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We have investigated a single crystal of the wide bandgap II–VI semiconductor ZnSe. The sample was

highly resistive due to heavy compensation of this n-type semiconductor. In low transverse fields, clear

signs of conversion from a paramagnetic to a diamagnetic fraction are observed, at about 60 K. The data

are interpreted as delayed electron capture by paramagnetic muonium, forming the negatively charged

state Mu�. The implications with respect to the electrical activity of muonium, and by analogy

hydrogen, in this semiconductor are analyzed.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

Hydrogen states in semiconductors have been extensively
discussed in recent years, in particular in connection with the
theoretically predicted universal constancy of the þ=� charge
state conversion level [1,2]. From the experimental side, muon
studies using muonium as an analogue of hydrogen were the main
source of information. In this context, the determination of the
0=� acceptor level in these semiconductors is of particular
interest. We have recently presented rf-mSR measurements on
ZnSe and ZnS which support the formation of negatively charged
muonium in ZnSe and ZnS [3], and we have related the thermal
instability of this state to its ionization to the conduction band,
thus extracting the position of the acceptor �=0 level in ZnSe and
ZnS if this association is valid. We now present transverse-field
mSR measurements which strongly support the formation of
negatively charged muonium in ZnSe.

The determination of the �=0 acceptor level is difficult, since
the most common methods using implanted protons or implanted
muons usually do not observe the negatively charged state, except
in heavily doped samples [4,5], where the neutral state becomes
unobservable due to fast charge-exchange processes. However,
the presence of the acceptor configuration has often been
proposed based upon physical arguments [6,7].
ll rights reserved.
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2. Experimental details and results

2.1. Experimental details

Standard transverse field mSR measurements [8] have been
undertaken at the Laboratory for Muon Spectroscopy at the Paul
Scherrer Institut, Switzerland, while the radio-frequency (rf)
muon-spin resonance experiments were carried out at the ISIS
Facility, Rutherford Appleton Laboratory, UK.

A monocrystalline sample, obtained commercially from
Crystec (Ctec) of ZnSe was used. The room temperature resistivity
was measured to be r ¼ 7� 109 O cm. The high resistivity arises
from an almost complete compensation of donors and acceptors,
leaving only a small amount of surplus dopants of one kind to
provide the mobile carriers (estimated to be in the order of
1010 cm�3 or below in this sample). ZnSe is known to present a
strong tendency to grow n-type and a resistance to p-type doping
[9,10]. Hence, it is reasonable to assume n-type conduction in
this sample.
2.2. Delayed formation of the diamagnetic fraction

Fig. 1 shows the temperature dependence of the diamagnetic
fraction in ZnSe, as observed by rf-mSR (Ref. [3]) and TF-mSR at
0.001 T. This is observed to grow up to 100% in the temperature
region 30260 K, in the rf measurements. However, in the
transverse field measurements the corresponding growth occurs
at a higher temperature and the maximum observed fraction does
not exceed 25%. This is a clear sign of delayed formation of the
diamagnetic fraction.
016/j.physb.2008.11.144
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Fig. 1. Temperature dependence of the diamagnetic fraction in ZnSe, as seen by

integral rf-mSR measurements (open circles) and by transverse-field ðB ¼ 1 mTÞ

measurements (closed circles). The solid lines are fits assuming delayed electron

capture at muonium to form Mu� (for details of the model, see text). The strong

reduction of the fraction due to dephasing in the transverse field measurement is

clearly seen. The thin dotted line indicates the onset of Mu� ionization (loss of the

second electron at the muon). Without the ionization the fraction would continue

as indicated by the solid lines.
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Fig. 2. Temperature dependence of the diamagnetic fraction at TF ¼ 0:001 T, for

various ZnSe samples with different free-carrier concentrations (cf. Table 1). A

wide variation is observed from the nominally undoped samples (diamonds and

circles) up to the iodine-doped sample (triangles).

Table 1
Room temperature resistivity r, free-carrier concentration n, and diamagnetic

fraction f d at 55 K, 1 mT, for the ZnSe samples investigated.

Sample r (O cm) n (cm�3) f d

AA X1011 Below 1010 1.6(1)%

Ctec 7� 109 Below 1010 21(1)

CVT 1� 105 3� 1012 32(1)

CVT:I 1� 104 1� 1013 62(1)
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2.3. Capture of second electron

Now, we argue that this diamagnetic state arises from the
paramagnetic Mu0 by (delayed) capture of a second electron,
according to the reaction

Mu0
þ e�!

nc

Mu� (1)

with a capture rate nc ¼ scven, where sc is the capture cross
section, ve ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3kT=m�eÞ

p
is the thermal velocity (m�e is the

effective electron mass), and n is the density of conduction
electrons. The main temperature dependence of the capture rate
arises from the activation of the donors and we have kept only this
Arrhenius part in the formula summarizing everything else in a
constant prefactor n0

c . We set

nc ¼ n0
c expð�Ea=kBTÞ (2)

where Ea represents the activation energy of the donors.
We have observed a pronounced sample dependence of the

diamagnetic fraction observed in TF-mSR at B ¼ 0:001 T (Fig. 2).
Table 1 summarizes as well the results of basic transport
(resistivity and Hall-effect) and mSR measurements on three other
samples: a nominally undoped sample used in previous experi-
ments [11], obtained commercially from Alfa Aesar (AA),
and two samples grown by the chemical-vapor-transport (CVT)
method, which were kindly provided by the Leibniz-Institut für
Kristallzüchtung, Berlin. The chemical agent used in the CVT
growth was iodine (a donor in ZnSe). Iodine is known to be
incorporated in these samples, either deliberately (CVT:I sample)
or not (CVT sample) [12].

From Fig. 2 and Table 1, a clear correlation of the diamagnetic
fraction with the (net) concentration n of free electrons is
apparent: the diamagnetic fraction gets larger for the samples
with larger n.

We have also measured two other pieces of the Ctec sample
subject to different treatments: (i) one piece was annealed for
100 h at 900 1C in a zinc atmosphere, thereby reducing the
concentration of compensating zinc vacancies [9]—the tf-mSR
Please cite this article as: R.C. Vilão, et al., Physica B (2009), doi:10.1
diamagnetic fraction here was observed to be 26% at 75 K,
increasing as expected from the reduced compensation; (ii)
another piece of the Ctec sample was annealed in a 16 atm H2

atmosphere at 500 1C for 22 h, leading to the incorporation of
hydrogen, which is expected to compensate and most possibly
passivate existing donors. The tf-mSR diamagnetic fraction was
observed to drop below 6% at 55 K.

These evidences strongly support the formation of negatively
charged Mu� state from the paramagnetic state as the best candi-
date process justifying the growth of the diamagnetic fraction in
the temperature region 25–50 K, according to reaction (1).

2.4. Analysis

In Ref. [3] we have analyzed the integral rf-data in Fig. 1
assuming process (1) (Eq. (2) in that reference) and have obtained
for the capture rate the following parameters: n0

c ¼ 400� 106 ms�1

and Ea ¼ 17 meV. In transverse field measurements, the time
distribution of the conversion from one state to another state with
a different precession leads to a dephasing and the amplitude of
the second state is reduced by the factor

f d ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðDo=ncÞ
2

q (3)

where Do is the difference in (angular) frequencies of the
converting states and nc is the capture rate. In the present case
we consider the conversion from isotropic muonium to diamag-
netic muon and therefore four frequency differences have to be
016/j.physb.2008.11.144
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taken into account. In the present low field case one has

Do12 � Do23 �
1
2geB

Do14 � Do34 � 2pA (4)

each with an amplitude � 1
4. ge is the electron gyromagnetic ratio,

B the applied field, and A the muonium hyperfine constant. The
contributions to the diamagnetic fraction from 1–4 and 3–4
transitions are rather small because of the large frequency
difference. We have fitted the transverse field diamagnetic
fraction (Fig. 1) with this conversion model. There are no extra
parameters in this fit in addition to those of the capture rate for
which we have already values from the fit to the integral rf data.
With exactly these parameters, the fits to the transverse field data
were not completely satisfactory. A reasonable fit (see Fig. 1,
transverse field curve) was obtained by changing the pre-
exponential factor of the capture rate from 400 to 1600ms�1 but
keeping the activation energy to its value of Ea ¼ 17 meV.

We relate this change of the pre-exponential factor to the
lifetime of the radiolytic electrons created during the passage of
the muon to its stopping site. The importance of the radiolytic
electrons has been discussed already in Ref. [3], in order to explain
the rather large capture rates observed experimentally. In the
integral rf measurements, the presence of the radiolytic electrons
is integrated over the muon life time ð2:2ms�1Þ, whereas in the tf
measurements the relevant time is 1=Do ð� 11 ns for B ¼ 1 mT).
Thus, if the radiolytic electrons recombine on an intermediate
time scale, their concentration will be larger for the tf than for the
rf (integral) experiments. Electron–hole recombination lifetimes
in the order of 100 ns are not unreasonable for the present sample
and temperature conditions (Ref. [13]).

From Eqs. (3) and (4), the diamagnetic fraction is thus expected
to present an approximate inverse dependence with applied field.
In Fig. 3, we present two such transverse-field dependence curves,
for two different temperatures, together with the simulations
using Eq. (3) with the parameters obtained from the tf-mSR
measurements (Ea ¼ 17 meV and n0

c ¼ 1600ms�1). The 75 K curve
was divided by a factor 4 since at this temperature there is already
a big loss of the diamagnetic Mu� fraction due to ionization. This
is an over-simplification, particularly for the smallest fields. But
the sensitive field dependence as expected from the dephasing is
clearly seen.
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Fig. 3. Dependence of the diamagnetic fraction in ZnSe with applied transverse

field, for two different temperatures. The line is a simulation with a delayed

capture model, as described in the text.
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3. Discussion and conclusions

As mentioned in the Introduction, the observation of nega-
tively charged muonium is by itself an uncommon feature,
particularly in highly resistive samples such as those used in this
work. However, this finding bears much significance from the
view point of the influence of hydrogen in the electrical properties
of ZnSe. In particular, the ionization of Mu� is bound to provide
the position of the acceptor level 0=� in the bandgap. The
difficulty from an experimental viewpoint is accurately identify-
ing the transition process.

In Fig. 1, it is clear that the diamagnetic state we identify
with Mu� becomes thermally unstable above 60 K, which is
visible by a drastic reduction of the diamagnetic fraction
above this temperature. The simplest interpretation of this
thermal instability, assuming that the hole concentration is
negligible in this n-type material, relates it to the thermal
ionization of the second electron to the conduction band.
This was analyzed in detail in Ref. [3], and the obtained fitting
curve with Eq. (4) in that reference is included in Fig. 1 as
reference. The acceptor level of hydrogen in ZnSe was thereby
proposed to be at 0.1 eV below the bottom of the conduction band
in ZnSe. However, at the present stage of this research, other
dynamical hypothesis such as hole capture and/or site change
cannot be excluded.

In Fig. 4 we represent the known þ=0 donor levels from the
literature [14] and the ZnSe and ZnS 0=� levels proposed in
Ref. [3], in a band diagram for a group of Zn and Cd semiconductor
compounds. This band diagram was built, following Ref. [15], by
addition of the experimental band gaps taken from Ref. [16] to the
valence band offsets calculated in Ref. [17] placed in an absolute
scale using the position of the valence band of ZnO with respect
to vacuum calculated in Ref. [18]. This diagram allowed us to
propose that the electron affinity of interstitial muonium (i.e. the
ionization energy measured here plus the conduction band edge
energy) be placed at about 3.1 eV in the vacuum scale (dashed line
in Fig. 4). This was discussed at length in Ref. [3]. In an
accompanying paper [19], we discuss the problematics associated
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Fig. 4. Conduction band alignments for the cadmium chalcogenides and the zinc

chalcogenides and oxide (adapted from Ref. [15], see text) together with proposed

0=� acceptor levels for ZnSe and ZnS (Ref. [3]) and the shallow donor levels from

the literature (Ref. [14]). The dashed horizontal line indicates the proposed

approximately constant value of the muonium electron affinity (EA � 3:1 eV) in

these materials.
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with this interpretation, when confronted both with
high-temperature rf-mSR data on the MuII state, and with
the theoretical considerations arising from the þ=� pinning
model [1,20].
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