Assessing the Shared Automated Vehicle's fleet size using flow optimization in an interurban demand project

Gonçalo Santos (PhD researcher)

UNIVERSIDADE Ð COIMBRA

Driving2Driverless project

20.09.2019

12th CITTA International Conference

Outline

Rinspeed XchangE concept

- Introduction
- Driving2Driverless project
- Assessing fleet size
- Closing remarks
- Next steps

Wepod electric driverless bus, Netherlands

Introduction

Automation is becoming part of driving

SOCIETY OF AUTOMOTIVE ENGINEERS (SAE) AUTOMATION LEVELS

Potential of AV's

The use of autonomous vehicles (AV) can potentially affect:

- Road safety (decrease the number of accidents EU Vision Zero);
- □ Mobility (namely to elders and people with disabilities);
- Productivity (perform other activities while traveling);
- Environmental (perform other activities while traveling);

The use of a shared fleet of AV's (SAV) can increase:

- Access to AV technology (lower car ownership);
- Access to mobility (for those living in less dense areas);

Interurban mobility

- The use of SAV has been studied in urban contexts (namely inside metropolitan areas);
- Heterogeneous regions (with low density areas) are more likely to benefit from the introduction of a SAV system;

Aim of the D2D project:

Look into a long term scenario where all demand is provided by Autonomous vehicles;

Interurban movements in Coimbra and Aveiro;

Address the **different components** (routing, network modeling, charging and parking).

Assessing fleet size

(Preliminary study: optimal fleet, profit)

Transport service

- Shared Autonomous Vehicles (SAV)
- Interurban transportation market;
- The trips are between municipalities;
- It is considered that vehicles gather clients inside the municipality of origin, travel to the municipality of destination and distribute clients to their individual destinations;

Scenarios

1) A fleet of minibus16 seats (autonomous, non-autonomous)

2) A fleet of autonomous vehicles with a 4 seat capacity

- 3) The importance of electric battery range constraint
- 4) Turn on and off municipalities (decided by optimization)

5) A mixed fleet of autonomous vehicles (4 and 16 seat capacity decided by optimization)

MIP model

- Routing np-hard
- Considers flows of vehicles (aggregated values)
- Time-space network
- Nodes represent municipalities; Edges represent flows
- Vehicles can relocate

MIP model

Objective function (maximize profit)

(1) Ensure the conservation of vehicle flows.

= 0, $\forall i_t \in V | t > 0$

$$\max(\Pi) = \sum_{\left(i_t, j_{t+t_{ij}}\right) \in A_1} p(i, j) \cdot \left[D\left(i_t, j_{t+t_{ij}}\right) - k\left(i_t, j_{t+t_{ij}}\right) \right]$$
$$- \sum_{\left(i_t, j_{t+t_{ij}}\right) \in A_1} c(i, j) \cdot \left(x\left(i_t, j_{t+t_{ij}}\right) + y\left(i_t, j_{t+t_{ij}}\right) \right) - (cdriver + c_v) \cdot v$$

Scenarios	models
1	Model constrains 1 to 4
2	Model constrains 1 to 4
3	Model constrains 1 to 4 and 5
4	Model constrains 1 to 4 and 6
5	Model constrains 1 to 4 adapted for two vehicle types; the service provider chooses the vehicle to send

(4) decide the number and position of vehicles at the first instant

$$\sum_{i\in N} s(i_0,i_1) = v$$

 $s(i_{t-1},i_t)_{(i_{t-1},i_t)\in A_2} + \sum_{\substack{(j_{t-t_{ij}},i_t)\in A_1\\(j_{t-t_{ij}},i_t)\in A_1}} x\left(j_{t-t_{ji}},i_t\right) + \sum_{\substack{(j_{t-t_{ij}},i_t)\in A_1\\(j_{t-t_{ij}},i_t)\in A_1}} y\left(j_{t-t_{ji}},i_t\right) + \sum_{\substack{(j_{t-t_{ij}},i_t)\in A_1\\(i_{t},j_{t+t_{ij}})\in A_1}} y\left(j_{t-t_{ji}},i_t\right) + \sum_{\substack{(j_{t-t_{ij}},i_t)\in A_1\\(i_{t},j_{t+t_{ij}})\in A_1}} y\left(i_{t},j_{t+t_{ij}}\right) - s(i_{t},i_{t+1})_{(i_{t},i_{t+1})\in A_2}$ (5) the number of kms moving (in aggregate numbers) must be less or equal than the capacity of batteries.

$$\sum_{t=1}^{t=k} x\left(i_{t}, j_{t+t_{ij}}\right) \cdot d_{ij} + \sum_{t=1}^{t=k} y\left(i_{t}, j_{t+t_{ij}}\right) \cdot d_{ij} \le R_{0} \cdot v + C_{r} \cdot \sum_{t=1}^{t-k} s(i_{t}, i_{t+1}), \forall k \in I, \left(i_{t}, j_{t+t_{ij}}\right) \in A_{1}, (i_{t}, i_{t+1}) \in A_{2}$$

(2) The number of persons transported by vehicles do not overpass its capacity

$$D\left(i_{t}, j_{t+t_{ij}}\right) - k\left(i_{t}, j_{t+t_{ij}}\right) \le m \times x\left(i_{t}, j_{t+t_{ij}}\right) \quad , \forall \left(i_{t}, j_{t+t_{ij}}\right) \in A_{1}$$

(3) Rejected demand cannot overpass demand

$$k\left(i_{t}, j_{t+t_{ij}}\right) \leq D\left(i_{t}, j_{t+t_{ij}}\right) \quad , \forall \left(i_{t}, j_{t+t_{ij}}\right) \in A_{1}$$

(6) the optimization model decides which municipalities are worth to explore through a profit point of view.

$$\begin{split} D\left(i_{t}, j_{t+t_{ij}}\right) &= D'\left(i_{t}, j_{t+t_{ij}}\right) \times a(i, j), \forall \left(i_{t}, j_{t+t_{ij}}\right) \in A_{1} \\ a(i, j) &\leq r(j), \forall i, j \in N \\ a(i, j) &\leq r(i), \forall i, j \in N \\ a(i, j) &\geq r(i) - M(1 - r(j)), \forall i, j \in N \\ r(i) &\in \{0, 1\} \end{split}$$

9/18

Subject to:

Case study

 Region of Coimbra (17 municipalities)

□ Demand gathered from survey IMM2008 total intermunicipal trips: 238490 average distance: 32.5 km; average speed ≈ 60km/h;

Diferent demand values considered

Service price and costs

Service price considered: 10cts/km
(less than half of the urban service drivenow lisboa 27cts/min, considering an average speed of 60km/h)

Vehicles:

	Minibus (Iveco Daily electric)	Car (Renault Zoe)
Capacity	16 passengers	4 passengers
Price	68000€	23195€
Depreciation (20% depreciation on the first 3 years)	37€ /day	13€/day
Range	250km	250km
Normal charging rate	0.42km/min	1km/min
Running cost	7€/100km	4€/100km

Results - Mixed fleet vs Mono fleet

	No rejection			
	D (%)	#vehicles	profit(k€)	
Autonomous car	10	743	78	
	25	3388	405	
	100	6715	813	
Autonomous minibus	10	391	70	
	25	1241	423	
	100	2347	858	

Profit increase
due to efficient
use of capacity.

	D (%)	#cars	#minibus	Profit(k€)
Mixed fleet	10	285	141	81
	25	590	857	431
	100	964	1767	867

Allowing trip rejection

	No rejection			With trip rejection		
	D (%)	#vehicles	profit	#vehicles	profit	#rejected trips
Autonomous car	10	743	77542	(-94)	77979	210 (0.88%)
	25	3388	404770	(-172)	405446	532 (0.45%)
	100	6715	813007	(-273)	814021	923 (0.39%)
Autonomous minibus	10	391	69851	(-120)	72932	992 (4.18%)
	25	1241	422814	(-162)	425104	1506 (1.26%)
	100	2347	858217	(-218)	860445	2463 (1.03%)

□Trip rejection leads to 1% increase in profit

13/18 DLow service level

Electric capacity constraint

The electric capacity constraint doesn't affect the results (considering that the vehicle charges every time it stops; no limitations in number of chargers and location)

Turn on-off municipalities

The turn on off restriction is used activated for low demand levels (once there is no fixed cost associated to service expansion)

Autonomous minibus

Closing remarks

- □ The use of a SAV system for interurban trtps is profitable (daily profit rounding 800k€ for Coimbra region);
- The number of vehicles needed to satisfy all interurban potential demand in Coimbra region are 6715 cars or 2347 minibus;
- The electric battery constraint is not important if number and location of charging stations are considered unlimited;
- Allowing trip rejection leads to a increase of 1% in profit;

Next research steps

- Expand the analysis to the region of Aveiro;
- □ Introduce pick up and delivery time;
- □ add maintenance cost;
- □ Consider the **train** as an alternative mode;
- Include discrete choice model inside the optimization model.

Thank You!

Gonçalo Santos

PhD researcher, University of Coimbra

Email: gdsantos@uc.pt

UNIVERSIDADE Ð COIMBRA

Driving2Driverless project

