
ARTICLE IN PRESS

Robotics and Computer-Integrated Manufacturing] (]]]])]]]–]]]
Contents lists available at ScienceDirect
Robotics and Computer-Integrated Manufacturing
0736-58

doi:10.1

� Corr

E-m

Pleas
Integ
journal homepage: www.elsevier.com/locate/rcim
Experiments with service-oriented architectures for industrial robotic
cells programming
G. Veiga a, J.N. Pires a,�, K. Nilsson b

a Mechanical Engineering Department, University of Coimbra, Polo II Campus, 3030-788 Coimbra, Portugal
b Computer Science Department, Lund University, Sweden
a r t i c l e i n f o

Article history:

Received 17 February 2008

Received in revised form

18 July 2008

Accepted 16 September 2008

Keywords:

Industrial robotic cell programming

Service-oriented architectures

Robotic systems adapted to SMEs
45/$ - see front matter & 2008 Elsevier Ltd. A

016/j.rcim.2008.09.001

esponding author. Tel.: +351 239 790700; fax

ail address: norberto@robotics.dem.uc.pt (J.N.

e cite this article as: Veiga G, et al. E
r Manuf (2008), doi:10.1016/j.rcim.2
a b s t r a c t

Integration of equipment in industrial robot cells is to an increasing part involved with interfacing

modern Ethernet technologies and low-cost mass produced devices, such as vision systems, laser

cameras, force–torque sensors, soft-PLCs, digital pens, pocket-PCs, etc. This scenario enables integrators

to offer powerful and smarter solutions, more adapted to small and medium enterprises (SMEs), capable

of integrating process knowledge and interface better with humans. Nevertheless, programming all

these devices efficiently requires too much specific knowledge about the devices, their hardware

architectures and specific programming languages, details about system communication low-level

protocols, and other tricky details at the system level. To address these issues, this paper describes and

analyses two of the most interesting service-oriented architectures (SOA) available, which exhibit

characteristics that are well adapted to industrial robotics cells. To compare, discuss and evaluate their

programming features and applicability a test bed was specially designed, and the two SOA are fully

implemented to program the test bed. Special focus is given to the way services are specified and to the

orchestration tools used to manage system logic. The obtained results show clearly that using

integrations schemes based on SOA reduces system integration time and are more adapted to industrial

robotic cell system integrators.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The use of industrial robots in typical manufacturing systems
requires integration of several devices in the task of interfacing
with other systems and human operators. The challenge is to
respond to increasing demands in terms of flexibility and agility,
like it is common in small and medium enterprises (SMEs) that
manufacture short batches of several types of products without
stocks. Within system integration for such production, experi-
ences and developments have resulted in a strong desire to
improve efficiency and flexibility by combining the following
three approaches: integrating several types of input–output
devices like vision systems, user interface devices, force–torque
sensors, etc.; developing human–machine interface solutions that
can take more advantage from the human operators although
hiding from them the tricky details about how to have things
done; developing programming facilities to allow system inte-
grators to focus on system functionality avoiding the specific
languages, device-dependent hardware and software details,
communication specific information, etc.
ll rights reserved.

: +351 239 790701.

Pires).

xperiments with service-o
008.09.001
The flexibility obtained today was basically achieved through
specialization within known major application areas, which today
are supported by highly dedicated languages and environments to
handle the devices functionality and the system integration. Since
system programmers are not necessarily general programming
language experts, programming a manufacturing cell is therefore
a task for a skilled engineering team, as done in large enterprises.

For SMEs, there are several ad-hoc ways to approach the
problem. Nevertheless the trend is to have a client–server
software environment that not only enables system architects to
distribute functionality, but also to coordinate actions from a
central client commanding application. This assumes availability
of a remote procedure calling mechanism, or several, and a
method of packaging functionality hiding from the user the
complexity inherent to the process of communicating and
handling information. Supporting a human (‘‘natural’’) way of
commanding a task goes beyond simple sequencing of commands,
so we are not talking about software components that simply hold
a collection of methods and data structures. Instead, software
blocks need to handle complex tasks that are parameterized in
terms of the production at hand.

With the advent of internet, service-oriented architectures
(SOA) emerged to increase the degree of decoupling between
software elements. A SOA relies on highly autonomous but
riented architectures for industrial robotic cells.... Robot Comput

www.sciencedirect.com/science/journal/rcm
www.elsevier.com/locate/rcim
dx.doi.org/10.1016/j.rcim.2008.09.001
mailto:norberto@robotics.dem.uc.pt
dx.doi.org/10.1016/j.rcim.2008.09.001

ARTICLE IN PRESS

G. Veiga et al. / Robotics and Computer-Integrated Manufacturing] (]]]])]]]–]]]2
interoperable systems. The definition of a service is ruled by the
larger context; this means that all technological details are
hidden, but also that, the concept that supports the service is
more business (or process) related and less technological related.
SOA gave software engineers time to think more on the business
logic and less on the interconnection details. At the device level
service-oriented architectures are emerging as the way to deal
with the increasing amount of embedded devices present in our
homes and offices.

In manufacturing, the required (but to be hidden for the user)
complexity together with the presence of many high-performance
processing devices makes the concept of service-oriented archi-
tectures particularly suitable to use. In fact, it leads to the idea
that each programming block (i.e., not only physical devices)
should be considered as a potential device (SOA device style) that
offers programming or setup services. Those programming
services should also be advertised, like with a normal device,
inside the SOA environment, and any device offering execution
services should signalize availability to the programming module
that activates and uses its functionality. All the activated

programming modules could then be used to constitute a working
program. Existing programs, from user databases or from actually
connected robots/devices, will be ready for execution if all the
contained programming modules are activated. It can still be
acceptable to have an activated program that can lead to a
blocking situation. In that case the user should provide the
required event handling. These programming modules/services as
can be seen has the main foundations of a high level programming
(HLP) framework for industrial robots.

In the following, to confront the general SOA idea with actual
manufacturing needs, two of the most promising SOA platforms
are analyzed and experimentally evaluated. Special attention is
given to the definition of services and to the development/analysis
of high-level orchestration programs. The focus in this last point
is justified by the need to cope with the ease of use of the
programming languages/environments of the cell subsystems.
By evaluating different architecture styles and analyzing the
applicability of the resulting systems, the aim is to contribute to
the development of future plug-and-produce solutions for SME
manufacturing.
Table 1
Effects on the use of service oriented architectures in automation [1]

Today Near future

System Centralised, large, intelligent

controllers, dumb devices

Decentralised intelligent and

autonomous devices

Communications Polling client–server point-to-

point

Event-driven,

publish–subscribe, peer-to-peer

Setup Long and difficult, manual

programming tedious

debugging

No programming, plug and play,

context-aware configuration
2. Preliminaries

Since industrial cell components are getting more and more
autonomous the automation technology should integrate modern
networking architectures with event-driven and publish–
subscribe communication. In the following, a few alternatives
will be analyzed and briefly discussed.

2.1. Components and interconnectivity

Considering a holonic cell structure [1,2], with holons composed
by automation devices, like an industrial robot or a vision system,
one can classify as uncommon the need to have real-time in the
communication framework. Although in some special but im-
portant cases, such as visual servoing and conveyor tracking
involving feedback loops via several interconnected devices,
systems need to be able to accomplish shop–floor deterministic
traffic, it can be claimed that those cases constitute a smaller part
of the integration problem. The majority of the component
connections can instead be described in terms of coarse-grained
services, with synchronous calls for setup and asynchronous
events for operation. Additionally, there are techniques for real-
time communication that operate along the same principles, using
user datagram protocol (UDP) for the real-time events [3]. Hence,
Please cite this article as: Veiga G, et al. Experiments with service-
Integr Manuf (2008), doi:10.1016/j.rcim.2008.09.001
real-time extensions appear to be possible, but are outside the
scope of this paper.

2.2. Safety and predictability

Safety is getting increasingly important for robotic work-cells,
with the intense utilization of safety sensors and the trend of
removing the fences around the machines. This might look like a
contradiction to the use of PC-based software for cell control, but
two facts simplify the scenario: safety sensors and controllers are
configured separately, based on special hardware and certification
procedures; safe robot work-cells are not mission critical (as an
airplane control system). Therefore, occasional failure can be
acceptable if it can be detected and handled (by stopping or
performing another task). Thereby, we can simplify the (hopefully
fast) development of flexible manufacturing systems, avoiding
some of the issues of X-by-wire and similar systems for vehicle
technologies [4].

2.3. Architecture

The SIRENA project (Service Infrastructure for Real-time
Embedded Networked Applications) [5] pointed out the advan-
tages of using SOA in industrial automation (Table 1). Both Ahn
et al. [6] and Nielsen et al. [7] proposed using a SOA for the device
level as robot middleware of an industrial mobile platform.

Industrial applicability also calls for support of dumb (wired IO
for example) and legacy devices. This subject was addressed with
success by James et al. [8,9] using specially designed gateway
devices, and is now featured by the Microsoft Robotics Studio
(MSRS) [10].

There are many SOA proposed for the device level and fairly
nice revisions have been written that resume their basic features
[11,12]. For the actual implementation, a SOA is in practice based
on a middleware platform, which can be considered a lower level
architecture. Such platform should include suitable mechanisms
to support the SOA main characteristics for the device level:
addressing, discovery, description, control and event handling
(eventing).
3. Approach

In this work four of the most relevant and available approaches
of SOA are considered: Jini [13], universal plug-n-play (UPnP) [14],
decentralized service structure protocol (DSSP) [7] and device
profile for web services (DPWS) [15].

Jini is an architecture proposed by Sun Microsystems based on
Java. Consequently, it is platform independent but language
dependent. It also carries a large memory footprint, due to the
presence of a virtual machine and extensive libraries, making it
less appropriate for very small devices.

UPnP and DPWS rely extensively on standard network
protocols such as transport communication protocol (TCP/IP),
oriented architectures for industrial robotic cells.... Robot Comput

dx.doi.org/10.1016/j.rcim.2008.09.001

ARTICLE IN PRESS

G. Veiga et al. / Robotics and Computer-Integrated Manufacturing] (]]]])]]]–]]] 3
UDP, hypertext transfer protocol (HTTP), simple object access
protocol (SOAP), extendable markup language (XML) and web
technology. This makes them platform and language independent,
which is a major advantage for their adoption. XML formats are
broadly used and accepted and provide modern data interchange
mechanisms and communications. Their style is close to the one
defined in the business world with generic the pair composed by
webservices description language (WSDL) and SOAP.

Although similar in many aspects, the UPnP and DPWS
architectures use different languages for device description and
different protocols for discovery and event notification. A proposal
has been made to the UPnP foundation [15] for a convergence
between the two approaches in the next major UPnP review.
Nevertheless, the new Microsoft operating system, Microsoft
Vista, supports both technologies under the name plug-and-play

extensions for Windows [16].
DSSP is a simple SOAP-based protocol that defines a light-

weight, representational state transfer (REST)-style service model
[7] that also relies extensively on web technology. Paired with
concurrency and coordination runtime (CCR) it constitutes the
major parts of the MSRS platform.
3.1. Selection of platform

From the above discussion it is clear that UPnP and DSSP
should be implemented and evaluated. UPnP and DPWS are very
similar technologies, which mean that concepts and design styles
can be easily ported between each other. On the other hand, for
the UPnP case there are more development tools available and
the past work with UPnP industrial test bed [17] is a valuable
head-start.

Even considering that all these architectures are service-
oriented, substantial differences between them may exist. This
is the case of DSSP in comparison with the UPnP/DPWS pair
referred above. The first is a RESTful architecture which means
that it relies on a limited amount of verbs (limited number of
actions) and unlimited number of nouns. The second follows the
XML–remote procedure calls (RPC) SOAP general guideline and
resembles many of the WS-* technology guidelines. Hence, the
DSSP and UPnP architectural styles are quite different.
3.1.1. UPnP

The basic elements of an UPnP network are: devices, services
and control points. A device is a container of services and other
devices. A service is a unit of functionality, that exposes actions
and has a state defined by a group of state variables. A control
point is a service requester. It can call for an action or subscribe an
evented variable (variable with events associated) (Table 2).

Addressing occurs when a device or a control point obtains a
valid IP address. Normally the dynamic host configuration
protocol (DHCP) is used; otherwise the device or control point
uses de auto-IP mechanism.
Table 2
Basic steps that compose UPnP networking

Steps Today

Addressing Control point and device get an address

Discovery Control point finds device of interest

Description Control point obtains service descriptions from devices

Control Control point invokes actions on devices

Eventing Services announce changes in their state

Presentation Control point monitor and control device status using a

HTML user interface

Please cite this article as: Veiga G, et al. Experiments with service-o
Integr Manuf (2008), doi:10.1016/j.rcim.2008.09.001
Discovery takes place once devices are attached to the network
and are properly addressed. Devices advertise its services to
control points and control points search for devices in the
network.

The description step allows a control point to obtain the
necessary information about a device. This is done using the URL
provided by the device in the discovery message. At this stage, the
control point has the necessary information about the actions and
state variables provided by a device. The control step consists on
calls of actions present in a device made by a control point.

When the state of a service (modeled in their state variables)
changes, the service publishes updates by sending messages over
the network. This is called Eventing. These messages are also
expressed in XML and formatted using the general event
notification architecture (GENA).

Some devices may have presentation web pages. In this case a
control point can retrieve a page from the specified URL, load the
page into the browser and depending on the capabilities of the
page allow a user to control the device and/or view the device
status.
3.1.2. DSSP

The application model defined by DSSP results from the REST
model by exposing services through their state and a uniform set
of operations over that state.

DSSP services are fine-grained entities that can be created,
manipulated and destroyed repeatedly with DSSP operations, and
their orchestration forms a DSSP application. A DSSP service
consists of:
�

rien
Identity—global unique reference of the service.

�
 Behaviour—definition of the service functionality.

�
 Service state—current state of the service.

�
 Service context—relationships the service has to other

services.
The state of a service is a representation of the service at any
given point in time. Representing a motor can may consist of rpm,
temperature and fuel consumption. The behaviour of a service
(the contract) is the combination of the content model describing
the state and the message exchanges that a service defines for
communicating with other services. The behaviour of a service is
identified by a globally unique URI known as the contract
identifier.

DSSP provides a uniform model for creating, deleting, manip-
ulating, subscribing and orchestrating services independent of the
semantics of those services. DSSP defines a set of state-oriented
message operations that provide support for structured data
retrieval, manipulation and event notification. DSSP operations
are an extension of the HTTP application model, which provides
support for structured data manipulation, event notification and
partner management.

An application is a composition of loosely coupled services that
through orchestration can be harnessed to achieve a desired task.

DSSP achieves this by separating state from behaviour,
allowing services to expose their state and hide their behaviour.
The behaviour of the services is described by contracts (that have
a specific URI), and determines how it can compose with other
services. Such composition is called partnering.

To overcome some limitations of the traditional web-based
architecture (REST) when applied to the device level, the HTTP/1.1
application model was extended with structured data manipula-
tion, event notification and partner management between
services.
ted architectures for industrial robotic cells.... Robot Comput

dx.doi.org/10.1016/j.rcim.2008.09.001

ARTICLE IN PRESS

G. Veiga et al. / Robotics and Computer-Integrated Manufacturing] (]]]])]]]–]]]4
4. Experiments

Given the selected architectures/platforms the following
objectives are persued in the rest of this paper:
1.
 Validate SOA as a general solution for programming industrial
robotic cells.
2.
 Test concepts that support the service definition.

3.
 Develop general software to program industrial robotic cells.

4.
 Evaluate different SOA styles for industrial robotic cell

programming.

5.
 Test strategies for the automatic generation of UPnP devices.

4.1. Test-bed description

The robotic cell used in this demonstration is composed of an
ABB IRB 140 robot, equipped with the latest IRC5 controller, a
conveyor controlled by a programmable logic controller (PLC)
(Siemens S7-200) and a universal serial bus (USB) web camera.

Basically, the conveyor transports sample pieces over the
machine vision system (Fig. 1), which calculates the number pieces
and the correspondent position. The results are sent to the robot
controller for the pick-and-place operation. A detailed description of
this setup is available in [22], where an alternative solution based
on a general TCP/IP client–server application was used.

Since only the robot controller has built-in support for
sockets communications, earlier work [22] used several personal
computer (PC)-based applications to distribute services over the
network. Two different clients were developed to operate the cell:
a PC-based graphical human–machine interface (GHMI) and a
personal digital assistant (PDA) interface. There was also a speech
recognition interface.

4.2. UPnP

The architecture proposed in this paper replaces the client–
server architecture with a SOA and provides some tools to support
the creation of the software components necessary for the SOA.
Consequently, five software applications were developed as
described in Fig. 2.

These applications correspond to five UPnP devices of the
network.

Since both the industrial components of the system (PLC and
robot) do not have native UPnP support, it was necessary to
Fig. 1. Experimental setup at the laboratory.

Please cite this article as: Veiga G, et al. Experiments with service-
Integr Manuf (2008), doi:10.1016/j.rcim.2008.09.001
develop an extra software layer to integrate these devices,
advertising in this way the discovered devices and services over
the UPnP network.

The RobotIRC5 UPnP device was implemented in a software
application that communicates with the robot controller via a
TCP/IP-based network. The robot controller runs a server applica-
tion developed in RAPID [19] as an independent task, similar to
the one presented in [22]. This UPnP device provides one service:
PickAndPlaceService (Fig. 3). This service has two different actions:
one that allows picking all identified pieces, and another that
picks a single piece properly parameterized. It also includes an
evented state variable (busy) that indicates the state of the robot,
and publishes an event each time the robot finishes picking. This
device uses the Intel C# UPnP stack.

The Conveyor UPnP device was also implemented as a software
application that communicates with the conveyor commanding
PLC through a serial port [23]. Two services are also available
(Fig. 4): the HighLevel Prog service provides actions and variables
with process related meanings; the Maintenance_Setup service is
more technology related, and is intended to be used during
development or maintenance stages. This strategy of dividing
process related and technology related services enhance the
advantages of the SOA in the HighLevelProg service, without
compromising some technology know-how needed for finding IO
problems in the installation stage, for example. This device uses
also the Intel C# UPnP stack.

The SmartCamera UPnP device (Fig. 5) was implemented using a
commercial USB web camera, and special purpose vision software
developed using C++ and the Intel OpenCV vision libraries [20].

The application determines the number and position of the
pieces on the conveyor, and provides an UPnP action (getPos())
that returns these positions in a string format.

Speech recognition systems (SRS) evolved significantly in the
last couple of years. Actual SRS can even be used in industrial
environment (see [21]). This type of technology can be seamlessly
integrated in a SOA due to the fact that they are extensively event
driven. To achieve this integration a software application was
developed to allow the automatic pairing of voice recognition
events with UPnP events (Fig. 6).

The SRS selected to use with this research was the Microsoft
speech engine included with the Microsoft speech Application
Protocol Interface MSAPI 5.1 [18]. This system includes an automatic
speech recognition (ASR) engine and a text-to-speech (TTS) engine.

To create an UPnP device that can publish events correspond-
ing to ASR events an application was developed (using C#, Fig. 6)
that implements the following strategy:
�

orie
First, the XML grammar was parsed and an XML–document
object model (DOM) tree document created.

�
 Then this tree was traversed and UPnP state variables were

dynamically created and added to the RecognitionService of the
voice interface device. All combinations implemented with
grammar tags /LS/S (List) are listed, and a Boolean state
variable is created for each one of them. The name of the state
variable is the recognized sentence without spaces. Nevertheless,
if this traversal method goes through each rule reference, a very
high number of variables would be created. To avoid these
difficulties and to express the real mean of the recognized
number, an integer state variable was associated with each of the
recognitions that may contain a number. It is important to notice
that the UPnP events are fired every time a new value is assigned
to the state variable, even if the value is the same.
Grammars are used to define what the ASR should recognize.
Each time a sequence defined in the grammar is recognized an
nted architectures for industrial robotic cells.... Robot Comput

dx.doi.org/10.1016/j.rcim.2008.09.001

ARTICLE IN PRESS

Fig. 3. UPnP device developed for the industrial robot.

Fig. 4. UPnP device developed for the conveyor.

Fig. 2. UPnP devices and designed interconnections.

Fig. 5. UPnP device developed for the smart camera.

G. Veiga et al. / Robotics and Computer-Integrated Manufacturing] (]]]])]]]–]]] 5
event is fired by the SRS. The Microsoft SAPI allows three different
ways for specifying grammars: included in the code (program-
matic grammars), using XML files, or using CFG files. Since XML is
a well accepted standard it was used to specify speech recognition
grammars.

Grammars define a TopLevel Rule that includes all the
necessary commands. From each of these commands it is possible
Please cite this article as: Veiga G, et al. Experiments with service-o
Integr Manuf (2008), doi:10.1016/j.rcim.2008.09.001
to call other rules. In the example presented in Fig. 2, a rule
(‘‘NUMBER’’) was created to support the recognition of numbers
(0–99). This rule is composed by several secondary rules (UNIT,
SETSOFTEN,y) that have properties associated.

These properties allow the easy recovery of a value when a
number is recognized, because they are sent as an argument of the
delegate call when a recognition event occurs (Fig. 7).

This application provides a very interesting approach to link
the meaning of both dictated numbers and UPnP state variables.
This approach could be extended to terms like Conveyor and
Robot, which could be associated with the respective devices, or
even linked to ontology on robotics.

The Cell Programmer Interface (Fig. 8) is a software application
developed to control the flow of high level tasks in a manufactur-
ing cell. Basically, it is an UPnP control point, with some tools
suitable to build a generic stack. This stack represents the control
flow of process related tasks. In the left side of this interface a tree
shows all UPnP devices found on the network (notice the presence
of a ‘‘stranger’’ gateway device). Clicking over them it is possible
riented architectures for industrial robotic cells.... Robot Comput

dx.doi.org/10.1016/j.rcim.2008.09.001

ARTICLE IN PRESS

Fig. 6. Voice recognition interface.

Fig. 7. Recognition handling delegate: retrieving semantic properties.

G. Veiga et al. / Robotics and Computer-Integrated Manufacturing] (]]]])]]]–]]]6
to get additional information (access the presentation page, for
example). Using the ‘‘arrow’’ button, actions or events are added
to the stack. Furthermore, when running the resulting program
and the program counter is pointing to an event, it means that the
program is ‘‘waiting’’ for that event to occur. Inversely, if the
program counter is pointing to an action, it means that it is calling
that action and waiting for the return. There is also the possibility
of defining auxiliary variables to store values that can be used as
arguments in later stack steps.
Please cite this article as: Veiga G, et al. Experiments with service-
Integr Manuf (2008), doi:10.1016/j.rcim.2008.09.001
The simple case depicted in Fig. 8 is a pick-and-place case.
The setup should wait for a speech recognition event that
commands the conveyor to start. When the event occurs
an action is called commanding the conveyor to enter the
automatic mode. The next action is to obtain information about
the number of pieces and respective position from the camera
server.

The obtained information is used to pick-and-place the pieces
calling the robot pick service.
oriented architectures for industrial robotic cells.... Robot Comput

dx.doi.org/10.1016/j.rcim.2008.09.001

ARTICLE IN PRESS

Fig. 8. UPnP control point: CellProgrammer interface.

G. Veiga et al. / Robotics and Computer-Integrated Manufacturing] (]]]])]]]–]]] 7
When the last piece is removed the conveyor starts auto-
matically, so in this simple example the next element of the stack
is a speech recognition event that waits for the command to stop
the conveyor.
Fig. 9. Abbirc5 contract.
4.3. DSSP

The implementation of DSSP was made with the objective of
allowing a precise comparison with UPnP counterpart: the MSRS
package is used. Consequently, 3 services were developed
which resemble the UPnP services: ConveyorMRSR, Abbirc5 and
SmartCam. All these services were developed using the C#
programming language from the scratch not using any of the
MSRS supplied services. This enables a more precise comparison,
since it is done using similar services (built in the same way).
Nevertheless, one exception has been allowed for the VoiceUPnP

service. The speech recognition was developed using the MSRS
provided speech recognition service and the recognition logic
programmed using the Microsoft Visual Language Programming
(MVLP) [10]. This allowed also evaluating MVPL.

MSRS services are specified by contracts. These contracts
specify which are the message ports available and which type of
messages are available. Like any RESTfull approach the DSSP
operations involves exchanging message of specific types which in
this case are: CREATE, DELETE, DROP, GET, INSERT, LOOKUP,
QUERY, REPLACE, SUBSCRIBE, SUBMIT, UPDATE and UPSERT. For
the robot the following contract is available (Fig. 9).

Comparing this service with the one presented in the UPnP
implementation, it is obvious to conclude that the UpdatePick

operation is not a real Update operation but a way to accomplish
to emulate the Pick method. On the other hand the UpdateMotor-

State is a nice substitute for the UPnP MotorOn() and MotorOff()

methods.
The contract information is available via HTTP since the service

is running and the state can be retrieved via the HTTP get
operation (Fig. 10).

To improve the interaction with the services an extensible
stylesheet language transformations (XSLT) transformation was
developed. This transformation gives the html look to the
extensible markup language (XML) state and provides a user
interface to update the service state (Fig. 11).

The orchestration in the DSSP has been implemented using the
MVPL (Fig. 12).
Please cite this article as: Veiga G, et al. Experiments with service-oriented architectures for industrial robotic cells.... Robot Comput
Integr Manuf (2008), doi:10.1016/j.rcim.2008.09.001

dx.doi.org/10.1016/j.rcim.2008.09.001

ARTICLE IN PRESS

G. Veiga et al. / Robotics and Computer-Integrated Manufacturing] (]]]])]]]–]]]8
As already mentioned, the speech recognition logic is exposed
here to promote the visibility of MVPL capabilities. This data/
message driven language is very powerful to orchestrate complex
services. As with the UPnP’s CellProgrammer application, the use
of MVPL as orchestration language is motivated by the need to
facilitate integration of devices, rather than programming them.

4.4. UPnP/DSSP comparison

Experiments using UPnP and DSSP with the designed industrial
test bed provided valuable information that can be used to select
the most adequate SOA style for industrial robotic cell program-
ming. The proposed comparison considers two main topics:
architecture style and actual platform.

4.4.1. Architecture style comparison

The architecture styles are radically different between DSSP
and UPnP. This is particularly visible in MSRS since there are no
RPC-like methods in Microsoft’s DSSP. In this architecture every-
Fig. 10. Abbirc5 state.

Fig. 11. Abbirc5 XSLT/HTML interface.

Fig. 12. Orchestratio

Please cite this article as: Veiga G, et al. Experiments with service-
Integr Manuf (2008), doi:10.1016/j.rcim.2008.09.001
thing is a message, and everything is driven by (or driving) state
changes. This is an immediate consequence of the RESTful flavor
of the architecture. Of course that every RPC call can always be
replaced by a specific message and most of the times by a CRUD
message (Create, Retrieve, Update and Delete) without the need of
creating a specific message. The questions are if this model is the
best way to express what the programmer has in mind, and if the
actual procedural programming model of most of the industrial
robots will cope well with the REST style.

For example, consider the action ‘‘Pick’’ from the AbbIrc5 from
the UPnP setup. This method represents the operation of picking
pieces and has as arguments the position of the pieces and the
number of pieces to pick. This operation does not fit in any of the
DSSP message operations and the update-message used seems an
unnecessary workaround.

An important issue to consider regarding the industrial
automation integration is the way services will be specified. Most
industrial robots still define their tasks using a procedural
language (object oriented in some cases). These languages seem
very adequate to specify services to the network, using one
approach similar to the one used with Web Services (SOAP/WSDL)
and languages like Microsoft Visual C# or Microsoft Visual Basic.

4.4.2. UPnP/DSSP platforms comparison

The following discussion is based on the experienced gained
with implementing both architectures with the presented test
bed. The idea here is to point out the main differences and
highlight the interesting features of each technology.

4.4.2.1. Language/platform independence. In terms of language/
platform independence UPnP takes the lead. Built over common
standards there are toolkits available for every major platform
(Windows, Linux) and languages (C#, Java, C++). Moreover, the
MSRS relies exclusively on the .NET platform.

4.4.2.2. Concurrency support. Even if we consider coarse-grained
services as stated before, the availability of powerful tools (library,
SDK, etc.) to help the deployment of concurrent programs is very
important. Considering for example the UPnP experiment, it is
n using MSRS.

oriented architectures for industrial robotic cells.... Robot Comput

dx.doi.org/10.1016/j.rcim.2008.09.001

ARTICLE IN PRESS

G. Veiga et al. / Robotics and Computer-Integrated Manufacturing] (]]]])]]]–]]] 9
considered very useful to have support for concurrent stack pro-
grams in the CellProgrammer application. This could be provided
just by adding graphical support to some concurrent features
(semaphores p.e.) from an existing library (Lund Java-based real-
time library would be a suitable example [24]). DSSP and CCR
constitute the core of the MSRS Runtime. Both technologies are
tied up which means that DSS has an extensive and modern
concurrency support.

4.4.2.3. High level orchestration programs. MSRS default package
includes the MVPL, which is a very interesting solution for
the orchestration of services. In fact, this environment can be used
to perform the same function of the CellProgrammer used in
the UPnP setup, with several advantages, namely related to the
coordination of features using a graphical interface.

4.4.2.4. Discovery. The UPnP discovery is processed on a peer-to-
peer basis. Every control point has the ability to discover devices.
In the Microsoft Runtime, services can discover each other
through a simple discovery service that acts as a rendezvous point
between services running on a runtime and between runtimes.
This can be a problem since a failure with discovery service may
stop the discovery mechanism.

4.4.2.5. Security. Although many industrial networks are divided
from the outside office network, it is always good to have security
mechanisms in the SOA platform. UPnP does define a security
mechanism [14] but it is not mandatory and add arrived far
later than the first specification, which led to many proprietary
security protocols, and to the absence of security in many pro-
gramming stacks. The DSS runtime has a set of infrastructure
services to deal with security issues. This solution is better than
that presented in UPnP since once you have the runtime you have
standard security.

4.4.2.6. HLP support. One of the things that a SOA should be
is a suitable platform for the development of HLP features. One
of the keys for HLP is environment sensibility (please see
Section 4.4.2.8), which is easily reached with a ‘‘hot plug-
and-play’’ discovery as we found in UPnP. In this scenario UPnP
discovery (peer-to-peer) takes advantage. On the other hand, the
mechanism that allows the composition of services provided by
DSSP (called ‘‘partnering’’) seems a very powerful way of defining
dependencies between services. Considering the HLP perspective
these dependencies require a service to run in an HLP perspective
that represent devices and services representing programming
modules.

4.4.2.7. Maintenance services. Major advantages were pointed to
the existence of maintenance services in the UPnP discussion.

4.4.2.8. Services available. Community dynamics momentum. Both
technologies under test were not specifically designed to use with
cell integration. UPnP is more suitable for home automation
(specially the media rendering profiles) and DSSP from MSRS
seems more suitable for fine-grained services (typically found
inside a mobile robot: for example, controlling a motor with
events from sensors), which means that it is not easy to reuse
services.

MSRS intends to be an end-to-end solution for robotics and
there is an enormous dynamics in developing new services with
very interesting features. Services like speech recognition, or hand
gesture recognition are shipped with the main installation of the
runtime. These tools facilitate enormously the deployment of
applications based on building blocks and many of them are
Please cite this article as: Veiga G, et al. Experiments with service-o
Integr Manuf (2008), doi:10.1016/j.rcim.2008.09.001
useful to industrial cell programming. On the other hand UPnP
does not have similar tools available.
5. Conclusions

The main objective of this paper was to review some of the
recently proposed SOA technologies, and confront the most
promising approaches with experimental setups reflecting real
applications, i.e., using the selected SOA to control a real
manufacturing cell and evaluating the results. Furthermore, some
novel concepts were introduced, like automatic UPnP generation
from a speech XML grammar specification. This will be further
developed in the near future. A test bed was designed to
implement two of the most promising SOA technologies: UPnP
and DSSP, the SOA present in MSRS. The idea was to make a
comprehensive comparison of both technologies and in the
process discuss the utilization of SOA for system integration and
HLP of robotic manufacturing cells. These architectures represent
in the device level two major architectural styles originating from
the office/enterprise software world which means that advantages
and disadvantages pointed in this work can be of major
importance for the definition of future domain-specific (industrial
robotics) SOA platforms.

Focusing on industrial automation and specifically on indus-
trial robotics cell programming, SOA can support automation
engineers to focus on their expertise (machine vision, force
control, etc.), allowing them to keep their favorite platform/
language, to rely on the standard technologies, and to reduce their
attention on the interconnection tricky tasks.

Programming industrial robotic cells using SOA as framework
and friendly graphical interfaces for specification of system logic
has proven to be less time consuming than traditional object
oriented techniques applied against similar setup [22,25].

Planned developments include the implementation of built-in
solutions for the most important cell components like robots,
cameras, PLCs, intelligent sensors, etc. This approach enables also
to extend the plug-and-play concept, based on SOA, to plug-and-
produce just by adding to the devices a set of services that
correspond to particular cell functionalities. The manufacturing
system must then be prepared to use the new services, with the
necessary adaptations done automatically, to start or keep
producing.

The comparison effort also showed that both technologies have
interesting features that suit well the industrial environment and
the request for HLP approaches. This means that a merging effort
is worthwhile, namely focusing on the good discovering features
of UPnP and the advantages of the graphical orchestration
interface of the MSRS. One way to this end could be the adoption
of graphical state–machine definition schemes (like State Chart
XML) for the orchestration of services [26].

References

[1] Gou L., Luh P., Kyoyax Y., Holonic manufacturing scheduling: architecture,
cooperation mechanism, and implementation, IEEE/ASME international
conference on advanced intelligent mechatronics ’97, vol. 37, 1998. p. 213–31.

[2] El-Kebbe Salaheddine DA. Towards a manufacturing system under hard
real-time constraints. In Informatik 2000: 30. Jahrestagung der gesellschaft-
fu̇r Informatik, Berlin, September 2000.

[3] XML-basiertes kommunikationsprotokoll für Industrieroboter und prozessor-
gestützte peripheriegeräte, Stand 17.10.2005. Information sheet download-
able from /http://www.vdma.org/xirpS.

[4] AUTOSAR. Werner Zimmermann/Ralf Schmidgall, ‘‘Bussysteme in der fahr-
zeugtechnik-protokolle und standards (in German, Eng title: Bus systems in
vehicles—protocols and standards), Vieweg, ISBN 978-3-8348-0235-4, Specs
at /http://www.autosar.org/find02_ns6.phpS.

[5] SIRENA Project. Service infrastructure for real-time networked applications,
Eureka Initiative ITEA. /www.sirena-itea.org.sadasdS, 2005.
riented architectures for industrial robotic cells.... Robot Comput

http://www.vdma.org/xirp
http://www.autosar.org/find02_ns6.php
http://www.sirena-itea.org.sadasd
dx.doi.org/10.1016/j.rcim.2008.09.001

ARTICLE IN PRESS

G. Veiga et al. / Robotics and Computer-Integrated Manufacturing] (]]]])]]]–]]]10
[6] Ahn SC, Kim JH, Lim K, Ko H, Kwon Y, Kim H. UPnP approach for robot
middleware P. In: Proceedings of the 2005 IEEE international conference on
robotics and automation, Barcelona, Spain, April 2005.

[7] Nielsen H, Chrysanthakopoulos G. Decentralized software services proto-
col—DSSP/1.0, July 2007.

[8] James F, Smit H. Service oriented paradigms for industrial automation. IEEE
Trans Ind Inf 2005;1(1).

[9] James F, Smit H. Service oriented device communications using the devices
profile for web services. ACM Int Conf Proc Ser 2005;115(1).

[10] Robotics Studio, Microsoft Robotics Studio /msdn.microsoft.com/robotics/
2007S.

[11] Rekesh J. UPnP, Jini and Salutation—a look at some popular coordination
frameworks for future networked devices, California Software Labs, 1999.

[12] Bettstetter C, Christoph R. A comparison of service discovery protocols and
implementation of the service location protocol. In: Proceedings of EUNICE
open European summer school, Twente, Netherlands, September 13–15,
2000.

[13] Jini. The community resource for Jini technology: /http://www.jini.orgS,
2007.

[14] UPnP forum, available at /http://www.upnp.orgS, 2006.
[15] Schlimmer J, Chan S, Kaler C, Kuehnel T, Regnier R, Roe B, et al. Devices profile

for web services: a proposal for UPnP 2.0 device architecture. Available at:
/http://xml.coverpages.org/ni2004-05-04-a.htmlS, 2004.
Please cite this article as: Veiga G, et al. Experiments with service-
Integr Manuf (2008), doi:10.1016/j.rcim.2008.09.001
[16] PnP-X: plug and play extensions for windows specification. Available at:
/www.microsoft.com/whdc/Rally/pnpx-spec.mspxS, 2006.

[17] Veiga G, Pires JN, Nilsson K. On the use of SOA platforms for industrial robotic
cells. Intelligent manufacturing systems proceedings IMS2007, Spain, 2007.

[18] Microsoft, speech application programming interface (API) and SDK, version
5.1, microsoft corporation, /http://www.microsoft.com/speechS, 2007.

[19] Abb: ABB IRC5 documentation, ABB flexible automation, Merrit, 2005.
[20] OpenCV. Available at: /http://sourceforge.net/projects/opencvlibrary/S, 2007.
[21] Pires JN. Experiments on commanding an industrial robot using human voice.

Ind Rob: Int J 2005;32(6) [Emerald].
[22] Pires JN, Godinho T, Araújo R. Controlo e Monitorizac- ão de Células

Robotizadas Industriais: Revista Robótica. Abril. 2006.
[23] Siemens PLC S7-200 System Manual, 2000.
[24] Robertz SG, Henriksson R, Nilsson K, Blomdell A, Tarasov I. Using real-time

Java for industrial robot control. In: Proceedings of the fifth international
workshop on Java technologies for real-time and embedded systems. Vienna,
Austria, September 26–28, 2007.

[25] Pires JN. Industrial robots programming building applications for the
factories of the future. Berlin: Springer; 2007.

[26] Veiga G, Pires JN. Plug-and-produce technologies: on the use of statecharts
for the orchestration of service oriented industrial robotic cells. ICINCO 2008,
International Conference on Informatics in Control, Automation & Robotics.
Madeira, Portugal, 11–15 May 2008.
oriented architectures for industrial robotic cells.... Robot Comput

http://msdn.microsoft.com/robotics/2007
http://msdn.microsoft.com/robotics/2007
http://www.jini.org
http://www.upnp.org
http://xml.coverpages.org/ni2004-05-04-a.html
http://www.microsoft.com/whdc/Rally/pnpx-spec.mspx
http://www.microsoft.com/speech
http://sourceforge.net/projects/opencvlibrary/
dx.doi.org/10.1016/j.rcim.2008.09.001

	Experiments with service-oriented architectures for industrial robotic cells programming
	Introduction
	Preliminaries
	Components and interconnectivity
	Safety and predictability
	Architecture

	Approach
	Selection of platform
	UPnP
	DSSP

	Experiments
	Test-bed description
	UPnP
	DSSP
	UPnP/DSSP comparison
	Architecture style comparison
	UPnP/DSSP platforms comparison
	Language/platform independence
	Concurrency support
	High level orchestration programs
	Discovery
	Security
	HLP support
	Maintenance services
	Services available. Community dynamics momentum

	Conclusions
	References

