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Resumo 

 

Introdução:  Os neurocientistas cognitivos há muito que tentam perceber como é 

que nós reconhecemos os objetos. Uma das principais questões de investigação nesta 

área tem sido tentar entender como é que o conhecimento sobre objetos está organizado 

no cérebro. Os dados reportados mostram a existência de regiões cerebrais específicas 

altamente especializadas no processamento de várias categorias, tais como mãos, 

ferramentas, faces e animais. As teorias clássicas focam-se nas propriedades visuais e 

em domínios dos objetos para explicar a especialização destas regiões cerebrais. Ainda 

assim, estas diferentes teorias partilham um princípio importante: que as representações 

conceptuais dependem principalmente de computações locais. No entanto, descobertas 

recentes sugerem que outros fatores (por exemplo, constrangimentos impostos pela 

conectividade) podem desempenhar um papel importante na organização funcional 

destas regiões e que as computações distais desempenham um papel na representação 

conceptual local. A maior parte da investigação neste campo tem-se centrado em 

regiões cerebrais que respondem a uma única categoria, mas uma região de 

sobreposição (ou seja, uma região que responde a mais de uma categoria) poderá 

oferecer a possibilidade de procurar dissociações nos constrangimentos impostos pela 

conectividade. O trabalho desta tese focou-se em duas categorias que estão 

funcionalmente ligadas – mãos e objetos manipuláveis (i.e., ferramentas) – e que 

mostram uma sobreposição anatómica em duas regiões do cérebro, no lóbulo parietal 

inferior (IPL, do inglês inferior parietal lobule) esquerdo e no córtex occipito-temporal 

lateral (LOTC, do inglês lateral occipitotemporal cortex) esquerdo. 
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Metodologia: Nesta tese apliquei uma abordagem multi-método, utilizando 

diferentes técnicas como a ressonância magnética funcional (RMf), a estimulação 

transcraniana por corrente contínua (ETCC) e a eletroencefalografia (EEG). Tanto a 

análise univariada como a análise multivariada foram utilizadas para examinar os dados, 

proporcionando resultados mais sensíveis e precisos. O meu principal objetivo foi 

explorar os princípios organizacionais subjacentes às representações das mãos e 

ferramentas dentro do IPL esquerdo e do LOTC esquerdo, assim como das restantes 

regiões pertencentes às redes neuronais de cada categoria. 

 

Resultados principais: De acordo com o primeiro estudo de RMf, tanto o IPL 

como o LOTC revelam diferentes identidades de conectividade que são específicas para 

cada categoria – ou seja, o processamento em cada uma das duas regiões depende dos 

constrangimentos impostos pela conectividade (específicos para cada categoria) 

provenientes de regiões distais que fazem parte de uma rede funcional. O segundo 

estudo (utilizando a RMf e a ETCC) mostra como podemos estimular o processamento 

em direção a uma das categorias numa região de sobreposição e, assim, expor ainda 

mais as identidades de conectividades específicas para cada categoria. Finalmente, no 

terceiro estudo (um estudo de EEG), eu avaliei a dinâmica temporal do processamento 

de mãos e ferramentas e encontrei diferenças e semelhanças nas suas séries temporais. 

Apesar de as mãos e as ferramentas serem processadas de diferentes formas em 

diferentes momentos, acabam por chegar a um ponto no tempo em que a representação 

neural específica das ferramentas é informativa da representação neural das mãos.  

 

Conclusões: Globalmente, estes resultados mostram que, apesar da sobreposição 

anatómica partilhada por mãos e ferramentas, as identidades de conectividade dessas 

regiões dependem da categoria que está a ser processada, revelando o papel crucial da 

conectividade distal na representação conceptual local e na representação de objetos no 
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geral. Os resultados desta tese demonstram também quando é que o processamento de 

mãos e de ferramentas diverge e quando é que os dois convergem. 

 

Palavras-chave: mãos, ferramentas, conectividade, série temporal, sobreposição, 

RMf, ETCC, EEG 
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Abstract 

 

Introduction: Cognitive neuroscientists have long been trying to understand how 

we recognize objects. One of the main avenues of research in this area has been on 

trying to understand how object knowledge is organized in the brain. Evidence has been 

reported for the existence of particular brain regions that are highly specialized for the 

processing of various categories such as hands, tools, faces, and animals. The classical 

theories focus on the visual properties and object domains to explain the specialization 

of these brain regions. Nevertheless, these different theories share a major tenet: that 

conceptual representations are mainly dependent on local computations. However, 

recent findings suggest that other factors (e.g., connectivity constrains) may play an 

important role in the functional organization of these regions and that distal 

computations play a role in local conceptual representation. Most of research in this 

field has been focusing on brain regions that respond to a single category, but an overlap 

region (i.e., a region that responds to more than one category) could offer the possibility 

of looking for dissociating connectivity constrains. Here I focused on two categories 

that are functionally connected – hands and manipulable objects (i.e., tools) - and that 

show an anatomical overlap in two regions of the brain, left inferior parietal lobule 

(IPL) and left lateral occipitotemporal cortex (LOTC). 

 

Methodology: In this thesis I applied a multi-method approach, using different 

techniques such as functional magnetic resonance imaging (fMRI), transcranial direct 

current stimulation (tDCS), and electroencephalography (EEG). Both univariate and 

multivariate analyses were used to examine the data, providing for more precise and 

sensitive results. My main goal was to explore the organizational principles underlying 
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hand and tool representations within the left IPL and left LOTC, and remaining nodes of 

the category-specific networks. 

 

Main results: According to the first fMRI study, both IPL and LOTC have 

different category-specific connectivity fingerprints – processing within each region is 

dependent on category-specific connectivity constraints from distal regions that are part 

of a functional network. The second study (using fMRI and tDCS) shows how we can 

boost the processing towards one of the categories in an overlap region and thus further 

expose category-specific connectivity fingerprints. Finally, in the third study (an EEG 

study), I assessed the temporal dynamics of hand and tool processing and found both 

differences and similarities in their time-courses. Despite the fact that hands and tools 

are processed in different ways at different times, they eventually reach a time point 

where category-specific neural representations of tools are informative of the neural 

representations of hands. 

 

Conclusions: Overall, these results show that, despite the spatial overlap shared 

by hands and tools, the connectivity fingerprints from those regions depend on the 

category being processed, revealing the crucial role of distal connectivity in local 

conceptual representation and overall object representation. The findings here also 

demonstrate when hand and tool processing diverge and when they converge. 

 

Keywords: hands, tools, connectivity, time-course, overlap, fMRI, tDCS, EEG 
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1. Introduction 

 

Take a moment to look around and observe everything that is around you. Try to 

name all the things that you can see – easy, right? The way we recognize the world that 

surrounds us is so fast and effortless that we might think this is a simple process. When 

we see an object, we are immediately able to recognize and name it even if the object is 

not presented in its normal position/orientation or if it is partially hidden. Simple? Not 

at all. The human visual system is highly efficient and organized, but also very complex 

– going from a visual input to a cognitive interpretation requires a full journey. It all 

starts with the light concentrated in the cornea and lens. As the light is reflected onto the 

retina, the light-sensitive photoreceptive cells in the retina generate electric signals that 

travel via the optical nerve to the lateral geniculate nucleus (LGN) and other subcortical 

structures. Visual information is then handled in visual cortex. But does it stop there? 

How do we achieve object recognition?  

Object recognition requires high-level visual processing whereby (low-level) 

visual features from an object are aggregated. For instance, cells located within LGN 

are responsible for providing different types of visual information – such as movement 

(magnocellular cells), color and form/detail information (parvocellular cells). This 

information is further processed into a conceptual representation, allowing us to identify 

animals, tools or plants, among other things. This research aims to add a new layer of 

insight to the subject of object recognition by focusing on how we interpret two distinct 

categories: hands and tools (i.e., handheld manipulable objects). 
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1.1. Perception and action – two distinct pathways 

One of the most accepted theories on the visual system was proposed in 1992 by 

Goodale and Milner (Goodale & Milner, 1992). According to these authors, the visual 

system can be divided into two major pathways: the dorsal stream, which is responsible 

for volumetric and spatial analysis of the visual stimulus, and the ventral stream, which 

allows for form-based object identification (Goodale & Milner, 1992). Research 

dedicated to the study of brain lesions supports this division of labor within the visual 

system. On the one hand, patients with lesions to ventral stream regions have impaired 

visual object recognition and difficulties with perceptual decisions, but show spared 

object-related reaching and grasping (i.e., visual agnosia; e.g., Carey et al., 1996; Milner 

et al., 1991). A well-known illustration of this impairment is the case of patient D.F. 

(Goodale et al., 1991). The authors described this patient as someone with a strong 

impairment in recognizing the physical features of visually presented objects, but also 

with strikingly accurate visual guidance of movements directed at the exact same 

objects. For instance, patient D.F.'s performance was severely affected when she was 

asked to make perceptual judgments about an object’s orientation and size. However, 

her performance was flawless when she was instructed to reach and pre-shape her hand 

according to the orientation and size of the same object (Goodale et al., 1991). On the 

other hand, lesions to dorsal stream structures lead to difficulties with reaching and/or 

grasping visually presented objects, but normal performance in recognizing and 

perceptually judging those same objects (i.e., optic ataxia; e.g., Jakobson et al., 1991; 

Jeannerod et al., 1994; Milner et al., 2003; for a review see also Pisella et al., 2009). For 

instance, patient R.V. (who suffered from optic ataxia) had no trouble in visually 

distinguishing one irregularly shaped object from another, but was unable to position 

her fingers accurately around those objects when asked to pick them up (Goodale et al., 

1994). 
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The idea that the visual system was not unitary but segregated was not novel. The 

first theory about an anatomical brain separation between identification and localization 

was proposed by Schneider (Schneider, 1969). Schneider observed that golden hamsters 

whose superior colliculus was resected could identify an object (i.e., they performed 

normally on pattern discrimination tasks), but could not orient themselves towards that 

same object. The opposite effect was observed in hamsters that had their visual cortical 

areas ablated. Later, in 1982, Mishkin and Ungerleider (Mishkin & Ungerleider, 1982; 

see also Mishkin et al., 1983) identified two cortical visual systems in the macaque 

monkey brain: the “what” pathway (ventral stream), going from primary visual area 

(V1) to ventral occipital-temporal cortex, that was responsible for object vision; and the 

“where” pathway (dorsal stream) that goes from V1 to dorsal-occipital and posterior 

parietal cortex, and was responsible for spatial vision. The proposal made by Goodale 

and Milner (Goodale & Milner, 1992; see also Milner & Goodale, 2006) was a re-

interpretation of this separation between the streams. These authors suggest 

deemphasizing the differences in the input that these streams receive, and rather 

highlighting the computational goals and outputs achieved by each stream. In the end, 

both streams receive information (mainly) from retinogeniculate inputs, but the main 

difference between the streams lies on how that information is used: the ventral stream 

is responsible for the perceptual representations of the objects that surround us, while 

the dorsal stream focuses on our actions toward those objects. 

With the discovery of the functional magnetic resonance imaging (fMRI) in the 

nineties, it was possible to further our understanding of the organization of visual 

information in the brain beyond V1. The division of labor between the two streams was 

observed in numerous studies (human and non-human primates) showing that object 

identity is processed in the ventral stream, that projects from V1 to occipito-temporal 

and ventral-temporal regions; and that object-directed action is processed in the dorsal 

stream, that projects to posterior parietal and occipito-parietal regions from V1 and 

subcortical structures such as the superior colliculus and lateral geniculate nucleus (e.g., 
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Culham et al., 2003; James et al., 2002; Malach et al., 1995; Schmid et al., 2009, 2010; 

Shmuelof & Zohary, 2005). A good demonstration of this division of labor can be seen 

in how ventral temporal cortical regions are engaged by different object categories (e.g., 

Bar & Aminoff, 2003; Chao et al., 1999; Chao & Martin, 2000; Downing et al., 2001; 

Epstein & Kanwisher, 1998; Kanwisher et al., 1997; Mahon et al., 2007; Peelen & 

Downing, 2007; Perani et al., 1995); whereas (dorsal stream) parietal regions seem to be 

engaged during object grasping and manipulation (e.g., Binkofski et al., 1998, 1999; 

Boronat et al., 2005; Ishibashi et al., 2011; Kellenbach et al., 2003; Monaco et al., 

2011). Note, however, that recent evidence has been accrued that suggest that the dorsal 

stream can have a role in object recognition (for a review see Freud et al., 2016). For 

example, Freud and colleagues have suggested that the dorsal stream computes object-

specific 3D perceptual aspects that are important for object recognition (Freud, Culham, 

et al., 2017; Freud, Ganel, et al., 2017; see also Almeida et al., 2008, 2010, 2014). 

As can be seen from the above, the division of labor between the two streams and 

the way in which they process the visual input separately is very well established. 

Nevertheless, object recognition is dependent on information that is processed by both 

pathways and researchers have been focusing on how the interaction between the two 

streams and the integration of information into a global conceptual representation takes 

place (e.g., Brandi et al., 2014; Gallivan et al., 2014; Konen & Kastner, 2008; Mahon et 

al., 2007; for a review see Milner, 2017). For instance, Almeida and colleagues 

(Almeida et al., 2013; Kristensen et al., 2016; Mahon et al., 2013) have used different 

psychophysical techniques to explore the interaction between the two visual streams 

during object recognition. In one set of experiments, they explored how different 

subcortical visual pathways enervate dorsal and ventral visual stream to understand how 

these streams interact. They focused on two subcortical pathways – the magnocellular 

and parvocellular pathways – that separate already in the retina and project differently 

to the LGN. Importantly, the ventral stream is primarily served by the parvocellular 

pathway, whilst both dorsal and ventral streams are served by the magnocellular 
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network (Merigan & Maunsell, 1993). In their work, Almeida and colleagues showed 

that parvocellular input (that projects mainly to ventral stream) impacts processing 

within the inferior parietal lobule (IPL), demonstrating that information processing 

within ventral temporal cortex interacts with dorsal stream processes. Other studies also 

showed the interaction between the two streams when responding to action (Xu et al., 

2021), converting object-related information into goal-directed movements (Gallivan et 

al., 2016) or even when processing categories that activate regions within the two 

pathways (Almeida et al., 2018).  

It is also worth noting that, in addition to the interaction between the two streams, 

there is growing evidence that another anatomical and functional subdivision exists 

within the dorsal stream. In fact, Rizzolatti and Matelli (2003) suggested two 

subdivisions of the dorsal stream: the dorso-dorsal stream, that includes area V6 and the 

superior parietal lobule (SPL) and is responsible for the control of actions; and the 

ventro-dorsal stream, that projects to area MT/V5 and IPL and seems to integrate 

perception and action (Rizzolatti & Matelli, 2003). Several studies with patients support 

this view, suggesting that these two subsystems refer to grasp and use knowledge, 

separately. On the one hand, optic ataxia – a deficit in reaching objects – is a 

consequence of lesions to the dorso-dorsal stream. On the other hand, deficits in skilled 

object-use (e.g., limb apraxia) are caused by lesions to the ventro-dorsal stream (for a 

review see Binkofski & Buxbaum, 2013). This macroscopic division of labor in visual 

cortex plays a central role in computing object representations. But how are these 

representations organized in the brain? 

 

1.2. The organization of object knowledge in the brain 

One of the most intriguing challenges in cognitive neuroscience is understanding 

how conceptual knowledge is organized in the brain. Neuropsychological studies with 
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brain-damaged patients that showed category-specific semantic deficits were amongst 

the first to focus on the question of the organization of conceptual knowledge in the 

brain and brought important evidence to this field (e.g., Caramazza & Shelton, 1998; De 

Renzi & Lucchelli, 1994; Farah et al., 1991; Hillis & Caramazza, 1991; Tyler & Moss, 

1997; Warrington & Mccarthy, 1983; Warrington & Shallice, 1984). Different claims 

have been put forth about the representation of conceptual knowledge, highlighting the 

role of sensorimotor systems, object features and/or object domain as major principles 

of organization of information. 

One of the major theoretical proposals was the Sensory/Functional theory (SFT), 

put forth by Warrington and Shallice (e.g., Warrington & Shallice, 1984). In this 

seminal study, the authors performed a series of experiments with patients that 

presented a selective recognition impairment for certain categories (e.g., living things 

and foods), and argued that these categories are mainly distinguished by their visual 

features. So, if a lesion occurs in a region that handles information about visual 

properties, a category-specific disorder for living things will occur. Advocates of STF 

assume that: 1) the organization of conceptual knowledge in the brain is based on 

modalities (e.g., visual, olfactory, auditory, motor/functional, etc.); and 2) visual 

properties are crucial when recognizing living things and functional properties are more 

important for nonliving categories. Tyler and Moss (1997) expanded the second 

assumption arguing that different types of functional information exist, and that 

biological information is particularly important when recognizing living categories. For 

instance, they observed a patient that could not process functional information (e.g., 

where an animal lives or what it eats), but his knowledge of biological information (e.g., 

that an animal breathes, eats, etc.) was relatively intact (Tyler & Moss, 1997). Later, 

Tyler and Moss (and other authors) have challenged the SFT and proposed that 

categories and domains emerge from structure and content of semantic representations, 

rather than from sensory and functional separated stores (for a review see Tyler & 

Moss, 2001). Tyler and colleagues suggested that category-specific impairments arise 
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because of changes in the content and structure of concepts across categories (Tyler et 

al., 2000). These authors proposed two main assumptions for their Conceptual-Structure 

model: 1) living things share several features and non-living things have more 

distinctive features; and 2) the internal structure of concepts depends on the proportion 

of the different features (e.g., perceptual, visual) and it also depends on the correlation 

among features – highly correlated features are more resistant to damage than 

uncorrelated features (Tyler et al., 2000). 

But can conceptual knowledge be reduced to the sensory and motor systems? This 

is one of the oldest debates in cognition and various studies corroborate this so-called 

embodied view. One of the most cited works in support of this view is the mirror neuron 

theory, which claims that motor simulation (activation of the motor system) is necessary 

to understand someone else’s actions (Rizzolatti et al., 1996; for a review see also 

Rizzolatti & Sinigaglia, 2010;  for another embodied view of conceptual representation 

see Barsalou, 1999; Barsalou & Wiemer-Hastings, 2005). Thus, in extreme embodied 

views, conceptual knowledge relies on motor-related information. Neuroimaging studies 

showing activation of sensory and motor systems during object-category recognition 

(Hauk et al., 2004; Simmons et al., 2007) are putatively in line with this idea that 

conceptual knowledge relies on the simulation of sensorimotor representations. 

However, other authors have been arguing that these results are not necessary evidence 

for an embodied view of cognition, but are just consistent with it, and suggest that there 

is an exchange among sensorimotor and non-sensorimotor representations during 

conceptual processing (Caramazza et al., 2014; Mahon, 2015).  

Another major theoretical approach to the organization of conceptual knowledge 

is the domain-specific theory (Caramazza & Mahon, 2003; Caramazza & Shelton, 

1998). This theory proposes that knowledge is organized by domain, and that these 

domains are those that were crucial in our evolutionary past – that is, those domains of 

objects whose rapid and efficient recognition conferred a survival advantage (i.e., the 
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domains of conspecifics, animals, fruits and vegetables, and manipulable objects). Our 

brain evolved in such a way that we have neural circuits  dedicated to specific domains 

in order to facilitate rapid and efficient recognition (Caramazza & Mahon, 2003). A 

latter version of this theory enhances the contribution of distributed representations 

(sensorimotor or others), proposing that while object domain may be the primary 

principle of organization of conceptual knowledge in the brain, a distributed network of 

modality-specific representations may also guide organization of conceptual knowledge 

(the distributed domain-specific hypothesis; Mahon & Caramazza, 2009). 

The importance of local computations, as well as feedforward (e.g., Van Essen & 

Gallant, 1994) and feedback connections (e.g., Bar et al., 2006), on object processing 

and conceptual representation has been clearly demonstrated. Recognizing an object 

depends not only on ventral stream processing, but also on the connections between that 

stream and other regions in the brain (Mahon & Caramazza, 2011). Early neuroimaging 

studies show that ventral stream regions reveal specific categorical responses. For 

example, seeing object categories such as faces (e.g., Epstein & Kanwisher, 1998; Fox 

et al., 2009), places/scenes (e.g., Bar & Aminoff, 2003; Epstein & Kanwisher, 1998), 

animals (e.g., Chao et al., 1999; Martin et al., 1996; Perani et al., 1995), tools (e.g., 

Almeida et al., 2013; Mahon et al., 2007), bodies (e.g., Downing et al., 2001; Peelen & 

Downing, 2007), and hands (e.g., Bracci et al., 2012) engage different regions within 

ventral temporal cortex (VTC) – a group of cortical regions that evidently display a 

variety of responses that are categorical in nature. However, other studies do not support 

these sharp categorical boundaries, arguing instead for a distributed pattern of activity 

(Haxby et al., 2001; Rogers et al., 2005). 

Lately, however, a role for distal processing on local computations and 

representations has been suggested. Specifically, an association between categorical 

processing occurring within a particular category-preferring region and the connectivity 

from that region to distant areas that are at the same representational level and share 
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category-preferences has been shown (Almeida et al., 2013; Chen et al., 2017; Garcea et 

al., 2019; Garcea & Mahon, 2014; Hutchison et al., 2014; Hutchison & Gallivan, 2018; 

Lee et al., 2019; Mahon et al., 2009; Mahon & Caramazza, 2011; Saygin et al., 2016; 

Walbrin & Almeida, 2021). This is particularly true for the VTC, within which it has 

been shown that categoric representations depend on remote processing (Chen et al., 

2017; Garcea et al., 2019; Lee et al., 2019; Ruttorf et al., 2019). 

These sorts of connectivity constraints on processing have been shown in a variety 

of investigations employing different approaches. In an fMRI study where participants 

viewed images of tools and animals, Garcea and Mahon showed that different clusters 

of the left parietal cortex (a tool region) displayed different patterns of category-specific 

connectivity to other tool regions in the brain  (Garcea & Mahon, 2014; see also Garcea 

et al., 2019). In another interesting fMRI study, the importance of connectivity was 

demonstrated by Walbrin and Almeida (2021), showing not only that distal connectivity 

is related with representations within the occipitotemporal cortex, but also that strongly 

connected voxels are associated to higher discriminability than voxels with local 

activation (Walbrin & Almeida, 2021). Using resting-state fMRI, Hutchison and 

colleagues (2014) found specific connectivity patterns between regions that share 

identical categorical preferences (Hutchison et al., 2014). Structural connectivity also 

shows the same pattern for the visual word form area (VWFA; Saygin et. al, 2016). In 

this study, Saygin and colleagues demonstrated that the location of VWFA in children at 

age 8 (when they learn to read) can be predicted by the connectivity present of that 

region at age 5 – before learning how to read (Saygin et al., 2016). Finally, in a 

neuromodulation study, Lee and colleagues (2019) applied transcranial direct current 

stimulation (tDCS) to the tool-preferring IPL, and found that representations in a tool-

preferring region within VTC (the left medial fusiform gyrus – mFUG), but not in other 

regions of VTC, changed in category-specific manner (Lee et al., 2019; see also Ruttorf 

et al., 2019). 
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1.3. The case of hands and tools 

Most of the work that pinpoint connectivity constrains as principles that rule 

conceptual knowledge focus on responses to specific categories. However, what 

happens when more than one category engages the same cortical region? Does this 

indicate an overlap in terms of processing? Are the distal connectivity patterns, those 

that implement the kinds of connectivity constraints described above, distinct, or similar 

for both of those categories? To illustrate this case, I will further discuss the case of 

hands and tools. 

When we see a tool, several types of information – such as the size of the object, 

its function, its location or how to grasp it – become available. Importantly, some of this 

information pertains to aspects that relate the target manipulable object with the effector 

(i.e., the hands) that typically manipulate it. One such important type of information is 

related to object affordances. The idea of object affordances emerged in 1979, when 

Gibson put forth an ecological perspective, whereby possible actions to be performed on 

an object are readily available from the inspection of the objects, presumably without 

cognitive mediation (Gibson, 2014). These action possibilities – the so-called 

affordances – show us how important the relation between a hand and a tool can be. For 

instance, several studies have shown that human subjects are faster to conduct hand 

movements that are compatible with the affordances of a (task-irrelevant) graspable 

object (Bub & Masson, 2010; Craighero et al., 1997; Ellis & Tucker, 2000; Makris et 

al., 2011; Phillips & Ward, 2002; Riddoch et al., 1998, 2003; Tipper et al., 2006; Tucker 

& Ellis, 1998; Vainio et al., 2007; Vingerhoets et al., 2009). Furthermore, (task-

irrelevant) images of hands, particularly presented in grasping postures, have been 

shown to influence (manipulable) objects categorization. This implies that simply 

looking at a hand in a particular grasp posture activates motor information that can 

influence the processing of graspable objects (e.g., Almeida et al., 2018; Borghi et al., 

2007; Bub et al., 2013; Vainio et al., 2008). Neuroimaging and electrophysiological 
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studies also show that seeing images of hands and tools activate motor and parietal areas 

in response to affordances (Grèzes, Armony, et al., 2003; Grèzes, Tucker, et al., 2003; 

Grèzes & Decety, 2002; Johnson-Frey et al., 2005; Valyear et al., 2006). 

 Thus, although hands and tools are two categories that can be dissociated at 

the perceptual level, it is clear that they are functionally related. In a priming study, 

Almeida and colleagues (2018) showed that unconscious processing of pictures of 

hands affects the recognition of visible tool pictures, and the unconscious processing of 

pictures of tools affects the recognition of visible pictures of hands – this illustrates the 

functional link between the two categories (Almeida et al., 2018). Interestingly, hands 

and tools present remarkably similar neuronal responses. For instance, IPL is involved 

in tool processing, but is also engaged during hand-related grasping and manipulation 

(Grafton, 2010; Jacobs et al., 2010; Johnson-Frey et al., 2005). Additionally, in a series 

of groundbreaking papers, Bracci and colleagues (Bracci et al., 2012, 2016) 

demonstrated that the processing of these categories shares several neural loci. For 

instance, in an fMRI study they found that left lateral occipitotemporal cortex (LOTC) 

prefers both hands and tools to other categories of objects (Bracci et al., 2012). This 

response overlap was confirmed by a set of different results. Specifically, the authors 

showed 1)  an overlap in neural response to hands and tools (but not to other object 

categories or other body parts) in left LOTC; 2) greater similarity in multivoxel 

response patterns between hands (but not other body parts) and tools; and 3) selective 

functional connections between the specific overlap region in left LOTC (for hands and 

tools) and regions that are related to the processing of these categories, when compared 

to neighboring body-, motion- and object-selective regions (Bracci et al., 2012). In 

another study, Bracci et al. (2016) showed that this overlap extends to other regions in 

the brain. Specifically, the authors observed that hands and tools activate not only a 

specific portion of left LOTC, but also the left intraparietal sulcus (IPS) and the ventral 

occipitotemporal cortex (VOTC). However, the authors also showed that the patterns of 

response for each category (hands and tools) are different in each one of those regions: 
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although left LOTC seems to integrate both action and object/perceptual information, 

VOTC is mainly interested in the object domain and left IPS is focused on tool action-

related processing (Bracci et al., 2016). The overlap response to hands and tools is 

probably based on the action-related properties that the two categories share: 

understanding how to use a tool requires computing information about hand posture and 

grip configuration in relation to that specific tool.  

 At this point, the close functional relation between hands and tools is clear, 

and its implementation within regions whose neural responses for hands and tools 

overlaps may indicate that hands and tools are (neuronally) handled in a very similar 

way. But what are the similarities and differences in processing between these two 

categories? 

 

 

 



 

 

Chapter II.  

AIMS AND HYPOTHESES 
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2. Aims and hypotheses 

 

In this dissertation I included three different approaches to explore the differences 

and similarities between neural processing of hands and tools by: 1) using fMRI and 

looking at the functional connectivity patterns of the regions that share (hand and tool) 

categorical preferences in search for differences between hand and tool networks; 2) 

applying non-invasive neuromodulation (e.g., transcranial direct current stimulation – 

tDCS) to an overlap area to see if we can affect hand and tool processing separately; and 

3) assessing temporal differences and/or similarities during the processing of hands and 

tools using electroencephalography (EEG). 

 

2.1. Study 1 

In the first functional magnetic resonance imaging (fMRI) study I measure the 

connectivity fingerprints revealed by two regions that respond both to hands and tools 

(i.e., left inferior parietal lobule/intraparietal sulcus – IPL/IPS and left posterior middle 

temporal gyrus/lateral occipitotemporal cortex – pMTG/LOTC). My goal is to 

investigate if the connectivity patterns are category-dependent: if so, they will be 

distinct between hand and tool processing.  For that purpose, I employ a multivariate 

method in which functional connectivity with distal areas is related to local voxel-wise 

category preferences. I am particularly interested in how connectivity from the two 

overlap areas correlates with voxel-wise category preferences in ventral temporal 

regions dedicated to hand and tool processing independently (the fusiform body area, 

FBA; and the medial fusiform gyrus, mFUG respectively), as well as across the brain. I 
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expect that functional connectivity from the overlap regions will correlate with 

categorical preferences for each category independently. That is, I anticipate that hand-

preferences (but not tool-preferences) in FBA will be correlated with functional 

connectivity between each of the overlap areas and the FBA; and tool-preferences (but 

not hand-preferences) will correlate with functional connectivity between the overlap 

regions and the mFUG. Finally, I predict different distal interactions emerging from the 

two overlap areas for hand and tool-preferences, when applying a whole-brain 

searchlight analysis. This study is presented in Chapter III of this thesis. 

 

2.2. Study 2 

In the second study, I want to test if we can disentangle the processing of hands 

and tools in the overlap area of left pMTG/LOTC through the use of neuromodulation 

coupled with a category-specific task that could bias the processing towards one of 

these categories (hands or tools). To examine this, I applied tDCS to left pMTG/LOTC 

or medial prefrontal cortex (mPFC – control area not related to hand or tool processing), 

while participants completed either a hand or a tool-related training task. After the 

tDCS/training session, participants went through an fMRI experiment and visualized 

images of hands, tools, and animals. Using a multivoxel pattern analysis, I compare the 

classification accuracies when discriminating hands vs. animals (or tools vs. animals) 

for the following conditions: 1) tDCS on pMTG/LOTC plus hand training task; 2) tDCS 

on pMTG/LOTC plus tool training task; 3) tDCS on mPFC plus hand training task; and 

4) tDCS on mPFC plus tools training task. In the first condition I predict an 

improvement in classification accuracy for hands vs. animals, and in the second 

condition I expect an improvement in classification accuracy for tools vs. animals. This 

study is presented in Chapter IV of this thesis. 
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2.3. Study 3 

I also aim to characterize the temporal unfolding of hands and tools. In the 

previous studies, I focused on the spatial organization of object knowledge, and here I 

want to understand the importance of temporal dynamics during object recognition. I 

am particularly interested in how the spatial overlap is transposed to the temporal 

domain in the case of hands and tools. Does this overlap relate to similar time-courses 

for both categories? Or is it possible to disentangle the temporal dynamics of hands and 

tools? In this study, I used EEG to measure the electrical activity in response to images 

of hands, tools, animals, and feet. Then I compare classification accuracy for images of 

hands (vs. animals) and tools (vs. animals) using multivariate pattern analysis on 

different time points of an experimental visualization task. I hypothesize that 

classification accuracy will differ (in specific time intervals) when comparing hands and 

tools. Using a cross-decoding approach, I also want to test if the discrimination between 

tools and animals can lead to a generalized learning allowing for the classifier to 

classify hands as tools (and vice-versa). Although hand and tool processing may have 

different time-courses, I predict they will share some key temporal patterns, enabling for 

cross-decoding between the two categories. The results of this last investigation are 

presented in Chapter V. 
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3.1. Abstract 

 

 

The processes and organizational principles of information involved in object 

recognition have been a subject of intense debate. These research efforts led to the 

understanding that local computations and feedforward/feedback connections are 

essential to our representations and their organization. Recent data, however, has 

demonstrated that distal computations also play a role in how information is locally 

processed. Here we focus on how long-range connectivity and local functional 

organization of information are related, by exploring regions that show overlapping 

category-preferences for two categories and testing whether their connections are 

related with distal representations in a category-specific way. We used an approach that 

relates functional connectivity with distal areas to local voxel-wise category-

preferences. Specifically, we focused on two areas that show an overlap in category-

preferences for tools and hands – the inferior parietal lobule/anterior intraparietal sulcus 

(IPL/aIPS) and the posterior middle temporal gyrus/lateral occipital temporal cortex 

(pMTG/LOTC) – and how connectivity from these two areas relate to voxel-wise 

category-preferences in two ventral temporal regions dedicated to the processing of 

tools and hands separately – the left medial fusiform gyrus and the fusiform body area 

respectively – as well as across the brain. We show that the functional connections of 

the two overlap areas correlate with categorical preferences for each category 

independently. These results show that regions that process both tools and hands 

maintain object topography in a category-specific way. This potentially allows for a 
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category-specific flow of information that is pertinent to computing object 

representations. 

 

Keywords: tools, hands, distal connectivity, representation, functional 

organization, fMRI 
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3.2. Introduction 

 

The human brain has the ability to immediately recognize familiar objects on 

sight, and it does so while managing many different kinds of information (e.g., shape, 

texture, function). However, the cortical organization of this information, and the neural 

computations supporting these processes are still under debate (Grill-Spector & Malach, 

2004). Here we will take on a recent proposal on how object information is represented 

in the brain, which proposes that local processing is influenced, in part, by processing 

happening distally within the neural network dedicated to the processing of the target 

category. We will focus on the processing of tool and hand stimuli to further explore 

how representations are modulated distally. 

Early neuroimaging studies showed that different object categories engage 

different sets of cortical areas (e.g., faces, Kanwisher et al., 1997; places/scenes, Epstein 

& Kanwisher, 1998; tools, Almeida et al., 2013; Chao & Martin, 2000; Mahon et al., 

2007; bodies, Downing et al., 2001; and hands, Bracci et al., 2012, 2016). However, 

current theories differ in their understanding of what drives this object topography – 

whether it is the distributed representation of object features (Haxby et al., 2001; 

Konkle & Caramazza, 2013), the typical visual field location of different categories 

(Levy et al., 2001); or domain-specific constraints (e.g., Caramazza & Shelton, 1998; 

Kriegeskorte et al., 2008; Mahon & Caramazza, 2011, for a review see Grill-Spector & 

Malach, 2004). Importantly, most share the view that neural specificity and conceptual 

representations arise from local computations, feedforward connectivity from early 

visual regions, and attentional and/or perceptual feedback connections (e.g., Bar et al., 

2006; Buffalo et al., 2010; Kreiman et al., 2010). 

A conceptually different approach for thinking about object topography is that 

local representations also depend on connections from distal regions that share 

categorical preference. In this view, local representations do depend on local 
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computations, feedforward and feedback connections, as described before, but also, and 

importantly, on connections from distal regions that share categorical preference (and 

that pertain to the same level of representation). That is, local representations are 

constrained by connectivity with other brain areas at the same level in the visual 

processing hierarchy (Almeida et al., 2013; Chen et al., 2017; Garcea et al., 2019; 

Hutchison et al., 2014; Hutchison & Gallivan, 2018; Lee et al., 2019; Mahon & 

Caramazza, 2009, 2011; Walbrin & Almeida, 2021). In support of this view, 

representations in a tool-preferring region (the left medial fusiform gyrus; mFUG) 

within the ventral temporal cortex (VTC) are causally dependent on computations in 

remote but functionally connected tool-preferring regions within parietal cortex (the 

Inferior Parietal Lobule, IPL, Lee et al., 2019; see also Ruttorf et al., 2019; Garcea et al., 

2019). Moreover, functional and structural connectivity from distant regions correlate 

with categorical preferences in VTC in a category-specific way (e.g., functional 

connectivity between tool-preferring IPL and VTC correlated with tool preferences but 

not place, animal, or face preferences in the VTC, Chen et al., 2017; see also Pessoa et 

al., 2006; Saygin et al., 2016; Zhang et al., 2009).  

Most of the work that tried to dissect the relationship between local computations 

and distal connectivity has been done over distal regions that respond preferentially to 

one specific object category (out of those being tested, e.g., tools in an experimental 

design that includes stimuli from the category of animals, faces or places; Chen et al., 

2017). A stronger case of this hypothesis could be made by testing distal regions that 

respond preferentially to more than one category of those tested. For instance, if a 

region responds equally to two categories as revealed by BOLD signal, do its 

connections relate to object topography elsewhere in a category-specific way – i.e., do 

its connections disentangling the processing of the two categories? According to the 

hypothesis proposed above, the functional connections of these regions should 

nevertheless correlate with response preferences in regions that are distally located in a 

category-specific manner, and should do so independently for each one of the 
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categories, thus maintaining object topography irrespectively of the overlap in BOLD 

signal responses for the two categories.  

Here we will focus on the categories of tools and hands because tools and hands 

are functionally related (Almeida et al., 2018), and because some of the regions that 

these stimuli preferentially engage are shared (e.g., Almeida et al., 2013; Bracci et al., 

2012, 2016; Bracci & Peelen, 2013; Chao & Martin, 2000; Mahon et al., 2007; Peeters 

et al., 2013). On the one side, tool stimuli (when compared to items from other 

categories such as animals or faces) lead to heightened activation bilaterally in superior 

parietal cortex, dorsal occipital cortex, and the mFUG, and within left inferior parietal 

regions, the anterior intraparietal sulcus (aIPS), ventral premotor cortex, and posterior 

middle temporal areas (e.g., Almeida et al., 2013, 2017; Binkofski et al., 1999; 

Binkofski et al., 1998; Chao et al., 1999; Chao & Martin, 2000; Chen et al., 2017; Freud 

et al., 2017; Kristensen et al., 2016; Mahon et al., 2013, 2007; Noppeney et al., 2006; 

Peeters et al., 2013). On the other side, hand stimuli (when compared to other categories 

of interest such as animals) lead to stronger responses within lateral fusiform gyrus 

bilaterally, lateral occipital temporal cortex (stronger on the left), in inferior and 

superior parietal regions, and in premotor, somatosensory, and motor regions (e.g., 

Bracci et al., 2010, 2012, 2016; Bracci & Peelen, 2013; Grosbras & Paus, 2006; Meier 

et al., 2008; Peeters et al., 2013).  

Importantly, in a series of studies Bracci and colleagues have demonstrated that 

tool and hand stimuli concurrently engage two regions – the left IPL and left posterior 

middle temporal gyrus/lateral occipital temporal cortex (pMTG/LOTC) (Bracci et al., 

2012, 2016; Bracci & Peelen, 2013; Peeters et al., 2013). Given this response overlap 

between tool and hand stimuli within the left IPL and the left pMTG/LOTC, we predict 

that functional connectivity from each of these overlap regions (i.e., left IPL or left 

pMTG/LOTC) to distal regions (e.g., regions within the VTC) should be correlated with 

voxel-wise response preferences within those distal regions. This should be so in a 
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category-specific way and thus should be able to disentangle the tool and hand networks 

despite the BOLD response overlap for tools and hands within left IPL and left 

pMTG/LOTC. 

We answer this question by focusing on the two overlap sites (IPL and 

pMTG/LOTC) and examine how multivoxel categorical preferences for tools and hands 

in particular areas of the tool and hand networks, and across the brain, correlate with 

functional connectivity emerging from these overlapping areas (see Figure 3.1A). We 

predict that voxel-wise tool-preferences but not hand-preferences in the medial aspects 

of the fusiform gyrus (the mFUG; an area that is part of the tool network; Chao & 

Martin, 2000; Mahon et al., 2007)  will correlate strongly with functional connectivity 

computed from each overlap region (i.e., IPL or pMTG/LOTC) to the voxels within the 

medial fusiform, whereas the inverse will be true in more lateral aspects of the fusiform 

(i.e., the Fusiform Body Area - FBA; an area that shows preferences for body parts and 

hands; Downing et al., 2001). We will then inspect the whole brain for similar category-

specific distal modulations by using a searchlight approach and expect to observe 

different distal relationships for tools and hands emerging from the two overlap areas. 
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Figure 3.1 - Experimental procedures and analysis pipeline. 
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Figure 3.1. (A) Schematic workflow of analysis. (1) an average seed time-series (e.g., 

IPL/aIPS) is correlated with the time-series of each voxel in a target ROI (e.g., mFUG) 

to produce a vector of Fischer transformed r-values. (2) a univariate contrast (e.g., tools 

> all scrambled) in the same target ROI is used to produce a vector of category-

preference (t-values). (3) the Fischer transformed r-values are correlated with the t-

values within the target ROI to produce multivariate r-values. (B) Blocked fMRI design 

with 12 images (each 500 ms) per block (each 6 s) of tools, hands, animals, places, and 

phase-scrambled images, with 16 s fixation between blocks (C) The VTC regions of 

interest used during the analysis (FBA in blue and mFUG in red). The regions were 

defined around peak coordinates obtained in the literature. 

3.3. Methods 

 

Participants 

We recruited sixteen participants (M = 21 years, SD = 4.7, 12 females) from the 

subject pool of the Faculty of Psychology and Educational Sciences of the University of 

Coimbra following previous studies (e.g., Mahon et al, 2013). All participants had 

normal or corrected to normal vision, were right-handed, gave written informed consent, 

and received course credits for their participation. The study adhered to the Declaration 

of Helsinki and was approved by the Ethical Committee of the Faculty of Psychology 

and Educational Sciences at the University of Coimbra. Due to excessive head motion, 

we excluded data from all runs for one participant. Thus, 15 participants were used for 

statistical analyses.  
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Stimuli and procedure 

The study consisted of a category-preference experiment (6 runs with a total of 

546 volumes per participant) and a tool/hand experiment (5 runs; participants also went 

through another session of this experiment, but that data was not used herein) where 

task-related BOLD signal was regressed out in order to calculate functional connectivity 

measures unrelated to the task. Stimulus delivery and response collection was controlled 

using “A Simple Framework” (Schwarzbach, 2011) based on the Psychophysics 

Toolbox on Matlab R2014a (The MathWorks Inc., Natick, MA, USA). Stimuli (Figure 

3.1B) were presented on an Avotec projector with a refresh rate of 60 Hz, and viewed 

by the participants through a mirror attached to the head coil inside the bore of the MR 

scanner. 

In the category-preference experiment participants passively viewed grey-scaled 

images (400 x 400 pixel-size) of tools, hands, animals, famous places, and phase-

scrambled versions of each category (adapted from Fintzi & Mahon, 2014; see also 

Almeida et al., 2017; Lee et al., 2019). Each category was pseudo-randomly presented 

block-wise (with 12 consecutive images presented for 500 ms each per block) twice per 

run. Each phase-scrambled object category was presented once per run, each block was 

separated by 6s fixation periods, and each run began and ended with a 16 s fixation 

period. 

In the tool/hand experiment we used a mixed design with six 54s blocks, 8s inter-

block-intervals, and each block contained 18 randomly mixed trials with 1.5s stimulus 

and 1.5s fixation. There were two blocks of grey-scaled (8 power and 8 precision) tool 

images, two blocks of grey-scaled (8 power and 8 precision) grasp videos filmed from a 

first-person viewpoint, and two blocks of grasp videos filmed from a third-person 

viewpoint. Additionally, each block contained two “catch” trials, which were either tool 

chimeras (i.e., a combination of two tools) in the tool-image block, or a non-grasping 

movement (e.g., rotating the hand while maintaining an open palm) in the grasp-video 
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blocks. Participants were instructed to pay attention to the presented stimuli and press a 

button whenever they detected a catch trial. Critically, however, the experimental design 

of this tool/hand task was regressed out (see below) and the residuals were used to 

compute functional connectivity (e.g., Almeida et al., 2013). 

For all experiments, we used an eye tracker to (subjectively) monitor the 

individual’s attention (and wakefulness) during the task. 

 

MRI acquisition 

We collected MRI data with a 3T MAGNETOM Trio whole body MR scanner 

(Siemens Healthineers, Erlangen, Germany) with a 32-channel receive-only head coil 

across two sessions (one structural run, six runs for the category-preference experiment 

and five runs for the tool/hand experiment). We acquired structural MRI data using a 

T1-weighted magnetization prepared rapid gradient echo (MPRAGE) sequence 

(repetition time (TR) = 1900ms, echo time (TE) = 2.32ms, slice thickness = 0.9 mm, 

flip angle = 9 degrees, field of view (FoV) = 256 x 256, matrix size = 256 x 256, 

bandwidth (BW) = 200 Hz/px, GRAPPA acceleration factor 2). Functional MRI (fMRI) 

data were acquired using a T2*-weighted gradient echo planar imaging (EPI) sequence 

(TR = 2000ms, TE = 22ms, slice thickness = 2.3, FoV = 256 x 256, matrix size = 96 x 

96, flip angle = 90 degrees, BW = 1578 Hz/px, GRAPPA acceleration factor 3). Each 

image volume consisted of 40 contiguous transverse slices recorded in interleaved slice 

order oriented parallel to the line connecting the anterior commissure to the posterior 

commissure covering the whole brain. 

 

fMRI data Preprocessing  

We used SPM12 (Welcome Trust Centre for Neuroimaging, London, UK), run in 

Matlab R2018b (Mathworks, Inc., Sherborn, MA, USA), for processing and analysis of 
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structural and functional data. The structural and functional images were reoriented to 

approximate MNI space with SPM12 after slice-time correction. During preprocessing, 

the functional data were slice-time corrected to the first slice using a Fourier phase-shift 

interpolation method, corrected for head motion to the first volume of the first session 

using 7th degree b-spline interpolation. Structural images were co-registered to the first 

functional images. Functional data were normalized to MNI anatomical space using a 

12-parameter affine transformation model in DARTEL (Ashburner, 2007) and down-

sampled to 3mm3 voxel size prior to applying an 8mm (for ROIs definition) and 6mm 

(for category-preferences and functional connectivity analyses) FWHM Gaussian filter. 

 

Statistical analysis of fMRI data 

In order to preserve independence between voxel selection and testing 

(Kriegeskorte et al., 2009), each participant’s data were split into three datasets: i) the 

first two runs from the category-preference experiment were used to define ROIs, ii) the 

remaining four runs were used to measure category-preferences, and iii) the five runs 

from the tool/hand experiment were used to compute functional connectivity. 

Moreover, we followed two main analytical pipelines. In the first (Figure 3.1A) 

we used specific target ROIs within VTC that are preferentially engaged by either tools 

(the mFUG) or hands (the FBA) from which we extracted categorical preferences (t-

values) for each voxel in the ROI and correlated these preferences with functional 

connectivity data from our seed ROIs. In the second analysis, we computed categorical 

preferences across the brain (for each voxel within the sphere visited) using a 

searchlight analysis and correlated these with functional connectivity from our seed 

ROIs. 

Univariate analysis. For each participant and for each experiment (category-

preference and tool/hand experiment), a fixed effects analysis was performed 

independently by setting up a General Linear Model (GLM) including the following 
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regressors of interest for the category-preference experiment: animals, hands, places, 

tools, and phase-scrambled pictures. For the tool/hand experiment, the following 

nuisance regressors were used: grasp (first person perspective), grasp (third person 

perspective), tools, grasp catch trials, and tool catch trials. We used these regressors to 

remove task-based signal. All regressors of interest were convolved with a canonical 

hemodynamic response function (first order expansion) to create the design matrix. The 

motion correction parameters were used as a nuisance regressor to covary out signal 

correlated with head motion. Model estimations for each participant were used in a 

second-level random-effects analysis to account for inter-individual variability. 

Seed definition. A conjunction contrast (tools > animals ∩ hands > places) was 

used to define left IPL (average peak MNI coordinates: -34 ± 4.8,  -47 ± 5.04, 49 ± 

3.96; see Supplementary Figure 3.1 and Supplementary Table 3.1) and left 

pMTG/LOTC (average peak MNI coordinates: -44 ± 4.83, -69  ± 2.97, -1 ± 3.96) as 

seed regions for the functional connectivity. Because the left IPL seed also 

encompassed regions within the aIPS (see Supplementary Figure 3.1 and 

Supplementary Table 3.1), we will refer to it as the IPL/aIPS seed. We created a 10mm 

sphere around each participant’s peak voxel, within which the 100 voxels with highest t-

value were selected. One participant only performed 4 runs from the category-

preference experiment, so we did not use any data from this participant to define the 

ROIs. For this particular participant, we created the spheres around the group peak 

voxels. 

Target ROI definition. Two target ROIs per hemisphere were selected: the tool- 

and body-preferring areas within the fusiform gyrus (Figure 3.1C). We used both 

hemispheres as the category preferences for tools and hands in these VTC regions are 

bilateral. We defined spheres with 9mm radius centered on peak-voxel coordinates 

reported in previous studies (tool-preferring mFUG – left MNI coordinates: [-24 -53 -9], 

right: [24 -42 -16] –  Mahon et al., 2007; body-preferring FBA – left MNI coordinates: 
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[-40 -48 -22], right: [40 -48 -22] – Vocks et al., 2010). Voxels located in the cerebellum 

were removed from the spherical ROIs.   

Measuring category-preferences. Category-preferences for each voxel within 

the target ROIs or the searchlight kernel were computed by contrasting each target 

category (tools or hands) against all scrambled categories (e.g., tools > all scrambled). 

Contrast weighted t-values of each contrast were thus obtained for each voxel of the 

target ROI or the searchlight sphere.   

Functional connectivity analysis. All functional connectivity was computed 

from the data collected from the tool/hand experiment using the CONN Toolbox 

(Whitfield-Gabrieli & Nieto-Castanon, 2012). Time courses were extracted from the 5 

runs and potential confounding effects were estimated and removed separately for each 

voxel and for each participant and run. Potential confounding effects used in CONN 

Toolbox that we included in our analysis were: noise components from white matter and 

cerebrospinal fluid, subject-motion parameters and main task effects. All these 

confounding effects were regressed out, and functional connectivity was computed over 

the residual time series, after covarying out the experimental design. Design-regressed 

task data has been extensively used in the past to calculate functional connectivity (e.g., 

Almeida et al., 2013; Norman-Haignere et al., 2012; Tran et al., 2018), and it has been 

shown that it effectively leads to similar functional connectivity estimates as when using 

resting scans (Fair et al., 2007). Functional connectivity was then computed between a 

seed ROI (averaging all time courses from each voxel) and each voxel in a target ROI. 

The resulting r-values were then Fisher transformed. Thus, each voxel in the target 

ROIs had two r-value scores – one for each seed ROI, corresponding to the functional 

connectivity of each voxel with each of the overall seed ROI – along with two t-values 

from the hand and tool category-preferences (as described above). 
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Analysis of the correlations between functional connectivity from the seed ROIs 

and category preferences distally 

ROI Analysis. We computed the multivoxel linear correlation between the 

distribution of functional connectivity (with each seed region) and the category-

preferences for each voxel in the target ROIs (for a similar approach see Chen et al., 

2017). Specifically, and for each combination of target ROI, seed ROI, and categorical 

preference (tool-preferences or hand-preferences) separately, we correlated the 

category-preferences for the specific category in each voxel of the target ROI with the 

functional connectivity of those voxels with the selected seed region. That is, at each 

voxel in the target ROI we would have a contrast weighted t-value for the particular 

category preference being tested, and a fisher-transformed r-value from the functional 

connectivity analysis to the specific seed ROI being tested. These multivoxel values (t-

values and r-values) were then linearly correlated as a proxy of modulation between the 

functional connections of a region and category-preferences in a distal region. Before 

computing this correlation, we also checked for heteroscedasticity of the variables 

(Table 3.1) using the Breusch-Pagan test (Kamarov, 2020). We rejected the null 

hypothesis that the residuals are homoscedastic for tests showing a p < .05. For these 

cases (4 out 16), we calculated the Spearman’s correlation instead of Pearson’s. 

Consequently, we had a 2 (seed ROI: left IPL/aIPS, left pMTG/LOTC) * 2 (target ROI: 

mFUG, FBA) * 2 (category-preferences: tools, hands) * 2 (hemisphere of the target 

ROIs: left and right) factor design. The multivariate correlations between functional 

connectivity and category-preferences were therefore analyzed with a repeated measure 

ANOVA with these four factors. Specifically, we were interested in whether there was 

an interaction between the target ROIs and the category-preferences. Moreover, and as a 

control, we were interested in the interaction of these two main factors with the factors 

seed ROI and hemisphere. 



 

51 

Table 3.1 – Breusch-Pagan tests. 

 Preferences (t-values) 

Functional connectivity (r-values) Hands Tools 

IPL/aIPS - left FBA .0125* .4299 

IPL/aIPS - right FBA .6343 .8796 

IPL/aIPS - left mFUG .0015** .9776 

IPL/aIPS - right mFUG .7067 .4378 

pMTG/LOTC- left FBA .0296* .1752 

pMTG/LOTC- right FBA .8502 .5883 

pMTG/LOTC- left mFUG .0907 .3503 

pMTG/LOTC - right mFUG .5475 .0255* 

LOTC – lateral occipital temporal cortex; pMTG – posterior middle temporal gyrus; IPL – inferior parietal lobule; aIPS – anterior 

intraparietal sulcus; mFUG – medial fusiform Gyrus; FBA – fusiform body area; *p < .05; ** p < .01 

 

Searchlight analysis. We conducted a whole-brain searchlight analysis (e.g., 

Chen et al., 2017; Kriegeskorte et al., 2006) in order to relate functional connectivity to 

category-preferences. For each participant, we had two different whole-brain functional 

connectivity maps for each seed region (IPL/aIPS and pMTG/LOTC), and two whole-

brain category-preference t-maps for tools and hands. For every sphere (number of 

surrounding voxels = 50) in the searchlight, we extracted: (i) contrast-weighted t-values 

for a given object-preference, and (ii) Fisher transformed correlation coefficients 

(functional connectivity) from each seed region. These values were then correlated. The 

resulting Fisher transformed correlation coefficient was saved in each sphere’s center 

voxel, which resulted in a whole-brain Fisher transformed r-value map. The searchlight 

procedure was performed 4 times for each participant (2 connectivity maps [IPL/aIPS 

and pMTG/LOTC seeds] * 2 category-preferences maps [tools and hands]). Finally, we 



 

52 

created statistical group maps for all four conditions by performing two-tailed one-

sample t-tests on the Fisher transformed correlation coefficients across participants. The 

resulting z-maps were corrected for multiple comparisons using threshold-free cluster-

enhanced (TFCE; Smith & Nichols, 2009) Monte Carlo simulations with 10,000 

iterations as implemented in CoSMoMVPA Toolbox (Oosterhof et al., 2016). 

Furthermore, to analyze differences between maps generated by hand- and tool-

preferences, we only used voxels with r > .45 (corresponding to p = .001), and 

performed a one-tailed two-sample t-test to compare tools vs. hands for each seed 

region (IPL/aIPS and pMTG/LOTC). The resulting z-maps were corrected for multiple 

comparisons using TFCE Monte Carlo simulation with 10,000 iterations (Oosterhof et 

al., 2016). 

3.4. Results 

 

Relating functional connectivity from distal (IPL/aIPS and pMTG/LOTC) regions 

and local category-preferences in tool- or hand-preferring VTC regions 

We used a 2 (seed ROI: left IPL/aIPS or left pMTG/LOTC) * 2 (target ROI: mFUG 

or FBA) * 2 (category-preference: tools or hands) * 2 (hemisphere of the target ROIs: 

left or right) factor repeated-measures ANOVA to analyze the Fisher transformed r-

values from correlating category-preference contrast-weighted t-values and Fisher 

transformed functional connectivity r-values. 

As predicted, there was a significant target ROI and category-preference 

interaction (F (1,14) = 24.691, p < .0001) such that the correlation between category-

preferences and connectivity measures differs between the two target regions (mFUG 
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and FBA) within the VTC (Figure 3.2). Post-hoc tests (Holm-Bonferroni corrected; 

Holm, 1978) revealed that the correlation between tool-preferences and functional 

connectivity (irrespective of the seed region) was higher than the correlation between 

hand-preferences and functional connectivity in mFUG (t (14) = 4.73, adjusted p = 

.0006). The reverse was true for FBA – the correlation between hand-preferences and 

functional connectivity was higher than the correlation between tool-preferences and 

functional connectivity (t (14) = 2.26, adjusted p = .040). There was no target ROI * 

category-preference * hemisphere interaction (F (1,14) = 1.187, p = .294), seed ROI * 

target ROI * category-preference interaction (F (1,14) = .085, p = .775), nor target ROI 

* category-preference * seed ROI * hemisphere interaction (F (1,14) = 1.546, p = .234). 

This shows that seed ROI and the hemisphere of the target region are not leading to 

differential results in the correlation of functional connectivity and category-preferences 

in the target ROIs. 

Figure 3.2 – ROI results. 
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Figure 3.2. Voxel-wise correlation between category-preferences (t-values) and 

functional connectivity (Fischer transformed r-values) within target regions of interest, 

demonstrating an interaction. All error bars reflect one standard error of the mean across 

participants. P-values are Holm-Bonferroni corrected for 2 tests (* = adjusted p value < 

.05; *** = adjusted p value < .001). (mFUG – medial Fusiform Gyrus; FBA – Fusiform 

Body Area; FC – Functional Connectivity). 

 

In addition to the tests of interest, we obtained other significant effects. There was 

a main effect of category-preference (F (1,14) = 7.085, p = .019) such that correlations 

involving tool-preferences were greater than those involving hand-preferences. There 

was also a seed * target ROI interaction (F (1,14) = 5.046, p = .041). However, post-hoc 

tests only indicated a trend in the correlations between category-preferences and 

functional connectivity over mFUG and FBA from the two seed ROIs. Correlations 

between category-preferences and functional connectivity over the mFUG were 

nominally higher from IPL/aIPS than pMTG/LOTC (t (14) = 1.84, p = 0.087), whereas 

correlations between category-preferences and functional connectivity over FBA were 

nominally higher from pMTG/LOTC than IPL/aIPS (t (14) = 1.82, p = 0.091). Finally, 

there was a target ROI * hemisphere interaction (F (1,14) = 4.668, p = .049), but post-

hoc comparisons were not significantly different from 0. Accordingly, correlations 

between category-preferences and functional connectivity over mFUG were not 

different between hemispheres (t (14) = 1.32, p = 0.207), whereas correlations between 

category-preferences and functional connectivity over FBA were nominally higher in 

the left hemisphere (t (14) = 1.95, p = 0.071). No other main effects or interactions were 

significant (all p > .1). 
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Connectivity from IPL/aIPS and from pMTG/LOTC correlated with tool and 

hand preferences differ for different parts of the brain, constraining object 

topography across the brain 

The searchlight analysis showed that connectivity from IPL/aIPS and 

pMTG/LOTC correlated with tool and hand preferences differentially across the brain 

(Table 3.2, Figure 3.3 and Figure 3.4; see also Supplementary Figure 3.2). On the one 

hand, functional connectivity from IPL/aIPS correlated with tool-preferences in the left 

mFUG, and functional connectivity from the left pMTG/LOTC correlated with tool-

preferences in the mFUG (bilaterally), and in the left dorsal occipital cortex (including 

cuneus, precuneus, and partly superior parietal lobule). On the other hand, functional 

connectivity from the left IPL/aIPS correlated with hand-preferences in the left 

postcentral gyrus/somatosensory cortex, specifically in the hand area (Roux et al., 

2018), and the left superior temporal sulcus (STS), and functional connectivity from the 

left pMTG/LOTC correlated with hand-preferences in right the STS extending inferiorly 

and posteriorly, but not overlapping with the functionally defined right pMTG/LOTC 

(see Supplementary Figure 3.3). 

 

Table 3.2 – MNI coordinates from the brain regions extracted during the 

searchlight analyses. 

Seed ROI Category-
preference 

Brain regions 
MNI coordinates 

Cluster 
size 

Peak 
z-value 

   x y z   
pMTG/LOTC Tools Left dorsal occipital cortex -18 -81 21 287 2.42 
pMTG/LOTC Tools Left mFUG -30 -63 -21 234 3.19 
pMTG/LOTC Tools Right mFUG 30 69 21 41 1.95 
pMTG/LOTC Hands Right STS 57 -48 9 182 2.82 
IPL/aIPS Tools Left mFUG -24 -51 -24 65 2.77 
IPL/aIPS Hands Left postcentral gyrus -36 -36 66 77 2.25 
IPL/aIPS Hands Left STS -39 -54 12 52 1.94  
LOTC – lateral occipital temporal cortex; pMTG – posterior middle temporal gyrus; IPL – inferior parietal lobule; aIPS – anterior intraparietal 
sulcus; mFUG – medial fusiform Gyrus; STS – superior temporal sulcus. 
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Figure 3.3 – Whole-brain searchlight correlation between category-preferences 

and functional connectivity to IPL/aIPS (surface maps). 
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Figure 3.4 – Whole-brain searchlight correlation between category-

preferences and functional connectivity to pMTG/LOTC (surface maps). 
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Figure 3.3. Warm colors indicate higher voxel-wise correlations between tool-

preferences and functional connectivity to IPL/aIPS (compared to hand-preferences). 

Cold colors indicate higher voxel-wise correlations between hand-preferences and 

functional connectivity to IPL/aIPS (compared to tool-preferences). All z-maps were 

corrected for multiple comparisons using TFCE Monte Carlo simulation with 10,000 

iterations (Oosterhof et al., 2016). 

Figure 3.4. Warm colors indicate higher voxel-wise correlations between tool-

preferences and functional connectivity to pMTG/LOTC (compared to hand-

preferences). Cold colors indicate higher voxel-wise correlations between hand-

preferences and functional connectivity to pMTG/LOTC (compared to tool-

preferences). All z-maps were corrected for multiple comparisons using TFCE Monte 

Carlo simulation with 10,000 iterations (Oosterhof et al., 2016). 

3.5. Discussion 

 

Here we set out to test the hypothesis that local representations relate to distal 

representations in a category specific way – suggesting that local computations are 

modulated by local constraints, bottom-up and top-down connections, as well as 

representations that are distally processed within a category-specific network (Chen et 

al., 2017; Lee et al., 2019; Mahon & Caramazza, 2011). We did so by looking at regions 

that are engaged by two different categories – hands and tools – and tested whether 

functional connectivity from these overlap areas (the tool- and hand-preferring left IPL 

and left pMTG/LOTC) relate to category-preferences in other distal regions (in this case 

category-preferring regions in the VTC) in a category-specific way (i.e., differently for 

hands and tools). That is, we looked at whether functional connections of regions that 
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belong to more than one functionally specified network (in our case the networks that 

prefer tools and that prefer hands) related to the local processing within distal areas in a 

category-specific way, disentangling these networks.   

Firstly, we focused on VTC and showed that functional connectivity from 

IPL/aIPS and pMTG/LOTC to tool-preferring mFUG correlated more with tool-

preferences than hand-preferences, while functional connectivity from IPL/aIPS and 

pMTG/LOTC to body-preferring FBA correlated more with hand-preferences than tool-

preferences. This suggests that despite the processing overlap for tools and hands in 

IPL/aIPS and pMTG/LOTC, the functional connections of these regions maintain object 

topography by allowing for a category-specific flow of information that is pertinent to 

computing category-specific representations. This is especially important because VTC 

has been widely implicated in object recognition, and consistently shows a mosaic of 

regions engaged by different object categories (e.g., Moshe Bar & Aminoff, 2003; 

Bracci et al., 2012, 2016; Chao et al., 1999; Chao & Martin, 2000; Downing et al., 

2001; Epstein & Kanwisher, 1998; Fox et al., 2009; Kanwisher et al., 1997; Kristensen 

et al., 2016; Lee et al., 2019; Mahon et al., 2007; Martin et al., 1996; Peelen & 

Downing, 2007; Perani et al., 1995). This mosaic is related with (and may potentially be 

dependent on) the information flow from distal regions that belong to the network that is 

dedicated to the processing of the target network. 

Secondly, we explored whether and how this relationship between functional 

connectivity from our two seed “distal” regions and local category preferences across 

the whole-brain was present – that is, whether and how the overlap regions allowed for 

disentangling parts of the tool and hand network across the brain. In our searchlight 

analysis, we showed that left IPL/aIPS and left pMTG/LOTC correlated with local 

category preferences in different regions across the brain for the two categories. 

Specifically, connectivity from pMTG/LOTC was correlated with tool-preferences in a 

large part of left dorsal occipital cortex, including the superior parietal lobule, and in the 
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mFUG bilaterally, whereas connectivity from IPL/aIPS was correlated with tool-

preferences in left mFUG. In what concerns hand representations, connectivity from 

pMTG/LOTC was correlated with hand-preferences in the right STS, whereas 

connectivity from IPL/aIPS was correlated with hand-preferences in the left postcentral 

gyrus and the left STS.  

Our data therefore shows that these long-range distal connections function in a 

category-dependent fashion irrespective of whether the remote region is engaged by 

different (but specific) categories. On the one hand, we show that (local) tool 

representations are associated with computations happening distally within the tool 

network – the “local” regions that emerged from both of our analyses are clearly part of 

the tool network (e.g., Almeida et al., 2010; Garcea & Mahon, 2014; Mahon et al., 

2007). In fact, using neurostimulation we have shown before that interfering with 

processing within one node of the tool network will cascade down to the full network 

(Ruttorf et al., 2019). On the other hand, we show that regions emerging from our 

analyses for hand representations are part of the hand network and are related to 

multisensory and movement-sensitive processing (e.g., STS and postcentral 

gyrus/somatosensory hand area; Beauchamp et al., 2008; Macaluso, 2006).  

Furthermore, our data points to representational differences in the kinds of distal 

relationships observed for these two overlap regions. For tool processing, the results 

obtained for pMTG/LOTC may suggest that this region connects posterior parietal and 

dorsal occipital regions working on aspects of volumetric analysis of graspable objects 

such as elongation and grasping status (i.e., is this object graspable; Almeida et al., 

2008, 2010, 2014; Fabbri et al., 2016; Fang & He, 2005), with aspects of tool 

representations in mFUG, potentially related with shape, material, and surface 

properties (Cant et al., 2009; Cant & Goodale, 2007). On the other hand, IPL and aIPS 

seem focused exclusively on the left mFUG, a result that seems in line with previous 

literature showing a preferred relationship between IPL and left mFUG for tool 
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processing (Almeida et al., 2013; Garcea & Mahon, 2014; Kristensen et al., 2016; Lee 

et al., 2019; Mahon et al., 2013), and potentially related to the passage of information 

pertinent to object manipulation and functional grasps (e.g., Almeida et al., 2013; 

Kristensen et al., 2016; Mahon et al., 2013; Valyear and Culham, 2010).  

Interestingly, IPL has been heavily associated with acessing function-specific 

object manipulations (Boronat et al., 2005; Ishibashi et al., 2011; Kellenbach et al., 

2003; Mahon et al., 2007) and patients with lesions to IPL present with ideomotor 

apraxia (i.e., an inability to manipulate everyday objects, Almeida et al., 2018; 

Buxbaum, Giovannetti, et al., 2000; Buxbaum, Veramonti, et al., 2000; Garcea et al., 

2013; Mahon et al., 2007; Ochipa et al., 1994), whereas aIPS is known to be strongly 

involved in the computation of hand-shapes for object grasping (Binkofski et al., 1999; 

Binkofski et al., 1998; Culham et al., 2003; Monaco et al., 2011), and in particular in 

shaping the hand for functional grasps (i.e., grasps that are specific for the manipulation 

programs necessary to use an object, e.g., Buchwald et al., 2018). This passage of 

information to IPL and aIPS from ventral temporal cortex may reflect the necessary 

passage of semantic and functional information that allows for accessing praxis and 

selecting associated functional grasps (Almeida et al., 2013; Chen et al., 2017; Garcea et 

al., 2016, 2019; Kristensen et al., 2016). 

For hand processing, the difference in the pattern of distal relationships relayed by 

IPL/aIPS and pMTG/LOTC may be related to either more motor or more social aspects 

pertinent to the computations being performed locally. On the one hand, IPL/aIPS is 

distally related with regions that are purportedly implicated in motor planning and 

execution such as the left STS (Liebenthal et al., 2014; Rizzolatti et al., 1996) and 

postcentral gyrus – an area well known for being the location of the primary 

somatosensory cortex (Penfield & Boldrey, 1937), but also involved in grasp action 

(Castiello, 2005; Iwamura & Tanaka, 1996). More specifically, connectivity with 

postcentral gyrus/somatosensory cortex was restricted to a location involved in 
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somatosensory processing for hands (Horovitz et al., 2013; Lavrysen et al., 2012). On 

the other hand, distal relationships associated with pMTG/LOTC were found within the 

right STS – a region that has been implicated in aspects of social cognition and face and 

body expression (Bonda et al., 1996; Narumoto et al., 2001; Puce et al., 1998; for a 

review see Puce & Perrett, 2003) and also implicated in the imitation of observed 

actions (Iacoboni et al., 2001). 

Note that there are some differences in results between our a priori category-

specific ROIs and our whole-brain searchlight analysis, specifically in what concerns 

the lack of an effect in FBA under the searchlight approach. This could be due to 

differences in the two analytical pipelines – namely that in the ROI analysis we use a 

more focused theoretically based approach, whereas in the searchlight we are less 

theory-driven and have to account for a much larger number of comparisons by using 

stringent corrections.  It may also mean, however, that while for tool items, the medial 

aspects of the fusiform gyrus are truly central for the passage of information within the 

network, the same may not be true for hand stimuli in terms of the FBA – perhaps motor 

and social information, aspects that seem to be central in governing hand processing, are 

not central drivers of the computations happening within FBA. Nevertheless, and albeit 

not so prominently, the information within FBA may still flow within the hand network. 

Our study has some caveats that could not be fully taken care of. Although 

functional connectivity and stimulus preferences were computed over entirely 

independent datasets, so there was no circularity when selecting datasets (Kriegeskorte 

et al., 2009), we cannot infer causality concerning how these connectivity constraints 

are imposed. Nevertheless, and because our results are robust, we believe that we should 

obtain similar results if a causal approach was to be followed as we have done before 

(Lee et al., 2019; Ruttorf et al., 2019) – i.e., if we were to use non-invasive 

neurostimulation within these areas of overlap, we should see category-specific effects 
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in the parts of the brain implicated in the current study (e.g., the dorsal occipital cortex 

for tool-preferences and their correlation with functional connectivity from IPL/aIPS). 

In conclusion, our results show how areas that purportedly respond equally to two 

different categories (that of tools and hands) present different patterns of connections 

for their preferred categories. This suggests that the same neurons (or at least neurons 

within the same voxels) in such areas process and send category pertinent information 

to particular category-specific networks in a way that is dependent on the stimuli being 

processed. That is, distal connections from an overlap area are dependent on the 

category being processed at a particular time point, perhaps changing representations 

and computations, while attributing connectivity a crucial role in determining object 

representation. 
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4.1. Abstract 

 

The neural processing within a brain region that responds to more than one object 

category can be separated by looking at the horizontal modulations established by that 

region, which suggests that local representations can be affected by connections to distal 

areas, in a category-specific way. Here we first wanted to test whether by applying 

transcranial direct current stimulation (tDCS) to a region that responds both to hands 

and tools (posterior middle temporal gyrus; pMTG), while participants performed either 

a hand- or tool-related training task, we would be able to specifically target the trained 

category, and thereby dissociate the overlapping neural processing. Second, we wanted 

to see if these effects were limited to the target area or extended to distal but 

functionally connected brain areas. After each combined tDCS and training session, 

participants therefore viewed images of tools, hands, and animals, in an fMRI scanner. 

Using multivoxel pattern analysis, we found that tDCS stimulation to pMTG indeed 

improved the classification accuracy between tools vs. animals, but only when 

combined with a tool training task (not a hand training task). However, surprisingly, 

tDCS stimulation to pMTG also improved the classification accuracy between hands vs. 

animals when combined with a tool training task (not a hand training task). Our findings 

suggest that overlapping but functionally-specific networks can be separated by using a 

category-specific training task together with tDCS – a strategy that can be applied more 

broadly to other cognitive domains using tDCS – and demonstrates the importance of 

horizontal modulations in object-category representations. 

 

Keywords: tools; hands; distal connectivity; tDCS; fMRI 
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4.2. Introduction 

 

Object recognition is a complex process that engages different sets of cortical 

regions. In fact, the way conceptual information is organized in the human brain is still 

under debate (e.g., Grill-Spector & Malach, 2004; Op de Beeck et al., 2019). Recently, 

we (and others) have shown that neural processing and the organization of information 

in one area is dependent not only on local aspects, but also on processes happening 

within distal but functionally connected regions (Amaral et al., 2021; Lee et al., 2019; 

Walbrin & Almeida, 2021; see also Almeida et al., 2013; Garcea et al., 2016; Kristensen 

et al., 2016; Ruttorf et al., 2019). These modulations between areas that belong to a 

particular domain-specific network – horizontal modulations within a domain – allow 

for the exchange and integration of different kinds of conceptual information. 

According to this hypothesis, object topography – that is, the organization of object-

related information in the brain – is not only dependent on local computations, but also 

on connections from distal regions that share a propensity for processing a specific 

category of objects (Chen et al., 2017; Garcea et al., 2019; see also, Mahon & 

Caramazza, 2011; Sporns, 2014). Here we will explore these horizontal modulations 

and focus on the processing of two related categories – hands and tools – as a way of 

further understanding the organization of object knowledge in the brain. 

Early neuroimaging studies suggest that object recognition depends on local 

neural processes (mainly) within the ventral temporal cortex (VTC) (Grill-Spector & 

Weiner, 2014; Peelen & Downing, 2017). In fact, several studies have shown that 

different regions inside VTC present higher BOLD signal change for specific object 

categories like faces (fusiform face area – FFA, Kanwisher et al., 1997), places 

(parahippocampal place area – PPA, Epstein & Kanwisher, 1998), bodies (fusiform 

body area – FBA, Peelen et al., 2005; Schwarzlose et al., 2005), hands (Bracci et al., 
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2012, 2016) or tools (medial fusiform gyrus – mFUG, Almeida et al., 2013; Chao & 

Martin, 2000; Garcea & Mahon, 2014) when compared to other high-level categories.  

However, recent studies show that these local representations within VTC are (at 

least partly) shaped by information shared via structural and functional connectivity 

from distal regions (Hutchison et al., 2014; Saygin et al., 2011, 2016). According to this 

hypothesis, category-specific representations rely not only on local computations, but 

also on information processed within distal regions outside VTC that is transferred via 

long-distance horizontal modulations. As an illustration of this claim, Lee, Mahon and 

Almeida (2019) used transcranial Direct Current Stimulation (tDCS) over tool-

preferring left inferior parietal areas (e.g., inferior parietal lobule – IPL), and showed 

that BOLD signal patterns were modulated by tDCS polarity and, most importantly, that 

representations in tool-preferring regions within the VTC (specifically, the left mFUG), 

but not in other regions of VTC, changed in a category-specific way (i.e., tDCS changed 

multivoxel patterns that were elicited by tool stimuli, but not those elicited by face or 

place stimuli; Lee et al., 2019; see also, Amaral et al., 2021; Chen et al., 2017; Garcea et 

al., 2019; Walbrin & Almeida, 2021). That is, it is possible to modulate the 

representational patterns within a specific target region by stimulating a distal area that 

is functionally connected to, and that shares categorical preferences with that target 

region. We, therefore, argue that local representations of a specific category can be 

modulated by information from distal regions that are functionally connected. 

One important test to the relevance of distal connectivity and horizontal 

modulations in conceptual representation and the organization of information in the 

brain is the situation where a particular region figures critically in the processing of 

more than one higher-level category (i.e., shows preferential responses to two 

categories) – can within-domain horizontal modulations disentangle the functionally 

distinct category-specific networks? Recently, we have demonstrated this to be the case. 

Specifically, in an fMRI study, we found that functional connectivity from two regions 
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that show an overlap in their preference for tools and hands (left IPL and left posterior 

middle temporal gyrus – pMTG) with other distal areas (e.g., tool or hand preferring 

regions of the VTC) is differently correlated with categorical preferences: in tool-

preferring VTC areas, functional connectivity from left IPL and left pMTG (i.e., the 

tool/ hand-preferring overlap areas) correlates with local response preferences for tools 

but not hands, whereas in hand-preferring VTC areas, it correlates with local response 

preferences for hands but not tools (Amaral et al., 2021). That is, horizontal 

modulations connecting regions of a domain-specific network (for hands or tools) allow 

for the separation of the two different networks, despite the overlap response that occurs 

for both categories in left IPL and left pMTG. 

If an overlap response can be separated by focusing on the different domain-

specific horizontal modulations, then questions arise as to whether we can enhance this 

separation effect by biasing the processing towards one of those categories? That is, if 

we have two categories that both drive responses in a particular overlap region, will 

enhancing the processing of one of those categories lead to an increase of the category-

specific responses elsewhere via horizontal modulations? Here, we address this question 

by combining tDCS with (cognitive) training tasks to enhance processing for a 

particular category.  

We focused on two functionally related categories – hands and tools (Almeida et 

al., 2018; Amaral et al., 2021; Bergström et al., 2021; Bracci et al., 2012). First, we 

wanted to investigate if tDCS applied to one of the areas where preferences for tool and 

hand stimuli overlap (i.e., pMTG) would provoke distal effects in other regions of the 

brain (see Lee et al., 2019; Ruttorf et al., 2019). Second, we wanted to test if we could 

disentangle the functionally-specific networks for hands and for tools, as these have 

some overlapping nodes. We did this by applying tDCS to pMTG (or to a control area – 

medial Prefrontal Cortex; mPFC) in combination with a category-specific training task, 

prior to an fMRI session.  
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tDCS is a neuromodulation procedure that adapts neuronal excitability through the 

depolarization or hyperpolarization of resting membrane potential (Nitsche et al., 2008; 

Nitsche & Paulus, 2011). Unlike other brain stimulation techniques (e.g., Transcranial 

Magnetic Stimulation, TMS), tDCS does not produce action potentials in the neuronal 

cell membranes. For this reason, several authors believe that tDCS action relies on the 

activity already present in the tDCS areas (i.e., before and/or during stimulation) (Stagg 

& Nitsche, 2011). If tDCS is activity-dependent, we could potentially enhance its 

effects by triggering a specific cognitive processing prior to (and during) stimulation. 

That is, we may enhance tDCS effects by cognitively manipulating the network-specific 

engagement of the system in preparation for tDCS stimulation. As such, in tandem with 

the tDCS stimulation, we asked the participants to perform an online (pre-MRI) task 

that focused on one of the categories (hands or tools). By hypothesis, the task will 

produce task-related neural spiking and tDCS stimulation will be added on top of 

augmented neural responses.  

After the simultaneous high-definition tDCS (to improve focality) and task 

training session, participants went through an event-related fMRI experiment where we 

presented images of tools, hands, and animals. The tDCS montages and category tasks 

were manipulated within participants (such that each participant went through 4 

sessions). Using Multivoxel Pattern Analysis (MVPA) over the BOLD patterns for tools 

or hands from the fMRI session, we showed that stimulating pMTG (combined with the 

training tasks) leads to different patterns of classification between hands and tools (vs. 

animals). 
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4.3. Methods 

 

Participants 

Twenty-five subjects participated in this experiment (M = 22 years, SD = 3.5, 8 

males). All participants had normal or corrected to normal vision, were right-handed, 

had no history of neuropsychiatric disorders (e.g., stroke, epilepsy, dementia, 

depression) or head injury, had no metallic implants, did not intake concurrent 

medication likely to affect cognition and had no history of alcohol and drug abuse or 

dependence. Written informed consent was obtained from all participants prior to the 

beginning of the study. Participants were each paid €40 upon completion of the study. 

Students from the Faculty of Psychology and Educational Sciences of the University of 

Coimbra also received course credits for their participation. The study was approved by 

the Ethical Committee of the Faculty of Psychology and Educational Sciences of the 

University of Coimbra. Due to signal problems, we excluded data from all runs for one 

participant. Four participants did not complete all sessions, so we also excluded the data 

from those participants: two did not finish the experiment, one showed neurological 

abnormalities, and, for the last subject, the monitor inside the scanner was not working. 

Consequently, 20 participants (M = 23 years, SD = 3.5, 6 males) were used for the 

analyses of this study. 

 

Experimental procedure 

All participants included in the analyses completed four sessions with a 

minimum interval of one week: two sessions using pMTG as the stimulated area and 

two sessions with mPFC. For each pair of sessions, the training task could be either 

hand or tool-related (pMTGhands, pMTGtools, mPFChands, mPFCtools). The order of the 

sessions was randomized and counterbalanced across subjects. Each session always 



 

 85  

started with the HD-tDCS application and a training task, followed by the fMRI 

experiment in which participants viewed images of tools, hands, and animals. 

 

HD-tDCS   

We used a battery-driven HD-tDCS system composed of a direct current 

generator, connected to a HD-tDCS adaptor (Soterix Medical, NY, USA). The electrode 

montage was planned with the aid of a current flow modeling software which employs 

finite element method to calculate the resulting electric field in brain regions during the 

stimulation (HD-Explore – Soterix Medical, NY, USA). The resulting simulation is 

based on the electrodes’ positions. Electrodes’ deployment was planned in order to 

optimize focality over the stimulation target area (pMTG), while avoiding the current 

flow into parietal regions (e.g., IPL). Since IPL is also known as an overlap area when 

processing hands and tools, in order to ensure that stimulation targeted the temporal 

lobe, we only used 3 electrodes (1 anodal centered at TP7, according to the 10-10 EEG 

system, and two cathodal located 5cm distant from the anodal, see Figure 4.1). 

Regarding the mPFC stimulation, we kept the same setup using only 3 electrodes with 

the anodal located at the Fpz position. The HD-electrodes were placed inside a holder 

filled with Signa Gel (Parker Laboratories, NJ, USA). Impedance values were examined 

for each electrode and the intensity of the current was set to 2 mA, delivered for 20 

minutes (ramp duration of 1 minute). The tDCS room was immediately adjacent to the 

MRI scanner, allowing for a fast transfer to the MRI environment right after 

stimulation. For simplicity, we henceforth refer to it as tDCS. 
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Figure 4.1 – Electrode montage and modeling of the brain current flow. 

Figure 4.1. (A) Electrode montage targeting posterior middle temporal gyrus (pMTG) 

and the respective brain current flow based on HD-explore software (Soterix Medical, 

NY, USA). (B) Electrode montage targeting medial prefrontal cortex (mPFC) and the 

respective brain current flow showing that this montage did not affect the brain regions 

included in the pMTG montage. 

 

Training task 

Participants performed two equivalent one-back tasks, one with tool images and 

another with hand images. All images were black and white, and appeared on the screen 

for 400ms with a refresh rate of 60 Hz. During the tool training, participants pressed a 

button when the current and the previous image belonged to a different object (e.g., a 

glass and a bowl), but not when they belonged to the same (basic level) object, despite 

potential changes in perspective or exemplars (e.g., different angles or types of a glass). 
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During the hand training, participants pressed a button when the current and previous 

hand image referred to a different hand side – i.e., right or left hand. Participants saw 

different perspectives and hand postures. 

The responses were collected with a button box (Cedrus Corp.), with their 

dominant hand (right). We used Matlab and “A Simple Framework” (ASF; 

Schwarzbach, 2011) to present stimuli. We measured accuracy and reaction times, and 

the experiment lasted for 30 minutes (tDCS started at minute 10). Due to a technical 

problem, the files corresponding to the session pMTGhands in one subject were not 

saved. Thus, we excluded this participant from our behavioral analysis. 

 

fMRI task 

We used an event-related design with four runs for the fMRI experiment. 

Participants were presented with centrally fixated gray-scaled images (400*400 pixels) 

of tools, hands, animals, and places. Each image was presented for 2s, followed by a 4s 

fixation period. Participants were asked to detect catch trials (i.e., trials consisting of 

place images) and press a button every time they saw a place image. The purpose of this 

task was to keep participants alert while attending to all stimuli. Nonetheless, for all 

sessions, we used an eye tracker to (subjectively) monitor the individual’s attention (and 

wakefulness) during the entire task. Stimulus delivery and response collection were 

controlled using Psychtoolbox (Brainard, 1997) in Matlab (The MathWorks Inc., 

Natick, MA, USA). Stimuli were presented on an Avotec projector with a refresh rate of 

60 Hz and viewed by the participants through a mirror attached to the head coil inside 

the bore of the MR scanner. Each run began with an 8s fixation period and ended with a 

16s fixation period. Eight different exemplars of tools, hands and animals were used, 

and each run contained 3 repetitions per stimulus. Six different exemplars of places 

were used as catch trials and each run contained 1 repetition per each of this stimulus. 
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Due to a technical problem, we were not able to collect the button responses in the first 

two sessions of subject 1 and 2. 

 

Data acquisition 

MRI data were acquired using a 3T MAGNETOM Trio whole body MR scanner 

(Siemens Healthineers, Erlangen, Germany) with a 64-channel head coil. There were 

four sessions, and each one included four functional runs and one structural scan. 

Structural MRI data was collected using T1-weighted rapid gradient echo (MPRAGE) 

sequence (repetition time (TR) = 2530ms, echo time (TE) = 3.5ms, slice thickness = 1 

mm, flip angle = 7 deg, field of view (FoV) = 256 * 256, matrix size = 256 * 256, 

bandwidth (BW) = 190 Hz/px, GRAPPA acceleration factor 2). Functional MRI (fMRI) 

data were acquired using a T2*-weighted gradient echo planar imaging (EPI) sequence 

(TR = 2000ms, TE = 30ms, slice thickness = 3mm, FoV = 210 * 192, matrix size = 70 * 

64, flip angle =75 deg, BW = 2164 Hz/px, GRAPPA acceleration factor 2). Each image 

volume consisted of 37 contiguous transverse slices recorded in interleaved slice order 

oriented parallel to the line connecting the anterior commissure to the posterior 

commissure covering the whole brain. 

 

Image preprocessing 

We used SPM12 (Welcome Trust Centre for Neuroimaging, London, UK), run in 

Matlab R2018b (The MathWorks Inc., Natick, MA, USA), for processing and analysis 

of structural and functional data. All images were reoriented to approximate MNI space 

with SPM12 after slice-time correction. The functional data were slice-time corrected to 

the first slice using a Fourier phase-shift interpolation method, corrected for head 

motion to the first volume of the first session using 7th degree b-spline interpolation. 

Structural images were co-registered to the first functional images. Functional data were 
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then normalized to MNI anatomical space using a 12-parameter affine transformation 

model in DARTEL (Ashburner, 2007) and smoothed with an 8mm (for ROI 

localization) and 3mm (for MVPA) FWHM Gaussian filter. 

 

Univariate analysis 

For each participant, a fixed-effects analysis was performed by setting up a 

General Linear Model (GLM) with animals, hands, and tools as regressors of interest; 

and places (catch trials) as well as motion correction parameters (to covary out signal 

correlated with head motion) as nuisance regressors. All regressors of interest were 

convolved with a canonical hemodynamic response function to create the design matrix. 

Model estimations for each participant were used in a second-level random-effects 

analysis to account for inter-individual variability. 

 

Regions of interest (ROIs) 

Two univariate contrasts (tools > animals and hands > animals) were used to 

select group and individual peak-coordinates for regions engaged by tools and hands. 

ROIs were defined in two steps, as proposed by Oosterhof and colleagues (Oosterhof et 

al., 2012). First, we created group-level spheres with 15mm radius using MarsBaR 

(Brett et al., 2002) centered on the group’s univariate peak-voxel coordinates. Second, 

we created individual-level spheres with 15mm radius centered on each individual’s 

univariate peak-voxel coordinates but within the group-level spheres. 

 

Multivariate pattern analysis 

We used a leave-one-run-out cross-validation procedure to train a Support Vector 

Machine (SVM) classifier to discriminate between z-score normalized beta patterns of 

two experimental conditions (hands vs. animals OR tools vs. animals). The leave-one-
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run-out cross-validation procedure ensured that training and testing data was kept 

completely independent. The multivariate classification analysis was performed with 

The Decoding Toolbox (Hebart et al., 2015). The group's average classification 

accuracies were computed for each condition (i.e., pMTGhands, pMTGtools, mPFChands, 

and mPFCtools) and for each ROI (i.e., the six hand- and eight tool-related ROIs, 

separately). ROIs defined by the hands > animals contrast were used to classify hands 

vs. animals, and ROIs defined by the tools > animals contrast were used to classify tools 

vs. animals. Thus, we had two different designs depending on the ROIs that were 

analyzed: (i) 2 (tDCS area: pMTG or mPFC) * 2 (training task: hands or tools) * 6 

(hand-ROIs: described in detail in the results section), and (ii) 2 (tDCS area: pMTG or 

mPFC) * 2 (training task: hands or tools) * 8 (tool-ROIs). The accuracy results were 

therefore analyzed with a repeated measure ANOVA with these three factors. 

Specifically, we were interested in whether there was an interaction between the tDCS 

area and the training task. In addition, we analyzed (for each ROI) the difference in 

classification accuracy between the pMTG and mPFC conditions. To do this, we 

compared the classification accuracy between pMTG and mPFC in a paired t-test for 

each ROI. For the statistical analyses (e.g., ANOVA) we used IBM SPSS Version 22 

(IBM Corp., Armonk, NY). 

4.4. Results 

 

Training task 

 We used a 2 (training task: hands or tools) * 2 (tDCS area: pMTG or mPFC) 

factorial repeated-measures ANOVA to analyze the accuracy and the reaction times in 

the training task. Regarding the accuracy values, there was a main effect of the training 
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task (F (1,18) = 30.30, p < .0001) such that accuracy in the tool task was greater than in 

the hand task (see Table 4.1). For the reaction times, we observed the same main effect 

of the training task (F (1,18) = 355.73, p < .0001) such that reaction times in the hand 

task were higher when compared to the tool task (see Table 4.1). 

 

Table 4.1 – Training task results. 

 
Session 

Accuracy (%) Reaction Times (ms) 
Average SD Average SD 

pMTGtools 91.61 2.36 447.91 39.70 

mPFCtools 92.04 3.34 453.60 40.20 

pMTGhands 75.37 15.92 726.51 100.67 

mPFChands 75.48 14.84 739.81 80.05 

pMTG – posterior middle temporal gyrus; mPFC – medial prefrontal cortex 
 

fMRI results 

Behavioral task. Participants viewed images of hands, tools, and places inside the 

scanner, and were instructed to press a button every time they saw an image of a place 

in order to maintain them awake and attentive to the stimuli. The results show a high hit 

rate (M = 99%, SD = 1.5) and a low false alarm rate (M = .6%, SD = .7), indicating that 

participants were, indeed, paying attention to the images. 

 

ROI selection. The hands > animals contrast (p < .001, uncorrected) revealed 

increased BOLD signal change in bilateral posterior parietal cortices (extending across 

the superior parietal lobe (SPL) and anterior intraparietal sulcus (aIPS)), and bilateral 

pMTG. The tools > animals contrast (p < .001, uncorrected) revealed increased BOLD 

signal change in the posterior parietal cortices (SPL bilaterally, and extending to aIPS 

and supramarginal gyrus (SMG) in the left hemisphere), left pMTG, left dorsal occipital 
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cortex (DOC), and medial fusiform gyrus (mFUG). Thus, we chose the following 

regions as ROIs for hand areas: left SPL (peak t-value = 4.46, MNI coordinates = [-24 -

69 60]), right SPL (peak t-value = 5.93, MNI coordinates = [30 -63 60]), left aIPS (peak 

t-value = 5.23, MNI coordinates = [-30 -39 42]), right aIPS (peak t-value = 4.62, MNI 

coordinates = [30 -42 48]), left pMTG (peak t-value = 9.37, MNI coordinates = [-51 -66 

6]), and right pMTG (peak t-value =  5.42, MNI coordinates = [51 -57 0]). As tool 

ROIs, we chose left SPL (peak t-value = 6.14, MNI coordinates = [-24 -69 60]), right 

SPL (peak t-value = 5.87, MNI coordinates = [21 -69 60]), left IPS (peak t-value = 5.62, 

MNI coordinates = [-24 -57 51]), left SMG (peak t-value = 3.86, MNI coordinates = [-

45 -33 39]), left DOC (peak t-value = 6.05, MNI coordinates = [-30 -84 18]), left pMTG 

(peak t-value = 6.23, MNI coordinates = [-54 -69 -6]), left mFUG (peak t-value = 6.14, 

MNI coordinates = [-27 -51 -15]), and right mFUG (peak t-value = 4.57, MNI 

coordinates = [27 -48 -12]). 

 

MVPA results. We used two factorial repeated-measure ANOVAs to analyze the 

accuracy values from our classifications. For the classification of hands vs. animals, we 

used a 2 (tDCS area: pMTG or mPFC) * 2 (training task: hands or tools) * 6 (hand-

ROIs) ANOVA, whereas for the classification of tools vs. animals, we used a 2 (tDCS 

area: pMTG or mPFC) * 2 (training task: hands or tools) * 8 (tool-ROIs) ANOVA. We 

employed two separate ANOVAs because there were different ROIs per ANOVA. 

As predicted, there was a significant interaction between tDCS area and training 

task such that the accuracies differed between the two tDCS areas for the classification 

between hands vs. animals (F (1,19) = 9.71, p = .006) and for the classification of tools 

vs. animals (F (1,19) = 6.88, p = .017). Specifically, post-hoc tests (FDR corrected; 

Benjamini & Hochberg, 1995) revealed that the accuracy for the classification of tool 

vs. animals was higher when tDCS was applied to pMTG and paired with the tool 

training task (pMTGtools), than when tDCS was applied to mPFC and paired with the 
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tool training task (mPFCtools) (t (19) = 2.55, adjusted p = .04, see Figure 4.2C). 

However, there was no difference when tDCS was applied to pMTG in tandem with the 

hand training task (pMTGhands) nor when applied to mPFC in tandem with the hand 

training task (mPFChands) (t (19) = 1.65, adjusted p = .12). 

Surprisingly, the accuracy for the classification hands vs. animals did not show 

the expected pattern. That is, hands vs. animals accuracy was higher for pMTGtools than 

mPFCtools (t (19) = 4.02, adjusted p = .002, see Figure 4.2D), while there was no 

difference between pMTGhands and mPFChands (t (19) = 1.11, adjusted p = .28). 

Figure 4.2 – Contrasts of interest and MVPA results. 

Figure 4.2. The univariate results (p < .001, uncorrected) used to define regions of 

interest for the (A) tools > animals and (B) hands > animals contrasts; and classification 

accuracy (percentage) for (C) tools vs. animals and (D) hands vs. animals, for both 

tDCS areas (pMTG and mPFC) and training tasks (hands and tools), tDCS area 
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demonstrating an interaction. All error bars reflect one standard error of the mean across 

participants (* = adjusted p value < .05). 

 

Because we already showed that the hand training task elicits significantly more 

errors and slower reaction times than the tool training task (see training task results), 

and that this training task did not show any significant difference for the two stimulation 

areas, we decided not to include this condition in the next analysis (i.e., we focused only 

on the tool training task; but see results for the hand task in Supplementary Figure 4.1).  

In order to analyze the differences between stimulation sites for each ROI 

separately and see how stimulating pMTG concurrently with a tool training task 

changes classification accuracy, we compared the classifying accuracy for both 

classifications (tools vs. animals and hands vs. animals) between the conditions where 

we stimulated pMTG under a tool task (pMTGtools), and where we stimulated mPFC 

under a tool task (mPFCtools).  

For the classification of tools vs. animals (Figure 4.3A and Figure 4.3B), 

pMTGtools, when compared to mPFCtools, led to higher accuracy values only in two tool 

ROIs (and no hand ROIs): the left pMTG (t (19) = 4.28, adjusted p = .0008) and left 

mFUG (t (19) = 2.75, adjusted p = .05).  

For the classification of hands vs. animals (Figure 4.3C and Figure 4.3D), 

pMTGtools (when compared to mPFCtools) led to significantly higher classification 

accuracies in three hand ROIs: left pMTG (t (19) = 5.72, adjusted p = .0006), right 

pMTG (t (19) = 3.66, adjusted p = .006) and left aIPS (t (19) = 2.78, adjusted p = .024). 

Moreover, it led to higher accuracy values in two tool ROIs and: tool -related regions: 

left pMTG (t (19) = 5.18, adjusted p = .0008) and left IPS (t (19) = 2.90, adjusted p = 

.036). 

 



 

 95  

Figure 4.3 – ROI-specific MVPA results. 

 

Figure 4.3. A comparison of the classification accuracy (percentage) between 

pMTGtools and mPFCtools for (A) tools vs. animals in each region identified as a tool 

ROI, (B) tools vs. animals in each region identified as a hand ROI, (C) hands vs. 

animals in each region identified as a tool ROI, and (D) hands vs. animals in each 

region identified as a hand ROI. P-values are FDR corrected for 8 tests in tool-ROIs and 

for 6 tests when analyzing hand-ROIs (* = adjusted p value < .05). 

4.5. Discussion 

 

Here we investigated whether two functionally different networks that share 

certain nodes – as is the case with the tool and hand networks that share pMTG among 

other areas – could be disentangled by exploring horizontal modulations and long-
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distance connections through the use of tDCS. To do so, we stimulated pMTG, while 

combining it with category-specific training tasks in order to enhance the effects of the 

tDCS stimulation and looked at how this affected classification accuracy between hands 

or tools (vs animals), when compared to a control stimulation site (mPFC). We showed 

that applying tDCS to an area where preferences for tools and hands overlap, such as 

pMTG (i) produced effects in distal brain regions, and (ii) partially facilitated the 

processing of categorical information in a way that was dependent on the training task 

prior and during tDCS stimulation. 

Importantly, we were able to replicate previous studies (Lee et al., 2019; Ruttorf 

et al., 2019) by showing that tDCS stimulation modulates BOLD signal patterns in 

distal brain areas. Specifically, we demonstrated that classification accuracy for hands 

vs. animals and tools vs. animals was higher when pMTG was stimulated compared to 

mPFC in distal regions related to hand and tool processing. This result is in line with 

what previous studies showed (e.g., Lee et al., 2019; Ruttorf et al., 2019): object 

representations within a specific region can be causally modulated through horizontal 

modulations from a distal to a local region.  

  However, our results failed to fully confirm some of our predictions, 

especially for the training tasks that were coupled with tDCS. Here we predicted that 

there would be a category-specific effect of the task on the effects visible for the tool 

and hand networks – this prediction was not fully met. 

On the one hand, we demonstrated that the classification between tools and 

animals benefited from the tDCS stimulation to pMTG only when this stimulation was 

paired with a tool training task, but not a hand training task, and only in tool ROIs. We 

showed that when classifying tools vs. animals, the pMTGtools condition (when 

compared to the mPFCtools condition), significantly improved the classification accuracy 

in left pMTG (as expected given that this was the tDCS stimulated area) and left mFUG. 

The effect on mFUG is an important one as it shows the importance of distal 
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modulation on a functional network – stimulating a tool/hand overlap area under a tool 

training task led to an advantage in classifying tools vs. animals in a distal yet connected 

tool (but not hand) area – the left mFUG.   

This is in line with our previous study (Amaral et al., 2021), where we showed 

that pMTG, when processing tools and in the process of conceptual integration, shares 

information with posterior parietal and dorsal occipital regions (associated to grasping – 

Almeida et al., 2008, 2010, 2014; Culham et al., 2003), and also communicates with 

mFUG (more related aspects of visual form and texture – Cant & Goodale, 2007; 

Cavina-Pratesi et al., 2010). Moreover, previous neuromodulation studies (Lee et al., 

2019; Ruttorf et al., 2019) showed that interfering with the processing in a particular 

tool-region causally affects other distal regions of the tool-network. This suggests that 

despite the fact that pMTG is a tool/hand overlap region, it is possible to specifically 

target tool representations over hand representations, by combining the tDCS with a 

tool-task. 

On the other hand, we were not able to obtain similar results for the hand training 

task over the classification of hands. Although this was an unexpected result, there may 

be some potential explanations for the failure to obtain results with the hand training 

task over hand classification. One possible explanation relates with the fact that the kind 

of task used for the hand training, unlike that for the tool training, was not necessarily 

related with recognition and processing of hands. Specifically, during the hand training 

task participants had to press a button every time the image changed from a right hand 

to a left hand (or vice-versa), whereas in the tool task, participants were instructed to 

look for a change in tool (e.g., from a hammer to a screwdriver). Thus, the task in the 

hand training condition could be more dependent on aspects related to mental rotation, 

rather than hand recognition and processing. In fact, as shown in the training result 

section, the hand task was clearly different from the tool task – accuracy during the tool 

task was above 90%, whereas it was around 75% for the hand task; reaction times for 
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the hand task were, on average, about 300ms slower than for the tool training task. In 

part then, the lack of an effect for the hand training task may be related with the actual 

difficulty of the task, as well as its potential engagement of non-hand processes and 

networks. Moreover, the tDCS montage employed in this study, with the anodal 

electrode centered at pMTG and the two cathodal electrodes positioned both anterior 

and posterior to pMTG, may have inhibited the effect for the hand training task. The 

organization of the lateral occipitotemporal cortex (LOTC; Wurm et al., 2017) suggests 

that our tDCS montage, and specifically our most posterior cathodal electrode could 

have inhibited social and action representations important for the processing of hands 

(Bracci et al., 2010, 2018) and thus weakening, or completely overriding, the conjoint 

effect of the hand training and pMTG stimulation. These are two strong possible reasons 

for the lack of an effect of the hand tasks on the classification of hand stimuli, and we 

believe that future work will show that if these two aspects are taken care of, we will 

obtain a similar result for the hand training task as we did for the tool training task. 

But our effects also show another potentially interesting but unexpected result – 

namely that the tool training task affected hand classification in certain tool and hand 

ROIs. In particular the areas where we show an effect of the tool training task on hand 

classification are areas typically associated with object grasping and manipulation, and 

object-related action (i.e., pMTG and left aIPS). For instance, aIPS is known to play an 

important role in the computation of hand-shapes for object grasping (Binkofski et al., 

1998, 1999; Culham et al., 2003; Monaco et al., 2011), particularly in shaping the hand 

for the correct manipulation of the object (Buchwald et al., 2018). Perhaps then, the tool 

training task leads to an advantage for hand classification because it is distally engaging 

regions dedicated to the processing of grasping and manipulation properties. For 

instance, grasping a tool requires information about object structure and object 

volumetry (e.g., Brandi et al., 2014; Buxbaum et al., 2007) – when we want to 

manipulate a hammer, we need to adjust our hand based on the handle format and size. 

Thus, it is possible that the tool training task led to tool-related distal activations in 
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grasping, manipulation and action areas, and by virtue of that, and of the fact that hand 

processing in those areas was intimately related with action, those distal tool-related 

effects percolated to hand processing, and hence hand classification. Moreover, the hand 

images used during our fMRI experiment were actually in grasping postures (power and 

precision grips) and this could produce an activation of the motor system. In fact, we 

have previously demonstrated shared tool-hand invariant (power vs. precision) grasp-

type representations in the left posterior parietal cortex (Bergström et al., 2021). 

Additionally, several studies have shown that pictures of hand grasp postures can 

influence object categorization, such that visualizing a hand with a particular grasp 

posture activates motor information, affecting the processing of manipulable objects, 

like tools (e.g., Almeida et al., 2018; Borghi et al., 2007; Craighero et al., 2002). 

Overall, then, our results (at least partially) show that overlapping functionally-

specific networks can be disentangled by focusing on their category-specific horizontal 

modulations between neural nodes. Specifically, if we focus on how these horizontal 

long-distance modulations causally affect local processing, we will bring forth strong 

category-specific organizational dissociations.  
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5.1. Abstract 

 

Object recognition is a complex process that is putatively dependent on how the 

brain organizes object-related information. Research has focused on the spatial 

principles that rule the organization of object knowledge, but temporal dynamics may 

also prove insightful in our efforts to understand this complex process. One case in 

which temporal dynamics may be most relevant, is when neural processing for different 

categories seem to overlap spatially – as is the case of the categories of hands and tools. 

Here we focus on the differences and/or similarities between the time-courses of hand 

and tool processing under electroencephalography (EEG). Using multivariate pattern 

analysis, we compared, for different timepoints, decoding accuracy for images of hands 

or tools when compared to images of animals. Our findings reveal that for particular 

time intervals (~168ms and ~264-320ms), decoding accuracy for hands and for tools 

differs. Furthermore, we show that classifiers trained to differentiate between tools and 

animals generalize their learning to decoding of hand stimuli at ~400ms after stimulus 

onset. Classifiers trained to distinguish between hands and animals, on the other hand, 

were unable to extend their learning to the classification of tools (as hands or animals). 

These findings demonstrate how the processing of these two functionally related 

categories differs in time at earlier-to-mid stages of processing and how these 

discrepancies may relate to distinct features that hands and tools have. Moreover, the 

findings point to processing similarities at a later stage, which is most likely related to 

the action processing shared by hands and tools. 

 

Keywords: hands, tools, overlap, time-course, EEG, MVPA 
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5.2. Introduction 

 

Our ability to recognize objects is crucial in our daily life in order to guide and 

adapt our behavior to our needs and the context in which we are in. Research in object 

recognition has been trying to unravel the neural processes behind object recognition 

using different approaches that go from studying neuropsychology patients to using 

brain imaging techniques (e.g., Grill-Spector & Malach, 2004; Mahon & Caramazza, 

2009; Martin, 2007; Martin & Caramazza, 2003). A central aspect in object recognition 

is understanding how object knowledge is organized in the human brain: i.e., 

understanding not only where and how object knowledge is stored and it is organized, 

but also, and importantly, when different kinds of object-related information become 

available. Here, we will focus on the temporal dynamics of object knowledge. 

Object recognition occurs in a fraction of a second, and it is a highly structured 

process. Several functional Magnetic Resonance Imaging (fMRI) studies have shown 

that specific categories of objects elicit higher responses (when compared to baseline 

categories) in different regions of the brain (e.g., faces, Kanwisher et al., 1997; 

places/scenes, Epstein & Kanwisher, 1998; tools, Almeida et al., 2013; Chao & Martin, 

2000; Mahon et al., 2007; bodies, Downing et al., 2001; and hands, Bracci et al., 2012, 

2016). But what drives this categorical organization? Different theories try to explain 

this object topography by appealing to modality-specific effects (e.g., Martin & Chao, 

2001; Warrington & Shallice, 1984), domain-specific constrains (e.g., Caramazza & 

Shelton, 1998; Mahon & Caramazza, 2011), or constraints imposed by connections with 

distal regions that share the same categorial preference (e.g., Almeida et al., 2013; 

Amaral et al., 2021; Chen et al., 2017; Garcea et al., 2019; Lee et al., 2019; Walbrin & 

Almeida, 2021), among others.  

These studies have all focused on a static spatial understanding of object 

processing. Nevertheless, the temporal layout of object processing is essential for a 
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more complete understanding of how we recognize objects in order to navigate our 

environment. In fact, electrophysiological studies have been trying to identify the time 

correlates of object processing (e.g., Kaiser et al., 2016; Kiefer, 2001; Mollo et al., 

2017; Proverbio et al., 2007; Simanova et al., 2010, for a review see Contini et al., 

2017). A major property of visual processing and visual object processing is the 

hierarchical nature of this process. Many studies have shown how object representations 

are temporally stratified going from a fast and coarse categorization to a slower and 

more detailed representation (Carlson et al., 2013; Cichy et al., 2014, 2016; Clarke et 

al., 2013). For instance, in a study combining functional magnetic imaging (fMRI) and 

magnetoencephalography (MEG), Cichy and colleagues showed not only a temporally 

organized processing sequence underlying object recognition, but they also 

demonstrated that object representations are organized categorically (Cichy et al., 2016; 

see also Cichy et al., 2014). Using representational similarity analysis (RSA; 

Kriegeskorte et al., 2008) they fused fMRI and MEG signals and showed that early 

visual representations appear in the occipital lobe at around 50-80ms after stimulus 

onset. This neuronal activity then expands in time and space into ventral and dorsal 

visual stream regions, showing a clear temporal pathway from low- to high-level visual 

processing. They also showed that the effects observed within ventral stream were 

category-selective (Cichy et al., 2016). These findings support previous research on 

temporal dynamics that show object processing is category-selective (Carlson et al., 

2013; Liu et al., 2009). 

Obtaining a temporal layout of object processing is thus a promising avenue for 

understanding object-related computations, and it grounds our spatial understanding of 

how objects are processed in the brain. Importantly, though, a temporal understanding 

of object processing can go beyond just temporally tagging our spatial understanding of 

object knowledge and help adjudicating between different computational hypothesis 

about object-related neural processing. This may be particularly important for regions 

that seem to show spatially defined overlapping categorical preferences for more than 
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one category or objects. One such example is the spatial overlap in categorical 

preferences for the categories of hands and tools. Despite their perceptual differences, 

hands and tools are functionally connected (Almeida et al., 2018) and show an overlap 

in neural response preferences in two cortical regions: left lateral occipitotemporal 

cortex (LOTC) and left inferior parietal lobule (IPL) (e.g., Bergström et al., 2021; 

Bracci et al., 2012; Peeters et al., 2013). According to Bracci and colleagues (2012), this 

overlap cannot be explained by shared visual features, and reflects the common specific 

set of features that hands and tools share during object manipulation – i.e., they both 

relate to visuomotor and action processing (Bracci et al., 2012). 

 Whether this response overlap is due to complete (or partial) similarity of the 

responses for hands and tools in those areas, and whether their responses in these areas 

can be disentangled has been the recent focus of research. It is possible that response 

overlap does not necessarily represent true neural overlap. In fact, hands and tools may 

engage separate neuronal populations and the putative overlap be a “by-product of fine-

grained patchiness for tools and hands in the same neural region” (Almeida et al., 2018, 

p. 299). In fact, Bracci and colleagues (2016) found not only that both categories engage 

brain regions involved in action processing (as previously demonstrated, see Bracci et 

al., 2012), but also that the distribution of response patterns within those regions were 

different for the two categories (Bracci et al., 2016).  

Can category-specific processing and computations about these two categories be 

disentangled within and from these overlap areas? In a previous study (Amaral et al., 

2021), we showed that both hand/tool response overlap regions (left IPL and left LOTC) 

present different patterns of connectivity that are category-dependent. Specifically, 

when looking at tool responses, we observed: 1) connectivity from left LOTC was 

correlated with tool-preferences in regions like the left dorsal occipital cortex and the 

medial fusiform gyrus (mFUG) bilaterally; and 2) connectivity from left IPL was 

correlated with tool-preferences only in left mFUG. For hand representations, we 
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showed: 1) connectivity from left LOTC was correlated with hand-preferences in the 

right superior temporal sulcus (STS); and 2) connectivity from left IPL was correlated 

with hand-preferences in the left postcentral gyrus and in the left STS. These results 

suggest that despite the overlap response in these regions, the connections established 

with these areas are dependent on the category that is being processed (Amaral et al., 

2021), suggesting that the fingerprints of each of these neural networks is different 

despite sharing a particular similar node. More recently, these same authors also showed 

that applying a neuromodulation technique (e.g., transcranial direct current stimulation 

– tDCS) to left LOTC, and combining it with a tool related task, improves the 

processing of tools distally in nodes of the tool network (Amaral et al., 2021). These 

findings suggest that despite the overlap observed in left LOTC, it is possible to 

disentangle functionally-specific networks by applying tDCS combined with a category-

specific task (Amaral et al., 2021). 

One potential explanation for the putative response overlap, and for our ability to 

disentangle hand and tool computations through connectivity, is that these computations 

are implemented in different times points – that is, the time-course of hand and tool 

processing may be different.  Here we will test how separable hand and tool processing 

are temporally. To do so we will use a multivariate approach where we will compare 

decoding accuracy (for the different time points of an object categorization task) for 

images of hands and for images of tools when compared to images of animals. The 

application of multivariate analyses to EEG data is rather recent, but it provides a robust 

methodology to access temporal neural dynamics (Cichy & Pantazis, 2017). Our results 

show that hands and tools present differences in their decoding accuracy against animals 

for specific time ranges (around 168ms and around 264-320ms). Moreover, when 

applying a cross-decoding scheme (i.e., train on tools vs. animals, test on hands, and 

vice-versa), we found that classifiers trained to discriminate between tools and animals 

generalized their learning to hands – this was true only around 400ms after stimulus 

onset. However, classifiers trained to discriminate between hands and animals were not 
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able to generalize their learning to discriminate tools.  These findings suggest that, 

while hand and tool processing differ temporally from each other, they also show 

specific similarities. Tool processing, in particular, appears to provide some key 

information for hand categorization, allowing the classifier to classify hands as tools at 

~400ms after stimulus onset.  

5.3. Methods 

 

Participants 

Fourteen participants (M = 28 years, SD =8.01, 6 males) took part in this study. 

All participants had normal or corrected to normal vision and were right-handed. 

Written informed consent was obtained from all participants prior to the beginning of 

the experiment and the study was approved by the Ethical Committee of the Faculty of 

Psychology and Educational Sciences of the University of Coimbra. 

 

Stimuli and procedure 

Participants were asked to categorize images of hands, tools, animals and feet (see 

Figure 5.1), following a paradigm that was partially used in a previous study (Almeida 

et al., 2018). Stimuli were greyscale, 200*200 pixels (subtending ~5° of the visual 

angle) and each category included 8 pictures of different objects/items (total = 32 

pictures). Hand pictures were photographs of hands in grasp positions and tool pictures 

were photographs of different manipulable objects (tweezers, key, spring, scissors, 

wrench, hammer, screwdriver, and knife). Stimuli were presented using Matlab (The 
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MathWorks Inc., Natick, MA, USA) and Psychtoolbox (Brainard, 1997) using a refresh 

rate of 60Hz. 

After setting up the EEG device and placing the electrodes, participants started the 

task. On each trial, a fixation cross was presented during 500ms, followed by the target 

picture (that stayed on screen for 3s or until the participant responded). The instructions 

were to press a button, as quickly and accurately as possible, with their left or right 

index, indicating category membership of the picture that was presented. The 

experiment was divided in two parts: one part where participants categorized tools vs. 

animals; and another part where participants categorized hands vs. feet. Response 

assignment for the buttons was counterbalanced across participants, as well as the order 

of the two categorization tasks. There were 128 trials for each category/condition and 

the number of repetitions of each stimulus was 16, for a total of 512 trials. 

Figure 5.1 – Experimental procedure. 
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Figure 5.1. A fixation cross appeared for 500ms followed by the target image. The task 

of the participants was to press a button for one category (hand or tool) or the other 

button for the control category (foot or animal). 

 

Data acquisition 

Electrical brain activity was recorded using a wet-based elastic cap with 64 

channels (eego™mylab, ANT Neuro, The Netherlands). Data was acquired with a 

sampling rate of 1000Hz. The impedance of all electrodes was kept below 5 KΩ. EEG 

signal was recorded using EEProbe recording software (ANT Neuro, The Netherlands) 

and was amplified using an ANT digital amplifier. 

 

Data preprocessing 

Preprocessing was performed in Matlab (The MathWorks Inc., Natick, MA, USA) 

using the open source EEGLAB toolbox (Delorme & Makeig, 2004), and custom-made 

scripts. EEG data was down-sampled to 250 Hz, digitally filtered using a bidirectional 

linear filter (EEGLAB FIR filter) that preserves phase information (pass-band 0.5–40 

Hz), and then averaged-referenced offline on the average of both mastoids. EEG data 

underwent a custom-made sanity check and correction to control that the EEG triggers 

(sent from the task computer and recorded by the amplifier in EEG data) correctly 

matched the task triggers (sent from and recorded by the task computer). Triggers and 

corresponding EEG trials were removed when no correction could be ensured (2 trials 

of one participant were lost). EEG data was then epoched (from -500ms to 500ms post-

stimulus onset) and baseline-corrected (by subtracting the EEG average from the 

window -200 to 0ms post-stimulus onset). 

EEG automatic artefact rejection. An automatic artefact rejection algorithm (Jas 

et al., 2017) was then used to reject bad electrodes and/or trials. Briefly, considering a 
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group of time signals (e.g., epochs of trials along one electrode), this algorithm reject 

those presenting a peak-to-peak value (a quantity commonly used for identifying bad 

trials in M/EEG) exceeding a (data-driven) threshold, automatically defined as the 

threshold yielding the minimum difference (i.e., sum of the squared difference) between 

the mean of the under-threshold signals and the overall median signal (Jas et al., 2017). 

For each participant, this algorithm was applied twice in the following order: 1) across 

trials for each electrode, in order to detect electrode-wise bad trials; and 2) across 

electrodes for each trial, in order to detect trial-wise bad electrodes. After each 

application of the algorithm, each trial was repaired by interpolation if less than half the 

electrodes were rejected or excluded from subsequent analysis otherwise. Overall, this 

two-steps procedure yielded a rejection rate of 8.10% (3.75%; mean and SD across 

participants) of the data (channels and/or trials); trial-wise electrode interpolation could 

then be applied to the extent that our final dataset missed 4.42% (3.31%) of the trials. 

 

Multivariate pattern analysis 

Decoding analyses were performed using the Matlab toolbox CoSMoMVPA 

(Oosterhof et al., 2016). We used a leave-one-fold-out cross-validation procedure to 

train a linear discrimination analysis (LDA) classifier to discriminate between z-score 

normalized EEG signals of two experimental conditions (hands vs. animals OR tools vs. 

animals). We used animals as the baseline category for both procedures to rule out 

differences depending on the baseline. The cross-validation procedure ensured that 

training and testing data was kept completely independent, and that partitions were 

balanced (i.e., each condition was presented equally in each fold/partition). In addition 

to this decoding approach, we also performed a cross-decoding approach: the classifier 

was trained to discriminate between hands vs. animals, and then tested on tools (and 

vice-versa). The decoding was executed using pseudo-trials (i.e., averaging across 5 

trials – allowing a maximum of 3 resampling of each trial), to improve the signal-to-
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noise ratio (Grootswagers et al., 2017). In order to reduce dimensionality, we applied 

Principal Component Analysis (PCA) and kept components that explain 99% of 

variance. Finally, we used a temporal generalization (TG) method (King & Dehaene, 

2014) over the cross-decoding approach – this allowed us to investigate the ability of 

the classifier to generalize across time, thus implying that the neural information 

identified at time t persisted at time t’. For this TG analysis, PCA and trial averaging 

were not performed. 

For each participant, the decoding accuracy was computed across all electrodes 

(63 in total, excluding EOG), for each of the 126 time points following the stimulus 

onset (between 0 to 500ms). We then analyzed decoding accuracies at the group level 

using a two-tailed paired t-test (when comparing the results from decoding hands vs. 

animals with tools vs. animals) and a two-tailed one-sample t-test against chance level 

(50%) for the cross-decoding and TG approaches. Finally, we used threshold-free 

cluster-enhanced (TFCE; Smith & Nichols, 2009) Monte Carlo simulations with 10,000 

iterations to correct for multiple comparisons, as implemented in the CoSMoMVPA 

Toolbox (Oosterhof et al., 2016). 

5.4. Results 

 

Behavioral results 

We used a one-way repeated measures ANOVA to analyze the accuracy and the 

reaction times across the conditions. Accuracy results (i.e., pressing the correct button 

for the target image) show that the experimental conditions did not differ in difficulty (F 

(1,13) = 1.07, p = .37). Reaction times (RTs) analysis also showed that the four 
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conditions did not differ in RTs (F (1,13) = 1.10, p = .36). For more details, please see 

Table 5.1. 

 

Table 5.1 – Behavioral results. 

 
Condition 

Accuracy Reaction Times (ms) 

Average SD Average SD 

hands .97 .02 603 42.99 

tools .97 .04 616 54.98 

feet .97 .03 593 34.47 

animals .98 .02 608 60.38 

 
 

 

Multivariate decoding results 

Are hands and tools differently processed over time? 

One possible explanation for the overlap that hands and tools present in some 

regions of the brain, is that category-specific computations are carried out for each 

category at distinct times. To test this hypothesis, we employed a multivariate approach 

and compared the decoding accuracy between hands vs. animals and tools vs. animals. 

The use of the same baseline category (animals) for both classification procedures allow 

for a more balanced understanding of the differences in the processing of hands and 

tools across time. In this analysis we showed that decoding accuracy (acc) was 

significantly different between the two conditions during specific time ranges. The 

accuracy for tools (vs. animals) was significantly higher than hands (vs. animals) in an 

early time point around 168ms (peak z-value = -2.08, acctools = .60). The reverse 

outcome (hands accuracy higher than tools) was observed in two later time intervals: 

between 264 and 304ms (peak t-point = 268ms, peak z-value = 3.09, acchands = .65) and 
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between 312 and 320ms (peak t-point = 316ms, peak z-value = 2.07, acchands = .64). 

These results suggest important differences in the time-courses of hand and tool 

processing (for more details see Figure 5.2). 

 

Figure 5.2 – Decoding accuracy results (paired analysis). 

 

Figure 5.2. Decoding accuracy for hands vs. animals (red line), and tools vs. animals 

(blue line). The red points in the baseline (0.5) correspond to the significant time 

clusters (|z| > 1.96, cluster-wise corrected for multiple comparisons using TFCE Monte 

Carlo simulation with 10,000 iterations (Oosterhof et al., 2016)) for the paired analysis 

between hands and tools accuracy. 
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Is the category-specific neural representation of tools/hands at different time points 

informative of the neural representation of hands/tools? 

We then focus on whether category-specific information on tools (or hands) can 

be generalizable to the processing of hands (or tools). To address this question, we used 

a cross-decoding approach, and tested 2 classifiers: 1) one trained on decoding tools vs. 

animals; and 2) one trained on decoding hands vs. animals. Importantly, we tested these 

classifiers with the other category of interest (e.g., if a classifier was trained on tools vs. 

animals, it was tested with hands). For the classifier that was trained on tools and tested 

on hands (Figure 5.3A), we found significant generalization effects in a time window 

between 384 and 428ms (peak t-point = 400ms, peak z-value = 3.09, acc = .58). No 

significant effects were found for the classifier trained on hands and tested on tools 

(Figure 5.3B, all |z| values < .98). 

 

Figure 5.3 – Cross-decoding accuracy results. 

 

Figure 5.3. (A) Decoding accuracy when the classifier trained on tools vs. animals was 

then tested to classify hands. Above-baseline accuracies shows that hands were 

classified more as tools, while beyond-baseline accuracies shows that hands were 
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classified more as animals, according to the classifier trained at the time point 

considered. The green points in the baseline (0.5) correspond to the time cluster 

significantly different from the baseline (|z| > 1.96, cluster-wise corrected for multiple 

comparisons using TFCE Monte Carlo simulation with 10,000 iterations (Oosterhof et 

al., 2016)). (B) Decoding accuracy when the classifier trained on hands vs. animals was 

then tested to classify tools. No significant effects were observed in this analysis (|z| < 

1.96). 

 

Is the category-specific neural representation of tools/hands informative of the neural 

representation of hands/tools when generalizing across time? 

We wanted to understand whether the generalization of tool/hand representations 

to the processing of hands/tools could be extended in time – that is, whether there was 

cross-time generalization of the processing of tools and hands. For such, we used a TG 

approach, and looked for timepoints where tool (when compared to animal) distinctive 

patterns could be used to categorize hands across time (and vice-versa). The results 

from this analysis are represented in a matrix, where each axis indicate the training and 

testing time. Results that lie on the diagonal of the matrix represent the same time point 

for training and testing (i.e., they correspond to the cross-decoding analysis presented 

above). In this analysis we did not use trial averaging or PCA because these are not 

typically in a TG approach (King & Dehaene, 2014). Nevertheless, and as a control for 

the feasibility of this approach, we observed that results from cross-decoding (Figure 

5.3A and Figure 5.3B) are identical to the results obtained in the diagonal of the TG 

results (Figure 5.4A and Figure 5.4C). 

As shown in Figure 5.4A, training on tools vs. animals (and testing on hands) 

revealed three mid clusters and two late clusters (i.e., classifying hands as tools more 

than as animals; all clusters with a z > 1.96). The first cluster (represented in white) 

shows that a classifier trained on tools vs. animals with data from around 280-330ms 
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can be used to classify hands as tools in an earlier time interval (around 170-220ms). 

The other two mid clusters (represented in brown and pink colors) show that a classifier 

trained on tools vs. animals around 280-380ms classifies hands as tools both earlier 

(from ~220ms) and later (until ~440ms) in time. The late clusters demonstrate that a 

classifier trained on tools vs. animals around 380-450ms also allows for classification of 

hands as tools before (from ~230ms) and after that time interval (until ~500ms). When 

testing the opposite effect (training on hands vs. animals, testing on tools), no 

significant results were observed (all |z| values < 1.64, Figure 5.4C and Figure 5.4D). 

Figure 5.4 – Results from time generalization approach. 
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Figure 5.4. (A) Decoding accuracy across time when the classifier trained on tools vs. 

animals and was then tested on hands. (B) The yellow color represents the significant 

time points when classifying hands as tools (z > 1.96, cluster-wise corrected for 

multiple comparisons using TFCE Monte Carlo simulation with 10,000 iterations 

(Oosterhof et al., 2016)), that were divided in three mid clusters (white, brown, and pink 

circles) and two late clusters (red and gray circles). (C) Decoding accuracy across time 

when the classifier trained on hands vs. animals and was then tested on tools. (D) No 

significant effects were observed in this analysis (|z| < 1.96). 

5.5. Discussion 

 

Understanding the temporal dynamics of object knowledge is essential for 

developing sophisticated models of visual object processing. Here we set out to 

investigate the timing of object knowledge by looking at two functional related 

categories: hands and tools. Specifically, we investigated whether there are temporal 

differences and/or similarities during the processing of these two related categories. 

We first looked at whether neural patterns for tools and hands can be temporally 

discriminated. To this end, we used a decoding approach, where we compared the 

accuracy of decoding between hands and animals and between tools and animals during 

different time points after stimulus onset. Even though the decoding accuracy profiles 

for these two decoding conditions present some similarities through time, the accuracy 

pattern was clearly different during two time intervals (around 168ms and around 264-

320ms). 
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In the first time interval (~168ms), the accuracy for decoding tools (vs. animals) 

was higher than that for decoding hands (vs. animals). This shows that during this 

earlier time point, tools are more easily distinguishable from animals than hands are – 

that is, category-specific tool responses seem to be more distinguishable and/or unique 

than category-specific hand responses. These results show that at that time, tools are 

more different from animals than hands are from animals. This could be due to larger 

domain-specific differences (e.g., living vs. non-living distinctions, Caramazza & 

Shelton, 1998) - for instance, it may be the case that domain membership (i.e., tools are 

non-living things, whereas animals and hands are living things) could be the driving 

force of the effect at this stage. In fact, in a MEG study, Carlson et al. (2013) used 

multidimensional scaling (MDS) and found that by ~120ms after stimulus onset, 

distinguishability between exemplars becomes possible, and from that time point 

onwards we can see the emergence of categories and subcategories (e.g., faces and 

animals are very close in the representational space). These results can help us to 

explain why tools and animals are more distinguishable at an earlier stage than hands (a 

body part) and animals. Moreover, the fact that animals and manmade objects differ in 

early perceptual features (Long et al., 2017) and that categorization between these two 

categories emerges at ~150ms (Proverbio et al., 2007) could potentially also be the basis 

of our results. Finally, tools and animals also immediately differ in their level of 

manipulability (a difference that is not immediately apparent when comparing hands 

and animals), which is another aspect that may lead to better classification between 

tools and animals than between hands and animals. In fact, Proverbio (2012) showed a 

desynchronization of the Mu (μ) rhythm around 140-175ms, when comparing tools vs. 

non-tools (i.e., non-manipulable objects). The Mu (μ) rhythm is a brain wave that 

appears most prominently over sensorimotor cortex during a relaxed state and its 

suppression is induced by motor action. These results suggest then that motor 

information (e.g., manipulability) can be extracted from visual objects at early stage of 

processing (Proverbio, 2012).  
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Later on in the processing of these categories – around 264-320ms after stimulus 

onset – we showed that hands were more dissimilar from animals than tools were from 

animals – i.e., accuracy for hands (vs. animals) was higher than tools (vs. animals). 

During this time window, this heightened discriminability between hands and animals 

could be related to later stages associated with semantic processing. In fact, this time 

window follows categorical processing (e.g., N1, N2, Zani et al., 2015) and precedes 

more integrative and conceptual components (e.g., P300, N400, De Sanctis et al., 2013). 

It may also be linked to differential processing associated with hands and animals in 

what respects biological motion and social representations that occur during hand 

processing. The N240 component, for example, has been shown to originate in the 

superior temporal sulcus (STS, Hirai et al., 2003), a region involved in aspects of social 

cognition as well as facial and body expression (Bonda et al., 1996; Grossman et al., 

2000; Narumoto et al., 2001; Puce et al., 1998). Interestingly, we previously found that 

STS plays an important role during hand processing in the overlap regions (Amaral et 

al., 2021). 

Another important test to the neural and cognitive overlap between hand and tool 

processing, is whether processing at a particular time point for one of the categories can 

be generalized to the processing of the other category. To test this, we employed a 

cross-decoding approach, where we tested the ability of a classifier trained on 

classifying tools vs animals (or hands vs. animals) to classify hands as tools (or tools as 

hands). We found that classifiers trained on classifying tools vs. animals were 

significantly biased to classify hands as tools (more so than as animals) around 400ms 

post-stimulus onset. These results suggest that category-specific information from tools 

is represented in a way that is sufficiently similar to how hand related information is 

coded around 400ms after stimulus onset in order to allow for generalization from tool 

processing to hand processing. However, we did not find a similar result for the 

processing of hands vs animals on decoding of tools. That is, the patterns of activation 
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for hands (when compared to animals) used by our classifier do not seem to allow for 

generalizing to tools.  

A possible interpretation of this result is that as a consequence of the processes at 

play (potentially automatically) when seeing a tool (Handy et al., 2003; Handy & 

Tipper, 2007), there is information (e.g., tool affordances – a  tool’s graspable status and 

its associated motor program) that percolates to hand-specific computations in order to 

implement those action programs. These kinds of interactions could potentially be 

responsible for the generalization effects seen here. Importantly, the processing of these 

kinds of tool-related information may be automatic (Grèzes et al., 2003; Tucker & Ellis, 

2001; Tucker & Ellis, 1998). Interestingly, processing of certain grasp related 

information seems to happen exactly at ~400ms: De Sanctis and colleagues measured 

the EEG correlates during grasping movements and found grasp-specific activation 

peaking at 300ms over parietal regions that continued to the central and frontal 

electrodes at around 400ms (De Sanctis et al., 2013).  

This effect could also be related to the ventro-dorsal pathway – critical for tool 

use (Binkofski & Buxbaum, 2013). For instance, in a study combining fMRI and EEG, 

Mizelle and Wheaton (2010) identified cortical regions, as well as temporal dynamics, 

associated to correct and incorrect use of tools. Correct use of tools led to 

occipitoparietal and frontal activations typically associated to the tool network. 

Additionally, source localization analysis of EEG showed that occipitotemporal regions 

were exclusively active to correct tool use between 300 and 400ms (Mizelle & 

Wheaton, 2010). In a MEG study, Suzuki and colleagues investigated the neural 

responses to visible and invisible images of tools. They found a strong neural response 

to visible images of tools in left parietal regions at 400ms (Suzuki et al., 2014). These 

results suggest that the ability for a classifier trained on categorizing tools vs. animals to 

classify hands at that time window is dependent on action related computations that 

connect hands and tools.  
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This result could also provide insight on why the spatial overlap shown in fMRI 

for the processing of hands and tools comes about, as occurs during the time window 

when these categories share action-related information. This may be particularly true for 

the spatial overlap in neural responses for hands and tools in the IPL because of the role 

of this area in accessing manipulation knowledge (e.g., Boronat et al., 2005; Buxbaum 

et al., 2000; Ishibashi et al., 2011; Kellenbach et al., 2003). 

Importantly, our results also show that classification of hand stimuli (vs. animals) 

does not generalize to the categorization of tools. The classification of hands, and 

especially in comparison with animals, may not lean necessarily on action-related (or 

other high-level) aspects, and thus, the generalization to tools may not be as clear as it 

was for the case of hands. Importantly, the fact that training on the categorization of 

hands vs. animals does not generalize to the classification of tools may bring interesting 

insights into our understanding of the representation of information – this lack of 

reciprocity between tool and hand representations strongly suggests a processing 

contingency whereby action-related hand processing depends upon tool-related action 

processing.  

Finally, in the TG analysis, we wanted to extend the previous results and test 

whether cross-decoding could be generalized across time. We showed above that 

training on tools vs. animals allows to classify hands as tools at ~400ms. With the TG 

method, we extended these results and demonstrated that the information that allows to 

classify hands as tools is maintained in the neural patterns over time. Specifically, we 

showed that training on tools vs. animals around ~300ms and later at ~400ms provides 

enough information to classify hands as tools both earlier (~200ms) and later (~500ms) 

than those time points. This suggests the kind of tool-related action processing on which 

hand (action-related) processing is contingent upon occurs at ~300ms and ~400ms. 

Although the effect at ~300ms did not reach statistical significance for cross-decoding, 

we can observe in Figure 5.3A a peak accuracy during that time. Importantly, it has 
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been shown that tool-specific affordances are coded precisely around these temporal 

windows: for instance, in an EEG study, Proverbio and colleagues compared tools and 

non-tools and found that action affordance is computed at ~250ms (Proverbio et al., 

2011). Note that, once again we found no generalization effects for tools when training 

on hands. 

Overall, the results show both temporal differences and similarities between hand 

and tool processing. On the one hand, classical decoding results show that the temporal 

windows at which hands and tools are different and are suggestive of the kinds of 

information that are computed over time during the processing of each category that sets 

them apart. Cross-decoding and TG analyses, on the other hand, demonstrate when 

hands and tools are comparable, and suggest that there is specific processing 

contingency: training on tools vs. animals allows for hand decoding, but training on 

hands vs. animals does not allow for tool decoding. This dissociation may be related to 

action information computed for our interactions with tools that can trample to the 

processing of hands. 

Note that the results presented here might have methodological limitations. For 

instance, we used a block-design that splits our experiment in two tasks: identifying 

tools and animals and identifying hands and feet. Although the order of the two tasks 

was counterbalanced across participants, when doing a cross-decoding analysis that 

trains on hands vs. animals, this implies that we trained on different blocks. However, 

we ran a supplementary analysis (training on hands vs. feet) for both cross-decoding and 

TG, and no significant effects were found (see Supplementary Figure 5.1 and 

Supplementary Figure 5.2). 

 In conclusion, our results show both differences and similarities between the 

time-course of hand and tool processing. We demonstrated that not only are the two 

categories processed differently over time, but that tool representations can also be 

informative (in specific time points) for hand processing. The fact this outcome was not 
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established for hand representations clearly supports a processing contingency in which 

action-related hand processing is tied to the processing of action attributes during tool 

processing. Together these results shed new light on the respective stages of hand and 

tool processing and highlight how it is possible to disentangle their processing. 
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6.1.  Summary 

 

Our ability to rapidly and efficiently recognize an object is crucial for our daily 

life. The scientific community has been attempting to unravel the processes that 

underpins object recognition, but many questions remain unanswered. The work that I 

presented here tries to clarify some of these unaddressed questions and focus on the 

interaction between two categories of objects – hands and manipulable objects (i.e., 

tools) – as a handle to better understand brain dynamics in the process of object 

recognition and conceptual representation. 

We easily recognize hands and tools as two (very) different visual categories. It is, 

however, equally simple to accept the notion that the two categories must share some 

common ground during their processing. In most situations, we need our hands to 

manipulate the tools and this manipulation requires considering a variety of sources of 

information. For instance, the shape of a tool, as well as its typical use will determine 

how I place my hand to maneuver it. The link between the two categories is so strong 

that they engage some of the same brain regions during their neural processing. 

Specifically, hands and tools are known for activating both left posterior middle 

temporal gyrus/lateral occipitotemporal cortex (pMTG/LOTC) and left inferior parietal 

lobule/intraparietal sulcus (IPL/IPS) (Bergström et al., 2021; Bracci et al., 2012, 2016; 

Peeters et al., 2013). But what does this overlap mean? Are hands and tools processed in 

the brain in a similar way? Or is it possible to disentangle hand from tool processing? 

To examine this question, I used functional magnetic resonance imaging (fMRI), 

transcranial direct current stimulation (tDCS), and electroencephalography (EEG) to 

study 1) if the connectivity constrains exhibited by regions where neural response to 
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hands and tools overlap depend on the category being processed; 2) if we can isolate 

hand and tool processing within the overlap regions by priming the system to focus on 

one of the categories; and 3) if there are temporal differences during the processing of 

hands and tools. 

In the first study, I used fMRI to measure the pattern of responses to different 

categories: hands, tools, and animals. Then, I correlated the voxel-wise category 

preferences across the brain with functional connectivity between those voxels and two 

overlap regions that respond both to hands and tools (left IPL/IPS and left 

pMTG/LOTC). I showed that functional connectivity fingerprints from the two overlap 

regions are related to categorical preferences for hands and tools in a distinct way within 

different areas of the brain. These findings demonstrate that areas that process both 

categories retain category-specific object topography, and that the processing of each 

category is dependent on the distal connections within the category-specific neural 

network. 

In the second study, I used tDCS – a non-invasive neuromodulation technique – 

together with fMRI in order to investigate the effects of neuromodulation in the neural 

processing that is shared by hands and tools. Specifically, I combined tDCS with a 

training task that was either related to hands or tools. Stimulation was applied to one of 

the overlap areas (pMTG/LOTC). After the tDCS/training session, participants observed 

images of different categories inside the scanner (fMRI task). Using a decoding 

approach, I found that classification was more accurate at differentiating tools from 

animals only when the stimulation was on pMTG (and not on the control area – medial 

prefrontral cortex, mPFC) and only when combined with the tool training task. 

Unexpectedly, the combined version of tDCS on pMTG with the tool training task (and 

not the hand training task) also led to an enhanced accuracy when classifying hands vs. 

animals. These results suggest that it is possible (at least partially) to disentangle the 
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two overlap networks, by increasing the specific category processing with tDCS 

combined with a cognitive task related to that category. 

Finally, in the third study, I explored (possible) temporal differences between 

hand and tool processing. Using a multivariate approach, I compared classification 

accuracy (within different time points of the visual task) for hands and tools (vs. 

animals). I found that hands and tools present differences in their classification accuracy 

against animals for specific time intervals (~168ms and ~264-320ms). Moreover, when 

applying a cross-decoding scheme (i.e., training on tools vs. animals and then testing on 

hands, and vice-versa), I also found that training the classifier decoding tools versus 

animals was sufficient for the classifier to identify hands – this was true at ~400ms after 

stimulus onset. Inversely, the opposite effect was not found – training on hands vs. 

animals does not lead to an advantage in classifying tools. Overall, the findings shows 

both differences and similarities between the temporal processing of hands and tools. 

The findings not only reveal when hand and tool processing differed (and how those 

differences are related to different properties that hands and tools have), but also when 

neural representations of tools can generalize to the neural representations of hands. 

In the next section, I further discuss the implications of this thesis for our 

understanding of the unique relationship between hands and tools, as well as to 

corroborate the role of functional connectivity in the organization of object knowledge. 
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6.2. Implications 

 

Brain in action – when hands and tools meet 

It is now established that representations for hands and tools widely overlap in 

specific regions of the brain located in both parietal and temporal cortices. The fact that 

these two categories do not share any visual similarity and are in fact categorizable into 

different large-scale categories – e.g., animate vs. inanimate – leaves open the question 

of what truly connects hands and tools. Bracci and colleagues (Bracci et al., 2012, 2016) 

argued that the functional link between the two categories is action-based. This means 

that the categorical preferences that we observe in the overlap regions are not based on 

the visual features of hands and tools, but instead on the action-related properties that 

these items hold (Bergström et al., 2021; Bracci et al., 2016, 2017; Bracci & Peelen, 

2013).  

Interestingly, left LOTC is known for being functionally connected to regions 

related to action planning and recognition such as those within the frontoparietal cortex 

(Bracci et al., 2012; Lingnau & Downing, 2015; for a review see Wurm & Caramazza, 

2021). Moreover, IPL (that extends in study 1 to anterior IPS) is a region that has long 

been associated with tool-specific action processing. For instance, patients with lesions 

to IPL reveal ideomotor apraxia – an impairment in manipulating everyday objects (e.g., 

Almeida et al., 2018; Buxbaum, Giovannetti, et al., 2000; Buxbaum, Veramonti, et al., 

2000; Garcea et al., 2013) – whereas the computation of hand-shapes for object 

grasping is known to be heavily influenced by aIPS (Binkofski et al., 1998, 1999; 

Buchwald et al., 2018; Culham et al., 2003; Monaco et al., 2011).  

However, this does not mean that the representations within IPL and LOTC is the 

same. In fact, in Study 1, both overlap regions showed differences in their distal 

relationships, suggesting different roles for each overlap region when processing hands 
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or tools. Interestingly, for tool processing, the distal connections from IPL appear to be 

linked to the transmission of information about manipulation, while the distal 

connections established by LOTC seem more related to material and surface properties 

of the tools supported by its preferential connectivity with the medial aspects of the 

fusiform gyrus. The differences in the patterns of distal connections conveyed by IPL 

and LOTC for hand processing can be attributed to motor and social factors. These 

patterns of connectivity seem to be related to aspects pertinent to the computations 

being performed locally and they can also be associated to the different processing 

computed over parietal (IPL) and occipito-temporal (LOTC) cortices. On the one hand, 

connectivity patterns between IPL and other regions of the brain may be related with 

computing and accessing aspects related to object-specific functional grasps and 

manipulation. On the other hand, the connections established from LOTC seem to be 

related to perceptual properties, crucial for ventral stream processing during object 

recognition. These results highlight the division of labor between the two streams, but 

they also emphasize the need of integration between the two systems implemented 

through distal connections with regions from both dorsal and ventral streams. 

The results from Study 3 also underline the action-based interaction that exists 

between hands and tools. Using a cross-decoding analysis, I tested if hands were 

classified as tools (when training on tools vs. animals) and if tools were classified as 

hands (when training on hands vs. animals). I observed a dissociation effect that shows 

that training on tools vs. animals allows the classifier to categorize hands as tools (at 

~400ms post-stimulus onset), but not the opposite. These findings can be interpreted 

based on action related processing, where the discrimination on tools vs. animals is 

achieved by action-related computations (e.g., manipulation) in a later stage. 

Together these results bring evidence to the fact that hands and tools interact in 

terms of their action properties and, although both overlap regions may relate to this 
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object-related action processing, they may play different roles during hand and tool 

perception. 

 

The nature of the overlap 

The strong overlap between responses to hands and tools begs the question of 

whether they reflect the same or separate neural populations being activated. If the two 

categories activate the same group of neurons similarly (within the overlap regions), this 

would imply that the responses of those neurons for the two categories would be 

indistinguishable – that is, effectively, tools and hands would be exactly the same or 

similar within these sets of neurons. For instance, hands and tools could jointly 

represent an action dimension and the representations coming from the overlap regions 

would not be discriminable. Alternatively, we may be looking at adjacent neurons and 

not to a true overlap. Then, the putative overlap response may be a result of distinct 

neural groups that are spatially overlapped but otherwise separate at a fine spatial scale 

(i.e., below the standard resolution of fMRI). In a previous study (Almeida et al., 2018), 

we showed interference effects in a priming task. That is, participants were slower to 

categorize a tool (after the unconscious presentation of a hand), and the same happen 

when categorizing hands – participants were also slower in the presence of a tool prime. 

If one assumed that overlap responses for hands and tools were the same, one would 

have to expect a facilitation effect (i.e., faster reaction times when pairing hands and 

tools). However, if the neural populations that respond to hands and tools are not the 

same, or their processing is different, then one would potentially interpret this 

interference effect as resulting from lateral inhibitory connections produced by the 

adjacent (but not overlapping) hand and tool patches (Almeida et al., 2018). 

 Importantly, a recent study (Bergström et al., 2021) showed that (hand-tool 

invariant) grasp information can be extracted from the left posterior parietal cortices – 

PPC (including IPL). Specifically, data from this area allows for decoding grasp type 
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(power versus precision grasps) that generalize from tool images to hand grasping 

videos (and vice-versa). Moreover, hand-specific grasp representations (that are 

viewpoint-independent) are extracted from hand-related regions, such as bilateral PPC, 

left ventral premotor, and left LOTC (Bergström et al., 2021). These results point to 

differing stages of abstractness, where hand-tool invariant grasps rely primarily on the 

left PPC, and hand-specific grasp attributes are handled more broadly across the hand 

network (Bergström et al., 2021), and bring evidence of shared or similar patterns (at 

the fMRI scale) between hands and tools in parietal cortex. 

A slightly different hypothesis, supported by the findings in this thesis, is that the 

same neurons respond to hands and tools, but they do it in a distinct way (i.e., they may 

perform different computations dependent on the category being processed). In Study 1, 

results show that both overlap regions present different patterns of connectivity when 

processing hands and tools. This indicates that in such areas, the same neurons (or at the 

very least neurons within the same voxels) receive and send category-relevant 

information to specific category-specific networks in a manner that is dependent on the 

stimuli being processed. These category-specific organization dissociations were 

validated by the results in Study 2. Finally, Study 3 shows that hand and tool processing 

present different time-courses, addressing the possibility that the neural population for 

the two categories could be the same, but the neurons respond to hands and tools at 

different time points. However, this EEG study also demonstrates a time period when 

neural representations for hands are similar to tool representations (~400ms after 

stimulus onset), possibly implying that neural overlap exists at this time point. The 

results from Bergström et al. (2021) could also help to explain this cross-decoding 

effect: PPC was shown to be central for the representation of abstract grasp information, 

and potentially for the conversion of item-specific grasp patterns to more item-invariant 

grasp representation. Thus, a possible interpretation of the EEG findings is that tools 

(when compared to animals) trigger this abstraction information coming from PPC 

(particularly in IPL), which then allows for the generalization to hand representations. 
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Nevertheless, the results described throughout the thesis do not unequivocally 

demonstrate the nature of the neural overlap. Thus, other techniques with higher spatial 

resolution should be used to assess possible neural differences at a micro scale (e.g., 

high-resolution fMRI; electrocorticography). Nevertheless, the previously described 

findings do not support the extreme view that there is absolute neural overlap in the 

responses for hands and tools – this extreme view would require that hands and tools are 

indiscriminate in the overlap regions, which me (and others) demonstrate is not the case. 

Alternatively, the same neurons (within the overlap regions) respond both to hands and 

tools, but that response will be different in terms of spatial and time dimensions. 

Depending on the category being processed, neurons receive and send information 

specifically related to that category, and with potential temporal dissociations different 

between the two categories. Despite of these computational differences within the same 

neurons, there seems to be particular time points when hand and tool representations are 

highly similar. 

 

The role of functional connectivity in the organization of object knowledge 

 What principles are at play in the organization of object knowledge in the brain is 

one of the most debated questions in the field of cognitive neuroscience. According to a 

relatively new theory, local representations do not solely depend on the computations 

undertaken within a local region that shows preference for a particular category. These 

also depend on the distal connectivity with other regions that share the same categorical 

preferences (e.g., Almeida et al., 2013; Chen et al., 2017; Hutchison et al., 2014; 

Hutchison & Gallivan, 2018; Lee et al., 2019; Mahon et al., 2013; Mahon & Caramazza, 

2011; Walbrin & Almeida, 2021). This means that visual object recognition (mainly 

attributed to ventral stream processing) is mediated by patterns of connectivity that 

integrate the visual information from the ventral stream with category-related 

information computed by other regions of the brain. For each object category, the 
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functional relationship established between the various regions will be different. For 

example, during tool processing, motor information and visual features are expected to 

be integrated – but this is probably not the kind of integration that is going to be 

important for the processing of animal stimuli. Importantly, in this thesis I set out to test 

this theoretical proposal. Most of the research that led to the development of this 

theoretical proposal on the relationship between local computations and distal 

connectivity has been conducted on regions that respond preferentially to a single object 

category. However, this hypothesis could be strengthened by investigating regions that 

respond preferentially to more than one category – if two categories share a particular 

node, but there are domain-specific connectivity constraints at play that influence local 

computations in that node, then one should see different input/output connections for 

reach of the categories. So, in the case of the overlap regions for hands and tools, the 

distal connectivity patterns should be dependent on the category being processed (hands 

or tools). The findings of Study 1 support this idea: the functional connectivity to/from 

the overlap regions correlates with response preferences in distal regions in a category-

specific way. These findings were further developed in Study 2: combining tDCS with a 

cognitive training task, I explored the possibility of enhancing this connectivity 

constraint separation effect between hand and tool processing within the same region, 

by biasing the processing towards one of the categories. On the one hand, results 

reported in Study 2 corroborate the results from Study 1 – distal effects were found due 

to the stimulation applied to pMTG/LOTC. On the other hand, results from Study 2 also 

expand the results from Study 1, allowing for causality inferences that could not been 

made in Study 1. Specifically, Study 2 shows how distal modulations causally affect 

local processing: enhancing the processing within pMTG/LOTC impacts neural 

representations in distal regions. This implies that hand and tool representations in hand 

and tool-preferring regions are causally dependent on distal computations from 

pMTG/LOTC.  
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 Overall, our findings demonstrate the importance of distal connectivity patterns in 

the organization of object knowledge – that is, hand and tool neural representations 

within local regions are causally modulated by distal processing from the overlap 

regions. 

6.3. Limitations 

 

In both fMRI studies that are part of this thesis, I refer to one of the overlap 

regions as left pMTG/LOTC. However, this definition does not mean that pMTG and 

LOTC concern to the same region. The borders of LOTC have been proposed to be the 

middle portion of MTG (anterior), lateral occipital sulcus (posterior), STS (dorsal), and 

inferior temporal gyrus (inferior) (Lingnau & Downing, 2015). When identifying the 

regions-of-interest in fMRI studies, LOTC is usually defined using the peak coordinates 

next to the lateral occipital sulcus, using different contrasts like objects > scrambled 

(Hutchison et al., 2014), hands > chairs or tools > chairs (LOTC-hand and LOTC-tool, 

Bracci et al., 2012; Knights et al., 2021). These subdivisions of LOTC (LOTC-hand and 

LOTC-tool) are often overlapping with each other (Bracci et al., 2012). pMTG is a 

region located next to the anterior occipital sulcus and that shows an enhanced 

activation for tools (Chao et al., 1999; Hutchison et al., 2014; Knights et al., 2021; 

Martin et al., 1996). Nevertheless, the coordinates reported in studies referring to pMTG 

are often identical (or very close) to the coordinates of LOTC. This is probably because 

LOTC-hand and LOTC-tool are anterior subparts of the LOTC, so they are very close to 

pMTG. Since I did not control for these anatomical boundaries in any of the fMRI 

studies, it should be noted that in this thesis I do not distinguish between pMTG and 

LOTC. The same goes for left IPL, since in Study 1 I observed that this region extends 
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into aIPS, and some authors attribute the overlap between hands and tools in the parietal 

cortex to the IPS (Bracci et al., 2016). 

 It is also worth to mention that throughout this thesis I have used the terms 

‘tool’ and ‘manipulable object’ interchangeably and they do not (necessarily) represent 

the same content. A tool is always a manipulable object, but the opposite is not 

necessarily true. ‘Tools’ are manipulable objects that show a strong link between their 

physical attributes and their function/manipulation (e.g., hammer, scissors). 

‘Manipulable objects’ refer to all objects that can be manipulated and that do not 

(necessary) show a clear relationship between their physical attributes and their 

function/manipulation – e.g., lamp, book (Mahon et al., 2007). The findings described 

in this thesis refer to the specific category of tools and they cannot be generalized to all 

manipulable objects.  

6.4. Future Directions 

 

The empirical studies reported in this thesis allow for a better understanding of the 

functional relationship between hands and tools, giving an important theoretical 

contribution to our understanding of the organization of object knowledge in the brain. 

Nevertheless, these studies also raise new questions that should be taken into 

consideration in future investigations. In this section, I consider some research ideas that 

I plan to implement in the future. 

 Primarily, and because our predictions for Study 2 were not completely met, I 

think one possible future research direction is to resolve this issue. Results from Study 2 

do not show an effect of the hand training task. We put forth two possible reasons for 
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the lack of an effect: 1) the hand task was too complex, and certainly not directed at 

promoting action processing; and 2) the type of montage chosen for the tDCS could 

have inhibited social and action representations important for the processing of hands. 

Based on this, I propose to create a different cognitive task that promotes action 

processing (e.g., a task where participants watch two videos of pantomimed actions 

related to the use of tools and then they must decide which video correspond to the 

correct use) and choose IPL as the target area (for a possible target region and montage 

see Almeida et al., 2017; Lee et al., 2019; Ruttorf et al., 2019). This new experiment 

will allow not only to test (again) the separation of the hand processing within an 

overlap region, but it will also examine the effects of tDCS in a different overlap region 

(IPL). An alternative possible approach could be to maintain pMTG/LOTC as the target 

area, but with a different montage that ensures neighboring hand regions are not 

affected. 

Another aspect that I think should be further explored are the temporal dynamics 

of hand and tool processing. I have used various techniques in this thesis including 

fMRI, tDCS and even EEG. These different methods provided access to important 

results at the spatial and temporal level. However, an important step to interpret these 

results in a broader way, is to combine (in the same study) methods that have high 

spatial and high temporal resolution. Thus, I think it would be relevant to implement a 

study where we use both fMRI and EEG. This fMRI/EEG fusion approach (Cichy & 

Oliva, 2020) would allow us to understand where (fMRI) do the temporal differences 

(EEG) between hand and tool processing occur. For instance, this could be very useful 

to investigate if the overlap regions show the same temporal dynamics, or not. 

 Finally, perceiving hands and tools involves recognizing multiple features 

important during the action perception and execution. The activity of the motor and 

somatosensory cortex (during action execution, or observation) causes a 

desynchronization of the Mu (μ) band, a spontaneous oscillatory human rhythm with a 
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frequency of 8–13 Hz that appears most prominently over the sensorimotor area during 

a relaxed state. Several EEG studies have been showing that the suppression of this 

rhythm occurs during the processing of both hands and tools (Kumar et al., 2013; 

Muthukumaraswamy et al., 2004; Proverbio, 2012), but they have not addressed the 

possible differences between hands and tools. Particularly, what I want to investigate is 

if the suppression of μ rhythm occurs at different time points for hands and for tools. 

6.5. Conclusion 

 

The work described in this thesis focus on how conceptual knowledge is 

organized in the brain through the lens of two related categories (hands and tools). 

Particularly it focuses on how connectivity and temporal contingencies disentangle the 

neural processing shared by them. The main findings of the current thesis can be 

summarized in the following points: 1) functional connectivity has a crucial role in 

shaping the representations within regions that show overlap in neural responses to 

hands and tools; 2) the separation of the overlapping networks can be achieved by 

targeting distal connected regions; and 3) temporal dynamics of neural processing also 

allow for dissociating hand and tool processing. 

 Overall, the data presented here reflect the emergence of different brain 

mechanisms dedicated to hand and tool processing. They suggest that regardless of how 

hands and tools interact, our brain devotes different mechanisms during the processing 

of the two related categories. Nevertheless, and although all the studies focused on the 

segregation of hand and tool representations, the functional bonds shared between hands 

and tools remain clear. 
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Supplementary Figure 3.1 – Location of the individual IPL/aIPS ROIs. 
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Supplementary Figure 3.1. (A) Location of the individual IPL/aIPS ROIs overlapped 

with the parcellations of the IPL (Supramarginal Gyrus) and intraparietal sulcus. (B) 

The different regions/parcel included in the left IPL (Supramarginal Gyrus) and left 

intraparietal sulcus as proposed in Caspers et al. (2006) and by Choi et al. (2006). 

*Because subject 1 did not have enough data to define the individual ROIs, we used the 

group peak to create them. 
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Supplementary Figure 3.2 – Whole-brain searchlight correlation between 

category-preferences and functional connectivity (volume maps). 
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Supplementary Figure 3.2. (A) cold colors indicate higher voxel-wise correlations 

between hand-preferences and functional connectivity to IPL/aIPS (compared to tool-

preferences). (B) warm colors indicate higher voxel-wise correlations between tool-

preferences and functional connectivity to IPL/aIPS (compared to hand-preferences). 

(C) cold colors indicate higher voxel-wise correlations between hand-preferences and 

functional connectivity to pMTG/LOTC (compared to tool-preferences). (D) warm 

colors indicate higher voxel-wise correlations between tool-preferences and functional 

connectivity to pMTG/LOTC (compared to hand-preferences). 
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Supplementary Figure 3.3 – Location of the right STS cluster from the 

searchlight in relation to tool and hand right pMTG/LOTC. 

 

Supplementary Figure 3.3. The right STS cluster (green) obtained in the whole-brain 

searchlight analysis for the correlation between connectivity coming from the left 

pMTG/LOTC and hand-preferences does not overlap with a functionally defined right 

pMTG/LOTC hand/tool overlap region (purple). 
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Supplementary Figure 4.1 – ROI-specific MVPA results (hands training 

session). 

Supplementary Figure 4.1. A comparison of the classification accuracy (percentage) 

between pMTGhands and mPFChands for (A) tools vs. animals in each region identified as 

a tool ROI, (B) tools vs. animals in each region identified as a hand ROI, (C) hands vs. 

animals in each region identified as a tool ROI, and (D) hands vs. animals in each 

region identified as a hand ROI. P-values are FDR corrected for 8 tests in tool-ROIs and 

for 6 tests when analyzing hand-ROIs and show no significant results (all adjusted p 

values > .1). 
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Supplementary Figure 5.1 – Cross-decoding accuracy results (using feet as control 

category). 

 
 
Supplementary Figure 5.1. Decoding accuracy when the classifier trained on hands vs. 

feet was then tested to classify tools. No significant effects were observed in this 

analysis (|z| < 1.96, cluster-wise corrected for multiple comparisons using TFCE Monte 

Carlo simulation with 10,000 iterations (Oosterhof et al., 2016)). 
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Supplementary Figure 5.2 – Results from the Time Generalization Approach 

(using feet as control category). 

Supplementary Figure 5.2. (A) Decoding accuracy across time when the classifier 

trained on hands vs. feet and was then tested on tools. (B) No significant effects were 

observed in this analysis (|z| < 1.96, cluster-wise corrected for multiple comparisons 

using TFCE Monte Carlo simulation with 10,000 iterations (Oosterhof et al., 2016)). 
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Supplementary Table 3.1 – Overlap between each individual IPL/aIPS ROI. 

 a) intraparietal sulcus 
 

b) inferior parietal lobule (Supramarginal 
Gyrus) 

 hIP1 hIP2 hIP3 PF PFcm PFm PFop Pft 

Sub1 x x x x  x   

Sub2 x x x x  x   

Sub3 x x x x  x   
Sub4 x  x   x   

Sub5 x x x   x   

Sub6 x x x   x   

Sub7 x x x x  x  x 

Sub8 x x x x  x   

Sub9 x x x x  x   

Sub10 x x x x  x  x 

Sub11 x x x x     

Sub12 x x x x  x  x 

Sub13 x x x   x   

Sub14 x x x x  x   

Sub15 x x x   x   
Sub16 x x x x  x   

(a) Parcellations of the intraparietal sulcus proposed by Choi et al. (2006); (b) 
Parcellations proposed by Caspers et al. (2006) of the left inferior parietal lobule 
(Supramarginal Gyrus). 

 

 



 

   

 


