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Abstract

The purpose of this note is twofold: firstly to improve the known results on variation
of extreme eigenvalues of birth and death matrices and random walk matrices; and
secondly to progress towards the solution of a thirty years old open problem concerning
the variation of eigenvalues of these matrices.
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1. Introduction

This note is essentially concerned with eigenvalue problems for certain tridiagonal
matrices whose origin lies in infinite systems of differential equations describing non-
homogeneous birth and death processes in a population. These are special cases of
Markov processes which, in the homobeneous case, were introduced by Feller [4] and
have since been used as models for population growth, queue formation, in epidemiology
and in many other areas of both theoretical and applied interest (see for example [7],
[19], [20], [12]). The fundamental differential equations of the process can be written in
the form (see for example [19] or [12, Th. 5.2.1], although the coefficients in the latter
are the opposite to the ones shown below)

d

dt
p(t) = H(t)p(t),

where H(t) = [hij(t)] is the infinite matrix defined as follows:

hij(t) =


bi−1(t) if j = i− 1
ai−1(t) if j = i+ 1

−(ai−1(t) + bi−1(t)) if j = i
0 if otherwise,
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and ai(t) and bi(t) are positive functions (except b0(t) which may be identically 0) defined
on a non-degenerate open interval of the real line.

During the Workshop on q-Series and Partitions held at the University of Minnesota
on March 1988 [11, Problem 2] and collected in his more recent monographs [12, Problem
24.9.2], M. E. H. Ismail arose a problem about the zeros of birth and death polynomials
and random walk polynomials. Ismail’s problem admits a matrix formulation that is
precisely given below. It is related to the eigenvalues of the following matrices, for any
given positive integer n:

Ã(t) =


−(a0(t) + b0(t)) a0(t)

b1(t) −(a1(t) + b1(t))
. . .

. . .
. . . an−1(t)
bn(t) −(an(t) + bn(t))

 , (1)

B(t) =


0 c0(t)

1− c1(t) 0
. . .

. . .
. . . cn−1(t)

1− cn(t) 0

 , (2)

where

cj(t) =
aj(t)

aj(t) + bj(t)
, j = 0, . . . , n. (3)

When b0(t) is identically 0, Ã(t) was called the (n + 1)th (complete) section of H(t) by
Ledermann and Reuter in their fundamental paper on birth and death processes [14, p.

324] (see also [2, p. 267]). For notational simplicity, instead of Ã(t) of (1), we will work
with

A(t) =


a0(t) + b0(t) a0(t)

b1(t) a1(t) + b1(t)
. . .

. . .
. . . an−1(t)
bn(t) an(t) + bn(t)

 . (4)

Notice that each eigenvalue of Ã(t) is the opposite to one eigenvalue of A(t). In fact, if

U = diag(−1, 1,−1, 1, . . . , (−1)n+1) then A(t) = U(−Ã(t))U. We also have

B(t) = U(−B(t))U. (5)

Thus, the general assumptions will be that we are given two differentiable with continuous
derivative matrix maps t 7→ A(t) and t 7→ B(t), defined by (4) and (2), respectively,
from a non-empty (open) interval of the real field I ⊆ R into the space of matrices
R(n+1)×(n+1). The differentiable real functions ai(t) and bi(t) are assumed to satisfy the
following conditions for t ∈ I:

b0(t) ≥ 0,
bj(t) > 0, j = 1, . . . , n,
aj(t) > 0, j = 0, . . . , n,

(6)

2



and ci(t) is defined in (3). It is also assumed that aj(t) = 0 and bj(t) = 0 if j < 0. Under
these conditions, A(t) and B(t) are called birth and death and random walk matrices,
respectively.

We can precisely state now Ismail’s problem in matrix terms:

Question (Q). Identify, when they exist, those subsets of I at which the eigenvalues of
A(t) and B(t) are strictly monotone function of t.

As a matter of notation, since most matrices will be square of order (n + 1) over
R, we dispense ourselves with mentioning it unless the contrary is expressly stated with
a subscript. Also, given a matrix H with only real eigenvalues, we denote by λj(H)
(0 ≤ j ≤ n), or simply by λj when this does not lead to confusion, its eigenvalues
arranged in increasing order:

λmin = λ0 ≤ λ1 ≤ · · · ≤ λn = λmax.

Ismail himself proved some relevant results about the monotonicity of the extreme
eigenvalues of A(t) and B(t). We need to introduce the following subsets of I:

A↑min =
{
t ∈ I | a′0(t) > 0 and b0(t) = 0 and ∀j ∈ {1, . . . , n} (7)(
a′j(t) > 0 and a′j(t)bj(t)− aj(t)b′j(t) > 0

)}
,

A↑max =
{
t ∈ I | ∀j ∈ {0, . . . , n}

(
a′j(t) > 0 and b′j(t) > 0

)}
, (8)

C↑max =
{
t ∈ I | c0(t) = 1 and ∀j ∈ {1, . . . , n}

(
c′j(t) < 0

)}
. (9)

The sets A↓min, A↓max, and C↓max are defined analogously by exchanging the roles of >
and <. Ismail proved in [10, Th. 1 and 2] (see also [11, Th. 2.2] and [12, Th. 7.4.2])
that λmin(A) (resp., λmax(A)) is a strictly increasing function of t in each one of the

non-degenerate subintervals of A↑min (resp., A↑max). He also proved [10, Th. 3] (see also
[11, Th. 2.3] and [12, Th. 7.4.3]) that λmax(B) is a strictly increasing function of t in
each one of the non-degenerate subintervals of C↑max.

One of the goals of this paper is to give new and wider subsets where the extreme
eigenvalues of A(t) monotonically increase or decrease. This is done in Section 3. On
the other hand, Magagna, in his Ph. D. Thesis of 1965 and [9] also addressed the
problem of the monotonicity of the eigenvalues of birth and death matrices. To be
precise, the eigenvalues of birth and death matrices are real and simple (see Section 2)
and so they are differentiable functions of the matrix coefficients. A thorough analysis
of this dependence, in the case of homogeneous (i.e.; time-independent) birth and death
matrices with b0 = an = 0, allowed Magagna [15, Result 2.2, p. 2-11] and Horne and
Magagna [9, Theorem 1] to derive directions in R2n on which the eigenvalues strictly
increase. Specifically, assume that matrix A of (4) is constant with an = b0 = 0. Look at
the nonzero entries of this matrix as real parameters. Thus A is a matrix depending of
2n real variables. Observe that the assumption b0 = an = 0 implies that A is a singular
matrix.

Theorem 1.1. If aj−1, bj > 0 for j = 1, 2, . . . , n and r > 0 then the nonzero eigenvaues
of A are strictly increasing along the half lines bi+1 = rai, i = 0, 1, . . . , n−1, and bi = rai,
i = 1, . . . , n− 1.
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We will show in Section 4 how to apply and generalize this result to the time-
dependent birth and death matrices of (4) in order to tackle Question Q above . Finally,
we will deal in Section 5 with the monotonicity of the eigenvalues of the random walk ma-
trices of (2). It will be seen that there is a very close relationship between the eigenvalues
of these matrices and certain birth and death matrices constructed with their elements.
This relationship will allow to apply to random walk matrices all results obtained for
birth and death matrices in the previous sections. Preliminary notions and auxiliary
results are collected in Section 2.

2. Preliminaries

This section is devoted to review some spectral properties of matrices A(t) and B(t)
of (4) and (2). The main reference for the results to follow is [5]. For each t ∈ I, A(t)
is a Jacobi matrix (see [5, Ch. II, Sec. 1]) and so, its eigenvalues are real and distinct.
A consequence of this property and that A(t) depends differentiably on t ∈ I is that the
eigenvalues of A(t) are differentiable functions of t (see, for example, [13, p. 102] or [18,
p. 183]). They can be arranged in increasing order:

λ0(A, t) < λ1(A, t) < · · · < λn(A, t).

In addition, if for k = 1, 2, . . . , n + 1, A(1 : k, 1 : k)(t) denotes the principal submatrix
of A(t) formed by its k first rows and columns, the eigenvalues of A(1 : k, 1 : k)(t) and
A(1 : k − 1, 1 : k − 1)(t) interlace (see [5, Ch. II, Sec. 1]). That is to say, for each t ∈ I
and j = 1, 2, . . . , k:

λj−1(A(1 : k, 1 : k), t) < λj−1(A(1 : k − 1, 1 : k − 1), t) < λj(A(1 : k, 1 : k), t). (10)

Next, let ∆0(t) = 1 and ∆k(t) = det A(1 : k, 1 : k)(t). It is easily seen by induction on k
that for t ∈ I,

∆k(t) = ak−1(t)∆k−1(t) +

k−1∏
j=0

bj(t), k = 1, . . . , n+ 1.

Henceforth ∆k(t) > 0 for k = 1, . . . , n+ 1. It follows from [5, Ch. II, Th. 10 ] that A(t)
is an oscillatory matrix and then, all its eigenvalues are positive [5, Ch. II, Th. 6]:

0 < λ0(A, t) < λ1(A, t) < · · · < λn(A, t), t ∈ I. (11)

Although seeing the birth and death matrices as oscillatory matrices is convenient for
our developments it is worth-pointing out that they are also diagonally dominant ma-
trices. Since they are diagonally similar to symmetric matrices with positive diagonal
elements (see (17)), it follows from a result by Taussky (see [8, Cor. 6.2.27]) that all
their eigenvalues are positive.

On the one hand, B(t) is also a Jacobi matrix but it is not an oscillatory matrix
because it is not totally non-negative (i.e., all minors are not non-negative). However,

Â(t) = In+1 + B(t) is a birth and death matrix with âi(t) = ci(t) and b̂i(t) = 1 − ci(t),
t ∈ I, i = 0, 1, . . . , n. Since, for each t ∈ I, λi(B, t) = λi(Â, t)− 1, the eigenvalues of B(t)
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are also real and simple, and they are differentiable functions of t ∈ I. It follows from
(11) that

−1 < λ0(B, t) < λ1(B, t) < · · · < λn(B, t), t ∈ I.

But by (5), for each t ∈ I, the eigenvalues of B(t) are symmetrically distributed with
respect to the origin. Hence

− 1 < λ0(B, t) < λ1(B, t) < · · · < λn(B, t) < 1, t ∈ I, (12)

half of them being positive and the other half negative. Moreover, if n is even then 0 is
an eigenvalue of B(t) for all t ∈ I, implying that, when n is even, det B(t) = 0.

As far as the eigenvectors are concerned, since the eigenvalues of A(t) are simple, each
eigenvalue λk(A, t) admits an eigenvector uk(t) which depends differentiably on t (see
[13, Ch. 9, Th. 8]). In addition (see [5, Cap. II, Th. 6]) among the coordinates of uk(t)
there are exactly k − 1 sign changes. The same properties apply to the eigenvalues of
B(t). This is a general result for the eigenvectors of matrices depending differentiably on
t ∈ I. However, for A(t) and B(t) explicit expressions of some distinguished eigenvectors
can be given. Specifically, for each t ∈ I let {pk(x; t)} be the family of (orthogonal)
polynomials defined recursively as follows:

p−1(x; t) = 0, p0(x; t) = 1,

xpk(x; t) = αk(t)pk+1(x; t) + βk(t)pk(x; t) + γk(t)pk−1(x; t), k = 0, 1, . . . , (13)

where, for i = 0, 1, 2, . . ., αi(t), βi(t), and γi(t) are differentiable functions of t ∈ I and
αi−1(t)γi(t) > 0. We can associate to this family of polynomials the following infinite
Jacobi matrix:

H(x; t) =



β0(t)− x α0(t)
γ1(t) β1(t)− x α1(t)

. . .
. . .

. . .

γn(t) βn(t)− x αn(t)
. . .

. . .
. . .

 , p(x; t) =



p0(x; t)
p1(x; t)

...
pn(x; t)

...

 .

Observe that the submatrix formed by the first k rows and columns of H(x; t) is Jk(t)−xIk
where

Jk(t) =


β0(t) α0(t)
γ1(t) β1(t) α1(t)

. . .
. . .

. . .

γk−1(t) βk−1(t)

 .

is a finite Jacobi matrix of order k. The following result is well-known and can be easily
proven using induction, for example.

Proposition 2.1. With the above notation, for all t ∈ I,

(i) H(x; t) p(x; t) = 0,

(ii) pk(x; t) =
(−1)k

α0(t)α1(t) · · ·αk−1(t)
det(Jk(t)− xIk), k = 1, 2, . . . .
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In other words, for each k = 1, 2, . . . and each t ∈ I the eigenvalues of Jk(t) are the
roots of pk(x; t) and if λ0(t) is an eigenvalue of Jk(t) then pk(t) = (p0(λ0(t); t), p1(λ0(t); t),
. . . , pk−1(λ0(t); t))T is an eigenvector of Jk(t) for λ0(t). Since the eigenvalues of Jk(t) are
simple, λ0(t) differentiably depends on t and so does pk(t).

All above directly applies to A(t) and B(t). In addition, since the non-diagonal entries
of these matrices are positive, their eigenvectors satisfy the following important property
(see [5, Ch. II, Th. 1]):

For each t ∈ I the sequence of coordinates of the eigenvectors of the j-th
eigenvalue of A(t) and B(t) has exactly j − 1 sign changes.

(14)

In particular, all coordinates of the eigenvectors for λmax have the same signs and the
signs of the coordinates of the eigenvectors for λmin alternate. This property will be
useful in Section 3.

We close this section with a well-known formula for the derivatives of the eigenvalues
of A(t) and B(t) (see, for example, [13, Ch. 9]). For k = 0, 1, . . . , n

λ′k(A, t) =
yTk (t)A′(t)xk(t)

yTk (t)xk(t)
, t ∈ I, (15)

where xk(t) and yk(t) are right and left eigenvectors of A(t) for the eigenvalue λk(A, t);
that is, A(t)xk(t) = λk(A, t)xk(t) and yTk (t)A(t) = λk(A, t)yTk (t) for each t ∈ I.

3. Extreme eigenvalues of birth and death matrices

When dealing with specific matrices, even for rather simple ones, the sets in (8) or
(7) may provide poor or none information about the intervals where the actual extreme
eigenvalues of the birth and dead matrices increase or decrease. The following example
is an illustration.

Example 3.1. Consider the 3-by-3 birth and death matrix

A1(t) =


1

t
+

1

1− t
1

t
0

t 1 1− t

0
1

1− t
1

t
+

1

1− t

 , t ∈ (0, 1).

The eigenvalue functions of this matrix are depicted in Figure 1. They can be explicitly
computed in this example. In particular, the second eigenvalue-function (the one in
red in the Figure) is λ2(t) = 1/t+ 1/(1− t). It is decreasing in the interval (0, 1/2) and
increasing in (1/2, 1). It can be seen (using software, for instance) that λ1(t) and λ3(t) are
also decreasing in (0, 1/2) and increasing in (1/2, 1) approximately. However, a′i(t) < 0

while b′i(t) > 0 in I for i = 0, 1, 2. Therefore A↑max = A↓max = ∅. But also A↑min = A↓min = ∅
because b0(t) 6= 0. Notice that for all t ∈ (0, 1), a′i(t) < 0 and a′i(t)bi(t) − ai(t)b′i(t) < 0
for i = 0, 1, 2. However, λmin(t) is not decreasing in the whole interval (0, 1).
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Figure 1: Behavior of the eigenvalues of A1(t).

The above example illustrates how far the set of conditions that characterize A↑max,

A↓max, A↑min and A↓min can be from being necessary conditions for the monotonicity of
the extreme eigenvalues of A(t). In this section we aim to provide wider sets where the
extreme eigenvalues λmax(t) and λmin(t) of A(t) increase and decrease. We will use the
fact that A(t) can be symmetrized by means of a diagonal similarity transformation. In
fact, let D(t) = diag(d0(t), d1(t), . . . , dn(t)), where

d0(t) = 1, dj(t) =

√
a0(t) . . . aj−1(t)

b1(t) · · · bj(t)
, j = 1, . . . , n. (16)

Observe that for j = 0, 1, . . . , n, dj(t) is a well-defined positive function because bj(t) > 0
and aj(t) > 0 for all t ∈ I. An easy computation shows that

S(t) = D(t)A(t)D(t)−1

=


a0(t) + b0(t)

√
a0(t)b1(t)√

a0(t)b1(t) a1(t) + b1(t)
. . .

. . .
. . .

√
an−1(t)bn(t)√

an−1(t)bn(t) an(t) + bn(t)

 .
(17)

This is a tridiagonal, symmetric matrix with the same eigenvalues as A(t) for each t ∈ I.
So, we can use S(t) to compute the subsets of I where the eigenvalue-functions of A(t)
increase or decrease. Since S(t) is symmetric, if λk(t) is one of its eigenvalues and xk(t)
is a right eigenvector then xk(t) is also a left eigenvector for λk(t). On the other hand,
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it follows from item (i) of Proposition 2.1 that if for each t ∈ I we define

q−1(λk(t); t) = 0, q0(λk(t); t) = 1,

λk(t)qj(λk(t); t) =
√
aj(t)bj+1(t)qj+1(λk(t); t) + (aj(t) + bj(t))(t)qj(λk(t); t) (18)

+
√
aj−1(t)bj(t)qj−1(λk(t); t), j = 0, 1, . . . ,

then (cf. (13))

qk(t) = (q0(λk(t); t), q1(λk(t); t), · · · , qn(λk(t); t))T (19)

is an eigenvector of S(t) for λk(t). Bearing in mind (15) and the fact that qT
k (t)qk(t) > 0,

we are to find the values of t ∈ I where qT
k (t)S′(t)qk(t) is strictly positive or negative.

Let us compute this function. For notational simplicity we remove the subscript k and
the dependence on t and λk.

qTS′q =

n−1∑
j=0

(a′j + b′j)q
2
j + 2

n−1∑
j=0

(
√
ajbj+1)′qjqj+1 (20)

= (a′0 + b′0) + (
√
a0b1)′q1 +

n−1∑
j=1

rjqj + ((
√
an−1bn)′qn−1 + (a′n + b′n)qn)qn,

where
rj = (

√
aj−1bj)

′ qj−1 + (a′j + b′j) qj + (
√
ajbj+1)′ qj+1. (21)

Using (18) to compute qj+1 in terms of qj and qj−1 for 0 ≤ j ≤ n− 1, and substituting
in rjqj we get

rjqj =

(
(a′j + b′j) +

(√
ajbj+1

)′√
ajbj+1

(λk − (aj + bj))

)
q2j +

√
ajbj+1

(√
aj−1bj√
ajbj+1

)′
qj−1qj .

Also, it follows from (18) that q1 =
λk − (a0 + b0)√

a0b1
. Thus,

(a′0 + b′0) + (
√
a0b1)′q1 = (a′0 + b′0) +

(√
a0b1

)′
√
a0b1

(λk − (a0 + b0)) . (22)

On the other hand, by item (ii) of Proposition 2.1, qn+1(λk) = 0. Thus, for j = n in
(18),

qn−1 =
1√

an−1bn
(λk − (an + bn))qn, (23)

and so

((
√
an−1bn)′qn−1qn + (a′n + b′n)q2n =

(
(a′n + b′n) +

(√
an−1bn

)′√
an−1bn

(λk − (an + bn))

)
q2n.

(24)
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In conclusion (recall that a−1(t) = 0 and q−1(x; t) = 0),

qTS′q =

n−1∑
j=0

((
(a′j + b′j) + `j (λk − (aj + bj))

)
q2j +

√
ajbj+1

(√
ej
)′
qj−1 qj

)
(25)

+ ((a′n + b′n) + `n−1(λk − (an + bn))) q2n,

where

ej(t) =
aj−1(t)bj(t)

aj(t)bj+1(t)
, `j(t) =

(√
aj(t)bj+1(t)

)′
√
aj(t)bj+1(t)

, j = 0, . . . , n− 1. (26)

Theorem 3.1. Let A(t) be the birth and death matrix of (4) and let ej(t), `j(t), j =
0, 1, . . . , n− 1, be the functions of (26). For each t ∈ I set

m1(t) = max
0≤j≤n

{aj(t) + bj(t)}, m2(t) = min{σ(t), ρ(t)}, (27)

where

σ(t) = max
{

2a0(t) + b0(t), an(t) + 2bn(t), 2 max
1≤i≤n−1

ai(t) + bi(t)
}
,

ρ(t) = max
{
a0(t) + b0(t) +

√
a0(t)b1(t), an(t) + bn(t) +

√
an−1(t)bn(t),

max
1≤i≤n−1

ai(t) + bi(t) +
√
ai−1(t)bi(t) +

√
ai(t)bi+1(t)

}
.

For j = 0, 1, . . . , n− 1 let

fj(t) = a′j(t) + b′j(t) + `j(t)(m1(t)− aj(t)− bj(t)),
gj(t) = a′j(t) + b′j(t) + `j(t)(m2(t)− aj(t)− bj(t)),
fn(t) = a′n(t) + b′n(t) + `n−1(t)(m1(t)− an(t)− bn(t)),

gn(t) = a′n(t) + b′n(t) + `n−1(t)(m2(t)− an(t)− bn(t)).

Define the following subsets of I:

B↑j,max =
{
t ∈ I |

(
(aj−1(t)bj(t))

′ ≥ 0 and (aj(t)bj+1(t))′ ≥ 0 and a′j(t) + b′j(t) ≥ 0
)

(28)

or
(

(aj(t)bj+1(t))′ ≤ 0 and gj(t) > 0 and e′j(t) ≥ 0
)

or
(

0 ≥ a′j(t) + b′j(t) and fj(t) ≥ 0 and e′j(t) ≥ 0
)}

, j = 0, 1, . . . , n− 1,

B↑n,max =
{
t ∈ I |

(
(an−1(t)bn(t))′ ≥ 0 and a′n(t) + b′n(t) ≥ 0

)
or
(

(an−1(t)bn(t))′ ≤ 0 and gn(t) > 0
)

or
(

0 ≥ a′n(t) + b′n(t) and fn(t) ≥ 0
)}
.

N =
{
t ∈ I | ∃j ∈ {0, 1, . . . , n− 1} such that (aj(t)bj+1(t))′ 6= 0 or (29)

∃j ∈ {0, 1, . . . , n} such that a′j(t) + b′j(t) 6= 0
}
.
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The sets B↓j,max are defined analogously by exchanging the roles of > and < on the one

hand, and ≥ and ≤ on the other hand. Let B↑max =
(⋂n

j=0 B
↑
j,max

)⋂
N and B↓max =(⋂n

j=0 B
↓
j,max

)⋂
N. Then λmax(A, t) is a strictly increasing (resp., strictly decreasing)

function of t in each one of the non-degenerate subintervals of B↑max (resp., B↓max).

Proof. For each t ∈ I, all entries of S(t) are non-negative and S(t) is irreducible. The

latter means that there is no permutation matrix P such that PTS(t)P =
(

S1(t) S2(t)
0 S3(t)

)
.

By Perron-Frobenious Theorem ([17, Ch. 8] or [1, Th. 1.4.4]) for each t ∈ I, there is a
positive eigenvector of S(t) for its biggest eigenvalue λmax(t) > 0. Since qn(t) of (19) is an
eigenvector of λmax(t), q0(λmax(t); t) = 1 and by (14) all coordinates of the eigenvectors
of λmax(t) have the same sign, we conclude that qn(t) > 0. We are to prove that if
t ∈ B↑max then qT

n(t)S′(t)qn(t) > 0. The proof that if t ∈ B↓max then qT
n(t)S′(t)qn(t) < 0

is similar. As above, we remove the dependences on t and λmax for notational simplicity
and consider that t ∈ I has been fixed. First of all, we are to show that m1 < λmax ≤ m2.
In fact, since S is symmetric, if ah + bh = m1 then

λmax = max
‖u‖2=1

uTSu ≥ eThSeh = m1.

But, one can prove using (10) and (18) that, actually, λmax > m1. On the other hand,
by Gers̆gorin’s Theorem (see for example [8, Th. 6.1.1]) applied to matrix A,

λmax ∈ [b0, 2a0 + b0]
⋃(

n−1⋃
i=1

[0, 2(ai + bi)]

)⋃
[an, an + 2bn].

And, applied to S,

λmax ∈
[
a0 + b0 −

√
a0b1, a0 + b0 +

√
a0b1

]
⋃(

n−1⋃
i=1

[
ai + bi − (

√
ai−1bi +

√
aibi+1), ai + bi + (

√
ai−1bi +

√
aibi+1)

])
⋃[

an + bn −
√
an−1bn, an + bn +

√
an−1bn

]
.

Henceforth λmax ≤ min{σ, ρ} = m2.
Let

(qTS′q)n = ((a′n + b′n) + `n−1(λmax − (an + bn))) q2n, (30)

and for j ∈ {0, 1, . . . , n− 1}, let

(qTS′q)j =
((

(a′j + b′j) + `j (λmax − (aj + bj))
)
q2j +

√
ajbj+1

(√
ej
)′
qj−1 qj

)
. (31)

Let j be any nonnegative integer smaller than n+ 1 and let t ∈ B↑j,max.

10



• Assume that j < n and (aj−1bj)
′ ≥ 0, (ajbj+1)′ ≥ 0 and a′j + b′j ≥ 0.If j = 0 then,

by (22), (qTS′q)0 = (a′0 + b′0) + (
√
a0b1)′q1 ≥ 0. If j ∈ {1, 2, . . . , n − 1} then it

follows from (21) that rj ≥ 0 and so (qTS′q)j = rjqj ≥ 0. Finally, if (an−1bn)′ ≥ 0

and a′n + b′n ≥ 0 then, by (24), (qTS′q)n = (
√
an−1bn)′qn−1qn + (a′n + b′n)q2n ≥ 0.

Therefore, (qTS′q)j ≥ 0 for j = 0, 1, . . . , n.

• Let j < n and assume (ajbj+1)′ ≤ 0, gj > 0 and e′j ≥ 0. Note that e0 = 0. Since
(ajbj+1)′ ≤ 0, it must be `j ≤ 0. Also, it follows from λmax ≤ m2 and `j ≤ 0
that a′j + b′j + `j(λmax − (aj + bj)) ≥ a′j + b′j + `j(m2 − aj − bj) = gj > 0. Now,

(qTS′q)j > 0 follows from the assumption e′j ≥ 0.

• Assume now that j < n, 0 ≥ a′j + b′j , fj ≥ 0 and e′j ≥ 0. It follows from this
assumption that `j ≥ 0. Using this fact and λmax > m1 we get a′j + b′j + `j(λmax−
(aj + bj)) > a′j + b′j + `j(m1 − (aj + bj)) = fj ≥ 0. Bearing in mind that e′j ≥ 0,

we conclude that (qTS′q)j > 0.

• If j = n and (an−1bn)′ ≤ 0 and gn > 0, or, j = n and 0 ≥ a′n + b′n ≥ `n−1(an +
bn−m1), then similar arguments to those used in the previous items allow to prove
that (qTS′q)n > 0.

Summarizing, if t ∈ B↑j,max then for all j = 0, 1, . . . , n, (qTS′q)j ≥ 0. Moreover,

(qTS′q)j > 0 unless (aj−1bj)
′ = (ajbj+1)′ = a′j + b′j = 0. Henceforth the theorem

follows.

The proof of the following corollary is straightforward.

Corollary 3.1. Let A(t) be the birth and death matrix of (4). Then A↑max ⊂ B↑max and
A↓max ⊂ B↓max.

Observation 3.1. (i) For the matrix A1(t) of Example 3.1, aj−1(t)bj(t) = 1 for j =
0, 1, 2,

a′0(t) + b′0(t) = a′2(t) + b′2(t) = − 1

t2
+

1

(1− t)2

and a′1(t) + b′1(t) = 0. Thus

B↑max =

{
t ∈ (0, 1) | 1

(1− t)2
− 1

t2
> 0

}
= (1/2, 1),

B↓max =

{
t ∈ (0, 1) | 1

(1− t)2
− 1

t2
< 0

}
= (0, 1/2).

This is what the graphic of λmax(t) in Figure 1 shows. This is a toy example where
the sufficient conditions of Theorem 3.1 completely determine the monotonicity
of the biggest eigenvalue of a birth and death matrix. One cannot expect that,
in general, such an accuracy can be derived for those sufficient conditions as the
following example shows.

11



Figure 2: Behavior of the eigenvalues of A2(t).

Example 3.2. Consider the following birth and death matrix:

A2(t) =


t (1− t)t 0

1

1− t
1

t
+

1

1− t
1

t
0 t2 t2 + t

 , t ∈ (0, 1).

Figure 2 depicts the graphics of its eigenvalue-functions For this matrix B↑max =
(1/2, 1) and B↓max = ∅. In other words, for A2(t) the sufficient conditions of The-
orem 3.1 give no information about the intervals where λmax(t) decreases. Never-
theless, also for this matrix B↑max provides better information than A↑max of (8) (see
Corollary 3.1). In fact, A↑max = A↓max = ∅ for A2(t).

(ii) It is easily seen that

(
√
ej)
′ ≥ 0 ⇔ (aj−1bj)

′

aj−1bj
≥ (ajbj+1)

′

ajbj+1
. (32)

This implies that (ajbj+1)′ ≥ 0 and e′j ≥ 0 is a stronger condition than (aj−1bj)
′ ≥ 0

and (ajbj+1)′ ≥ 0 in the sense that, for each j,

{t ∈ I | (ajbj+1)′ ≥ 0, e′j ≥ 0} ⊂ {t ∈ I | (aj−1bj)′ ≥ 0, (ajbj+1)′ ≥ 0}.

This is why e′j ≥ 0 is replaced by (aj−1bj)
′ ≥ 0 and (ajbj+1)′ ≥ 0 in the first subset

defining B↑j,max in (28).

(iii) A different set of sufficient conditions can be obtained if qTS′q is written as a “sum
of squares”. One can show that for the eigenvalue-function λk(t) of the birth and

12



death matrix of (4),

qTS′q =

n−1∑
j=0

(
(a′j + b′j) +

Π′j
Πj

(λk − (aj + bj))
)
q2j + (a′n + b′n)q2n, (33)

where Πj can be defined recursively as follows:

Πn = 1, ΠjΠj+1 = ajbj+1, j = 0, 1, . . . , n− 1. (34)

Explicit expressions for these continuous (in I) functions can be provided. In par-
ticular, it can be shown using (34) that for k = 0, 1, . . . , n − 1, if n − k is odd
then

Π′k
Πk

=

n−k−1
2∑

j=0

(ak+2jbk+2j+1)′

ak+2jbk+2j+1
−

n−k−1
2∑

j=1

(ak+2j−1bk+2j)
′

ak+2j−1bk+2j
.

And if n− k is even then

Π′k
Πk

=

n−k−2
2∑

j=0

(ak+2jbk+2j+1)′

ak+2jbk+2j+1
−

n−k−2
2∑

j=0

(ak+2j+1bk+2j+2)′

ak+2j−1bk+2j
.

It is plain that if, for t ∈ I, (a′j(t) + b′j(t)) > 0 for j = 0, 1, . . . , n and Π′j(t) > 0 for

j = 0, 1, . . . , n− 1 then qTS′q > 0. Condition

Π′j(t)

Πj(t)
> 0

can be seen as a generalization of (32).

It is plain from item (iii) of Observation 3.1 that different ways of writing qTS′q
may provide distinct subsets of I where λmax(t) increases or decreases. An interesting
expression of qTS′q that will be of interest for us can be obtained by manipulating (20)
a little bit. In fact, on the one hand,

2
(√

ajbj+1

)′
=

(ajbj+1)′√
ajbj+1

= a′j

√
bj+1

aj
+ b′j+1

√
aj
bj+1

.

Substituting this expression in (20):

qTS′q =

n−1∑
j=0

(
(a′j + b′j)q

2
j +

(
a′j

√
bj+1

aj
+ b′j+1

√
aj
bj+1

)
qjqj+1

)
=

n∑
j=0

sjqj

where

s0 = (a′0 + b′0)q0 + a′0

√
b1
a0
q1,

sj = (a′j + b′j)qj + b′j

√
aj−1
bj

qj−1 + a′j

√
bj+1

aj
qj+1, j = 1, . . . , n− 1,

sn = (a′n + b′n)qn + b′n

√
an−1
bn

qn−1.

13



Recalling that qn+1(λk) = 0 (Proposition 2.1), we can write

sn = (a′n + b′n)qn + b′n

√
an−1
bn

qn−1 + a′n

√
bn+1

an
qn+1,

where bn+1(t) is any positive continuous with continuous first derivative function in I.
Thus,

sj = (a′j + b′j)qj + b′j

√
aj−1
bj

qj−1 + a′j

√
bj+1

aj
qj+1, j = 1, . . . , n.

Using again (18) to compute qj+1 in terms of qj and qj−1 for the eigenvalue-function λk:

s0 =

(
(a′0 + b′0) + a′0

√
b1
a0

1√
a0b1

(λk − (a0 + b0))

)
q0

=
1

a0
(a′0λk + a0b

′
0 − a′0b0) q0,

sj = (a′j + b′j)qj + b′j

√
aj−1
bj

qj−1 +
a′j
aj

(
(λk − (aj + bj))qj −

√
aj−1bjqj−1

)
=

1

aj

(
(a′jλk + ajb

′
j − a′jbj)qj +

√
aj−1
bj

(ajb
′
j − a′jbj)qj−1

)
, j = 1, . . . , n.

Therefore

qTS′q =
1

a0
(a′0λk + a0b

′
0 − a′0b0) q20 (35)

+

n∑
j=1

1

aj

(
(a′jλk + ajb

′
j − a′jbj)q2j +

√
aj−1
bj

(ajb
′
j − a′jbj)qj−1qj

)
.

Bearing in mind this formula of qTS′q when applied to λmax, the following theorem can
be proved using similar techniques to those of Theorem 3.1.

Theorem 3.2. Let A(t) be the birth and death matrix of (4) and let m2(t) be the function
defined in (27). Define the following subsets of I:

B̃↑0,max =
{
t ∈ I | a′0(t)m2(t) + a0(t)b′0(t)− a′0(t)b0(t) ≥ 0

}
,

B̃↑j,max =
{
t ∈ I | aj(t)b′j(t)− a′j(t)bj(t) ≥ 0 (36)

and a′j(t)m2(t) + aj(t)b
′
j(t)− a′j(t)bj(t) ≥ 0

}
, j = 1, . . . , n,

Ñ =
{
t ∈ I | a′0(t)m2(t) + a0(t)b′0(t)− a′0(t)b0(t) 6= 0 or (37)

∃j ∈ {1, . . . , n} such that aj(t)b
′
j(t)− a′j(t)bj(t) 6= 0

or a′j(t)m2(t) + aj(t)b
′
j(t)− a′j(t)bj(t) 6= 0

}
.

The sets B̃↓j,max are defined analogously by exchanging the roles of ≥ and ≤. Let B̃↑max =(⋂n
j=0 B̃

↑
j,max

)⋂
Ñ and B̃↓max =

(⋂n
j=0 B̃

↓
j,max

)⋂
Ñ. Then λmax(A, t) is a strictly in-

creasing (resp., strictly decreasing) function of t in each one of the non-degenerate subin-

tervals of B̃↑max (resp., B̃↓max).
14



Notice that if, for j ∈ {0, 1, . . . , n}, aj(t)b′j(t)− a′j(t)bj(t) ≥ 0 and a′j(t) ≥ 0 then t ∈
B̃↑j,max. However, it may happen a′j(t) < 0 and still a′j(t)λmax(t)+aj(t)b

′
j(t)−a′j(t)bj(t) ≥

0. It is enough to require aj(t)b
′
j(t)− a′j(t)bj(t) to be as big as −m2(t)a′j(t) > 0.

Observation 3.2. A simple computation shows that, for matrix A1(t) of Example 3.1,

σ(t) =


2

t
+

1

1− t
, 0 ≤ t ≤ 1

2
1

t
+

2

1− t
,

1

2
≤ t ≤ 1,

and ρ(t) = 1/t + 1/(1 − t) + 1. Then m2(t) = ρ(t), B̃↑0,max = [0.554958, 1], B̃↑1,max =

[0, 1] and B̃↑2,max = [0.445042, 1]. Hence B̃↑max = [0.554958, 1]. Also, B̃↓max = ∅ because

a1(t)b′1(t)− a′1(t)b1(t) = 1 > 0 for all t ∈ [0, 1]. For this matrix , B̃↑max and B̃↓max provide
less information than B↑max and B↓max.

For the smallest eigenvalue of A(t), the sign patterns of the entries of the corre-
sponding eigenvector are quite controllable (see (14)). This fact and having an explicit
expression for λ′min(A, t) in terms of its eigenvectors (cf. (15)) allow us to study the
monotonicity of the smallest eigenvalue-function in I. The subsets where it increases or
decreases look very much like the ones in Theorem 3.1.

Theorem 3.3. Let A(t) be the birth and death matrix of (4) and let ej(t),`j(t), j =
0, 1, . . . , n− 1, be the functions of (26). For each t ∈ I set

µ(t) = min
0≤j≤n

{aj(t) + bj(t)}. (38)

Let

hn(t) = a′n(t) + b′n(t)− `n−1(t)(an(t) + bn(t)),

ln(t) = a′n(t) + b′n(t) + `n−1(t)(µ(t)− an(t)− bn(t)),

and, for j = 0, 1, . . . , n− 1,

hj(t) = a′j(t) + b′j(t)− `j(t)(aj(t) + bj(t)),

lj(t) = a′j(t) + b′j(t) + `j(t)(µ(t)− aj(t)− bj(t)).

Define the following subsets of I:

B↑j,min =
{
t ∈ I |

(
(aj−1(t)bj(t))

′ ≤ 0 and (aj(t)bj+1(t))′ ≤ 0 and a′j(t) + b′j(t) ≥ 0
)

(39)

or
(

(aj(t)bj+1(t))′ ≥ 0 and hj(t) ≥ 0 and e′j(t) ≤ 0
)

or
(
a′j(t) + b′j(t) ≤ 0 and lj(t) ≥ 0 and e′j(t) ≤ 0

)}
, j = 0, 1, . . . , n− 1,

B↑n,min =
{
t ∈ I |

(
(an−1(t)bn(t))′ ≤ 0 and a′n(t) + b′n(t) ≥ 0

)
or
(

(an−1(t)bn(t))′ ≥ 0 and hn(t) ≥ 0
)

or
(
a′n(t) + b′n(t) ≤ 0 and ln(t) ≥ 0

)}
,
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and let N be the set of (29). The sets B↓j,min are defined analogously by exchang-
ing the roles of > and < on the one hand and ≥ and ≤ on the other hand. Let

B↑min =
(⋂n

j=0 B
↑
j,min

)⋂
N and B↓min =

(⋂n
j=0 B

↓
j,min

)⋂
N. Then λmin(A, t) is a strictly

increasing (resp., strictly decreasing) function of t in each one of the non-degenerate

subintervals of B↑min (resp., B↓min).

Proof. The proof is very similar to that of Theorem 3.1. First, let q = q0(λmin(t), t)
be the eigenvector-function of (19) for the eigenvalue-function λmin = λmin(A, t). Let
qj = qj(λmin(t); t) be the j-th coordinate of q. According to (14), for each t ∈ I, the
signs of the coordinates of q alternate. Since q0 = 1, we have sgn(qj) = (−1)j and so
qj−1qj < 0. On the other hand, for each t ∈ I if ah(t) + bh(t) = µ(t) then

λmin(A, t) = λmin(S, t) = min
‖u‖2=1

uTS(t)u ≤ eThS(t)eh = µ(t).

Again, by using (10) and (18) it can be seen that λmin(A, t) < µ(t). Also, from (11),
λmin(A, t) > 0. Let

(qTS′q)n = ((a′n + b′n) + `n−1(λmin − (an + bn))) q2n, (40)

and for j ∈ {0, 1, . . . , n− 1}, let

(qTS′q)j =
((

(a′j + b′j) + `j (λmin − (aj + bj))
)
q2j +

√
ajbj+1

(√
ej
)′
qj−1 qj

)
. (41)

Bearing in mind that qj−1qj < 0 and 0 < λmin(A, t) < µ(t), the technique of the proof

of Theorem 3.1 can be used to show that (qTS′q)j ≥ 0 for all t ∈ B↑j,min, j = 0, 1, . . . , n.

The theorem follows from (25) and the fact that if t ∈ N then (qTS′q)j > 0 for some
j ∈ {0, 1, . . . , n}.

Observation 3.3. For the matrix A1(t) of Example 3.1, it is easily checked that B↑min =

(1/2, 1) and B↓min = (0, 1/2) in concordance with what is shown in Figure 1. Analysing
these sets for A2(t) is a little more involved, but taking into account that µ(t) = a0(t) +

b0(t) = t it can be seen that B↑0,min = B↑2,min = (0, 1) and B↑1,min = (3/5, 1). Therefore

B↑min = (3/5, 1). On the other hand, B↓0,min = ∅ so that B↓min = ∅. All this is consistent
with the information about the intervals where λmin(t) increases and decreases provided
by Figure 2.

The problem of the monotonicity of λmin(t) when hj(t) < 0 or lj(t) < 0 is still open.
It is reasonable to expect that in these cases condition e′j(t) ≤ 0 will not be enough and
it should be required to be smaller than a negative quantity depending on hj(t) or lj(t),
respectively. By following a lead of [11, Th. 2.2] we are to show that this is indeed
the case. To begin with, let {qj(x; t)} be the (orthogonal) polynomials associated to the
Jacobi matrix S(t) of (17) (see (13)):

q−1(x; t) = 0, q0(x; t) = 1,√
aj(t)bj+1(t)qj+1(t)(x; t) (42)

= (x− (aj(t) + bj(t)))qj(x; t)−
√
aj−1(t)bj(t)qj−1(t), j = 1, 2, . . . .
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It is not difficult to see by induction that

qj(0; t) = (−1)j

j∑
k=0

j−1∏
i=k

ai(t)

k−1∏
i=0

bi(t)√√√√j−1∏
k=0

ak(t)

j∏
k=1

bk(t)

(43)

where we are agreeing that

−1∏
i=0

=

j−1∏
i=j

= 1. Let us denote χ−1(t) = 0, χ0(t) = 1 and for

j = 1, . . . , n

χj(t) =

j∑
k=0

b0(t)b1(t) · · · bk−1(t)ak(t)ak+1(t) · · · aj−1(t)√
a0(t)a1(t) · · · aj−1(t)b1(t)b2(t) · · · bj(t)

. (44)

Then q0(0; t) = 1 and qj(0; t) = (−1)jχj(t) for j = 1, . . . , n.
With the notation of Theorem 3.3, for j = 1, . . . , n− 1, we define

rj(x; t) =
√
aj(t)bj+1(t)

(√
ej(t)

)′
qj−1(x; t) + hj(t)qj(x; t), (45)

sj(x; t) =
√
aj(t)bj+1(t)

(√
ej(t)

)′
qj−1(x; t) + lj(t)qj(x; t). (46)

Lemma 3.1. Let j ∈ {1, . . . , n− 1}.
(a) If for t ∈ I hj(t) < 0 and

uj(t) =
√
aj(t)bj+1(t)

(√
ej(t)

)′
χj−1(t)− hj(t)χj(t) < 0,

then sgn(rj(λmin(t); t) = (−1)j.

(b) If for t ∈ I lj(t) < 0 and

vj(t) =
√
aj(t)bj+1(t)

(√
ej(t)

)′
χj−1(t)− lj(t)χj(t) < 0,

then sgn(sj(λmin(t); t) = (−1)j.

Proof. We will prove item (a); the proof of item (b) is similar. We take any t ∈ I but
for notational simplicity we will omit the dependence on t of all functions. We will also
assume that j is any integer between 1 and n− 1. Let us compute rj(0) (for the chosen
arbitrary t):

rj(0) =
√
ajbj+1

(√
ej
)′
qj−1(0) + hjqj(0)

= (−1)j−1
√
ajbj+1

(√
ej
)′
χj−1 + (−1)jhjχj

= (−1)j−1
(√

ajbj+1

(√
ej
)′
χj−1 − hjχj

)
= (−1)j−1uj .
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Since uj < 0 in I, sgn(rj(0)) = (−1)j . Now

1

hj
rj(x) = qj(x) +

√
ajbj+1

(√
ej
)′

hj
qj−1(x).

It follows from hj < 0 and uj < 0 that

√
ajbj+1

(√
ej
)′

hj
χj−1 > χj ,

and since aj , bj+1, χj−1, χj are all positive,
(√
ej
)′
/hj > 0. Let λ1k < λ2k < · · · < λkk

be the roots of qk(x). Then (see (10) λij < λij−1 < λi−1j and so (see [3, p. 40]) the
roots of rj(x), α1 < α2 < · · · < αn say, are real and

λk−1j−1 < αk < λkj , k = 1, 2, . . . , n, (λ0j−1 = −∞). (47)

In particular α1 < λ1j and, as λmin is the smallest root of qn+1(λ) (Proposition 2.1), it
follows from the interlacing inequalities (10) that

0 < λmin < λ1j < λ1j−1.

We claim that 0 ≥ α1. In order to see this, let us show first that sgn(rj(λ1j)) = (−1)j . In

fact, rj(λ1j) =
√
ajbj+1

(√
ej
)′
qj−1(λ1j) because qj(λ1j) = 0. But λ1j−1 is the smallest

root of qj−1(x), 0 < λmin < λ1j < λ1j−1 and it follows from (43) that sgn(qj−1(0)) =
(−1)j−1. Hence, sgn(qj−1(λ1j)) = sgn(qj−1(λmin)) = sgn(qj−1(0)) = (−1)j−1. Now(√
ej
)′
< 0 because

(√
ej
)′
/hj > 0 and hj < 0. Therefore sgn(rj(λ1j)) = (−1)j . On

the other hand we have already seen that sgn(rj(0)) = (−1)j and α1 is the only root
of rj(x) smaller than λ1j . Since the sign of rj in λ1j and 0 coincide, we must have
α1 < 0 as claimed. Given that rj(x) has the same sign in the whole interval (0, λ1j) and
0 < λmin < λ1j we get rj(λmin) = rj(λ1j) = rj(0) = (−1)j , as desired.

Theorem 3.4. Assume that the conditions and notation of Theorem 3.3 and Lemma 3.1
hold. Define E↑j,min = B↑j,min for j = 0, n and the following subsets of I :

E↑j,min =
{
t ∈ I |

(
(aj−1(t)bj(t))

′ > 0 and hj(t) < 0 and (48)(√
ej(t)

)′
<

1√
aj(t)bj+1(t)

χj(t)

χj−1(t)
hj(t)

)
or
(

(aj−1(t)bj(t))
′ < 0 and

lj(t) < 0 and

(√
ej(t)

)′
<

1√
aj(t)bj+1(t)

χj(t)

χj−1(t)
lj(t)

)}
, j = 1, . . . , n− 1.

The set E↓j,min is defined analogously by exchanging the roles of > and < on the one hand

and ≥ and ≤ on the other hand. Let E↑min =
(⋂n

j=0 E
↑
j,min

)
and E↓min =

(⋂n
j=0 E

↓
j,min

)
.

Then λmin(A, t) is a strictly increasing (resp., strictly decreasing) function of t in each

one of the non-degenerate subintervals of E↑min (resp., E↓min).
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Proof. We use the expression of qTS′q of (25). Let (qTS′q)n and (qTS′q)j , j = 0, 1, . . . , n,
be the functions defined in (40) and (41) respectively. It was proven in Theorem 3.3 that

if t ∈ E↑j,min, j = 0, n, then (qTS′q)0 ≥ 0 and (qTS′q)n ≥ 0. Let j be any integer between

1 and n− 1 and assume that t ∈ E↑j,min. Let uj(t) and vj(t) be the functions defined in
the statement of Lemma 3.1.

• If (aj−1(t)bj(t))
′ > 0 and hj(t) < 0 and√

ej(t)
)′
<

1√
aj(t)bj+1(t)

χj(t)

χj−1(t)
hj(t)

then `j(t) > 0 and uj(t) < 0. Thus, removing the dependence on t,

(qTS′q)j = (a′j + b′j + `j(λmin − (aj + bj)))q
2
j +

√
ajbj+1

(√
ej
)′
qj−1qj

> (a′j + b′j − `j(aj + bj))q
2
j +

√
ajbj+1

(√
ej
)′
qj−1qj

= (hjqj +
√
ajbj+1

(√
ej
)′
qj−1)qj

= rj(λmin)qj ,

where, in the first inequality, we have used that `j > 0 and λmin > 0. Now,
sgn(qj) = (−1)j and by Lemma 3.1, sgn(rj(λmin)) = (−1)j . As a consequence,
(qTS′q)j > 0.

• If (aj−1(t)bj(t))
′ < 0 and lj(t) < 0 and√

ej(t)
)′
<

1√
aj(t)bj+1(t)

χj(t)

χj−1(t)
lj(t)

then `j(t) < 0 and vj(t) < 0. As in the previous case,

(qTS′q)j = (a′j + b′j + `j(λmin − (aj + bj)))q
2
j +

√
ajbj+1

(√
ej
)′
qj−1qj

> (a′j + b′j + `j(µ− (aj + bj)))q
2
j +

√
ajbj+1

(√
ej
)′
qj−1qj

= (ljqj +
√
ajbj+1

(√
ej
)′
qj−1)qj

= rj(λmin)qj ,

where the first inequality follows from `j < 0 and λmin < µ. Since sgn(qj) = (−1)j

and sgn(rj(λmin)) = (−1)j , (qTS′q)j > 0 as desired.

Observation 3.4. The case b0(t) = 0 deserves special attention. Notice that for j =
1, 2, . . .,

χj =

√
aj−1
bj

χj−1 +
b0
bjdj

. (49)

where d0(t), d1(t), . . . , are the functions of (16). Thus, when b0 = 0 the conditions(√
ej
)′
<

1√
ajbj+1

χj

χj−1
hj ,

(√
ej
)′
<

1√
ajbj+1

χj

χj−1
lj ,
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defining the set E↑j,min reduce to the easier to compute conditions

(√
ej
)′
<

1√
ajbj+1

√
aj−1
bj

hj ,
(√
ej
)′
<

1√
ajbj+1

√
aj−1
bj

lj ,

respectively.
On the other hand, if b0 6= 0 then the sets A↑min and A↓min defined in (7) are empty. This

is the case, for example, of matrices A1(t) and A2(t) of Examples 3.1 and 3.2, respectively.
It is worth-noticing in this respect that the condition a′j(t)bj(t)− aj(t)b′j(t) > 0 defining

the set A↑min is closely related to the expression of qTS′q in (35) for λmin(t). In fact, if
we define for j = 1, 2, . . . , n

zj(t;x) = qj(t;x) +

√
aj−1(t)

bj(t)
qj−1(t;x),

then we get in (35)

(a′jλmin+ajb
′
j−a′jbj)q2j +

√
aj−1
bj

(ajb
′
j−a′jbj)qj−1qj = (a′jλmin+(ajb

′
j−a′jbj)zj(λmin))qj .

As in (47), the roots of zj(x) are real and if they are β1 < β2 < · · · < βj then β1 < λ1j <
λ1j−1 < β2. It follows from (49) that when b0 = 0

zj(0) = qj(0) +

√
aj−1
bj

qj−1(0) = (−1)jχj +

√
aj−1
bj

(−1)j−1χj−1 = 0.

In other words, β1 = 0 and zj(x) does not change sign in the interval (0, λ1j ]. But

sgn(zj(λ1j)) = sgn(qj−1(λ1j)) = (−1)j−1.

Bearing in mind that sgn(qj(λmin)) = (−1)j , if a′j > 0 and (ajb
′
j − a′jbj) < 0 then

(a′jλmin + ajb
′
j − a′jbj)q2j +

√
aj−1
bj

(ajb
′
j − a′jbj)qj−1qj > 0.

On the other hand a sufficient condition for a′0λmin + a0b
′
0 − a′0b0 is a′0 > 0 because we

are assuming that b0 = 0. These are Ismail’s conditions defining A↑min in (7). If b0 6= 0
then zj(0) = (−1)j b0

bjdj
and so zj(x) does change sign in (0, λ1j). Whether there are

Ismail-like conditions applying in this case remains an open problem.

4. Intermediate eigenvalues of birth and death matrices

As mentioned in the introduction section, Magagna addressed the problem of the
monotonicity of the eigenvalues of homogeneous (i.e.; time-independent) birth and death
matrices in his Ph. D. Thesis of 1965 and [9]. An immediate consequence of his main
result (see Theorem 1.1) is that if, for t ∈ I, aj(t) = rbj+1(t) for j = 0, 1, . . . , n − 1 or
aj(t) = rbj(t) for j = 1, 2, . . . , n − 1, where r > 0 is a positive real number, then the
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nonzero eigenvalues of A(t), with b0(t) = an(t) = 0, strictly increase at t. As a result, if
we define

A↑0 =
{
t ∈ I | a′j(t) > 0 and a′j(t)bj(t) = aj(t)b

′
j(t), j = 0, 1, . . . , n

}
, (50)

A↑1 =
{
t ∈ I | a′0(t) > 0 and

(
a′j(t) > 0 and a′j−1(t)bj(t) = aj−1(t)b′j(t)

)
, j = 1, . . . , n

}
,

(51)

then the eigenvalues of A(t) are strictly increasing functions of t in each of the non-

degenerate subintervals of A↑0 ∪A
↑
1. Actually there is no need to appeal to Magagna and

Horne’s result in order to prove this property. It is an easy consequence of our previous
developments. In fact, if t ∈ A↑0 then

qTS′q =

n∑
j=1

a′j(t)

aj(t)
λkq

2
j

in (35). Hence, λ′k(A, t) = λ′k(S, t) > 0. On the other hand, if t ∈ A↑1 then one can see

after some computations that

((√
aj(t)bj+1(t)

)′)2

= a′j(t)b
′
j+1(t). Thus, if S(t) is the

matrix of (17) then

S′(t) =



a′0(t) + b′0(t)
√
a′0(t)b′1(t)(t)√

a′0(t)b′1(t) a′1(t) + b′1(t)
. . .

. . .
. . .

√
a′n−1(t)b′n(t)√

a′n−1(t)b′n(t) a′n(t) + b′n(t)


.

Defining D̃(t) = diag(d̃0(t)d̃1(t), . . . , d̃n(t)) with

d̃0(t) = 1, d̃j(t)

√
a′0(t) · · · a′j−1(t)

b′1(t) · · · b′j(t)
, j = 1, . . . , n,

we get D̃(t)−1S′(t)D̃(t) = A′(t). But, for t ∈ A↑1, A′(t) is a birth and death matrix and

so its eigenvalues are all positive. This means that for t ∈ A↑1, S′(t) is symmetric and
positive definite and so for the eigenvector qk(t) of (19), qk(t)TS′(t)qk(t) > 0 for each

t ∈ A↑1. By (15), λ′k(A, t) > 0 as claimed. A little more can be said about the relationship

between λ′k(A, t) and λk(A′, t) when t ∈ A↑0 ∩ A↑1.

Theorem 4.1. Let A(t) be the birth and death matrix of (4) and let A↑0 and A↑1 be the

subsets of I defined in (50) and (51). The sets A↓0 and A↓1 are defined analogously by
exchanging the roles of > and <. Then

0 <λ0(A′) = λ′0(A) < · · · < λn(A′) = λ′n(A) in A↑0 ∩ A↑1,

0 >λ0(A′) = λ′0(A) > · · · > λn(A′) = λ′n(A) in A↓0 ∩ A↓1.
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Proof. Assume that t ∈ A↑0 ∩ A↑1. Simple computations show that for j = 0, 1, . . . , n,
aj−1(t)a′j(t) = a′j−1(t)aj(t), aj−2(t)b′j(t) = a′j−2(t)bj(t), and bj(t)b

′
j−1(t) = b′j(t)bj−1(t).

We claim that A′(t)A(t) = A(t)A′(t). Indeed, removing the dependence on t,

(AA′)j,j = a′j−1bj + (aj + bj)(a
′
j + b′j) + ajb

′
j+1 = (A′A)j,j

(AA′)j−1,j = a′j−1aj−1 + a′j−1bj−1 + aj−1a
′
j + aj−1b

′
j = (A′A)j−1,j

(AA′)j,j−1 = a′j−1bj + bjb
′
j−1 + ajb

′
j + bjb

′
j = (A′A)j,j−1

(AA′)j−2,j = aj−2a
′
j−1 = (A′A)j−2,j

(AA′)j,j−2 = bjb
′
j−1 = (A′A)j,j−2.

Since A′A is a pentadiagonal matrix, the remaining elements are all zero. The result
follows from Rose’s theorem (cf. [16, Theorem 2]).

5. Random Walk Matrices

As far as random walk matrices, B(t) of (2), are concerned the known result about
λmax(B) only applies when c0(t) = 1 (see the set C↑max of (9)) . Without this assumption
the conditions defining C↑max may not be sufficient for λmax(B) to increase. This is
illustrated in Example 5.1 below. Of course, in some cases, for instance when cj(t) =
1/2(j + 1)/(j + t) (t > −1/2), the problem can be rewriten so that c0(t) = 1.

Example 5.1. Define the 2-by-2 random walk matrix

B1(t) =

 0
1

1 + t

1− 1

1 + 2t
0

 (0 < t < 1).

Then c0(t) = 1/(1 + t) and c1(t) = 1/(1 + 2t). Obviously, c′0(t) < 0 and c′1(t) < 0 for all
t ∈ (0, 1). However

λmax(B1) =

√
2t

(t+ 1)(2t+ 1)
,

is a strictly increasing function on (0, 1/
√

2) and strictly decreasing on (1/
√

2, 1). As can
be expected from Theorem 3.1, this is related to the fact that at t = 1/

√
2 the sign of

((1− c1(t))c0(t))′ changes from positive to negative.

Proposition 5.1. Let B(t) be the random walk matrix of (2). Set δj(t) = (1−cj+1(t))cj(t)
for j = 0, . . . , n− 1 and define the following subset of I:

D↑max =
{
t ∈ I | ∀j ∈ {0, . . . , n− 1} δ′j(t) > 0

}
.

The set D↓max is defined analogously by exchanging the roles of > and <. Then λmax(B, t)
is a strictly increasing (resp., strictly decreasing) function of t in each one of the non-
degenerate subintervals of D↑max (resp., D↓max).
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Proof. It was shown in Section 2 that if B(t) is the random walk matrix of (2) then

Â(t) = In+1 + B(t) is a birth and death matrix with âi(t) = ci(t) and b̂i(t) = 1 − ci(t),
i = 0, 1, . . . , n. Also, the eigenvalues of B(t) are symmetrically distributed with respect
to the origin (cf. (5)). Therefore, λmax(B, t) = −λmin(B, t) and so, λ′max(B, t) > 0 if and

only if λ′min(B, t) < 0. But λ′k(Â, t) = λ′k(B, t) + 1. In fact, if q̂k(t) and D̂(t) are the
vector qk(t) of (19) and the matrix of (17), respectively, when aj(t) and bj(t) have been

replaced by âj(t) and b̂j(t), then D̂(t)−1q̂k(t) and D̂(t)q̂k(t) are, for each t ∈ I, right and

left eigenvectors of Â(t) for the eigenvalue λk(Â, t). Then, by (15)

λ′k(Â, t) =
q̂k(t)TD̂(t)Â(t)D̂(t)−1q̂k(t)

q̂k(t)Tq̂k(t)

=
q̂k(t)TD̂(t)(In+1 + B(t))D̂(t)−1q̂k(t)

q̂k(t)Tq̂k(t)

= 1 +
q̂k(t)TD̂(t)B(t)D̂(t)−1q̂k(t)

q̂k(t)Tq̂k(t)
= 1 + λ′k(B, t)

because D̂(t)q̂k(t) and D̂(t)−1q̂(t) are also left and right eigenvectors of B(t) for λk(B, t)

respectively. Hence, if λ′min(Â, t) < 0 then λ′max(B, t) = −λ′min(B, t) > 1. In other

words, if λmin(Â, t) decreases then λmax(B, t) increases. It is a consequence of (39) that

if (âj(t)̂bj+1(t))′ > 0 for all j = 0, 1, . . . , n then λ′min(A, t) < 0. The proposition follows

from the fact that δj(t) = âj(t)̂bj+1(t).

Observation 5.1. (a) It is easily computed in Example 5.1 that D↑max = (0, 1/
√

2)
and D↓max = (1/

√
2, 1).

(b) It follows from the definition of A↓min in (7) that λ′min(Â, t) < 0 if b̂0(t) = 0,

â′j(t) ≤ 0, and â′j(t)̂bj(t) − âj(t)̂b′j(t) ≤ 0 for each j = 1, . . . , n, provided that at
least one of the inequalities is sharp (see also Observation 3.4). Bearing in mind that

b̂j(t) = 1− cj(t) and âj(t) = cj(t) and that λ′min(Â, t) < 0 implies λ′max(B, t) > 0,
it is easily concluded that if for t ∈ I, c0(t) = 1 and c′j(t) ≤ 0 for j = 1, . . . , n
with some of these inequalities sharp, then λ′max(B, t) > 0. These are the sufficient
conditions defining the set C↑max of (9) .

Proposition 5.1 shows that the monotonicity of the eigenvalues of random walk ma-
trices are closely related to that of the eigenvalues of birth and death matrices. Actually
this relationship is much closer than one may expect at first sight. We claim that for any
given random walk matrix B(t) there is a birth and death matrices Aw(t) such that the
positive eigenvalues of B(t) are the (positive) square roots of A(t). Since the eigenvalues
of B(t) are symmetric with respect to the origin, the monotonicity of the eigenvalues of
B(t) can be reduced to that of the eigenvalues of Aw(t).

To begin with, we use the notation of Proposition 5.1; that is, B(t) is the random
walk matrix of (2) and δj(t) = (1− cj+1(t))cj(t), 0 ≤ j ≤ n− 1. If we put

τ0(t) = 1, τj(t) =

√
c0(t) · · · cj−1(t)

(1− c1(t)) · · · (1− cj(t))
, j = 1, . . . , n,
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and T(t) = diag(τ0(t), τ1(t), . . . , τn(t)) then

Sw(t) = T(t)B(t)T(t)−1 =


0

√
δ0

√
δ0 0

. . .

. . .
. . .

√
δn−1√

δn−1 0

 .

Now, set xj/2(t) = δj(t) if j is even, and y(j+1)/2(t) = δj(t) if j is odd (0 ≤ j ≤ n − 1).
Hence

Sw(t) =



0
√
x0(t)√

x0(t) 0
√
y1(t)√

y1(t) 0
√
x1(t)√

x1(t) 0
. . .

. . .
. . .

 . (52)

Since B(t) is singular if and only if n is even, there is no loss of generality in assuming
that the order n + 1 of Sw(t) is even and then we set m = (n − 1)/2. By a result of
Golub and Kahan (see [6, Section 3]), for each t ∈ I,the positive eigenvalues of Sw(t) are
the singular values of

Jm+1(t) =


√
x0(t)

√
y1(t)√
x1(t)

. . .

. . .
√
ym(t)√
xm(t)

 .

But these are the positive square roots of the eigenvalues of

Jm+1(t)TJm+1(t) =


x0(t)

√
x0(t)y1(t)√

x0(t)y1(t) x1(t) + y1(t)
. . .

. . .
. . .

√
xm−1(t)ym(t)√

xm−1(t)ym(t) xm(t) + ym(t)

 ,

which in turns is diagonally similar to (see (17))

Aw(t) =


x0(t) x0(t)

y1(t) x1(t) + y1(t)
. . .

. . .
. . . xm−1(t)

ym(t) xm(t) + ym(t)

 .

This is a birth and death matrix for which the positive square roots of its eigenvalue-
functions are the positive eigenvalue-functions of the original random walk matrix B(t).
To the best of our knowledge, results about the monotonicity of the eigenvalues (other
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than the biggest one) of B(t) do not exist in the literature. However, since for each t ∈ I,
the eigenvalues of B(t) are symmetric with respect to the origin (including, possibly, an
eigenvalue equal to 0), their monotonicity can be obtained out of the monotonicity of
the eigenvalues of Aw(t). In particular, we can apply all sufficient conditions studied in
Sections 3–4 to Aw(t) in order to obtain sufficient conditions for the eigenvalues of B(t)
to increase or decrease. As a simple example, sufficient conditions for the eigenvalue-
function λm+1(B, t) (i.e., the smallest positive eigenvalue-function of B(t)) to increase can
be obtained from the results in Observation 3.4. In fact, if 0 < µ0(Aw, t) < µ1(Aw, t) <
· · · < µm(Aw, t) are the eigenvalue-functions of Aw(t) then λm+1(B, t) =

√
µ0(Aw, t).

Thus, λ′m+1(B, t) > 0 if and only if µ′0(Aw, t) > 0. Taking into account that y0(t) = 0
in Aw(t), we can use the results in Observation 3.4 to provide sufficient conditions for

µ′0(Aw, t) > 0. In particular, we can use the condition defining the set A↑min. This is:

x′0(t) > 0 and

(
x′j(t) > 0 and

(
xj(t)

yj(t)

)′
> 0, j = 1, . . . , n

)
Bearing in mind that xj(t) = δ2j(t) = c2j(t)(1 − c2j+1(t)) and yj(t) = δ2j−1(t) =
c2j−1(t)(1−c2j(t)), these inequalities can be readily translated into inequalities involving
the elements of B(t).

6. Conclusions

The monotonicity of the eigenvalue-functions of finite non-homogeneous (time- de-
pendent) birth and death matrices and random walk matrices has been studied. New
sets have been provided where they increase or decrease. Special attention has been paid
to the extreme, maximal and minimal, eigenvalues for which, in some cases, these sets
are wider than the ones defined by Ismail in the context of birth and death or random
walk orthogonal polynomials. A key idea in this improving process is to diagonally sym-
metrize the given birth and death matrix and take advantage of the properties of the
eigenvalues and eigenvectors of symmetric matrices. By using this technique, an inde-
pendent proof of a result derived from a Theorem of Magagna about the monotonicity
of homogeneous birth and death matrices has been provided. As far as random walk
matrices is concerned, it has been shown that there is a very close relationship between
their eigenvalues and those of certain birth and death matrices. This relationship allows
a direct application to random walk matrices of the results about monotonicity of the
eigenvalues of birth and death matrices.
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