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Surface treatments of Ti in the dental implant industry are performed with the aim of in-
creasing its bioactivity and osseointegration capacity. Chitosan (Cht) is a polysaccharide
that has been proposed as a promising biomaterial in tissue engineering and bone
regeneration, due to its ability to stimulate the recruitment and adhesion of osteogenic
progenitor cells. The aim of our preliminary study was to evaluate, by micro-computed
tomography (micro-CT), the osseointegration and bone formation around Cht-coated
implants and to compare themwith conventional surface-etched implants (SLA type). Four
im-plants (8.5 mm length × 3.5 mm Ø) per hemiarch, were inserted into the jaws of five
dogs, divided into two groups: chitosan-coated implant group (ChtG) and control group
(CG). Twelve weeks after surgery, euthanasia was performed, and sectioned bone blocks
were obtained and scanned by micro-CT and two bone parameters were measured: bone
in contact with the implant surface (BCIS) and peri-implant bone area (PIBA). For BCIS and
PIBA statistically significant values were obtained for the ChtG group with respect to CG
(p = 0.005; p = 0.014 and p < 0.001 and p = 0.002, respectively). The results, despite the
limitations, demonstrated the usefulness of chitosan coatings. However, studies with
larger sample sizes and adequate experimental models would be necessary to confirm the
results.
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INTRODUCTION

Dental implant treatments have now become indispensable in clinical dental practice. The survival
rate exceeds 90%, although studies on success rates are difficult to interpret, mainly due to a large
number of variables, such as the surgical techniques used and the follow-up periods, in addition to
the different criteria that have been proposed to define implant success (Simonis et al., 2010). Modern
oral im-plantology uses different devices, in terms of size, shape, length, thickness and composition,
from pure titanium (Ti) to titanium-aluminum-vanadium alloys (Ti-Al-V), due to their
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biocompatibility and high corrosion resistance (von Wilmowsky
et al., 2014). However, the biological response of tissues can be
improved by different surface treatments that provide both
bioactivity and osseointegration capacity (Jemat et al., 2015).
The first materials used in implantology provoked marked
inflammatory reactions that led to the formation of fibrous
tissue around the implant, with consequent failure; however,
the latest generation materials, in addition to awakening
metabolic activities, do not affect the normal biological
metabolism, being considered as bioinductive materials (Li
et al., 2019a; Hotchkiss et al., 2019), it is currently considered
that certain changes on the surface of Ti play an active role in the
control of the cellular response, resulting in reduced healing times
and improved healing of the peri-implant area (Le Guéhennec
et al., 2007a; Alfarsi et al., 2014). Current trends are directed not
only towards achieving optimal osseointegrative surfaces, but also
towards surfaces with antibacterial activity for prolonged periods
of time, either by blocking microbial adhesion or by preventing
late infections (Palla-Rubio et al., 2019).

Chitosan (Cht) is a polysaccharide derived from partially
deacetylated chitin, formed by copolymers of glucosamine and
N-acetylglucosamine. It possesses several amino groups attached
to the main chain of the polysaccharide, which are readily
available for chemical reaction and formation of salts with
acids (Singla and Chawla, 2001). In recent years, it has been
proposed as a promising biomaterial in certain dental and tissue
engineering applications, in addition to being used as a
cholesterol-lowering agent, hemostatic, drug carrier etc.
(Ylitalo et al., 2002; Rojo and Deb, 2015; Ahsan et al., 2018;
Hu et al., 2018; Ahn et al., 2021; Yu et al., 2022).

Some studies consider it as bactericidal and others as
bacteriostatic, although its mechanism of action in both situations
is not exactly known, since different factors have been proposed as
contributing to its antibacterial action, among them, the amino
groups of its structure and the origin of the chitin (Rabea et al., 2003;
Matica et al., 2019). Likewise, its high biocompatibility,
hydrophilicity and biodegradability, in addition to being non-
toxic (Tajdini et al., 2010), are noteworthy. For all these reasons,
its ability to increase cell adhesion and protein adsorption in Ti
coatings has been highlighted, which would be beneficial for
improving the osseointegration of dental implants (Bumgardner
et al., 20032003; Bumgardner et al., 2003; López-Valverde et al.,
2021). Muzzarelli et al. (Muzzarelli et al., 1994) demonstrated in a
clinical trial on 10 patients, bone neoformation andmineralization of
post-extraction sockets, due to the cationic nature and chelating
ability of Cht; these results would highlight the potential of Cht
coatings to support and facilitate osseointegration of orthopedic and
craniofacial implants. Cht-based implants have been found to elicit
minimal foreign body reaction, with little or no fibrous
encapsulation and promote a rapid healing response (Kim et al.,
2008).Most implant failures are due to poor early bone healing at the
bone-implant interface (Sakka et al., 2012) and in this aspect, Cht has
been proposed as a biomaterial with good bioactivity for osteogenesis
(Hu et al., 2009).

However, as implant surface modifications have changed,
investigations have become multifactorial in an attempt to
develop detailed information on design optimization, resulting

in difficulty in capturing the detailed bone response in a timely
manner and with sufficient resolution by current conventional
methods (Vandeweghe et al., 2013a).

The good film-forming ability of Cht allows its use in the
coating of dental implants and the coated surfaces show good cell
compatibility with osteoblastic and fibroblastic cells (Shukla et al.,
2013a). Numerous studies of Ti coatings with Cht have been
performed, with the attachment of Cht to the metal substrate
being considered a challenge, either by electrophoretic
deposition, layer-by-layer deposition, casting methods, spin
coating and dip coating methods (Bumgardner et al.,
20032003; Reddy Tiyyagura et al., 2016; Chen et al., 2017;
Höhlinger et al., 2017). Dip coating of a substrate, used in our
study, is a simple form of deposition, especially for small
substrates, forming thin layer deposits, which can be further
compacted, by heat treatment. Moreover, it is an economical way
to deposit thin layers from chemical solutions, with relatively fair
control over the layer thickness (Grosso, 2011). Dip coating is
based on a steady flow condition, and the coating thickness is
determined by the competition between viscous force, surface
tension, gravity and substrate withdrawal rate (Scriven, 1988).

On the other hand, some researchers have pointed out the
limitations of histomorphometry in providing quantitative and
qualitative bone information, due to the dependence on slice
position and possible interface damage during sample cutting and
grinding procedures, in addition to relying on a small number of
sections, which means a limited subset of the entire sample. All
this, together with the sample preparation time, the destructive
nature of the method and its cost, has led to the proposal of new
evaluation techniques, such as micro computed tomography
(micro-CT) analysis, which increase the performance of the
evaluation, providing the same resolution capacity as
conventional techniques and, above all, because they take
advantage of the non-destructive nature of the specimens
(Kampschulte et al., 2016; Becker et al., 2017; He et al., 2017).

In addition, micro-CT produces an improved resolution in the
range approximately 1,000,000 times smaller than normal CT
scanning, allowing a three-dimensional (3D) evaluation of the
specimen in high resolution and providing 3D reconstructed
images, to obtain a better understanding of the bone architecture,
generated within the area of interest (AoI) (Szmukler-Moncler
et al., 2004; Boyd et al., 2006; Peyrin et al., 2014).

Therefore, the aim of our study, was to evaluate the
osseointegration and bone formation at crestal, mid and apical
levels of Cht-coated Ti implants in the mandible of a canine
model and to compare them with conventional implants with an
etched surface (SLA type) without coating. The null hypothesis
was that uncoated implants, with a conventional SLA-type etched
surface, have the same osseointegration and bone formation
capacity as implants coated with Cht.

MATERIALS AND METHODS

Study Design
Forty implants (8.5 mm length x 3.5 mm Ø) were inserted in the
jaws of 5 Foxhound dogs, four per hemiarch. They were randomly

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org April 2022 | Volume 10 | Article 8587862

López-Valverde et al. Bone Quantification Around Chitosan-Coated Titanium Implants

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


divided into two groups: a group of im-plants re-coated with
chitosan (ChtG) and a group of control implants without coating
(CG). Two bone parameters were measured around the implant,
Bone in Contact to the Implant Surface (BCIS) and Peri-Implant
Bone Area (PIBA) at three levels: crestal, middle and apical of
each implant. The study protocol was approved on 24 July 2020
by the Ethics Committee of the Catholic University of Murcia
(Spain) with code CE072004.

Implant Surface Topography
Bioner® Ti implants, grade 5 (TiAl6V4) (Sant Just Desvern,
Barcelona, Spain) (CG), were etched by the proprietary
Bioetch® method, which provides a homogeneous macro- and
microtextured macropore surface in the 15–20 µm range
(Höhlinger et al., 2017) (Figures 1A,B)

Implant Surface Preparation
The chitosan coating (ChtG) was prepared according to the
procedure described by Vakili et al. with slight modifications
(Vakili and Asefnejad, 2020). 0.5% (w/v) chitosan was prepared
in 0.5% (v/v) acidic solution by stirring the solution for 12 h on a
magnetic stirrer. The film-forming solution was prepared
following the procedure described by Zhang et al. with slight
modifications (Zhang et al., 2019). Glycerol (0.4 g) was dispersed
in 80 ml of acetic acid (1%, w/v) by stirring for at least 12 h (4°C).
The prepared chitosan solution was added to the film-forming
solution using a syringe pump (Infusomat® Space, Braun,
Barcelona, Spain), at a rate of 50 ml/h, stirring by mechanical
shaker at 800 rpm. The implants were coated with Cht by
immersion in the prepared solution, coating the entire implant
surface. The coated implants were then dried in a drying oven
with rotary drum and air blowing at 25°C for the formation of a
uniform film, with a relative humidity of 50%, to avoid cracking
and deformation of the coating (Figure 1C). CG implants did not
receive any surface coating. Both CG and ChtG implants were
sterilized by gamma irradiation. This method of sterilization in
ChtG was preferred so as not to give rise to sterilization biases
with GC. Other methods, such as ethylene oxide, in addition to

leaving residues detrimental to health, could damage the
molecular structure of the coating and its susceptibility to
degradation, although the effects of sterilization on the
stability of the molecular structure and the mechanical
properties of the coating itself are unclear. Certain in vitro
studies have shown that the early stages of mineralization are
essentially independent of the sterilization method (Ueno et al.,
2012; Türker et al., 2014).

Surgical Protocol
The surgical procedures, supervised by a veterinary surgeon, were
performed under general anesthesia, infusing Propofol®
(Propovet, Abbott Laboratories Ltd., Queens-borough, Kent,
United Kingdom), through a catheter installed in the cephalic
vein. Anesthetic maintenance was performed by means of a
volatile anesthetic (Isoflurane, IsoVet 1000 mg/g®, Piramal
Critical Care B.V. Voorschoten, NL). In addition, a local
anesthetic was administered to the surgical sites (articaine
40 mg, with 1% epinephrine, Ultracain®, Normon, Madrid,
Spain). Three premolars and the first mandibular molar (P2,
P3, P4 and M1) of each animal were extracted by odontosection
(Figure 2). The placement of the implants in the empty sockets
(Figure 2) was determined by the randomization program
(http://www.randomization.com). The experimental animals
were assigned to the two different implant surfaces: 20
implants with Cht from the test group (ChtG) and 20
uncoated implants from the commercial company Bioner
(Bioetch®, Bioner Sistemas Implantológicos, Barcelona, Spain)
(CG), randomly distributed among five dogs. Each dog received
eight screw implants (8.5 mm length x 3.5 mm Ø in the premolar
and molar area), four per hemiarch. Cover screws were placed to
allow a submerged healing protocol (Figure 2). The implants
were placed in the post-extraction sockets without friction of the
implant with the alveolar walls (Figure 2), achieving primary
stability of the implants in the apical area, so as not to damage the
coating with the insertion forces, leaving the cylindrical part of
the implant in contact with the blood clot and only the conical
apical part in contact with the bone. Healing abutments were not

FIGURE 1 | Implant surface topography. CG surface (A,B). ChtG coated implant surface (C).
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placed to avoid bacterial contamination and contact with the
antagonist teeth during chewing and to avoid disturbing the rest
period of the implants. No grafting materials were used in the
spaces between the alveolar walls and the placed implants
(Figure 2). The flaps were closed with simple sutures (Silk 4-
0®, LorcaMarín, Lorca, Spain). The animals were maintained on a
soft diet from the time of surgery until the end of the study.
Sacrifice was performed after 12 weeks, using pentothal natrium
(Abbot Laboratories, Madrid, Spain) perfused through the
carotid artery, after anesthesia of the animal. Sectioned bone
blocks were obtained.

Micro-Computed Tomography Analysis
After euthanasia of animals (after 12 weeks of implants placement),
the sections of the block were preserved and fixed in 10% neutral
formalin. Image acquisitions were per-formed using a multimodal
SPECT/CTAlbira II ARS scanner (Bruker® Corporation, Karksruhe,
Germany). The acquisition parameters were 45 kV, 0.2 mA, and
0.05mm voxels. The acquisition slices were axial, 0.05mm thick,
and 800 to 1,000 images were obtained from each piece through aflat
panel digital detector with 2,400 × 2,400 pixels and a FOV (field of
view) of 70 mm × 70mm. The implants were grouped according to
the three axes (transverse, coronal, and sagittal). The sagital axis was
used for BCIS and PIBAmeasurements. In all images the same color
scale was used (0 min and 3 max) with the same parameters in FOV
(%): 90 and zoom 0.6, with a hardness of 1. The areas of interest
(AoIs) were manually fixed by three micro-CT cross-sections at

crestal, mid and apical levels; the apical section avoided the conical
area of the implant (Figure 3). The voxels in contact with the
implant surface were excluded in the measurements because they
were considered artifact zones, estimating a value of 0.5 mm higher
than the implant diameter for the calculation of the BCIS AoI (4mm
Ø) and 2mm for the calculation of the PIBA AoI (5.5 mm Ø)
(Figure 4).

The AMIDE tool allowed us to obtain the data in statistical
form (Hounsfield Units), with maximums, minimums and
deviations. AMIDE is a tool for visualizing, analyzing and
registering volumetric medical image data sets (AMIDE,
UCLA University, Los Angeles, CA, USA). It allows drawing
two-dimensional and three-dimensional AoIs directly on the
images and generating statistical data for these AoIs. 3D Slicer
program (http://www.slicer.org) provided the 3D images of the
bone-to-implant contact area (Figure 5).

Statistical Analysis
SPSS Statistics 26.0 (IBM,Chicago, IL, USA)was used as the statistical
analysis program. Statistical analysis of the BCIS and PIBA variables
in the crestal, mid and apical areas was performed for the
experimental and control groups. The normality of the data
generated by the microtomographic analyses was examined using
the Shapiro-Wilk test. The mean and standard deviation of each
group were proposed; the p-value and p for trend derived from the
differences and changes in each group were presented, with a
significance level of ≤0.05.

FIGURE 2 | Surgery. (A), Odontosection; (B), Implant insertion; (C), Implant placed in subcrestal position with cover screws for submerged curing; (D), Lack of
friction between the implant and the bone wall.
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RESULTS

All the implants used in the 5 dogs achieved osseointegration.
Two parameters, Bone in Contact to the Implant Surface (BCIS)
and Peri-Implant Bone Area (PIBA) were measured in crestal,
mid and apical, resulting in a total of 120 sites for each
measurement parameter, in the experimental group (ChtG)
and in the control group (CG).

The mean value and standard deviation of the trends for each
group are shown in Tables 1, 2. For BCIS the values in crestal,
mid and apical, in the experimental group (ChtG), were
3,770.11 ± 245.60, 3,245.25 ± 1,477.08 and 4,196.82 ± 453.03,
respectively and 3,829.29 ± 249.08, 3,958.75 ± 1,477.08 and
4,112.13 ± 112.6, respectively, in the control group (CG).
Trend analysis in the experimental group showed a higher

statistical significance (p = 0.005) with respect to the control
group (p = 0.014). For PIBA the values in crestal, mid and apical,
in the experimental group, were 3,613.00 ± 1,109.12, 3,905.75 ±
809.65 and 3,759.17 ± 944.73, respectively and 4,162.50 ± 618.02,
3,705.20 ± 1,045.86 and 3,832.71 ± 1,201.43, respectively, in the
control group. Trend analysis in the experimental group showed
considerable statistical significance (p < 0.001) versus the control
group (p = 0.02). Figures 6, 7 represents the boxplots of the
results.

DISCUSSION

Since Brånemark published his first study on the osseointegration
of Ti implants in 1969, there have been numerous variations of

FIGURE 3 | Areas of interest (AoI) delimited by three micro-CT slices at crestal, mid and apical level.

FIGURE 4 | Artifact area in white color; bone in contact with the implant surface (BCIS) in green color and peri-implant bone area (PIBA) in yellow color.
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their surfaces, all with the aim of achieving early and more
durable osseointegration. The topography and roughness of
the surfaces have been questioned in terms of osteoblastic cell
differentiation and it has been shown that the attachment of this
type of cells is greater on smooth surfaces, although rougher
surfaces have been associated with greater cell differentiation
(Bachle and Kohal, 2004; Esposito et al., 2005). Apart from
surface characteristics, it is also known that osseointegration is
affected by factors such as the biological compatibility of an
implant (Annunziata and Guida, 2015). Therefore, to improve
the bioactivity of implants, the surface can be modified by
incorporating organic and inorganic phases either within or
on the Ti oxide layer, using ions, inorganic molecules or
organic molecules (Jiang et al., 2014; Anitua et al., 2015).

The evaluation of bone-implant contact provides evidence of an
implant anchored in the bone and has traditionally been established
as the most commonmethod of evaluation, however, the concept of
osseointegration has undergone variations and is now considered as
“a reaction to a foreign body in which interfacial bone is formed as a

defensive reaction to protect the implant from the tissues”
(Albrektsson et al., 2017; Albrektsson and Wennerberg, 2019).
The amount of bone in contact with the implant, as well as the
frictional properties at the contact interface, are important
parameters influencing bone-implant mechanics. However, the
stability of implants in trabecular bone has been little studied and
considering the reduced contact surface between trabecular bone
and implant, it has been suggested that macroscopic phenomena
such as trabeculae-implant mechanical fixation would dominate
over the microscopic aspects such as friction (Huang et al., 2008;
Wirth et al., 2010).

In the present study, a model was designed in the canine
mandible, where 2 bone parameters were measured in the area
surrounding the implant, Bone in Contact with the Implant
Surface (BCIS) and Peri-implant Bone Area (PIBA), at crestal,
mid and apical levels, both in the Cht-coated implant group
(ChtG) and in the control group (CG), with conventional
etched surface, and the results were analyzed by means of
micro-CT.

FIGURE 5 | (A), Micro-CT image in sagittal plane and graph to represent the artifact area, bone in contact with the implant surface (BCIS) (4 mmØ) and peri-implant
bone area (PIBA) (5.5 mm Ø); (B), 3D image with the contact and non-contact surfaces of the bone with the implant.

TABLE 1 | Specific crestal, mid and apical trends in the experimental and control groups for BCIS (mean ± deviation).

BCIS Crestal Mid Apical p-values

ChtG 3,770.11 ± 245.60 3,245.25 ± 1,477.08 4,196.82 ± 453.03 0.005 *
CG 3,829.29 ± 249.08 3,958.75 ± 1,477.08 4,112.13 ± 112.6 0.014

BCIS, bone in contact to the implant surface; ChtG, chitosan group; CG, Control Group. General linear model (p ≤ 0.05). * Statistical significance.

TABLE 2 | Specific crestal, mid and apical trends in the experimental and control groups for PIBA (mean ± deviation).

PIBA Crestal Mid Apical p-values

ChtG 3,613.00 ± 1,109.12 3,905.75 ± 809.65 3,759.17 ± 944.73 <0.001 *
CG 4,162.50 ± 618.02 3,705.20 ± 1,045.86 3,832.71 ± 1,201.43 0.02

PIBA, Peri-Implant Bone Area; ChtG, chitosan group; CG, control group. General linear model (p ≤ 0.05). * Statistical significance.
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Although no single animal species meets all the requirements
of an ideal model, an understanding of the differences in bone
architecture and remodeling between different species of

experimental animals could help to select a suitable species.
Most studies resort to modified and inadequate experimental
models, both the experimental animal (rabbit rat...) and the

FIGURE 6 | Boxplot of peri-implant bone area (PIBA) values at crestal, mid and apical levels.

FIGURE 7 | Boxplot of bone in contact with the implant surface (BCIS) values at crestal, mid and apical levels.
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implantation site, with extraoral surgical approaches (tibia,
femur...), so that the results cannot be extrapolated to humans,
among other reasons, because of the lack of cortical remodeling
and the fact that the cessation of growth occurs much later in
these species than in other mammals (Ferguson et al., 2018). On
the other hand, in vitro cultures maintain tissues or organs
without vascularization, limiting the supply of nutrients,
oxygen and waste elimination and, therefore, the extrapolation
of the results to the in vivo situation limits the model. All this,
without taking into account the reduced lifespan of the cultured
cells (Pizzoferrato et al., 1994). Our preclinical study used the
mandible of a canine model, with greater similarity to the human
in terms of bone architecture and remodeling. The dog, along
with the pig, are considered valuable models for the study of
tissues adjacent to dental implants, and large-breed dogs can
support human dental implants (Pearce et al., 2007). To our
knowledge, this is the first time that this experimental model has
been used for the study of the effectiveness of Cht as a coating for
dental implants.

Cht is a macromolecule that has achieved great attention in the
biomedical industry, arousing great interest in bone regeneration
(De Jonge et al., 2008; Ebhodaghe, 2021). It has the ability to
stimulate the recruitment and adhesion of osteogenic progenitor
cells, facilitating bone formation. In addition, it has been shown
that no inflammatory or allergic reactions occur after topical
application (Kim et al., 2003; Waibel et al., 2011; Azuma et al.,
2015; Sukpaita et al., 2021).

Typically, toxic reagents, such as 3-
isocyanatopropyltriethoxysilane and glutaraldehyde, are used
to form Cht coatings for silanization and attachment to the Ti
substrate but these techniques involve complex processing that
hinders coating deposition and limits clinical applicability (Yuan
et al., 2008). However, although efforts have been made to
increase the bond strength of hydroxyapatite coatings on
implant alloys, as they are brittle materials, it is unclear
whether these high bond strengths would be necessary for the
polymeric Cht material (Bumgardner et al., 2007).

The dip coating used in our study (Vakili and Asefnejad,
2020), in addition to resisting the forces used during
implantation, because of the surgical technique employed, is
an inexpensive way of depositing thin layers from chemical
solutions, with relatively fair control over the thickness of the
layer and offers the possibility of fine-tuning the amount of
material that can be deposited and, therefore, the thickness of
the final film. For these reasons, it is becoming increasingly
popular not only in research and development laboratories,
but also in industrial production. Grosso have proposed the
immersion technique as a very suitable method to impregnate
porosities, make nanocomposites or perform nanofusion.
(Grosso, 2011); Brinker et al. (Brinker et al., 1992) pointed out
wet methods, as suitable, since they are homogeneously organized
in the final film, with adequate thickness control.

The amount of Cht can be adjusted by controlling the
concentration of the Cht solution and certain authors have
indicated that, as the amount of loaded Cht increases, its
antibacterial properties increase; therefore, controlling the
amount of loaded Cht would endow the Ti implant with

better biological and anti-bacterial properties. Cht loading in
0.5% acidic solution, was considered adequate (Vakili and
Asefnejad, 2020), although the optimization of the amount of
loaded Cht, degradation rate and antibacterial effect still need to
be further investigated (Li et al., 2019b). Most of the existing
studies on the efficacy of Cht as a Ti coating, as we have noted
above, are in vitro studies or in vivo studies on inadequate models,
or that resort to complicated coating methods, or toxic products,
which hinder or impair their clinical applicability (Bumgardner
et al., 2007; Kung et al., 2011; Takanche et al., 2018a; Zhang et al.,
2020).

Sukpaita et al. (Sukpaita et al., 2019) demonstrated the ability
of Cht scaffolds to self-promote bone tissue and repair calvarial
bone defects in mice. Tian et al. (Tian et al., 2014), in an in vitro
study, indicated that Cht film loaded on a Ti surface would
promote osteoblast proliferation and differentiation in a dose-
dependent manner, which could represent a new approach in the
treatment of Ti implants. Zhang et al. (Li et al., 2019b) showed
that porous Ti with a Cht/Hydroxyapatite coating could promote
osteoblast-like cell proliferation and differentiation and
osseointegration in vivo. Bumgardner et al. (Bumgardner et al.,
2007) evaluated the ability of Cht coatings on Ti to promote bone
formation and osseointegration compared to calcium phosphate
coatings and uncoated Ti, in a 12-weeks rabbit model,
maintaining the hypothesis that it may not be important that
the Cht coating persists long-term, once a good bone-implant
interface has been established, in the same way that some
investigators have speculated with calcium phosphate coatings
(Yang et al., 2005).

Even heterotopic (extraskeletal) bone formation induced by
Cht-collagen-coated Ti implants has been demonstrated in vivo
(Kung et al., 2011). Overall, researchers conclude that Cht
significantly accelerates the bone regeneration process and,
therefore, in terms of its biocompatibility and osteoinductivity,
it can be considered as a biomaterial of great relevance in human
bone healing (Ge et al., 2004; Pang et al., 2005; Guzmán-Morales
et al., 2009; Muzzarelli, 2009; Ezoddini-Ardakani et al., 2012;
Mututuvari et al., 2013), which is consistent with the results
obtained in our research.

The good film-forming ability of Cht allows its use in the
coating of dental or orthopedic implants, and the coated surfaces
have been shown to possess good cellular compatibility with
fibroblast cells. Klokkevold et al. (Klokkevold et al., 1996)
reported that chitosan films enhanced osteoprogenitor cell
differentiation, facilitated bone formation, and inhibited
fibroblast proliferation. Moreover, the activity of Cht against
bacteria such as Escherichia coli, Streptococcus mutans,
Staphylococcus aureus, Bacillus subtilis and Actinomyces
naeslundii (Renoud et al., 2012; Lin et al., 2021) and to
prevent oxidative damage caused by free radicals (Ngo et al.,
2011) has also been demonstrated. Takanche et al. in an in vivo
study on osteoporotic rat jaws demonstrated, by micro-CT, that
Cht-coated Ti implants increased the volume and density of
newly formed bone and implant osseointegration, as well as the
upregulation of bone morphogenetic protein, by inhibiting
osteoclastogenesis. All these and other demonstrated properties
make this biopolymer a good biocompatible and bioactive
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osteoconductor and a useful coating for orthopedic and
craniofacial implant devices.

However, in the future, it will be necessary to determine the
bond strength of the coatings and changes in bond strength over
time and to evaluate the degradation of the coating in lysozyme
solutions in the oral environment, as degradation rates may be
different in the presence of this enzyme and changes in
degradation would be important for the development of the
implant-tissue interface (Yuan et al., 2008). It will also be
necessary to determine whether changes in initial cell growth,
or differences in Cht degradation, result in less cell
mineralization. In addition, it will need to be determined
whether surface morphology, roughness, and coating
chemistry could be related to cell and tissue responses.

In our study, two bone parameters in the vicinity of the im-
plant (BCIS and PIBA) were measured by micro-CT. The best
statistical significance was obtained for PIBA, in the experimental
group (ChtG) (p < 0.001), despite the fact that all the inserted
implants obtained optimal osseointegration. The maximum value
was obtained for PIBA at the crestal level of M1 in ChG
(6,347.05 ± 413.2) and the minimum for BCIS at the mid-level
of P2 in CG (1765.03 ± 358.01).

Micro-CT currently allows observation of bone tissue in a three-
dimensional manner, as well as quantitative analysis in several
sections, which is not possible by histomorphometric analysis. It
detects only mineralized tissue and is therefore suitable for analyzing
the bony annulus and assessing bone formation around implants
during healing periods; moreover, histological studies could not be
performed in clinical trials (Vandeweghe et al., 2013b; Nakahara
et al., 2019). Rebaudi et al. (Rebaudi et al., 2004), have proposed it as
a suitable technique for the analysis of peri-implant bone tissues,
proposing it as a non-destructive evaluation, which allows the
analysis of the bone-implant interface. Lyu and Lee (Lyu and Lee,
2021), in a study on rabbit tibiae, reported that the measurement of
bone in contact with the implant by micro-CT is feasible to evaluate
implant osseointegration, obtaining results similar to
histomorphometric ones, although they recognize that the
method needs further optimization. Likewise, they recognize that,
in most cases, they can only use one or two histological sections per
implant for histomorphometric evaluation, which could lead to an
over- or underestimation of the peri-implant bone.

Nevertheless, we are aware of our limitations, in terms of small
sample size and difficulty in accurately detecting the bone in close
contact with the implant surface, due to the thin layer of noise in

the surrounding area and the microtomography settings. and the
difficulty of accurately detecting the bone in close contact with the
implant surface, due to the thin layer of noise in the surrounding
area and the microtomography settings. These drawbacks should
be taken into account when interpreting the results. In future
ongoing studies, the samples will be studied by
histomorphometric analysis to compare the results.

CONCLUSION

The results of this preliminary study demonstrated the usefulness
of Cht coatings on Ti surfaces to improve the osseointegration of
dental implants. In addition, within the limitations, the use of
nondestructive micro-CT analysis, seems to be useful to evaluate
bone healing in the surroundings of the implant surfaces.

Since the design of the present study allowed only a
preliminary analysis, the data obtained could serve as a basis
for the design of future studies.
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