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of weak filiform type via generalized odd double extensions. 
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Weak filiform
Nilpotent

Moreover, we obtain the classification, up to isomorphism, for 
the smallest possible dimensions, that is, six and eight.
© 2022 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction and preliminaries

Since arised Lie algebras (see for instance [11]) they have been studied deeply. Con-
cretely, quadratic Lie algebras have been studied in connection with many problems 
derived from geometry, physics and other disciplines.

Quadratic Lie algebras have been studied deeply since they arised in connection with 
many problems derived from geometry, physics and other disciplines. The structure of 
quadratic Lie algebras plays an important role in conformal field theory and Sugawara 
construction exists precisely for quadratic Lie algebras [7,14]. In [5,12] was introduced the 
idea of double extension and it allowed them to give a certain description of quadratic Lie 
algebras. More precisely, it is proved that every quadratic Lie algebra may be constructed 
as a direct sum of irreducible ones, and the latter by a sequence of double extensions.

Let us recall that the term “filiform” was coined by Vergne in [18] and it refers to a class 
of nilpotent Lie algebras, those with the longest descending central sequence. Since then, 
filiform Lie algebras have been largely studied, see [2,6,8,10,13] and references therein. 
Nevertheless, the concept of filiform module is more recent and was firstly introduced in 
[9] for defining filiform Lie superalgebras.

In [3] we studied the class of quadratic Lie superalgebras g = g0̄ ⊕ g1̄ such that g1̄
is a filiform g0̄-module (to short we called filiform type). We showed that the study of 
quadratic Lie superalgebras of filiform type can be reduced to those that are solvable. 
Moreover, we obtained an inductive description of solvable quadratic Lie superalgebras 
of filiform type via both double extensions and odd double extensions of quadratic ones.

A Lie superalgebra g is called odd-quadratic, on the other hand, if there is a bilin-
ear form B on g such that B is non-degenerate, supersymmetric, odd and g-invariant. 
Motivated by mathematical and physical applications [16], in the paper [1] was intro-
duced the class of odd-quadratic Lie superalgebras studying some properties and looking 
at non elementary examples. In that work was given descriptions of odd-quadratic Lie 
superalgebras such that the even part is a reductive Lie algebra.

It rises natural the question to study odd-quadratic Lie superalgebras (g = g0̄⊕g1̄, B)
such that g1̄ has the structure of filiform g0̄-module, instead of quadratic Lie superalge-
bras. We show that the unique non-zero odd-quadratic Lie superalgebra (g, B) verifying 
that g1̄ has the structure of filiform g0̄-module is the 2-dimensional Lie superalgebra 
g = g0̄ ⊕ g1̄ such that dim g0̄ = dim g1̄ = 1 with zero product, i.e. abelian (see Corol-
lary 2.1). We include the proof in the paper for completeness. In this case, (g1̄)∗ is a 
filiform g0̄-module. Since g0̄ is isomorphic to (g1̄)∗ with isomorphism B̃ : g0̄ → (g1̄)∗
defined as B̃(X) := B(X, ·), for X ∈ g0̄, we conclude that g0̄ is also a filiform g0̄-module. 

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Consequently, dim [g0̄, g0̄] = dim g0̄−1. As well, (g = g0̄⊕g1̄, B) is an odd-quadratic Lie 
superalgebra such that g1̄ has the structure of filiform g0̄-module, and the non-zero Lie 
algebra g0̄ is nilpotent verifying then dim g0̄ −dim [g0̄, g0̄] ≥ 2, which is a contradiction. 
In fact, these two structures together have proven to be very restrictive.

Therefore, in this paper we present a mild version of this concept, we study odd-
quadratic Lie superalgebras (g = g0̄⊕g1̄, B) such that g1̄ is a weak filiform g0̄-module. In 
this case, we can construct a structure theory and easily present examples. Concretely, in 
Section 2 it is shown the non-existence of odd-quadratic Lie superalgebras (g = g0̄⊕g1̄, B)
such that g1̄ is a filiform g0̄-module. In the next section we introduce the concept of weak 
filiform module (as an odd part via odd double extensions of odd-quadratic ones) and 
study its structure. In this part the center of g plays a relevant role in its own description. 
Given an odd-quadratic Lie superalgebra (g = g0̄ ⊕ g1̄, B) with dim g1̄ = m > 0, such 
that g1̄ is a weak filiform g0̄-module, we construct an odd-quadratic Lie superalgebra 
(t = t0̄⊕t1̄, B̃) as the generalized odd double extension of (g, B), by the 1-dimensional Lie 
superalgebra (Ke)1̄. In Section 4, we present an inductive description of odd-quadratic 
solvable Lie superalgebras of weak filiform type. Also we classify all the complex odd-
quadratic Lie superalgebras of weak filiform type g = g0̄ ⊕ g1̄ for the case dim g0̄ =
dim g1̄ ∈ {3, 4}.

Next part of the current section is devoted to a review of the needed concepts in the 
sequel. For an integer i we denote by ̄i its correspondent equivalence class in Z2 = {0̄, ̄1}. 
For two integers i, j we use the well-defined notation (−1)ij for (−1)ij ∈ {−1, 1}. For a 
Z2-graded vector space V = V0̄⊕V1̄ over the field K, as usual, we write V0̄ for its even part
and V1̄ for odd part. A non-zero element X of V is called homogeneous if either X ∈ V0̄ or 
X ∈ V1̄. In this work, all elements will be supposed to be homogeneous unless otherwise 
indicated. A linear map φ : V → W between two Z2-graded vector spaces is called even
if φ(V0̄) ⊂ W0̄ and φ(V1̄) ⊂ W1̄. It is called odd if φ(V0̄) ⊂ W1̄ and φ(V1̄) ⊂ W0̄. Clearly, 
Hom(V, W ) = Hom(V, W )0̄ ⊕Hom(V, W )1̄, where the first summand comprises all the 
even linear maps, and the second all the odd. Tensor products V ⊗ W are Z2-graded 
vector spaces, where its even part is (V ⊗W )0̄ := (V0̄ ⊗W0̄) ⊕ (V1̄ ⊗W1̄) and odd part 
(V ⊗W )1̄ := (V0̄ ⊗W1̄) ⊕ (V1̄ ⊗W0̄).

Definition 1.1. A Lie superalgebra is a Z2-graded vector space g = g0̄ ⊕ g1̄, with an even 
bilinear operation [·, ·], which satisfies the conditions:

i. [X, Y ] = −(−1)ij [Y, X]
ii. (−1)ik[X, [Y, Z]] + (−1)ij [Y, [Z, X]] + (−1)jk[Z, [X, Y ]] = 0 (super Jacobi id.)

for any X ∈ gī, Y ∈ gj̄ , Z ∈ gk̄, with ī, ̄j, ̄k ∈ Z2.

All Lie superalgebras will be assumed finite-dimensional over an algebraically closed 
commutative field K of characteristic zero, unless otherwise mentioned. The general 
background on Lie superalgebras can be found in [17]. From the previous definition g0̄
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is a Lie algebra, and g1̄ is a g0̄-module. The Lie superalgebra structure also contains the 
symmetric pairing S2g1̄ → g0̄, which is a g0̄-morphism and satisfies the super Jacobi 
identity applied to three elements of g1̄.

Definition 1.2. Let g be a Lie superalgebra and let B : g × g → K be a bilinear form.

i. B is supersymmetrical if B(X, Y ) = (−1)ijB(Y, X), for any X ∈ gī, Y ∈ gj̄ , with 
ī, ̄j ∈ Z2.

ii. B is skew-supersymmetrical if B(X, Y ) = −(−1)ijB(Y, X), for any X ∈ gī, Y ∈ gj̄ , 
with ī, ̄j ∈ Z2.

iii. B is invariant if B([X, Y ], Z) = B(X, [Y, Z]), for all X, Y, Z ∈ g.
iv. B is even if B(X, Y ) = 0, for any X ∈ g0̄, Y ∈ g1̄.
v. B is odd if B(X, Y ) = B(Y, X) = 0, for any X, Y such that either X, Y ∈ g0̄ or 

X, Y ∈ g1̄.
vi. B is non-degenerate if X ∈ g satisfies B(X, Y ) = 0 for all Y ∈ g, then X = 0. 

Otherwise, B is called degenerate.

Definition 1.3. A Lie superalgebra g is odd-quadratic if there exists a bilinear form B :
g × g → g such that B is supersymmetrical, invariant, odd and non-degenerate. It is 
denoted by (g, B) and B is an odd-invariant scalar product on g.

Definition 1.4. Let (g, B) be an odd-quadratic Lie superalgebra.

i. A graded ideal I of g is non-degenerate (resp. degenerate) if the restriction of B to 
I × I is a non-degenerate (resp. degenerate) bilinear form.

ii. (g, B) is B-irreducible if g does not have non-zero non-degenerate graded ideals.
iii. A graded ideal I of g is called B-irreducible if I is non-degenerate and I contains no 

non-zero non-degenerate graded ideals of g.

Definition 1.5. Let g be a Lie superalgebra and let I ⊂ g be a graded ideal.

i. I is minimal if I /∈ {{0}, g} and if J is a graded ideal of g such that J ⊂ I then 
J ∈ {{0}, I}.

ii. I is called maximal if I /∈ {{0}, g} and if J is a graded ideal of g such that I ⊂ J

then J ∈ {I, g}.

Definition 1.6. Let (g, B) be an odd-quadratic Lie superalgebra, and let I ⊂ g be a 
graded ideal. We call the orthogonal of I with respect to B to the set

I⊥ := {X ∈ g : B(X,Y ) = 0, for all Y ∈ I}.

We also say I is isotropic if I ⊂ I⊥.
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Proposition 1.1. [1] The Lie superalgebra g = g0̄⊕g1̄ is odd-quadratic if and only if there 
exists an isomorphism of g0̄-modules ϕ : g0̄ → (g1̄)∗ such that

ϕ([X,Y ])(Z) = ϕ([Y,Z])(X),

for all X, Y, Z ∈ g1̄. In this case, dim g0̄ = dim g1̄ and dimension of g is even.

Definition 1.7. Given a Lie superalgebra g, a Z2-graded vector space A = A0̄⊕A1̄ is a g-
module if A is equipped with an even bilinear map g ×A → A (denoted by (X, a) �→ Xa, 
for X ∈ g and a ∈ A) satisfying

[X,Y ]a = X(Y a) − (−1)ijY (Xa),

for any a ∈ A, X ∈ gī, Y ∈ gj̄ , with ī, ̄j ∈ Z2.

Occasionally, we have to change the gradation of Lie superalgebras as we will describe. 
Let h = h0̄ ⊕ h1̄ be a Lie superalgebra. Denote by P (h) = V0̄ ⊕ V1̄ the Z2-graded vector 
space obtained from h with gradation defined by

V0̄ = h1̄ and V1̄ = h0̄.

Clearly, the associative superalgebras Hom(h) and Hom(P (h)) coincide. Therefore the 
representations of a Lie superalgebra g in h coincide with representations of g in P (h). 
Note that the dual spaces P (h∗), h∗ are equal as Z2-graded vector spaces, however

V ∗
0̄ = h∗1̄ and V ∗

1̄ = h∗0̄.

Denote by πh : h → Hom(P (h∗)) the linear map defined for homogeneous elements as 
follows

πh(Z)(f)(Y ) := −(−1)k̄δf([Z, Y ])

for all f ∈ (P (h∗))δ, Z ∈ hk̄, Y ∈ h. It is quite easy to show that πh is a representation 
of h in P (h∗), but it is not the co-adjoint representation of h.

Proposition 1.2. [1] Let (g, B) be an odd-quadratic Lie superalgebra and h a Lie superal-
gebra. Consider ψ : h → Dera(g, B) a morphism of Lie superalgebras. Define the linear 
map ϕ : g × g → P (h∗) for homogeneous elements by

ϕ(X,Y )(Z) := (−1)(̄i+j̄)k̄B
(
ψ(Z)(X), Y

)

for all X ∈ gī, Y ∈ gj̄ , Z ∈ hk̄. Then the vector space g ⊕P (h∗) becomes a Lie superalgebra 
considering the product
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[X + f, Y + h] := [X,Y ]g + ϕ(X,Y ),

for X + f, Y + h ∈ g ⊕ P (h∗). It is called the central extension of P (h∗) by g (by means 
of ϕ).

Theorem 1.1. [1] Let (g, B) be an odd-quadratic Lie superalgebra and h a Lie superalgebra. 
Consider ψ : h → Dera(g, B) a morphism of Lie superalgebras. Define the linear map 
ψ̃ : h → Hom(g ⊕ P (h∗)) by

ψ̃(Z)(X + f) := ψ(Z)(X) + πh(Z)(f)

for X + f ∈ g ⊕ P (h∗), Z ∈ h.
Then ψ̃(Z) ∈ Der(g ⊕ P (h∗)), for Z ∈ hk̄ where g ⊕ P (h∗) is the central extension of 

P (h∗) by g (by means of ϕ). Moreover, t = h ⊕ g ⊕ P (h∗) with the product

[Z + X + f,W + Y + h] :=[Z,W ]h + [X,Y ]g + ψ(Z)(Y ) − (−1)īj̄ψ(W )(X)

+ πh(Z)(h) − (−1)īj̄πh(W )(f) + ϕ(X,Y ),

with Z + X + f ∈ t̄i, W + Y + h ∈ tj̄, where ϕ is defined in Proposition 1.2, is a Lie 
superalgebra. More precisely, t is the semi-direct product of g ⊕ P (h∗) by h by means 
of ψ̃. Furthermore, let γ be an odd supersymmetric invariant bilinear form on h (not 
necessarily non-degenerate). Then the bilinear form B̃ : t × t → K defined by

B̃(Z + X + f,W + Y + h) := B(X,Y ) + γ(Z,W ) + f(W ) + (−1)īj̄h(Z)

whenever Z+X+f ∈ t̄i, W+Y +h ∈ tj̄, is an odd-invariant scalar product on t and (t, B̃)
is an odd-quadratic Lie superalgebra. We say that the odd-quadratic Lie superalgebra 
(t, B̃) is an odd double extension of (g, B) by h (by means of ψ and γ).

2. Non-existence of odd-quadratic Lie superalgebras g = g0̄ ⊕ g1̄ such that g1̄ is a 
filiform g0̄-module and dim g > 2

Our first attempt was to study odd-quadratic Lie superalgebras g = g0̄ ⊕ g1̄ such 
that g1̄ is a filiform g0̄-module, but these two structures, odd quadratic and filiform 
module, are shown to be incompatible together if dim g > 2. We explain the idea of 
the proof. We show that the dual g∗1̄ is also a filiform g0̄-module. As g0-modules g0

and g∗1 are isomorphic, then g0 is a filiform g0-module. This fact leads, in particular, to 
dim [g0̄, g0̄] = dim g0̄ − 1. We prove also that g0̄ is nilpotent Lie algebra, so it has at 
least two generators and dim [g0̄, g0̄] ≤ dim g0̄ − 2, arriving then to a contradiction.

We recall the concept of filiform module that was firstly introduced in [9] for defining 
filiform Lie superalgebras.
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Definition 2.1. Let (g, [·, ·]) be a Lie algebra and (V, π) be a finite dimensional represen-
tation of g (that is, V is a g-module). We say V is a filiform g-module if there exist 
{V0, . . . , Vm}, being m = dim V , such that

1. Vi is a g-submodule of V , for i ∈ {0, . . . , m}.
2. dim Vi = i, for i ∈ {0, . . . , m}.
3. V = Vm ⊃ Vp−1 ⊃ · · · ⊃ V1 ⊃ V0 = {0}.
4. g · Vi = Vi−1, for i ∈ {1, . . . , m}.

We recall that X · v = π(X)(v) for any X ∈ g, v ∈ V .

We need the following three lemmas to prove the main theorem of the section.

Lemma 2.1. Let (g, [·, ·]) be a Lie algebra and (V, π) a filiform representation (i.e. V is a 
filiform g-module). Then the dual representation (V ∗, π∗) is filiform (i.e. V ∗ is a filiform 
g-module).

Proof. Recall that X · f = π∗(X)f = −f ◦ π(X) for all X ∈ g, f ∈ V ∗. Then

(
(π∗)(X)(f)

)
(v) = −f(π(X)(v)) = (X · f)(v) = −f(X · v)

for any v ∈ V . Let us consider a basis B := {e1, . . . , em} of V such that {e1, . . . , ei} is a 
basis of Vi, for i ∈ {1, . . . , m}. For any i ∈ {0, . . . , m} we define

(V ∗)i := {f ∈ V ∗ : f(Vm−i) = {0}}.

It is clear that (V ∗)i is a vector subspace of V ∗ and {e∗m−(i−1), . . . , e
∗
m} is a basis of 

(V ∗)i, for i ∈ {1, . . . , m}, where {e∗1, . . . , e∗m} is a dual basis of B. So dim (V ∗)i = i.
For i ∈ {1, . . . , m},

f ∈ (V ∗)i ⇐⇒ f(Vm−i) = {0}
⇐⇒ f(X · v) = {0} for all X ∈ g, v ∈ Vm−i+1

⇐⇒ (X · f)(Vm−(i−1)) = {0} for all X ∈ g

⇐⇒ X · f ∈ (V ∗)i−1 for all X ∈ g

We conclude that g · (V ∗)i ⊂ (V ∗)i−1.
If i = 1, (V ∗)1 = spanK{e∗m}, then g · (V ∗)1 = (V ∗)0 = {0}. Let i ∈ {2, . . . , m}, 

in the following we are going to prove that g · (V ∗)i = (V ∗)i−1, with (V ∗)i−1 =
spanK{e∗m−i+2, . . . , e

∗
m}. Let q ∈ {m − i + 2, . . . , m} ⊂ {2, . . . , m}. Then there exists 

Xq ∈ g such that

Xqeq = βq−1eq−1 + · · · + β1e1
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with βq−1 �= 0 because gVq = Vq−1.
Now,

Xq((−β−1
q−1)e∗q−1)(eq) = β−1

q−1e
∗
q−2(Xeq) = β−1

q−1βq−1 = 1.

Therefore, Xq((β−1
q−1)e∗q−1) = e∗q + X∗

q where X∗
q ∈ spanK{e∗q+1, . . . , e

∗
m} if and only if 

Xq(e∗q−1) = λqe
∗
q + fq, where λq := βq−1, fq := βq−1X

∗
q . In conclusion, for q ∈ {m − i +

2, . . . , m − 1} there exist Xq ∈ g, λq ∈ K \ {0} and fq ∈ spanK{e∗q+1, . . . , e
∗
m} such that

Xqe
∗
q−2 = λqe

∗
q + fq.

For q = m there exist Xm ∈ g, λm ∈ K \ {0} such that

Xme∗m−1 = λme∗m.

It follows that

{e∗m−i+2, . . . , e
∗
m} ⊂ g · (V ∗)i.

Then (V ∗)i−1 ⊂ g · (V ∗)i and we conclude that g · (V ∗)i = (V ∗)i−1 which proves that 
V ∗ is a filiform g-module. �
Lemma 2.2. Let (g = g0̄ ⊕ g1̄, [·, ·]) be a Lie superalgebra. If g admits an odd symmetric 
non-degenerate and invariant bilinear form B, then the g0̄-module g0̄ and the dual of the 
g0̄-module g1̄ are isomorphic as g0̄-modules.

Proof. We define Φ : g0̄ → (g1̄)∗ as Φ(X) := B(X, ·) for all X ∈ g0̄. It is clear that Φ is 
an isomorphism of vector spaces. For X, A ∈ g0̄, X

′ ∈ g1̄ we obtain

Φ(A ·X)(X ′) = B(A ·X, ·)(X ′)

= B(A ·X,X ′)

= B([A,X], X ′)

= −B(X, [A,X ′])

= −Φ(X)([A,X ′])

= (A · Φ(X))(X ′).

Consequently Φ(A · X) = A · Φ(X), which proves that Φ is an isomorphisms of g0̄-
modules. �
Lemma 2.3. If (g, [·, ·]) is a nilpotent Lie algebra such that dim g ≥ 2, then dim g −
dim [g, g] ≥ 2.
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Proof. Let (g, [·, ·]) be a nilpotent Lie algebra verifying dim g = m ≥ 2. By Engel’s 
Theorem, there exists a basis B := {e1, . . . , em} of g such that: for all X ∈ g,

1. [X, e1] = 0,
2. [X, ei] =

∑i−1
j=1 aji(X)ej , for any i ∈ {2, . . . , m}.

Consequently, [e1, g] = {0} and for any i ∈ {2, . . . , m − 1}, j ∈ {i + 1, . . . , m},

[ei, ej ] ∈ spanK{e1, . . . , ei−1}.

We conclude that [g, g] ⊂ spanK{e1, . . . , em−2}. It follows that dim [g, g] ≤ m − 2, this 
is dim g − dim [g, g] ≥ 2 as required. �
Theorem 2.1. There are no odd-quadratic Lie superalgebra (g, [·, ·], B) such that the g0̄-
module g1̄ is filiform and dim (g0̄) ≥ 2.

Proof. Suppose that (g, [·, ·], B) is an odd-quadratic Lie superalgebra such that the 
g0̄-module g1̄ is filiform and dim (g0̄) ≥ 2. By Lemma 2.1, the g0̄-module (g1̄)∗ is fili-
form. It follows, by Lemma 2.2 that the g0̄-module g0̄ is filiform. Therefore there exists 
{I0, . . . , Im}, being m = dim g0̄, satisfying

1. Ii is an ideal of g0̄ with dim (Ii) = i for i ∈ {0, . . . , m}.
2. g0̄ = Im ⊃ Im−1 ⊃ · · · ⊃ I1 ⊃ I0 = {0}.
3. [g0̄, Ii] = Ii−1, for i ∈ {1, . . . , m}.

This implies that (g0̄, [·, ·]|g0̄×g0̄) is a n-dimensional nilpotent Lie algebra with n ≥ 2, 
and [g0̄, g0̄] = Im−1. So

dim [g0̄, g0̄] = (dim g0̄) − 1

which contradicts Lemma 2.3. This completes the proof. �
Corollary 2.1. The unique non-zero odd-quadratic Lie superalgebra (g, [·, ·], B) such that 
the g0̄-module g1̄ is filiform is the 2-dimensional Lie superalgebra g = g0̄ ⊕ g1̄ such that 
dim g0̄ = dim g1̄ = 1 with zero product.

3. Lie superalgebras with a weak filiform module as an odd part via odd double 
extensions of odd-quadratic ones

In this work we consider a less restrictive concept for our purpose, as we can construct 
a structure theory and present examples, which we name by weak filiform. Firstly, we 
introduce the concept of weak filiform module in general context.
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Definition 3.1. Let g be a Lie algebra and V be a vector space with dim V = m > 0. We 
say that the g-module V is weak filiform if the action of g on V defines a flag, in the 
sense that there exists a decreasing subsequence of vector subspaces in its underlying 
vector space V ,

V = Vm ⊃ Vm−1 ⊃ · · · ⊃ V2 ⊃ V1 = {0},

with dimensions dim Vi = i, for i ∈ {2, . . . , m} and such that [g, Vi] = Vi−1 for any 
i ∈ {2, . . . , m}.

Now we present the notion of weak filiform Lie superalgebra.

Definition 3.2. Let g = g0̄ ⊕ g1̄ be a Lie superalgebra with dim g1̄ = m > 0. We say that 
g1̄ has the structure of weak filiform g0̄-module if the action of g0̄ on g1̄ defines a flag, 
that is, a decreasing subsequence of vector subspaces in its underlying vector space g1̄,

g1̄ = Vm ⊃ Vm−1 ⊃ · · · ⊃ V2 ⊃ V1 = {0},

with dimensions dim Vi = i for any i ∈ {2, . . . , m}, such that [g0̄, Vi] = Vi−1 for i ∈
{2, . . . , m}. To abbreviate, in the sequel we will refer to g = g0̄⊕g1̄ as a Lie superalgebra 
of weak filiform type. We set V2 := Ku2 ⊕Kv2 and Vi/Vi−1 := Kei for i ∈ {3, . . . , m}.

Example 3.1. Let h be the Lie algebra generated by the basis {X1, . . . , Xm} with product 
[X1, Xi] = Xi+1, for i ∈ {2, . . . , m − 1}. Consider the Lie superalgebra g = h ⊕ P (h∗), 
as usual h∗ is the dual of h. Then a basis of g is {X1, . . . , Xm, X∗

1 , . . . , X
∗
m}, being 

{X∗
1 , . . . , X

∗
m} a dual basis of P (h∗), and we get g0̄ = h and g1̄ = P (h∗). Let the 

product in g be defined by [Xi, X∗
j ] = Xi · X∗

j = −X∗
j ◦ adh(Xi) and [X∗

i , X
∗
j ] = 0, 

for i, j ∈ {1, . . . , m}. We have that Xm, X∗
1 , X

∗
2 are the central elements and non-zero 

products in g are
⎧⎪⎪⎨
⎪⎪⎩

[X1, Xi] = Xi+1 for i ∈ {2, . . . ,m− 1}
[X1, X

∗
i ] = −X∗

i−1 for i ∈ {3, . . . ,m}
[Xi, X

∗
i+1] = X∗

1 for i ∈ {2, . . . ,m− 1}

We define B(X, F ) := F (X) for any X ∈ h and F ∈ h∗. Then (g = h ⊕ P (h∗), B) is an 
odd-quadratic Lie superalgebra such that the h-module P (h∗) is weak filiform with flag

P (h∗) = Vm ⊃ Vm−1 ⊃ · · · ⊃ V2 ⊃ V1 = {0}

where each Vi has the basis {X∗
1 , . . . , X

∗
i } for i ∈ {2, . . . , m}.

Example 3.2. Let m ∈ N \ {0, 1, 2}. Let us consider the filiform Lie algebra (g̃m, [·, ·]m)
where g̃m := spanK{e1, . . . , em} and [e1, ei]m := ei−1 for i ∈ {3, . . . , m}.
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Now, we consider the Z2-graded vector space h = h0̄ ⊕ h1̄, where h0̄ := g̃m and 
h1̄ := (g̃m)∗, the dual of the underlying vector space of g̃m.

The product

[X + f, Y + h] := [X,Y ]m − h ◦ adX + f ◦ adY ,

for X, Y ∈ h0̄, f, h ∈ h1̄, where adX := [X, ·]m, defines a Lie superalgebra structure on h.
Let B : h × h → K the bilinear form given as

B(X, f) = B(f,X) := f(X), B(X,Y ) = B(f, h) := 0

for X, Y ∈ h0̄, f, h ∈ h1̄. We get B is odd symmetric invariant and non-degenerate. Then 
(h, [·, ·], B) is an odd quadratic Lie superalgebra. We can easily check that the h0̄-module 
h1̄ is a weak filiform h0̄-module.

Next we study the structure of odd-quadratic Lie superalgebras (g = g0̄ ⊕ g1̄, B)
(g = g0̄⊕g1̄, B) such that the g0̄-module g1̄ has the structure of weak filiform g0̄-module.

Proposition 3.1. Let (g = g0̄ ⊕ g1̄, B) be an odd-quadratic Lie superalgebra such that the 
g0̄-module g1̄ has the structure of weak filiform g0̄-module. Then the Lie algebra g0̄ is 
nilpotent.

Proof. Since (g, B) is an odd-quadratic Lie superalgebra, then there exists an isomor-
phism of g0̄-modules ϕ : g0̄ → (g1̄)∗ given by ϕ(X) = B(X, .), for all X ∈ g0̄ (see 
Proposition 1.1). If, in addition, the g0̄-module g1̄ has the structure of weak filiform 
g0̄-module, then the representation π : g0̄ → gl(g1̄) defined by π(x) := (adg(x))|g1̄

for x ∈ g0̄, satisfies there exists a non-zero n ∈ N such that for any x ∈ g0̄ verifies (
π(x)

)n = 0.
Let us consider the dual representation π∗ : g0̄ → gl(g∗1̄). For any x ∈ g0̄ it maps 

π∗(x) : g∗1̄ → g∗1̄ which assigns for any f ∈ g∗1̄,

π∗(x)(f) = −f ◦ π(x).

It follows that the dual representation π∗ also verifies that there exists a non-zero n ∈ N

such that for any x ∈ g0̄ verifies 
(
π∗(x)

)n = 0.
Therefore, by the isomorphism of Proposition 1.1, there exists a non-zero n ∈ N such 

that 
(
adg0̄(x)

)n = 0 for any x ∈ g0̄, which proves that g0̄ is a nilpotent Lie algebra. �
Remark 3.1. The previous proposition also holds in case g1̄ is a filiform g0̄-module. That 
is, if (g = g0̄ ⊕ g1̄, B) is an odd-quadratic Lie superalgebra such that the g0̄-module g1̄
has the structure of filiform g0̄-module then the Lie algebra g0̄ is nilpotent.
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Proposition 3.2. Let (g = g0̄ ⊕ g1̄, B) be an odd-quadratic Lie superalgebra such that the 
g0̄-module g1̄ has the structure of weak filiform g0̄-module. Then the Lie superalgebra g
is nilpotent.

Proof. We have the result by the paper [15], since by Proposition 3.1 g0̄ is a nilpotent 
Lie algebra, and π(x) := (adg(x))|g1̄ is nilpotent for all x ∈ g0̄. �

The center of an odd-quadratic Lie superalgebras (g = g0̄ ⊕ g1̄, B) such that the g0̄-
module g1̄ has the structure of weak filiform g0̄-module plays an important role in the 
description of this class of algebras. Recall that for quadratic Lie superalgebras with an 
invariant scalar product the center is z(g) = z(g)0̄ ⊕ V1 (see [3, Lemma 2.1]).

Proposition 3.3. Let (g = g0̄ ⊕ g1̄, B) be an odd-quadratic non-abelian Lie superalgebra 
with g0̄ �= {0} and dim g1̄ = m > 0, and such that g1̄ is a weak filiform g0̄-module with 
respect to the flag

g1̄ = Vm ⊃ · · · ⊃ V2 ⊃ V1 = {0}.

Then the dimension of the center z(g) = z(g)0̄ ⊕ z(g)1̄ is 1, 2 or 3. Concretely,

i. {0} �= z(g0̄) = z(g) ∩ g0̄ = z(g)0̄ and dim z(g0̄) = 1 (i.e., dim z(g)0̄ = 1).
ii. z(g)1̄ = z(g) ∩ g1̄ ⊂ V2 and dim (z(g) ∩ g1̄) ≤ 2 (i.e., dim z(g)1̄ ≤ 2).

Proof. i. Since by Proposition 3.1 g0̄ is a nilpotent Lie algebra and g0̄ �= {0}, then 
z(g0̄) �= {0}. Therefore

B([z(g0̄), g1̄], g0̄) = B(g1̄, [z(g0̄), g0̄]) = {0}

and we conclude [z(g0̄), g1̄] = {0} because B is odd and non-degenerate. It follows that 
z(g0̄) ⊂ z(g). Then {0} �= z(g0̄) = z(g) ∩ g0̄.

It is clear that g0̄ ⊕ [g0̄, g1̄] ⊂ z(g0̄)⊥ and dim
(
g0̄ ⊕ [g0̄, g1̄]

)
= dim g − 1. Since 

z(g0̄) �= {0}, then g0̄ ⊕ [g0̄, g1̄] = z(g0̄)⊥. Consequently, dim z(g0̄) = 1.
ii. From the definition of weak filiform module we get [g0̄, Vi] = Vi−1 with dim Vi = i, 

for i ∈ {2, . . . , m}. We set V2 := Ku2 ⊕ Kv2 and Vi/Vi−1 := Kei for i ∈ {3, . . . , m}. 
Therefore,

[X,u2] = [X, v2] = 0, for all X ∈ g0̄.

Taking into account this expression together with [g0̄, V3] = V2 being V3 =
spanK{u2, v2, e3} allows us to assert, without losing generality, that there exist X3, X ′

3 ∈
g0̄ such that

[X3, e3] = η32u2 with η32 �= 0
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and

[X ′
3, e3] = λ32v2 with λ32 �= 0.

Now, on account of above together with [g0̄, V4] = V3 being V4 = spanK{u2, v2, e3, e4}
we conclude that there exists X4 ∈ g0̄ such that

[X4, e4] = α4e3 + η42u2 + λ42v2, for some α4 �= 0, η42, λ42 ∈ K.

Similarly, for all i ∈ {5, . . . , m} we obtain that there exists Xi ∈ g0̄, such that

[Xi, ei] = αiei−1 +
i−2∑
j=3

βijej + ηi2u2 + λi2v2, for some αi �= 0 and βij , ηi2, λi2 ∈ K.

Consequently, we obtain [g0̄, ei] �= {0} for i ∈ {3, . . . , m}. Therefore, z(g) ∩ g1̄ ⊂ V2, 
which concludes the proof. �
Remark 3.2. By the proof of the previous proposition we have z(g0̄)⊥ = g0̄⊕ [g0̄, g1̄] with 
[g0̄, g1̄] = Vm−1. If we set z(g0̄) = Ke, we have B(e, u2) = B(e, v2) = 0, B(e, ei) = 0 for 
i ∈ {3, . . . , m − 1}, and we can assume without loss of generality that B(e, em) = 1.

Remark 3.3. We note that Proposition 3.3-ii can be established for any solvable Lie 
superalgebra g = g0̄ ⊕ g1̄ with g1̄ a weak filiform g0̄-module, even with no odd-quadratic 
structure, that is, if z(g)1̄ = z(g) ∩ g1̄ �= {0} then z(g)1̄ = z(g) ∩ g1̄ ⊂ V2.

Lemma 3.1. Let g = g0̄ ⊕ g1̄ be a solvable Lie superalgebra with dim g1̄ = m > 0 such as 
g1̄ is a weak filiform g0̄-module with respect to the flag

g1̄ = Vm ⊃ · · · ⊃ V2 ⊃ V1 = {0},

and g is equipped with an odd-invariant scalar product B : g × g → K on g. Then 
u2, v2 /∈ (g0̄ \ [g0̄, g0̄])⊥.

Proof. Since B is invariant and [g0̄, u2] = {0} we have B(g0̄, [g0̄, u2]) = B([g0̄, g0̄], u2) =
0. Now, as B is odd and non-degenerate there exists X ∈ g0̄\[g0̄, g0̄] such that B(X, u2) �=
0. Analogous result can be obtained for v2, which concludes the proof. �
Theorem 3.1. Let (g = g0̄ ⊕ g1̄, B) be an odd-quadratic Lie superalgebra with dim g1̄ =
m > 0, such that g1̄ is a weak filiform g0̄-module with respect to the flag

g1̄ = Vm ⊃ · · · ⊃ V2 ⊃ V1 = {0}.

Consider D an odd skew-supersymmetric superderivation of (g, B), X0 ∈ g0̄, and λ0 ∈ K

such that



E. Barreiro et al. / Linear Algebra and its Applications 649 (2022) 22–46 35
D(X0) = 0, D2 = 1
2[X0, ·]g, em ∈ D(g0̄).

Define a map Ω : (Ke)1̄ → Der(g ⊕ P (Ke∗)) by Ω(e) := D̃, where D̃ : g ⊕ P (Ke∗) →
g ⊕ P (Ke∗) satisfies D̃(e∗) = 0 and

D̃(X) = D(X) − (−1)īB(X,X0)e∗, for all X ∈ gī.

Consider the bilinear map ζ : Ke ×Ke → g ⊕P (Ke∗) defined by ζ(e, e) := X0+λ0e
∗. Then 

t = Ke ⊕ g ⊕P (Ke∗) endowed with the even skew-symmetric bilinear map [·, ·] : t × t → t

defined by

[e, e] = X0 + λ0e
∗,

[e,X] = D(X) − (−1)īB(X,X0)e∗, for all X ∈ gī,

[X,Y ] = [X,Y ]g + B(D(X), Y )e∗, for all X,Y ∈ g,

[e∗, t] = 0,

is a Lie superalgebra. More precisely, (t, [·, ·]) is the generalized semi-direct product of 
g ⊕P (Ke∗) by the 1-dimensional Lie superalgebra (Ke)1̄ (by means of Ω and ζ). Moreover, 
the supersymmetric bilinear form B̃ : t × t → K defined by

B̃|g×g = B,

B̃(e, e∗) = 1,

B̃(g, e) = B̃(g, e∗) = {0},

is an odd-invariant scalar product on t. In this case, we say that (t = t0̄ ⊕ t1̄, B̃) is the 
generalized odd double extension of (g, B), by the 1-dimensional Lie superalgebra (Ke)1̄
(by means of D, X0, and λ0). Furthermore, t1̄ is a weak filiform t0̄-module with respect 
to the flag

t1̄ = Ṽm+1 ⊃ · · · ⊃ Ṽ2 ⊃ Ṽ1 = {0}

being Ṽm+1 := Ke ⊕ Vm, Ṽi := Vi, with i ∈ {1, . . . , m}.

Proof. Taking into account [1, Theorem 2.14], only rest to check the structure of weak 
filiform t0̄-module. Since g1̄ is a weak filiform g0̄-module with respect to the flag

g1̄ = Vm ⊃ · · · ⊃ V2 ⊃ V1 = {0},

we have that [g0̄, Vj ]g = Vj−1 for all j ∈ {2, . . . , m}. On account of both D and B are odd 
we get B(D(g0̄), Vj)) = 0 for j ∈ {2, . . . , m}. This fact together with t0̄ = g0̄ ⊕ P (Ke∗), 
being e∗ a central element for t, that is, [e∗, t] = 0, allow us to assert
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[t0̄, Vj ] = [g0̄, Vj ]g = Vj−1, 2 ≤ j ≤ m.

Now, since Ṽi := Vi for i ∈ {1, . . . , m} we get

[t0̄, Ṽj ] = Ṽj−1, 1 ≤ j ≤ m.

Only rest to check [t0̄, Ṽm+1]. Note that

[t0̄, Ṽm+1] = [g0̄,Ke⊕ Vm]

with [g0̄, Vm] = Vm−1 and [g0̄, e] = −D(g0̄). As em ∈ D(g0̄) then

[t0̄, Ṽm+1] = Vm−1 ⊕Kem = Vm = Ṽm

which concludes the proof of the theorem. �
4. Inductive description of odd-quadratic solvable Lie superalgebras of weak filiform 
type

Lemma 4.1. Let (g = g0̄ ⊕ g1̄, B) be an odd-quadratic Lie superalgebra with dim g1̄ =
m > 0 such as g1̄ has the structure of weak filiform g0̄-module with respect to the flag

g1̄ = Vm ⊃ · · · ⊃ V2 ⊃ V1 = {0}.

Then em /∈
(
z(g

)
0̄)

⊥.

Proof. Since g1̄ has the structure of a weak filiform g0̄-module with respect to the flag

g1̄ = Vm ⊃ · · · ⊃ V2 ⊃ V1 = {0},

being Vi/Vi−1 := Kei, i ∈ {3, . . . , m}, and V2 = spanK{u2, v2}, we can suppose that for 
each i ∈ {4, . . . , m} there exists ti ∈ g0̄ such that

[ti, ei] = ei−1.

Also we have t3 and t2 verifying [t3, e3] = u2 and [t2, e3] = v2. In general, such ti is a 
linear combination of the homogeneous basis selected for g0̄ and it is not unique. Now, 
let e∗ be a non-zero element of z(g)0̄, so [e∗, ti] = 0 and as B is invariant we get

0 = B([e∗, ti], ei) = B(e∗, [ti, ei]) = B(e∗, ei−1), for i ∈ {4, . . . ,m}.

Moreover,

0 = B([e∗, t3], e3) = B(e∗, [t3, e3]) = B(e∗, u2)
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and

0 = B([e∗, t2], e3) = B(e∗, [t2, e3]) = B(e∗, v2).

Finally, taking into account that B is non-degenerate it follows that B(e∗, em) �= 0 which 
concludes the proof of the lemma. �

Since for any odd-quadratic Lie superalgebra (g = g0̄ ⊕ g1̄, B) with dim g1̄ = m > 0
such that g1̄ is a weak filiform g0̄-module the even part of the center is non-zero, this is 
z(g)0̄ �= {0} (see Proposition 3.3i.), we can prove the converse of Theorem 3.1.

Theorem 4.1. Let (g = g0̄ ⊕ g1̄, B) be an odd-quadratic Lie superalgebra with dim g1̄ =
m > 0 and dim g > 1, such that g1̄ is a weak filiform g0̄-module with respect to the flag

g1̄ = Vm ⊃ · · · ⊃ V2 ⊃ V1 = {0}.

Then (g, B) is a generalized odd double extension of an odd-quadratic Lie superalgebra 
(h, B̃) (such that dim h = dim g −2) by the 1-dimensional Lie superalgebra (Kem)1̄ being 
Vm/Vm−1 := Kem. Furthermore, h1̄ is a weak filiform h0̄-module with respect to the flag

h1̄ = Vm−1 ⊃ · · · ⊃ V2 ⊃ V1 = {0}.

Proof. Let e∗ be a non-zero element of z(g)0̄ and denote I := Ke∗. As B is odd we have 
g0̄ ⊂ I⊥. By using Lemma 4.1 we get B(e∗, em) �= 0 and B(e∗, u2) = B(e∗, v2) = 0 and 
B(e∗, ei) = 0 for i ∈ {3, . . . , m − 1}. Therefore g = I⊥ ⊕Kem and we may assume that 
B(e∗, em) = 1. Considering A := Ke∗⊕Kem, h := A⊥ with respect to B and B̃ = B|h×h, 
and following the proof of [1, Proposition 2.15], we have

[X,Y ] = α(X,Y ) + ϕ(X,Y )e∗, for X,Y ∈ h,with α(X,Y ) ∈ h, ϕ(X,Y ) ∈ K.

[em, X] = D(X) + ψ(X)e∗, for any X ∈ h,where D(X) ∈ h, ψ(X) ∈ K.

As em ∈ g1̄ then [em, em] is not necessarily zero and we can write

[em, em] = X0 + λ0e
∗,being X0 ∈ g0̄, λ0 ∈ K.

Claim 1. The triple (h, α = [·, ·]h, B̃) is an odd-quadratic Lie superalgebra with h1̄ a weak 
filiform h0̄-module with respect to the flag h1̄ = Vm−1 ⊃ · · · ⊃ V2 ⊃ V1 = {0}.

Proof of Claim 1. The fact that (h, α = [·, ·]h, B̃) is an odd-quadratic Lie superalgebra 
follows from the proof of [1, Proposition 2.15]. The structure of weak filiform h0̄-module 
on h1̄ is naturally inherited from the structure of weak filiform g0̄-module on g1̄. �
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Claim 2. D is an odd skew-supersymmetric superderivation of (h, B̃) verifying

D(X0) = 0, D2 = 1
2[X0, ·]h, em−1 ∈ D(g0̄),

being Vm−1/Vm−2 := Kem−1.

Proof of Claim 2. On account of [1] only remains to check that em−1 ∈ D(g0̄) being 
Vm−1/Vm−2 := Kem−1. Since g1̄ has the structure of a weak filiform g0̄-module with 
respect to the flag

g1̄ = Vm ⊃ · · · ⊃ V2 ⊃ V1 = {0},

being Vi/Vi−1 := Kei for i ∈ {3, . . . , m} and V2 = spanK{u2, v2}, we can suppose that 
for each i ∈ {4, . . . , m} there exist ti ∈ g0̄ such that [ti, ei] = ei−1. In particular, we 
get tm such that [tm, em] = em−1. This fact together with [em, tm] = D(tm) leads to 
em−1 = D(tm) ∈ D(g0̄). �

The following result gives us the main result of the paper, that is, a full description of 
all odd-quadratic Lie superalgebras of weak filiform type using generalizations of double 
extensions and/or orthogonal direct sums.

Corollary 4.1. An odd-quadratic Lie superalgebra of weak filiform type is obtained from 
a 6-dimensional weak filiform superalgebra {X1, X2, X3, e3, v2, u2} by a sequence of gen-
eralized odd double extensions by 1-dimensional Lie superalgebras and/or direct sums of 
them.

To complete the study we classify all the complex odd-quadratic Lie superalgebras 
of weak filiform type for the smallest possible dimensions which makes sense, that is, 
dim g0̄ = dim g1̄ = 3 and dim g0̄ = dim g1̄ = 4. Then, we have the following result.

Theorem 4.2. If (g = g0̄ ⊕ g1̄, B) is a 6-dimensional complex odd-quadratic Lie su-
peralgebra of weak filiform type, then g is isomorphic either g0

6 or g1
6, being gδ (δ ∈

{0, 1}) the family of Lie superalgebras which can be expressed in a suitable basis 
{X1, X2, X3, e3, u2, v2} by the following non-null bracket products

gδ6 :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[X1, X2] = X3,

[X1, e3] = u2,

[X2, e3] = v2,

[e3, e3] = δX3, δ ∈ {0, 1},

where {X1, X2, X3} are even basis vectors and {e3, u2, v2} odd ones. All the above bracket 
products are skew-symmetric except [e3, e3] which is symmetric. Moreover, for both cases, 
g0
6 and g1

6, the only possible non-null values of B are determined by:
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B(X1, v2) = λ, B(X1, e3) = α,

B(X2, u2) = −λ, B(X2, e3) = β,

B(X3, e3) = λ,

with λ �= 0 and α, β ∈ C.

Proof. Let (g = g0̄⊕g1̄, B) be a complex odd-quadratic Lie superalgebra with dim(g0̄) =
dim(g1̄) = 3, such that g1̄ is a weak filiform g0̄-module with respect to the flag

g1̄ = V3 ⊃ V2 ⊃ V1 = {0}.

We set V3/V2 := Ce3 and V2 = spanC{u2, v2}. From Proposition 3.1, on the other 
hand, we have that g0̄ is nilpotent and Proposition 3.3 leads to dim z(g0̄) = 1. Since the 
only non-abelian 3-dimensional nilpotent lie algebra is defined by [X1, X2] = X3 we take 
this as our g0̄. Moreover, X3 is not only a central element for g0̄ but for the whole Lie 
superalgebra g = g0̄ ⊕ g1̄ (see Proposition 3.3). This latter fact implies, in particular, 
that [X3, V3] = {0}.

On account of g1̄ is a weak filiform g0̄-module we have that [g0̄, V3] = V2 and [g0̄, V2] =
{0}. Therefore, there is no loss of generality in supposing

[X1, e3] = u2 and [X2, e3] = v2.

Now, for having totally described the multiplication table of the Lie superalgebra 
g = g0̄ ⊕ g1̄ only rest to determine the symmetric bracket products [g1̄, g1̄], i.e.:

[e3, e3], [e3, u2], [e3, v2], [u2, u2], [u2, v2], [v2, v2].

Firstly, we set [e3, e3] = aX1+bX2+cX3. After, by applying the super Jacobi identity

[x, [y, z]] = [[x, y], z] − (−1)|y||z|[[x, z], y]

for the triple {x, y, z} we get the following constrains given in the table:

Super Jacobi Identity Constrain
{e3, e3, e3} a = b = 0
{X1, e3, e3} [u2, e3] = 0
{X2, e3, e3} [v2, e3] = 0
{X1, e3, u2} [u2, u2] = 0
{X2, e3, v2} [v2, v2] = 0
{X1, e3, v2} [u2, v2] = 0

remaining only [e3, e3] = cX3. Let us remark that the cases c = 0 and c �= 0 are clearly 
non-isomorphic. In fact, the first case give us a Lie algebra (more concretely a Z2-graded 
Lie algebra) and the second case leads, for any c �= 0, to a Lie superalgebra which is 
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not a Lie algebra because it contains non-null symmetric bracket products. In this latter 
case, the isomorphism (change of scale) defined by

X ′
i = Xi, 1 ≤ i ≤ 3, e′3 = 1√

c
e3, u′

2 = 1√
c
u2, v′2 = 1√

c
v2

allows to assert that c can be supposed c = 1, obtaining then g0
6 and g1

6 of the statement 
of the Theorem.

Finally, we study the bilinear form B. Since B is odd and supersymmetrical 
(B(X, Y ) = B(Y, X)) it will be totally determined by the following values:

B(X1, e3), B(X1, u2), B(X1, v2),
B(X2, e3), B(X2, u2), B(X2, v2),
B(X3, e3), B(X3, u2), B(X3, v2).

By applying the invariant condition B([x, y], z) = B(x, [y, z]) for the ordered triple 
{x, y, z} we get the following relationships given in the table:

Invariant Condition Relationship
{X1, X1, e3} B(X1, u2) = 0
{X2, X2, e3} B(X2, v2) = 0
{X3, X1, e3} B(X3, u2) = 0
{X3, X2, e3} B(X3, v2) = 0
{X1, X2, e3} B(X3, e3) = B(X1, v2)
{X2, X1, e3} B(X3, e3) = −B(X2, u2)

Since B is non-degenerate we get B(X3, e3) �= 0 and after renaming B(X3, e3) = λ, 
B(x1, e3) = α and B(x2, e3) = β we obtain the expression of the statement of the 
Theorem, which concludes the proof. �

Next, and previous to study the case dim(g0̄) = dim(g1̄) = 4 we show a lemma which 
will be useful for the next classification Theorem.

Lemma 4.2. Let g = g0̄⊕g1̄ be a Lie superalgebra such that g1̄ is a weak filiform g0̄-module 
with respect to the flag

g1̄ = Vm ⊃ · · · ⊃ V2 ⊃ V1 = {0}.

[g0̄, Vi] = Vi−1 2 ≤ i ≤ m. If we denote by Cig0̄ the descending central sequence of the 
Lie algebra g0̄, i.e. C0g0̄ := g0̄ and Cig0̄ := [Ci−1g0̄, g0̄] with i ≥ 1, then it is verified that

[Cjg0̄, Vi] ⊂ Vi−j−1, for all i ≤ m, j ≥ 1

being Vn := {0} for all n ≤ 1.
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Proof. Let us start with the first case j = 1. Any element of C1g0̄ can be expressed as 
a linear combination of bracket products [X, Z] with X, Z ∈ g0̄ and by super Jacobi 
identity we have that [C1g0̄, Vi] ⊂ Vi−2. More precisely

[Vi, [X,Z]] = [[Vi, X], Z] − [[Vi, Z], X] ⊂ [[Vi, g0̄], g0̄] = [Vi−1, g0̄] = Vi−2.

Now by induction, supposing the result holds for j, for j + 1 we get

[Vi, Cj+1g0̄] = [Vi, [Cjg0̄, g0̄]] = [[Vi, Cjg0̄], g0̄] − [[Vi, g0̄], Cjg0̄] ⊂

⊂ [Vi−j−1, g0̄] − [Vi−1, Cjg0̄] ⊂ Vi−j−2. �
Theorem 4.3. If (g = g0̄ ⊕ g1̄, B) is an 8-dimensional complex odd-quadratic Lie su-
peralgebra of weak filiform type, then g is isomorphic to one of the following pairwise 
non-isomorphic Lie superalgebras: g0

8, g1
8 or g2

8. These Lie superalgebras can be expressed 
in a suitable basis {X1, X2, X3, X4, e4, e3, u2, v2} by the following non-null bracket prod-
ucts

g0
8 :

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[X1, X2] = X3,

[X1, X3] = X4,

[X1, e3] = u2,

[X2, e3] = v2,

[X1, e4] = e3,

[X3, e4] = −v2.

g1
8 :

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[X1, X2] = X3, [e4, e4] = X4,

[X1, X3] = X4,

[X1, e3] = u2,

[X2, e3] = v2,

[X1, e4] = e3,

[X3, e4] = −v2.

g2
8 :

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[X1, X2] = X3, [e4, e4] = X2
[X1, X3] = X4, [e3, e4] = 1

2X3
[X1, e3] = u2, [e3, e3] = −1

2X4
[X2, e3] = v2, [u2, e4] = X4
[X1, e4] = e3,

[X3, e4] = −v2,

where {X1, X2, X3, X4} are even basis vectors and {e4, e3, u2, v2} odd ones. All the above 
bracket products are skew-symmetric except those involving two odd vectors which are 
symmetric. Moreover, for the three cases, g0

8, g1
8 and g2

8, the only possible non-null values 
of B are determined by:

B(X1, v2) = λ, B(X1, e4) = α,

B(X2, u2) = −λ, B(X2, e4) = β,

B(X3, e3) = λ,

B(X4, e4) = −λ,

with λ �= 0 and α, β ∈ C.
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Proof. Firstly, let us note that the three Lie superalgebras of the statement are 
clearly pairwise non-isomorphic. In particular, we have that dim(z(g2

8)) = 2 whereas 
dim(z(gi8)) = 3, i ∈ {0, 1}. Let us remark that g0

8 and g1
8 are clearly non-isomorphic. In 

fact, the first one is a Lie algebra (more concretely a Z2-graded Lie algebra) and the 
second one is a Lie superalgebra which is not a Lie algebra because it contains non-null 
symmetric bracket products.

Now, suppose (g = g0̄ ⊕ g1̄, B) a complex odd-quadratic Lie superalgebra with 
dim(g0̄) = dim(g1̄) = 4, such that g1̄ is a weak filiform g0̄-module with respect to 
the flag

g1̄ = V4 ⊃ V3 ⊃ V2 ⊃ V1 = {0}.

We set V4/V3 := Ce4, V3/V2 := Ce3 and V2 = spanC{u2, v2}. On the other hand, 
from Propositions 3.1 and 3.3 we have that g0̄ is nilpotent and dim z(g0̄) = 1. There is 
only one 4-dimensional Lie algebra, up to isomorphism, verifying these two conditions 
(see for instance [4]): [X1, X2] = X3, [X1, X3] = X4 so we take this as g0̄. Note that X4

is a central element for the Lie superalgebra g = g0̄ ⊕ g1̄ (see Proposition 3.3). Thus, in 
particular, [X4, g1̄] = {0}.

Analogous to the 6-dimensional case, from g1̄ being a weak filiform g0̄-module we have 
that [g0̄, V3] = V2 and [g0̄, V2] = {0}. Then, there is no loss of generality in supposing 
[X1, e3] = u2 and [X2, e3] = v2. Now, since X3, X4 ∈ C1g0̄ and from Lemma 4.2 we get 
[X3, e3] = [X4, e3] = 0. Also, Lemma 4.2 allows to set

[X1, e4] = c14e3 + a14u2 + b14v2

[X2, e4] = d24e3 + a24u2 + b24v2

with c14 or d24 �= 0. The super Jacobi identity for the triple {e4, X1, X2} leads to 
[X3, e4] = d24u2 − c14v2. Thus, the skew-symmetric bracket products of the Lie su-
peralgebra are exactly:

[X1, X2] = X3, [X1, e4] = c14e3 + a14u2 + b14v2
[X1, X3] = X4, [X2, e4] = d24e3 + a24u2 + b24v2
[X1, e3] = u2, [X3, e4] = d24u2 − c14v2,

[X2, e3] = v2.

Next, by means of a sequence of three isomorphisms we show that always can be supposed 
c14 = 1 and a14 = b14 = 0. First, we see that c14 can be supposed c14 �= 0. In fact, if 
c14 = 0 and d24 �= 0 through the isomorphism where all the basis vectors remain invariant 
except for X1 and u2 whose new values X ′

1, u′
2 are

X ′
1 = X1 + X2, u′

2 = u2 + v2
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we obtain the new structure constant c′14 = d24 �= 0. Secondly, by the change of scale 
(isomorphism) where all the basis vectors remain invariant except for {e′4 = 1

c14
e4}, we 

get c′14 = 1. Finally, by renaming (isomorphism) e′3 := e3 + a14u2 + b14v2 we obtain

[X1, X2] = X3, [X1, e4] = e3
[X1, X3] = X4, [X2, e4] = d24e3 + a24u2 + b24v2
[X1, e3] = u2, [X3, e4] = d24u2 − v2,

[X2, e3] = v2.

Only rest to determine the symmetric bracket products belonging to [g1̄, g1̄] for having 
totally described the multiplication table of the Lie superalgebra. We start by setting

[e4, e4] := a1
44X1 + a2

44X2 + a3
44X3 + a4

44X4

[e3, e3] := a1
33X1 + a2

33X2 + a3
33X3 + a4

33X4

After, by applying the super Jacobi identity for the triple {x, y, z} we get the following 
constrains given in the table:

Super Jacobi Identity Constrain
{X1, e4, e4} [e3, e4] = 1

2 (a2
44X3 + a3

44X4)
{e3, e3, e3} a1

33 = a2
33 = 0

{X1, e3, e4} [u2, e4] = −a3
33X3 + (1

2a
2
44 − a4

33)X4
{X1, u2, e4} [u2, e3] = −a3

33X4
{X1, e3, e3} a33 = 0
{X2, e3, e3} [v2, e3] = 0
{X1, u2, e3} [u2, u2] = 0
{X2, u2, e3} [v2, u2] = 0
{X2, v2, e3} [v2, v2] = 0
{X2, e3, e4} [v2, e4] = −d24a

4
33X4

{X2, e4, e4} a1
44 = −d24a

2
44,

1
2d24a

3
44 + 1

2a24a
2
44 − a24a

4
33 − b24d24a

4
33 = 0 (1)

{e4, e4, e4} a3
44 = b24a

2
44,

d24a
3
44 + a24a

2
44 = 0 (2)

From equation (2), (1) remains a4
33(a24+b24d24) = 0 and (2) can be rewritten as a2

44(a24+
b24d24) = 0. After renaming a2

44 := a, a4
44 := b and a4

33 := c we obtain as bracket products 
for the Lie superalgebra:

[X1, X2] = X3, [X1, e4] = e3
[X1, X3] = X4, [X2, e4] = d24e3 + a24u2 + b24v2
[X1, e3] = u2, [X3, e4] = d24u2 − v2
[X2, e3] = v2, [e4, e4] = −d24aX1 + aX2 + ab24X3 + bX4
[e3, e4] = 1

2 (aX3 + ab24X4), [e3, e3] = cX4
[u , e ] = (1a− c)X , [v , e ] = −d cX
2 4 2 4 2 4 24 4



44 E. Barreiro et al. / Linear Algebra and its Applications 649 (2022) 22–46
with a(a24 + b24d24) = 0 and c(a24 + b24d24) = 0.
Now, we impose that this Lie superalgebra admits a bilinear form B odd, super-

symmetrical, invariant and non-degenerate. All the values of B will be came totally 
determined by

B(X1, e4), B(X1, e3), B(X1, u2), B(X1, v2),
B(X2, e4), B(X2, e3), B(X2, u2), B(X2, v2),
B(X3, e4), B(X3, e3), B(X3, u2), B(X3, v2),
B(X4, e4), B(X4, e3), B(X4, u2), B(X4, v2).

By applying the invariant condition B([x, y], z) = B(x, [y, z]) for the ordered triple 
{x, y, z} we get the following relationships given in the table:

Invariant Condition Relationship
{X1, X1, e4} B(X1, e3) = 0
{X1, X1, e3} B(X1, u2) = 0
{X2, X2, e3} B(X2, v2) = 0
{X4, X1, e4} B(X4, e3) = 0
{X3, X2, e3} B(X3, v2) = 0
{X4, X2, e3} B(X4, v2) = 0
{X1, X2, u2} B(X3, u2) = 0
{X1, X3, u2} B(X4, u2) = 0
{X1, X2, e3} B(X3, e3) = B(X1, v2)
{X2, X1, e3} B(X3, e3) = −B(X2, u2)
{X3, X1, e4} B(X3, e3) = −B(X4, e4)
{X2, X1, e4} B(X2, e3) = −B(X3, e4)
{X1, X2, e4} B(X3, e4) = b24B(X1, v2)

Since B is non-degenerate we get B(X1, v2) = −B(X2, u2) �= 0 and from the invariant 
condition for the triples {X2, X3, e4} and {X2, e4, X2} we get d24 = 0 and a24 = 0
respectively. Finally by the invariant condition on the triple {e4, e4, u2} we get c = −1

2a. 
Remaining then,

[X1, X2] = X3, [X1, e4] = e3
[X1, X3] = X4, [X2, e4] = b24v2
[X1, e3] = u2, [X3, e4] = −v2
[X2, e3] = v2, [e4, e4] = aX2 + ab24X3 + bX4
[e3, e4] = 1

2 (aX3 + ab24X4), [e3, e3] = −1
2aX4

[u2, e4] = aX4,

B(X1, v2) = λ, B(X1, e4) = α,

B(X2, u2) = −λ, B(X2, e4) = β,

B(X3, e3) = λ, B(X2, e3) = −b24λ,

B(X , e ) = −λ, B(X , e ) = b λ,
4 4 3 4 24
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with λ �= 0. After applying the isomorphism where all the basis vectors remain invariant 
except for {X ′

2 = X2+b24X3, X ′
3 = X3+b24X4} we get b24 = 0 and therefore B(X2, e3) =

B(X3, e4) = 0.
Now, we distinguish two cases depending on a �= 0 or a = 0. If a �= 0 the isomorphism 

(change of scale) defined by

X ′
i = Xi, 1 ≤ i ≤ 3, e′4 = 1√

a
e4, e

′
3 = 1√

a
e3, u′

2 = 1√
a
u2, v′2 = 1√

a
v2

allows to assert that a can be supposed a = 1 and renaming X ′
2 := X2 + bX4 (iso-

morphism) we get b = 0 and then g2
8. On the contrary, if a = 0, we obtain g0

8 for 
b = 0, and for b �= 0 after the change of scale {X ′

i = Xi, 1 ≤ i ≤ 3, e′4 = 1√
b
e4, e′3 =

1√
b
e3, u′

2 = 1√
b
u2, v′2 = 1√

b
v2} we get b = 1 and then g1

8, which concludes the proof of 
the theorem. �
Corollary 4.2. The three non-isomorphic complex 8-dimensional Lie superalgebras can 
be obtained by a double extension of the 6-dimensional g0

6. In fact, a straightforward 
computation leads to the expression for all the odd skew-supersymmetric derivations D
of g0

6. After replacing λ by 1 it can be obtained:

D(X1) = ae3 + (aβ + bα + c)u2 − aαv2, D(e3) = fX3
D(X2) = be3 + bβu2 + cv2, D(u2) = D(v2) = 0
D(X3) = bu2 − av2

Thus, using the notation of Proposition 4.1 we have:
(I). g0

8 comes from g0
6 with:

− D(X1) = −e3, D(X3) = v2. This derivation derives from the general expression for 
a = −1 and b = c = β = f = 0.

− ϕ(X1, X3) = 1.
− [e4, e4] = 0.

(II). g1
8 comes from g0

6 with:

− D(X1) = −e3, D(X3) = v2.
− ϕ(X1, X3) = 1.
− [e4, e4] = X4.

(III). g2
8 comes from g0

6 with:

− D(X1) = −e3, D(X3) = v2, D(e3) = 1
2X3. This derivation derives from the general 

expression for a = −1, and b = c = β = 0.
− ϕ(X1, X3) = 1, ϕ(e3, e3) = −1 .
2
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− ψ(u2) = 1.
− [e4, e4] = X2.

A possible future line of research is to study the class of quadratic Lie superalgebras 
(g = g0̄ ⊕ g1̄, [·, ·], B) such that g1̄ is a weak filiform g0̄-module. Additionally, we have 
in mind another possible modification of the definition of filiform and study the set 
of quadratic (and odd-quadratic) Lie superalgebra (g = g0̄ ⊕ g1̄, [·, ·], B) such that the 
g0̄-module g1̄ is a filiform module of this new type.
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