the
failure predictor operation.

5.2 Metrics
Metrics are an essential part of the benchmarking process, as they characterize
the predictor and allow to fairly compare alternative models. According to Gray
[Gray, 1992], benchmarking metrics should: i) portray the key characteristics of
the entity under benchmarking, ii) be easy to understand and use, and iii) be
generally accepted. Also, they must be obtained without impacting the system
(i.e., the prediction models).

Revisiting some basic concepts, in a classification problem, the samples that are
correctly predicted are known as True Positives (TP) and True Negatives (TN).
The positive samples (i.e., failures) that are predicted as negatives (i.e., non-
failures) are False Negatives (FN) and the opposite are False Positives (FP). Al-
though there are several composite metrics available (e.g., precision), they should
be carefully used as they are not independent of the data [Sokolova and Lapalme,
2009].

Albeit most metrics are well documented, developers are often unaware of their
advantages/limitations and do not know which one to use to best fit their needs.
Several metrics are included and explained in this work, leaving to the user the
selection of the relevant scenario, which in turn will determine the metrics to use.
In the same way that we argue that the framework should be run in the system
where failure prediction is being implemented (to account for the characteristics
of the system), it is also necessary that the outcome of the process fulfill the needs
of the user (i.e., rank the prediction models from the most relevant perspective).
For each scenario, one main metric is proposed to rank the tools (according to
the goal of the scenario in the specific context of OFP) and a tiebreaker metric
is used only when there is a tie (i.e., no statistical difference, as defined in the
benchmarking procedure) (see Table 5.1).

Table 5.1: Recommend Metrics by Scenario

Scenario Metric Tiebreaker
High-criticality informedness ∗ recall recall
Medium-criticality f-measure precision
Minimum-criticality markedness precision

The next paragraphs describe the evaluation metrics and why they are adequate
for each scenario, taking into account that failures are rare events (i.e., datasets
are imbalanced):

• Recall – the proportion of failures that are correctly identified as such:
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recall = TP/(TP + FN). As the TN and FP are not considered and the
data is highly imbalanced, this metric is used only as a tiebreaker in the high-
criticality scenario, where the best model is the one that correctly predicts
most failures.

• Precision – the proportion of positive predictions that were correctly clas-
sified: precision = TP/(TP + FP ). From a list of models predicting the
same number of failures, the best is the one with fewer FPs, which is the
tiebreaker adequate for both medium-/minimum-criticality scenarios, where
the purpose is also to avoid FPs (although not the main objective).

• F-Measure – also known as F1-score, the harmonic mean of precision and
recall. As it gives the same importance to both precision and recall it is
suitable for the medium-criticality scenario where it is preferable to predict
fewer failures than to predict more and have an added cost due to FPs.

• Informedness – how consistently a predictor predicts the outcome of both a
TP and a TN, that is, how informed a predictor is for the specified condition,
versus chance. Every TP increases (in the proportion 1/(TP + FN)) and
every FP decreases (in the proportion 1/(TN +FP )) the metric. In practice,
due to the data imbalance, most of the time this metric prioritizes models
predicting more failures, but still considering FPs, which makes it suitable
for the high-criticality scenario.

Informedness = TP

TP + FN
+ TN

FP + TN
− 1 (5.1)

• Markedness – how consistently the predictor has the outcome as a marker,
i.e., how marked a condition is for the specified predictor, versus chance.
The metric considers the proportions of the predicted positives and negat-
ives that are correctly classified. As failures are rare events, each FP will
lower the metric more than a FN, thus satisfying the requirements for the
minimum-criticality scenario, by minimizing the FPs whilst also classifying
some failures.

Markedness = TP

TP + FP
+ TN

FN + TN
− 1 (5.2)

Something that previous works overlooked is that the informedness metric
is not concerned with which condition is better predicted, that is, a model that
correctly predicts 70% and 30% of negative and positive samples, respectively,
has exactly the same informedness as one that predicts 30% of negative and 70%
of positive samples. Logically, for the high-criticality scenario, the best model
is the one that predicts more failures. Hence, to overcome this behavior the
models are ranked based on the product of their informedness (through unity-
based normalization) and recall (as shown in Table 5.1). This will still take
advantage of the strengths of the informedness metric while assuring that the
models with higher recall (among those with higher informedness) will be ranked
first.
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The metrics proposed attempt to address the three different common usage scen-
arios while dealing with the intrinsic characteristics of the dataset. Note that, time
or complexity metrics are not being included. The reasoning is that, nowadays,
most (trained) ML models can make nearly immediate predictions (with the ex-
ception of some ‘families’ of algorithms, e.g., instance-based), and thus, for the
proposed approach, there should not be relevant differences between the solutions.
Notwithstanding, it should be ascertained whether the selected models can make
predictions within the intended frequency (e.g., one prediction per second). Con-
cerning the training phase, although there are differences between the algorithms,
this happens offline, and thus it is not as relevant compared to predictive perform-
ance. Still, as resources are finite, after ranking the various solutions based on
their predictive performance, the user may take the training time into considera-
tion. It should however be noted that different implementations of a ML technique
(or even the code of the benchmark) may be more/less optimized, which will ul-
timately influence execution time. Instead of directly comparing absolute values
the user should follow a more qualitative approach, such as defining a threshold
above which the solutions are no longer acceptable. Online/incremental learning
is also left out of the scope of this work, as most algorithms do not support it and
it is, in itself, a complex problem. Furthermore, as mentioned before, the systems
that may benefit more from OFP are large and complex servers, often subject to
workloads that do not change regularly. If there are changes that require new data
to be included in the models, that should lead to a new benchmarking campaign
with the new data.

The user may also consider other metrics and still follow the procedure. However,
they should be carefully chosen as some may be misleading in some contexts (e.g.,
various works wrongly use accuracy with imbalanced datasets).

5.3 Algorithms
An adequate set of algorithms, configurations, and techniques should be selected
to be benchmarked. In practice, as different algorithms excel at different problems,
the set of algorithms should be as diverse as possible (e.g., NN, RF). To explore the
predictive potential of each algorithm the chosen set of (hyper)parameters should
be representative and thoroughly selected (e.g., based on documentation, related
work). Different ML techniques should be selected to handle the characteristics
of the data (e.g., feature selection/extraction, sampling).

Following a thorough and detailed procedure (described in detail in Section 5.5), a
combination of algorithms, configurations, and techniques should be used against
the workload. The performance of the various solutions is then computed and
ranked according to the metric of the targeted scenario. A key aspect is that the
robustness of the models to minor variations in the data should be assessed and
subsequently improved (if necessary).
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5.4 Dataset/Workload
The dataset represents the workload that the prediction models must perform
during the benchmark run.

Real workloads contain data collected from real environments. Results of bench-
marks using real workloads are usually more representative. However, data from
several systems may be needed, and both the portability and generalization are
dependent on the systems used to collect them. Realistic workloads are artifi-
cial, based on a subset of operations from real systems in the intended domain.
Although artificial, they still reflect real situations, are representative, and more
portable than real workloads. Realistic workloads of failure data can be generated
through fault injection [Durães and Madeira, 2006]. Finally, synthetic workloads
are artificially generated based on assumptions and rules. Although they are easier
to collect and provide better repeatability and portability, their representativeness
is highly questionable.

Using real workloads is almost impossible in most cases, partially because failures
are rare events and collecting enough data is too expensive. Thus, there have
been several studies on the injection of software faults to generate realistic fail-
ure data. Techniques such as G-SWFIT [Durães and Madeira, 2006] allow the
generation of large amounts of realistic failure data in a short time, thus over-
coming one of the main limitations of OFP. Although this approach does not
provide a specific workload (as it should mimic the system where the predictor
will function), Chapter 3 provides detailed guidelines and procedures on how to
use fault injection to generate failure data for a target system. Notwithstand-
ing, this framework includes guidelines on how the dataset should be built and
validated (step 2) Dataset Building and Validation).

5.5 Procedure
Benchmarking requires a rigorous procedure, driving the user from the assessment
to the comparison of the results. The proposed procedure has five phases, depicted
in Figure 5.2.
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Figure 5.2: Benchmarking Procedure
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5.5.1 Preparation
Preparation consists of identifying the set of parameters for benchmarking the
failure prediction models (e.g., the failure modes to predict, the intervals relative to
the failure prediction task; ∆tl and ∆tp). This step also encompasses the selection
of the algorithms and their configurations, as well as any other techniques and
configurations deemed necessary (e.g., dimensionality reduction, sliding windows).
Another key aspect is to decide on the scenario to consider (Section 5.1) taking into
account the environment in which the predictor will operate, which determines
the metrics used for ranking the solutions (Section 5.2).

5.5.2 Dataset building and validation
Although the collection/generation of datasets is out of the scope of the bench-
mark (it has already been extensively overviewed in the previous sections), some
rules should be taken into account in the context of benchmarking. The datasets
are built from the failure data collected/generated (see Section 5.4) by associating
information about failure/no-failure occurrence. In practice, a dataset must be a
simple table where the columns are divided into a set of descriptive features (the
monitored variables) and a target (whether a failure will or not occur within the
specified ∆tl, ∆tp, following a procedure such as the one proposed by Salfner et al.
[Salfner et al., 2010]). Each row represents an instance that contains a value for
each feature and target. In the event of failure, the target should be descriptive
of each failure mode (e.g., hang, crash) [Koopman et al., 1997], thus allowing the
analysis of each mode separately. As these represent values taken over time, the
instances should be in the same sequence as they were collected, in order to allow
the evaluation of techniques that consider previous values (e.g., sliding windows).
No ‘false-predictors’ (i.e., features directly related to the target) can exist, and the
dataset should only contain sanitized data (e.g., in case of data generated through
fault injection, runs that fail immediately after injection should be eliminated, as
these are not representative of residual faults and would have likely been detected
through traditional validation techniques).

As the dataset is provided by the user, validation is necessary to ensure that it can
be used to properly benchmark different solutions. In practice, it should present
different attributes, such as having a minimum number of samples for each failure
mode, not having missing data, each feature should contain a single datatype, and
each sample should contain the same number of features. Some algorithms can
still perform when some of these attributes are not met, but this may compromise
the results and limits the algorithms that can be benchmarked. Moreover, for
OFP there is no reason why these attributes should not be respected.

This is probably the most demanding step, as the task of generating the datasets
from the original data depends on how it was initially stored/organized. Non-
etheless, this typically merely corresponds to exporting the data to the intended
structure and thus can be easily automated. In the end, as long as the datasets
are generated to the required structure, the proposed approach can be used on
any kind of system.
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5.5.3 Execution of the prediction algorithms
Each algorithm must be trained using a training dataset, while the validation
and testing datasets should be used for evaluation. In this phase, the output
of each predictor is collected for later processing. This phase can be divided
into three parts: i) training, where the algorithm is trained using labeled data
for discriminating failing from non-failing situations; ii) prediction, where each
failure predictor tries to label a set of unlabeled data; and iii) output collection,
where the predictions are collected. To find the best models, additional tasks may
be needed such as data sampling, dimensionality reduction, and hyperparameters
optimization.

5.5.4 Metrics calculation, assessment, and comparison
The predictions performed by each model are processed to calculate the metrics
for the scenario being considered. Each predictor must be evaluated using the test
datasets to have an estimate of the generalization error. This property (i.e., to
which extent the results will hold in the operational scenario) is closely related to
the confidence one may have in the benchmarking results. As discussed in Section
2.2 and Chapter 4, over the years various methods have been proposed to assess
the performance of ML models (e.g., k-fold cross-validation). Several techniques
have also been developed to account for the sequential and autocorrelation of
the data in a time series (e.g., out-of-sample [Tashman, 2000]). However, given
the experiment-based nature of OFP (e.g., there is no sequence between multiple
failures, and failures will always be at the end of the experiments) such techniques
are not adequate.

As previously argued (and as will be shown in Chapter 6), using k-fold cross-
validation for developing OFP solutions leads to overfit models that cannot gener-
alize properly (i.e., when the best models developed using k-fold cross-validation,
which supposedly could correctly predict practically all non-failure and failure
samples, were put online they failed to detect almost all the incoming failures).
To avoid this, and to obtain a more realistic estimate, the performance of the
models should be assessed using ELOOCV (introduced in Chapter 4), a novel val-
idation approach for OFP based on the leave-one-out cross-validation. In short,
ELOOCV considers every experiment except one for training and then tests on the
held-out experiment, iterating over all the experiments. A simple illustration of
the process was shown in Figure 4.3. This approach mimics an online environment,
where the models will make predictions on completely unseen experiments.

As many algorithms (e.g., NN, K-means) do not perform adequately when dealing
with features that have different scales (which often occurs in datasets for OFP as
the features monitor different parts of the system) the data should be normalized
(e.g., using normalization, scaling the values to a fixed range [0, 1], or standard-
ization, also called Z-score normalization, which scales the data to have µ = 0
and σ = 1) [Irrera and Vieira, 2014]. Given the lack of boundaries (and possible
outliers) that are common in OFP, the use of z-score normalization is advisable.
Each experiment should be run multiple times with different seeds for statistical
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support.

The user should analyze the results of various models and select the one that
best fits his requirements, depending on the selected scenario. Statistical tests
are required to guarantee that the best solutions are in fact statistically different.
Briefly, paired statistical tests should be used (as each experiment uses the same
data) and the normality and homogeneity of the variance should be assessed to
decide between parametric and non-parametric tests [Field, 2013]. When there
are no significant differences, the ranking should consider the tiebreaker metric.
The user must also define how many solutions are of interest (i.e., the top N, on
which the statistical comparisons will be done) and how many additional models
should be analyzed after N if no significant differences are found.

Based on the ranking of the solutions, the user may also take into consideration
other aspects, such as the interpretability of the models or the time they take to
train (as discussed in Section 5.2). Moreover, the user may also use non-subjective
analysis of benchmarking results (e.g., using Analytic Hierarchy Process (AHP),
a multicriteria decision-making technique that allows mathematically expressing
subjective and personal preferences [Martínez et al., 2014]).

5.5.5 Robustness assessment
The performance of the models should be assessed using data with small variations
(as will likely occur in production). This step is essential in the benchmarking
procedure to assure that the models will also be able to perform accordingly when
dealing with new unseen (and inherently different) data. The first step is to
craft new samples to assess the robustness of the models. These samples may
be obtained through simplistic approaches (e.g., random/guided perturbations)
or crafted adversarial samples. In general, there are three common approaches to
generate adversarial samples: white-box (uses knowledge regarding the configura-
tions and architecture of the models), gray-box (which uses only partial knowledge
of the system), and black-box (relies only on the outputs given by the models).
Ultimately, all approaches try to identify the minimal perturbation that leads the
models to a wrong output.

To retain the characteristics of the original samples the perturbations must be
constrained. As discussed in Section 2.2, adversarial perturbations are typically
measured using Lp-norms. Due to the nature of a complex system (where mul-
tiple variables may vary), L∞ is the most adequate norm, as it only measures the
largest feature variation. Contrary to generating adversarial samples on images,
where a human can typically validate if a perturbed image is still similar to the
original, it is much harder to assess the imperceptibility of the changes in tabular
data, which are often comprised of hundreds of numeric continuous features (an
issue thoroughly discussed by Ballet et al. [Ballet et al., 2019]). Given that this
work recommends using Z-score normalization, which transforms the data to have
unity standard deviation, a maximum perturbation of 0.3 was identified based on
informal experimentation (i.e., by studying and assessing the magnitude of the
perturbations on the original values of the features) as being adequate to insert
variations without compromising the characteristics/label of the original sample.
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As an example, which will also be discussed in the experimental evaluation in
Chapter 6, for a maximum L∞ perturbation of 0.3 the average cpu percentage of
system apps feature, whose values range from 0% to 88%, would change at most by
0.81%. Regarding the average apps memory use (MiB), which ranges from 32MB
to 505MB, it would mean a maximum variation of 5.12MB. While dependent on
how the values of the features are distributed, with Z-score standardization a per-
turbation of 0.3 is a conservative value regarding expected variations in the data.
This value, which can also be defined on a per-feature basis, is ultimately context-
dependent. Another characteristic that must also be considered when generating
adversarial samples is that different features will likely have different hard bounds
(e.g., cpu frequency cannot be lower than 0) which cannot be violated.

The next step is to use defensive techniques to improve the robustness of the mod-
els against such variations (if necessary). Although there are several techniques
available [Biggio and Roli, 2018], two approaches are worth mentioning. The
first is to use data augmentation/adversarial training techniques, which consist
of augmenting the training data to create more robust models. While effective,
these are heuristic defenses, without convergence and robustness guarantees [Big-
gio and Roli, 2018]. The second is based on robust optimization techniques, where
adversarial learning is formulated as a minimax problem [Biggio and Roli, 2018].
Although this is more efficient and provides formal guarantees, such works are
often algorithm-specific and may not be available or be easy to apply to some of
the algorithms considered in the benchmarking process.

5.6 Summary
Effectively implementing failure prediction is a complex task. It requires extensive
and accurate tuning and a rigorous assessment of alternative solutions using ap-
propriate metrics, followed by a thorough comparison considering adequate data-
sets and procedures. To provide confidence that the results obtained will hold on
an operational scenario this process must be well defined and strictly followed.
Notwithstanding, as such a process is not available, existing works rely on ad-hoc
approaches, considering a limited set of methods and a diverse set of metrics,
having little consideration for the comparison and sensitiveness of the models to
variations in the data.

This chapter introduced a conceptual framework for benchmarking predictive
models for OFP, assuring a fair and sound assessment and comparison of al-
ternative solutions. It provides a detailed procedure comprised of several steps
and considerations, such as choosing the most adequate performance metrics tak-
ing into account the needs of the system, preparing and validating the workload,
assessing and comparing alternative failure predictors, and ultimately selecting
the one that best fits the operational requirements. It explores the notion of scen-
arios, which are realistic situations that depend on the criticality of the system,
providing a better match between its outcomes and the requirements of the failure
predictor operation. The framework also attempts to address a common issue in
benchmarking: how to assure that the results of the process will hold when using
different data. This is achieved by exploring the use of adversarial ML to assess
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and improve the performance of the models to minor variations in the data. This
proposal is the last item of the framework described in Chapter 1 and builds on
top of all the previous contributions, from the techniques and artifacts proposed
in Chapter 3 to the detailed methodology introduced in Chapter 4.

To demonstrate how these contributions can be used to develop accurate fail-
ure predictors on a new and recent complex system, the next chapter presents a
comprehensive experimental evaluation targeting the Linux OS. It comprises an
extensive fault injection campaign, considering different workloads representing
different usage scenarios, several fault types, and various failure modes. The gen-
erated data are then thoroughly explored and an extensive study is conducted
on the use of ML techniques, from traditional to state-of-the-art algorithms, and
their applicability to OFP. The resulting models are then compared, exploring
how different operational scenarios determine which solution is best to satisfy its
operational requirements. Each section provides a detailed analysis of the imple-
mentation, results, and insights of each contribution.
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Chapter 6
Experimental Evaluation

The contributions described in the previous chapters provide theoretical know-
ledge, guidelines, and procedures to overcome the most relevant challenges to
the use of OFP. This chapter presents an extensive experimental evaluation to
demonstrate how they can be used in practice.

This chapter can be divided into three parts: generating failure data, developing
failure predictors, and benchmarking alternative predictive solutions. As this is a
fairly extensive experimental evaluation, we suggest that, if the reader is interested
in the process of generating the data, then focus on Section 6.1. On the other
hand, if the main interest is in creating and developing predictive models using
ML techniques, this is thoroughly detailed and analyzed in Section 6.2 and Section
6.3. Finally, if the reader is mostly interested in how to properly compare and
benchmark alternative predictive solutions, this is developed in Section 6.4.

6.1 Generating Failure Data
The first step of any failure prediction effort is to generate/collect the data to
support the development of predictive models for OFP from the specific system
where these will be deployed. This section presents the details and overviews the
process of using the techniques proposed in Chapter 3, discussing the specifics of
configuring and deploying a testbed (following the guidelines proposed in Section
3.1) and presenting a comprehensive fault injection campaign (conducted follow-
ing the process described in Section 3.2). A thorough analysis on the impact of
running experiments simultaneously is done to assess the effectiveness and isol-
ation provided by the testbed. The generated data are then explored from the
perspectives of the impact of the faults, of the distribution of failures per fault
type, as well as of the most relevant characteristics that may influence the process
of developing predictive models.

6.1.1 Experimental Setup
The experiments were conducted on a PowerEdge R630 with 2 In-
tel®Xeon®E5/2650 CPUs (with a NUMA node each, hence the testbed had to
take this into account). The machine has 64GB of DDR-4 and 2 Samsung 850
Pro 512GB SSDs.
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Linux was selected as the target OS for this experimental evaluation. It is of-
ten the chosen platform for research and it can also be found in the most varied
applications, from small embedded to large enterprise-grade systems. For contain-
ment/flexibility, the QEMU (with KVM) hypervisor was used. The guest OS is
an up-to-date 32-bit Long-term Support (LTS) Linux kernel 3.16.82. This version
was selected due to the intended fault injector dependencies. The fault injector
used in these experiments [Yoshimura et al., 2012] (which is further discussed in
the next sections) was only functional up to kernel version 3.7 but we ported it to
the latest LTS version available of the same major version, kernel version 3.16.82.
The host runs 64-bit Ubuntu 18.04.02 with the 5.0.0 low-latency kernel. Single-
core VMs with 2GB of memory were used. The system was configured (using
cpusets) to execute sixteen experiments simultaneously (as managing the virtual
machines and keeping data in memory also consumes resources, 16 simultaneous
experiments was the maximum possible in this setup to avoid resource starvation
and swap memory use).

The experimental process was automated using Python and Pexpect [Spurrier,
nd]. As mentioned before, although different sources of data can be used for OFP
(e.g., system logs), this study focuses on monitoring the system state through its
metrics (e.g., CPU, memory). Thus, several system metrics (all numeric) were
collected from the VMs every second using Netdata [Netdata, nd] (923 metrics,
which can be seen in Appendix B).

Automating interactions with complex programs such as VMs is a complicated
task by default. On top of that, as fault injection often leads to the corrup-
tion/malfunction of the target system, the testbed must be resilient and handle
errors in the interactions by design. Whenever possible, the various processes are
asynchronous (e.g., monitoring, failure detectors) to avoid halting the execution
when the target system begins to misbehave. All the considerations/optimiz-
ations described in Section 3.1 were implemented to increase the performance
isolation of the experiments. More precisely: isolcpus and cset-shield/set, NUMA
and cpu affinity, low-latency kernel, preallocating memory, hugepages, limiting
CPU frequency on the isolated cores, real-time scheduler, avoiding IRQ and RCU
callbacks on isolated cores, and cleaning dirty blocks on disk after each batch
of experiments. At the end of the experiment, all resources are cleared/freed
and all execution is gracefully terminated. The testbed also monitors the state of
resources on the host to avoid overloading its execution (i.e., when executing thou-
sands of experiments it is easy to reach system limits, e.g., open file descriptors)
and inadvertently influence the experiments.

6.1.2 Workloads
A workload is needed to exercise the system and study the effectiveness of the
testbed and the impact of the injected faults. As the workload influences the
behavior of the system (with and without injected faults) it must be selected
considering the technical needs of that same system. For this study, stress-ng
[Ubuntu, ndf] was used to generate the workloads. stress-ng was selected as it
contains various stressors designed to exercise several physical subsystems, as
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well as various kernel interfaces. This allows simulating realistic workloads, such
as cpu-intensive (e.g., computation) and memory-intensive (e.g., video-editing)
tasks.

For assessing the isolation provided by the testbed, all stressors available in stress-
ng were considered (i.e., cpu, io, matrix, stream, zlib, hdd, memtrash, and vm),
which can be seen in Table 6.1. Due to the large number of experiments that
are required to achieve statistical relevance, for the fault injection campaign we
selected three of the workloads, which provide common usage scenarios: io (an
I/O-intensive workload, committing buffer cache to disk), cpu (a CPU-intensive
workload), and matrix (a memory/cache and floating-point-intensive workload).
The workloads executed for 10 minutes (after fault injection). As a thorough
fault injection campaign requires executing a very large set of experiments, a
trade-off had to be defined between the duration of the workload and the chance
of activating the fault and subsequent failure. Based on an exploratory evaluation,
and as will be shown in Section 6.1.6, in this setup most of the failures occurred
relatively close to the fault injection and thus 10 minutes is an acceptable duration
to allow the system to stabilize and provide enough time for faults to be activated
and lead to failures. Nevertheless, some failures may take longer to manifest and
therefore require longer experimental campaigns, which will be explored in future
work.

Table 6.1: Workloads - stress-ng [Ubuntu, ndf]

Workload Description

cpu exercise the CPU using several methods (e.g., computing Ackerman
functions, complex floating point operations)

io continuously calling sync(2) to commit buffer cache to disk

matrix perform various matrix operations on floating point values

stream exercise memory bandwidth, loosely based on the STREAM bench-
marking tool [McCalpin, 1995]

zlib compress and decompress random data using zlib, exercises CPU,
cache, and memory

hdd continuously writing, reading, and removing temporary files

memthrash thrash and exercise a 16MB buffer in various ways to trip thermal
overrun

vm continuously calling mmap(2)/munmap(2) and writing to the alloc-
ated memory

6.1.3 Assessing Isolation
Sixteen experiments were conducted sequentially (to establish a baseline) and six-
teen were executed in parallel for each stressor, for both the isolated environment
(i.e., where the various techniques to achieve isolation were implemented) and non-
isolated environment (where no specific isolation techniques were implemented).
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To assess the potential influence of other tasks running on the host, a third set
of sixteen experiments executing simultaneously was conducted for each stressor
and environment while a cpu and memory-intensive workload was running on a
separate session. A summary of the configurations can be seen in Table 6.2.

Table 6.2: Isolation Experiments

Workloads cpu, io, matrix, stream, zlib, hdd, memthrash, vm

Environments isolated (isolation techniques are implemented), non-
isolated (no isolation techniques are implemented)

Executions sequential (the experiments are executed sequentially), par-
allel (the experiments are executed simultaneously, i.e., at the
same time), parallel with host load (the experiments are
executed simultaneously while a cpu- and memory-intensive
workload is running on the host)

Experiments 16 experiments per set (i.e., for each combination of workload,
environment, and execution), a total of 768 experiments

A summary of the results can be seen in Table 6.3. For each environment (i.e., non-
isolated and isolated) the first group (i.e., cpu, io, matrix, stream, zlib) are those
where isolation is noticeable and the second (i.e., hdd, memtrash, vm) where it is
not. The metric used for comparison is bogo operations (a throughput measure).
Although it is not an accurate benchmarking metric, it allows comparing the
performance across different environments [Ubuntu, ndf].

As can be observed, without isolation all stressors have considerable variation
between sequential and parallelized execution, which is further aggravated when
the host is executing other tasks (e.g., cpu stressor presents a variation of approx-
imately 20%, executing 88860, 81347, and 70664 operations, respectively). Fur-
thermore, without isolation standard deviations are systematically higher (e.g.,
the io stressor had a standard deviation of 187552 for the non-isolated and only
3363 for the isolated environment). On the other hand, when isolating the exper-
iments it is possible to observe that all the stressors in the first group (e.g., cpu
to zlib) have similar results across the various environments, regardless of other
tasks executing on the host (e.g., cpu stressor executed 38594, 38527, and 38370
operations for the sequential, parallel, and parallel with host load environments, a
maximum difference of 0.5%).

As expected, benchmarks that stress components that cannot be parallelized
are affected by running experiments simultaneously (e.g., hdd stressor operations
dropped 38%, from 169910 to 105453). Also, when comparing the performance
of sequential experiments between isolated and non-isolated environments, it is
possible to observe that there is a considerable difference. This is due to limit-
ing the CPU frequency, e.g., when run sequentially, the cpu stressor executed on
average 88860 operations on the non-isolated environment against 38594 on the
isolated.

Each set of 16 experiments took on average approximately 20 minutes when run
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Table 6.3: Experiments Isolation

Non-Isolated

Benchmark Sequential Parallel Parallel w/
Host Load

cpu 88860 (173) 81347 (314) 70664 (10456)
io 1620905 (10787) 1375507 (187552) 1373051 (82853)

matrix 1781923 (2976) 1461701 (292359) 1338686 (257073)
stream 542 (0) 513 (10) 510 (4)

zlib 17372 (228) 15596 (1073) 14414 (1248)

hdd 185388 (28279) 103555 (696) 103191 (789)
memthrash 37486 (300) 25686 (3598) 19719 (2135)

vm 4894297 (213710) 3827312 (665271) 2065351 (593175)

Isolated

Benchmark Sequential Parallel Parallel w/
Host Load

cpu 38594 (73) 38527 (65) 38370 (96)
io 738995 (2020) 734746 (3362) 730612 (3828)

matrix 775231 (688) 774583 (367) 771314 (1782)
stream 465 (0) 461 (1) 460 (1)

zlib 7518 (250) 7630 (20) 7521 (171)

hdd 169910 (19139) 105453 (7892) 103176 (796)
memthrash 30673 (218) 25121 (344) 23562 (1634)

vm 31599440 (530104) 2511423 (207344) 2230932 (78575)

Legend: {operations average} ({standard deviation})

simultaneously, while the sequential approach took approximately 3 hours and
45 minutes. Scaling this to a larger experimental set translates to a considerable
difference in execution time (e.g., an initial fault injection campaign of 2176 exper-
iments took approximately 46 hours, while executing them sequentially would
have taken 22 days).

Using the techniques proposed in Section 3.1, it was possible to create an auto-
mated testbed that could take advantage of the system resources through simul-
taneous executions with minimal interference (except for workloads that depend
on components that cannot be parallelized). Fixing the CPU frequency to its
minimum also led to lower individual throughput compared to the non-isolated
environment. Notwithstanding, it is possible to profile the CPU frequency un-
der the target workload to minimize the performance gap while avoiding reaching
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thermal limits (i.e., identifying the maximum frequency that does not overheat
the CPU). On the other hand, without isolation, the results were considerably
influenced by other experiments/tasks running on the system.

6.1.4 Fault Injector and Fault Models
A comprehensive fault injection campaign was conducted (following the process
described in Section 3.2) to generate the failure data on the deployed testbed.
Briefly revisiting some concepts, a fault injection campaign typically requires ex-
ecuting a large number of experiments with and without fault injection for a given
workload (or set of workloads). Runs in which faults are injected are known as fault
injection runs, which can be either failing runs (if a failure occurs) or non-failing
runs (otherwise). Additionally, golden runs (i.e., runs where no faults are injec-
ted) are also necessary to understand the behavior of the system in the absence of
faults. A fault injection environment is usually comprised of various components
[Hsueh et al., 1997], as illustrated in Figure 2.5: i) a controller (which controls
the experiment); ii) a fault injector ; iii) a fault library/model; iv) a monitoring
system; and v) a workload to exercise the system.

For these experiments, we used an updated version [Yoshimura et al., 2012] of
a well-known SWIFI fault injector [Ng and Chen, 1999], widely used in various
previous works [Swift et al., 2006; Depoutovitch and Stumm, 2010; Kwon et al.,
2016; Cotroneo et al., 2018]. It uses object-code modification to inject bugs into
the kernel of a running OS. Instead of injecting multiple faults randomly (a com-
mon/default approach), the kernel execution was profiled under the various work-
loads (i.e., cpu, matrix, and io) and faults were only injected within the kernel
functions executed by the workload to improve the chance of triggering a fault. As
faults were being injected in functions with a high probability of being executed,
a single fault was injected per run.

The injected faults range from low-level (e.g., bit-flips) to high-level (e.g., memory
allocation) faults [Ng and Chen, 1999]. The latter are the most relevant and in-
tend to approximate the assembly-level manifestation of real C-level programming
errors. The injector disassembles the binary of a randomly selected function in
the kernel text segment. Since the faults are context-dependent, it analyzes the
disassembled code and searches for proper locations in which each type of fault
can be injected [Yoshimura et al., 2013], as illustrated in Figure 2.6. The injec-
ted faults emulate various types of real faults: assignment faults, control faults,
parameter faults, omission faults, and pointer faults [Yoshimura et al., 2012; Co-
troneo et al., 2015]. In total, 16 fault types representing the most common types
of faults committed by programmers (which can be seen in Table 6.4 [Yoshimura
et al., 2012]) were considered. It should be noted that not all injected faults cause
faulty behaviors (e.g., bugs inserted on a rarely/never executed path/condition
will rarely/never produce an error). As the execution of the system is not entirely
deterministic, three separate experiments were conducted for each fault location
and workload.
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Table 6.4: Fault Types

Fault Type Description

ALLOC kmalloc returns NULL

BCOPY makes string functions overrun

BRANCH deletes branches

DSTSRC destroys assignments

FREE deletes kfree

INIT omits initialization

INTERFACE omits function arguments

INVERSE flips predictions

LOOP destroys loop condition

IRQ deletes restoration of interrupts

NULL omits NULL check

OFF-BY-ONE e.g., ja change into jae

PTR destroys pointers

SIZE makes heap alloc. smaller

TEXT bit-flip in the kernel text segment

VAR allocates huge local valuable

6.1.5 Failure Modes
Various failure modes were monitored during the experiments, described in Table
6.5: crash (OS crashes), hang (OS hangs), performance (the performance deviates
more than 5%, to tolerate statistical variances, than the lowest baseline value),
infinite execution (workload has not finished after 15 minutes), I/O (no longer
writes to disk), and filesystem corruption (using the fsck functionality). The sys-
tem logs were also monitored for non-fail-stop failures (e.g., unable to handle ker-
nel null pointer) which were grouped into different ‘failure categories’ (considering
their probable cause): cpu/execution-related, memory-related, and kernel-related
failures. If failure messages of different categories are detected (nearly) simultan-
eously their combination was considered and the most probable cause selected
(e.g., if Kernel BUG at [...], a ‘generic’ message that was associated with kernel-
related failures, was followed by an invalid opcode: [...] SMP, which we associated
with cpu/execution-related failures, the latter would take precedence as it is a more
specific/probable failure/cause). The complete list of failure detectors considered
in the experimental process can be seen in Appendix D.

Although these failure modes are partially based on the C.R.A.S.H. scale [Koop-
man et al., 1997] (e.g., crash maps to Catastrophic; hang maps to Restart; corrup-
tion and infinite execution map to Silent) it was decided to consider and analyze

— 97 —



CHAPTER 6. EXPERIMENTAL EVALUATION

the various failures separately to preserve the granularity and create more accur-
ate/precise models.

Table 6.5: Failure Modes

Failure Mode Description

fa
il-

st
op crash OS becomes corrupted and the system crashes or reboots

hang OS becomes unresponsive and must be forcefully terminated

no
n-

fa
il-

st
op memory memory-related failures detected in logs (e.g., segmentation fault)

cpu/exec cpu/execution-related failures detected in logs (e.g., invalid opcode)

kernel kernel-related failures detected in logs (e.g., kernel bug at [...])

po
st

-h
oc

performance the performance deviates more than 5% than the baseline

corruption the filesystem becomes corrupted

infinite-exec. the workload takes 50% more time than expected

I/O the system can no longer write to disk

6.1.6 Discussion
A large number of experiments were executed, with, and without, fault injection,
as can be seen in Table 6.6. The total number of fault injection experiments
was 4472, 4417, and 4483, for workloads cpu, matrix, and io, respectively. Ad-
ditionally, 100 runs without injecting faults were conducted for each workload to
establish a baseline. To gather as much information as possible, the experiments
were only terminated if a fail-stop failure occurred or more than 30 non-fail-stop
failures were detected (such failures are no longer relevant for these studies because
the goal is to predict the first failure, as afterward the system is already impaired).
As a result, it is possible to have experiments with multiple failures.

Table 6.6: Experiments per Workload

Workload Fault Injection Golden

cpu 4472 100

matrix 4417 100

io 4483 100

On top of the fact that only a small fraction of the experiments led to the obser-
vation of failures, not all of those were suitable for OFP. Runs in which the failure
occurred immediately after fault injection (or activation, monitored using kprobes
[Keniston et al., nd]) were considered invalid as they are not representative of
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residual faults (i.e., such faults would have been detected by traditional valida-
tion techniques), and would not provide enough data points to create predictive
models. Furthermore, there were some experiments where it was not possible to
monitor the fault activation (i.e., it was not possible to insert probes due to the
specific location of some faults), and also some rare occurrences of faults that
compromised the system monitor (i.e., it was not possible to monitor the state of
the system at every second). Finally, some failures were observed only after the
workload ended (labeled as late).

Table 6.7 shows a summary of the fault injection, including the number of fail-
stop failures observed during the experiments. As can be seen by comparing the
total number of non-failing experiments (the first column) with the experiments
that led to failures (i.e., columns Invalid, Failure Late, Failure without Activation,
and Corrupted Failure), only a fraction of the fault injection experiments actually
led to failure. Moreover, most of those failures were too close to fault activation
(i.e., invalid experiments, which can be seen in column Invalid) and thus cannot
be used for OFP. It is also possible to observe that out of the 16 fault types
some rarely caused failures (e.g., FREE), while some others almost always led
to invalid failures. In practice, only a subset (e.g., INVERSE, LOOP) actually
led to useful failures. Overall, from the 13372 experiments conducted (excluding
golden runs), 78.2% of the runs did not lead to the observation of any failure;
18.6% were considered invalid; 1.7% led to failures being observed/logged after
the workload ended; 0.1% had valid failures but incomplete monitoring; in 0.2%
it was not possible to register the fault activation timestamp; and 1.2% led to
valid failures that could be used for OFP.

The fail-stop failures were also analyzed to get some insight into how different
types of faults lead to the most severe failures. As it is possible to observe in
the last 4 columns of Table 6.7, crash failures were considerably more common
than hang or infinite execution. Additionally, some fault types were particularly
effective at crashing the system (e.g., DSTSRC, PTR, and TEXT).

The experiments per fault type depend on the number of viable fault candidate
locations (i.e., locations where a fault of a given type can be injected) in the code
executed by each workload. Hence, the discrepancies in the number of experiments
per fault type are explained by some types having considerably more candidate
locations. One of the reasons why there are so many invalid experiments is because
several non-fail-stop failures are considered (parsed from the system logs, e.g.,
unable to handle kernel null pointer), which often occurred immediately after
injecting a fault, despite sometimes leading to other failures later in the execution.
Although the number of invalid experiments would be considerably lower if only
fail-stop failures were considered, such faults/experiments are not representative
because they would have been detected by traditional validation techniques.

To have a better understanding of when the failures occurred, the Time-to-Failure
(TTF) (i.e., the time between fault activation and failure) of the relevant experi-
ments (i.e., those that were valid and occurred during the execution of the work-
load) was analyzed. Figure 6.1 illustrates the TTF of the cpu workload (other
stressors presented similar distribution). As it is possible to observe, most failures
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Table 6.7: SWIFI Summary

fail-stop
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Result
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ALLOC 195 75 3 0 0 0 273 15 0 0 0
BCOPY 143 27 1 0 0 0 171 4 0 0 11

BRANCH 1282 248 29 2 0 14 1575 69 27 0 41
DSTSRC 1153 325 30 5 0 18 1533 70 17 5 89

FREE 411 0 5 0 0 0 416 0 0 0 0
INIT 1019 148 20 5 0 10 1202 66 2 7 20

INTERFACE 490 166 24 3 0 22 705 52 22 10 13
INVERSE 1021 250 46 0 5 22 1344 59 19 1 67

LOOP 1236 168 33 3 6 22 1468 28 13 7 28
IRQ 171 49 0 0 0 8 228 9 3 9 0

NULL 237 6 0 0 0 0 243 0 0 0 0
OFFBYONE 1189 34 12 0 0 7 1242 9 2 0 9

PTR 977 330 15 0 0 37 1359 107 18 13 98
SIZE 36 0 0 0 0 0 36 0 0 0 0

TEXT 752 663 10 2 0 0 1427 121 18 24 192
VAR 149 0 1 0 0 0 150 0 0 0 0

Total 10463 2489 229 20 11 160 13372 609 141 76 568
Percent. 78.2% 18.6% 1.7% 0.2% 0.1% 1.2% 100%

occurred nearly 50/100 seconds after the activation. Additionally, there were also
two other clusters, near 250 and 550 seconds. This suggests that most of the faults
cause failures in a relatively short term after activation while others can take a
much longer time to manifest (and may eventually be harder to predict as the
symptoms will likely be spread over time).

To build the dataset used to develop failure predictors, we selected the baseline
runs and failures that met the following criteria: i) the fault activation was ob-
served; ii) the failure did not occur immediately after fault activation; iii) the
failure occurred within the workload execution time; and iv) the system metrics
were consistently collected throughout the experiment. Although failures that
occurred after the end of the workload can be used for other studies, this work
is only concerned with predicting failures that occur during the execution of the
business processes (i.e., workload) and not during the cooldown/shutdown phase.
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Figure 6.1: cpu Workload Time-to-Failure (TTF)

In practice, failures for which it is not possible to assign a specific timestamp for
their occurrence were excluded as this is required for accurately labeling the data
samples (otherwise samples may be incorrectly labeled as failures; e.g., perform-
ance failures are logged at the end of the workload, but currently it is not known
when the misbehavior began). Runs where the fault activation could not be mon-
itored were also excluded as it is not possible to assure there was a separation
between fault activation and the failure event.

When exporting the Netdata data, all constant metrics were removed (i.e., metrics
that contained a single value throughout all the experiments), as these do not
add any value but may increase complexity (e.g., the pipes/sockets of the DHCP
process). Additionally, although Netdata monitors hundreds of metrics, some are
transient (e.g., metrics related to email servers, which are typically not exercised
in the selected workloads). Thus, only those that were present throughout all the
experiments for the duration of the workload were selected. As all metrics returned
by Netdata were stored (and not just a predefined subset), another concern was
that they could contain ‘false-predictors/data-leaks’, that is, features that contain
information directly related to what will be predicted (i.e., failure/no-failure; e.g.,
as the experiments have a fixed workflow, metrics such as system uptime may
provide information related to the failures that has no meaning on a real system).
Hence, all potential false-predictors were removed. The final dataset has 371
features (which can be seen in Appendix C) out of 923 metrics collected by Netdata
(which can be seen in Appendix B).
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6.2 Creating Failure Predictors
The main goal of OFP is to be able to detect incoming failures in the near fu-
ture based on past data and the current state of the system. This allows taking
preemptive measures in an attempt to avoid or mitigate their consequences. The
premise is that besides causing a failure, an error (which is an incorrect state
caused by a fault) may cause the system to behave erratically (also known as
symptoms) [Salfner et al., 2010]. Thus, ML algorithms are the most logical choice
to predict failures based on symptoms monitoring, as they can detect complex
patterns in the data that would not likely be found otherwise. Revisiting some
concepts introduced in Section 2.1, OFP is a decision process that tries to predict,
at a time t, whether a failure is going to occur within a precise time, called lead-
time ∆tl. These predictions are valid for a given time window, called prediction-
window ∆tp. Thus, at time t, the model should predict if there will be a failure in
the interval [t+∆tl, t+∆tl +∆tp] [Salfner et al., 2010], as illustrated in Figure 2.4.
Transposing OFP terminology to ML, the monitored system metrics are known
as features, and the values of those metrics/features at a given time t constitute
a sample.

After generating the data (see the previous section), the next step is to explore
them and conduct an initial study to have a better understanding of how dif-
ferent ML techniques can model the problem. This also provides insights into
which techniques are more promising and potentially discard others. This section
presents an initial data-driven study on using ML algorithms and techniques to
create failure predictors for OFP. The results and influence of the different tech-
niques are carefully analyzed, and comparisons are made with some of the most
used algorithms for OFP (e.g., SVM).

6.2.1 Data Preparation
Due to the fact that most features in the dataset are based on different scales,
a Z-score standardization was applied to the data. To be able to study in-depth
the influence of the OFP parameters (i.e., lead-time and prediction-window), the
combinations resulting from ∆tl = [20, 30, 40] and ∆tp = [20, 40, 80, 120, 160, 200]
(as also described in Table 6.8) were considered. The samples were labeled follow-
ing the approach proposed by Salfner et al. [Salfner et al., 2010] and illustrated
in Figure 4.2, generating different datasets for each pair of ∆tl, ∆tp, i.e., 18 for
each workload. A minimum lead-time of 20 seconds was considered as the shortest
window to take preemptive measures. The maximum was limited to 40 seconds
because greater values would result in removing too many experiments (due to
having TTFs lower than the lead-time) and ultimately some failure modes would
no longer be represented.

As most fault injection runs did not result in a failure being observed, to make
the experiments feasible, all the datasets were limited to a maximum of 100k
samples (which is large enough to include all failure runs and several non-failing
and golden runs). The only exception was for the SVM algorithm (its complex-
ity increases considerably with the size of the data) for which the datasets were
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limited to 50k. As it is likely that different types of failure will require distinct
preemptive measures, the classes of the problem (those to be predicted) corres-
pond to the different high-level failure modes defined in Section 6.1: control (i.e.,
non-failure), hang, crash, cpu/exec (i.e., CPU/execution-related failures), memory
(i.e., memory-related failures), and kernel (i.e., kernel-related failures).

A descriptive and exploratory analysis was conducted to have a better under-
standing of the data. While it is not possible to include here every analysis, one
of the most interesting insights was that the averages of the values of the features
per failure mode (for each workload and ∆tl, ∆tp pair) are noticeable different,
thus suggesting that they may be distinguishable, as depicted in the example in
Figure 6.2. As can be seen, there is a considerable difference between the samples
from the various failure modes and the non-failure samples (they are not notice-
able in the graph but they are mostly around 0). Additionally, some failure modes
appear to have very distinguishable traits (e.g., cpu/exec), while others may not
be so perceivable (e.g., kernel).

Figure 6.2: cpu Workload [20, 40] Features Means

The distribution of the classes in the datasets can be seen in Figure 6.3 (by
workload and ∆tl, ∆tp). For readability purposes, the non-failure samples were
excluded, which were always around 97k. It should be noted that for each run
only the data up to the first failure is considered (i.e., if it is a non-fail-stop fail-
ure, subsequent data/failures are discarded), as the goal is only to predict the
first system failure. As can be observed in the figure, cpu/exec and kernel fail-
ure samples are, in general, the most represented classes. Crash samples are also
common and constant across the different workloads, while memory less so. Hang
failure samples are the least represented class and are not even present for the
io workload. It is also possible to observe a decrease in the number of samples
when increasing lead-time, which is due to some experiments being excluded be-
cause their TTF is lower than lead-time. On the other hand, when increasing the
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prediction-window, the number of samples increases, as more samples are con-
sidered as indicative of (future) failure occurrence. Comparing the number of
failure samples (which ranged from ∼1k to ∼4k for the ∆tl, ∆tp pairs [60, 40] and
[20, 160]) with the number of non-failure samples (∼97k) it is possible to conclude
that this is a highly imbalanced dataset (as expected), which requires some care
concerning the techniques and metrics to be used.

Figure 6.3: Classes Distribution

Last but not least, heat maps were used to observe how correlated the features
were, which easily allows identifying strong (both positive and negative) correl-
ations, as illustrated in Figure 6.4. This allowed observing that there are some
highly correlated features, especially between related metrics, such as system cpu
percentage and (overall) cpu percentage. Some ‘unrelated’ metrics are also highly
correlated (e.g., kernel and softirq CPU percentage have a 76% correlation) and
thus can likely be removed without the loss of significant data. Notwithstanding,
most metrics are not highly correlated and therefore their removal may lead to
loss of information.

6.2.2 ML Algorithms and Techniques
To understand how different algorithms model the problem at hand, a compre-
hensive/diverse set was selected, as can be seen in Table 6.8. Given the imbal-
anced nature of the dataset, the influence of different sampling techniques was also
studied. As the dataset also contains a considerable number of features (i.e., 371)
two common feature selection methods were used: variance (which removes fea-
tures with 0 variance) and correlation (which removes highly correlated features,
>90%). The list of methods used can be seen in Table 6.8. To fine-tune the mod-
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Figure 6.4: CPU workload [20, 40] Heat Map

els, a grid-search approach was applied considering the hyperparameters defined
in Table 6.9. These include the most relevant parameters for each algorithm and
the values were selected based on their respective documentation (e.g., [Pedregosa
et al., 2011; Chen and Guestrin, 2016]) to provide a good representation of their
predictive performance.

To estimate the performance of the models, a 5-fold stratified cross-validation
was applied and each experiment was run 5 times with different random seeds
to reduce possible bias. As we argue in Chapter 4 that cross-validation is not
adequate for OFP, some clarification is warranted. OFP is a specific case of
a time series, and it does not intend to forecast the values of some variable,
instead, it attempts to predict whether the current state of the system is (or
not) indicative of an event (that will occur in the future). Moreover, failures
occur at the end of the experiments execution, and there is no relation between
experiments (i.e., no ‘past’ or ‘future’ after each failure). To complicate things
further, validation techniques typically used for time series are not applicable
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Table 6.8: Techniques Used in the Experiments

Process / Step Techniques

Workloads stress-ng: cpu, matrix, io

∆tl/∆tp [20, 30, 40] / [20, 40, 80, 120, 160, 200]

Feature Selection Variance, Correlation

Sampling Random under/oversampling

Algorithms
SVM, NN (Multilayer Perceptron (MLP)), DT,

Bagging, RF, XGBoost,

Table 6.9: Algorithms’ Hyperparameters

Alg. Hyperparameters

SVM
kernel: [linear, RBF, poly], C: [.01, .1, 1],

gamma: [.1, scale], degree: [2, 3, 4]

NN
hidden_layers: [(100,1), (100, 5, 1)],

activation: [logistic, relu], solver: [lbfgs, adam]

DT
min_samp_split: [001, .01, 2], max_feat.: [.1, .55, None],

min_samp_leaf: [.001, .01, 1]

RF
estimators: 100, max_feat.: [.1, .55, auto],

min_samp_leaf: [.001, .01, 1], min_samp_split: [.001, .01, 2]

Bag. max_features: [.1, .55, 1.0], estimators: 100

XGBs.
estimators: 100, learning rate: [0.5, .3, .1],

gamma: [0, 0.1, 0.3], subsample: [0.5, 0.7, 1]

for OFP (e.g., rolling-origin). Ultimately, OFP falls in a gray area, as no clear
guidelines exist. Nevertheless, because ultimately OFP is a supervised learning
problem, in these initial analyses we used the standard ML approach for such
problems, i.e., stratified k-fold cross-validation. This decision is further supported
by the fact that related works on OFP also used cross-validation (e.g., [Irrera
and Vieira, 2014]) and that some authors argue that cross-validation can still be
used for time series problems [Bergmeir et al., 2018]. However, as will be shown
in Section 6.3, for OFP this leads to overoptimistic results that do not hold in
production.

To compare and rank the different models it is necessary to select a performance
metric that allows characterizing their effectiveness. Several metrics are available,
but they should be carefully used as they are not independent from the data
[Sokolova and Lapalme, 2009]. In fact, while it is common to see widespread
use of metrics such as accuracy and precision, their use should be thoroughly
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considered. Concerning accuracy, it is not an adequate metric for imbalanced
data because it does not take into account the representation differences between
classes. In fact, in a highly imbalanced dataset, a model that correctly predicts all
negative samples and no positive samples (i.e., just predict everything as negative,
no failure will ever occur) would just have slightly lower accuracy than a model
that could also predict all failures (i.e., a ‘perfect’ model). Concerning precision,
while relevant, alone it is also not adequate, as, for example, a model that predicts
everything as negative with the exception of a single correctly predicted failure
(i.e., 1 true-positive) would have a precision of 100%, with a (near) 0% recall.
Additionally, the metric should also take into consideration the requirements of
the system where the predictor will operate. In fact, as argued in Chapter 5,
the definition of the ‘best’ model is not straightforward. As an example, for a
more critical context (e.g., home banking), one wants to select a predictor with a
higher detection rate, even if it raises more false-alarms than others (within some
acceptable bounds), since unpredicted failures may have serious consequences. On
the other hand, for a medium-quality context (e.g., corporate site), one may want
a predictor with a high detection rate, but that does not raise too many false-
alarms, since the cost of pro-actively dealing with those false-alarms may be high
compared with the mitigation of failures.

In the OFP context, a common/general goal is to predict as many failures as
possible but also taking into account the number of false-positives (i.e., a system
that is constantly giving false alarms is not very useful for many scenarios). Thus,
considering this context, the F2-score metric was used in this analysis, which gives
double the importance of recall compared to precision (i.e., it is more important to
predict failures, recall, yet a compromise must be made with the number of false-
positives, precision). Additionally, the analysis and assessment of the various
models was based on confusion-matrices, as they allow a clear identification of
how many samples of each class are being (in)correctly predicted, also providing
valuable insights regarding which classes are being confused with which.

The Propheticus framework, introduced in Section 3.3, was used to conduct these
experiments as it facilitates exploring the problem/data and easily testing and
assessing ML methods.

6.2.3 Binary Classification
The first step was to assess the simplest approach to OFP: predict incoming
failures regardless of their type (i.e., a ‘generic’ failure). For the various workloads,
the best SVM model was able to correctly classify nearly every non-failure sample,
as can be seen in Figure 6.5 (obtained with a Radial Basis Function (RBF) kernel
for the cpu workload and ∆tl, ∆tp pair [40, 40]). However, SVM models could
barely predict any failures. On the other hand, for the cpu workload and ∆tl, ∆tp,
NN models were not only able to correctly classify almost every non-failure sample,
but also to correctly predict nearly 80% of the failure cases.

Regarding the DT algorithm, it performs considerably better than the previous
ones (the results for the cpu workload and ∆tl, ∆tp pair [20, 40] can be seen in
Figure 6.6). Its models could distinguish between non-failure and failure samples
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quite accurately, correctly predicting up to 99.9% and 94.5% of non-failure and
failure samples respectively.

Figure 6.5: SVM w/ RBF, cpu, [40, 40] Figure 6.6: DT, cpu, [20, 40]

NOTE: the numbers displayed in the confusion-matrices pertain to the total number of samples per class
(∼100k/50k total) multiplied by the number of executions (5)

As for the ensemble methods, for the cpu workload and ∆tl, ∆tp, RF correctly
classified 99.9% of non-failure and 94.2% of failure samples while Bagging man-
aged to predict 97.2% of the failure samples. XGBoost performed even better,
correctly classifying 99.9% of non-failure and 97.8% of failure samples. These
results suggest that DTs can model the problem better than SVMs and NNs
(although simple, over the years DTs have shown very good results in several
problems). Concerning Bagging, RF, and XGBoost, they are all ensemble meth-
ods that leverage several individual learners (e.g., mitigating bias/variance) and
often achieve better performance.

6.2.4 Classification by Failure Mode
After establishing that it is possible to create accurate predictive models in this
new problem/dataset, the next step was to study if they could predict different
failure modes (i.e., multi-class prediction). Besides providing more information,
this can be useful to allow taking failure-specific preemptive measures.

Although not particularly surprising (given the poor results in the binary clas-
sification task), SVM models still could not accurately predict failures. As an
example, while the best model for the cpu workload and ∆tl, ∆tp pair [40, 40]
could acceptably predict hang and cpu/exec failures (98.1% and 91.8% respect-
ively), all the remaining failure modes had low performances (∼50%). Concerning
NNs, also for the cpu workload and ∆tl, ∆tp pair [40, 40], the best model could
predict almost every non-failure sample (99.8%) and had an acceptable perform-
ance on hang and cpu/exec, predicting 93.3% and 81.7% respectively. Still, it was
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only able to predict 70.9%, 43.2%, and 58.9% of crash, memory, and kernel failure
samples, respectively.

DT models for the cpu workload and ∆tl, ∆tp pair [20, 40], can not only distinguish
non-failure from failure samples but also correctly differentiate between almost
every failure mode, with minimal confusion/misclassifications (as can be seen in
Figure 6.7). Bagging and RF had similar and slightly better performances, and
XGBoost was the best, correctly predicting most failure samples (as depicted in
Figure 6.8).

Figure 6.7: DT, cpu, [20, 40] Figure 6.8: XGBoost, cpu, [20, 40]

To assess the influence of different sampling techniques, the experiments were
executed also using random over/undersampling. While undersampling led to
models that could predict more failure samples (e.g., XGBoost reached nearly
99% for most failure modes), this came at the expense of considerably more false-
positives (∼5%). Oversampling often resulted in improved performance in some
classes (i.e., for the same configurations used in Figure 6.7, the performance of
cpu/exec, memory, and kernel increased by ∼0.2%) at the expense of others (i.e.,
hang and crash dropped by ∼2%). Similarly, feature selection typically lowered the
performance of most algorithms (e.g., for the same configurations used in Figure
6.7 the performance for the memory and kernel failure modes dropped to 95.6%
and 94.8%, respectively) although it sometimes also led to small improvements
(e.g., the performance on crash samples increased to 91.1%).

To study/assess the influence of the workloads and how similar/predictable were
the failures observed, the data from the experiments of the workloads were com-
bined. Due to the systematic lower performance of SVM and NN from now on the
results will focus on the remaining, more promising, algorithms (i.e., DT, Bagging,
RF, and XGBoost).

While some algorithms suffered a small performance loss for some failure modes
(compared to the individual performance on some workloads), it increased for
others. For the DT algorithm, which can be seen in Figure 6.9, it is possible
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to observe that (compared to the cpu workload in Figure 6.7) while it could
predict more crash samples (from 90.2% to 93.2%) other failures had a small loss
(e.g., memory, from 96.7% to 94%). For other algorithms, such as the XGBoost
algorithm, the performance often improved, as can be seen in Figure 6.10.

Figure 6.9: DT, Comb., [20, 40] Figure 6.10: XGBoost, Comb., [20, 40]

To understand which features are more relevant, we briefly assessed which features
were considered more important to the various algorithms. While it was expected
to have a subset of features that exhibited higher importance, the fact is that no
feature/subset had a particularly high relevance. Among those deemed more im-
portant, there are several pertaining to system/kernel/processes RAM/memory
(e.g., committed, SLAB, buffers), I/O activity (e.g., logical writes), and CPU/-
processes information (e.g., number, pipes/sockets, forks), which are common to
most models. Nonetheless, different algorithms gave different importance to the
same features.

As shown above, it is possible to assert that some algorithms can create models
that accurately predict and distinguish between failure modes, even when consid-
ering data from multiple workloads. Still, the influence of the OFP parameters
(i.e., lead-time and prediction-window) on their performance should also be stud-
ied. Table 6.10 presents the performances of the best models obtained for the
∆tl, ∆tp pairs considered ([20, 40], [30, 40], and [40, 40]). The performance varies
with the different ∆tl, ∆tp pairs and, in general, most algorithms lose perform-
ance as lead-time increases. It is also possible to observe that, overall, both
the SVM and NN models have considerably lower performance compared to the
remaining algorithms. Although DT performs considerably well, it was outper-
formed by RF and Bagging. XGBoost systematically outperformed the remaining
algorithms.

To further explore the relation between lead-time and prediction-window, the
best DT, Bagging, and XGBoost models were selected and trained/tested with
the ∆tl, ∆tp pairs described in Table 6.8. The results are depicted in Figure 6.11
that shows that the performance of the models tends to improve with greater
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Table 6.10: F2-score per lead-time (40 sec. prediction-window)

[20, 40] [30, 40] [40, 40]

F2 Prec. Rec. F2 Prec. Rec. F2 Prec. Rec.

SVM .386 .675 .357 .391 .646 .360 .393 .639 .362

NN .851 .893 .842 .815 .867 .804 .783 .840 .770

DT .943 .937 .944 .935 .931 .936 .905 .907 .904

RF .964 .986 .958 .963 .989 .957 .929 .986 .917

Bag. .970 .987 .966 .970 .989 .966 .939 .985 .929

XGB .985 .989 .984 .983 .991 .981 .978 .989 .976

prediction-windows, stabilizing after a certain size (e.g., ∼60 for XGBoost). Re-
garding lead-time, every algorithm performed better with smaller distances, and
the performance of both DT and Bagging dropped considerably with the largest
lead-time. The best model can be seen in Figure 6.12, which correctly predicts
almost every sample.

Figure 6.11: F2-score and ∆tl, ∆tp Figure 6.12: XGBoost, Best, [30, 200]

A last analysis is to study if including the data from previous timestamps leads
to better models. For this, the sliding-window technique was used, which codes
the previous values as extra features in the data. As the number of features
is multiplied by the number of seconds considered in the sliding-window and the
dataset already contains many features, this analysis focuses on the best algorithm
and the most promising ∆tl, ∆tp pairs previously found (i.e., XGBoost and [20,
60], [20, 120], [20, 200]). The sizes of the sliding-windows considered were [1, 2,
4].

The results can be seen in Table 6.11. Because the performance obtained by XG-
Boost was already very high, the sliding-window did not lead to any improvement.
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For the DT algorithm, which still had some room for improvement, there were also
no significant gains and no obvious differences between different sliding-window
dimensions. Notwithstanding, in general, it led to a small increase (∼2%) in the
ability to predict crash and memory failures (and sometimes even hang) at the
expense of slightly lower performance on the remaining failure modes.

Table 6.11: F2-score per sliding-window

F2 Precision Recall

1 2 4 1 2 4 1 2 4

[2
0,

60
]

XG .991 .990 .990 .993 .993 .993 .991 .990 .990

DT .955 .947 .943 .951 .944 .939 .956 .948 .944

[2
0,

12
0] XG .996 .996 .995 .997 .997 .997 .996 .995 .994

DT .975 .967 .965 .975 .965 .964 .976 .968 .966

[2
0,

20
0] XG .997 .997 .997 .997 .997 .997 .997 .997 .997

DT .983 .977 .977 .981 .976 .976 .983 .978 .977

6.2.5 Discussion
Similar to existing related works (e.g., [Zhang et al., 2020; Irrera et al., 2013b]),
some algorithms were able to accurately distinguish between non-failure and fail-
ure samples. Although several algorithms were studied (e.g., SVM, NN), tree-
based models systematically performed better. Besides their increased perform-
ance (for this problem), such models can, if needed, be easily interpreted. An
example of a DT model for the memory failure mode can be seen in Figure 6.13.
Although this was not thoroughly explored in this work, it allows (to some ex-
tent) understanding which features and values are used to distinguish between the
different classes (e.g., if the metric mem_kernel_MiB_average{chart=mem.ker-
nel,family=kernel,dimension=VmallocUsed} is lower or equal to 0.699 it is a non-
failure sample, otherwise, it will transverse down the tree analyzing the values of
different metrics). Ultimately, this may provide relevant insights, such as which
components of the system have an abnormal behavior prior to a failure.

Although our study started by simply trying to predict failures, regardless of their
type, the ability to predict different failures modes can be useful (e.g., such predic-
tions can be used to take failure-specific preemptive measures). Our results show
that not only it is possible to predict incoming failures, it is also possible to accur-
ately distinguish between different types of failure. Additionally, the performance
observed is similar for the different workloads (and for their combination) which,
contrary to previous work [Irrera and Vieira, 2014], suggests that the failure symp-
toms are, to some extent, generalizable.
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Figure 6.13: Decision Tree Model for Memory Failures

Removing highly correlated features generally led to lower performance. One in-
terpretation is that, although correlated, they all have relevant information. Using
undersampling led to models that could better predict failures, at the expense of
more false-positives. While this may fit some scenarios, given the imbalance in
the data even a small increase in false-positives may be an issue. Oversampling
often led to small improvements in predicting some failure modes at the expense
of others. Such trade-off could eventually be used to improve the prediction of
more severe failures by forfeiting on less severe ones.

Results also show that the OFP parameters exert a considerable influence. As
the lead-time increases, the performance of the models drops (which can be easily
understood as it is making more distant predictions). Still, lead-time does not
need to be greater than the time the system takes to react [Salfner et al., 2010].
However, the performance of the models improves as the prediction-window in-
creases. A larger prediction-window means that a longer timeframe of samples
is considered as indicative of an incoming failure. One interpretation could be
that the time relation between symptoms and failures is not constant, and a lar-
ger prediction-window allows some flexibility. Still, from a certain point onward,
the performance stabilizes (as can be seen in Figure 6.11), and will likely start
losing performance because samples without symptoms (i.e., samples where there
is no out-of-norm behavior) will be labeled as predictors of failure (because the
prediction-window becomes too broad). This suggests that the ideal ∆tl, ∆tp val-
ues may vary across the failure modes (which is in fact the case, as will be shown
in Section 6.3).
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Taking into consideration the values of the features in previous instants (i.e.,
sliding-window) did not lead to a systematic increase in performance. Notwith-
standing, the ability of some algorithms to predict some failure modes increased,
suggesting that there may be some relationships that can be leveraged. Still, the
best solutions were achieved without sliding-windows, indicating that the charac-
terization of the system given by the features is distinguishable enough.

The fact that no specific subset of features presented particularly high importance
suggests that the system state (and failure-prone/symptoms) is not characterized
by the misbehavior of a particular subsystem, but rather by the system as a whole.
Nonetheless, while indicative, the importance of the features varies with different
methods [Strobl et al., 2007; Parr et al., nd] and requires a more thorough analysis
to make further conclusions.

To validate if the previous observations could be generalized, an exploratory study
was also conducted on an existing failure dataset targeting Windows XP. The goal
of this analysis is to provide assurances and external validity concerning the abil-
ity to create accurate failure predictors regardless of the fault injector or OS. The
details of this evaluation can be found in Appendix A. In general, results show
that using the proposed techniques it is also possible to develop accurate failure
predictors for an entirely different complex system. Once again, the study high-
lights the need to consider a comprehensive set of algorithms and techniques that
take the characteristics of the problem into consideration. Tree-based algorithms
were again able to achieve better results for the different failure modes, and the
results suggest that failures are similar across different environments (i.e., bare-
metal and virtualized). This analysis also explored the creation of heterogeneous
ensembles, that leverage the bias of different ML algorithms. The combination
of models created using different techniques appears to produce ensembles where
they complement each other in a constructive way, thus considerably improving
the overall performance. Heterogeneous ensembles may be an interesting direction
when individual learners are not enough.

6.3 Developing Predictive Models
The techniques and validation methods used in the previous sections are the stand-
ard approaches in ML. However, both fault injection and OFP present certain
characteristics that render such techniques inadequate. As an example, when the
models obtained in the previous section (which were supposedly very accurate)
were used on new unseen experiments, they could not predict most of the failures
(as shown in Figure 6.15 and briefly discussed in Section 6.3.4, most of the failure
samples were predicted as non-failure).

This section presents an instantiation of the methodology proposed in Chapter 4.
It iterates through the various stages and analyzes how such a process compares
and leads to better and more realistic estimates than classic/naive approaches.
As will be shown in detail later in this section, this also allowed identifying and
solving some issues with the previously defined taxonomy. Using the methodology
proposed in Chapter 4 it was possible to create accurate predictors that were able
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to detect almost every failure without raising false-alerts on baseline/golden runs.
Several ML methods (e.g., Bagging, SMOTE) and OFP parameters (e.g., ∆tl, ∆tp)
were considered to create failure-specific predictive models. These experiments
were all conducted using the Propheticus tool with a custom plugin to implement
ELOOCV, the novel experiment-wise leave-one-out cross-validation proposed in
Chapter 4.

6.3.1 Generate Failure Data
The data generated in Section 6.1 were used in these experiments and thus this
section just briefly recalls the most relevant details. The dataset was generated
using fault injection on a Linux kernel 3.16.82 (following the guidelines proposed
in Section 3.1 and Section 3.2). System metrics (all numeric) were collected
every second using Netdata [Netdata, nd], which can be seen in Appendix B (the
complete set) and Appendix C (the subset of metrics used to develop the predictive
models). The faults were injected with an updated version of a well-known fault
injector [Yoshimura et al., 2012], which uses object-code modification to inject
the faults into the kernel of a running OS. The injected faults range from low-
level (e.g., bit-flips) to high-level (e.g., memory allocation). As many real-world
scenarios and applications are cpu-intensive (e.g., computation, video processing),
this analysis focuses on the cpu workload. The dataset contains a total of 4472
fault injection experiments and 100 runs (golden runs) were conducted to establish
a baseline behavior.

Various failure modes were monitored: crash (OS crashes), hang (OS hangs),
performance (the performance of the workload deviates more than 5% than the
baseline), infinite execution (workload has not finished in 15 minutes), and filesys-
tem corruption (using the fsck functionality). Other non-fail-stop failures were
also monitored through the system logs (e.g., unable to handle kernel null pointer).
To detect them and accurately register their timestamp, several failure detectors
were deployed, which continuously monitor the state of the system (e.g., a hang
failure is detected when the machine stops executing multiple tasks, such as ping,
I/O, socket connections). The complete list can be seen in Appendix D.

6.3.2 Process, Cleanse, Augment Data
Not all experiments that lead to failure are suitable for OFP. As this was already
analyzed in Section 6.1, this section just briefly overviews the most relevant as-
pects. Experiments where the failure occurred immediately after the fault injec-
tion/activation, or where it was not possible to monitor the fault activation, were
excluded. Failures that occurred after the workload ended were also not con-
sidered, as this study is concerned with predicting failures during the execution of
the business process. For the remaining experiments, the collected metrics were
analyzed, which showed that, in some cases, the monitoring system was corrupted
and thus the corresponding experiments could not be used for OFP. For the cpu
workload, only ∼0.9% (40) of the experiments led to useful failures, where 9 led to
fail-stop failures and the remainder to non-fail-stop failures (although some also
ultimately led to a fail-stop failure). Note that, we are only interested in predict-
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ing the first observable failures as afterward the system will already be impaired
and at risk.

On the first take on the data, no augmentation was made. However, when reach-
ing Stage 4 of the process (i.e., Tune Models per Failure/Class), it was not possible
to create accurate predictive models for the individual failures. After unsuccess-
fully expanding the set of ML algorithms and parameters, it was necessary to
return to Stage 2 (i.e., Process, Cleanse, Augment Data, this stage) to improve
the information in the dataset. In the work discussed in Section 6.2, this data
improvement was not necessary because the validation approach used was too op-
timistic (and ultimately not representative). However, using ELOOCV it quickly
became evident that the raw dataset was not enough.

Although various techniques can be used to augment the data, this approach fo-
cused on feature extraction [Herff and Krusienski, 2019]. To consider the state of
the system at a given time (on a per-second basis) different window-based statist-
ical techniques were used. More precisely, the differential, average, and standard
deviation for 2, 3, and 5-second windows, with and without the initial raw data,
were explored. While these techniques enrich the datasets they also increase their
complexity (i.e., the number of features is multiplied by each computed value)
and thus it becomes necessary to establish a trade-off. For these experiments,
the configuration that provided the best results was using the differential from
the previous measurement combined with the current values. In practice, this
considers the value of each feature as well as the details of how different it is from
the previous observation and its signal (i.e., increasing if it is positive, decreasing
if it is negative, or constant if its value is 0).

6.3.3 Parse Failures and Define Failure Classes
To create predictive models it is necessary to define the classes of the problem,
that is, which classes of failures the models must predict (Stage 3 of the proposed
methodology). Ultimately, the goal is to predict whether or not a failure will
occur, ideally distinguishing between different failure modes, at the very least
between fail-stop and non-fail-stop failures (as this likely affects the severity of
the preemptive measures).

As discussed in Section 6.1, the dataset contains two fail-stop types of failures,
system crash and hang, which were considered as two different classes. For the
remaining failures, due to the variety of non-fail-stop failures and their possible
causes, this was not so trivial. This stage comprises the process of identifying,
studying, and classifying the non-fail-stop failures (from the valid experiments) in
classes. After thoroughly analyzing the data, 3 different high-level failure classes
were identified: i) memory-related due to memory errors (e.g., segmentation fault),
ii) cpu/execution-related due to errors at the cpu (e.g., invalid opcode), and iii)
kernel-related: due to errors in the kernel (e.g., recursive fault). This taxonomy
still requires further validation, but it will assist in the next stage for defining/val-
idating which combinations of non-fail-stop failures should be assessed and tested
first. Additionally, it will also be used to validate combinations that do not match
this taxonomy. While it is relevant to create groups of failures that can be pre-
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dicted, such groups must also be logical from a theoretical perspective (and thus
one should not skip directly to Stage 4). The initial distribution of the experi-
ments per failure class is: 6 Crash, 3 Hang, 10 Memory, 11 CPU/Execution, and
11 Kernel.

6.3.4 Tune Models per Failure/Class
The methodology proposed in this work addresses the task of identifying failure
classes (to be predicted) as a mixture between top-down (e.g., creating an initial
theory-based taxonomy) and bottom-up (predicting the different types of failure
individually and then grouping them, identifying difficult/unpredictable failures
in the process). This approach combined with ELOOCV allows identifying/val-
idating the failure classes of the problem and estimating the performance of their
respective models.

To provide some context, the predictive performance of the best model obtained
using the traditional cross-validation approach (as discussed in Section 6.2) can
be seen in Figure 6.14. As can be observed, it suggests that failure samples can be
accurately distinguished from non-failure and that it is also possible to accurately
distinguish between the different failure modes. However, when the same model
was used to predict new unseen experiments (as occurs in a runtime environment),
almost none of the failures were correctly predicted. In fact, that model was not
able to generalize at all, as concluded when calculating the performance of the
same model using ELOOCV (as can be seen in Figure 6.15, almost every sample
was predicted as non-failure).

Figure 6.14: XGB., CV [20, 40] Figure 6.15: XGB., ELOOCV [20, 40]

In an attempt to create better models, the set of techniques was considerably
expanded (e.g., Adaptive Synthetic (ADASYN) and Instance Hardness Threshold
oversampling, Near Miss undersampling, LightGBM) even exploring deep learning
approaches specific for tabular data/problems (e.g., TabNet [Arık and Pfister,
2020]). While this led to small improvements, it was still not possible to accurately
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distinguish between non-failure and failure samples. Thus, as proposed in Stage
4 of the methodology, to simplify the problem, we decided to break it down by
focusing on a single class at a time (i.e., developing separate predictors for each
failure class). This quickly confirmed a hypothesis previously considered: different
failures/classes display symptoms at different times and thus the best model for
each one likely requires different parameters (i.e., ∆tl, ∆tp). This alone allowed
creating models that could predict approximately 75% of failure samples and
around 90% of non-failure samples. Still, these results were far from optimal,
especially because when analyzing their performance experiment-wise, in Stage
5, there were several false-positives on golden runs (e.g., the best model for the
cpu failure class raised 5 false-alerts on golden runs). This low performance,
mainly on the non-fail-stop classes, could be due to two (main) reasons: there were
unpredictable failures in the data (which could be adding noise and lowering the
overall performance) or some failures were incorrectly grouped. Although initially
a top-down approach was used (as referred to in Stage 4, e.g., by analyzing wrong
predictions and trying to exclude/regroup) this was not time-effective. Thus, we
found it necessary to use the alternative bottom-up approach.

Based on the results obtained in Section 6.2, and to limit the search space, we
focused only on the algorithms that had shown promising results (i.e., tree-based:
Bagging, RF, XGBoost). However, the search space of ∆tl, ∆tp, hyperparameters,
and sampling techniques increased considerably. A brief list of the most relevant
techniques and parameters can be seen in Table 6.12 and Table 6.13, respectively.
Several variations were considered for the sampling techniques such as different
sampling ratios (i.e., 1:1, 1:2, 1:5), combined oversampling with undersampling,
and in the case of the Near Miss algorithm, all its three versions (i.e., v1, v2, and
v3) were used.

Table 6.12: Techniques Used in the Experiments

Process / Step Techniques

∆tl/∆tp [10, 20, 30, 40, 50, 60] / [20, 40, 60, 80, 100]

Sampling
Random under/oversampling, Near Miss,

Instance Hardness Threshold, ADASYN, SMOTE

Algorithms Bagging, RF, XGBoost

As proposed in Chapter 4, the first task was creating predictors for each type
of failure (e.g., segmentation fault; experiments with identical failures must be
predicted together, by a single model). While this led to accurate models, there
was a considerable performance variation between multiple executions (e.g., the
balanced accuracy of the best model for segmentation fault failures varied between
82% and 98%). By analyzing the models it was possible to observe that this
was due to the undersampling process (all best models relied on undersampling
techniques). As the undersampling was being done on all types of experiments
(which included golden, non-failing, and other failing runs) this resulted in a high
variation between multiple executions. As there are few failure samples, randomly
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Table 6.13: Algorithms’ Hyperparameters

Tech. Parameters

RF
estimators: [100, 200, 500], max_feat.: [.1, .55, auto],

min_samp_leaf: [.001, .01, 1], min_samp_split: [.001, .01, 2]

Bag.
max_features: [.1, .55, 1.0], max_features: [.5, .7, 1.0],

estimators: [100, 200, 500]

XGB.

booster: [’dart’, ’gbtree’], rate_drop: [0, .01, .1]

estimators: [100, 200, 500, 1000, 1500]

gamma: [0, 0.1, 0.3, 2, 5], subsample: [0.5, 0.7, 1]

min_child_weight: [1, 3, 5], colsample_bytree .: [.5, .7, 1]

reg_alpha: [0, 1, 3], reg_lambda: [1, 2, 5]

learning rate: [0.5, .3, .1, .01], max_depth: [None, 3, 7, 15]

selecting the same number of samples from all the golden, non-failing, and other
failing runs (i.e., to balance the training data set) meant that one execution could
randomly select samples just from golden runs while the next execution could
select all from other failing runs.

To minimize this variance, heuristic/algorithm-based sampling methods were used
(e.g., Near Miss, Instance Hardness Threshold), but overall the results were also
not satisfactory (e.g., for the segmentation fault failure, although more consistent,
the balanced accuracy dropped to nearly 60%). Thus, we decided to train using
only samples from golden runs and from experiments where the target failure
mode was observed. This led to a noticeable increase in performance, as the
models could now properly identify and predict the respective failure (e.g., once
again, the balanced accuracy of the best model for the segmentation fault failure
was now constant across the various executions, varying just between 97% and
98%). The only exceptions were the hang failures, which benefited from being
trained with samples from all types of experiments (i.e., golden, non-failure, and
other failure runs). While it is not possible to unequivocally say why, having more
diverse samples in the dataset allows the algorithms to better model/distinguish
hang failures. It should be noted that the performance of the models was assessed
on every experiment (i.e., test set), including other failure runs.

Based on the initial high-level categorization and common characteristics between
the best models for the different failures (e.g., the lead-time and prediction-
window), we analyzed the performance using combinations of 2 types of failures.
This then became an iterative process where the performance of these groups
was analyzed and further combinations were made between the most promising
and similar groups. During these iterations, the combinations were continuously
compared and analyzed with regard to the initial taxonomy/categorization. This
process was repeated until all the experiments belonged to a group/class. Any
experiment not fitting in any of the existing groups/classes was analyzed to assess
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whether it was not possible to predict the failure observed or a new failure class
was required. In the end, it was possible to create accurate models for the various
failure classes, as can be seen in Figure 6.16 and Figure 6.17 (the models with the
best and worst performance, respectively). Using this process led us to conclude
that some of the failures were indeed miscategorized in the initial taxonomy (e.g.,
one of the failures at the ext4_evict_inode kernel function was being considered as
kernel-related but it was in fact related to memory management) and were com-
promising the resulting models, as can be seen in Table 6.14. This was typically
due to those experiments (mostly from the kernel class) having multiple failures,
which were assessed as being due to one high-level cause but were indeed due to
another. Nevertheless, most of the initial labels attributed to the experiments
were kept. Additionally, this also allowed identifying three experiments (all due
to the same fault) that could not be predicted. These failures occurred precisely
when the workload was ending and it was likely due to some corruption that did
not exhibit any symptoms.

Figure 6.16: Hang, [30, 80] Figure 6.17: CPU/Exec, [60, 20]

Table 6.14: Experiments Distribution per Failure Class

Fail. Class Initial Refined Excluded

fa
il-

st
op Crash 6 6 0

Hang 3 3 0

no
n-

fa
il-

st
op Mem. 10 16 0

CPU 11 11 0

Kernel 13 4 3
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6.3.5 Analyze Experiment-wise Performance
Although having models with high sample-wise performance is relevant, the end
goal is to have models that can accurately and consistently predict incoming fail-
ures without (many) false-alerts (especially on non-failing runs). In practice, a
system will never trigger preemptive measures based on a single alert, as that
would be impractical and the chance of being a single false-positive is potentially
high. As explained in Chapter 4, the logical approach is to only consider a pre-
diction if there is at least a specific incidence (i.e., a specified number of alerts in
a given time window, e.g., 4 alerts in the previous 5 seconds, as shown in Figure
4.4).

The top 3 models for each failure class (which ultimately were all obtained using
the Bagging algorithm but with different parameters and ∆tl, ∆tp) were analyzed
(as the model with the highest sample-wise performance is not always the best
experiment-wise) to assess how many failures would not be detected and how
many false-alerts would be raised. For demonstration purposes, a conservative
requirement of having 5 consecutive alerts (i.e., 5 alerts in the last 5 seconds) was
defined. The results can be seen in Table 6.15. As can be observed (in column
Missed Failure), all the failures except one could be predicted. Additionally, with
the exception of crash and memory failures, there were rather few misclassifica-
tions (i.e., failures being predicted as a different class) as can be seen in columns
Misclas. (non-fail-stop) and Misclas. (fail-stop)). For the memory predictor, 6 of
the misclassifications were in fail-stop failures and the remaining 7 in non-fail-stop
failures (i.e., the predictor identified a failure run from other failure mode as being
a memory failure). As no fail-stop failures were lost, these misclassifications are
not problematic as those would also have been predicted by their respective (fail-
stop) predictors. Regarding the 12 misclassifications in the Crash predictor, as
they pertain to non-fail-stop failures this means that the system would have taken
more conservative preemptive measures than strictly necessary. A key observation
is that none of the predictors raised false-alerts in golden runs (35 golden runs
were considered in these experiments), which is one of the most critical factors
(i.e., avoid interrupting the system without need). Furthermore, as there were
so few false-positives, in a practical scenario it would also be possible to define a
smaller incidence (e.g., 3 alerts) to trigger the preparation of repair mechanisms
to expedite their deployment if necessary.

It is worth noting that, to be consistent with the number of failures previously
reported, these values pertain to a single execution of ELOOCV. Notwithstand-
ing, considering the results for 5 executions with different random seeds (which
means that the randomness of the process is different for each seed, affecting the
sampling, algorithms, etc.) the conclusions are identical. This means that, out of
190 tests on failure experiments, 185 were predicted and there was not a single
false-alert on the 175 tests on golden runs, as summarized in Table 6.16.
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Table 6.15: Experiment-wise Prediction Results

Failure
Class

Predict.
Failure

Missed
Failure

False Alerts
(golden)

Misclas.
(non-fail-stop)

Misclas.
(fail-stop)

fa
il-

st
op Crash 6 0 0 12 0

Hang 3 0 0 2 0

no
n-

fa
il-

st
op Mem. 15 0 0 7 6

CPU 10 1 0 2 0

Kernel 4 0 0 0 4

Table 6.16: 5-seed Experiment-wise Summary

Experiments Missed (False-Negatives)

Failures 190 5

Experiments False-Alerts

Golden 175 0

6.3.6 Deploy Best Model per Failure Class
The last stage of the methodology comprises the deployment and continuous mon-
itoring of the predictors on the target system taking into consideration the details
presented in Chapter 4. This allows assessing how the performance of the failure
predictors holds on the operational scenario and whether corrective measures are
necessary. As there is no real operational scenario for the models developed in this
evaluation, this stage could be studied by conducting lengthier campaigns, both
with and without fault injection, ideally also exploring/injecting different/new
faults. Notwithstanding, this falls out of the scope of this study and is considered
for future work.

6.3.7 Discussion
As discussed before, not taking into consideration the various stages and issues
discussed in our methodology for developing predictive models (e.g., identifying
false-predictors in the data due to the synthetic nature of the experiment, or using
inadequate techniques to assess the performance) leads to predictors that appear
to have modeled the problem but will ultimately fail if deployed on real systems.
As an example, the models developed in Section 6.2 were developed taking into
consideration the recommended ML techniques but ultimately could not predict
any new unseen failures. Although the reason why this occurs was not formally
validated, the hypothesis is that modern ML algorithms are so effective that they
are able to identify patterns in each failing sample that allow them to predict
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other samples from the same run when shown in the test set (as discussed in
Section 2.2, one of the risks/limitations of traditional cross-validation is that it is
possible to have samples from ‘past’ and ‘future’ in both the train and test sets).
According to the literature, this should not be such a critical issue, but given the
experiment-based nature of OFP (and its failures), we have shown that it is not a
suitable approach for OFP. One of the reasons why this was not detected earlier
is that many of the studied algorithms did not perform well, and it was only
after a long experimental campaign and fine-tuning that it was possible to have
accurate models (i.e., these ‘patterns’ or ‘leaks’ were not evident). ELOOCV tries
to address this issue by testing on entire experiments instead of individual/isolated
samples. This quickly allowed observing that each failure class required specific
ML methods and parameterizations (e.g., hang failures could be better predicted
with a lead-time of 30 seconds while cpu/exec with 60 seconds). In the end,
although it was often necessary to return to previous stages to either expand
the set of techniques or enrich the dataset, it was possible to create accurate
predictors.

Another complex issue that the methodology also tries to address is defining the
classes of the problem (to be predicted). While fail-stop failures are easy to
categorize (typically there will be a distinct class for each), the identification and
categorization of non-fail-stop failure modes are dependent on the target system,
and as a result, cannot be completely generalizable. In such situations, the typical
approach is to analyze the different failures, identify their root/likely cause, and
group them accordingly (only if logical from the perspective of the system). Still,
there is no silver bullet for this, and thus the resulting classes may not be ideal for
prediction (e.g., some failures may be mistakenly grouped together, others may
have no noticeable/relevant symptoms and therefore cannot be predicted). To
detect these situations, the proposed methodology uses a combination of a top-
down and bottom-up approach that allows identifying problematic failures and
predictable classes following a predefined theory-based taxonomy. In this study,
this allowed identifying some failures that were initially placed in an inadequate
class as well as some failures that could not be predicted. As divergences should
be analyzed, in this case, this was because such experiments had multiple failures
and the cause had been wrongfully interpreted. Nonetheless, some symptoms
of non-fail-stop failures may overlap with symptoms of fail-stop failures (e.g., a
memory leak which may, or may not, lead to a system hang), leading to some false-
positives on different failure modes. This is ultimately inevitable and should be
analyzed as an overall process of predicting different failure modes (and severity)
on complex systems and how it can be used to improve their reliability.

The proposed methodology also focuses on real-world usage scenarios and goes
beyond sample-wise prediction (the typical approach in ML problems) by consid-
ering experiment-wise performance. While sample-wise performance is relevant to
guide the search for better models, when selecting the predictors for deployment
the goal is also to have models that are consistent at predicting the failures and
not giving false-alerts (as no system will halt execution due to a single alert). In
this study this led to the conclusion that the model with the highest sample-wise
performance is not always the best when considering experiment-wise predictions
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(although it could have fewer false-positives, they may be spread across more ex-
periments or with a higher incidence per experiment). In the end, it was possible
to create accurate models for each failure class (i.e., it only failed to predict one
cpu/exec failure, as shown in Table 6.15) without raising false-alerts on golden
runs.

Given the complexity of the problem and the dependence on its nature/data,
some stages of the proposed methodology are somewhat abstract, that is, it is
not a strictly-defined process that the user can blindly follow. However, this was
never the purpose of the methodology (otherwise it would have to be specific to
a certain OS or failure modes) and therefore should not be seen as a limitation.
The six stages provide instructions on how to generate failure data using fault
injection and on using them to create accurate representative predictive models.
It contains several feedback loops that instruct the user to the need to return to
previous stages to improve the process if necessary.

Finally, due to the large number of ML algorithms, techniques, and hyperparamet-
ers, combined with a large number of experiments and failures, the methodology
guides the process on an iterative basis. Ultimately, this means that it will not
exhaust every possible combination. While other specific parameterizations could
lead to slightly better results, the iterative process and feedback loops encour-
age the search for better and more accurate models. Notwithstanding, within
the model selection process (i.e., fine-tuning the hyperparameters) the user may
choose to use either an exhaustive grid-search approach or an algorithm/heuristic-
based approach (e.g., Bayesian optimization). Additionally, the instantiation of
the methodology focused on a single workload. While we currently do not have
definite results, a preliminary analysis on applying the proposed methodology
to other workloads led to observations that are consistent with the case study
presented, confirming the viability and benefits of using the proposed methodo-
logy.

6.4 Benchmarking Failure Predictors
Besides developing accurate failure predictors, effectively implementing failure
prediction requires an adequate selection of the most suitable models using ap-
propriate metrics and properly comparing them using adequate procedures. This
section demonstrates how the benchmarking approach proposed in Chapter 5 can
be used in practice. It is used to compare several failure prediction solutions,
including multiple algorithms, preprocessing techniques, and configurations, for
different problems and benchmarking tasks. Overall, it details the steps of the
approach and how they should be followed to assure that the best model is chosen
for the intended problem and scenario. It also explores and highlights the import-
ance of assessing the robustness of the models against small variations in the data
and overviews some techniques to overcome this.

The Propheticus tool (introduced in Section 3.3) was used to train and assess the
performance of the ML algorithms (phases 3 - Execution of Prediction Algorithms
and 4 - Metrics Calculation, Assessment, and Comparison, of the procedure), as
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it provides an environment that allows attaining some of the required properties
(e.g., repeatability, portability). For compatibility, the remaining phases (i.e., 1 -
Preparation, 2 - Dataset Building, Validation, part of 4 - Metric Calculation, As-
sessment, and Comparison, and 5 - Robustness Assessment) were implemented as
extensions within Propheticus. Nonetheless, the proposed approach is conceptual,
and therefore can be used with other implementations. This analysis focuses on
the cpu workload, a cpu-intensive workload representative of common real-world
usages (e.g., video-editing, computation).

6.4.1 Preparation
The definition of the algorithms, techniques, and respective parameters is one of
the most relevant parts of step 1 - Preparation. To provide a comprehensive study,
several options were considered for this experiment, as can be seen in Table 6.17.
Based on the results discussed in the previous sections, this analysis focuses on
tree-based algorithms as they performed consistently better than the alternatives
(e.g., SVM and NN were not able to achieve similar performances). A grid-search
approach was used to fine-tune the models considering the hyperparameters listed
in Table 6.18. In the end, the task at hand is to identify and rank the best
solutions for our problem (for each failure mode) depending on the business needs
(the scenarios) and assess and improve their robustness to small variations in the
data.

The results obtained in Section 6.2 and Section 6.3 have shown that in some con-
figurations sampling techniques could lead to better models. To explore this, a
more sophisticated oversampling method, ADASYN, was included, and also sev-
eral different sampling ratios were considered (as shown in the literature, different
sampling ratios have a considerable impact on the resulting models [Kim and Kim,
2018]). Additionally, the influence of combining different sampling techniques (i.e.,
oversampling followed by undersampling) was also studied. A Z-score standardiz-
ation was applied to the features. As the dataset contains a considerable number
of features, two common feature selection methods were used: variance, removing
features with 0 variance, and correlation, removing features with correlation above
90%.

Another pertinent decision included in the preparation step is the definition of the
pair ∆tl, ∆tp. The results presented in the previous sections suggest that different
failure modes likely have different ideal ∆tl, ∆tp, the premise being that different
failures start to manifest at different times. Thus, for this study it was decided to
focus on predicting each failure mode individually and exploring the combinations
of the ∆tl, ∆tp values shown in Table 6.8. Ultimately this corresponds to different
benchmarking experiments to identify the best solutions for each failure mode
(∼42336 different combinations per mode).

The final task is the definition of the usage scenario (as detailed in Section 5.1).
This should portray the behavior of the environment where the system will run,
to guide the search for the best model. To demonstrate how the best model varies
according to the requirements of the system, all the scenarios previously described
are analysed.
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Table 6.17: Techniques Used in the Experiments

Process / Step Techniques

∆tl, ∆tp [20, 40, 60]/[20, 40, 80]

Scenarios High/Medium/Minimum-criticality

Feature Selection Variance, Correlation

Sampling Random under/oversampling, ADASYN

Sampling Ratios
Over.: [2, 4], Under.: [1, 10],

Over. and Under.: [(2, 1), (2, 5), (4, 1), (4, 5)]

Algorithms DT, Bagging, RF, XGBoost

Table 6.18: Algorithms’ Hyperparameters

Alg. Hyperparameters

DT
min_samp_split: [001, .01, 2], max_feat.: [.1, .55, None],

min_samp_leaf: [.001, .01, 1]

RF
estimators: 100, max_feat.: [.1, .55, auto],

min_samp_leaf: [.001, .01, 1], min_samp_split: [.001, .01, 2]

Bag.
max_features: [.1, .55, 1.0], estimators: 100

max_samples: [.1, .55, 1.0],

XGBs.

estimators: 100, learning_rate: [.1, .3],

max_depth: [7], subsample: [0.7, 1],

min_child_weight: [1, 5], colsample_bytree: [.7, 1]

6.4.2 Dataset Building and Validation
Dataset Building and Validation is intended to generate the dataset/workload to
benchmark the different solutions. In practice, as this work focuses on predicting
a single failure mode at a time, what happens is that only the experiments of
the target failure mode are considered as ‘positive/failure’. All other experiments,
even other failure runs, are considered as ‘negative/non-failure’. Additionally, due
to the number of combinations for the ML techniques and parameters, as well
as the number of iterations required for ELOOCV (which conducts a train/test
iteration for each experiment), experiments where faults were injected but no
failure was observed were not included in the dataset (i.e., we focus on the golden
and failure runs).

The datasets were labeled according to the pairs ∆tl, ∆tp chosen in step 1 - Pre-
paration (as proposed by Salfner et al. [Salfner et al., 2010]). As an example,
for the pair [20, 40], the resulting datasets have approximately 18000 non-failure
samples and 69, 239, 437, 435, and 153 hang, crash, cpu/exec, memory, and ker-
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nel samples, respectively. Briefly revisiting, a sample contains the values of the
features (i.e., system metrics) for a given instant tsample. Samples for which no
(target) failures were observed within the interval [tsample +∆tl, tsample +∆tl +∆tp]
are known as non-failure samples, and failure samples otherwise. As it is possible
to observe, the number of failure samples is considerably low, hence the need to
carefully select which techniques and metrics to use. It is also possible to see that
there are fewer samples of fail-stop failures (i.e., hang, crash) compared to the non-
fail-stop cases. This is mostly due to the fact that only the first detected failure
is considered, as most fail-stop failures were typically preceded by non-fail-stop
failures.

Another task of this step consists of validating the datasets. By analyzing them,
it was possible to observe that there were enough failure samples for each failure
mode (i.e., there must be at least 2 experiments of each failure mode, one for
training and the other for testing), there were no missing data, the number of
features was the same for all samples, and each feature contained only one data
type.

6.4.3 Execution of Prediction Algorithms and Metrics Calculation, As-
sessment, and Comparison

Moving to step 3 - Execution of Prediction Algorithms, a grid search was con-
ducted for each algorithm and respective hyperparameters using ELOOCV. Each
configuration was run 30 times with different random seeds, leading to the metrics
calculation in step 4 - Metrics Calculation, Assessment, and Comparison. The
comparison and ranking of the resulting models were done considering the best
model found for each algorithm. The top three solutions (i.e., algorithm, tech-
niques, and respective sampling ratios) for each of the failure modes and criticality
scenarios can be seen in Table 6.19. For each solution, the value of the perform-
ance metric is presented: informedness*recall, f-measure, and markedness for the
high-, medium- and minimum-criticality scenario, respectively.

The best solution for each of the failure modes and criticality scenarios is obtained
using different methods. Although XGBoost is a state-of-the-art algorithm, its
performance was identical or lower than the other algorithms for various failures
modes. Still, XGBoost has several parameters and it is possible that the chosen
set was not enough to completely leverage its potential.

In general, the best solutions for the high-criticality scenario were obtained by
using oversampling techniques with different ratios, often combined with under-
sampling (e.g., for the memory failure mode). Also, while DT achieved remark-
able results (especially considering its simplicity), it did not match its ensemble
versions. Another observation is that the best models are often achieved us-
ing different sampling ratios (e.g., 1st and 2nd for the kernel failure mode and
high-criticality scenario). Different ratios ultimately influence the resulting model
(and its performance), as has already been studied in other domains (e.g., [Rácz
et al., 2021]). Many of the best models for some failure modes relied on fea-
ture selection by correlation (e.g., crash, hang) while others not so much (e.g.,
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Table 6.19: Rank per Failure Mode/Scenario

Scen.
Rank 1st 2nd 3rd

cr
as

h

H
ig

h RF + ROS (2)
(0.965) >

XGB. + ROS (2)
+ Corr.
(0.954)

> DT + Corr.
(0.943)

M
ed

. RF + Corr.
(0.563) > Bag. + ROS (2)

(0.434) >
DT + ROS (2) +
RUS (1) + Corr.

(0.275)

M
in

.

Bag. + Corr.
(0.991) > RF + ROS (2)

(0.457) > DT
(0.195)

H
ig

h Bag. + RUS (1)
+ Corr.
(0.999)

> RF + Corr.
(0.998) >

XGB. + ADA. (4)
+ Corr.
(0.994)

M
ed

. XGB.
(0.993) > Bag. + ROS (4)

(0.989) =
RF. + ROS (4)

+ Corr.
(0.981)ha

ng

M
in

.

XGB.
(0.999) > Bag. + ROS (4)

(0.999) =
RF + ROS (4)

+ Corr.
(0.971)

cp
u

H
ig

h Bag. + ADA. (2)
+ RUS (1) + Corr.

(0.918)
>

XGB. + RUS (1)
+ Corr.
(0.883)

=
RF + RUS (1)

+ Corr.
(0.864)

M
ed

. Bag.
(0.758) > RF

(0.638) > XGB. + ADA. (4)
(0.552)

M
in

.

RF
(0.991) > Bag. + Corr.

(0.962) > DT
(0.722)

H
ig

h Bag. + ADA. (4)
+ RUS (1)

(0.960)
=

RF + ADA. (4)
+ RUS (5)

(0.956)
>

XGB. + ROS (2)
+ RUS (1)

(0.949)

M
ed

. Bag.
(0.742) > RF + Corr.

(0.714) > DT
(0.675)

m
em

or
y

M
in

.

Bag. + ADA. (4)
(0.995) > RF + ROS (2)

(0.810) > DT
(0.651)

ke
rn

el

H
ig

h RF + ADA. (2)
+ Corr.
(0.982)

> DT + ADA. (4)
(0.970) >

Bag. + ROS (4)
+ RUS (5) + Corr.

(0.964)

M
ed

.

RF + ADA. (2)
(0.331) >

Bag. + ROS (4)
+ Corr.
(0.187)

> XGB.
(0.181)

M
in

.

RF + ADA. (2)
(0.266) > Bag. + ROS (4)

(0.103) > XGB.
(0.100)

Legend:
a > b : a has significant differences from b
a = b : a does not have significant differences from b
(#.###) : value of the performance metric according to the scenario
RF=Random Forest (RF); Bag.=Bagging; XGB.=XGBoost; DT=Decision Tree (DT); ADA.=ADASYN;
ROS=Random Oversampling; RUS=Random Undersampling; Corr.=Correlation (feature selection)
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memory, kernel). This suggests that some features may have relevant informa-
tion for specific failure modes. It is also possible to observe that, for the medium
and minimum-criticality scenarios, almost none of the best solutions included the
use of undersampling techniques. This is due to the metrics considered in these
scenarios, which are more concerned with false-positives (which typically increase
with the use of undersampling).

Analyzing the performance of the models for the different scenarios allows un-
derstanding how the different metrics determine which one is the best. As an
example, for the memory failure mode and the high-criticality scenario, the best
model (obtained using Bagging with ADASYN oversampling and Random Un-
dersampling, with a computed metric of 0.960) correctly predicted 100% of the
failure samples and 92% of all non-failure samples (due to the imbalance in the
data, 8% of false-positives is already considerable). On the other hand, for the
medium-criticality scenario, the best model (created using only Bagging, with an
f-measure of 0.742) correctly predicted 99.8% of non-failure samples, but only
66.3% of failure samples (a considerably lower number of false-positives, at the
expense of missing some failures). A similar observation can be made for the
best model for the high-criticality scenario for crash failures (obtained with RF
and Random Oversampling, with a computed metric of 0.965), which was able
to correctly classify 94.6% of non-failure samples and 99.5% of failures. For the
medium-criticality scenario, however, the best model (generated using RF and fea-
ture selection by correlation, with an f-measure of 0.563) correctly classified 97.6%
of non-failure samples, but only 88.4% of failure samples. It is also possible to
observe that both crash and kernel failures have solutions with low performance
on the medium- and minimum-criticality scenarios. A detailed analysis of the
models allowed concluding that they raise many false-positives (especially com-
pared with the small number of failure samples) and thus the low performance on
those scenarios.

Another interesting observation is that the ∆tl, ∆tp of the best models varied for
each failure mode, algorithm, and criticality. As an example, while for the hang
failure mode the best Bagging model was obtained using the pair [40, 40], for
memory failure mode it was obtained using [60, 40]. It also appears that hang
failures are easier to predict than the remaining failure modes. The best model for
the high-criticality scenario (created using Bagging and Random Undersampling
with feature selection by correlation, with a computed metric of 0.999) could pre-
dict 99.7% and 100% of non-failure and failure samples, respectively. Nonetheless,
the current dataset contains few hang failures and these results need further val-
idation.

Although the training time was not taken into consideration in the ranking (as
this study used multiple machines and the implementation of the benchmark is
not concerned with optimization but rather flexibility), it was possible to observe
that, for the same sampling and preprocessing techniques, XGBoost took longer
than the other algorithms (e.g., for the cpu failure mode, without sampling and
just removing constant features, each fold of XGBoost took around 50 seconds
while Bagging took 5 seconds). Notwithstanding, this is highly dependent on
several factors, such as the computational power available (the machine used for
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these comparisons has 48 cores and thus algorithms such as Bagging and RF
can leverage parallelization), the implementation of the algorithms, and the (hy-
per)parameters.

To state that a given solution is better than others, statistical comparisons are
required. The results for the top-ranking models can also be seen in Table 6.19
(i.e., a > b : a has significant differences from b; a = b : a does not have signific-
ant differences from b). For the cases where there were no significant differences
between the best models (e.g., for the memory failure mode and high-criticality
scenario) the tiebreaker metric was considered, although in this case it did not
cause any changes. To illustrate, let’s take as an example the top three models for
the high-criticality scenario for the crash failure mode. Because the dataset is the
same for all experiments, a paired statistical test was used. To decide between
parametric and non-parametric tests, the normality of the data (using the Lil-
liefors and Shapiro-Wilk test) and the homogeneity of variance (using the Levene
test) were analyzed. None of the conditions were satisfied, so the Friedman’s AN-
OVA was used [Field, 2013], which gave a p_value = 0.0005. It is safe to state
that there are significant differences between at least two models for a significance
level of 5% (p_value < 0.05). To identify the differences, a post-hoc analysis was
done using the Bonferroni correction for multiple comparisons. This identified
significant differences between all models, i.e., between the 1st (RF) and the 2nd

(XGBoost), as well as the 2nd and the 3rd (Bagging).

6.4.4 Assessing Robustness
The last step of the benchmarking framework, 6 - Robustness Assessment, is
the assessment of the performance of the models against small variations in the
data. Depending on the number of samples and chosen techniques, assessing and
enhancing the robustness of the models can take some time, thus, this analysis
focuses on the XGBoost algorithm and the cpu failure mode (because it has the
highest number of samples). Although XGBoost did not lead to the best solutions
(probably because it required more tuning), it achieved good results overall, often
matching the performance of the best models. Additionally, it is a state-of-the-art
algorithm and thus it is relevant to assess how sensitive its resulting models are.
Moreover, a novel robust algorithm based on XGBoost has been recently proposed
[Chen et al., 2019a], which allows for a better comparison.

There are several white-box methods to generate adversarial samples for differ-
entiable algorithms (such as NN) but for non-differentiable algorithms (such as
XGBoost) there are not many alternatives. Thus, we decided to use a state-
of-the-art black-box algorithm, the HopSkipJump-attack [Chen et al., 2020] (an
advanced version of the boundary attack [Brendel et al., 2018]), which relies only
on the final class prediction. While there were other approaches available (e.g.,
GANs [Goodfellow et al., 2014]) such solutions are not straightforward to imple-
ment and would introduce additional challenges (e.g., how to validate that the
generated samples are representative or realistic of a system state of a given class
for OFP). The L∞-norm (which measures the largest variation) was used to meas-
ure the perturbations considering a maximum perturbation of 0.3. To understand
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the magnitude of such a change on the non-standardized values, the maximum
perturbation was calculated on different features. As an example, for the average
cpu percentage of system apps feature, whose values range from 0% to 88%, it
would mean a maximum change of 0.81%. Regarding the average apps memory
use (MiB), which ranges from 32MB to 505MB, it would mean a maximum vari-
ation of 5.12MB. Thus, while dependent on how the values of the features are
distributed, with Z-score standardization a perturbation of 0.3 is a conservative
value regarding expected variations in the data.

As can be seen in Table 6.20, it was possible to generate 7277 adversarial samples
out of the 24671 samples considered, with an average distortion of 0.185 within
a maximum perturbation of 0.3. The balanced accuracy (this metric is used for
this analysis as it is easy to understand what it means in terms of the predictive
performance, while also considering the imbalance in the data) dropped from 92%
to 57% (i.e., when replacing the original with the adversarial samples) and the
recall (i.e., number of correctly classified failures) dropped from 94% to 53%. To
assess the minimum/maximum variations, the normalized values were reverted
to their original scales. For the sample with the minimum perturbation, the
largest variation was merely changing the feature average of microseconds lost
in iddledjitter by 6.61e−5 (its values range between 494 and 31986). For the
sample with the maximum perturbation, the largest variation was for the feature
average of page faults per second by a value of 220 (its values range between 0
and 17897).

Table 6.20: Linux Unrobust Model vs Adversarial Samples (max L∞ = 0.3)

# Adv. Samples 7277 out of 24671

Avg. Perturbation 0.185

Adv. Balanced Accuracy From 92% to 57%

Min. Perturbation average of microseconds [...]
6.61e-5 - [494, 31986]

Max. Perturbation average page faults [...]
220 - [0, 17897]

The previous approach provides a good estimate of the performance of the model
in the presence of adversarial samples, but it does not give any formal guarantees,
which is often necessary for safety critical systems. To achieve this, formal veri-
fication methods have been developed to calculate a lower bound of adversarial
perturbations. Once again, while there have been various verification methods de-
veloped for NN, tree-based models (including ensembles) have not been as widely
researched. Still, Chen et al. [Chen et al., 2019b] proposed a tree-based robust-
ness verification method that scales well to large ensembles. For the previous
model and samples (i.e., XGBoost for the cpu workload), the method identified a
minimum adversarial distortion lower bound average of 0.298, with a mean veri-
fied error of 54% (i.e., a guaranteed upper bound of error for a maximum L∞
perturbation of 0.3).
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While this model is still susceptible to variations in the data, its robustness is
considerably higher than the models obtained in Section 6.2 (developed/selected
using k-fold cross-validation). As an example, for those models the adversarial
samples had an average distortion of 0.066 and the performance dropped from 99%
to 19% (and the recall to 7%). The tree verification method identified a minimum
adversarial distortion lower bound average of 0.094, with a mean verified error of
100%. Although it was not possible to determine exactly why the models were so
susceptible to changes in the data, it appears to be related to the fact that they
were predicting multiple failure modes (i.e., multi-class failure predictors). The
decision boundaries between different failure modes are likely more complex and
closer to the various samples, therefore only requiring minor perturbations to be
misclassified. It is also possible that ELOOCV leads to less overfit models and thus
samples are not as close to the decision boundaries. Notwithstanding, even with
standard cross-validation single-class failure predictors were considerably more
robust than their multi-class counterparts.

By analyzing the robustness of the models for the remaining failure modes it was
possible to observe that some are quite robust by default. As an example, for
the best XGBoost model for the memory failure mode and the high-criticality
scenario, it was only possible to generate 713 adversarial samples (under the max
perturbation of 0.3) out of 24930. Furthermore, the verification method identified
a minimum adversarial distortion lower bound average of 0.902, with a mean
verified error of 7%, both of which indicate a very robust model.

As previously shown, the best XGBoost model for the cpu failure mode in the
high-criticality scenario is sensitive to small variations in the data. However,
there is no single technique or silver bullet for creating more robust models (as
briefly discussed in Section 2.2). In this direction, we decided to test the approach
proposed by Chen et al. [Chen et al., 2019a] (a novel robust algorithm based on
XGBoost). Adversarial samples were generated to validate the robustness of the
model, and the results were considerably better. For this case, it was only possible
to generate 1646 adversarial samples (against the previous 7277) with an average
perturbation of 0.198. The balanced accuracy on the final set was 88%, and the
formal verification identified a considerably larger minimum distortion average
of 0.422, and the guaranteed error rate we reduced to 22%. More precisely, the
recall of the resulting model was kept at 94% (from 99% on the benign samples, the
robust model had slightly better performance than the natural XGBoost, possibly
due to a more extensive fine-tuning of the hyperparameters). It is important to
note that even when using more robust algorithms, the resulting model may still
be susceptible to perturbations in the data. This can likely be mitigated by
training the model to be robust to higher perturbations (thus tolerating better
lower variations). Nevertheless, as previously argued, more robust algorithms
can come at the expense of predictive performance and thus a trade-off must be
defined considering the needs of the system.

The number of samples per distortion/model can be seen in Figure 6.18. As was
previously stated and can be observed, for the non-robust model it was possible to
generate many adversarial samples (i.e., 7277 out of 24671) within the maximum
perturbation. Contrarily, for the robust model, there were significantly fewer
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adversarial samples (i.e., 1646 out of 24671) and many were close to the maximum
perturbation.

Figure 6.18: Number of Samples per L∞ Perturbation (up to 0.3)

6.4.5 Discussion
The proposed framework allowed conducting a thorough and accurate campaign
through well-defined steps and procedures that support properly benchmarking
alternative models for different OFP tasks, demonstrating that different contexts
(e.g., usage scenarios, failure modes) require different solutions. This corroborated
the fact that each failure mode has different ideal ∆tl, ∆tp, and therefore having
a single multi-class failure predictor is not likely/possible. It was also possible
to observe that there are differences between the best models for each scenario.
These results emphasize the need for a structured procedure to compare and rank
solutions. They also highlight the need for a clear definition of the requirements
of where the models are to be deployed (which in turn determines the metrics that
should be used) as well as the need to create them using data that pertain to the
system where they will operate. Following the proposed framework it was also
possible to ascertain that the best models were susceptible to minor perturbations
in the data. Different approaches (e.g., single-class vs multi-class predictors) may
present different robustness to such changes, which should be taken into account
when selecting the best solutions. This can be identified and mitigated using our
benchmarking framework, leading to more robust models.

The goal of the framework and of the analysis presented is to demonstrate how the
performance of the algorithms varies under different conditions, how complicated
it is to choose the best model for different scenarios, how sensitive ML models
are to imperceptible variations in the data, and how the proposed framework can
assist in this task. The analysis does not dwell on the specific performance of the
models as the focus of the proposed approach is on comparison and ranking among
the different solutions. Additionally, although some of the concepts considered in
the framework have already been used in different contexts, such as scenarios and
metrics, they have not yet been studied and defined for the OFP problem. Also,
while most of the metrics detailed in this work are well-known, what they actually
represent and measure (and their drawbacks and limitations) are not known to
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many of the researchers that use them (that is why so many studies use inadequate
metrics for assessment and comparison).

Benchmarking is usually seen as expensive and laborious. Concerning the time
needed for the benchmarking process, it was very low, mainly because it can be
mostly automated. In fact, after having the framework pre-requisites met (e.g.,
dataset, scenarios), the effort needed to benchmark additional systems is rather
small. Regarding ease of installation and use, Propheticus can be instantiated
and used to implement the benchmarking procedure (and facilitate the step of
exporting and validating the data). Regarding the robustness verification step,
this is partially dependent on the selected algorithms. Nonetheless, many of the
current state-of-the-art solutions provide Python implementations, which can be
easily integrated with Propheticus. Still, the user may use other implementations,
although this will dictate the ease of installation and use. Concerning promptness,
most experiments were completed in less than a couple of hours. This property
is directly related to the dimension of the datasets, as many methods have an
exponentially increasing time complexity with the size of the dataset, and thus
it is not a constraint of the framework itself. Additionally, the framework is not
intrusive as it does not require any kind of modification to the failure prediction
models. Regarding portability, it can be run in any system and using data pertain-
ing to any environment (as long as they are in the expected structure) and it can
be used to assess and compare any kind of failure prediction model. Concerning
repeatability, using ELOOCV assures that the results are not biased by the data
split or data leaks, and the 30 executions with different seeds provide statistical
support. The representativeness of the benchmark is related to the dataset, which
is provided by the user. The datasets used were generated using a thorough fault
injection campaign, which currently is the best accepted alternative to generate
realistic failure data. Additionally, the robustness assessment provides further
assurance regarding the performance of the algorithms when dealing with minor
variations of the data.

6.5 Summary
This chapter demonstrated and overviewed in detail the most relevant steps re-
quired to develop predictive models for OFP on a new system. It highlighted how
the different contributions proposed in this work can be used to achieve this, and
their importance and relevance to assure reproducible and reliable results while
providing confidence that results will hold in an operational scenario.

The experimental evaluation iterated through the various necessary steps and
tasks, from generating the failure data in Section 6.1, to creating predictive models
in Section 6.2 and Section 6.3, to benchmarking alternative predictive solutions in
Section 6.4. Within each task, a detailed analysis was presented on the influence
and relevance of each contribution. Section 6.1 thoroughly explored the guidelines
on how to properly implement a testbed, as well as the use of fault injection to
generate realistic failure data. Section 6.2 used the generated data to explore the
viability and influence of many different ML algorithms and techniques on creating
accurate failure predictors. Section 6.3 followed the methodology proposed in
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Chapter 4 to thoroughly process the generated data to develop accurate failure
predictors, leveraging the ELOOCV approach (also proposed in Chapter 4) to
provide a more realistic assessment of the performance of the models. It also
included a comparison with the solutions developed in Section 6.2, which were
created using standard ML techniques. Finally, Section 6.4 used the benchmarking
approach introduced in Chapter 5 to properly benchmark alternative predictive
solutions for OFP. It explored the concept of scenarios and how they influence
the most suitable models taking into consideration the technical needs of the
target system, also addressing the need to explore the robustness of the models
to variations in the data, which is directly related to the confidence in the results
obtained using the benchmark. Various comparisons with related work were also
provided throughout the section, on how the results differ or how the process leads
to more realistic insights.

Although not detailed in this section, the ability to create failure predictors for the
Windows OS was also analyzed. This provides further assurances and external
validity concerning the generalizability of the results and processes, suggesting
that it is likely possible to develop accurate failure predictors for similarly complex
systems. The details of this case study can be found in Appendix A.
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Chapter 7
Conclusions and Future Work

The pervasiveness of software systems in critical everyday tasks requires them to
be highly reliable. However, software complexity has also grown considerably in
recent years and it is now almost impossible to detect all faults before deployment.
Several techniques have been developed to address this issue. OFP is one of such
techniques, a fault-tolerance approach to predict incoming failures in the near
future, using past data and the current state of the system. Notwithstanding,
developing accurate failure predictors is a complex task, and as a result, OFP is
still not widely used or researched nowadays.

The work presented in this thesis tries to overcome the most pressing issues and
limitations to the widespread use of OFP. This thesis introduced a comprehensive
framework to support OFP, composed of various interconnected elements, each
addressing a different issue or limitation. These components are divided into two
groups: techniques and artifacts and procedures and methodologies. The first group
comprises three main contributions to support the research and development of
OFP solutions: i) detailed guidelines and reflections on configuring and deploying
a testbed for dependability experiments, ii) a well-defined process on how to use
fault injection to generate failure data, and iii) a flexible ML toolbox that includes
the functionalities required to develop accurate predictive models for OFP. The
second group encompasses two major contributions to create accurate ML-based
OFP solutions for a given target system: i) a detailed multi-stage methodology
to develop predictive models that takes into account the specific characteristics of
combining fault injection and ML to create predictive models, and ii) a concep-
tual framework for benchmarking predictive solutions for OFP, ensuring a sound
assessment and comparison of failure predictors while considering the technical
needs of the target system. These contributions advance the state of the art on
OFP and reduce the existing gap in the literature, by providing detailed and
well-defined artifacts, guidelines, methodologies, and processes to develop failure
predictors, taking into consideration the distinctive characteristics of the problem
and where the predictors will operate.

To demonstrate how the proposed contributions can be used in practice to de-
velop accurate failure predictors for a complex system a thorough experimental
evaluation was conducted. It comprised an extensive fault injection campaign
targeting the Linux OS, considering multiple workloads representing different us-
age scenarios, several fault types, and various failure modes. The experimental
evaluation overviewed the use and relevance of each contribution, from properly

— 137 —



CHAPTER 7. CONCLUSIONS AND FUTURE WORK

implementing a testbed, using fault injection to generate failure data, adequately
developing and assessing the performance of failure predictors, to objectively com-
paring and ranking different solutions according to the needs of the system. It
assessed and thoroughly analyzed the viability and performance of several ML
methods, ranging from classic to state-of-the-art approaches, which demonstrated
that it is possible to develop accurate failure predictors for modern systems.

Several insights can be taken from the results obtained throughout the experi-
mental process, such as the importance of exploring different algorithms and tech-
niques that take into account the characteristics of the data. Exploring different
usage scenarios also highlighted the need to consider the technical requirements of
the systems where the predictors will operate, which in turn dictate which mod-
els are best and which metrics should be used to assess their performance. This
evaluation also highlighted the necessity of considering the specific characteristics
of the problem when assessing the performance of the models to avoid unreal-
istic estimates. Overall, DT-based algorithms (e.g., RF, XGBoost) were able to
achieve significantly better results than the alternatives. The need to assess, and
improve, the sensitiveness of the models to variations in the data was also studied,
a pressing current limitation of ML models. Ultimately, the experimental evalu-
ation demonstrates that not only is it possible to create accurate failure predictors
but that the proposed techniques are essential to guide the process and assure a
representative and sound experimental process.

Future Work
The work developed in this thesis opened new research directions and issues for
future work, which can be divided into short- and medium-term goals. As short-
term work we propose:

• Validating the observations and conclusions obtained by assessing
the performance of the models in a real-world production system –
validating that the results obtained in the various experimental evaluations
hold on a production environment is a critical step towards promoting the
investment and development of OFP solutions. Notwithstanding, this is
not a trivial task, as it requires establishing a cooperation with a com-
pany/business where the failure predictors can be developed, deployed, and
monitored.

• Researching concept drift, batch, and online learning to detect
and handle changes to the underlying problem to keep the models
updated – due to the dynamicity of modern systems it is common that
their use, and underlying problem, changes over time. It is an active open
issue and thus several works have tried to address this in other domains
(e.g., [Malialis et al., 2020]). To widen the applicability of OFP it is highly
relevant to study the best alternatives to detect such changes in the data
(including new failure modes) and how to modify the systems to avoid losing
performance.

• Exploring state-of-the-art time series and deep learning to lever-
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age autocorrelation to increase the predictive performance – OFP
is in itself a time series problem and thus there is autocorrelation between
sequential values. Although this work acknowledges that, it did not thor-
oughly explore it. Deep learning algorithms have been successfully used in
several domains with sequence/spatial correlation (e.g., [Lim and Zohren,
2021]). Similar approaches could be used to increase predictive perform-
ance and understand the evolution of failures by considering the sequential
nature of the data.

• Using white-box explainable ML algorithms to infer and determ-
ine the causes of failure – understanding why ML models make certain
predictions is extremely relevant and an expanding field of research (e.g.,
[Roscher et al., 2020]). Besides being able to predict failures, it is also im-
portant to understand the indicators and synergies that precede failures.
This may allow identifying which (and why) components play a part in
different failure modes, and such information may eventually be leveraged
when creating the predictors or taking preemptive measures.

• Using generative ML techniques as alternative approaches to gen-
erate failure data – generative ML has been recurrently used in other
domains, often as a means to generate synthetic realistic data [Creswell
et al., 2018]. Although fault injection is the current best solution to gener-
ate failure data to support OFP, it still presents several limitations. The use
of generative approaches may be a viable direction to replace or complement
fault injection.

The medium-/long-term research directions envisioned are as follows:

• Improving the robustness of failure predictors to variations in the
data inherent to real systems – as extensively shown in the literature,
ML models can be sensitive even to minor variations in the data. Although
the work in this thesis identifies this issue and the need to be aware and
deal with it, achieving this in a representative and consistent way is still an
open issue [Goodfellow et al., 2018].

• Assessing the viability of using transfer learning between different
OSs and workloads – the ability to transfer knowledge from a task that
has already been learned to another has been an active field of research
[Zhuang et al., 2020]. The current assumption in OFP is that failures of
distinct workloads and OSs will likely be different, and specific. However,
it is also plausible that certain failures will share similar symptoms (e.g.,
memory leak). Researching such similarities between OSs and workloads
could enable the use of transfer learning techniques across different scenarios.

• Combining multiple sources of data to increase predictive per-
formance – the work conducted in this thesis focused exclusively on the
use of system metrics to predict failures. However, an interesting research
direction used in other domains is combining heterogeneous sources of data
to increase performance (e.g., [Choi et al., 2020]). For OFP, combining mul-
tiple sources of data (e.g., metrics, logs) may allow detecting new symptoms
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or improve existing predictors.

• Implementing evolutionary approaches for optimizing hyperpara-
meters and evolving solutions – due to the variety of techniques and
parameters of both OFP and ML, identifying the best set is a complex task.
Moreover, in certain domains (e.g., deep learning) efficiently creating/de-
fining the model is still an open issue. Evolutionary computation has been
used to solve complex optimization problems in other domains by evolving
potential solutions (e.g., [Al-Sahaf et al., 2019]). Besides addressing the
search for techniques and parameters this also allows evolving, instead of
designing, the solutions.

• Expanding and assessing the use of OFP on cloud and distributed
systems – many modern complex infrastructures use cloud or distributed
architectures. Although such systems are fault-tolerant by design they are
still prone to failure (e.g., [Prathiba and Sowvarnica, 2017]). OFP could
play a relevant role in predicting incoming failures, both at the node and
system level.

• Predicting the failure-proneness of the system – instead of providing a
categorical failure prediction, using regression models to predict the failure-
proneness of the current state (e.g., between 0 and 100%) could provide a
more progressive and detailed perspective of the expected reliability of the
system (e.g., [Sun et al., 2012]).
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Appendix A: OFP on Windows OS
The experimental evaluation presented in this thesis demonstrated that it is pos-
sible to develop accurate failure predictors for the Linux OS. To validate if these
observations could be generalized, an exploratory study was also conducted on
an existing failure dataset targeting Windows XP. The goal of this analysis is
to provide assurances and external validity concerning the ability to create ac-
curate failure predictors regardless of the fault injector or OS. All the following
experiments were conducted using Propheticus.

A.1 Dataset
The data used in this study is entirely different from the one used in the previous
section: different hypervisors, OS, fault injector, fault model, and workloads. It
was generated to study the injection of realistic faults on Windows XP (SP3) us-
ing the G-SWFIT technique [Irrera et al., 2013a]. The failure modes considered
are system crash and hang. It contains 233 numeric system variables. The exper-
iments were run in three environments: a real machine (without virtualization),
and two virtualized environments (i.e., VMWare vSphere and Citrix XEN). Once
again, as not all experiments led to failures, the data used were limited to a max-
imum of 100000 samples per dataset. Three configurations were tested in this
work for the pairs ∆tl, ∆tp: [20,20], [40,20], and [60,20], considering a ‘short’,
‘medium’, and ‘long’ term prediction.

As most features are based on different scales, a Z-score standardization was ap-
plied. Runs where the failure was observed immediately after fault activation
were discarded. Both descriptive and exploratory analyses were conducted. Sim-
ilar to the Linux dataset (that we created), by analyzing the mean values of the
features per failure mode it was possible to observe that non-failure samples were
noticeably different from the failure samples. On the other hand, the differences
between the hang and crash samples are not so considerable, although for some
features they are still differentiable.

A.2 ML Algorithms and Techniques
For this study, several different algorithms were considered:SVM, DT, RF, Bag-
ging, Adaboost, Extra Trees, NN (a MLP once again) Naive Bayes, Gaussian
Process, Logistic Regression, and k Nearest Neighbors (k-NN). Both filter (by
variance, and correlation) and wrapper (through Recursive Feature Elimination
(RFE)) feature selection methods were considered. Features with zero variance
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and correlation >90% were removed. RFE used 10 DTs and a cross-validation
approach was used to select which subset of features are kept. To study the ef-
fect of the imbalance in the data, a simple data undersampling method, Random
Undersampling, was used.

For simplicity, most of the parameters of the various algorithms were chosen based
on existing literature, and only the most relevant configurations are described
next. The SVM method used was configured with a RBF kernel, similar to pre-
vious studies on this dataset [Irrera and Vieira, 2014]. The gamma value for the
kernel was set with a relative number: 1

n_features
. As the computational com-

plexity of SVMs grows at least quadratically with the size of the training data
and their dimensionality [Bordes et al., 2005], the data for this algorithm were
reduced to a maximum of 40000 samples. The NN used a two-layer architec-
ture with 100 neurons with ReLU as activation function and the Limited-memory
Broyden–Fletcher–Goldfarb–Shanno (LBFGS) solver with 0.0001 regularization
and a learning rate of 0.001. Finally, the DT used the gini impurity to measure
the quality of the split with the CART algorithm. To evaluate the models 10-fold
stratified cross-validation was used and each experiment was executed 30 times
with different random seeds.

A.3 Individual Failure Modes
The number of methods and configurations considered led to a large number of
combinations and thus the discussion focuses on those deemed relevant. Except
where stated otherwise, the results refer to the real dataset. The values of ∆tl, ∆tp

considered in this analysis are [40, 20], as this was the configuration that system-
atically achieved the best results. Due to the recurrent use of SVMs in previous
OFP studies, their performance will be used as an initial reference for comparison.
Similar to existing related work [Irrera and Vieira, 2014], the first experiments at-
tempted to classify hang and crash samples separately.

When predicting crash failures, SVM models are able to achieve very good res-
ults, correctly classifying almost all the non-failure samples and 89% of the crash
samples. By removing features using correlation, the correct crash predictions
improved to 92.8%, as illustrated in Figure A.3.1. However, when used to predict
hang failures, they are barely able to distinguish between the samples of the two
classes, correctly classifying only 21.2% of the failure samples. In this case, feature
selection techniques were not able to significantly improve the results either. Un-
dersampling the data led to a significant improvement, correctly classifying 87.2%
of non-failure samples and 80.6% of hang. The number of correctly predicted
failures can be considered acceptable, although the number of false-positives is
significant, reaching ∼13% of the total number of non-failure samples. Similar to
the observations on the Linux dataset, undersampling the data typically led to
models that could more accurately predict failures, at the expense of increasing
the number of false-positives.

Other algorithms also performed well for predicting both failure modes, even
without pre-processing techniques. When predicting crash failures, DT models
were able to correctly classify 92.7% of the failure samples. However, the major
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Figure A.3.1: Crash: SVM, Correlation Figure A.3.2: Hang: SVM

difference was with hang failures, where it managed to correctly predict 80%
of the hang samples, while correctly classifying almost all non-failure samples.
Using undersampling and feature selection the performance improved, predicting
almost all of the hang samples, at the expense of a larger number of false-positives,
approximately 5%. These observations were similar for the experiments executed
with virtualization.

A.4 Multi-Class Classification
When trying to predict the different failures using a single model, SVMs were still
unable to perform acceptably, with most of the crash and hang samples, 74.7%,
and 78.8% respectively, being misclassified as non-failure. Using undersampling,
the results improved, although not enough, correctly predicting approximately
85.5%, 82.8%, and 87% of control, hang, and crash samples respectively. DTs
were able to separate between the various classes with acceptable performance,
correctly classifying almost all the non-failure samples, 80.4% of hang, and 92.5%
of the crash samples. NNs managed to correctly predict almost all the non-failure
samples, as well as acceptably distinguish between the two failure modes, cor-
rectly predicting approximately 71.4% and 89.1% of the hang and crash samples
respectively. Ensemble methods also achieved good results, with Bagging com-
bined with feature selection by correlation correctly classifying 78.3% of the hang
and 94.5% of the crash samples. Other algorithms, such as Extra Trees and RF,
also performed well, albeit not as good as the previously described (e.g., Extra
Trees with feature selection by correlation were able to correctly predict almost all
non-failure samples, 67.7% of hang samples, and 94.9% of crash samples).

A.5 Ensembling the Decisions of ML Models
The results obtained in the previous sections were good, but not excellent. Some-
thing that was possible to observe for both the Linux and Windows XP datasets
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Figure A.5.1: Experimental Process

is that different techniques created models that excel at different parts of the
problem. As ensemble methods have shown that they can achieve better res-
ults than standalone algorithms, it was decided to explore creating heterogeneous
ensembles by combining different ML algorithms and techniques (which may ex-
ploit the different biases of each algorithm) [Bian and Wang, 2007; Costa et al.,
2018].

A high-level overview of the experimental process is depicted in Figure A.5.1.
Briefly, after training and assessing the performance of the various classifiers, the
best set is chosen for a pool of candidate learners. Then, a selection process
chooses the base learners, which are then trained and tested, and their outputs
combined using an aggregation method. Finally, the performance of the ensemble
is assessed and its structure is analyzed.

A.5.1 Selecting the Base Models

As the purpose of this work is to explore the combination of different learners, vari-
ous ML algorithms and techniques were considered based on the preliminary res-
ults presented in the previous section. The algorithms selected were DT, Bagging
RF, Gradient Boosting (GB). To further explore the influence of data sampling
several techniques were considered, more precisely, Random Under/Oversampling,
SMOTE, and Instance Hardness Threshold. Although most of the algorithms are
already ensembles, in this study their output is used as if they were a single classi-
fier. Their hyperparameters were tuned according to the values described in Table
A.5.1.

The first stage of this experimental process was to create the individual models,
assess their performance, and identify the best solutions. Due to the number of
experiments, confusion-matrices are no longer viable. Thus, for this case study
the F2-score metric was chosen.

Compared to the results of the previous section, tuning the hyperparameters of
the algorithms allowed most algorithms to improve their ‘baseline’ (i.e., using
the defaults of [Pedregosa et al., 2011]) performance. As an example, tuning
Bagging with feature selection by correlation (whose baseline performance, also
removing highly correlated features, was 99.8%, 75.6%, and 92% of control, hang,
and crash samples, respectively), it was possible to achieve better results, correctly
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Table A.5.1: Algorithms’ Hyperparameters

Alg. Hyperparameters

DT
criter.: [gini, entropy], min_samp_split: [.001, .01, .1, 2],

max_feat.: [.1, .55, 1.0], min_samp_leaf: [.001, .01, .1, 1]

RF

estimators: [10, 100, 200], max_feat.: [.1, .55, 1.0],

criter.: [gini, entropy], min_samp_leaf: [.001, .01, .1, 1],

min_samp_split: [.001, .01, .1, 2], bootstrap: [1, 0]

Bag.
max_features: [.1, .55, 1.0], bootstrap: [1, 0],

estimators: [10, 50, 100, 200]

GB

estimators: [50, 100, 200], learning rate: [1, .1, .01],

min_samp_leaf: [.001, .01, .1, 1], max_feat.: [.1, .55, 1.0],

min_samp_split: [.001, .01, .1, 2]

classifying 99.9%, 89%, and 95.4% of control, hang, and crash samples.

A good ensemble should be composed of diverse models and their combination
should reduce incorrect decisions and amplify the correct ones [Polikar, 2006]. To
select a diverse set of base learners there are several metrics available (e.g., Q
Statistics). However, an issue that arises for this experiment is that the set of
algorithms and techniques considered already yield models with very good (and
similar) performances, thus, there is not much room for improvement. Addition-
ally, as all the selected models were already very accurate, there was no guarantee
that the diversity measures would lead to a better ensemble. This is more blatant
when considering the imbalance in the data and the actual number of samples
that are correctly predicted.

An obvious approach for choosing the base learners is to combine the best solutions
found for each algorithm (i.e., those with the highest performance). The three
models selected this way were: i) GB with oversampling through SMOTE; ii)
Bagging also with SMOTE oversampling; and iii) RF with Random Oversampling.
However, when the results were analyzed (further detailed in Section A.5.2) it
was possible to conclude that, although they were individually the best, they
did not complement each other, resulting in a lower combined performance. A
different approach was necessary, which is depicted in Figure A.5.2. Additionally,
using only the F2-score to rank the models could make all those selected to be
very similar, thus predicting identical parts of the problem. Hence, they were
also chosen taking into consideration the Informedness. The top three models of
each algorithm for each metric were selected to a pool of potential candidate base
learners. This led to a pool of 18 learners. Exploring all the possible combinations
of the 18 models for every possible length is infeasible, thus the ensembles were
limited to a maximum of 4 learners. This still leads to a significant number of
combinations (i.e., 4029 ensembles for each type of output, i.e., crisp labels, and
class probabilities).
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A.5.2 Combining the Base Models

Concerning the combination methods, three approaches were considered: plurality
voting (i.e., the most voted class is chosen); soft voting (i.e., the class prediction
probabilities are averaged and the class with the highest probability is chosen);
and stacking (i.e., a meta-learner is used to model the outputs of the individual
learners) for both crisp predictions (i.e., labels) and class probabilities outputs.
For the stacking meta-learner, different algorithms were also considered (i.e., DT,
RF, Bagging, Logistic Regression, NN). Concerning their configurations, due to
time constraints, it was not possible to thoroughly explore and tune all the meta-
learner hyperparameters, thus, an ad-hoc approach based on the defaults used by
scikit-learn (which in turn are based on literature [Pedregosa et al., 2011]) was
used. Notwithstanding, besides the considerable overhead of training and tuning
the meta-learner, using stacking did not lead to noticeable improvements and
therefore will not be shown here.

Plurality Voting
The initial approach to selecting the learners was to choose the best model for each
algorithm (i.e., Bagging, RF, and GB). However, compared to the individual mod-
els, the ensemble had a slightly lower performance than the one obtained by GB,
correctly predicting 99.8%, 91.4%, and 96% of control, hang, and crash samples.
This was somewhat expected, as the performance of the individual models was
already very good and they were created using similar ML techniques.

To explore if using more diverse learners would lead to better performance, the
combinations of the 18 candidate base learners were studied. This led to some
promising results, as it was possible to observe that there were, in fact, ensembles
that outperformed the best individual models. The best ensemble correctly pre-
dicted 99.8%, 97.1%, and 98.3% of control, hang, and crash samples. Although
the improvements are not overwhelming this ensemble was able to predict almost
5% more hang and 2.1% more crash samples. Still, this also came at the expense
of slightly more false-positives.

Soft Voting
Although using crisp predictions allowed improving the overall performance (when
compared with individual models), it ignores the confidence that the algorithms
have in their own predictions. Using the probability outputs allows combining the
prediction and the confidence of the base learners [Ting and Witten, 1999].
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Once again the performance of the best individual models combined was analyzed.
Using the probability outputs it was possible to achieve slightly better perform-
ance, correctly classifying 99.9%, 93.6%, and 97.5% of control, hang, and crash
samples, respectively. However, although these results are better than any of
the individual models, they are not as good as what was achieved using plurality
voting. This way, we decided to study the 4029 ensembles of 18 base learners.
Results showed that, although some ensembles were able to perform better than
the individual models, their performances were not significantly different from the
ones observed with plurality voting (the best ensemble correctly classified 99.8%,
97.5%, and 98.6% of control, hang, and crash samples, respectively).

A.5.3 Ensembles Analysis

The previous analyses allowed us to conclude that by combining certain learners
it was possible to increase their overall performance. Thus, the next step was
focused on analyzing how the ensembles were composed to get some insights into
why some models work better as a whole.

Gains Directed Graph
To analyze how the different learners in an ensemble interact, a directed graph
between every learner was plotted (similar to Figure A.5.3), showing how many
different samples were correctly predicted between any two learners.

When analyzing the best ensemble obtained by soft voting, it was possible to
observe that it was composed of just three models, which are depicted in Figure
A.5.3. Additionally, (and similar to what was seen for the best ensembles of plur-
ality voting) the three models were built using different techniques: one without
sampling, another using oversampling, and the third using undersampling. The
fact that the ensemble is composed of only three learners also makes it easier to
interpret. When comparing the model without sampling with the one that uses
oversampling, the latter can predict more failures while correctly predicting al-
most the same number of non-failure samples. On the other hand, when analyzing
the relationships with the model that used undersampling it was possible to ob-
serve that it could predict considerably more failures when compared to both the
other models. Moreover, it was also possible to conclude that this model not only
predicts more failures, it also correctly predicted almost all of the failures that the
other two predicted (i.e., only 45 and 17 hang different correct predictions were
made by the GB and Bagging model respectively). Besides the indication that
each of the sampling techniques allows the algorithms to model different parts of
the problem, it also suggests that most predictions in the ensemble are suppor-
ted by at least two algorithms. More precisely, GB with SMOTE and Bagging
support and complement the non-failure predictions, while GB with Random un-
dersampling supports and complements the failure predictions of the remaining
two learners.

Venn Diagrams
Directed graphs do not allow us to visualize how the different predictions actually
overlap between learners. Thus, as some of the best ensembles were composed of
only three models, Venn diagrams were plotted for each of the classes to illustrate
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Figure A.5.3: Best Soft Voting Ensemble Graph

how the different predictions relate.

Concerning the ensemble composed of the best individual models (and confirming
what was previously assumed), it was possible to observe that although there
was a good cover of the problem space by the different learners, there was a
considerable number of samples that were only correctly predicted by a single
model. On the other hand, when analyzing the diagram for the best soft voting
ensemble (which can be seen in Figure A.5.4; for readability a logarithmic base
was used to calculate the areas of the diagrams), it is possible to observe that
the learners also complement each other in reaching different samples, but most
samples are common to at least two models. In hindsight, this is one of the
essential components for a good ensemble, to combine the outputs in a way that
correct decisions are amplified [Polikar, 2006]. Hence, although not all models
will agree, for most cases at least two will, thus ‘winning’ the vote.

The diagrams for the failure modes illustrated in Figure A.5.4 show that there is
indeed a single model that is able to predict more failures. For the hang failure
mode, there are still some samples that are only predicted by the other learners,
whilst for the crash failures, such model can predict all the samples the others
can and more. However, when analyzing its ability to predict non-failure samples
it is possible to observe that the other learners can predict considerably more
samples.

To study how the individual predictions relate to the ensemble predictions an-
other set of Venn diagrams was plotted, this time relating the individual (correct)
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Figure A.5.4: Best Soft Voting Ensemble Venn

Figure A.5.5: Best Soft Voting Ensemble Prediction Contributions Venn

predictions to those of the ensemble, as shown in Figure A.5.5. This validated the
hypothesis that decisions made by a single algorithm will less likely be correctly
predicted by the ensemble. In fact, most of the predictions that were made only
by a single algorithm were not correctly predicted by the ensemble (e.g., concern-
ing the non-failure samples, out of the 952 correct predictions made by Bagging
only 19 were also correctly predicted by the ensemble). On the other hand, some
of the samples that were correctly predicted would not be possible using crisp
outputs (otherwise the two wrong votes would prevail). This suggests that either
the correct model was highly confident (enough to trump wrong classifications) or
that these are fringe samples, where the learners are not confident of the decision,
but their average probabilities lead to a correct prediction.

Diversity Metrics
One of the key components for successful ensembles is that the base learners should
be as diverse as possible. The next step was to validate if the best ensembles were,
in fact, more diverse than those with a lower performance. The following diversity
metrics were computed [Kuncheva and Whitaker, 2003]: Q Statistics, Correlation
Coefficient, Disagreement, Double-fault, Entropy, and Interrater Agreement (us-
ing Fleiss Kappa [Fleiss, 1981]). Briefly, the higher the Q Statistics, Correlation
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Table A.5.2: Diversity Metrics per Ensemble (Soft Voting)

Metr.
Ensem. Worst Ensem. Average Ensem. Best Ensem.

Q Statistics ↓ 0.991 0.996 0.930

Correlation ↓ 0.366 0.538 0.227

Disagreement ↑ 0.005 0.003 0.027

Double Fault ↓ 0.001 0.002 0.001

Entropy ↑ 0.187 0.193 0.419

Inter. Agreem. ↓ 0.875 0.918 0.560

↑ The higher the better (i.e., more diversity)

↓ The lower the better (i.e., more diversity)

Coefficient, Double Fault, and Interrater Agreement, the less diversity there is;
and the bigger the Disagreement and Entropy the more diversity exists. All met-
rics were calculated according to [Kuncheva and Whitaker, 2003] except Entropy,
which used a joint entropy formula [Cover and Thomas, 2012].

Three ensembles were analyzed, i) an ensemble with lower performance (referred
to as worst from now on) than that of combining all the best individual models;
ii) the ensemble composed of the best individual models (referred to as average
from now on); and iii) the best ensemble. The computed metrics can be seen in
Table A.5.2.

This allowed us to observe that the best ensemble had the highest diversity ac-
cording to all the metrics. However, comparing the worst and average ensembles,
for all metrics besides entropy, the worst ensemble had values that suggest that it
is more diverse than the average. Nevertheless, these metrics may be correct, and
the worst ensemble may have more diversity. As highlighted by Kuncheva and
Whitaker [Kuncheva and Whitaker, 2003], there is often no relationship between
diversity and performance. That is, while almost all good ensembles are diverse,
diversity per se does not mean that the ensemble will be good.

A.6 Discussion
Similar to the previous study of the Linux OS, it was also possible to create
accurate failure predictors for Windows XP. Of all the algorithms considered, tree-
based algorithms were once again able to achieve better performances. Overall,
from the results of the various algorithms in the different datasets and contexts,
predicting hang failures seems more complicated than predicting crash failures on
Windows XP. This may be due to the fact that the symptoms in the selected
∆tl, ∆tp are not as significant as they are for crash failures, thus limiting the
distinction between them.
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The performance of the different algorithms varied across the different datasets,
implying that the behavior of the failures is somewhat different amongst them.
Notwithstanding, when gathering all the data in a single dataset the results sug-
gest that it is still possible to accurately distinguish between the different classes.
Similar to what was observed with the Linux dataset, this indicates that the be-
havior of the different failure modes in the various environments is different from
each other but nonetheless similar.

The combination of models created using different techniques appears to produce
ensembles where they complement each other in a constructive way, thus consider-
ably improving the overall performance with statistical significance (although not
shown due to space constraints, the best ensemble was statistically better than
both the best individual model and the ensemble composed of the best individual
models). Soft voting can take advantage of the confidence of the classifiers in their
predictions and is, therefore, able to generate better ensembles with fewer base
learners. The Venn diagrams for the best ensembles showed that those composed
of models that explore different regions but that also overlap with other learners
in the ensemble were able to achieve better results (learners that complemented
each other but did not overlap were not able to achieve such good performance,
possibly because predictions would be canceled out by the remaining learners).
Diversity metrics can be used to assess the diversity of the ensembles, but it is not
always correlated with performance (hence, the one with the highest diversity will
not always be the best). Finally, heterogeneous ensembles explore the different
bias of ML algorithms and thus may be a good research direction when individual
learners do not reach the intended performance.

Ultimately, this case study provides some external validity to the possibility of
using ML algorithms to create accurate failure predictors on complex systems.
It also highlights the need to consider a comprehensive set of algorithms and
techniques that take the characteristics of the problem into consideration.

Appendix B: Netdata Complete Metrics Set
The complete set of metrics collected by Netdata in every experiment:
netdata_apps_cpu_percentage_average

chart=apps.cpu, family=cpu, dimension=apps.plugin
chart=apps.cpu, family=cpu, dimension=cron
chart=apps.cpu, family=cpu, dimension=dhcp
chart=apps.cpu, family=cpu, dimension=email
chart=apps.cpu, family=cpu, dimension=go.d.plugin
chart=apps.cpu, family=cpu, dimension=kernel
chart=apps.cpu, family=cpu, dimension=ksmd
chart=apps.cpu, family=cpu, dimension=logs
chart=apps.cpu, family=cpu, dimension=netdata
chart=apps.cpu, family=cpu, dimension=other
chart=apps.cpu, family=cpu, dimension=ssh
chart=apps.cpu, family=cpu, dimension=system
chart=apps.cpu, family=cpu, dimension=tc-qos-helper

netdata_apps_cpu_system_percentage_average
chart=apps.cpu_system, family=cpu, dimension=apps.plugin
chart=apps.cpu_system, family=cpu, dimension=cron
chart=apps.cpu_system, family=cpu, dimension=dhcp
chart=apps.cpu_system, family=cpu, dimension=email
chart=apps.cpu_system, family=cpu, dimension=go.d.plugin
chart=apps.cpu_system, family=cpu, dimension=kernel
chart=apps.cpu_system, family=cpu, dimension=ksmd
chart=apps.cpu_system, family=cpu, dimension=logs
chart=apps.cpu_system, family=cpu, dimension=netdata
chart=apps.cpu_system, family=cpu, dimension=other
chart=apps.cpu_system, family=cpu, dimension=ssh
chart=apps.cpu_system, family=cpu, dimension=system
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chart=apps.cpu_system, family=cpu, dimension=tc-qos-helper
netdata_apps_cpu_user_percentage_average

chart=apps.cpu_user, family=cpu, dimension=apps.plugin
chart=apps.cpu_user, family=cpu, dimension=cron
chart=apps.cpu_user, family=cpu, dimension=dhcp
chart=apps.cpu_user, family=cpu, dimension=email
chart=apps.cpu_user, family=cpu, dimension=go.d.plugin
chart=apps.cpu_user, family=cpu, dimension=kernel
chart=apps.cpu_user, family=cpu, dimension=ksmd
chart=apps.cpu_user, family=cpu, dimension=logs
chart=apps.cpu_user, family=cpu, dimension=netdata
chart=apps.cpu_user, family=cpu, dimension=other
chart=apps.cpu_user, family=cpu, dimension=ssh
chart=apps.cpu_user, family=cpu, dimension=system
chart=apps.cpu_user, family=cpu, dimension=tc-qos-helper

netdata_apps_files_open_files_average
chart=apps.files, family=disk, dimension=apps.plugin
chart=apps.files, family=disk, dimension=cron
chart=apps.files, family=disk, dimension=dhcp
chart=apps.files, family=disk, dimension=email
chart=apps.files, family=disk, dimension=go.d.plugin
chart=apps.files, family=disk, dimension=kernel
chart=apps.files, family=disk, dimension=ksmd
chart=apps.files, family=disk, dimension=logs
chart=apps.files, family=disk, dimension=netdata
chart=apps.files, family=disk, dimension=other
chart=apps.files, family=disk, dimension=ssh
chart=apps.files, family=disk, dimension=system
chart=apps.files, family=disk, dimension=tc-qos-helper

netdata_apps_lreads_KiB_persec_average
chart=apps.lreads, family=disk, dimension=apps.plugin
chart=apps.lreads, family=disk, dimension=cron
chart=apps.lreads, family=disk, dimension=dhcp
chart=apps.lreads, family=disk, dimension=email
chart=apps.lreads, family=disk, dimension=go.d.plugin
chart=apps.lreads, family=disk, dimension=kernel
chart=apps.lreads, family=disk, dimension=ksmd
chart=apps.lreads, family=disk, dimension=logs
chart=apps.lreads, family=disk, dimension=netdata
chart=apps.lreads, family=disk, dimension=other
chart=apps.lreads, family=disk, dimension=ssh
chart=apps.lreads, family=disk, dimension=system
chart=apps.lreads, family=disk, dimension=tc-qos-helper

netdata_apps_lwrites_KiB_persec_average
chart=apps.lwrites, family=disk, dimension=apps.plugin
chart=apps.lwrites, family=disk, dimension=cron
chart=apps.lwrites, family=disk, dimension=dhcp
chart=apps.lwrites, family=disk, dimension=email
chart=apps.lwrites, family=disk, dimension=go.d.plugin
chart=apps.lwrites, family=disk, dimension=kernel
chart=apps.lwrites, family=disk, dimension=ksmd
chart=apps.lwrites, family=disk, dimension=logs
chart=apps.lwrites, family=disk, dimension=netdata
chart=apps.lwrites, family=disk, dimension=other
chart=apps.lwrites, family=disk, dimension=ssh
chart=apps.lwrites, family=disk, dimension=system
chart=apps.lwrites, family=disk, dimension=tc-qos-helper

netdata_apps_major_faults_page_faults_persec_average
chart=apps.major_faults, family=swap, dimension=apps.plugin
chart=apps.major_faults, family=swap, dimension=cron
chart=apps.major_faults, family=swap, dimension=dhcp
chart=apps.major_faults, family=swap, dimension=email
chart=apps.major_faults, family=swap, dimension=go.d.plugin
chart=apps.major_faults, family=swap, dimension=kernel
chart=apps.major_faults, family=swap, dimension=ksmd
chart=apps.major_faults, family=swap, dimension=logs
chart=apps.major_faults, family=swap, dimension=netdata
chart=apps.major_faults, family=swap, dimension=other
chart=apps.major_faults, family=swap, dimension=ssh
chart=apps.major_faults, family=swap, dimension=system
chart=apps.major_faults, family=swap, dimension=tc-qos-helper

netdata_apps_mem_MiB_average
chart=apps.mem, family=mem, dimension=apps.plugin
chart=apps.mem, family=mem, dimension=cron
chart=apps.mem, family=mem, dimension=dhcp
chart=apps.mem, family=mem, dimension=email
chart=apps.mem, family=mem, dimension=go.d.plugin
chart=apps.mem, family=mem, dimension=kernel
chart=apps.mem, family=mem, dimension=ksmd
chart=apps.mem, family=mem, dimension=logs
chart=apps.mem, family=mem, dimension=netdata
chart=apps.mem, family=mem, dimension=other
chart=apps.mem, family=mem, dimension=ssh
chart=apps.mem, family=mem, dimension=system
chart=apps.mem, family=mem, dimension=tc-qos-helper

netdata_apps_minor_faults_page_faults_persec_average
chart=apps.minor_faults, family=mem, dimension=apps.plugin
chart=apps.minor_faults, family=mem, dimension=cron
chart=apps.minor_faults, family=mem, dimension=dhcp
chart=apps.minor_faults, family=mem, dimension=email
chart=apps.minor_faults, family=mem, dimension=go.d.plugin
chart=apps.minor_faults, family=mem, dimension=kernel
chart=apps.minor_faults, family=mem, dimension=ksmd
chart=apps.minor_faults, family=mem, dimension=logs
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chart=apps.minor_faults, family=mem, dimension=netdata
chart=apps.minor_faults, family=mem, dimension=other
chart=apps.minor_faults, family=mem, dimension=ssh
chart=apps.minor_faults, family=mem, dimension=system
chart=apps.minor_faults, family=mem, dimension=tc-qos-helper

netdata_apps_pipes_open_pipes_average
chart=apps.pipes, family=processes, dimension=apps.plugin
chart=apps.pipes, family=processes, dimension=cron
chart=apps.pipes, family=processes, dimension=dhcp
chart=apps.pipes, family=processes, dimension=email
chart=apps.pipes, family=processes, dimension=go.d.plugin
chart=apps.pipes, family=processes, dimension=kernel
chart=apps.pipes, family=processes, dimension=ksmd
chart=apps.pipes, family=processes, dimension=logs
chart=apps.pipes, family=processes, dimension=netdata
chart=apps.pipes, family=processes, dimension=other
chart=apps.pipes, family=processes, dimension=ssh
chart=apps.pipes, family=processes, dimension=system
chart=apps.pipes, family=processes, dimension=tc-qos-helper

netdata_apps_preads_KiB_persec_average
chart=apps.preads, family=disk, dimension=apps.plugin
chart=apps.preads, family=disk, dimension=cron
chart=apps.preads, family=disk, dimension=dhcp
chart=apps.preads, family=disk, dimension=email
chart=apps.preads, family=disk, dimension=go.d.plugin
chart=apps.preads, family=disk, dimension=kernel
chart=apps.preads, family=disk, dimension=ksmd
chart=apps.preads, family=disk, dimension=logs
chart=apps.preads, family=disk, dimension=netdata
chart=apps.preads, family=disk, dimension=other
chart=apps.preads, family=disk, dimension=ssh
chart=apps.preads, family=disk, dimension=system
chart=apps.preads, family=disk, dimension=tc-qos-helper

netdata_apps_processes_processes_average
chart=apps.processes, family=processes, dimension=apps.plugin
chart=apps.processes, family=processes, dimension=cron
chart=apps.processes, family=processes, dimension=dhcp
chart=apps.processes, family=processes, dimension=email
chart=apps.processes, family=processes, dimension=go.d.plugin
chart=apps.processes, family=processes, dimension=kernel
chart=apps.processes, family=processes, dimension=ksmd
chart=apps.processes, family=processes, dimension=logs
chart=apps.processes, family=processes, dimension=netdata
chart=apps.processes, family=processes, dimension=other
chart=apps.processes, family=processes, dimension=ssh
chart=apps.processes, family=processes, dimension=system
chart=apps.processes, family=processes, dimension=tc-qos-helper

netdata_apps_pwrites_KiB_persec_average
chart=apps.pwrites, family=disk, dimension=apps.plugin
chart=apps.pwrites, family=disk, dimension=cron
chart=apps.pwrites, family=disk, dimension=dhcp
chart=apps.pwrites, family=disk, dimension=email
chart=apps.pwrites, family=disk, dimension=go.d.plugin
chart=apps.pwrites, family=disk, dimension=kernel
chart=apps.pwrites, family=disk, dimension=ksmd
chart=apps.pwrites, family=disk, dimension=logs
chart=apps.pwrites, family=disk, dimension=netdata
chart=apps.pwrites, family=disk, dimension=other
chart=apps.pwrites, family=disk, dimension=ssh
chart=apps.pwrites, family=disk, dimension=system
chart=apps.pwrites, family=disk, dimension=tc-qos-helper

netdata_apps_sockets_open_sockets_average
chart=apps.sockets, family=net, dimension=apps.plugin
chart=apps.sockets, family=net, dimension=cron
chart=apps.sockets, family=net, dimension=dhcp
chart=apps.sockets, family=net, dimension=email
chart=apps.sockets, family=net, dimension=go.d.plugin
chart=apps.sockets, family=net, dimension=kernel
chart=apps.sockets, family=net, dimension=ksmd
chart=apps.sockets, family=net, dimension=logs
chart=apps.sockets, family=net, dimension=netdata
chart=apps.sockets, family=net, dimension=other
chart=apps.sockets, family=net, dimension=ssh
chart=apps.sockets, family=net, dimension=system
chart=apps.sockets, family=net, dimension=tc-qos-helper

netdata_apps_swap_MiB_average
chart=apps.swap, family=swap, dimension=apps.plugin
chart=apps.swap, family=swap, dimension=cron
chart=apps.swap, family=swap, dimension=dhcp
chart=apps.swap, family=swap, dimension=email
chart=apps.swap, family=swap, dimension=go.d.plugin
chart=apps.swap, family=swap, dimension=kernel
chart=apps.swap, family=swap, dimension=ksmd
chart=apps.swap, family=swap, dimension=logs
chart=apps.swap, family=swap, dimension=netdata
chart=apps.swap, family=swap, dimension=other
chart=apps.swap, family=swap, dimension=ssh
chart=apps.swap, family=swap, dimension=system
chart=apps.swap, family=swap, dimension=tc-qos-helper

netdata_apps_threads_threads_average
chart=apps.threads, family=processes, dimension=apps.plugin
chart=apps.threads, family=processes, dimension=cron
chart=apps.threads, family=processes, dimension=dhcp
chart=apps.threads, family=processes, dimension=email
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chart=apps.threads, family=processes, dimension=go.d.plugin
chart=apps.threads, family=processes, dimension=kernel
chart=apps.threads, family=processes, dimension=ksmd
chart=apps.threads, family=processes, dimension=logs
chart=apps.threads, family=processes, dimension=netdata
chart=apps.threads, family=processes, dimension=other
chart=apps.threads, family=processes, dimension=ssh
chart=apps.threads, family=processes, dimension=system
chart=apps.threads, family=processes, dimension=tc-qos-helper

netdata_apps_uptime_avg_seconds_average
chart=apps.uptime_avg, family=processes, dimension=apps.plugin
chart=apps.uptime_avg, family=processes, dimension=cron
chart=apps.uptime_avg, family=processes, dimension=dhcp
chart=apps.uptime_avg, family=processes, dimension=email
chart=apps.uptime_avg, family=processes, dimension=go.d.plugin
chart=apps.uptime_avg, family=processes, dimension=kernel
chart=apps.uptime_avg, family=processes, dimension=ksmd
chart=apps.uptime_avg, family=processes, dimension=logs
chart=apps.uptime_avg, family=processes, dimension=netdata
chart=apps.uptime_avg, family=processes, dimension=other
chart=apps.uptime_avg, family=processes, dimension=ssh
chart=apps.uptime_avg, family=processes, dimension=system
chart=apps.uptime_avg, family=processes, dimension=tc-qos-helper

netdata_apps_uptime_max_seconds_average
chart=apps.uptime_max, family=processes, dimension=apps.plugin
chart=apps.uptime_max, family=processes, dimension=cron
chart=apps.uptime_max, family=processes, dimension=dhcp
chart=apps.uptime_max, family=processes, dimension=email
chart=apps.uptime_max, family=processes, dimension=go.d.plugin
chart=apps.uptime_max, family=processes, dimension=kernel
chart=apps.uptime_max, family=processes, dimension=ksmd
chart=apps.uptime_max, family=processes, dimension=logs
chart=apps.uptime_max, family=processes, dimension=netdata
chart=apps.uptime_max, family=processes, dimension=other
chart=apps.uptime_max, family=processes, dimension=ssh
chart=apps.uptime_max, family=processes, dimension=system
chart=apps.uptime_max, family=processes, dimension=tc-qos-helper

netdata_apps_uptime_min_seconds_average
chart=apps.uptime_min, family=processes, dimension=apps.plugin
chart=apps.uptime_min, family=processes, dimension=cron
chart=apps.uptime_min, family=processes, dimension=dhcp
chart=apps.uptime_min, family=processes, dimension=email
chart=apps.uptime_min, family=processes, dimension=go.d.plugin
chart=apps.uptime_min, family=processes, dimension=kernel
chart=apps.uptime_min, family=processes, dimension=ksmd
chart=apps.uptime_min, family=processes, dimension=logs
chart=apps.uptime_min, family=processes, dimension=netdata
chart=apps.uptime_min, family=processes, dimension=other
chart=apps.uptime_min, family=processes, dimension=ssh
chart=apps.uptime_min, family=processes, dimension=system
chart=apps.uptime_min, family=processes, dimension=tc-qos-helper

netdata_apps_uptime_seconds_average
chart=apps.uptime, family=processes, dimension=apps.plugin
chart=apps.uptime, family=processes, dimension=cron
chart=apps.uptime, family=processes, dimension=dhcp
chart=apps.uptime, family=processes, dimension=email
chart=apps.uptime, family=processes, dimension=go.d.plugin
chart=apps.uptime, family=processes, dimension=kernel
chart=apps.uptime, family=processes, dimension=ksmd
chart=apps.uptime, family=processes, dimension=logs
chart=apps.uptime, family=processes, dimension=netdata
chart=apps.uptime, family=processes, dimension=other
chart=apps.uptime, family=processes, dimension=ssh
chart=apps.uptime, family=processes, dimension=system
chart=apps.uptime, family=processes, dimension=tc-qos-helper

netdata_apps_vmem_MiB_average
chart=apps.vmem, family=mem, dimension=apps.plugin
chart=apps.vmem, family=mem, dimension=cron
chart=apps.vmem, family=mem, dimension=dhcp
chart=apps.vmem, family=mem, dimension=email
chart=apps.vmem, family=mem, dimension=go.d.plugin
chart=apps.vmem, family=mem, dimension=kernel
chart=apps.vmem, family=mem, dimension=ksmd
chart=apps.vmem, family=mem, dimension=logs
chart=apps.vmem, family=mem, dimension=netdata
chart=apps.vmem, family=mem, dimension=other
chart=apps.vmem, family=mem, dimension=ssh
chart=apps.vmem, family=mem, dimension=system
chart=apps.vmem, family=mem, dimension=tc-qos-helper

netdata_cpu_cpu_percentage_average
chart=cpu.cpu0, family=utilization, dimension=guest
chart=cpu.cpu0, family=utilization, dimension=guest_nice
chart=cpu.cpu0, family=utilization, dimension=idle
chart=cpu.cpu0, family=utilization, dimension=iowait
chart=cpu.cpu0, family=utilization, dimension=irq
chart=cpu.cpu0, family=utilization, dimension=nice
chart=cpu.cpu0, family=utilization, dimension=softirq
chart=cpu.cpu0, family=utilization, dimension=steal
chart=cpu.cpu0, family=utilization, dimension=system
chart=cpu.cpu0, family=utilization, dimension=user

netdata_cpu_interrupts_interrupts_persec_average
chart=cpu.cpu0_interrupts, family=interrupts, dimension=LOC
chart=cpu.cpu0_interrupts, family=interrupts, dimension=MCP
chart=cpu.cpu0_interrupts, family=interrupts, dimension=ata_piix_14
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chart=cpu.cpu0_interrupts, family=interrupts, dimension=ata_piix_15
chart=cpu.cpu0_interrupts, family=interrupts, dimension=eth0_11
chart=cpu.cpu0_interrupts, family=interrupts, dimension=floppy_6
chart=cpu.cpu0_interrupts, family=interrupts, dimension=i8042_1
chart=cpu.cpu0_interrupts, family=interrupts, dimension=i8042_12
chart=cpu.cpu0_interrupts, family=interrupts, dimension=rtc0_8
chart=cpu.cpu0_interrupts, family=interrupts, dimension=serial_4
chart=cpu.cpu0_interrupts, family=interrupts, dimension=timer_0

netdata_cpu_softirqs_softirqs_persec_average
chart=cpu.cpu0_softirqs, family=softirqs, dimension=BLOCK
chart=cpu.cpu0_softirqs, family=softirqs, dimension=HRTIMER
chart=cpu.cpu0_softirqs, family=softirqs, dimension=NET_RX
chart=cpu.cpu0_softirqs, family=softirqs, dimension=NET_TX
chart=cpu.cpu0_softirqs, family=softirqs, dimension=RCU
chart=cpu.cpu0_softirqs, family=softirqs, dimension=TASKLET
chart=cpu.cpu0_softirqs, family=softirqs, dimension=TIMER

netdata_cpu_softnet_stat_events_persec_average
chart=cpu.cpu0_softnet_stat, family=softnet_stat, dimension=dropped
chart=cpu.cpu0_softnet_stat, family=softnet_stat, dimension=flow_limit_count
chart=cpu.cpu0_softnet_stat, family=softnet_stat, dimension=processed
chart=cpu.cpu0_softnet_stat, family=softnet_stat, dimension=received_rps
chart=cpu.cpu0_softnet_stat, family=softnet_stat, dimension=squeezed

netdata_cpuidle_cpuidle_percentage_average
chart=cpu.cpu0_cpuidle, family=cpuidle, dimension=C0 (active)

netdata_disk_avgsz_KiB_operation_average
chart=disk_avgsz.sda, family=sda, dimension=reads
chart=disk_avgsz.sda, family=sda, dimension=writes

netdata_disk_await_milliseconds_operation_average
chart=disk_await.sda, family=sda, dimension=reads
chart=disk_await.sda, family=sda, dimension=writes

netdata_disk_backlog_milliseconds_average
chart=disk_backlog.sda, family=sda, dimension=backlog

netdata_disk_inodes_inodes_average
chart=disk_inodes._, family=/, dimension=avail
chart=disk_inodes._, family=/, dimension=reserved for root
chart=disk_inodes._, family=/, dimension=used
chart=disk_inodes._dev, family=/dev, dimension=avail
chart=disk_inodes._dev, family=/dev, dimension=reserved for root
chart=disk_inodes._dev, family=/dev, dimension=used
chart=disk_inodes._run, family=/run, dimension=avail
chart=disk_inodes._run, family=/run, dimension=reserved for root
chart=disk_inodes._run, family=/run, dimension=used
chart=disk_inodes._run_lock, family=/run/lock, dimension=avail
chart=disk_inodes._run_lock, family=/run/lock, dimension=reserved for root
chart=disk_inodes._run_lock, family=/run/lock, dimension=used
chart=disk_inodes._run_shm, family=/run/shm, dimension=avail
chart=disk_inodes._run_shm, family=/run/shm, dimension=reserved for root
chart=disk_inodes._run_shm, family=/run/shm, dimension=used
chart=disk_inodes._run_user, family=/run/user, dimension=avail
chart=disk_inodes._run_user, family=/run/user, dimension=reserved for root
chart=disk_inodes._run_user, family=/run/user, dimension=used

netdata_disk_io_KiB_persec_average
chart=disk.sda, family=sda, dimension=reads
chart=disk.sda, family=sda, dimension=writes

netdata_disk_iotime_milliseconds_persec_average
chart=disk_iotime.sda, family=sda, dimension=reads
chart=disk_iotime.sda, family=sda, dimension=writes

netdata_disk_mops_merged_operations_persec_average
chart=disk_mops.sda, family=sda, dimension=reads
chart=disk_mops.sda, family=sda, dimension=writes

netdata_disk_ops_operations_persec_average
chart=disk_ops.sda, family=sda, dimension=reads
chart=disk_ops.sda, family=sda, dimension=writes

netdata_disk_qops_operations_average
chart=disk_qops.sda, family=sda, dimension=operations

netdata_disk_space_GiB_average
chart=disk_space._, family=/, dimension=avail
chart=disk_space._, family=/, dimension=reserved for root
chart=disk_space._, family=/, dimension=used
chart=disk_space._dev, family=/dev, dimension=avail
chart=disk_space._dev, family=/dev, dimension=reserved for root
chart=disk_space._dev, family=/dev, dimension=used
chart=disk_space._home_fields_fi_local_shared, family=/home/fields/fi_local_shared, dimension=avail
chart=disk_space._home_fields_fi_local_shared, family=/home/fields/fi_local_shared, dimension=reserved for root
chart=disk_space._home_fields_fi_local_shared, family=/home/fields/fi_local_shared, dimension=used
chart=disk_space._run, family=/run, dimension=avail
chart=disk_space._run, family=/run, dimension=reserved for root
chart=disk_space._run, family=/run, dimension=used
chart=disk_space._run_lock, family=/run/lock, dimension=avail
chart=disk_space._run_lock, family=/run/lock, dimension=reserved for root
chart=disk_space._run_lock, family=/run/lock, dimension=used
chart=disk_space._run_shm, family=/run/shm, dimension=avail
chart=disk_space._run_shm, family=/run/shm, dimension=reserved for root
chart=disk_space._run_shm, family=/run/shm, dimension=used
chart=disk_space._run_user, family=/run/user, dimension=avail
chart=disk_space._run_user, family=/run/user, dimension=reserved for root
chart=disk_space._run_user, family=/run/user, dimension=used

netdata_disk_svctm_milliseconds_operation_average
chart=disk_svctm.sda, family=sda, dimension=svctm

netdata_disk_util___of_time_working_average
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chart=disk_util.sda, family=sda, dimension=utilization
netdata_groups_cpu_percentage_average

chart=groups.cpu, family=cpu, dimension=daemon
chart=groups.cpu, family=cpu, dimension=fields
chart=groups.cpu, family=cpu, dimension=messagebus
chart=groups.cpu, family=cpu, dimension=netdata
chart=groups.cpu, family=cpu, dimension=root
chart=groups.cpu, family=cpu, dimension=smmsp

netdata_groups_cpu_system_percentage_average
chart=groups.cpu_system, family=cpu, dimension=daemon
chart=groups.cpu_system, family=cpu, dimension=fields
chart=groups.cpu_system, family=cpu, dimension=messagebus
chart=groups.cpu_system, family=cpu, dimension=netdata
chart=groups.cpu_system, family=cpu, dimension=root
chart=groups.cpu_system, family=cpu, dimension=smmsp

netdata_groups_cpu_user_percentage_average
chart=groups.cpu_user, family=cpu, dimension=daemon
chart=groups.cpu_user, family=cpu, dimension=fields
chart=groups.cpu_user, family=cpu, dimension=messagebus
chart=groups.cpu_user, family=cpu, dimension=netdata
chart=groups.cpu_user, family=cpu, dimension=root
chart=groups.cpu_user, family=cpu, dimension=smmsp

netdata_groups_files_open_files_average
chart=groups.files, family=disk, dimension=daemon
chart=groups.files, family=disk, dimension=fields
chart=groups.files, family=disk, dimension=messagebus
chart=groups.files, family=disk, dimension=netdata
chart=groups.files, family=disk, dimension=root
chart=groups.files, family=disk, dimension=smmsp

netdata_groups_lreads_KiB_persec_average
chart=groups.lreads, family=disk, dimension=daemon
chart=groups.lreads, family=disk, dimension=fields
chart=groups.lreads, family=disk, dimension=messagebus
chart=groups.lreads, family=disk, dimension=netdata
chart=groups.lreads, family=disk, dimension=root
chart=groups.lreads, family=disk, dimension=smmsp

netdata_groups_lwrites_KiB_persec_average
chart=groups.lwrites, family=disk, dimension=daemon
chart=groups.lwrites, family=disk, dimension=fields
chart=groups.lwrites, family=disk, dimension=messagebus
chart=groups.lwrites, family=disk, dimension=netdata
chart=groups.lwrites, family=disk, dimension=root
chart=groups.lwrites, family=disk, dimension=smmsp

netdata_groups_major_faults_page_faults_persec_average
chart=groups.major_faults, family=swap, dimension=daemon
chart=groups.major_faults, family=swap, dimension=fields
chart=groups.major_faults, family=swap, dimension=messagebus
chart=groups.major_faults, family=swap, dimension=netdata
chart=groups.major_faults, family=swap, dimension=root
chart=groups.major_faults, family=swap, dimension=smmsp

netdata_groups_mem_MiB_average
chart=groups.mem, family=mem, dimension=daemon
chart=groups.mem, family=mem, dimension=fields
chart=groups.mem, family=mem, dimension=messagebus
chart=groups.mem, family=mem, dimension=netdata
chart=groups.mem, family=mem, dimension=root
chart=groups.mem, family=mem, dimension=smmsp

netdata_groups_minor_faults_page_faults_persec_average
chart=groups.minor_faults, family=mem, dimension=daemon
chart=groups.minor_faults, family=mem, dimension=fields
chart=groups.minor_faults, family=mem, dimension=messagebus
chart=groups.minor_faults, family=mem, dimension=netdata
chart=groups.minor_faults, family=mem, dimension=root
chart=groups.minor_faults, family=mem, dimension=smmsp

netdata_groups_pipes_open_pipes_average
chart=groups.pipes, family=processes, dimension=daemon
chart=groups.pipes, family=processes, dimension=fields
chart=groups.pipes, family=processes, dimension=messagebus
chart=groups.pipes, family=processes, dimension=netdata
chart=groups.pipes, family=processes, dimension=root
chart=groups.pipes, family=processes, dimension=smmsp

netdata_groups_preads_KiB_persec_average
chart=groups.preads, family=disk, dimension=daemon
chart=groups.preads, family=disk, dimension=fields
chart=groups.preads, family=disk, dimension=messagebus
chart=groups.preads, family=disk, dimension=netdata
chart=groups.preads, family=disk, dimension=root
chart=groups.preads, family=disk, dimension=smmsp

netdata_groups_processes_processes_average
chart=groups.processes, family=processes, dimension=daemon
chart=groups.processes, family=processes, dimension=fields
chart=groups.processes, family=processes, dimension=messagebus
chart=groups.processes, family=processes, dimension=netdata
chart=groups.processes, family=processes, dimension=root
chart=groups.processes, family=processes, dimension=smmsp

netdata_groups_pwrites_KiB_persec_average
chart=groups.pwrites, family=disk, dimension=daemon
chart=groups.pwrites, family=disk, dimension=fields
chart=groups.pwrites, family=disk, dimension=messagebus
chart=groups.pwrites, family=disk, dimension=netdata
chart=groups.pwrites, family=disk, dimension=root
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chart=groups.pwrites, family=disk, dimension=smmsp
netdata_groups_sockets_open_sockets_average

chart=groups.sockets, family=net, dimension=daemon
chart=groups.sockets, family=net, dimension=fields
chart=groups.sockets, family=net, dimension=messagebus
chart=groups.sockets, family=net, dimension=netdata
chart=groups.sockets, family=net, dimension=root
chart=groups.sockets, family=net, dimension=smmsp

netdata_groups_swap_MiB_average
chart=groups.swap, family=swap, dimension=daemon
chart=groups.swap, family=swap, dimension=fields
chart=groups.swap, family=swap, dimension=messagebus
chart=groups.swap, family=swap, dimension=netdata
chart=groups.swap, family=swap, dimension=root
chart=groups.swap, family=swap, dimension=smmsp

netdata_groups_threads_threads_average
chart=groups.threads, family=processes, dimension=daemon
chart=groups.threads, family=processes, dimension=fields
chart=groups.threads, family=processes, dimension=messagebus
chart=groups.threads, family=processes, dimension=netdata
chart=groups.threads, family=processes, dimension=root
chart=groups.threads, family=processes, dimension=smmsp

netdata_groups_uptime_avg_seconds_average
chart=groups.uptime_avg, family=processes, dimension=daemon
chart=groups.uptime_avg, family=processes, dimension=fields
chart=groups.uptime_avg, family=processes, dimension=messagebus
chart=groups.uptime_avg, family=processes, dimension=netdata
chart=groups.uptime_avg, family=processes, dimension=root
chart=groups.uptime_avg, family=processes, dimension=smmsp

netdata_groups_uptime_max_seconds_average
chart=groups.uptime_max, family=processes, dimension=daemon
chart=groups.uptime_max, family=processes, dimension=fields
chart=groups.uptime_max, family=processes, dimension=messagebus
chart=groups.uptime_max, family=processes, dimension=netdata
chart=groups.uptime_max, family=processes, dimension=root
chart=groups.uptime_max, family=processes, dimension=smmsp

netdata_groups_uptime_min_seconds_average
chart=groups.uptime_min, family=processes, dimension=daemon
chart=groups.uptime_min, family=processes, dimension=fields
chart=groups.uptime_min, family=processes, dimension=messagebus
chart=groups.uptime_min, family=processes, dimension=netdata
chart=groups.uptime_min, family=processes, dimension=root
chart=groups.uptime_min, family=processes, dimension=smmsp

netdata_groups_uptime_seconds_average
chart=groups.uptime, family=processes, dimension=daemon
chart=groups.uptime, family=processes, dimension=fields
chart=groups.uptime, family=processes, dimension=messagebus
chart=groups.uptime, family=processes, dimension=netdata
chart=groups.uptime, family=processes, dimension=root
chart=groups.uptime, family=processes, dimension=smmsp

netdata_groups_vmem_MiB_average
chart=groups.vmem, family=mem, dimension=daemon
chart=groups.vmem, family=mem, dimension=fields
chart=groups.vmem, family=mem, dimension=messagebus
chart=groups.vmem, family=mem, dimension=netdata
chart=groups.vmem, family=mem, dimension=root
chart=groups.vmem, family=mem, dimension=smmsp

netdata_info
instance=ubuntu, application=netdata, version=v1.20.0-167-nightly

netdata_ip_ecnpkts_packets_persec_average
chart=ip.ecnpkts, family=ecn, dimension=CEP
chart=ip.ecnpkts, family=ecn, dimension=ECTP0
chart=ip.ecnpkts, family=ecn, dimension=ECTP1
chart=ip.ecnpkts, family=ecn, dimension=NoECTP

netdata_ip_tcpofo_packets_persec_average
chart=ip.tcpofo, family=tcp, dimension=dropped
chart=ip.tcpofo, family=tcp, dimension=inqueue
chart=ip.tcpofo, family=tcp, dimension=merged
chart=ip.tcpofo, family=tcp, dimension=pruned

netdata_ipv4_icmp_errors_packets_persec_average
chart=ipv4.icmp_errors, family=icmp, dimension=InCsumErrors
chart=ipv4.icmp_errors, family=icmp, dimension=InErrors
chart=ipv4.icmp_errors, family=icmp, dimension=OutErrors

netdata_ipv4_icmp_packets_persec_average
chart=ipv4.icmp, family=icmp, dimension=received
chart=ipv4.icmp, family=icmp, dimension=sent

netdata_ipv4_icmpmsg_packets_persec_average
chart=ipv4.icmpmsg, family=icmp, dimension=InDestUnreachs
chart=ipv4.icmpmsg, family=icmp, dimension=InEchoReps
chart=ipv4.icmpmsg, family=icmp, dimension=InEchos
chart=ipv4.icmpmsg, family=icmp, dimension=InParmProbs
chart=ipv4.icmpmsg, family=icmp, dimension=InRedirects
chart=ipv4.icmpmsg, family=icmp, dimension=InRouterAdvert
chart=ipv4.icmpmsg, family=icmp, dimension=InRouterSelect
chart=ipv4.icmpmsg, family=icmp, dimension=InTimeExcds
chart=ipv4.icmpmsg, family=icmp, dimension=InTimestampReps
chart=ipv4.icmpmsg, family=icmp, dimension=InTimestamps
chart=ipv4.icmpmsg, family=icmp, dimension=OutDestUnreachs
chart=ipv4.icmpmsg, family=icmp, dimension=OutEchoReps
chart=ipv4.icmpmsg, family=icmp, dimension=OutEchos
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chart=ipv4.icmpmsg, family=icmp, dimension=OutParmProbs
chart=ipv4.icmpmsg, family=icmp, dimension=OutRedirects
chart=ipv4.icmpmsg, family=icmp, dimension=OutRouterAdvert
chart=ipv4.icmpmsg, family=icmp, dimension=OutRouterSelect
chart=ipv4.icmpmsg, family=icmp, dimension=OutTimeExcds
chart=ipv4.icmpmsg, family=icmp, dimension=OutTimestampReps
chart=ipv4.icmpmsg, family=icmp, dimension=OutTimestamps

netdata_ipv4_packets_packets_persec_average
chart=ipv4.packets, family=packets, dimension=delivered
chart=ipv4.packets, family=packets, dimension=forwarded
chart=ipv4.packets, family=packets, dimension=received
chart=ipv4.packets, family=packets, dimension=sent

netdata_ipv4_sockstat_sockets_sockets_average
chart=ipv4.sockstat_sockets, family=sockets, dimension=used

netdata_ipv4_sockstat_tcp_mem_KiB_average
chart=ipv4.sockstat_tcp_mem, family=tcp, dimension=mem

netdata_ipv4_sockstat_tcp_sockets_sockets_average
chart=ipv4.sockstat_tcp_sockets, family=tcp, dimension=alloc
chart=ipv4.sockstat_tcp_sockets, family=tcp, dimension=inuse
chart=ipv4.sockstat_tcp_sockets, family=tcp, dimension=orphan
chart=ipv4.sockstat_tcp_sockets, family=tcp, dimension=timewait

netdata_ipv4_sockstat_udp_sockets_sockets_average
chart=ipv4.sockstat_udp_sockets, family=udp, dimension=inuse

netdata_ipv4_tcphandshake_events_persec_average
chart=ipv4.tcphandshake, family=tcp, dimension=AttemptFails
chart=ipv4.tcphandshake, family=tcp, dimension=EstabResets
chart=ipv4.tcphandshake, family=tcp, dimension=OutRsts
chart=ipv4.tcphandshake, family=tcp, dimension=SynRetrans

netdata_ipv4_tcpopens_connections_persec_average
chart=ipv4.tcpopens, family=tcp, dimension=active
chart=ipv4.tcpopens, family=tcp, dimension=passive

netdata_ipv4_tcppackets_packets_persec_average
chart=ipv4.tcppackets, family=tcp, dimension=received
chart=ipv4.tcppackets, family=tcp, dimension=sent

netdata_ipv4_tcpsock_active_connections_average
chart=ipv4.tcpsock, family=tcp, dimension=connections

netdata_ipv4_udperrors_events_persec_average
chart=ipv4.udperrors, family=udp, dimension=IgnoredMulti
chart=ipv4.udperrors, family=udp, dimension=InCsumErrors
chart=ipv4.udperrors, family=udp, dimension=InErrors
chart=ipv4.udperrors, family=udp, dimension=NoPorts
chart=ipv4.udperrors, family=udp, dimension=RcvbufErrors
chart=ipv4.udperrors, family=udp, dimension=SndbufErrors

netdata_ipv4_udppackets_packets_persec_average
chart=ipv4.udppackets, family=udp, dimension=received
chart=ipv4.udppackets, family=udp, dimension=sent

netdata_ipv6_ect_packets_persec_average
chart=ipv6.ect, family=packets, dimension=InCEPkts
chart=ipv6.ect, family=packets, dimension=InECT0Pkts
chart=ipv6.ect, family=packets, dimension=InECT1Pkts
chart=ipv6.ect, family=packets, dimension=InNoECTPkts

netdata_ipv6_icmp_messages_persec_average
chart=ipv6.icmp, family=icmp6, dimension=received
chart=ipv6.icmp, family=icmp6, dimension=sent

netdata_ipv6_icmperrors_errors_persec_average
chart=ipv6.icmperrors, family=icmp6, dimension=InCsumErrors
chart=ipv6.icmperrors, family=icmp6, dimension=InDestUnreachs
chart=ipv6.icmperrors, family=icmp6, dimension=InErrors
chart=ipv6.icmperrors, family=icmp6, dimension=InParmProblems
chart=ipv6.icmperrors, family=icmp6, dimension=InPktTooBigs
chart=ipv6.icmperrors, family=icmp6, dimension=InTimeExcds
chart=ipv6.icmperrors, family=icmp6, dimension=OutDestUnreachs
chart=ipv6.icmperrors, family=icmp6, dimension=OutErrors
chart=ipv6.icmperrors, family=icmp6, dimension=OutParmProblems
chart=ipv6.icmperrors, family=icmp6, dimension=OutPktTooBigs
chart=ipv6.icmperrors, family=icmp6, dimension=OutTimeExcds

netdata_ipv6_icmpmldv2_reports_persec_average
chart=ipv6.icmpmldv2, family=icmp6, dimension=received
chart=ipv6.icmpmldv2, family=icmp6, dimension=sent

netdata_ipv6_icmpneighbor_messages_persec_average
chart=ipv6.icmpneighbor, family=icmp6, dimension=InAdvertisements
chart=ipv6.icmpneighbor, family=icmp6, dimension=InSolicits
chart=ipv6.icmpneighbor, family=icmp6, dimension=OutAdvertisements
chart=ipv6.icmpneighbor, family=icmp6, dimension=OutSolicits

netdata_ipv6_icmprouter_messages_persec_average
chart=ipv6.icmprouter, family=icmp6, dimension=InAdvertisements
chart=ipv6.icmprouter, family=icmp6, dimension=InSolicits
chart=ipv6.icmprouter, family=icmp6, dimension=OutAdvertisements
chart=ipv6.icmprouter, family=icmp6, dimension=OutSolicits

netdata_ipv6_icmptypes_messages_persec_average
chart=ipv6.icmptypes, family=icmp6, dimension=InType1
chart=ipv6.icmptypes, family=icmp6, dimension=InType128
chart=ipv6.icmptypes, family=icmp6, dimension=InType129
chart=ipv6.icmptypes, family=icmp6, dimension=InType136
chart=ipv6.icmptypes, family=icmp6, dimension=OutType1
chart=ipv6.icmptypes, family=icmp6, dimension=OutType128
chart=ipv6.icmptypes, family=icmp6, dimension=OutType129
chart=ipv6.icmptypes, family=icmp6, dimension=OutType133
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chart=ipv6.icmptypes, family=icmp6, dimension=OutType135
chart=ipv6.icmptypes, family=icmp6, dimension=OutType143

netdata_ipv6_mcast_kilobits_persec_average
chart=ipv6.mcast, family=multicast6, dimension=received
chart=ipv6.mcast, family=multicast6, dimension=sent

netdata_ipv6_mcastpkts_packets_persec_average
chart=ipv6.mcastpkts, family=multicast6, dimension=received
chart=ipv6.mcastpkts, family=multicast6, dimension=sent

netdata_ipv6_packets_packets_persec_average
chart=ipv6.packets, family=packets, dimension=delivers
chart=ipv6.packets, family=packets, dimension=forwarded
chart=ipv6.packets, family=packets, dimension=received
chart=ipv6.packets, family=packets, dimension=sent

netdata_ipv6_sockstat6_tcp_sockets_sockets_average
chart=ipv6.sockstat6_tcp_sockets, family=tcp6, dimension=inuse

netdata_ipv6_sockstat6_udp_sockets_sockets_average
chart=ipv6.sockstat6_udp_sockets, family=udp6, dimension=inuse

netdata_ipv6_udperrors_events_persec_average
chart=ipv6.udperrors, family=udp6, dimension=IgnoredMulti
chart=ipv6.udperrors, family=udp6, dimension=InCsumErrors
chart=ipv6.udperrors, family=udp6, dimension=InErrors
chart=ipv6.udperrors, family=udp6, dimension=NoPorts
chart=ipv6.udperrors, family=udp6, dimension=RcvbufErrors
chart=ipv6.udperrors, family=udp6, dimension=SndbufErrors

netdata_ipv6_udppackets_packets_persec_average
chart=ipv6.udppackets, family=udp6, dimension=received
chart=ipv6.udppackets, family=udp6, dimension=sent

netdata_mem_available_MiB_average
chart=mem.available, family=system, dimension=avail

netdata_mem_committed_MiB_average
chart=mem.committed, family=system, dimension=Committed_AS

netdata_mem_kernel_MiB_average
chart=mem.kernel, family=kernel, dimension=KernelStack
chart=mem.kernel, family=kernel, dimension=PageTables
chart=mem.kernel, family=kernel, dimension=Slab
chart=mem.kernel, family=kernel, dimension=VmallocUsed

netdata_mem_pgfaults_faults_persec_average
chart=mem.pgfaults, family=system, dimension=major
chart=mem.pgfaults, family=system, dimension=minor

netdata_mem_slab_MiB_average
chart=mem.slab, family=slab, dimension=reclaimable
chart=mem.slab, family=slab, dimension=unreclaimable

netdata_mem_writeback_MiB_average
chart=mem.writeback, family=kernel, dimension=Bounce
chart=mem.writeback, family=kernel, dimension=Dirty
chart=mem.writeback, family=kernel, dimension=FuseWriteback
chart=mem.writeback, family=kernel, dimension=NfsWriteback
chart=mem.writeback, family=kernel, dimension=Writeback

netdata_net_errors_errors_persec_average
chart=net_errors.eth0, family=eth0, dimension=inbound
chart=net_errors.eth0, family=eth0, dimension=outbound

netdata_net_events_events_persec_average
chart=net_events.eth0, family=eth0, dimension=carrier
chart=net_events.eth0, family=eth0, dimension=collisions
chart=net_events.eth0, family=eth0, dimension=frames

netdata_net_net_kilobits_persec_average
chart=net.eth0, family=eth0, dimension=received
chart=net.eth0, family=eth0, dimension=sent

netdata_net_packets_packets_persec_average
chart=net_packets.eth0, family=eth0, dimension=multicast
chart=net_packets.eth0, family=eth0, dimension=received
chart=net_packets.eth0, family=eth0, dimension=sent

netdata_netdata_apps_children_fix_percentage_average
chart=netdata.apps_children_fix, family=apps.plugin, dimension=cgtime
chart=netdata.apps_children_fix, family=apps.plugin, dimension=cmajflt
chart=netdata.apps_children_fix, family=apps.plugin, dimension=cminflt
chart=netdata.apps_children_fix, family=apps.plugin, dimension=cstime
chart=netdata.apps_children_fix, family=apps.plugin, dimension=cutime

netdata_netdata_apps_cpu_milliseconds_persec_average
chart=netdata.apps_cpu, family=apps.plugin, dimension=system
chart=netdata.apps_cpu, family=apps.plugin, dimension=user

netdata_netdata_apps_fix_percentage_average
chart=netdata.apps_fix, family=apps.plugin, dimension=gtime
chart=netdata.apps_fix, family=apps.plugin, dimension=majflt
chart=netdata.apps_fix, family=apps.plugin, dimension=minflt
chart=netdata.apps_fix, family=apps.plugin, dimension=stime
chart=netdata.apps_fix, family=apps.plugin, dimension=utime

netdata_netdata_apps_sizes_files_persec_average
chart=netdata.apps_sizes, family=apps.plugin, dimension=calls
chart=netdata.apps_sizes, family=apps.plugin, dimension=fds
chart=netdata.apps_sizes, family=apps.plugin, dimension=filenames
chart=netdata.apps_sizes, family=apps.plugin, dimension=files
chart=netdata.apps_sizes, family=apps.plugin, dimension=inode_changes
chart=netdata.apps_sizes, family=apps.plugin, dimension=link_changes
chart=netdata.apps_sizes, family=apps.plugin, dimension=new pids
chart=netdata.apps_sizes, family=apps.plugin, dimension=pids
chart=netdata.apps_sizes, family=apps.plugin, dimension=targets
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netdata_netdata_clients_connected_clients_average
chart=netdata.clients, family=netdata, dimension=clients

netdata_netdata_compression_ratio_percentage_average
chart=netdata.compression_ratio, family=netdata, dimension=savings

netdata_netdata_db_points_points_persec_average
chart=netdata.db_points, family=queries, dimension=generated
chart=netdata.db_points, family=queries, dimension=read

netdata_netdata_net_kilobits_persec_average
chart=netdata.net, family=netdata, dimension=in
chart=netdata.net, family=netdata, dimension=out

netdata_netdata_plugin_cgroups_cpu_milliseconds_persec_average
chart=netdata.plugin_cgroups_cpu, family=cgroups, dimension=system
chart=netdata.plugin_cgroups_cpu, family=cgroups, dimension=user

netdata_netdata_plugin_diskspace_dt_milliseconds_run_average
chart=netdata.plugin_diskspace_dt, family=diskspace, dimension=duration

netdata_netdata_plugin_diskspace_milliseconds_persec_average
chart=netdata.plugin_diskspace, family=diskspace, dimension=system
chart=netdata.plugin_diskspace, family=diskspace, dimension=user

netdata_netdata_plugin_proc_cpu_milliseconds_persec_average
chart=netdata.plugin_proc_cpu, family=proc, dimension=system
chart=netdata.plugin_proc_cpu, family=proc, dimension=user

netdata_netdata_plugin_proc_modules_milliseconds_run_average
chart=netdata.plugin_proc_modules, family=proc, dimension=btrfs
chart=netdata.plugin_proc_modules, family=proc, dimension=diskstats
chart=netdata.plugin_proc_modules, family=proc, dimension=entropy
chart=netdata.plugin_proc_modules, family=proc, dimension=interrupts
chart=netdata.plugin_proc_modules, family=proc, dimension=ipc
chart=netdata.plugin_proc_modules, family=proc, dimension=ksm
chart=netdata.plugin_proc_modules, family=proc, dimension=loadavg
chart=netdata.plugin_proc_modules, family=proc, dimension=mdstat
chart=netdata.plugin_proc_modules, family=proc, dimension=meminfo
chart=netdata.plugin_proc_modules, family=proc, dimension=netdev
chart=netdata.plugin_proc_modules, family=proc, dimension=netstat
chart=netdata.plugin_proc_modules, family=proc, dimension=power_supply
chart=netdata.plugin_proc_modules, family=proc, dimension=snmp
chart=netdata.plugin_proc_modules, family=proc, dimension=snmp6
chart=netdata.plugin_proc_modules, family=proc, dimension=sockstat
chart=netdata.plugin_proc_modules, family=proc, dimension=sockstat6
chart=netdata.plugin_proc_modules, family=proc, dimension=softirqs
chart=netdata.plugin_proc_modules, family=proc, dimension=softnet
chart=netdata.plugin_proc_modules, family=proc, dimension=stat
chart=netdata.plugin_proc_modules, family=proc, dimension=uptime
chart=netdata.plugin_proc_modules, family=proc, dimension=vmstat

netdata_netdata_plugin_tc_cpu_milliseconds_persec_average
chart=netdata.plugin_tc_cpu, family=tc.helper, dimension=system
chart=netdata.plugin_tc_cpu, family=tc.helper, dimension=user

netdata_netdata_plugin_tc_time_milliseconds_run_average
chart=netdata.plugin_tc_time, family=tc.helper, dimension=run time

netdata_netdata_private_charts_charts_average
chart=netdata.private_charts, family=statsd, dimension=charts

netdata_netdata_queries_queries_persec_average
chart=netdata.queries, family=queries, dimension=queries

netdata_netdata_requests_requests_persec_average
chart=netdata.requests, family=netdata, dimension=requests

netdata_netdata_response_time_milliseconds_request_average
chart=netdata.response_time, family=netdata, dimension=average
chart=netdata.response_time, family=netdata, dimension=max

netdata_netdata_server_cpu_milliseconds_persec_average
chart=netdata.server_cpu, family=netdata, dimension=system
chart=netdata.server_cpu, family=netdata, dimension=user

netdata_netdata_statsd_bytes_kilobits_persec_average
chart=netdata.statsd_bytes, family=statsd, dimension=tcp
chart=netdata.statsd_bytes, family=statsd, dimension=udp

netdata_netdata_statsd_cpu_milliseconds_persec_average
chart=netdata.plugin_statsd_charting_cpu, family=statsd, dimension=system
chart=netdata.plugin_statsd_charting_cpu, family=statsd, dimension=user
chart=netdata.plugin_statsd_collector1_cpu, family=statsd, dimension=system
chart=netdata.plugin_statsd_collector1_cpu, family=statsd, dimension=user

netdata_netdata_statsd_events_events_persec_average
chart=netdata.statsd_events, family=statsd, dimension=counters
chart=netdata.statsd_events, family=statsd, dimension=errors
chart=netdata.statsd_events, family=statsd, dimension=gauges
chart=netdata.statsd_events, family=statsd, dimension=histograms
chart=netdata.statsd_events, family=statsd, dimension=meters
chart=netdata.statsd_events, family=statsd, dimension=sets
chart=netdata.statsd_events, family=statsd, dimension=timers
chart=netdata.statsd_events, family=statsd, dimension=unknown

netdata_netdata_statsd_metrics_metrics_average
chart=netdata.statsd_metrics, family=statsd, dimension=counters
chart=netdata.statsd_metrics, family=statsd, dimension=gauges
chart=netdata.statsd_metrics, family=statsd, dimension=histograms
chart=netdata.statsd_metrics, family=statsd, dimension=meters
chart=netdata.statsd_metrics, family=statsd, dimension=sets
chart=netdata.statsd_metrics, family=statsd, dimension=timers

netdata_netdata_statsd_packets_packets_persec_average
chart=netdata.statsd_packets, family=statsd, dimension=tcp
chart=netdata.statsd_packets, family=statsd, dimension=udp
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netdata_netdata_statsd_reads_reads_persec_average
chart=netdata.statsd_reads, family=statsd, dimension=tcp
chart=netdata.statsd_reads, family=statsd, dimension=udp

netdata_netdata_statsd_useful_metrics_metrics_average
chart=netdata.statsd_useful_metrics, family=statsd, dimension=counters
chart=netdata.statsd_useful_metrics, family=statsd, dimension=gauges
chart=netdata.statsd_useful_metrics, family=statsd, dimension=histograms
chart=netdata.statsd_useful_metrics, family=statsd, dimension=meters
chart=netdata.statsd_useful_metrics, family=statsd, dimension=sets
chart=netdata.statsd_useful_metrics, family=statsd, dimension=timers

netdata_netdata_tcp_connected_sockets_average
chart=netdata.tcp_connected, family=statsd, dimension=connected

netdata_netdata_tcp_connects_events_average
chart=netdata.tcp_connects, family=statsd, dimension=connects
chart=netdata.tcp_connects, family=statsd, dimension=disconnects

netdata_netdata_web_cpu_milliseconds_persec_average
chart=netdata.web_thread1_cpu, family=web, dimension=system
chart=netdata.web_thread1_cpu, family=web, dimension=user

netdata_system_active_processes_processes_average
chart=system.active_processes, family=processes, dimension=active

netdata_system_cpu_percentage_average
chart=system.cpu, family=cpu, dimension=guest
chart=system.cpu, family=cpu, dimension=guest_nice
chart=system.cpu, family=cpu, dimension=idle
chart=system.cpu, family=cpu, dimension=iowait
chart=system.cpu, family=cpu, dimension=irq
chart=system.cpu, family=cpu, dimension=nice
chart=system.cpu, family=cpu, dimension=softirq
chart=system.cpu, family=cpu, dimension=steal
chart=system.cpu, family=cpu, dimension=system
chart=system.cpu, family=cpu, dimension=user

netdata_system_ctxt_context_switches_persec_average
chart=system.ctxt, family=processes, dimension=switches

netdata_system_entropy_entropy_average
chart=system.entropy, family=entropy, dimension=entropy

netdata_system_forks_processes_persec_average
chart=system.forks, family=processes, dimension=started

netdata_system_idlejitter_microseconds_lost_persec_average
chart=system.idlejitter, family=idlejitter, dimension=average
chart=system.idlejitter, family=idlejitter, dimension=max
chart=system.idlejitter, family=idlejitter, dimension=min

netdata_system_interrupts_interrupts_persec_average
chart=system.interrupts, family=interrupts, dimension=LOC
chart=system.interrupts, family=interrupts, dimension=MCP
chart=system.interrupts, family=interrupts, dimension=ata_piix_14
chart=system.interrupts, family=interrupts, dimension=ata_piix_15
chart=system.interrupts, family=interrupts, dimension=eth0_11
chart=system.interrupts, family=interrupts, dimension=floppy_6
chart=system.interrupts, family=interrupts, dimension=i8042_1
chart=system.interrupts, family=interrupts, dimension=i8042_12
chart=system.interrupts, family=interrupts, dimension=rtc0_8
chart=system.interrupts, family=interrupts, dimension=serial_4
chart=system.interrupts, family=interrupts, dimension=timer_0

netdata_system_intr_interrupts_persec_average
chart=system.intr, family=interrupts, dimension=interrupts

netdata_system_io_KiB_persec_average
chart=system.io, family=disk, dimension=in
chart=system.io, family=disk, dimension=out

netdata_system_ip_kilobits_persec_average
chart=system.ip, family=network, dimension=received
chart=system.ip, family=network, dimension=sent

netdata_system_ipc_semaphore_arrays_arrays_average
chart=system.ipc_semaphore_arrays, family=ipc semaphores, dimension=arrays

netdata_system_ipc_semaphores_semaphores_average
chart=system.ipc_semaphores, family=ipc semaphores, dimension=semaphores

netdata_system_ipv6_kilobits_persec_average
chart=system.ipv6, family=network, dimension=received
chart=system.ipv6, family=network, dimension=sent

netdata_system_load_load_average
chart=system.load, family=load, dimension=load1
chart=system.load, family=load, dimension=load15
chart=system.load, family=load, dimension=load5

netdata_system_net_kilobits_persec_average
chart=system.net, family=network, dimension=received
chart=system.net, family=network, dimension=sent

netdata_system_pgpgio_KiB_persec_average
chart=system.pgpgio, family=disk, dimension=in
chart=system.pgpgio, family=disk, dimension=out

netdata_system_processes_processes_average
chart=system.processes, family=processes, dimension=blocked
chart=system.processes, family=processes, dimension=running

netdata_system_ram_MiB_average
chart=system.ram, family=ram, dimension=buffers
chart=system.ram, family=ram, dimension=cached
chart=system.ram, family=ram, dimension=free
chart=system.ram, family=ram, dimension=used
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netdata_system_shared_memory_bytes_bytes_average
chart=system.shared_memory_bytes, family=ipc shared memory, dimension=bytes

netdata_system_shared_memory_segments_segments_average
chart=system.shared_memory_segments, family=ipc shared memory, dimension=segments

netdata_system_softirqs_softirqs_persec_average
chart=system.softirqs, family=softirqs, dimension=BLOCK
chart=system.softirqs, family=softirqs, dimension=HRTIMER
chart=system.softirqs, family=softirqs, dimension=NET_RX
chart=system.softirqs, family=softirqs, dimension=NET_TX
chart=system.softirqs, family=softirqs, dimension=RCU
chart=system.softirqs, family=softirqs, dimension=TASKLET
chart=system.softirqs, family=softirqs, dimension=TIMER

netdata_system_softnet_stat_events_persec_average
chart=system.softnet_stat, family=softnet_stat, dimension=dropped
chart=system.softnet_stat, family=softnet_stat, dimension=flow_limit_count
chart=system.softnet_stat, family=softnet_stat, dimension=processed
chart=system.softnet_stat, family=softnet_stat, dimension=received_rps
chart=system.softnet_stat, family=softnet_stat, dimension=squeezed

netdata_system_swap_MiB_average
chart=system.swap, family=swap, dimension=free
chart=system.swap, family=swap, dimension=used

netdata_system_uptime_seconds_average
chart=system.uptime, family=uptime, dimension=uptime

netdata_users_cpu_percentage_average
chart=users.cpu, family=cpu, dimension=daemon
chart=users.cpu, family=cpu, dimension=fields
chart=users.cpu, family=cpu, dimension=messagebus
chart=users.cpu, family=cpu, dimension=netdata
chart=users.cpu, family=cpu, dimension=root
chart=users.cpu, family=cpu, dimension=smmsp

netdata_users_cpu_system_percentage_average
chart=users.cpu_system, family=cpu, dimension=daemon
chart=users.cpu_system, family=cpu, dimension=fields
chart=users.cpu_system, family=cpu, dimension=messagebus
chart=users.cpu_system, family=cpu, dimension=netdata
chart=users.cpu_system, family=cpu, dimension=root
chart=users.cpu_system, family=cpu, dimension=smmsp

netdata_users_cpu_user_percentage_average
chart=users.cpu_user, family=cpu, dimension=daemon
chart=users.cpu_user, family=cpu, dimension=fields
chart=users.cpu_user, family=cpu, dimension=messagebus
chart=users.cpu_user, family=cpu, dimension=netdata
chart=users.cpu_user, family=cpu, dimension=root
chart=users.cpu_user, family=cpu, dimension=smmsp

netdata_users_files_open_files_average
chart=users.files, family=disk, dimension=daemon
chart=users.files, family=disk, dimension=fields
chart=users.files, family=disk, dimension=messagebus
chart=users.files, family=disk, dimension=netdata
chart=users.files, family=disk, dimension=root
chart=users.files, family=disk, dimension=smmsp

netdata_users_lreads_KiB_persec_average
chart=users.lreads, family=disk, dimension=daemon
chart=users.lreads, family=disk, dimension=fields
chart=users.lreads, family=disk, dimension=messagebus
chart=users.lreads, family=disk, dimension=netdata
chart=users.lreads, family=disk, dimension=root
chart=users.lreads, family=disk, dimension=smmsp

netdata_users_lwrites_KiB_persec_average
chart=users.lwrites, family=disk, dimension=daemon
chart=users.lwrites, family=disk, dimension=fields
chart=users.lwrites, family=disk, dimension=messagebus
chart=users.lwrites, family=disk, dimension=netdata
chart=users.lwrites, family=disk, dimension=root
chart=users.lwrites, family=disk, dimension=smmsp

netdata_users_major_faults_page_faults_persec_average
chart=users.major_faults, family=swap, dimension=daemon
chart=users.major_faults, family=swap, dimension=fields
chart=users.major_faults, family=swap, dimension=messagebus
chart=users.major_faults, family=swap, dimension=netdata
chart=users.major_faults, family=swap, dimension=root
chart=users.major_faults, family=swap, dimension=smmsp

netdata_users_mem_MiB_average
chart=users.mem, family=mem, dimension=daemon
chart=users.mem, family=mem, dimension=fields
chart=users.mem, family=mem, dimension=messagebus
chart=users.mem, family=mem, dimension=netdata
chart=users.mem, family=mem, dimension=root
chart=users.mem, family=mem, dimension=smmsp

netdata_users_minor_faults_page_faults_persec_average
chart=users.minor_faults, family=mem, dimension=daemon
chart=users.minor_faults, family=mem, dimension=fields
chart=users.minor_faults, family=mem, dimension=messagebus
chart=users.minor_faults, family=mem, dimension=netdata
chart=users.minor_faults, family=mem, dimension=root
chart=users.minor_faults, family=mem, dimension=smmsp

netdata_users_pipes_open_pipes_average
chart=users.pipes, family=processes, dimension=daemon
chart=users.pipes, family=processes, dimension=fields
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chart=users.pipes, family=processes, dimension=messagebus
chart=users.pipes, family=processes, dimension=netdata
chart=users.pipes, family=processes, dimension=root
chart=users.pipes, family=processes, dimension=smmsp

netdata_users_preads_KiB_persec_average
chart=users.preads, family=disk, dimension=daemon
chart=users.preads, family=disk, dimension=fields
chart=users.preads, family=disk, dimension=messagebus
chart=users.preads, family=disk, dimension=netdata
chart=users.preads, family=disk, dimension=root
chart=users.preads, family=disk, dimension=smmsp

netdata_users_processes_processes_average
chart=users.processes, family=processes, dimension=daemon
chart=users.processes, family=processes, dimension=fields
chart=users.processes, family=processes, dimension=messagebus
chart=users.processes, family=processes, dimension=netdata
chart=users.processes, family=processes, dimension=root
chart=users.processes, family=processes, dimension=smmsp

netdata_users_pwrites_KiB_persec_average
chart=users.pwrites, family=disk, dimension=daemon
chart=users.pwrites, family=disk, dimension=fields
chart=users.pwrites, family=disk, dimension=messagebus
chart=users.pwrites, family=disk, dimension=netdata
chart=users.pwrites, family=disk, dimension=root
chart=users.pwrites, family=disk, dimension=smmsp

netdata_users_sockets_open_sockets_average
chart=users.sockets, family=net, dimension=daemon
chart=users.sockets, family=net, dimension=fields
chart=users.sockets, family=net, dimension=messagebus
chart=users.sockets, family=net, dimension=netdata
chart=users.sockets, family=net, dimension=root
chart=users.sockets, family=net, dimension=smmsp

netdata_users_swap_MiB_average
chart=users.swap, family=swap, dimension=daemon
chart=users.swap, family=swap, dimension=fields
chart=users.swap, family=swap, dimension=messagebus
chart=users.swap, family=swap, dimension=netdata
chart=users.swap, family=swap, dimension=root
chart=users.swap, family=swap, dimension=smmsp

netdata_users_threads_threads_average
chart=users.threads, family=processes, dimension=daemon
chart=users.threads, family=processes, dimension=fields
chart=users.threads, family=processes, dimension=messagebus
chart=users.threads, family=processes, dimension=netdata
chart=users.threads, family=processes, dimension=root
chart=users.threads, family=processes, dimension=smmsp

netdata_users_uptime_avg_seconds_average
chart=users.uptime_avg, family=processes, dimension=daemon
chart=users.uptime_avg, family=processes, dimension=fields
chart=users.uptime_avg, family=processes, dimension=messagebus
chart=users.uptime_avg, family=processes, dimension=netdata
chart=users.uptime_avg, family=processes, dimension=root
chart=users.uptime_avg, family=processes, dimension=smmsp

netdata_users_uptime_max_seconds_average
chart=users.uptime_max, family=processes, dimension=daemon
chart=users.uptime_max, family=processes, dimension=fields
chart=users.uptime_max, family=processes, dimension=messagebus
chart=users.uptime_max, family=processes, dimension=netdata
chart=users.uptime_max, family=processes, dimension=root
chart=users.uptime_max, family=processes, dimension=smmsp

netdata_users_uptime_min_seconds_average
chart=users.uptime_min, family=processes, dimension=daemon
chart=users.uptime_min, family=processes, dimension=fields
chart=users.uptime_min, family=processes, dimension=messagebus
chart=users.uptime_min, family=processes, dimension=netdata
chart=users.uptime_min, family=processes, dimension=root
chart=users.uptime_min, family=processes, dimension=smmsp

netdata_users_uptime_seconds_average
chart=users.uptime, family=processes, dimension=daemon
chart=users.uptime, family=processes, dimension=fields
chart=users.uptime, family=processes, dimension=messagebus
chart=users.uptime, family=processes, dimension=netdata
chart=users.uptime, family=processes, dimension=root
chart=users.uptime, family=processes, dimension=smmsp

netdata_users_vmem_MiB_average
chart=users.vmem, family=mem, dimension=daemon
chart=users.vmem, family=mem, dimension=fields
chart=users.vmem, family=mem, dimension=messagebus
chart=users.vmem, family=mem, dimension=netdata
chart=users.vmem, family=mem, dimension=root
chart=users.vmem, family=mem, dimension=smmsp

Appendix C: Netdata Selected Metrics Set
The subset of metrics collected by Netdata that were used to train the models for
the Linux OS:
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netdata_apps_cpu_percentage_average
chart=apps.cpu, family=cpu, dimension=apps.plugin
chart=apps.cpu, family=cpu, dimension=cron
chart=apps.cpu, family=cpu, dimension=go.d.plugin
chart=apps.cpu, family=cpu, dimension=kernel
chart=apps.cpu, family=cpu, dimension=logs
chart=apps.cpu, family=cpu, dimension=’netdata
chart=apps.cpu, family=cpu, dimension=other
chart=apps.cpu, family=cpu, dimension=ssh
chart=apps.cpu, family=cpu, dimension=system
chart=apps.cpu, family=cpu, dimension=tc-qos-helper

netdata_apps_cpu_system_percentage_average
chart=apps.cpu_system, family=cpu, dimension=apps.plugin
chart=apps.cpu_system, family=cpu, dimension=cron
chart=apps.cpu_system, family=cpu, dimension=go.d.plugin
chart=apps.cpu_system, family=cpu, dimension=kernel
chart=apps.cpu_system, family=cpu, dimension=logs
chart=apps.cpu_system, family=cpu, dimension=’netdata
chart=apps.cpu_system, family=cpu, dimension=other
chart=apps.cpu_system, family=cpu, dimension=ssh
chart=apps.cpu_system, family=cpu, dimension=system
chart=apps.cpu_system, family=cpu, dimension=tc-qos-helper

netdata_apps_cpu_user_percentage_average
chart=apps.cpu_user, family=cpu, dimension=apps.plugin
chart=apps.cpu_user, family=cpu, dimension=cron
chart=apps.cpu_user, family=cpu, dimension=go.d.plugin
chart=apps.cpu_user, family=cpu, dimension=logs
chart=apps.cpu_user, family=cpu, dimension=’netdata
chart=apps.cpu_user, family=cpu, dimension=other
chart=apps.cpu_user, family=cpu, dimension=ssh
chart=apps.cpu_user, family=cpu, dimension=system
chart=apps.cpu_user, family=cpu, dimension=tc-qos-helper

netdata_apps_files_open_files_average
chart=apps.files, family=disk, dimension=apps.plugin
chart=apps.files, family=disk, dimension=cron
chart=apps.files, family=disk, dimension=go.d.plugin
chart=apps.files, family=disk, dimension=logs
chart=apps.files, family=disk, dimension=’netdata
chart=apps.files, family=disk, dimension=other
chart=apps.files, family=disk, dimension=ssh
chart=apps.files, family=disk, dimension=system
chart=apps.files, family=disk, dimension=tc-qos-helper

netdata_apps_lreads_KiB_persec_average
chart=apps.lreads, family=disk, dimension=apps.plugin
chart=apps.lreads, family=disk, dimension=cron
chart=apps.lreads, family=disk, dimension=logs
chart=apps.lreads, family=disk, dimension=’netdata
chart=apps.lreads, family=disk, dimension=other
chart=apps.lreads, family=disk, dimension=ssh
chart=apps.lreads, family=disk, dimension=system
chart=apps.lreads, family=disk, dimension=tc-qos-helper

netdata_apps_lwrites_KiB_persec_average
chart=apps.lwrites, family=disk, dimension=apps.plugin
chart=apps.lwrites, family=disk, dimension=cron
chart=apps.lwrites, family=disk, dimension=go.d.plugin
chart=apps.lwrites, family=disk, dimension=logs
chart=apps.lwrites, family=disk, dimension=’netdata
chart=apps.lwrites, family=disk, dimension=other
chart=apps.lwrites, family=disk, dimension=ssh
chart=apps.lwrites, family=disk, dimension=system
chart=apps.lwrites, family=disk, dimension=tc-qos-helper

netdata_apps_major_faults_page_faults_persec_average
chart=apps.major_faults, family=swap, dimension=’netdata
chart=apps.major_faults, family=swap, dimension=other
chart=apps.major_faults, family=swap, dimension=ssh

netdata_apps_mem_MiB_average
chart=apps.mem, family=mem, dimension=apps.plugin
chart=apps.mem, family=mem, dimension=cron
chart=apps.mem, family=mem, dimension=dhcp
chart=apps.mem, family=mem, dimension=go.d.plugin
chart=apps.mem, family=mem, dimension=logs
chart=apps.mem, family=mem, dimension=’netdata
chart=apps.mem, family=mem, dimension=other
chart=apps.mem, family=mem, dimension=ssh
chart=apps.mem, family=mem, dimension=system
chart=apps.mem, family=mem, dimension=tc-qos-helper

netdata_apps_minor_faults_page_faults_persec_average
chart=apps.minor_faults, family=mem, dimension=apps.plugin
chart=apps.minor_faults, family=mem, dimension=cron
chart=apps.minor_faults, family=mem, dimension=go.d.plugin
chart=apps.minor_faults, family=mem, dimension=logs
chart=apps.minor_faults, family=mem, dimension=’netdata
chart=apps.minor_faults, family=mem, dimension=other
chart=apps.minor_faults, family=mem, dimension=ssh
chart=apps.minor_faults, family=mem, dimension=system
chart=apps.minor_faults, family=mem, dimension=tc-qos-helper

netdata_apps_pipes_open_pipes_average
chart=apps.pipes, family=processes, dimension=apps.plugin
chart=apps.pipes, family=processes, dimension=cron
chart=apps.pipes, family=processes, dimension=go.d.plugin
chart=apps.pipes, family=processes, dimension=’netdata
chart=apps.pipes, family=processes, dimension=other
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chart=apps.pipes, family=processes, dimension=ssh
chart=apps.pipes, family=processes, dimension=tc-qos-helper

netdata_apps_preads_KiB_persec_average
chart=apps.preads, family=disk, dimension=cron
chart=apps.preads, family=disk, dimension=’netdata
chart=apps.preads, family=disk, dimension=other
chart=apps.preads, family=disk, dimension=ssh

netdata_apps_processes_processes_average
chart=apps.processes, family=processes, dimension=cron
chart=apps.processes, family=processes, dimension=kernel
chart=apps.processes, family=processes, dimension=’netdata
chart=apps.processes, family=processes, dimension=other
chart=apps.processes, family=processes, dimension=ssh
chart=apps.processes, family=processes, dimension=tc-qos-helper

netdata_apps_pwrites_KiB_persec_average
chart=apps.pwrites, family=disk, dimension=apps.plugin
chart=apps.pwrites, family=disk, dimension=cron
chart=apps.pwrites, family=disk, dimension=go.d.plugin
chart=apps.pwrites, family=disk, dimension=kernel
chart=apps.pwrites, family=disk, dimension=logs
chart=apps.pwrites, family=disk, dimension=’netdata
chart=apps.pwrites, family=disk, dimension=other

netdata_apps_sockets_open_sockets_average
chart=apps.sockets, family=net, dimension=apps.plugin
chart=apps.sockets, family=net, dimension=cron
chart=apps.sockets, family=net, dimension=go.d.plugin
chart=apps.sockets, family=net, dimension=’netdata
chart=apps.sockets, family=net, dimension=other
chart=apps.sockets, family=net, dimension=ssh
chart=apps.sockets, family=net, dimension=system
chart=apps.sockets, family=net, dimension=tc-qos-helper

netdata_apps_threads_threads_average
chart=apps.threads, family=processes, dimension=cron
chart=apps.threads, family=processes, dimension=go.d.plugin
chart=apps.threads, family=processes, dimension=kernel
chart=apps.threads, family=processes, dimension=’netdata
chart=apps.threads, family=processes, dimension=other
chart=apps.threads, family=processes, dimension=ssh
chart=apps.threads, family=processes, dimension=tc-qos-helper

netdata_apps_vmem_MiB_average
chart=apps.vmem, family=mem, dimension=apps.plugin
chart=apps.vmem, family=mem, dimension=cron
chart=apps.vmem, family=mem, dimension=logs
chart=apps.vmem, family=mem, dimension=’netdata
chart=apps.vmem, family=mem, dimension=other
chart=apps.vmem, family=mem, dimension=ssh
chart=apps.vmem, family=mem, dimension=system
chart=apps.vmem, family=mem, dimension=tc-qos-helper

netdata_cpu_cpu_percentage_average
chart=cpu.cpu0, family=utilization, dimension=idle
chart=cpu.cpu0, family=utilization, dimension=iowait
chart=cpu.cpu0, family=utilization, dimension=irq
chart=cpu.cpu0, family=utilization, dimension=softirq
chart=cpu.cpu0, family=utilization, dimension=system
chart=cpu.cpu0, family=utilization, dimension=user

netdata_cpu_interrupts_interrupts_persec_average
chart=cpu.cpu0_interrupts, family=interrupts, dimension=LOC
chart=cpu.cpu0_interrupts, family=interrupts, dimension=MCP
chart=cpu.cpu0_interrupts, family=interrupts, dimension=ata_piix_14
chart=cpu.cpu0_interrupts, family=interrupts, dimension=ata_piix_15
chart=cpu.cpu0_interrupts, family=interrupts, dimension=eth0_11
chart=cpu.cpu0_interrupts, family=interrupts, dimension=serial_4

netdata_cpu_softnet_stat_events_persec_average
chart=cpu.cpu0_softnet_stat, family=softnet_stat, dimension=processed

netdata_disk_avgsz_KiB_operation_average
chart=disk_avgsz.sda, family=sda, dimension=reads
chart=disk_avgsz.sda, family=sda, dimension=writes

netdata_disk_await_milliseconds_operation_average
chart=disk_await.sda, family=sda, dimension=reads
chart=disk_await.sda, family=sda, dimension=writes

netdata_disk_backlog_milliseconds_average
chart=disk_backlog.sda, family=sda, dimension=backlog

netdata_disk_inodes_inodes_average
chart=disk_inodes._, family=/, dimension=avail
chart=disk_inodes._, family=/, dimension=used
chart=disk_inodes._run, family=/run, dimension=avail
chart=disk_inodes._run, family=/run, dimension=used

netdata_disk_io_KiB_persec_average
chart=disk.sda, family=sda, dimension=reads
chart=disk.sda, family=sda, dimension=writes

netdata_disk_iotime_milliseconds_persec_average
chart=disk_iotime.sda, family=sda, dimension=reads
chart=disk_iotime.sda, family=sda, dimension=writes

netdata_disk_mops_merged_operations_persec_average
chart=disk_mops.sda, family=sda, dimension=reads
chart=disk_mops.sda, family=sda, dimension=writes

netdata_disk_ops_operations_persec_average
chart=disk_ops.sda, family=sda, dimension=reads
chart=disk_ops.sda, family=sda, dimension=writes
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netdata_disk_space_GiB_average
chart=disk_space._, family=/, dimension=avail
chart=disk_space._, family=/, dimension=used
chart=disk_space._run, family=/run, dimension=avail
chart=disk_space._run, family=/run, dimension=used

netdata_disk_svctm_milliseconds_operation_average
chart=disk_svctm.sda, family=sda, dimension=svctm

netdata_disk_util___of_time_working_average
chart=disk_util.sda, family=sda, dimension=utilization

netdata_groups_cpu_percentage_average
chart=groups.cpu, family=cpu, dimension=fields
chart=groups.cpu, family=cpu, dimension=messagebus
chart=groups.cpu, family=cpu, dimension=’netdata
chart=groups.cpu, family=cpu, dimension=root
chart=groups.cpu, family=cpu, dimension=smmsp

netdata_groups_cpu_system_percentage_average
chart=groups.cpu_system, family=cpu, dimension=fields
chart=groups.cpu_system, family=cpu, dimension=messagebus
chart=groups.cpu_system, family=cpu, dimension=’netdata
chart=groups.cpu_system, family=cpu, dimension=root
chart=groups.cpu_system, family=cpu, dimension=smmsp

netdata_groups_cpu_user_percentage_average
chart=groups.cpu_user, family=cpu, dimension=fields
chart=groups.cpu_user, family=cpu, dimension=messagebus
chart=groups.cpu_user, family=cpu, dimension=’netdata
chart=groups.cpu_user, family=cpu, dimension=root
chart=groups.cpu_user, family=cpu, dimension=smmsp

netdata_groups_files_open_files_average
chart=groups.files, family=disk, dimension=fields
chart=groups.files, family=disk, dimension=’netdata
chart=groups.files, family=disk, dimension=root
chart=groups.files, family=disk, dimension=smmsp

netdata_groups_lreads_KiB_persec_average
chart=groups.lreads, family=disk, dimension=fields
chart=groups.lreads, family=disk, dimension=messagebus
chart=groups.lreads, family=disk, dimension=’netdata
chart=groups.lreads, family=disk, dimension=root
chart=groups.lreads, family=disk, dimension=smmsp

netdata_groups_lwrites_KiB_persec_average
chart=groups.lwrites, family=disk, dimension=fields
chart=groups.lwrites, family=disk, dimension=’netdata
chart=groups.lwrites, family=disk, dimension=root
chart=groups.lwrites, family=disk, dimension=smmsp

netdata_groups_major_faults_page_faults_persec_average
chart=groups.major_faults, family=swap, dimension=fields
chart=groups.major_faults, family=swap, dimension=’netdata
chart=groups.major_faults, family=swap, dimension=root

netdata_groups_mem_MiB_average
chart=groups.mem, family=mem, dimension=daemon
chart=groups.mem, family=mem, dimension=fields
chart=groups.mem, family=mem, dimension=messagebus
chart=groups.mem, family=mem, dimension=’netdata
chart=groups.mem, family=mem, dimension=root
chart=groups.mem, family=mem, dimension=smmsp

netdata_groups_minor_faults_page_faults_persec_average
chart=groups.minor_faults, family=mem, dimension=fields
chart=groups.minor_faults, family=mem, dimension=messagebus
chart=groups.minor_faults, family=mem, dimension=’netdata
chart=groups.minor_faults, family=mem, dimension=root
chart=groups.minor_faults, family=mem, dimension=smmsp

netdata_groups_pipes_open_pipes_average
chart=groups.pipes, family=processes, dimension=fields
chart=groups.pipes, family=processes, dimension=’netdata
chart=groups.pipes, family=processes, dimension=root
chart=groups.pipes, family=processes, dimension=smmsp

netdata_groups_preads_KiB_persec_average
chart=groups.preads, family=disk, dimension=fields
chart=groups.preads, family=disk, dimension=’netdata
chart=groups.preads, family=disk, dimension=root
chart=groups.preads, family=disk, dimension=smmsp

netdata_groups_processes_processes_average
chart=groups.processes, family=processes, dimension=fields
chart=groups.processes, family=processes, dimension=’netdata
chart=groups.processes, family=processes, dimension=root
chart=groups.processes, family=processes, dimension=smmsp

netdata_groups_pwrites_KiB_persec_average
chart=groups.pwrites, family=disk, dimension=fields
chart=groups.pwrites, family=disk, dimension=’netdata
chart=groups.pwrites, family=disk, dimension=root
chart=groups.pwrites, family=disk, dimension=smmsp

netdata_groups_sockets_open_sockets_average
chart=groups.sockets, family=net, dimension=fields
chart=groups.sockets, family=net, dimension=messagebus
chart=groups.sockets, family=net, dimension=’netdata
chart=groups.sockets, family=net, dimension=root
chart=groups.sockets, family=net, dimension=smmsp

netdata_groups_threads_threads_average
chart=groups.threads, family=processes, dimension=fields
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chart=groups.threads, family=processes, dimension=’netdata
chart=groups.threads, family=processes, dimension=root
chart=groups.threads, family=processes, dimension=smmsp

netdata_groups_vmem_MiB_average
chart=groups.vmem, family=mem, dimension=fields
chart=groups.vmem, family=mem, dimension=’netdata
chart=groups.vmem, family=mem, dimension=root
chart=groups.vmem, family=mem, dimension=smmsp

netdata_ip_ecnpkts_packets_persec_average
chart=ip.ecnpkts, family=ecn, dimension=NoECTP

netdata_ipv4_packets_packets_persec_average
chart=ipv4.packets, family=packets, dimension=delivered
chart=ipv4.packets, family=packets, dimension=received
chart=ipv4.packets, family=packets, dimension=sent

netdata_ipv4_sockstat_sockets_sockets_average
chart=ipv4.sockstat_sockets, family=sockets, dimension=used

netdata_ipv4_sockstat_tcp_mem_KiB_average
chart=ipv4.sockstat_tcp_mem, family=tcp, dimension=mem

netdata_ipv4_sockstat_tcp_sockets_sockets_average
chart=ipv4.sockstat_tcp_sockets, family=tcp, dimension=alloc
chart=ipv4.sockstat_tcp_sockets, family=tcp, dimension=inuse
chart=ipv4.sockstat_tcp_sockets, family=tcp, dimension=orphan
chart=ipv4.sockstat_tcp_sockets, family=tcp, dimension=timewait

netdata_ipv4_sockstat_udp_sockets_sockets_average
chart=ipv4.sockstat_udp_sockets, family=udp, dimension=inuse

netdata_ipv4_tcphandshake_events_persec_average
chart=ipv4.tcphandshake, family=tcp, dimension=AttemptFails
chart=ipv4.tcphandshake, family=tcp, dimension=EstabResets
chart=ipv4.tcphandshake, family=tcp, dimension=OutRsts

netdata_ipv4_tcpopens_connections_persec_average
chart=ipv4.tcpopens, family=tcp, dimension=active
chart=ipv4.tcpopens, family=tcp, dimension=passive

netdata_ipv4_tcppackets_packets_persec_average
chart=ipv4.tcppackets, family=tcp, dimension=received
chart=ipv4.tcppackets, family=tcp, dimension=sent

netdata_ipv4_tcpsock_active_connections_average
chart=ipv4.tcpsock, family=tcp, dimension=connections

netdata_ipv4_udppackets_packets_persec_average
chart=ipv4.udppackets, family=udp, dimension=received
chart=ipv4.udppackets, family=udp, dimension=sent

netdata_ipv6_ect_packets_persec_average
chart=ipv6.ect, family=packets, dimension=InNoECTPkts

netdata_ipv6_icmp_messages_persec_average
chart=ipv6.icmp, family=icmp6, dimension=received

netdata_ipv6_icmprouter_messages_persec_average
chart=ipv6.icmprouter, family=icmp6, dimension=InAdvertisements

netdata_ipv6_mcast_kilobits_persec_average
chart=ipv6.mcast, family=multicast6, dimension=received

netdata_ipv6_mcastpkts_packets_persec_average
chart=ipv6.mcastpkts, family=multicast6, dimension=received

netdata_ipv6_packets_packets_persec_average
chart=ipv6.packets, family=packets, dimension=delivers
chart=ipv6.packets, family=packets, dimension=received

netdata_ipv6_sockstat6_tcp_sockets_sockets_average
chart=ipv6.sockstat6_tcp_sockets, family=tcp6, dimension=inuse

netdata_ipv6_sockstat6_udp_sockets_sockets_average
chart=ipv6.sockstat6_udp_sockets, family=udp6, dimension=inuse

netdata_mem_available_MiB_average
chart=mem.available, family=system, dimension=avail

netdata_mem_committed_MiB_average
chart=mem.committed, family=system, dimension=Committed_AS

netdata_mem_kernel_MiB_average
chart=mem.kernel, family=kernel, dimension=KernelStack
chart=mem.kernel, family=kernel, dimension=PageTables
chart=mem.kernel, family=kernel, dimension=Slab
chart=mem.kernel, family=kernel, dimension=VmallocUsed

netdata_mem_pgfaults_faults_persec_average
chart=mem.pgfaults, family=system, dimension=major
chart=mem.pgfaults, family=system, dimension=minor

netdata_mem_slab_MiB_average
chart=mem.slab, family=slab, dimension=reclaimable
chart=mem.slab, family=slab, dimension=unreclaimable

netdata_mem_writeback_MiB_average
chart=mem.writeback, family=kernel, dimension=Dirty
chart=mem.writeback, family=kernel, dimension=Writeback

netdata_net_errors_errors_persec_average
chart=net_errors.eth0, family=eth0, dimension=inbound

netdata_net_events_events_persec_average
chart=net_events.eth0, family=eth0, dimension=frames

netdata_net_net_kilobits_persec_average
chart=net.eth0, family=eth0, dimension=received
chart=net.eth0, family=eth0, dimension=sent
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netdata_net_packets_packets_persec_average
chart=net_packets.eth0, family=eth0, dimension=received
chart=net_packets.eth0, family=eth0, dimension=sent

netdata_system_active_processes_processes_average
chart=system.active_processes, family=processes, dimension=active

netdata_system_cpu_percentage_average
chart=system.cpu, family=cpu, dimension=idle
chart=system.cpu, family=cpu, dimension=iowait
chart=system.cpu, family=cpu, dimension=irq
chart=system.cpu, family=cpu, dimension=softirq
chart=system.cpu, family=cpu, dimension=system
chart=system.cpu, family=cpu, dimension=user

netdata_system_ctxt_context_switches_persec_average
chart=system.ctxt, family=processes, dimension=switches

netdata_system_entropy_entropy_average
chart=system.entropy, family=entropy, dimension=entropy

netdata_system_forks_processes_persec_average
chart=system.forks, family=processes, dimension=started

netdata_system_idlejitter_microseconds_lost_persec_average
chart=system.idlejitter, family=idlejitter, dimension=average
chart=system.idlejitter, family=idlejitter, dimension=max
chart=system.idlejitter, family=idlejitter, dimension=min

netdata_system_interrupts_interrupts_persec_average
chart=system.interrupts, family=interrupts, dimension=LOC
chart=system.interrupts, family=interrupts, dimension=MCP
chart=system.interrupts, family=interrupts, dimension=ata_piix_14
chart=system.interrupts, family=interrupts, dimension=ata_piix_15
chart=system.interrupts, family=interrupts, dimension=eth0_11
chart=system.interrupts, family=interrupts, dimension=serial_4

netdata_system_intr_interrupts_persec_average
chart=system.intr, family=interrupts, dimension=interrupts

netdata_system_io_KiB_persec_average
chart=system.io, family=disk, dimension=in
chart=system.io, family=disk, dimension=out

netdata_system_ip_kilobits_persec_average
chart=system.ip, family=network, dimension=received
chart=system.ip, family=network, dimension=sent

netdata_system_ipv6_kilobits_persec_average
chart=system.ipv6, family=network, dimension=received

netdata_system_net_kilobits_persec_average
chart=system.net, family=network, dimension=received
chart=system.net, family=network, dimension=sent

netdata_system_pgpgio_KiB_persec_average
chart=system.pgpgio, family=disk, dimension=in
chart=system.pgpgio, family=disk, dimension=out

netdata_system_processes_processes_average
chart=system.processes, family=processes, dimension=blocked
chart=system.processes, family=processes, dimension=running

netdata_system_ram_MiB_average
chart=system.ram, family=ram, dimension=buffers
chart=system.ram, family=ram, dimension=cached
chart=system.ram, family=ram, dimension=free
chart=system.ram, family=ram, dimension=used

netdata_system_softnet_stat_events_persec_average
chart=system.softnet_stat, family=softnet_stat, dimension=processed

netdata_users_cpu_percentage_average
chart=users.cpu, family=cpu, dimension=fields
chart=users.cpu, family=cpu, dimension=messagebus
chart=users.cpu, family=cpu, dimension=’netdata
chart=users.cpu, family=cpu, dimension=root

netdata_users_cpu_system_percentage_average
chart=users.cpu_system, family=cpu, dimension=fields
chart=users.cpu_system, family=cpu, dimension=messagebus
chart=users.cpu_system, family=cpu, dimension=’netdata
chart=users.cpu_system, family=cpu, dimension=root

netdata_users_cpu_user_percentage_average
chart=users.cpu_user, family=cpu, dimension=fields
chart=users.cpu_user, family=cpu, dimension=messagebus
chart=users.cpu_user, family=cpu, dimension=’netdata
chart=users.cpu_user, family=cpu, dimension=root

netdata_users_files_open_files_average
chart=users.files, family=disk, dimension=fields
chart=users.files, family=disk, dimension=’netdata
chart=users.files, family=disk, dimension=root

netdata_users_lreads_KiB_persec_average
chart=users.lreads, family=disk, dimension=fields
chart=users.lreads, family=disk, dimension=messagebus
chart=users.lreads, family=disk, dimension=’netdata
chart=users.lreads, family=disk, dimension=root

netdata_users_lwrites_KiB_persec_average
chart=users.lwrites, family=disk, dimension=fields
chart=users.lwrites, family=disk, dimension=’netdata
chart=users.lwrites, family=disk, dimension=root

netdata_users_major_faults_page_faults_persec_average
chart=users.major_faults, family=swap, dimension=fields
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chart=users.major_faults, family=swap, dimension=’netdata
chart=users.major_faults, family=swap, dimension=root

netdata_users_mem_MiB_average
chart=users.mem, family=mem, dimension=daemon
chart=users.mem, family=mem, dimension=fields
chart=users.mem, family=mem, dimension=messagebus
chart=users.mem, family=mem, dimension=’netdata
chart=users.mem, family=mem, dimension=root

netdata_users_minor_faults_page_faults_persec_average
chart=users.minor_faults, family=mem, dimension=fields
chart=users.minor_faults, family=mem, dimension=messagebus
chart=users.minor_faults, family=mem, dimension=’netdata
chart=users.minor_faults, family=mem, dimension=root

netdata_users_pipes_open_pipes_average
chart=users.pipes, family=processes, dimension=fields
chart=users.pipes, family=processes, dimension=’netdata
chart=users.pipes, family=processes, dimension=root

netdata_users_preads_KiB_persec_average
chart=users.preads, family=disk, dimension=fields
chart=users.preads, family=disk, dimension=’netdata
chart=users.preads, family=disk, dimension=root

netdata_users_processes_processes_average
chart=users.processes, family=processes, dimension=fields
chart=users.processes, family=processes, dimension=’netdata
chart=users.processes, family=processes, dimension=root

netdata_users_pwrites_KiB_persec_average
chart=users.pwrites, family=disk, dimension=fields
chart=users.pwrites, family=disk, dimension=’netdata
chart=users.pwrites, family=disk, dimension=root

netdata_users_sockets_open_sockets_average
chart=users.sockets, family=net, dimension=fields
chart=users.sockets, family=net, dimension=messagebus
chart=users.sockets, family=net, dimension=’netdata
chart=users.sockets, family=net, dimension=root

netdata_users_threads_threads_average
chart=users.threads, family=processes, dimension=fields
chart=users.threads, family=processes, dimension=’netdata
chart=users.threads, family=processes, dimension=root

netdata_users_vmem_MiB_average
chart=users.vmem, family=mem, dimension=fields
chart=users.vmem, family=mem, dimension=’netdata
chart=users.vmem, family=mem, dimension=root

Appendix D: Failure Detectors
This section briefly details the failure detectors implemented for the fault in-
jection campaigns. Several independent failure detectors were deployed, more
precisely:

• ‘failed_boot’: control/address issues with boot, relaunch if necessary

• ‘failed_fault_injection’: fault injection was unsuccessful

• ‘excessive_failures’: too many failures (more than 30)

• ‘crash’: the OS has crashed or rebooted

• ‘hang’: the OS hangs; this is detected by not responding to ping, writing to
disk, or accepting connections

• ‘impaired_ssh’: SSH not working as expected (e.g., no connection/transfer)

• ‘unavailable_ssh’: it was not possible to establish an SSH connection after
10 attempts

• ‘impaired_io’: the OS no longer writes to disk

• ‘command_timeout’: a given command is not executed or takes too long

• ‘value’: the performance of the workload is lower than the expected baseline

• ‘fsck_data_corruption’: the fsck tool detects a filesystem corruption

— 189 —



Appendixes

• ‘infinite_execution’: the workload execution takes 50% longer than expected

• ‘incomplete_execution’: the workload terminated earlier than expected

• ‘empty_benchmark_results’: the workload returned an empty result set

• ‘no_benchmark_results’: the workload did not return any results

• ‘corrupt_netdata_encoding’: netdata data encoding was corrupted

• ‘corrupt_watchdog_encoding’: watchdog data encoding was corrupted

• ‘corrupt_pexpect_encoding’: pexpect data encoding was corrupted

• ‘corrupt_logs_encoding’: logs data encoding was corrupted

The testbed also monitored the system logs (i.e., dmesg.log, kern.log, and the tty
used to interact with the target machine) to detect non-fail-stop failures and/or
complement the failure detectors previously described. As the goal was to catch
as many potential failure messages as possible, some of the failures are special-
izations of a more generic version (e.g., corrupt_kernel is a specialization of the
bug_generic failure). To avoid logging multiple failures for the same failure event,
in such situations the parser would analyze the position of the failure in the logs
and remove the generic failure. The following failures were monitored:

• ‘kernel_offset’
match: ‘Kernel Offset’

• ‘panic’
match: ‘kernel panic’

• ‘panic_interrupt’
match: ‘Kernel panic - not syncing: Fatal exception in interrupt’
overwrites: ‘panic’

• ‘resource_exhaustion’
match: ‘killed’

• ‘shutdown_errors’
match: ‘killed by TERM signal’
overwrites: ‘resource_exhaustion’

• ‘memory_exhaustion’
match: ‘Cannot allocate memory’

• ‘memory_corruption’
match: ‘has RLIMIT_CORE set to 1’

• ‘failed_tests’
match: ‘tests failed to properly run’

• ‘bug_generic’
match: ‘BUG:’
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• ‘corrupt_kernel’
match: ‘BUG: unable to handle kernel’
overwrites: ‘bug_generic’

• ‘corrupt_kernel_null_pointer’
match: ‘BUG: unable to handle kernel null’
overwrites: ‘corrupt_kernel, bug_generic’

• ‘corrupt_kernel_paging’
match: ‘BUG: unable to handle kernel paging’
overwrites: ‘corrupt_kernel, bug_generic’

• ‘error_generic’
match: ‘ERROR:’

• ‘warning_generic’
match: ‘WARNING:’

• ‘notice_generic’
match: ‘NOTICE:’

• ‘kernel_bug’
match: ‘Kernel BUG’

• ‘corrupt_filesystem_structure’
match: ‘cd to /usr/share/phoronix-test-suite’
match: ‘directory nonexistent’
match: ‘command not found’
match: ‘Invalid argument’

• ‘kernel_stack_corruption’
match: ‘stack is corrupted’

• ‘cpu_lock’
match: ‘BUG: soft lockup’
overwrites: ‘bug_generic’

• ‘exploit_attempt’
match: ‘protected page’

• ‘recursive_fault’
match: ‘recursive fault but reboot is needed’

• ‘import_error’
match: ‘ImportError:’

• ‘no_space_left’
match: ‘Cannot mmap to shared memory’

• ‘segmentation_fault’
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match: ‘Segmentation fault’
match: ‘segfault’

• ‘nohz’
match: ‘NOHZ:’

• ‘invalid_opcode’
match: ‘invalid opcode’

• ‘divide_error’
match: ‘divide error’

• ‘blocked_execution’
match: ‘blocked for more than’

• ‘io_error’
match: ‘I/O error’

• ‘long_argument_list’
match: ‘Argument list too long’

• ‘too_many_open_files’
match: ‘Too many open files’

• ‘out_of_memory’
match: ‘Out of memory’

• ‘exception_emask’
match: ‘exception Emask’

• ‘error_shared_libraries’
match: ‘error while loading shared libraries’

• ‘bad_page_map’
match: ‘BUG: Bad page map’
overwrites: ‘bug_generic’

• ‘bad_rss_counter’
match: ‘BUG: Bad rss-counter state’
overwrites: ‘bug_generic’

• ‘corrupt_page_table’
match: ‘Corrupted page table’

• ‘corrupt_journal’
match: ‘Detected aborted journal’

• ‘ext4_fs’
match: ‘EXT4-fs error’

• ‘input_output_error’
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match: ‘Input/output error’

• ‘corrupt_filesystem’
match: ‘delayed block allocation’

• ‘corrupt_system’
match: ‘ERROR: In procedure’
match: ‘unable to load plugins’
overwrites: ‘error_generic’

• ‘corrupt_fork’
match: ‘fork: retry: No child processes’
match: ‘Cannot fork’

• ‘unavailable_resource’
match: ‘Resource temporarily unavailable’

• ‘rcu_stall’
match: ‘rcu_sched detected stall’
match: ‘rcu_sched self-detected stall’

• ‘aborting’
match: ‘aborting’

• ‘general_fault’
match: ‘general protection fault’

• ‘possible_corrupt_cifs’
match: ‘CIFS VFS’

• ‘corrupt_cifs’
match: ‘CIFS VFS: Send error in write’
match: ‘CIFS VFS: tcp sent no data’
match: ‘CIFS VFS: Illegal’
match: ‘CIFS VFS: Error’
match: ‘CIFS VFS: Bad’
match: ‘CIFS VFS: No’
match: ‘CIFS VFS: RFC’
match: ‘Host is down’
match: ‘cifs_vfs_err’
overwrites: ‘possible_corrupt_cifs’

• ‘warning_ext4_evict_inode’
match: ‘ext4_evict_inode’

• ‘warning_mmap’
match: ‘WARNING: at mm/mmap’
overwrites: ‘warning_generic’

• ‘warning_softirq’
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match: ‘WARNING: at kernel/softirq’
overwrites: ‘warning_generic’

• ‘no_irq_handler’
match: ‘No irq handler for vector’

• ‘corrupt_ata’
match: ‘lost interrupt’
match: ‘qc timeout’

• ‘page_allocation_failure’
match: ‘page allocation failure’

• ‘cannot_read_realtime_clock’
match: ‘cannot read realtime clock’

• ‘dma_map_failed’
match: ‘TX DMA map failed’

• ‘nommu_map_single_overflow’
match: ‘nommu_map_single: overflow’

• ‘stress_ng_unsuccessful_run’
match: ‘unsuccessful run’

• ‘schedule_timeout’
match: ‘schedule_timeout: wrong timeout’

• ‘unstable_clocksource’
match: ‘Clocksource tsc unstable’

• ‘invalid_irq’
match: ‘bogus return value’

• ‘corrupt_permissions’
match: ‘Attempt to access syslog with CAP_SYS_ADMIN’

• ‘failed_spawn’
match: ‘Failed to spawn’

• ‘bad_file_descriptor’
match: ‘Bad file descriptor’

• ‘network_reset_adapter’
match: ‘Reset adapter unexpectedly’

• ‘tx_unit_hang’
match: ‘Detected Tx Unit Hang’

• ‘runaway_loop_modprobe’
match: ‘runaway loop modprobe’
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• ‘exec_format_error’
match: ‘Exec format error’

• ‘no_vm86_info’
match: ‘vm86_32: no vm86_info: BAD’

• ‘no_sysfs_cache’
match: ‘cache allocate: using defaults, can’t determine cache details
from sysfs’

• ‘invalid_softirq_preempt_count’
match: ‘softirq: huh, entered softirq’

• ‘compromised_vm_tunneling’
match: ‘Operation too slow. Less than’
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