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A B S T R A C T

This paper describes a general approach to compute the boundary integral equations that appear when the
boundary element method is applied for solving common engineering problems. The proposed procedure
consists of a new quadrature rule to accurately evaluate singular and weakly singular integrals in the sense
of the Cauchy Principal Value by an exclusively numerical procedure. This procedure is based on a system
of equations that results from the finite part of known integrals, that include the shape functions used to
approximate the field variables. The solution of this undetermined system of equations in the minimum
norm sense provides the weights of the quadrature rule. A MATLAB script to compute the quadrature rule is
included as supplementary material of this work. This approach is implemented in a boundary element method
formulation based on the Bézier–Bernstein space as an approximation basis to represent both geometry and
field variables for verification purposes. Specifically, heat transfer, elastostatic and elastodynamic problems
are considered.
1. Introduction

The Boundary Element Method (BEM) allows to solve several en-
gineering problems such as acoustics scattering, fracture mechanics,
soil wave propagation, and heat conduction with high accuracy and
efficiency [1]. The BEM is based on the fundamental solution of a
particular problem that it is used as the weighting function and allows
to eliminate the domain discretization. Then, the methodology results
in boundary integral equations (BIE) for a point 𝐱∗ located at the
arbitrary boundary 𝛤 as follows [2]:

𝑐(𝐱∗)𝑢(𝐱∗) = ∫𝛤

(

𝑡(𝐱)(𝐱, 𝐱∗) − 𝑢(𝐱)(𝐱, 𝐱∗)
)

𝑑𝛤 (𝐱) , (1)

where 𝑢(𝐱) and 𝑡(𝐱) are the field variables, (𝐱, 𝐱∗) and (𝐱, 𝐱∗) are
the fundamental solution at point x due to a point source located at
𝐱∗, and the integral-free term 𝑐(𝐱∗) depends only on the boundary
geometry at the collocation point 𝐱∗. The fundamental solution is
chosen according to the actual problem. In addition, the boundary
discretization is determined by the fundamental solution.

Eq. (1) allows computing the solution to many problems. The inte-
grals in Eq. (1) can be regular, near-singular, weakly singular, singular
or hypersingular integrals, and should be understood in the sense of
the Cauchy Principal Value (CPV) or in the Hadamard Finite Part (FP).
Regular integrals are integrated by Gaussian quadrature. In the rest
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of the cases, their analytical evaluation depends on the fundamental
solution and the shape functions used to approximate the field variables
at the boundary element. Both parameters determine the difficulty of
the procedure. Guiggiani [3] discussed and compared several methods
of dealing with CPV integrals in BEM. He grouped the methods into
two basic approaches, the indirect and direct approaches.

Brebbia and Domínguez [4] proposed an approach to indirectly
obtain the second integral on the right-hand side of Eq. (1), once the
discretization is done, based on a rigid body motion. However, this
approach cannot be used to evaluate the integral involving (𝐱, 𝐱∗). Ad-
ditionally, the regularized BIE where the singularity has been removed
by subtracting and adding back terms can be obtained by different tech-
niques. Aliabadi and Hall [5] used a Taylor expansion for the singular
integrand that allows to integrate it by numerical quadrature plus an
analytical integration, since the singularity is subtracted. Guiggiani and
Gigante [6] presented a method for the evaluation of CPV integrals in
several dimensions by a transformation that allows for computing the
BIE as a sum of regular integrals. The method requires adding some
terms to the integral to be evaluated. Karami and Derakhshan [7] also
presented an algorithm to evaluate hypersingular integrals based on
multiple subtractions and additions to separate singular and regular
integral terms. Mukherjee [8,9] and Mukherjee et al. [10] evaluated
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the finite parts of singular and hypersingular integrals by a regulariza-
tion scheme. Recently, Marshall and Richardson [11] have proposed a
whole-body regularization to treat the singular integrals that appear in
the 𝑝-version of the BEM in an efficient and simple way.

Alternatively, direct numerical approaches to compute the BIE have
een proposed by quadrature. Telles [12] presented a transformation
ethod applied to the evaluation of singular or near-singular inte-

rals, where the Jacobian of the transformation cancels the singularity.
onegato [13] examined some numerical approaches for the eval-

ation of one-dimensional and two-dimensional finite-part integrals.
iligenti and Monegato [14] proposed an integration scheme for the

mplementation of ℎ𝑝-BEM using one-dimensional quadrature formulas
with an adequate representation of singular and hypersingular kernels.
Later, Monegato and Scuderi [15] constructed rules for the numerical
evaluation of integrals of functions that are very smooth everywhere
in the domain of integration, except at the boundaries where they
possess mild singularities. They proposed a smoothing transformation
which allows to numerically compute these integrals. More recently,
Monegato [16] described the concept and some main properties of
CPV integrals and their application to four examples of engineering
problems. Kolm and Rokhlin [17] presented a procedure for the design
of high-order quadrature rules for the numerical evaluation of singular
and hypersingular integrals in the appropriate finite part sense. Then,
Carley [18,19] developed a method for the derivation of quadrature
rules suitable for use in BEM, where the integrand has strong sin-
gularities up to order two [18] or is near-singular [19] based on
Ref. [17]. Boykov et al. [20] developed cubature formulas for evaluat-
ing hypersingular integrals based on the direct numerical computation
of Hadamard’s integrals. Theotokoglou and Tsamasphyros [21] and
Tsamasphyros and Theotokoglou [22] proposed numerical quadrature
formulas that ensure the exact calculation of singular integrals. Khan
et al. [23] presented a methodology for numerical evaluation of CPV
of singular integrals with oscillatory Fourier kernel. They applied the
algorithm to evaluate the singular integrals on the uniform, scattered,
and Chebyshev–Gauss–Lobatto nodes and concluded that the accuracy
depends on the nodal distribution.

In previous works, specific developments were done to obtain the
CPV of the integrals involving the corresponding problems. In the
author’s opinion, the power and versatility of the BEM would be
strongly exhibited in a methodology that allows to compute the BIE
by numerical quadratures for an arbitrary element order. In this case,
the application of the BEM for solving common engineering prob-
lems is straightforward by a general code where different fundamental
solutions are available.

This research describes a procedure that allows to compute the
BIE by numerical quadratures. The methodology is based on the com-
putation of weights for the quadrature rules by the solution of an
underdetermined system of equations in the minimum norm sense as
in Ref. [18]. The equations are obtained from the Cauchy Principal
Value of known integrals that include the shape functions evaluated at
the quadrature points to increase the accuracy. The proposed method
can be used for any element and shape function using only numerical
integration. Here, the BEM formulation based on the Bézier–Bernstein
space [24] has been implemented to consider, additionally, the exact
boundary geometry. Furthermore, this formulation allows the use of
arbitrary high-order elements. Bernstein polynomials are accounted for
developing this general approach since Lagrange polynomials can be
obtained from the Bernstein basis. Discontinuous elements have been
considered to simplify the treatment of boundary conditions at bound-
ary discontinuities. The numerical performance of the methodology is
validated by its application to potential, elastostatic, elastodynamic,
and heat conduction steady-state problems. It can also be used for
solving time-dependent problems whose BIEs present the same type of
singularity.
608
The novelties and useful contributions of the work presented herein
are: (𝑖) numerical quadratures accounting for the element shape func-
tions are suggested for the implementation of the BEM; (𝑖𝑖) a MAT-
AB [25] class to compute the quadrature rule is included as supple-
entary material; (𝑖𝑖𝑖) the proposed methodology is applied to several
EM fundamental solutions by exclusive numerical integration.

The paper is organized as follows. First, the numerical approach
s presented. The quadrature rule to compute the corresponding BIEs
s proposed and numerically verified. Next, the BEM formulation in
he Bézier–Bernstein space is summarized. Then, the methodology is
pplied to solve four different problems: (𝑖) heat transfer in a hollow
ylinder; (𝑖𝑖) an acoustic domain with a complex open boundary geom-

etry; (𝑖𝑖𝑖) the elastostatic behaviour of an annulus with an internal inclu-
sion; and (𝑖𝑣) wave scattering in a three-dimensional elastic cylindrical
cavity; and the corresponding fundamental solutions are discussed.
Finally, the conclusion section summarizes the main contributions of
this work.

2. Numerical approach

The starting point for the BEM formulation is the BIE (Eq. (1)).
The meaning of the field variables depends on the formulation of the
physical problem under study. Once the boundary is discretized into 𝑁
elements, 𝛤 =

⋃𝑁
𝑗=1 𝛤

𝑗 , and the field variables within an element 𝛤 𝑗
are approximated from the nodal values 𝑢𝑖 and 𝑡𝑖 through the element
shape functions 𝜙𝑖(𝐱) of order 𝑝, Eq. (1) is rewritten as follows:

𝑐(𝐱∗)𝑢(𝐱∗) =
𝑁
∑

𝑗=1

𝑝
∑

𝑖=0

[(

∫𝛤 𝑗
𝜙𝑖(𝐱)(𝐱, 𝐱∗) 𝑑𝛤

)

𝑡𝑖 −
(

∫𝛤 𝑗
𝜙𝑖(𝐱)(𝐱, 𝐱∗) 𝑑𝛤

)

𝑢𝑖
]

(2)

A key issue in the BEM is the element integration in Eq. (2). The
boundary element formulation for common engineering problems uses
Green’s function based on the solution of the Laplace equation (heat
transfer), Poisson equation (electrostatic), Helmholtz equation (acous-
tics), or the Cauchy’s first law of motion (elasticity and wave propaga-
tion in solids), among others. These functions usually have a singularity
when the distance 𝑟 between the collocation point 𝐱∗ and the observa-
tion point 𝐱 points goes to zero. The singularities are of the type of
log(𝑟) and 1∕𝑟 in the cases considered in this paper, and lead to weakly
singular and singular element integrations that should be handled
properly. Although the logarithmic singularity can be integrated by
quadratures, such as those proposed in Ref. [15], the other type must
be interpreted as the CPV. A new quadrature rule to assess the singular
integral is presented in the following section.

2.1. Quadrature rules

The quadrature rules proposed herein are valid for the weakly
singular and singular integrals mentioned above. The proposed method
is based on the works of Kolm and Rokhlin [17] and Carley [18]. These
authors derived a numerical quadrature for singular and hypersingular
integrals based on the Legendre expansion of the element shape func-
tion. Here, a new procedure is proposed to generalize the quadrature
to adapt it to any BEM formulation. The Lagrange interpolant derived
from the Bernstein polynomials was chosen instead of the Legendre
expansion to represent the element shape functions. This allows the
use of different types of elements in the BEM [24] such as equidistant
nodes, Legendre–Gauss–Lobatto (LGL) integration points used in the
spectral formulations [26], or simpler distributions such as the fam-
ily of Chebyshev points. Furthermore, the proposed method is valid
for problems with singular integrals such as heat transfer, acoustics,
elasticity, and wave propagation in solids, both for two-dimension or

two-and-a-half dimensions.
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The generality of the proposed method is achieved because of the
element shape functions of order 𝑝 can be derived from the Bernstein
asis as [24]:

𝑖(𝑡) =
𝑛
∑

𝑘=0
𝑐𝑖𝑘𝐵

𝑛
𝑘(𝑡) , 𝑖 = 0,… , 𝑝 (3)

here 𝑐𝑖𝑘 are control points and 𝐵𝑛𝑘(𝑡) is the Bernstein polynomial of
rder 𝑛 defined over the interval 𝑡 ∈ [0, 1] as:

𝑛
𝑘(𝑡) =

(

𝑛
𝑘

)

𝑡𝑘(1 − 𝑡)𝑛−𝑘, 𝑘 = 0,… , 𝑛 (4)

ote that the change of variable 𝑡 = (𝜉 + 1)∕2 allows to relate the
nivariate basis 𝑡 with the natural coordinate 𝜉 ∈ [−1, 1]. The Lagrange
nterpolant derived from the Bernstein basis must fulfil the following
ondition for the shape function 𝜙𝑖 at element nodes 𝑡𝑗 :

𝜙𝑖(𝑡𝑗 ) =
𝑛
∑

𝑘=0
𝑐𝑖𝑘𝐵

𝑛
𝑘(𝑡𝑗 ) = 𝛿𝑖𝑗 , 𝑗 = 0,… , 𝑛 (5)

where 𝛿𝑖𝑗 is the Kronecker delta.
This condition is commonly expressed as a linear system of equa-

tions through the Bernstein–Vandermonde matrix 𝐴𝑗𝑘 = 𝐵𝑛𝑘(𝑡𝑗 ) as
ollows:

𝐵𝑛0 (𝑡0) 𝐵𝑛1 (𝑡0) … 𝐵𝑛𝑘(𝑡0) … 𝐵𝑛𝑛 (𝑡0)

𝐵𝑛0 (𝑡1) 𝐵𝑛1 (𝑡1) … 𝐵𝑛𝑘(𝑡1) … 𝐵𝑛𝑛 (𝑡1)

…

𝐵𝑛0 (𝑡𝑗 ) 𝐵𝑛1 (𝑡𝑗 ) … 𝐵𝑛𝑘(𝑡𝑗 ) … 𝐵𝑛𝑛 (𝑡𝑗 )

…

𝐵𝑛0 (𝑡𝑛) 𝐵𝑛1 (𝑡𝑛) … 𝐵𝑛𝑘(𝑡𝑛) … 𝐵𝑛𝑛 (𝑡𝑛)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑐𝑖0
𝑐𝑖1
…

𝑐𝑖𝑘
…

𝑐𝑖𝑛

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

0

0

…

1

…

0

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

. (6)

hus, the element shape function 𝜙𝑖(𝑡) is defined by the control points
btained from the solution of Eq. (6).

Once the shape function is defined in the Bernstein basis (Eq. (5)),
he element integration in Eq. (2) can be rewritten as follows in natural
oordinates:
1

−1
𝜙𝑖(𝜉) (𝜉, 𝐱∗)𝑑𝛤

𝑑𝜉
𝑑𝜉 = ∫

1

0
𝜙𝑖(𝑡) (𝑡, 𝐱∗)𝑑𝛤

𝑑𝜉
𝑑𝜉
𝑑𝑡
𝑑𝑡

= ∫

1

0

( 𝑛
∑

𝑘=0
𝑐𝑖𝑘𝐵

𝑛
𝑘(𝑡)

)

 (𝑡, 𝐱∗)𝑑𝛤
𝑑𝜉

𝑑𝜉
𝑑𝑡
𝑑𝑡

=
𝑛
∑

𝑘=0
𝑐𝑖𝑘

(

∫

1

0
𝐵𝑛𝑘(𝑡) (𝑡, 𝐱∗)𝑑𝛤

𝑑𝜉
𝑑𝜉
𝑑𝑡
𝑑𝑡

)

(7)

here,  (𝑡, 𝐱∗) stands for the type of singularity in the fundamental
olution.

The quadrature rule should be able to compute the last integrals
n Eq. (7) accounting for the following singular terms 𝐵𝑛𝑘(𝑡) (𝑡, 𝐱∗)
erived from the fundamental solution or its series expansion:

∫

1

−1
𝐵𝑛𝑘(𝜉) 𝑑𝜉 = ∫

1

0
𝐵𝑛𝑘(𝑡)

𝑑𝜉
𝑑𝑡
𝑑𝑡 (8)

∫

1

−1
𝐵𝑛𝑘(𝜉) log |𝜉

∗ − 𝜉| 𝑑𝜉 = ∫

1

0
𝐵𝑛𝑘(𝑡) log |𝜉

∗ − 2𝑡 + 1|
𝑑𝜉
𝑑𝑡
𝑑𝑡 (9)

PV∫

1

−1

𝐵𝑛𝑘(𝜉)
𝜉∗ − 𝜉

𝑑𝜉 = CPV∫

1

0

𝐵𝑛𝑘(𝑡)
𝜉∗ − 2𝑡 + 1

𝑑𝜉
𝑑𝑡
𝑑𝑡 (10)

where, 𝜉∗ is the element natural coordinate of the collocation point
𝐱∗, and  (𝜉, 𝐱∗) equals 1, log |𝜉∗ − 𝜉| and 1∕(𝜉∗ − 𝜉), in Eqs. (8)–(10),
respectively. Thus, the quadrature rule of order 𝑀 should approximate
these integrals as:

∫

1

−1
𝐵𝑛𝑘(𝜉) (𝜉, 𝐱∗) 𝑑𝜉 = ∫

1

0
𝐵𝑛𝑘(𝑡) (𝑡, 𝐱∗)𝑑𝜉

𝑑𝑡
𝑑𝑡 ≃

𝑀
∑

𝑚=0
𝐵𝑛𝑘(𝑡𝑚) (𝑡𝑚, 𝐱∗)

𝑑𝜉
𝑑𝑡
𝑤𝑚

(11)
609

here 𝑡𝑚 and 𝑤𝑚 are the integration points and weights, respectively.
Eqs. (8)–(10) and Eq. (11)), the last one evaluated as an equality,
llow to define a system of 3(𝑛 + 1) equations with 𝑀 + 1 unknowns
hat represent the weights 𝑤𝑚 of the quadrature rule. The number
f equations is given by the three types of integrals and the 𝑛 + 1
olynomials, and each equation is related to the integrals defined
n Equations (8)–(10) for the Bernstein polynomial 𝐵𝑛𝑘(𝑡). Then, the
ollowing system of equations is obtained:

𝜓0(𝑡0, 𝜉∗) 𝜓0(𝑡1, 𝜉∗) … 𝜓0(𝑡𝑚, 𝜉∗) … 𝜓0(𝑡𝑀 , 𝜉∗)

𝜓1(𝑡0, 𝜉∗) 𝜓1(𝑡1, 𝜉∗) … 𝜓1(𝑡𝑚, 𝜉∗) … 𝜓1(𝑡𝑀 , 𝜉∗)

…

𝜓𝑘(𝑡0, 𝜉∗) 𝜓𝑘(𝑡1, 𝜉∗) … 𝜓𝑘(𝑡𝑚, 𝜉∗) … 𝜓𝑘(𝑡𝑀 , 𝜉∗)

…

𝜓𝑛(𝑡0, 𝜉∗) 𝜓𝑛(𝑡1, 𝜉∗) … 𝜓𝑛(𝑡𝑚, 𝜉∗) … 𝜓𝑛(𝑡𝑀 , 𝜉∗)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑤0

𝑤1

…

𝑤𝑚

…

𝑤𝑀

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑚0

𝑚1

…

𝑚𝑘
…

𝑚𝑛

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

(12)

where,

𝜓𝑘(𝑡𝑚, 𝜉∗) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐵𝑛𝑘(𝑡𝑚)
𝑑𝜉
𝑑𝑡

𝐵𝑛𝑘(𝑡𝑚) log |𝜉
∗ − 2𝑡𝑚 + 1|

𝑑𝜉
𝑑𝑡

𝐵𝑛𝑘(𝑡𝑚)
𝜉∗ − 2𝑡𝑚 + 1

𝑑𝜉
𝑑𝑡

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(13)

𝑚𝑘 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∫ 1
0 𝐵

𝑛
𝑘(𝑡)

𝑑𝜉
𝑑𝑡
𝑑𝑡

∫ 1
0 𝐵

𝑛
𝑘(𝑡) log |𝜉

∗ − 2𝑡 + 1|
𝑑𝜉
𝑑𝑡
𝑑𝑡

CPV ∫ 1
0

𝐵𝑛𝑘(𝑡)
𝜉∗ − 2𝑡 + 1

𝑑𝜉
𝑑𝑡
𝑑𝑡

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(14)

The generalized moments 𝑚𝑘 in Eq. (14) can be obtained from the Bran-
aõ approach to the finite part integrals [27] according to Ref. [18],
nd are found in Appendix A. The system of Eqs. (12) is solved in the
east-squares sense when overdetermined and in the minimum norm
east-squares sense when undetermined. The Jacobian 𝑑𝜉∕𝑑𝑡 in Eq. (11)
s included in the integration weights to use the integration points 𝜉𝑚

defined in the interval [−1, 1] which is more appropriate for the BEM
formulation.

2.1.1. Numerical verification
Following, the accuracy of the proposed quadrature is discussed in

detail. First, the quadrature rule is verified for a discontinuous element
of order 𝑝 = 4 defined at Chebyshev points of the first kind and, later,
a more elaborate convergence analysis is carried out with different
element families and orders.

The element of order 𝑝 = 4 defines the Chebyshev points of the first
kind in natural coordinates at 𝜉 = { ± 0.951,±0.587, 0}. Fig. 1 shows
the integral kernels 𝜓𝑛𝑘 (𝑡, 𝜉

∗) used for the design of the quadrature rule
when the collocation point is 𝜉∗ = 0. The first type of integrand corre-
sponds to the Bernstein basis of order 𝑛 = 4, and the other two are the
product of the Bernstein basis by the types of singularities considered in
this work (including the Jacobian 𝑑𝜉∕𝑑𝑡 = 2). A singularity is observed
at 𝑡 = 0.5 corresponding to the collocation point 𝜉∗ = 0.

Once the integration weights are obtained from Eq. (12), the quadra-
ture rule is verified by the integration of the following integrals:

𝐼0 = ∫

1

−1
𝜑𝑖0(𝜉, 𝜉

∗) 𝑑𝜉 = ∫

1

−1
𝜙𝑖(𝜉) 𝑑𝜉 (15)

𝐼1 = ∫

1

−1
𝜑𝑖1(𝜉, 𝜉

∗) 𝑑𝜉 = ∫

1

−1
𝜙𝑖(𝜉) log |𝜉∗ − 𝜉| 𝑑𝜉 (16)

𝐼2 = CPV∫

1
𝜑𝑖2(𝜉, 𝜉

∗) 𝑑𝜉 = CPV∫

1 𝜙𝑖(𝜉)
∗ 𝑑𝜉 (17)
−1 −1 𝜉 − 𝜉
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(

Fig. 1. Integral kernels 𝜓𝑛
𝑘 (𝑡, 𝜉

∗) for 𝑛 = 4 and 𝜉∗ = 0: (a) 𝐵𝑛𝑘(𝑡)
𝑑𝜉
𝑑𝑡

, (b) 𝐵𝑛𝑘(𝑡) log |𝜉
∗ − 2𝑡 + 1|

𝑑𝜉
𝑑𝑡

, and (c)
𝐵𝑛𝑘(𝑡)

𝜉∗ − 2𝑡 + 1
𝑑𝜉
𝑑𝑡

.

Fig. 2. Integral kernels for Chebyshev points of the first kind, order 𝑝 = 4 and 𝜉∗ = 0.
w
𝑛
t
a

𝐛

The exact values of these integrals can be computed from the gener-
alized moments in Eq. (14) according to Eq. (7). The control points
in Eq. (7) are given by the definition of the shape function in the
Bernstein basis.

Fig. 2 shows the integrands in Eqs. (15)–(17) for Chebyshev points
of the first kind, order 𝑝 = 4 and 𝜉∗ = 0. The integrands in Eqs. (16)–
17) present a singularity at 𝜉 = 0 for the shape function with value

non-zero at 𝜉∗. Table 1 summarizes the computed integral values for
the five shape functions corresponding to the order 𝑝 = 4. The integrals
are numerically evaluated by the proposed approach and using the
built-in integral MATLAB function [25], and are compared with the
exact values computed from Eqs. (7), (14). In the case of Eqs. (15)
and (16), the integrals are evaluated accurately by both methods, since
regular and weak-singular functions are considered. However, Eq. (17)
is only correctly evaluated in the sense of the CPV for the proposed
methodology. Moreover, the time consumption using an Intel Core i7-
8650U processor at 1.9GHz were 0.29ms, 0.66ms and 0.97ms using the
proposed approach, and 6.0ms, 41ms and 43 000ms using the built-
in integral MATLAB function, for the Eqs. (15), (16) and (17),
respectively. The proposed approach allows to compute the CPV of the
considered singular integral in an efficient way. However, integral
cannot obtain the CPV of the singular integral using a global adaptive
quadrature. In this case, MATLAB reached the limit on the maximum
number of intervals in use without getting the requested accuracy.

Finally, a convergence analysis is carried out with different element
families and orders. Fig. 3 shows the 𝐿2 scaled error 𝜖2 in the com-
putation of integral in Eqs. (15)–(17) for different element order and
point distributions: (𝑖) Chebyshev points of the first kind; (𝑖𝑖) Cheby-
shev points of the second kind; (𝑖𝑖𝑖) LGL integration points; and (𝑖𝑣)
equidistant nodes [24]. The accuracy of the proposed quadrature rules
is analysed for different number of integration points 𝑀 according to
the shape function of order 𝑝. The quadrature rule did not give accurate
results for 𝑀 = 2(𝑝 + 1) and, therefore, this number of integration
610
points is not enough. The integration error increases with the element
order 𝑝, and is slightly affected by the number of integration points for
𝑀 ≥ 4(𝑝+1). This analysis allows to conclude that a quadrature rule of
order 4(𝑝+1) is adequate to solve accurately the singular integrals that
result from the BEM for solving the engineering problems considered
in this paper.

A MATLAB script to compute the quadrature rule is available as
supplementary material of this work.1

2.2. The BEM formulation in the Bézier–Bernstein space

The BEM formulation in the Bézier–Bernstein space [24,28] is used
in this work to show the performance of the proposed quadrature rule.
It is based on the application of polynomials in Bernstein form for the
definition of Bézier curves 𝐫𝑛(𝑡):

𝐫𝑛(𝑡) =
𝑛
∑

𝑘=0
𝐛𝑘𝐵𝑛𝑘(𝑡) (18)

here 𝐛𝑘 are the control points used to approximate the geometry and
is the curve degree. An efficient curve computation is achieved using

he polar form (or blossom) of a Bézier curve 𝐫𝑛(𝑡) [29], which defines
multi-affine transformation satisfying:

𝑘 = 𝐑(0,… , 0
⏟⏟⏟
𝑛−𝑘

, 1,… , 1
⏟⏟⏟

𝑘

) (19)

where 𝐑(𝑡1,… , 𝑡𝑛) is computed as:

𝐑(𝑡1,… , 𝑡𝑛) =
∑

𝐼∩𝐽=∅
𝐼∪𝐽={1,2,…,𝑛}

∏

𝑖∈𝐼
(1 − 𝑡𝑖)

∏

𝑗∈𝐽
𝑡𝑗𝐛|𝐽 | (20)

1 http://personal.us.es/pedrogalvin/queen.en.html

http://personal.us.es/pedrogalvin/queen.en.html
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Table 1
Computed integral values in Eqs. (15)–(17) for shape functions 𝜙𝑖 of order 𝑝 = 4 defined at Chebyshev points of the first kind and 𝜉∗ = 0:
(𝑖) evaluate by the proposed approach (𝑄), (𝑖𝑖) using the built-in integral MATLAB function (𝐼), and (𝑖𝑖𝑖) exact values (Eqs. (7), (14))
(𝑀). The values corresponding to the shape function that presents a non-zero value at 𝜉 = 𝜉∗ are highlighted in grey.
𝑖 𝑀0 𝑄0 𝐼0 𝑀1 𝑄1 𝐼1 𝑀2 𝑄2 𝐼2
0 0.167781 0.167781 0.167781 −0.003188 −0.003188 −0.003188 −0.022868 −0.022868 −0.022868
1 0.525552 0.525552 0.525552 −0.313256 −0.313256 −0.313256 1.738304 1.738304 1.738304
2 0.613333 0.613333 0.613333 −1.367111 −1.367111 −1.367111 −0.000000 −0.000000 −0.633431
3 0.525552 0.525552 0.525552 −0.313256 −0.313256 −0.313256 −1.73804 −1.738304 −1.738304
4 0.167781 0.167781 0.167781 −0.003188 −0.003188 −0.003188 0.022868 0.022868 0.022868
Fig. 3. 𝐿2 scaled error 𝜖2 in the computation of integrals (a,d,g, (j) 𝐼0, (b,e,h, (k) 𝐼1, and (c,f,i, (l) 𝐼2 using (a-c) 𝑀 = 2(𝑝 + 1), (d-f) 𝑀 = 3(𝑝 + 1), (g-i) 𝑀 = 4(𝑝 + 1) and (j-l)
𝑀 = 8(𝑝 + 1) integration points.
611
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Thus, a polynomial in Bernstein form can be formulated in the polar
form, substituting Eq. (19) into Eq. (18) as follows:

𝐫𝑛(𝑡) =
𝑛
∑

𝑘=0
𝐑(0,… , 0
⏟⏟⏟
𝑛−𝑘

, 1,… , 1
⏟⏟⏟

𝑘

)𝐵𝑛𝑘(𝑡) = 𝐑(𝑡,… , 𝑡) (21)

The Bézier–Bernstein space is used to describe the exact element ge-
ometry as 𝛤 𝑗 (𝐱) = 𝐫𝑗𝑛(𝑡). Hence, the element integrals in Eq. (2) are
ewritten in the univariate basis 𝑡 ∈ [0, 1] as [24,30]:

𝛤 𝑗
𝑓 (𝐱, 𝐱∗) 𝑑𝛤 = ∫

1

0
𝑓 (𝐱(𝑡), 𝐱∗)

|

|

|

|

|

𝑑𝐫𝑗𝑛(𝑡)
𝑑𝑡

|

|

|

|

|

𝑑𝑡 (22)

where 𝑓 (𝐱, 𝐱∗) represents the integration kernel. Additionally, Eq. (22)
can be transformed into the integration interval [−1, 1] to employ the
proposed quadrature rule.

The BEM formulation in the Bézier–Bernstein space employs the
Lagrange interpolant relative to the Bernstein basis for the field variable
approximation to an element [31]. The field approximation given by
the shape function interpolates (𝑛+1) nodal values through the element
shape functions 𝜙𝑖 of order 𝑛, for 𝑖 = 0,… , 𝑛 (Eq. (3)). Then, the field
approximation becomes:

𝑢(𝑡) =
𝑝
∑

𝑖=0
𝜙𝑖(𝑡)𝑢𝑖 =

𝑝
∑

𝑖=0

{ 𝑛
∑

𝑘=0
𝑐𝑖𝑘𝐵

𝑛
𝑘(𝑡)

}

𝑢𝑖 =
𝑝
∑

𝑖=0
𝑅𝑖(𝑡,… , 𝑡)𝑢𝑖, (23)

where the evaluation of the element shape function 𝜙𝑖(𝑡) also benefits
from the computational advantages of using the polar form 𝑅𝑖(𝑡1,… , 𝑡𝑛)
according to Eq. (20). Once the geometry and the field approximation
given by Eqs. (21) and (23) are introduced in Eq. (2), the boundary
integrals are computed using a standard Gauss–Legendre quadrature
with (𝑝 + 1) integration points whenever the collocation point is suf-
ficiently distant from the integration element. Otherwise, the solution
of singular or weakly singular integrals is numerically computed using
the proposed quadrature rule.

3. Benchmark problems

The proposed approach is applied to several benchmark problems
involving the corresponding fundamental solutions in the BIEs.

3.1. Heat transfer in a two-dimensional hollow cylinder

A hollow cylinder with inner radius 𝑅1 = 0.4m and outer radius
𝑅2 = 0.7m subjected to internal and external temperatures 𝑇1 =
18 ◦C and 𝑇2 = 0 ◦C, respectively, was solved to validate the proposed
method. The material was characterized by a thermal conductivity of
𝜆 = 0.16W ◦C−1m−1.

The exact temperature distribution in the cylinder for a steady-state
condition is given by [32]:

𝑇 (𝑅) =
𝑇1 − 𝑇2

ln(𝑅1∕𝑅2)
ln
(

𝑅
𝑅2

)

+ 𝑇2 (24)

where 𝑅 is the distance from the center axis of the cylinder.
Since the geometry is symmetric, only a quarter of the section

was discretized. Four patches were used to define the two-dimensional
boundary geometry with the control polygon presented in Fig. 4. The
inner and outer boundaries were approximated by cubic Bézier curves.
The patches were discretized into elements with a maximum length of
ℎ = 0.1m and order 𝑝 = 6. A fine grid of internal points equally spaced
0.005m was defined.

Dirichlet and Neumann conditions were prescribed on curved and
straight boundaries [28], respectively: known temperature on the inner
and outer sides of the cylinder and zero heat flow on the symmetry axis.

The Green’s function for temperature in an unbounded domain due
to concentrated load at 𝐱∗ is [4]:

(𝐱, 𝐱∗) = 1 log
( 1) (25)
612

2𝜋𝜆 𝑟 k
Fig. 4. Boundary geometry of a hollow cylinder (red line) and their related control
polygons (grey line). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

In this problem, the variables 𝑢𝑖 and 𝑡𝑖 in the BIE (Eq. (2)) represent the
emperature and heat flux, respectively. The Green’s function presents

logarithmic singularity at 𝑟 = 0 that can be handled by the pro-
osed quadrature. The fundamental solution (𝐱, 𝐱∗) is obtained by
ifferentiating the Green’s function, which increases the order of the
ingularity by one, and, therefore, the integrals involving (𝐱, 𝐱∗) must
e evaluated in the CPV sense. This occurs in all considered problems.

Fig. 5.(a) shows the temperature distribution in the hollow cylinder.
he solid line represents the analytical solution (Eq. (24)) whereas the
arkers show the numerical result obtained with the proposed method.
oth results are in good agreement demonstrating the satisfactory
erformance of the procedure for computing this BIE. The temperature
n the cylinder is plotted in Fig. 5.(b). The thermal gradient from the
nner to the outer side is perfectly represented by the internal points.

.2. Two-dimensional open acoustic domain with complex boundary geom-
try

Next, the capacity of the proposed method is analysed for solving
he Helmholtz equation in an open boundary with complex geometry.
n acoustics problems, 𝑢𝑖 and 𝑡𝑖 in Eq. (2) stand for the sound pressure

and the particle normal velocity, respectively.
In this case, a two-dimensional six-petaled flower circumscribed

between two circumferences of outer and inner radius 1m and 0.25m,
respectively, was studied. The boundary geometry is shown in Fig. 6.
Twelve patches were used to approximate the geometry by quadratic
Bézier curves. The problem properties were fluid density 𝜌 = 1.225
kg/m3 and sound propagation velocity 𝑐𝑓 = 340m/s.

An incident pressure field given by 𝑢𝐼 (𝐱) = exp(𝜄𝜅𝐝 ⋅ 𝐱) was con-
idered in this problem, with a polarized direction 𝐝 = [1, 1] (the unit
maginary number was denoted by the Greek letter 𝜄 to prevent confu-
ion with some subscripts used in the paper). Dirichlet and Neumann
onditions were prescribed on alternate petals so that the numerical
olution provided the incident pressure field.

The Green’s function in the frequency domain for sound pressure at
eceiver position 𝐱 due to a harmonic source acting at 𝐱∗ with frequency

is:

(𝐱, 𝐱∗) = 𝜄
4
𝐻 (1)

0 (𝜅𝑟) (26)

here 𝜅 = 𝜔∕𝑐𝑓 is the wavenumber, 𝑐𝑓 is the sound propagation
elocity, and 𝐻 (1)

0 is the Hankel function of the first kind. The Han-
el function 𝐻 (1)(𝜅𝑟) has a logarithmic singularity given by its series
0
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Fig. 5. Temperature profile [◦C] in the hollow cylinder.
Fig. 6. Boundary geometry of a six-petal flower (red line) and their related control
polygons (grey line). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

expansion at zero:

𝜄(2 log(𝜅𝑟) + 2𝛾 − 𝜄𝜋 − 2 log(2))
𝜋

+  (𝜅𝑟)2 (27)

where 𝛾 is the Euler–Mascheroni constant. This singularity is accurately
integrated by the proposed approach.

Numerical results were compared with the reference solution 𝑢𝐼 (𝐱)
using the 𝐿2 scaled error 𝜖2 to assess the accuracy. A convergence
analysis was carried out for the element length given by 𝜅ℎ = 3
with successive 𝑝−enrichment. The element order was increased until
convergence was reached. For this purpose, it was considered that
the problem solution was properly approximated if the error satisfied
log(𝜖2(ℎ, 𝑝 − 1)∕𝜖2(ℎ, 𝑝 + 1)) ≤ 1. The 𝐿2 scaled error 𝜖2 was evaluated
over a grid of 378 internal points spaced a distance equal to the
wavelength (2𝜋∕𝜅) in both Cartesian directions. The problem solution
was computed for: (𝑖) 𝑀 = 3(𝑝 + 1); (𝑖𝑖) 𝑀 = 4(𝑝 + 1); and (𝑖𝑖𝑖)
𝑀 = 8(𝑝 + 1).

Fig. 7.(a) shows the result of the convergence analysis. The conver-
gence rate improved as the element order increased, with the lowest
error (10−5) being achieved for 𝑝 = 8. The results of this analysis allow
us to conclude that at least 𝑀 = 4(𝑝+1) points are necessary in the BEM
implementation to obtain accurate results.
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The wave propagation over the unbounded domain is shown in
Fig. 7.(b). The sound pressure does not present any discontinuity
at the six-petal flower boundary according to the accuracy of the
methodology.

3.3. Circular inclusion in two-dimensional elastostatics

In this section, a two-dimensional plane strain problem that couples
two different boundaries is studied. Here, 𝑢𝑖 and 𝑡𝑖 in Eq. (2) represent
the displacement and traction fields, respectively.

The geometry was composed of an annulus with a circular inclusion
of different materials (see Fig. 8), introducing a discontinuity in the
solution due to the interaction between both solids. The external side of
the annulus was subjected to a unitary radial displacement. This bench-
mark is useful to test the representation of traction and displacement
fields across a material interface [33].

Two subdomains were defined to represent this problem, ensuring
the compatibility of displacements and the equilibrium of forces at the
interface [34]. The first subdomain was a circle with radius 𝑅𝑖 = 3m,
Poisson ratio 𝜈𝑖 = 0.3 and Young modulus 𝐸𝑖 = 104 Pa. The second
subdomain consisted in an annulus with the same interior radius as
the inner circle, and external radius 𝑅𝑜 = 15m. The properties of
this subdomain were Poisson ratio 𝜈𝑜 = 0.3 and a Young modulus
𝐸𝑜 = 105 Pa.

Due to the symmetry of the problem, only a quarter of both bound-
aries were discretized. The first solid was introduced by Bézier curves:
two linear patches for both symmetry axis, and one cubic patch for the
circular shape. Meanwhile, the second solid needed four patches to be
totally described as the boundary assessed in Section 3.1. The model
was discretized into elements of order 𝑝 = 6 with a maximum length of
ℎ = 1m.

Dirichlet and Neumann conditions were prescribed in the normal
and tangential directions of the symmetry axis, respectively. Radial
displacement 𝑢𝑟(𝑅0) = 1m was also imposed at the external radius of
the annulus.

This problem can be solved analytically leading to the following
displacement field in polar coordinates [33]:

𝑢𝑟(𝑅) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[(

1
𝑅𝑜

−
𝑅𝑜
𝑅2
𝑖

)

𝛼 +
𝑅𝑜
𝑅2
𝑖

]

𝑅 for 0 ≤ 𝑅 ≤ 𝑅𝑖

(

𝑅
𝑅𝑜

−
𝑅𝑜
𝑅

)

𝛼 +
𝑅𝑜
𝑅

for 𝑅𝑖 ≤ 𝑅 ≤ 𝑅𝑜

(28)

𝑢 = 0 (29)
𝜃
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Fig. 7. (a) 𝐿2 scaled error 𝜖2 for different number of points in the quadrature rule (𝑀) depending on the element order. (b) Pressure field over the unbounded domain (the open
boundary is represented in red line). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 8. Geometry of the subdomains.

with

𝛼 =
(𝜆𝑖 + 𝜇𝑖 + 𝜇𝑜)𝑅2

𝑜

(𝜆𝑜 + 𝜇𝑜)𝑅2
𝑖 + (𝜆𝑖 + 𝜇𝑖)(𝑅2

𝑜 − 𝑅
2
𝑖 ) + 𝜇𝑜𝑅2

𝑜
(30)

where 𝜆𝑖, 𝜆𝑜, 𝜇𝑖 and 𝜇𝑜 are the Lamé parameters of both materials and
𝑅 is the radial distance from the origin.

The Green’s function for an isotropic material in plane strain gives
the displacement in the 𝑘 direction due to an unit load acting in the 𝑙
direction [4]:

𝑘𝑙(𝐱, 𝐱∗) =
1

8𝜋𝐺(1 − 𝜈)

[

(3 − 4𝜈) log
( 1
𝑟

)

𝛿𝑘𝑙 +
𝜕𝑟
𝜕𝑥𝑘

𝜕𝑟
𝜕𝑥𝑙

]

(31)

where 𝐺 is the shear modulus, 𝜈 the Poisson ratio and 𝛿𝑘𝑙 the Kronecker
delta. The singularity is of the logarithmic form for displacement.

Fig. 9 compares the analytical solution and the numerical results
obtained with the proposed method, showing again an excellent agree-
ment and the versatility of this numerical approach.

3.4. Wave scattering in a three-dimensional elastic cylindrical cavity

Finally, the proposed method is applied to study an elastodynamic
harmonic boundary value problem, consisting of an infinite length
cylindrical cavity with radius 1m in an unbounded elastic medium.
The problem is longitudinally invariant in the 𝑧 direction, which
614
Fig. 9. Radial displacements along both subdomains. Comparison of computed results
and the analytical solution.

allows the problem solution in two-and-a-half dimensions (2.5D) as the
superposition of 2D solutions with different longitudinal wavenumber
𝜅𝑧 [24,34]:

𝐮(𝐱, 𝜔) = ∫

+∞

−∞
�̃�(�̃�, 𝜅𝑧, 𝜔)𝑒−𝜄𝜅𝑧𝑧 𝑑𝜅𝑧 (32)

where �̃�(�̃�, 𝜅𝑧, 𝜔) is the frequency–wavenumber representation of the
displacement, 𝐱 = 𝐱(𝑥, 𝑦, 𝑧) and �̃� = 𝐱(𝑥, 𝑦, 0).

The homogeneous elastic medium was characterized by a shear
wave velocity 𝑐𝑠 = 150m/s, dilatational wave velocity 𝑐𝑝 = 300m/s,
and density 𝜌 = 1800 kg/m3. The cavity was subjected to a dilatational
point load of unit amplitude applied at 𝐱 = (−3, 0, 0) [35]. The problem
solution was computed for a frequency range from 1 to 200Hz, and a
wavenumber range from 1 to 128 rad/m.

As in the previous examples, the circular shape was approximated
by cubic Bézier curves. Four patches were used to define the whole
boundary geometry. The patches were discretized into a number of
boundary elements ensuring 𝜅𝑝ℎ = 3, and a nodal density per wave-
length 𝑑𝜆 = 2𝜋𝑝∕𝜅𝑝ℎ = 12, where 𝜅𝑝 = 𝜔∕𝑐𝑝, ℎ is the element size, and
𝑝 is the element order.
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Fig. 10. (a) Radial, (b) tangential and (c) longitudinal displacements at (0, 3, 0) due to a point source located at (−3, 0, 0). Comparison of computed results and the analytical
solution [36].
The two-and-a-half-dimensional Green’s function is obtained by
means of the potentials �̃�𝑝 and �̃�𝑠 for the irrotational and equivolu-
minal parts of the displacement vector, respectively [37]:

�̃�𝑝 =
𝜄

4𝜌𝜔2

[

𝐻 (2)
0 (𝜅𝛼𝑟) −𝐻

(2)
0 (−𝜄𝜅𝑧𝑟)

]

(33)

�̃�𝑠 =
𝜄

4𝜌𝜔2

[

𝐻 (2)
0 (𝜅𝛽𝑟) −𝐻

(2)
0 (−𝜄𝜅𝑧𝑟)

]

(34)

being 𝜅𝛼 =
√

𝜅2𝑝 − 𝜅2𝑧 and 𝜅𝛽 =
√

𝜅2𝑠 − 𝜅2𝑧 , and 𝜅𝑝 and 𝜅𝑠 the wavenum-
bers for dilatational and shear waves, respectively. 𝐻 (2)

0 is the Hankel
function of the second kind. Thus, the displacement 𝑘𝑙(𝐱, 𝐱∗) in the 𝑘
direction at 𝐱 due to an unit harmonic load with frequency 𝜔 acting in
the 𝑙 direction at 𝐱∗ for the wavenumber 𝜅𝑧, is obtained from:

𝑘𝑙(𝐱, 𝐱∗) =
𝜕2(�̃�𝑝 − �̃�𝑠)
𝜕𝑥𝑘𝜕𝑥𝑙

+ 𝛿𝑘𝑙∇̃2�̃�𝑠 (35)

The Hankel function 𝐻 (2)
0 (𝜅𝑟) (𝜅 = 𝜅𝛼 or 𝜅 = 𝜅𝛽) has a logarithmic

singularity, as in Section 3.2, given by its series expansion at zero:

−
𝜄(2 log(𝜅𝑟) + 2𝛾 + 𝜄𝜋 − 2 log(2))

𝜋
+  (𝜅𝑟)2 (36)

where 𝛾 is the Euler–Mascheroni constant.
Fig. 10 shows the radial, tangential, and longitudinal displacements

at the observation point 𝐱 = (0, 3, 0) for a longitudinal wavenumber
𝜅𝑧 = 0.4 rad/m. The results computed by the proposed methodology
are compared with the analytical solution available in Ref. [36]. The
quadrature allows to compute the solution correctly. Moreover, Fig. 11
shows the 𝑥−component of the scattered wave field by the cylindrical
cavity at a frequency 𝜔 = 1200 rad/s (𝑓 = 191Hz). Displacements
were normalized to 𝐮(𝐱, 𝜔) = 𝜋𝐮(𝐱, 𝜔)𝑐2𝑠 𝜌𝑟

∗∕(1N), where 𝑟∗ is the
distance from the observation point to the source. The representation is
615
Fig. 11. Real part of the scattered wave field by a cylindrical cavity at 𝜔 = 1200 rad/s
(𝑓 = 191Hz).

limited to a half model, according to the problem symmetry. Maximum
displacements were found at the source point and over the boundary.
A shadow region was found behind the cavity where the displacement
amplitude was considerably lower.
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4. Conclusions

This paper has proposed a novel quadrature that allows to compute
the BIE by numerical integration. The methodology can be used for any
element order and shape function. The BEM formulation, based on the
Bézier–Bernstein space, has been considered to account for the exact
boundary geometry and the use of arbitrary high-order elements. How-
ever, the approach can be easily implemented in any existing codes and
to facilitate this task, a MATLAB script is provided as supplementary

aterial.
The weights of the quadrature rule are given by the solution of an

nderdetermined system of equations in the minimum norm sense. The
quations were obtained from the CPV of known integrals considering
he shape functions of the elements used for the discretization. The
ccuracy of the proposed quadrature has been studied obtaining errors
epending on the element order, that varied from (10−15) for 𝑝 = 1 to
(10−5) for 𝑝 = 20.

The numerical performance of the methodology has been verified by
he study of four problems involving different fundamental solutions:
𝑖) heat transfer in a hollow cylinder; (𝑖𝑖) an open acoustic domain
ith a complex boundary geometry; (𝑖𝑖𝑖) the elastostatic behaviour of
annulus with an internal inclusion; and (𝑖𝑣) the wave scattering in
three-dimensional elastic cylindrical cavity. In all cases, the numer-

cal results have been compared with analytical solutions obtaining a
erfect agreement.

The proposed methodology allows to exploit the powerful and
ersatility of the BEM since the BIE is evaluated numerically. The work
n progress includes the application of the proposed approach to others
undamental solutions.
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ppendix A. Solution of generalized moments

The generalized moments are obtained according to the following
ormulas:

∫

1
𝐵𝑛𝑘(𝜉) 𝑑𝜉 = ∫

1
𝐵𝑛𝑘(𝑡)

𝑑𝜉
𝑑𝑡
𝑑𝑡 =

[

2
𝑛 + 1

𝑛+1
∑

𝐵𝑛+1𝑗 (𝑡)

]1

= 2
𝑛 + 1

(A.1)
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−1 0 𝑗=𝑘+1 0
∫

1

−1
𝐵𝑛𝑘(𝜉) log |𝜉

∗ − 𝜉| 𝑑𝜉 = ∫

1

0
𝐵𝑛𝑘(𝑡) log |𝜉

∗ − 2𝑡 + 1|
𝑑𝜉
𝑑𝑡
𝑑𝑡 (A.2)

CPV∫

1

−1

𝐵𝑛𝑘(𝜉)
𝜉∗ − 𝜉

𝑑𝑡 = CPV∫

1

0

𝐵𝑛𝑘(𝑡)
𝜉∗ − 2𝑡 + 1

𝑑𝜉
𝑑𝑡
𝑑𝑡

= 𝐵𝑛𝑘(𝑡
∗)CPV∫

1

0

1
𝜉∗ − 2𝑡 + 1

𝑑𝜉
𝑑𝑡
𝑑𝑡 + ∫

1

0

𝐵𝑛𝑘(𝑡) − 𝐵
𝑛
𝑘(𝑡

∗)
𝜉∗ − 2𝑡 + 1

𝑑𝜉
𝑑𝑡
𝑑𝑡 (A.3)

here,

PV∫

1

0

1
𝜉∗ − 2𝑡 + 1

𝑑𝜉
𝑑𝑡
𝑑𝑡 =

⎧

⎪

⎨

⎪

⎩

log
|

|

|

|

𝜉∗ + 1
1 − 𝜉∗

|

|

|

|

|𝜉∗| ≠ 1

± log(2) 𝜉∗ = ±1
(A.4)

The logarithmic singularity (Eq. (A.2)) is integrated using an adaptive
quadrature [38], and the regular integral in Eq. (A.3) is solve by a
Gauss–Legendre quadrature of degree (𝑛 + 1).

Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.enganabound.2022.04.036.
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