Determining the size of a SAV fleet using flow optimization in an interurban demand context

Gonçalo Santos (U Coimbra)

Gonçalo Correia (TU Delft)

Outline

- Introduction
- Flow-based optimization model
- Case study
- Results
- Closing remarks

Introduction

Automation is becoming part of driving

Driverless vehicles (autonomous - AV)

Introduction

SAV- Shared Automated Vehicles

- Solves vehicle rebalancing, need for driver's license, insurance -> carsharing;
- Eliminates the need for a driver -> ride-hailing and taxi.

SAV systems have been studied in urban contexts;

What about heterogeneous or low density regions?

- SAV service can Improve access to mobility for those living in less dense areas and Benefit local economies;

Introduction

- SAV system design and assessment through integer programming (IP) mainly associated to vehicle routing problems (VRP);
- VRP optimizes the route of each vehicle individually;
- NP-hard, and only viable for small networks;
- Slicing time (rolling-horizon) is a common strategy to overcome this problem;

A distinct IP approach is Flow-based optimization

Jorge et. al, 2014	carsharing	Design relocation operations (fleet up to 273 vehicles)
Liang et al., 2016	SAV	Small networks
Tsao et al., 2018 Iglesias et al., 2018	SAV	Large networks using Rolling-horizon

Flow-based optimization model

- A time-space network;
- Nodes = zones, Edges = flows;
- Vehicles can relocate;

--► idle vehicles' flow arcs (s)
--- moving vehicles' flow arcs (x, y)

Flow-based optimization model

Region subdivided in zones; zones represented by centroids.

□ Travel time includes pick up and delivery — movement of clients

Flow-based optimization model

Objective Function:

Maximize profit = revenues (price) – costs (moving, fixed daily cost)

- Constraints:
- 1) Conservation of flows;
- 2) # of passengers do not overpass vehicle capacity;
- 3) # and position of vehicles at t=0;
- 4) Additional constraints to turn on-off zones worth to explore.

Case study

Coimbra region (19 municipalities)

 Demand gathered from survey IMM2008 total intermunicipal trips: 116179 average distance: 32.5 km;

(1,3,5,10,15,25,50,75,100%)

Service price: 0.10€/km

	Car	Minibus
Seat capacity		16
Vehicle daily cost (€)		50
Battery capacity (kWh)		91
Energy consumption (kWh/100km)		36
Driving cost (€/100km)	4	7

Scenarios

1) A fleet of cars (4 seats capacity)

2) A fleet of minibus (16 seats capacity)

3) Mixed fleet (cars+minibuses)

Results - profit

Maximum profit for mixed fleet serving all municipalities 230 k€/day (23% ar fleet, 14% minibus fleet)

Share trendline converges to 1/3 of cars and 2/3 of minibuses.

Results - Turn on-off municipalities

Improve profit for low demand levels by covering less municipalities (partial coverage).

Results – comparison with BAU

 Comparing BAU with scenarios serving all demand and covering the entire region

 The improvements are sustained by a negative impact on passenger travel time values

Results – one passenger per vehicle

- Low willingness to share leads to losses for the entire region
- And to profit for optimal coverage set of municipalities

Results – electric charger type

Important for validation

Closing remarks

- We presented a Flow-based IP model to design interurban SAV systems;
- The model optimizes fleet size and vehicle movements based on profit maximization;
- Adequate for large-scale SAV systems;
- The model was applied to a Portuguese region and the results showed that:
 - 1) A mixed fleet of cars and minibuses is the best option for profit maximization;
 - 2) The introduction of the SAV system should be done with sequential expansions to guarantee profit;
 - 3) Having one passenger per vehicle leads to losses for the entire region;
 - 4) A 50kw charging power is enough to support the energy needs without afecting vehicle movements.

THANK YOU

Gonçalo Santos

Email: gdsantos@uc.pt

REFERENCES:

- Jorge, D., Correia, G.H.A., Barnhart, C., 2014. Comparing Optimal Relocation Operations With Simulated Relocation Policies in One-Way Carsharing Systems. IEEE Trans. Intell. Transp. Syst. 15, 1–9.
- Liang, X., Correia, G.H. de A., van Arem, B., 2016. Optimizing the service area and trip selection of an electric automated taxi system used for the last mile of train trips. Transp. Res. Part E Logist. Transp. Rev. 93, 115–129.
- Tsao, M., Iglesias, R., Pavone, M., 2018. Stochastic Model Predictive Control for Autonomous Mobility on Demand. IEEE Conf. Intell. Transp. Syst. Proceedings, ITSC 2018-Novem, 3941–3948.
- Iglesias, R., Rossi, F., Wang, K., Hallac, D., Leskovec, J., Pavone, M., 2018. Data-driven model predictive control of autonomous mobility-on-demand systems. Proc. IEEE Int. Conf. Robot. Autom. 6019–6025.

