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GENERAL NON-REALIZABILITY CERTIFICATES FOR SPHERES WITH

LINEAR PROGRAMMING

JOÃO GOUVEIA, ANTONIO MACCHIA, AND AMY WIEBE

Abstract. In this paper we present a simple technique to derive certificates of non-realizability
for an abstract polytopal sphere. Our approach uses a variant of the classical algebraic certificates
introduced by Bokowski and Sturmfels in [5], the final polynomials. More specifically we reduce
the problem of finding a realization to that of finding a positive point in a variety and try to find
a polynomial with positive coefficients in the generating ideal (a positive polynomial), showing
that such point does not exist. Many, if not most, of the techniques for proving non-realizability
developed in the last three decades can be seen as following this framework, using more or less
elaborate ways of constructing such positive polynomials. Our proposal is more straightforward
as we simply use linear programming to exhaustively search for such positive polynomials in
the ideal restricted to some linear subspace. Somewhat surprisingly, this elementary strategy
yields results that are competitive with more elaborate alternatives, and allows us to derive new
examples of non-realizable abstract polytopal spheres.

Keywords: non-realizability certificates, final polynomials, slack matrices, linear programming.

1. Introduction

One of the oldest questions in modern polytope theory is whether a given abstract polytopal
sphere is realizable as the boundary of a convex polytope. The question was first answered by
Steinitz for 3-dimensional polytopes in a theorem which classifies all realizable 3-polytopes in
graph-theoretic terms [27]. To date there is no higher-dimensional analog of Steinitz’s theorem,
and attempts to answer the question frequently rely on the theory of oriented matroids, exhaus-
tive computation and classification of spheres with a fixed dimension and number of vertices, and
algebraic certificates of non-realizability based on Grassmann-Plücker relations [4, 9, 24].

Due to the large number of Grassmann-Plücker relations, the search for algebraic certificates
based on them—the so-called final polynomials—often requires some assumption on the structure
of such polynomials in order for the search to be feasible. In this paper, we present a new method
to search for algebraic certificates of non-realizability with no assumed structure. Our algorithm
uses linear programming together with the more compact description of the realization space given
by the reduced slack ideal model [15] to find algebraic certificates of non-realizability. In the end we
produce certificates for a collection of large simplicial and quasi-simplicial spheres, including some
for which realizability was not previously known.

Gouveia was partially supported by the Centre for Mathematics of the University of Coimbra - UIDB/00324/2020,
funded by the Portuguese Government through FCT/MCTES. Macchia was supported by the Einstein Foundation
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The rest of the paper is organized as follows. In Section 2, we describe the general techniques used
for producing algebraic certificates of non-realizability. These techniques are all based on finding
positive polynomials in an ideal, which we describe how to find for a general ideal in Section 3.
Section 4 specializes these techniques to the setting of realizability of spheres. This section includes
a brief introduction to the reduced slack model of the realization space [15]. Finally in Section 5,
we discuss the implementation of our algorithm, describe the relation of our certificates to classical
final polynomials, and list the results of our computations regarding the realizability of a database
of selected spheres. In particular, we derive non-realizability certificates for a large number of new
instances of prismatoids, a class of polytopes introduced in [6], recover the recent result of [24] on
the non-realizability of Jockusch’s family of simplicial 3-spheres (see [23]), as well as providing a
few other examples of new or simpler non-realizability certificates.

2. Algebraic certificates for sphere non-realizability

In this section we will introduce and contextualize some of the algebraic approaches that have
been used to certify that a given sphere is non-realizable. In order to do that we start by recalling
two essentially equivalent models for the realization space of an abstract polytopal sphere: the slack
model and the Grassmannian model. In what follows we present only a brief overview of the facts
that we will need; a thorough presentation of these models can be found in [15].

Given an abstract d-dimensional sphere P with vertex set {1, . . . , n} and facet set
F = {F1, . . . , Fm}, recall that the symbolic slack matrix of P is the n × m matrix SP (x) whose
(i, j)-entry is zero if i ∈ Fj and an indeterminate variable otherwise. The slack variety of P , VP , is
then the Zariski closure of the set

{SP (ξ) : rank (SP (ξ)) ≤ d+ 1 and ξ ∈ RN
∗ }.

Throughout the paper we will denote by R∗,R+, and R++ the non-zero, non-negative, and positive
real numbers respectively. The variety VP is cut out by the slack ideal of P , IP , which is the ideal
generated by the (d+2)-minors of SP (x) saturated by the product of all variables. The slack variety
gives us a natural model for the realization space of a polytope up to projective equivalence [13].

Proposition 1 ([13, Corollary 3.4]). There is a one to one correspondence between realizations
of a polytope P up to projective equivalence and the elements of VP ∩ RN

++ up to column and row

scalings by positive scalars. In particular, P is not realizable if and only if VP ∩ RN
++ = ∅.

This correspondence is explicitly given by the slack matrices of each realization. Recall that a
(realized) polytope P with vertices v1, . . . ,vn ∈ Rd and facets defined by inequalities α

⊤
j x ≤ bj ,

with αj ∈ Rd and bj ∈ R, has a slack matrix SP with entries of the form (SP )i,j = bj − α
⊤
j vi,

which by construction lies in the slack variety and is well defined up to column scalings.

A related model that has been more classically used to derive non-realizability certificates is the
Grassmannian model. Let Gr(d+ 1, n) be the Grassmannian variety of (d+ 1)-dimensional spaces
in Rn, which we will think of as coordinatized by Plücker coordinates {pJ : J ⊆ {1, . . . , n} and
|J | = d+1}, and let IGr(d+1, n) be the ideal that cuts out the Grassmannian in those coordinates.
We define two special sets of such coordinates. The first, Γ0, will be the collection of subsets J
such that there is a facet F of P with J ⊂ F . To define the second, Γ1, we need to have a way
of identifying affine bases of facets of a polytope, i.e., sets of vertices in a facet that are affinely
independent in any realization of P . We will call such sets facet bases. Note that in practice, since
we do not know anything about the realizations of P a priori, we need a combinatorial way to



GENERAL NON-REALIZABILITY CERTIFICATES FOR SPHERES WITH LINEAR PROGRAMMING 3

identify such bases. One way to do this is by choosing a flag in the face lattice. By definition, a
flag is a maximal chain in the face lattice and hence has length d+ 1 for a d-polytope:

∅ = G−1 ( G0 ( · · · ( Gd−1 ( Gd = P,

where Gi is an i-dimensional face of P . Then a set of vertices chosen so that vi ∈ Gi\Gi−1 for
i = 0, . . . , d must be affinely independent. (If any vi was in the affine hull of v0, . . . ,vi−1, then we
would have vi ∈ Gi−1 by the definition of a face of P .) Thus the vertices indexed by {i0, . . . , id−1}
chosen as above form a facet basis for Gd−1. We call the full set of vertices, indexed by {i0, . . . , id},
a flag of vertices. Notice that for any facet F of P , there can be many flags with Gd−1 = F , each
resulting in a flag of vertices which is the union of a facet basis for F with a vertex not in F . To
highlight this connection to affine bases of facets, we will also refer to these flags of vertices as facet
extensions, and Γ1 will be the collection of subsets J that are facet extensions of P . By duality,
one can similarly define a flag of facets that will be of use later on.

Every coordinate indexed by J in Γ1 comes with a sign χJ ∈ {±1} depending on the orientation
of J as will be discussed later. We then define the Grassmannian variety of P as the Zariski closure
of the set

Gr(P ) = ΠΓ1
({ξ ∈ Gr(d+ 1, n) : ξJ = 0 for all J ∈ Γ0 and ξK 6= 0 for all K ∈ Γ1}) ,

where ΠΓ1
is the signed projection onto the coordinates in Γ1, i.e., ΠΓ1

(ξ) = y ∈ RΓ1 such that
yJ = χJξJ . Again, the Grassmanian variety gives us a natural model for the realization space of a
polytope. In particular, we have a simple realizability characterization.

Proposition 2. P is not realizable if and only if Gr(P ) ∩ RN
++ = ∅.

Note that Gr(P ) and VP are essentially equivalent [15, Theorem 4.7]. More explicitly, for any
facet Fj of P pick Bj to be a flag of vertices such that Fj is part of the underlying flag. Then for
any ξ ∈ Gr(P ) the matrix obtained by filling each entry (i, j) of SP (x) with ξ{i}∪Bj

is in VP . On
the other hand, given any point ξ in the slack variety, the image by ΠΓ1

of the column space of
S(ξ) gives us a point in Gr(P ). Moreover, these maps preserve positivity of the coordinates, so it is
clear that the realizability questions are totally equivalent, and just offer two possible viewpoints.

In any case, the question of realizability of polytopes boils down to a fundamental question in
real algebra: how can we certify that a given variety has no positive points? This is a special case
of the more general question of checking emptiness of semialgebraic sets, for which there are several
Positivstellensatz type theorems that offer answers. A direct application of the version in [2] yields
the following theorem.

Theorem 3. Given a real variety V(I) ⊆ Rn, it has no positive points if and only if there is an
element of I of the form

x
α +

∑

i∈I

x
βiσi(x),

where σi(x) are sums of squares of polynomials.

Applied to Proposition 2, the witness polynomials given by this theorem are known as final
polynomials (see Corollary 4.22 of [5]) and have been used since the 1980s for certifying non-
realizability of polytopes, see e.g., [3], [4], [26], [10], [22] and [9]. Searching for certificates using the
full strength of Theorem 3 is possible using semidefinite programming. However, dealing with sums
of squares is not always desirable, since semidefinite programming has numerical and scalability
issues that are not present in linear programming. A simple alternative is to consider only scalar σi.
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We will call a polynomial positive if it is non-zero and has only non-negative coefficients. Such
a polynomial can obviously never vanish in the positive orthant, so we have the following simple
proposition, that we can see as a weakening of Theorem 3.

Proposition 4. Given a real variety V(I) ⊆ Rn, if I has a positive polynomial then V(I) has no
positive points.

This seems like a dramatic weakening of the certificate, and it is fair to ask if it has any use
whatsoever in this form. The answer is that it can still be quite effective. For principal ideals,
for example, Polya’s Theorem on non-negativity over the simplex [25] tells us that if V(〈p〉) has
no non-negative points, then there is indeed a positive polynomial in 〈p〉. This is stronger than
demanding no positive points, but similar. In the general case, the picture is not much different.
Building on work of Handelman [19], Einsiedler and Tuncel [8] give a full characterization of when
positive polynomials exist.

Theorem 5. An ideal I has a positive polynomial if and only if for any w ∈ RN the variety of the
initial ideal inw(I) has no positive point.

Again, asking that no variety of an initial ideal has a positive point is stronger than simply
asking that the ideal has no positive point, but it comes close enough for it to suggest that these
types of certificates can still be quite effective. In fact, as we will see, the classical approaches to
obtain final polynomials for certifying non-realizability of polytopes have generally relied precisely
on constructing positive polynomials in the ideal using combinatorial arguments.

In order to use Proposition 2 to effectively build witnesses to non-realizability, there is another is-
sue: getting a good handle on the ideal of Gr(P ). We know that
Gr(P ) = V((IGr(d+1, n)+ 〈Γ0〉)∩R[Γ1]). However, the ideal IGr(d+1, n) of the Grassmannian is
complicated in general; thus, in practical computations, one works with the subideal Itri(d + 1, n)
generated by the 3-term Plücker relations, which have the form xijSxklS − xikSxjlS + xilSxjkS ,
where S is a fixed set of indices different from i, j, k, l.

The most popular classic method for proving non-realizability of polytopes is perhaps the spe-
cial class of final polynomials introduced in [3], the bi-quadratic final polynomials. These are a
special type of positive polynomials in (Itri(d + 1, n) + 〈Γ0〉) ∩ R[Γ1] that can be constructed effi-
ciently with linear programming. Another method to construct final polynomials was recently pro-
posed in [24], the positive Plücker tree certificates. Again, these are in fact positive polynomials in
(Itri(d+1, n)+〈Γ0〉)∩R[Γ1], constructed with some non-trivial combinatorial reasoning and integer
programming.

These methods require additional reasoning or assumptions on the form of the desired positive
polynomials because brute force search in the Grassmannian model is limited by how quickly the
space of possible polynomials grows. By working directly with the slack ideal model, we see a
trade-off in complexity. The ideal generators are generally of higher degree (up to the degree d+2
of the minors we start with), but in a smaller number of variables that can be further reduced in
many cases by parametrizing the variety.

3. Finding positive polynomials in general ideals

Before specializing to slack ideals, we first outline a general approach to finding positive polyno-
mials in general ideals and their parametrized counterparts.

Given an ideal I = 〈f1, . . . , fk〉, which we may assume homogeneous without loss of generality,
if we want to check the existence of a positive polynomial in I, we want to check if there exists a
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non-zero polynomial of the form

∑

β

x
β

(

k
∑

i=1

cβi fi

)

,

where the cβi are real numbers, that has only non-negative coefficients. Moreover, if there is any
positive polynomial, there is a homogeneous one, so we can fix the degree D and consider the set
ID of all products x

βfi with |β| = D − deg(fi). For simplicity suppose ID = {q1, . . . , qN}. We

are then simply searching for a non-zero polynomial
∑N

i=1 ciqi with non-negative coefficients. By
writing qi(x) =

∑

|α|=D aαi x
α, this simply becomes the linear feasibility question

(1)

find c ∈ RN s.t.

N
∑

i=1

cia
α
i ≥ 0 for all |α| = D;

N
∑

i=1

∑

|α|=D

cia
α
i = 1.

Alternatively, after a little manipulation, we can dualize this problem to the problem of checking if

(2)
max λ ∈ R s.t.

∑

|α|=D

yαa
α
i = 0 for i = 1, . . . , N ;

yα ≥ λ for all |α| = D;

is zero or +∞. We can think of this dual formulation as of asking if the linearization of the system
qi(x) = 0, for i = 1, . . . , N , attained by replacing each monomial by a distinct variable, has a
solution on the positive orthant.

When trying to apply this method directly to our problem of realizability of spheres, one imme-
diately runs into problems. For P a d-dimensional polytope, the usual way to generate the slack
variety is by taking all the (d + 2)-minors of the slack matrix, so D must be at least d + 2. The
number of variables is the number of non-zero entries of the slack matrix, which can be up to
(n− d)m, where n is the number of vertices and m the number of facets, and is never much lower
than that in the most interesting cases. This means that the number of monomials of degree D

in those variables is
(

(n−d)m+D−1
D

)

with D ≥ d + 2. The LP feasibility question we want to solve
has, in the primal formulation, this many constrains, and a number of variables that also grows
exponentially. Even for polytopes with few vertices and facets in low dimension, this soon gets out
of reach for any LP solver. In our case, however, we will see that there is a natural parametrization
of the variety associated to the ideal that we can exploit.

Suppose there is a set of variables y = (y1, . . . , ym) and polynomials g1, g2, . . . , gN such that

{(g1(y), . . . , gN(y)) : y ∈ Rm}

coincides with the variety V(I). Then positive polynomials on I would immediately translate to
relations of the type

∑

β

cβg
β(y) = 0,

for cβ > 0, and where gβ(y) denotes the product g1(y)
β1g2(y)

β2 · · · gN (y)βN . Reciprocally, any
relation of this type will immediately imply that the positive polynomial p(x) =

∑

cβx
β vanishes

on V(I), and so V(I) has no positive points (and its vanishing ideal contains a positive polynomial).
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By limiting our search to a finite set J of β’s and denoting gβ(y) =
∑

α aαβy
α we transform the

search for such certificates into the LP feasibility problem

(3)

find c ∈ R|J| s.t.
∑

β

cβa
α
β = 0 for all α;

∑

β∈J cβ = 1;

cβ ≥ 0 for all β ∈ J.

Again, by manipulating and dualizing we get the dual formulation

(4) minw,λ λ ∈ R s.t.
∑

α

aαβwβ ≥ −λ for all β,

which has optimal solution zero if the original formulation is infeasible and −∞ if it is feasible. Note
that one can think of this last formulation as simply the standard linearization of the semialgebraic
optimization problem

(5) miny,λ λ ∈ R s.t. gβ(y) ≥ −λ for all β.

4. Application to realizability of spheres

Consider a realized polytope P with vertices v1, . . . ,vn ∈ Rd, facets defined by inequalities
α

⊤
j x ≤ bj, with αj ∈ Rd and bj ∈ R, and slack matrix SP with entries (SP )i,j = bj −α

⊤
j vi. Now,

from [12] we know that the rows of SP form a linearly equivalent realization of P . In particular, the
rows of any d+ 1 linearly independent columns of SP also form such a realization. Furthermore, if
we have a symbolic slack matrix SP (x), then we can determine d+1 necessarily linearly independent
columns by taking a flag of facets. In [15], (if all other facets are simplicial) we call the symbolic
slack matrix restricted to these columns a reduced slack matrix.

Fix one such flag, and let u⊤
i be the row corresponding to vertex i in the submatrix of SP whose

columns are those indexed by the flag. Let i1, . . . , id index an affine basis for facet Fj , and consider
the linear operator

lj(x) = det

[

ui1 · · · uid x

]

.

This operator vanishes on every ui such that vertex i is in facet Fj , since the columns will be linearly
dependent. On the other hand, it does not vanish for every i since the rank of the submatrix of SP

we are considering is d+1. In particular, it will be non-zero whenever a vertex i is not in facet Fj .
So we have a linear operator that is zero on the facet and non-zero elsewhere which means that
there exists a non-zero real λj such that for all i we have

lj(ui) = λj(bj −α
⊤
j vi).

Hence, the matrix [lj(ui)]i,j is almost a slack matrix of P . The only thing we have to be careful
with is the sign of this determinant, for which we have to pay attention to the orientation of P .

Given a simplex ∆ = conv{x0, . . . ,xd} ⊆ Rd, we can define the orientation of ∆ by the sign of

det

[

1 · · · 1
x0 · · · xd

]

.

Since this sign depends on the order of the vertices xi, we call an ordering of 0, . . . , d an orientation
of the simplex ∆.
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Given an affine basis B = {i0, . . . , id−1} for a facet F of a d-polytope P , an ordering on B
determines an orientation of each simplex B ∪ {v} for v ∈ Vert(P )\F by first taking the ordered
elements of B followed by v. Since P is a polytope, for a fixed order on B, all simplices of this form
have the same orientation.

Example 6. Let P be the triangular prism given by conv{0, e1, e2, e3, e1+e3, e2+e3}. Then a basis
for facet F = conv{0, e1, e3, e1+e3} is given by vertices 1, 2, and 5 and the sign of the determinants
whose columns are indexed by {1, 2, 5, 3} and {1, 2, 5, 6} is negative:

det









1 1 1 1
0 1 1 0
0 0 0 1
0 0 1 0









= det









1 1 1 1
0 1 1 0
0 0 0 1
0 0 1 1









= −1.

Since P is a polytope, in fact, we can order the vertices of each facet basis so that every simplex
of vertices of P as above has the same orientation. For brevity, we will call a set of facet bases
ordered in this way oriented. Furthermore, we can order the vertices of each facet of P so that the
elements of B appear first in the order corresponding to this orientation, followed by the remaining
vertices of F . When facets are written in this way we will also say they are oriented.

Example 7. The triangular prism in Example 6 has facets 123, 456, 1245, 1346, 2356, and one can
check that the set of bases 123, 654, 152, 134, 356 is oriented. Then 123, 654, 1524, 1346, 3562 are
oriented facets of P .

We have defined orientations starting from a realization of P for simplicity. However, one often
wishes to determine such an orientation using only the combinatorics of P . Even without a realiza-
tion, we can determine relationships between the orientations of certain facet bases using properties
of determinants. For example, if two facets intersect in d−1 elements, say F1∩F2 = {i1, . . . , id−1},
and j1 ∈ F1\F2, j2 ∈ F2\F1, then we have

det
[

vi1 . . . vid−1
vj1 vj2

]

= − det
[

vi1 . . . vid−1
vj2 vj1

]

,

so that if {i1, . . . , id−1, jk} is a facet basis for Fk, k = 1, 2, then they must have opposite orientations.
We will talk more about how to determine an orientation later, but will often assume that an
orientation is already known.

Returning to our discussion on the linear operator lj(x), if we assume P is oriented and that
vi1 , . . . ,vid are always chosen as an oriented affine basis for facet Fj , then all the lj(ui) will have
the same sign, and so the matrix [lj(ui)]i,j is, up to column and row scaling by positive scalars,
either SP or −SP (depending on the orientation chosen). We can assume to have picked a positive
orientation in what follows. We therefore get a parametrization of every entry of the slack matrix
as a determinant of the entries in the columns indexed by the flag.

Thus, given a set of oriented facets for P , we can construct a parametrization of the slack variety
as follows.

(1) Choose a flag F of facets of P .
(2) Form the reduced symbolic slack matrix SF (x). Let u

⊤
i denote the ith row of this matrix.

(3) Calculate a parametrized slack matrix in the reduced slack variables using:

(SP (xF))i,F = det
[

u⊤
F (1) · · · u⊤

F (d) u⊤
i

]

,

where F (1), . . . , F (d) are the elements of the oriented facet basis for F .
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Remark 8. Notice that when F is a non-simplicial facet, there is not a unique choice of vertices for
a facet basis. However, since each basis choice defines the same facet, the resulting columns must
be linearly dependent. Therefore, in the above parametrization, we may add redundant columns to
the reconstructed slack matrix corresponding to the different choices of facet basis. This will not
change the properties of the slack matrix, but may add new polynomials to the parametrization
and increase the chances of finding a non-realizability certificate (see the last part of Example 16).

Another way to think of the determinants we use to parametrize the slack matrix is as Plücker
coordinates of the reduced slack matrix. That is, if B = {F (1), . . . , F (d)} is the facet basis for F ,

det
[

u⊤
F (1) · · · u⊤

F (d) u⊤
i

]

= pB∪{i}(SF (x)),

where we recall that the Plücker coordinates of a rank d + 1 matrix A ∈ Rn×(d+1) are indexed
by sets of d + 1 rows pi0,...,id(A). This is the classic parametrization of the Grassmannian and
specializes to a natural parametrization of the variety Gr(P ). On the other hand, this is not truly a
parametrization of the entirety of the slack variety, as we are not free to scale columns, but it gives
us at least an element per equivalence class, modulo positive column scalings, which is enough for
our purposes.

Example 9. Consider the triangular prism with oriented facets 132, 645, 1254, 1436, 3652. The last
four facets form a flag of facets whose reduced slack matrix is

SF(x) =

















x1,1 0 0 x1,4

x2,1 0 x2,3 0
x3,1 x3,2 0 0
0 0 0 x4,4

0 0 x5,3 0
0 x6,2 0 0

















and the parametrized slack matrix is

SP (xF) =















0 x1,1x4,4x5,3x6,2 0 0 x1,4x3,1x5,3x6,2

0 x2,1x4,4x5,3x6,2 0 x1,1x2,3x3,2x4,4 0
0 x3,1x4,4x5,3x6,2 x1,4x2,1x3,2x5,3 0 0

x1,1x2,3x3,2x4,4 0 0 0 x3,1x4,4x5,3x6,2

x1,4x2,1x3,2x5,3 0 0 x1,1x3,2x4,4x5,3 0
x1,4x2,3x3,1x6,2 0 x1,4x2,1x5,3x6,2 0 0















.

In this case, we can directly see that the parametrized slack variety contains a realization (a point
for which all non-zero entries of the slack matrix have the same sign, namely when we set all
variables to 1).

We are now ready to search for certificates using the linear program (4), since we have a
parametrization of Gr(P ) by polynomials of degree d + 1 in the variables of the reduced sym-
bolic slack matrix. In order to further reduce the computational effort, we will however need some
further considerations.

Note that the slack variety is invariant under scalings of rows and columns. This means that
we can always scale rows and columns by positive scalars as to fix some entries to be one without
loss of generality (see [14, Lemma 5.2]): if there was a positive point in the variety before there is
still one now. The same is true for the parametrized version: if we scale the rows and columns of
the reduced slack matrix to fix some entries to be one, we obtain a dehomogenized version of the
parametrized variety for which the same tools as before can be used. A more rigorous discussion of
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the scaling procedure can be found in [21, Section 3], but we can see below some examples of the
procedure.

Example 10. Recall the triangular prism P from Example 9 with the same orderings and labellings,
and the same reduced slack matrix. We can scale the first three rows to set x1,1, x2,1 and x3,1 to
be one, then the last three columns to set x3,2, x2,3 and x1,4 to also be one, and finally the last
three rows to set the remaining variables to one. In fact, we can eliminate all variables, obtaining
a single point in the parametrized variety, which is

















0 1 0 0 1
0 1 0 1 0
0 1 1 0 0
1 0 0 0 1
1 0 0 1 0
1 0 1 0 0

















and has only positive signs outside of the forced zeroes. Thus, P is realizable. Note that the reason
we can have such dramatic reduction of the dimension of the slack variety is that the triangular
prism is projectively unique.

We will denote by SH(x) the original, homogenous, parametrized slack matrix, and by S(x) the
dehomogenized version. In most circumstances we will drop the variables from the notation and
simply use SH and S if there is no contextual ambiguity. We will use the polynomials Si,j , the
entries of the dehomogenized slack matrix, as the polynomials for applying the schemes (3) or (4).

5. Computational results

5.1. General framework. Given a candidate abstract polytope P , for which we have computed
the dehomogenized parametrized slack matrix S as described in the previous section, we will proceed
as follows. For fixed positive integers k, l we will construct the set Gk,l of all products of at most
k entries (possibly repeated) of S, each entry with degree at most l. Let Gk,l = {g1, . . . , gm} and
gi(x) =

∑

α aαi x
α; then we will solve the slight modification of (3) given by

(6)

min 1−
m
∑

i=1

ci s.t.
∑

i

cia
α
i = 0 for all α;

m
∑

i=1

ci ≤ 1;

ci ≥ 0 for all i = 1, . . . ,m.

This problem is always feasible, and it is a simple exercise to check that its optimal value will be
either 0 or 1. If it is 0, that means that a certificate of non-realizability of the polytope was found,
and one can write it explicitly as

m
∑

i=1

cigi(x) = 0,

which cannot happen in a realizable polytope as all entries of the slack matrix must be strictly
positive. We will call a certificate obtained in this way from (6) using Gk,l a (k, l)-positive polynomial.

Remark 11. Note that even for a fixed set Gk,l, the certificates we obtain from (6) are in general
not unique and will depend, for example, on which algorithm is used to solve the linear program.
The examples below were obtained using the primal simplex method implemented in Gurobi 9.1.0.
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While Gurobi is an inexact solver, in all the examples we computed all recovered coefficients were
integers (in fact, plus or minus one). Furthermore, we always double-check that the certificates
sum to zero using the reconstructed slack matrix, i.e., symbolic computations, which is a cheap
exact verification of the certificate obtained. In case the inexactness causes problems in particular
instances, one could resort to an exact LP solver.

In what follows we explore two concrete examples of non-realizable spheres, to explicitly illustrate
how these certificates work.

Example 12. Let P be the 4-dimensional simplicial sphere N10
3574 in [1] with 10 vertices and 35

facets. This was shown to be non-realizable by Joswig and Rörig in [20, Remark 2.4 and page 227].
We recover this result with our algorithm. Under some vertex labeling, we have a flag

F = {F1 = {3, 4, 8, 9}, F2 = {3, 5, 9, 8}, F3 = {2, 3, 7, 8}, F4 = {3, 4, 9, 6}, F5 = {4, 6, 10, 9}},

where we ordered the vertices in each facet so that the facet is positively oriented. We consider the
corresponding reduced slack matrix with the following dehomogenization:

SF (x) =

































x1,1 x1,2 x1,3 1 x1,5

x2,1 x2,2 0 1 x2,5

0 0 0 0 1
0 1 x4,3 0 0

x5,1 0 x5,3 1 x5,5

x6,1 1 x6,3 0 0
1 1 0 1 1
0 0 0 1 x8,5

0 0 1 0 0
x10,1 x10,2 1 1 0

































.

Searching for (2, 2)-positive polynomial certificates, we find the certificate of non-realizability

S9,8S8,4 + S9,8S5,7 + S10,7S3,10 + S9,11S8,4 + S3,9S9,6 = 0,

where the facets outside the flag that appear are, ordered positively,

F6 = {1, 3, 7, 6}, F7 = {3, 6, 9, 7}, F8 = {1, 3, 6, 10},

F9 = {4, 5, 9, 10}, F10 = {1, 4, 5, 9} and F11 = {1, 3, 10, 7}.

Example 13. In a private communication [7], Joseph Doolittle provided us with three simplicial
spheres obtained by subdividing some facets of N10

3574 (see Example 12). Here we consider one such
simplicial sphere P with 13 vertices and 65 facets. Under some vertex labeling, we have a flag

F = {F1 = {3, 4, 7, 11}, F2 = {3, 7, 13, 11}, F3 = {3, 4, 11, 10}, F4 = {1, 2, 8, 7}, F5 = {3, 7, 12, 13}},



GENERAL NON-REALIZABILITY CERTIFICATES FOR SPHERES WITH LINEAR PROGRAMMING 11

where we ordered the vertices in each facet so that the facet is positively oriented. We consider the
corresponding reduced slack matrix with the following dehomogenization:

SF (x) =













































x1,1 x1,2 x1,3 0 1
x2,1 x2,2 x2,3 0 1
0 0 0 1 0
0 x4,2 0 x4,4 1

x5,1 x5,2 x5,3 x5,4 1
1 1 1 1 1
0 0 1 0 0

x8,1 x8,2 x8,3 0 1
x9,1 x9,2 x9,3 x9,4 1
x10,1 x10,2 0 x10,4 1
0 0 0 x11,4 1
1 x12,2 x12,3 x12,4 0
1 0 x13,3 x13,4 0













































.

Searching again for (2, 2)-positive polynomial certificates, we find the certificate of non-realizability

S7,6 + S3,7 + S3,10 + S3,14 + S7,9 + S3,8 + S7,13S3,15 + S3,12S7,13 + S3,4 + S7,11S3,15 = 0,

where the facets outside the flag that appear are

F6 = {2, 3, 6, 10}, F7 = {1, 2, 7, 5}, F8 = {1, 6, 10, 7}, F9 = {2, 3, 8, 6}, F10 = {2, 5, 10, 7},

F11 = {3, 6, 11, 8}, F12 = {1, 7, 8, 13}, F13 = {1, 3, 6, 11}, F14 = {1, 5, 7, 10} and F15 = {1, 6, 7, 13}.

5.2. Recovering classic final polynomials. While the certificates in the previous examples prove
non-realizability independently, one might wish to derive classical final polynomial certificates in
Plücker coordinates from them. As we discussed previously, the parametrization we are using for
the slack matrices is, in fact, a parametrization of the Grassmannian variety, hence it should be
almost automatic to switch from one to the other. However, to translate our parametrization back
to Plücker coordinates, we need to undo the scaling of the entries of the reduced slack matrix that
we set to one. We will see that this rehomogenization step can sometimes complicate the translation
of our certificates.

Example 14. In Example 12 we derived the certificate

S9,8S8,4 + S9,8S5,7 + S10,7S3,10 + S9,11S8,4 + S3,9S9,6 = 0.

If we denote by SH(x) the rehomogenized reconstructed slack matrix, then in the certificate in
the rehomogenized variables, we need to introduce extra variables to maintain the equality, thus
obtaining the homogeneous certificate

SH
9,8S

H
8,4x5,4x7,2 + SH

9,8S
H
5,7x4,2x8,4 + SH

10,7S
H
3,10x6,2x8,4 + SH

9,11S
H
8,4x5,4x6,2 + SH

3,9S
H
9,6x6,2x8,4 = 0.

Note that we multiplied each term by one variable from the second column and one from the fourth
column of the reduced slack matrix. On the other hand, if Fj is in the flag, then SH

i,j is a multiple
of xi,j , with the extra factor depending only on j. This means that we can replace such variables
by slack entries maintaining the validity of the certificate

SH
9,8S

H
8,4S

H
5,4S

H
7,2 + SH

9,8S
H
5,7S

H
4,2S

H
8,4 + SH

10,7S
H
3,10S

H
6,2S

H
8,4 + SH

9,11S
H
8,4S

H
5,4S

H
6,2 + SH

3,9S
H
9,6S

H
6,2S

H
8,4 = 0.

Factoring out SH
8,4, we get

SH
9,8S

H
5,4S

H
7,2 + SH

9,8S
H
5,7S

H
4,2 + SH

10,7S
H
3,10S

H
6,2 + SH

9,11S
H
5,4S

H
6,2 + SH

3,9S
H
9,6S

H
6,2 = 0.
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This can now be immediately translated into a final polynomial:

p1,3,6,10,9p3,4,9,6,5p3,5,9,8,7 + p1,3,6,10,9p3,6,9,7,5p3,5,9,8,4 + p3,6,9,7,10p1,4,5,9,3p3,5,9,8,6

+ p1,3,10,7,9p3,4,9,6,5p3,5,9,8,6 + p4,5,9,10,3p1,3,7,6,9p3,5,9,8,6 = 0,

where each ordering of the Plücker coordinate is positive because it can be interpreted as the
evaluation of a facet inequality on a vertex outside that facet.

Once we have such a certificate, an alternative explanation for its validity which avoids our slack
matrix framework is to prove that it is indeed a (positive) polynomial in the Grassmannian ideal.
In this case, we observe that this polynomial can be written as the sum of the following polynomials

p1,3,6,10,9(−[3, 5, 9, 4 | 3, 5, 9, 6, 7, 8]− p3,5,9,6,8p3,5,9,4,7)

p3,5,9,8,6(−[3, 4, 5, 9 | 1, 3, 6, 7, 9, 10]+ p3,4,5,9,7p1,3,6,9,10),

where [i1, . . . , id | j1, . . . , jd+2] denotes the Plücker relation

d+2
∑

k=1

(−1)kpi1,...,id,jkpj1,...,ĵk,...,jd+2
= 0.

Thus, the polynomial reduces to the following expression which is indeed zero:

−p1,3,6,10,9p3,5,9,6,8p3,5,9,4,7 + p3,5,9,8,6p3,4,5,9,7p1,3,6,9,10.

Transforming our certificates into traditional final polynomials might in some cases create much
more complicated certificates.

Example 15. In Example 13 we derived the certificate

S7,6 + S3,7 + S3,10 + S3,14 + S7,9 + S3,8 + S7,13S3,15 + S3,12S7,13 + S3,4 + S7,11S3,15 = 0.

In this case the rehomogenized version looks more complicated:

SH
7,6x

2
1,5x3,4x5,5x6,2x7,3x8,5x11,5x13,1 + SH

3,7x1,5x3,4x6,2x6,5x7,3x8,5x10,5x11,5x13,1+

SH
3,10x

2
1,5x3,4x6,2x6,5x7,3x8,5x11,5x13,1 + SH

3,14x1,5x2,5x3,4x6,2x6,5x7,3x8,5x11,5x13,1+

SH
7,9x

2
1,5x3,4x5,5x6,2x7,3x10,5x11,5x13,1 + SH

3,8x1,5x2,5x3,4x5,5x6,2x7,3x8,5x11,5x13,1+

SH
7,13S

H
3,15x2,5x5,5x8,5x10,5 + SH

3,12S
H
7,13x2,5x5,5x6,5x10,5+

SH
3,4x1,5x3,4x5,5x6,2x6,5x7,3x10,5x11,5x13,1 + SH

7,11S
H
3,15x1,5x2,5x5,5x10,5 = 0.

Noting that SH
6,2 = x13,1x6,2x7,3x3,4x11,5, we can simplify this to

SH
7,6S

H
6,2x

2
1,5x5,5x8,5 + SH

3,7S
H
6,2x1,5x6,5x8,5x10,5 + SH

3,10S
H
6,2x

2
1,5x6,5x8,5 + SH

3,14S
H
6,2x1,5x2,5x6,5x8,5+

SH
7,9S

H
6,2x

2
1,5x5,5x10,5 + SH

3,8S
H
6,2x1,5x2,5x5,5x8,5 + SH

7,13S
H
3,15x2,5x5,5x8,5x10,5+

SH
3,12S

H
7,13x2,5x5,5x6,5x10,5 + SH

3,4S
H
6,2x1,5x5,5x6,5x10,5 + SH

7,11S
H
3,15x1,5x2,5x5,5x10,5 = 0.

Since there are four variables in each term, and all from column 5, we can replace each variable
by the corresponding homogeneous entry, and then translate it to Plücker coordinates to get the
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following degree six final polynomial, which is much more complicated than the original certificate:

p2,3,6,10,7p3,7,13,11,6p
2
3,7,12,13,1p3,7,12,13,5p3,7,12,13,8

+ p1,2,7,5,3p3,7,13,11,6p3,7,12,13,1p3,7,12,13,6p3,7,12,13,8p3,7,12,13,10

+ p2,5,10,7,3p3,7,13,11,6p
2
3,7,12,13,1p3,7,12,13,6p3,7,12,13,8

+ p1,5,7,10,3p3,7,13,11,6p3,7,12,13,1p3,7,12,13,2p3,7,12,13,6p3,7,12,13,8

+ p2,3,8,6,7p3,7,13,11,6p
2
3,7,12,13,1p3,7,12,13,5p3,7,12,13,10

+ p1,6,10,7,3p3,7,13,11,6p3,7,12,13,1p3,7,12,13,2p3,7,12,13,5p3,7,12,13,8

+ p1,3,6,11,7p1,6,7,13,3p3,7,12,13,2p3,7,12,13,5p3,7,12,13,8p3,7,12,13,10

+ p1,7,8,13,3p1,3,6,11,7p3,7,12,13,2p3,7,12,13,5p3,7,12,13,6p3,7,12,13,10

+ p1,2,8,7,3p3,7,13,11,6p3,7,12,13,1p3,7,12,13,5p3,7,12,13,6p3,7,12,13,10

+ p3,6,11,8,7p1,6,7,13,3p3,7,12,13,1p3,7,12,13,2p3,7,12,13,5p3,7,12,13,10 = 0.

Note that there is more than one way to make this rehomogenization, so there could conceivably
be easier certificates that can be derived in this way. Proving that this is indeed a final polynomial
independently of our previous computations is possible, but not immediate.

5.3. Implementation details. In the beginning of the section we established our general ap-
proach, which is essentially that of solving an instance of problem (6). In this subsection we discuss
additional details of the actual instantiation, explaining our implementation.

We describe the main steps in our algorithm for the search of non-realizability certificates. Let P
be an abstract d-dimensional polytope with n vertices and m facets. The inputs of our algorithm
are:

• list of facets of P given as lists of vertex labels;
• d: dimension of abstract polytope P ;
• F : flag as list of d+ 1 facet indices;
• k: maximum number of factors in the products of constraints;
• l: maximum degree of constraints to consider.

Note that the computation of a flag F can be done automatically from the list of facets, using
the SlackIdeals package in Macaulay2 [21]. Our implementation uses SageMath [28], that includes
Macaulay2 and the LP solver Gurobi 9.1.0 [18].

5.3.1. Step 1: Constructing parametrization. If we have a given orientation of the facets of P , we can
construct each parametrized entry Si,j of the slack matrix by simply computing the corresponding
determinant, as explained in Section 4.

An orientation can be computed using methods implemented in Polymake [11]. Alternatively, the
method we describe below orients the facets at the same time as constructing the parametrization.
While this method is not guaranteed to find an orientation, it always succeeded in our tests.

(1) Choose a basis Bj for each (non-simplicial) facet Fj of P .
(2) Use the given flag F to form the corresponding dehomogenized reduced slack matrix SF (x).
(3) Reconstruct all entries of the slack matrix (including the entries corresponding to the facets

in F) via the appropriate determinants of SF (x).

If we were given an orientation, then we can compute the determinants so that all entries have the
appropriate sign. Otherwise we proceed to simultaneously find an orientation and the correct sign
of each entry of the matrix with the algorithm below.
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(4) Initialize the set P of known positive polynomials to be the set of all variables.
(5) Check all columns whose sign is unknown for entries that are of the form ±

∏

qi, where each
qi ∈ P . If such a polynomial exists it determines the sign of that column, since

∏

qi > 0.
Add the entries of that column, with any monomial factors removed, with the correct sign
to P .

(6) We repeat the last step until the sign of every column has been determined or the set of
positive polynomials is unchanged.

5.3.2. Step 2: Constructing constraints and their products for linear program. Given the previously
determined orientation, we have a slack matrix whose entries are Plücker coordinates with the
correct sign. In particular, the set of entries and any products thereof gives us a collection of
polynomials that must be positive. We choose a set of constraints by restricting to entries of degree
up to l and taking products of up to k of these entries. Call this set of constraints Gk,l.

We store these products as a matrixMk,l of coefficients, where each row represents a constraint in
Gk,l and each column is a monomial that appears in some constraint. By storing only the coefficients
of the (distinct) monomials, this matrix effectively records the linearization of our constraints. Thus
we now have the constraints of a linear program.

5.3.3. Step 3: Solving linear program with Gurobi.

(1) We solve the linear program (6) whose coefficient matrix is the transpose of Mk,l using the
primal simplex method in Gurobi 9.1.0.

(2) If the optimal solution is zero, then we find the indices of the non-zero dual variables, which
correspond to an infeasible set O of primal constraints.

5.3.4. Step 4: (Optional) Rehomogenizing infeasibility certificate. As we saw in the previous section,
it is possible, but not necessary, to rehomogenize the certificates attained in the last step. That is
done with the following method.

(1) As in Step 1 (2)–(3), use the given flag F to form the corresponding (homogeneous) reduced
slack matrix SH

F (x). Reconstruct all entries of the slack matrix (including the entries in the
facets in F) via the appropriate determinants of SH

F (x) and using the orientation of facets
determined at Step 1. (Unlike Step 1, here we do not dehomogenize SF (x)).

(2) We recompute the entries of the reconstructed slack matrix SH(x) that correspond to
entries used in the certificate O and then identify the variables we need to multiply each
entry by to maintain the certificate validity; that is, we want

∑

q∈O

βqq = 0,

where the polynomials q are entries of SH(x) and βq are monomial factors.

5.4. Constraint selection heuristics. While the proposed approach yields results in several in-
teresting cases, its computational difficulty grows quickly with the number of vertices and facets.
This motivates the need for heuristic techniques to reduce the size of the problem when trying to
tackle polytopes whose slack matrices are too big for the full strength of our proposed approach.
We provide three such heuristics, that can be used individually or combined, in order to derive
certificates for larger problems.

Vertex avoidance. Examining the certificates obtained using the full power of our methods,
certain trends can be observed. Take the certificate of Example 13, where we can see that none of
the slack entries used corresponds to any of the vertices {4, 9, 12} or any facet containing at least
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one of them. These three vertices actually form a triangular face of this polytope. This type of
behaviour, where the obtained certificates avoid the rows indexed by the vertices of a fixed face
and the columns indexed by any facet that intersects this face, seems to be extremely common,
and motivates our first heuristic simplification: pick a face G of the polytope and remove from the
parametrized slack matrix the rows of the vertices of G and the columns of facets intersecting G.

Vertex fixing. If, instead of absent vertices, we focus on vertices that do appear in the
certificate, another pattern emerges. Again looking at Example 13 we can now see that if we take
any entry (i, j) of the slack matrix appearing in that certificate and take the union of the vertex i
and the vertices of the facet Fj , it always contains both vertices 3 and 7, which are the vertices of an
edge of the polytope. Again, this is a behaviour that can be repeatedly observed in our numerical
testing, suggesting a second heuristic simplification: pick a face G of the polytope and consider
only entries (i, j) of the parametrized slack matrix such that {i} ∪ Fj contains G.

While we formulate and use the previous two heuristics in terms of faces, it might be useful in
some cases, particularly in polytopes with a large number of vertices, to avoid or fix a more general
set of vertices, not necessarily forming a face.

Monomial simplification. A somewhat different reduction that can be done is an algebraic
simplification. When computing the parametrized slack matrix, the reconstructed entries of a
column in the flag are simply the original entries of the corresponding column of the reduced slack
matrix (whose entries are either 0, 1 or a single variable) all multiplied by the same polynomial,
which is the d-minor indexed by the remaining columns of the flag and the vertices of the chosen
facet basis of F . This minor has to be non-negative, and can be added to the set of polynomial
constraints. In fact, quite often there is more than one variable that can be factored out in each
entry, maintaining the positivity of the remaining expression. This means that when restricting
the constraints to be used by degree, we may attain a richer set at a lower degree, thus obtaining
solutions at easier computational regimes. Adding these minors is our third and last proposed
heuristic and its effect can be seen at the end of Example 16. If any of the facets in the chosen flag
is not a simplex, we will also add redundant columns with all possible choices of facet bases, and
perform this factorization for each of them, as that can lead to different low degree polynomials in
our constraint set, strengthening its expressive power.

Example 16. Let P be prismatoid #3513 from [6]. It is 5-dimensional and has 14 vertices and 94
facets, two of which are non-simplicial. Note that the corresponding slack matrix has 651 distinct
non-constant entry values, 230 of them with degree ≤ 3, in 31 variables. Computing all products
of two constraints is therefore not practical, so we resort to the above mentioned simplifications.

Under a certain labeling of the vertices, we consider the flag:

F = {F1 = {1,2,3,4,5, 6, 7}, F2 = {8,9,10,11,12, 13, 14}, F3 = {1, 2, 6, 8, 14},

F4 = {1, 5, 8, 9, 14}, F5 = {6, 8, 9, 12, 11}, F6 = {1, 6, 8, 14, 9}},

where we ordered the vertices in each facet so that the facet is positively oriented and for the
non-simplicial facets we wrote a basis in bold. We consider the corresponding reduced slack matrix
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with the following dehomogenization:

SF (x) =

















































0 x1,2 0 0 1 0
0 x2,2 0 x2,4 1 x2,6

0 1 1 1 1 1
0 x4,2 x4,3 x4,4 1 x4,6

0 x5,2 x5,3 0 1 x5,6

0 1 0 x6,4 0 0
0 x7,2 x7,3 x7,4 1 x7,6

1 0 0 0 0 0
x9,1 0 1 0 0 0
1 0 x10,3 x10,4 1 x10,6

x11,1 0 x11,3 x11,4 0 1
x12,1 0 x12,3 x12,4 0 1
x13,1 0 x13,3 x13,4 1 x13,6

x14,1 0 0 0 1 0

















































.

Applying the first proposed constraint selection heuristic, in the reconstructed slack matrix we
only consider slack entries Si,j that avoid the vertices forming the triangle {2, 4, 7}, i.e., such that
i /∈ {2, 4, 7} and Fj does not contain any of 2, 4, or 7. This leaves us with only 53 constraints
in 31 variables. Searching for (2, 3)-positive polynomial certificates we find the certificate of non-
realizability:

S5,2S11,9 + S5,5S13,8 + S5,2S8,7 = 0.

where the facets outside the flag used are

F7 = {3, 6, 9, 10, 11}, F8 = {5, 8, 9, 11, 10} and F9 = {3, 6, 8, 9, 13}.

When rehomogenizing, we need to introduce extra variables to maintain the equality, thus obtaining
the homogeneous certificate:

SH
5,2S

H
11,9x5,5x10,5 + SH

5,5S
H
13,8x3,5x10,5 + SH

5,2S
H
8,7x5,5x13,5 = 0.

We found the same certificate using the second constraint selection method, selecting only pairs
(i, Fj) where {8, 9, 11} ⊆ {i} ∪ Fj . We thus consider 43 constraints (plus 31 variables) in the
reconstructed slack matrix.

Finally, using monomial simplification, we find a simpler certificate choosing (k, l) = (1, 2). In
this case we consider 50 constraints (plus 31 variables) in the reconstructed slack matrix. The
certificate is:

S8,7 + S11,9 + S6,10 = 0,

SH
8,7x13,5 + SH

11,9x10,5 + SH
6,10x3,5 = 0,

where the additional column used corresponds to the set F10 = {8, 9, 10, 11, 13}, which comes from
choosing a different facet basis for {7, 8, 9, 10, 11, 12, 13}.

5.5. Numerical results. In this section we provide performance results from our algorithm ap-
plied to a set of examples, obtained from several literature sources, of non-realizable polytopes or
polytopes whose realizability is open. All computations in this paper were performed on a desktop
computer with 8 cores, Intel i7-7700, running at 3.6GHz with 32GB RAM.

Database of simplicial spheres

In Table 1 we summarize the results about some 4-dimensional simplicial spheres. For some of
them we could not find a non-realizability certificate.
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Name # vertices # facets (k, l)
# terms in

certificate

Previous

certificate?

Altshuler N10
3574 [1] 10 35 (2, 2) 5 yes [20]

Doolittle 1 [7] 11 44 (2, 2) 6 no

Doolittle 2 [7] 13 65 (2, 2) 10 no

Doolittle 3 [7] 13 65 (2, 3) 15 no

Novik-Zheng ∆3
6 [23] 12 48 (2, 4) 10 yes [24]

Novik-Zheng ∆3
n (n ≥ 7) [23] 2n 2n(n− 2) (2, 4) 10 yes [24]

Firsching F374225 [9] 12 54 not found no

Firsching T2775 [9] 14 49 not found no

Zheng [29] 16 80 not found yes [24]

Table 1. Database of simplicial spheres

We have seen a non-realizability certificate for Altshuler’s sphere N10
3574 in Example 12. Mod-

ifying N10
3574, Joseph Doolittle recently constructed three 4-dimensional simplicial spheres whose

realizability was not known [7]. We proved that they are all non-realizable and presented an ex-
plicit certificate for one of them in Example 13. The certificates for the other two spheres can be
found at [16].

Then we consider Jockusch’s family of simplicial 3-spheres, ∆3
n, for n ≥ 6, whose construction is

described in [23]. Using our algorithm, we recover [24, Theorem 5.11].

Theorem 17. For n ≥ 6, ∆3
n is not polytopal.

Proof. Let P be the simplicial sphere ∆3
6 from [23]. It is 4-dimensional, has 12 vertices and 48

facets. Under a certain labeling of the vertices, we consider the flag:

F = {F1 = {2, 8, 12, 10}, F2 = {2, 3, 7, 9}, F3 = {2, 4, 12, 8}, F4 = {2, 3, 8, 7}, F5 = {1, 6, 9, 8}},

where we ordered the vertices in each facet so that the facet is positively oriented. We consider the
corresponding reduced slack matrix with the following dehomogenization:

SF (x) =









































x1,1 1 x1,3 x1,4 0
0 0 0 0 1

x3,1 0 x3,3 0 1
1 1 0 1 1

x5,1 x5,2 x5,3 x5,4 1
x6,1 1 x6,3 x6,4 0
x7,1 0 x7,3 0 1
0 1 0 0 0
1 0 x9,3 x9,4 0
0 x10,2 x10,3 x10,4 1

x11,1 x11,2 1 x11,4 1
0 x12,2 0 x12,4 1









































.
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Searching for (2, 4)-positive polynomial certificates, we find the certificate of non-realizability:

S(2,7)S(8,6) + S(2,7)S(8,11) + S(5,3)S(7,9) + S(2,8)S(8,9) + S(2,7)S(6,3)+

S(2,8)S(8,10) + S(2,8)S(8,6) + S(2,7)S(8,10) + S(9,4)S(2,11) + S(2,7)S(8,9) = 0,

where the facets outside the flag used are

F6 = {2, 3, 6, 4}, F7 = {3, 4, 7, 5}, F8 = {3, 5, 7, 12}, F9 = {2, 3, 5, 6},

F10 = {3, 4, 5, 6} and F11 = {4, 5, 6, 12}.

The above certificate only uses the facets of ∆3
6 that avoid a certain 3-ball, ±B3,1

6 , contained in
∆3

6, see [24, Proof of Thm. 5.11]. By the same proof, this guarantees the non-realizability of all the
3-spheres ∆3

n in Jockusch’s family for n ≥ 6. �

Notice that the above certificate has 10 terms, whereas Pfeifle’s certificate has 11 terms.

Remark 18. We ran our algorithm on each of the last three spheres in Table 1 for several choices
of flag and (k, l) = (2, 4) or (3, 2) considering all constraints, and with (k, l) = (3, 3) after removing
an edge of the sphere. We did not find a non-realizability certificate in any of these attempts.
This does not mean that these spheres are realizable. In fact, in [24, Section 5.1] Pfeifle found a
non-realizability certificate for the last sphere in the table.

Prismatoids

In [6] Criado and Santos constructed 4093 abstract 5-dimensional non-d-step prismatoids with
number of vertices between 14 and 28. These are examples of non-Hirsch spheres but it is not
known if any of them is realizable as a convex polytope. We applied our method to several of these
prismatoids with many different vertex numbers and, in all cases, we could find a (2, 3)-positive
polynomial, proving that they are non-polytopal, see [16]. For instance, in the cases with the lowest
number of vertices, 14 and 15, we could exhaustively rule out all proposed spheres. This leads us
to suspect that in fact none of the 4093 is polytopal.

Proposition 19. The 40 combinatorial prismatoids with 14 and 15 vertices from [6] are not real-
izable as convex polytopes.

Remark 20. The four prismatoids with 14 vertices have 94 facets and in [6] are denoted by numbers
#1039,#1963,#2669 and #3513. In [24, Section 5.2], Pfeifle found non-realizability certificates for
these prismatoids, each with 5 terms of degree 4. For the same prismatoids we found (2, 3)-positive
polynomials, which give shorter certificates with 3 terms of degree 4 after rehomogenization, as seen
in Example 16. The complete data about our computations can be found at [16].

For each of the 36 prismatoids with 15 vertices and 103, 105 or 107 facets we found a
(2, 3)-positive polynomial certificate of non-realizability. We summarize the results in Table 2,
where for each prismatoid we list the number of terms in the non-realizability certificate we found.
Again, more details can be found at [16].

Example 21. Prismatoid #2105 is the largest prismatoid constructed by Criado and Santos in [6],
having 28 vertices and 273 facets, two of which are non-simplicial. The corresponding slack matrix
has 6261 distinct non-constant entry values, 910 of which have degree ≤ 3, in 87 variables. Com-
puting all products of two constraints of degree ≤ 3 is doable and running the algorithm takes 6
minutes and 24 seconds.
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Name # terms

0213 4
0247 8
0289 3
0375 9
0554 9
0572 3
0595 5
0743 3
0800 3

Name # terms

0821 3
1293 7
1377 3
1649 7
1682 3
1782 9
1993 3
2063 8
2146 5

Name # terms

2173 6
2253 6
2348 6
2363 5
2505 8
2703 3
2864 3
2870 6
2873 9

Name # terms

2972 6
3022 3
3202 5
3353 4
3474 3
3672 3
3784 9
3800 4
4067 3

Table 2. Prismatoids with 15 vertices

Under a certain labeling of the vertices, we consider the flag:

F = {F1 = {1,2,3,4,6,5, 7, 8, 9, 10, 11, 12, 13, 14},

F2 = {15,16,17,19,18, 20, 21, 22, 23, 24, 25, 26, 27, 28},

F3 = {4, 8, 17, 26, 25}, F4 = {3, 8, 10, 27, 25}, F5 = {4, 8, 25, 26, 27}, F6 = {4, 10, 25, 27, 26}},

where we ordered the vertices in each facet so that the facet is positively oriented and for the
non-simplicial facets we write a basis in bold. We consider the corresponding reduced slack matrix
SF(x) with the following dehomogenization:
















0 0 0 0 0 0 0 0 0 0 0 0 0 0 ⋆ 1 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 1 ⋆ ⋆ ⋆
1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
⋆ ⋆ ⋆ 0 ⋆ ⋆ 1 0 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 0 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 0 0 1 ⋆
⋆ ⋆ 0 ⋆ ⋆ ⋆ 1 0 ⋆ 0 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 0 1 0 ⋆
⋆ ⋆ ⋆ 0 ⋆ ⋆ 1 0 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 0 0 0 ⋆
⋆ ⋆ ⋆ 0 ⋆ ⋆ ⋆ 1 ⋆ 0 ⋆ ⋆ ⋆ ⋆ 1 1 1 1 1 1 1 1 1 1 0 0 0 1

















.

The above matrix is the transpose of the dehomogenized SF (x), where we denote the variable
entries with a ⋆.

We apply the three constraint selection heuristics described in Section 5.4, considering in the
reconstructed slack matrix only slack entries Si,j that

• avoid the vertices forming facet {1, 2, 5, 16, 21}, i.e., such that i /∈ {1, 2, 5, 16, 21} and Fj

does not contain any of 1, 2, 5, 16, 21 and
• such that {25, 27} ⊆ {i} ∪ Fj .

This leaves us with only 219 constraints in 87 variables.
Searching for (2, 3)-positive polynomial certificates we find, after 22 seconds, the certificate of

non-realizability:

S26,4S25,7 + S3,5S25,8 + S4,4S22,5 + S4,4S22,9 + S4,4S28,6 = 0,

where the facets used from outside the flag are

F7 = {3, 4, 8, 22, 27}, F8 = {3, 8, 10, 22, 27}, and F9 = {3, 10, 25, 26, 27}.
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6. Concluding remarks

We have presented a conceptually simple algorithm for producing certificates of non-realizability
for abstract polytopal spheres. We first generate a novel parametrization of the realization space,
and then solve a straightforward linear program which tries to find positive polynomials in the
defining ideal of the realization space. We give explicit examples of certificates found via this
method, both in cases that were already known where we are also able to find simpler certificates
than those obtained by previous methods, and in cases where no previous certificates were known.

The certificates we produce can easily be interpreted as classical final polynomials. Unlike
many other techniques used to provide such certificates, we do not need to make any assumptions
on the structure of the desired final polynomial. However, close inspection of the structure of
the certificates we obtain allows us to suggest further improvements to our algorithm via several
heuristics that allow us to significantly decrease the size of our search space in the case of larger
spheres. While these preliminary results are very encouraging, some questions remain open.

Are all prismatoids non-realizable? As mentioned before, we could easily derive a
(2, 3)-positive polynomial for every prismatoid that we tried. It would be interesting to explore
those certificates and find a general obstruction to realizability for polytopes constructed in [6].

Can the heuristics be improved? The proposed heuristics can lighten the computational load
of the method, but are not enough to deal with some of the larger cases of interest, like Firsching’s
spheres. It would be important to develop smarter ways of reducing the size of the problem, to
make these examples more treatable.

How important is the choice of flag? Our algorithm starts with an arbitrary choice of flag.
It is unclear, both in theoretical and in practical terms, how that can affect its performance. In
particular, one could try to see if there exists some criterion that would allow choosing particularly
suitable flags as a starting point.
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