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Abstract

Although doxorubicin (DOX) is a very effective antineoplastic agent, its clinical use is limited by a dose-dependent,
persistent and cumulative cardiotoxicity, whose mechanism remains to be elucidated. Previous works in animal models
have failed to use a multi-organ approach to demonstrate that DOX-associated toxicity is selective to the cardiac tissue. In
this context, the present work aims to investigate in vivo DOX cardiac, hepatic and renal toxicity in the same animal model,
with special relevance on alterations of mitochondrial bioenergetics. To this end, male Wistar rats were sub-chronically
(7 wks, 2 mg/Kg) or acutely (20 mg/Kg) treated with DOX and sacrificed one week or 24 hours after the last injection,
respectively. Alterations of mitochondrial bioenergetics showed treatment-dependent differences between tissues. No
alterations were observed for cardiac mitochondria in the acute model but decreased ADP-stimulated respiration was
detected in the sub-chronic treatment. In the acute treatment model, ADP-stimulated respiration was increased in liver and
decreased in kidney mitochondria. Aconitase activity, a marker of oxidative stress, was decreased in renal mitochondria in
the acute and in heart in the sub-chronic model. Interestingly, alterations of cardiac mitochondrial bioenergetics co-existed
with an absence of echocardiograph, histopathological or ultra-structural alterations. Besides, no plasma markers of cardiac
injury were found in any of the time points studied. The results confirm that alterations of mitochondrial function, which are
more evident in the heart, are an early marker of DOX-induced toxicity, existing even in the absence of cardiac functional
alterations.
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Introduction

Doxorubicin (DOX) is an anthracycline antibiotic drug which

has been effectively and widely used in the clinic to treat several

types of human and non-human cancers [1]. However, adverse

side effects can be observed during or after treatment cessation,

with a dose dependent and cumulative cardiotoxicity being the

most complex and difficult to manage event [1,2]. In fact, the

associated risk of developing congestive heart failure was one of the

main reasons that lead to limitation of the maximum allowed

dosage during DOX treatment [3].

Acute cardiac toxicity occurs early during the treatment and

usually includes myopericardits, sinus tachycardia, reversible

arrhythmias, prolonged QT interval and flattening of the T wave,

being easily manageable and disappearing once the treatment is

ceased [2]. Alternatively, patients may develop chronic cardiotox-

icity which can appear right after the end of the treatment or even

years later [2,4]. Unlike acute toxicity, the dose-dependence

together with its difficult early detection makes chronic toxicity a

life-threatening and largely uncontrolled condition.

The mechanisms underlying DOX-selective cardiotoxicity have

been the focus of interest in the last four decades, but there is

hardly any consensual conclusion. Nevertheless, it is accepted that

DOX antitumor activity is completely independent from cardiac

toxicity, which may involve disruption of mitochondrial function

[2,5]. Distinctive features of DOX-induced mitochondrial dys-

function in the cardiac tissue include inhibition of oxidative

phosphorylation, decreased calcium-loading capacity and in-

creased reactive oxygen species (ROS) production [2,5,6].

Despite the fact that DOX toxicity has been described as being

cardiac selective, none of the hypotheses proposed to date [2] fully

explains the pronounced cardiac effects when compared with

other vital tissues. Although several animal models have been

generated to investigate either sub-chronic [7,8,9,10,11] or acute

[12,13,14] DOX toxicity, one limitation of the majority of studies

is that only one organ was investigated. Thus, comparing DOX

multi-organ effects from different reports becomes non-accurate,

PLoS ONE | www.plosone.org 1 June 2012 | Volume 7 | Issue 6 | e38867



confusing and sometimes contradictory since animals species,

strain, age and treatment protocols differ from publication to

publication. By searching PubMed for reports using the keywords

‘‘mitochondria’’ and ‘‘doxorubicin’’ and narrowing the search to

works performed in animal models and in three distinct tissues

(heart, liver and kidney, Table S1), only 16 hits were obtained (Fig.

S1). These studies investigated DOX toxicity in the three tissues

harvested from the same experimental protocol. However, except

for two relatively recent works, most reports originated in the 80 s

and did not compare mitochondrial dysfunction with pathophys-

iological state, genetics, metabolomics or proteomics, which we

believe are critical to better understand DOX-induced tissue

toxicity. In an attempt to increase the knowledge regarding DOX-

induced selective cardiotoxicity, the objective of the present work

was to measure alterations of mitochondrial bioenergetics in the

heart, liver and kidney after two distinct treatment protocols (acute

vs. sub-chronic) in male Wistar rats. Mitochondrial function end-

points were associated with tissue histological alterations (all three

tissues) and function (heart). Our hypothesis is that alterations of

mitochondrial bioenergetics occur predominantly in the heart and

are an early and sensitive marker of DOX-induced toxicity,

occurring even in the absence of histological alterations. A second

tandem hypothesis is that cardiac mitochondrial toxicity is

detectable only in the sub-chronic treatment.

The two distinct treatment protocols used in the present work

were already reported in the literature [13,15] and are accepted

models to investigate DOX-mitochondrionopathy. Note that

accordingly to a reported equation [14], the actual total dosages

of our treatment protocols are slightly below the maximum dosage

allowed in human chemotherapy [16], as our objective was not to

induce substantial tissue damage but to mimic biochemical and

functional alterations that are usually observed in DOX-treated

patients.

Materials and Methods

Reagents
DOX hydrochloride, (7S,9S)-7-[(2R,4S,5S,6S)-4-amino-5-hy-

droxy-6-methyloxan-2-yl]oxy-6,9,11-trihydroxy-9-(2-hydroxyace-

tyl)-4-methoxy-8,10-dihydro-7H-tetracene-5,12-dione hydrochlo-

ride, chemical purity $98%, was obtained from Sigma-Aldrich

Quimica SA (Sintra, Portugal) and prepared in a sterile saline

solution, NaCl 0.9% (pH 3.0, HCl) and stored at 4uC for no

longer than five days upon rehydration. All other chemicals were

of the highest grade of purity commercially available. Aqueous

solutions were prepared in ultrapure (type I) water (Milli-Q Biocel

A10 with pre-treatment via Elix 5, Millipore, Billerica, MA, USA).

For non-aqueous solutions, ethanol (99.5%, Sigma-Aldrich

Quimica SA, Sintra, Portugal) was used as solvent.

Animal Care
Animal handling was performed in accordance with the

European Convention for the Protection of Vertebrate Animals

used for Experimental and Other Scientific Purposes (CETS

no.123) and Portuguese rules (DL 129/92). The procedures were

approved by the CNC Committee for Animal Welfare and

Protection. Animal handlers and the authors GCP, SPP and PJO

are credited by the European Federation for Laboratory Animal

Research (FELASA) category C for animal experimentation

(accreditation no. 020/08). Fourteen weeks of age (acute protocol)

or 6 weeks of age (sub-chronic protocol) male Wistar rats,

Crl:WI(Han), were purchased from Charles River (France),

acclimated for 10–14 days prior to the initiation of experiments

and maintained in the local animal house facility (CNC – School

of Medicine, University of Coimbra, Coimbra, Portugal). Animals

were group-housed in type III-H cages (Tecniplast, Italy) with

irradiated corn cob grit bedding (Scobis Due, Mucedola, Italy) and

environmental enrichment and under controlled environmental

requirements (22uC, 45–65% humidity, 15–20 air changes/hour,

12 h artificial light/dark cycle, noise level ,55 dB) and free access

to standard rodent food (4RF21 GLP certificate, Mucedola, Italy)

and ad libitum acidified water (at pH 2.6 with HCl).

Experimental Design
For the acute study, the experimental protocol was initiated

with 16 weeks old rats (N = 34), randomly allocated in pairs and

administered with either DOX (20 mg Kg21 of body weight, i.p.,

n = 17) or with an equivalent volume of vehicle solution (NaCl

0.9%, i.p., n = 17) exactly 24 hours before sacrifice, as previously

described [13].

For the sub-chronic study, the experimental protocol was

performed with 8 weeks old rats (n = 40) randomly grouped in

pairs and weekly injected with a subcutaneous injection in the

scruff or flank of either DOX (2 mg kg21, n = 20) or equivalent

volume of vehicle solution (NaCl 0.9%, s.c., n = 20) during seven

weeks, and sacrificed one week after the last injection, as

previously described [15].

All animals were injected during the light phase of the cycle,

observed daily and weighed at the beginning and at the end of the

experimental treatment period, being also weekly weighed at the

time of injection. Animals were euthanized in pairs by cervical

dislocation followed by decapitation, to confirm death and

exsanguination. Blood was collected for further biochemical

analysis. Rats were sacrificed between 9:00 and 10:00 AM to

eliminate possible effects due to diurnal variation and were not

fasted before sacrifice. Organs were immediately extracted from

the body and quickly washed in appropriate buffer before being

weighed.

Blood Analysis
Blood was collected after decapitation to sterile tubes without

additives. After blood clot formation, serum was separated by

centrifugation at 1,6006g during 10 minutes at 4uC (Sigma 3–

16 K, 1333 rotor). The supernatant was then transferred to

microtubes and centrifuged at 16,0006g, 20 minutes at 4uC
(Eppendorf 5415 R, FL062 rotor). Serum samples were main-

tained for a short time at 4uC for analysis by an external certified

laboratory, or stored frozen at 280uC for troponin I (TnI)

analysis. The latter was performed by external trained personal

one month after collection using the singleplex Rat Cardiovascular

Panel (RCVD1-89K, Millipore, Arium, Portugal). Blood analyses

were performed by blinded operator.

Histological Analysis
Organs were immersion-fixed in Bouin’s solution for 24 h and

then washed with 70% alcohol until the solution became clear and

stored in 70% alcohol until the histological analysis was

performed. At that time, after several incubations with increasing

alcohol percentages (70%, 90%, and 100%) and xylol, tissues were

processed using a normal paraffin procedure and sectioned (3 mm

thick). The sections were then de-paraffinized with xylol and

incubated with solutions containing decreasing alcohol content

(100% and 95%). All slides were stained with hematoxilin and

eosin (HE) by using standard procedures. The samples were

covered with coverslips in Eukitt mounting medium and then

visualized in a Nikon Eclipse 80I microscope coupled with a

camera and computer. Morphological assessment was conducted

in a ‘‘blind’’ fashion by a certified professional.

Mitochondrial Doxorubicin Toxicity in Wistar Rats
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Electron Microscopy
After organ harvesting and washing, a small slice (2–5 mm) was

cut and fixed in 3% glutaraldehyde in phosphate buffer

(100 mM NaH2PO4, pH 7.3), postfixed in 1% osmium tetroxide

in same buffer and dehydrated in solutions containing increasing

alcohol percentages (70%, 90%, and 100%) before being

embedded in Spurr’s resin. Ultrathin sections were obtained with

an LKB ultra-microtome Ultrotome III (GE Healthcare, Little

Chalfont, Buckinghamshire, UK), stained with methanolic uranyl

acetate followed by lead citrate, and examined with a JEOL Jem-

100SX electron microscope (JEOL, Tokyo, Japan) operated at

80 kV. The operator was blinded to treatment groups and took 5

to 10 micrographs of random fields.

Echocardiogram
Echocardiograms were performed under the same specifications

as previously described [17]. Five days after the last injection, sub-

chronically-treated animals, free of anesthesia, were examined

lying in the left lateral decubitus position and using a commercial

available echocardiograph system (VIVID i, G.E. Helthcare),

equipped with an 11.5 MHz transducer. Every parameter was

measured accordingly to the American Society for Echocardiog-

raphy guidelines (www.asecho.org/guidelines/) and results were

directly obtained from the equipment software by a cardiologist

blinded for treatment groups. Left ventricular mass (LV mass) was

calculated using a standard cube formula which assumes a spherical

left ventricular geometry [18] according to the following equation:

LVmass~1:04|½(LVDdzLVPWzIVS)3{LVDd3�. Results

are expressed in mg and 1.04 represents the specific gravity of

muscle. Only four animals of each group were analyzed due to

limitations in the time slot available for the cardiologist/apparatus

used.

Isolation of Mitochondrial Fractions
Mitochondria were isolated by the standard procedure usually

used in our laboratory [19,20,21]. Organs were excised and finely

minced in an ice-cold isolation medium containing 250 mM

sucrose, 10 mM HEPES, 1 mM EGTA and 0.1% defatted BSA

(pH 7.4, KOH). For the isolation of cardiac mitochondrial

fractions, the isolation medium was supplemented with 0.5 mg/

mL of protease (Subtilisin A, Type VIII from Bacillus licheniformis,

Sigma-Aldrich). The mitochondrial protein after isolation was

quantified by the biuret method using bovine serum albumin as a

standard [22] and mitochondrial preparation was kept on ice

during experiments, which were carried out after a 20 min

recovery and within 5 hours post-isolation.

Oxygen Consumption
Oxygen consumption of isolated mitochondria was monitored

polarographically with a Clark oxygen electrode connected to a

Kipp and Zonen recorder in a 1 mL thermostatic, water-jacketed

open chamber with magnetic stirring at 30uC, simultaneously with

mitochondrial membrane potential measurements (see 2.10). The

standard respiratory medium consisted of 130 mM sucrose,

10 mM EGTA, 50 mM KCl, 5 mM H2PO4, 5 mM HEPES

(pH 7.3, KOH) and supplemented with 2.5 mM MgCl2 for liver

and kidney. Mitochondria were suspended at a concentration of

0.5 (heart) or 1.0 (liver and kidney) mg protein/mL in the

respiratory medium and mitochondrial state 2 respiration was

initiated with 5 mM glutamate plus malate (mitochondrial

energization through complex I) or 5 mM succinate in the

presence of 2 mM rotenone (mitochondrial energization through

complex II). Adenosine diphosphate (ADP) (225–250 nmol) was

added to initiate state 3 respiration. State 4 respiration was defined

as oxygen consumption after ADP consumption. The respiratory

control ratio (RCR) was calculated as the ratio between state 3

over state 4 and it is an indicator of oxidative phosphorylation

coupling and mitochondrial membrane integrity. ADP/O ratio,

which is expressed as the ratio between the amount of ADP added

and oxygen consumed during state 3 respiration, is an index of

oxidative phosphorylation efficiency. Respiration rates were

calculated considering that the saturation oxygen concentration

was 236 mM at 30uC.

Mitochondrial Transmembrane Electric Potential
The mitochondrial transmembrane electric potential (DYmax)

was monitored by tetraphenylphosphonium ion (TPP+) distribu-

tion (see 2.9), by using a TPP-selective electrode in combination

with a Ag/AgCl saturated reference electrode, as previously

described [21]. The difference in potential between the selective

TPP+ electrode and the reference electrode was measured with a

potentiometer and continuously recorded in a Kipp and Zonen

recorder (model BD 121; Kipp & Zonen B.V., Delft, Netherlands).

Experimental conditions were the same as for oxygen consump-

tion assays with the inclusion of 3 mM TPP+ in the reaction media.

Absolute DYmax values (mV) were determined from the equation

originally proposed by Kamo [23], assuming Nernst distribution of

the ion across the membrane electrode. No correction was made

for the ‘‘passive’’ binding of TPP+ to mitochondrial membranes

because the purpose of the experiments was to show relative

changes in potential rather than absolute values. As a conse-

quence, some overestimation for the DYmax values may be

anticipated. A matrix volume of 1.1 mL/mg protein was assumed.

Aconitase Activity
Mitochondrial protein (200 mg) was diluted in 0.6 ml buffer

containing 50 mM Tris–HCl (pH 7.4) and 0.6 mM MnCl2 and

sonicated for 10–20 seconds, followed by centrifugation at

16,0006g for 5 minutes. Aconitase activity was immediately

spectrophotometrically measured (Jasco V-560, Jasco Europe,

Milan, Italy) by monitoring the formation of cis-aconitate from

isocitrate at 240 nm in 50 mM Tris-HCl (pH 7.4) containing

0.6 mM MnCl2 and 20 mM isocitrate at 25uC [24]. All assays

were performed in triplicate. Enzyme activity was calculated by

using the mean of the slopes of the three replicates, obtained

before the record reached a plateau. Results were expressed as

percentage of control, which was 174.0627.8 nmol mgprotein
21 -

min21, 258.3632.4 nmol mgprotein
21 min21 and

245.2631.1 nmol mgprotein
21 min21 for heart, liver and kidney,

respectively, using e240 = 3.6 mM21 cm21 [24].

Statistical Analysis
All data was assessed for normality using the Kolmogorov-

Smirnov test with Dallal-Wilkinson-Lilliefor correction and for

equality of variances using the F test. Since group sample sizes are

equal and the parametric statistical tests applied in this work are

robust for moderate deviations from homoscedasticity [25],

parametric tests were still applied when homoscedasticity was

not observed. However, when data normality was rejected, a

squared-root, logarithmic or reciprocal transformation was applied

in an attempt to achieve normality. If data still rejected normality,

the correspondent non-parametric statistical test was used.

Nevertheless, data is presented to the reader in non-transformed

values for ease of comprehension. In the text, data is expressed as

percentage of the difference of means plus its standard error or as

percentage of the means difference plus its standard error for data

related to isolated mitochondrial fractions. In both situations, the

Mitochondrial Doxorubicin Toxicity in Wistar Rats
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percentage value shown regards the saline group in the same

experimental model. Statistical significance between means was

determined using two-tailed Student’s t test. When homoscedas-

ticity was not found, Welch’s correction was applied and in the

absence of normality, the Mann-Whitney test was used instead. To

exclude the random effect associated with daily mitochondrial

isolation and electrode variability, a matched pairs Student’s t test

or its non-parametric correspondent Wilcoxon matched pairs test

were performed. Differences were considered significant at 5%

level and p value was categorized accordingly to their interval of

confidence. Statistical analyses were performed using Graph Pad

Prism version 5.0 (GraphPad Software, Inc., San Diego, CA,

USA).

Results

Animal and Organs Mass
Control and DOX-treated animals in the acute model did not

show alterations in their body mass in the 24 hours subsequent to

DOX administration (Table 1). However, when animals were

individually analyzed, i.e. when the mean of the arithmetic

difference between initial and final body mass of every individual

was calculated for the first 24 h, the control group showed a body

mass variation of 20.3561.02 g (n = 17) while variation in DOX-

treated group, 215.1 g 61.7 g (n = 17) representing about 4% of

total body mass, was significantly lower (p,0.001). Surprisingly, a

decrease of 7.662.7% in heart mass was observed 24 h after the

single DOX injection but no alteration was observed in other

tissues analyzed (1.664.4% increase in liver and 3.163.9%

decrease for kidney, Table 1). Therefore, heart mass over body

mass ratio showed a significant decrease of 5.862.3% while no

changes were found for liver or kidney (3.662.6% increase and

1.463.6% decrease, respectively; Table 1).

Treatment of Wistar rats with seven weekly DOX injections

caused a significant reduction in body mass gain of animals, as

seen by the difference of body mass values between groups

(13.862.1%; Table 1). While the body mass variation of the

control group during the treatment showed an increase of

49.162.9%, the DOX-treated group only increased body mass

by 31.263.1%, which can be easily observed in the body mass

gain profile depicted in Fig. 1. However, it was interesting to

observe that the alteration in heart mass detected in the acute

model was not present in the sub-chronic protocol at the end of the

treatment period (Table 1). Since only a non-significant decrease

of all tissues (2.465.6%, 3.264.0% and 5.263.6% for heart, liver

and kidney, respectively) was observed, the ratio of organ mass to

body mass was increased in all analyzed tissues (13.766.6%,

12.463.5% and 10.064.1% for heart, liver and kidney, respec-

tively; Table 1). The results reflect a change in body mass rather

than alterations in tissue mass.

It should be noticed that although the objective of the

experimental protocol was to induce a sub-chronic response and

therefore a lower rate of mortality, one animal died during DOX

treatment (marked with an arrow, Fig. 1). This treated animal

received all seven DOX injections and died precisely one week

after the last. Nonetheless, the animal did not show any distinct

sign of distress or illness when compared with its counterparts. A

standard necropsy was performed in the deceased animal but no

particular abnormality was perceived, including heart hypertrophy

or ascites. Liver and kidney tissues appeared normal in size,

morphology and color. The only thing to point out was the fact

that this particular animal showed the larger decrease in weight.

Therefore, the mortality rate associated with the present study is

5% (1 out of 20).
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Serum Biochemistry
Despite the fact that lactate dehydrogenase (LDH), a general

marker for tissue damage, is not altered (21.8614.0%; Table 2) in

the acute model, the non-specific hepatic marker, aspartate

aminotransferase (AST), is markedly elevated 91.0617.2%. Serum

creatine kinase is unchanged (1.7616.0%) as well as markers of

renal function, namely urea, creatinine, uric acid or blood urea

nitrogen (BUN). The observed high levels of the hepatic-specific

marker, alanine aminotransferase (ALT), 141626%, together with

the lower AST to ALT ratio (15.367.5%) and total protein levels

(TP; 9.861.7%) suggest impaired liver function in DOX-treated

animals. Increased cardiac injury, as evaluated by measuring

troponin I (TnI) was not significantly increased in the acute model

(value increased 15611% vs. control). Regarding circulating-

blood lipids, triglycerides were decreased by 53613% 24 hours

after the acute treatment but no alteration was found in total

cholesterol (4.667%).

Notwithstanding, chronically-DOX-treated rats were hyperlip-

idemic with the treated group showing both an increase in

triglycerides and cholesterol (196640% and 127624%, respec-

tively; Table 2). TnI levels were also increased by 11612%,

although the difference was not statistically significant. Interest-

ingly, all other parameters analyzed were significantly decreased in

comparison to control animals (average of the parameters

variation of 17.3%, ranging from 8.7% to 31.4%), with the

exception of LDH, uric acid and transaminases ratio, which,

despite being also decreased in the DOX-treated group, did not

reach statistical significance when compared with the saline group.

Echocardiography
Animals from sub-chronic DOX treatment were submitted to

an echocardiogram 5 days after the 7th injection in order to

evaluate cardiac morphology and function parameters. No

abnormality was found in the four animals analyzed (Table 3).

Thickness of the walls and left ventricular diameter, ejection

fraction and fraction shortening were not different from the

Figure 1. DOX decreases body mass gain over time in a sub-
chronic toxicity model. After the fourth injection, the body mass of
DOX-treated animals started to be distinctly different from the saline-
treated and therefore the growth profile is dramatically changed at the
end of treatment. Only one DOX-treated animal died during the
protocol (indicated by the black arrow). Animals in the control group
are depicted by open circles while DOX-treated animals are in full
circles. Lines represent the means of each group at each time point. S –
sacrifice time-point.
doi:10.1371/journal.pone.0038867.g001
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control group at this time point (average of the parameters

variation of 0.25%, ranging from 0.16 to 0.40%).

Histopathology and Ultrastructure Analyses
When analyzing at least three different samples from each tissue

and from each treatment protocol, no obvious sign of damage or

morphological alterations were found after histological analysis

(Fig. 2). Hearts from treated animals in both treatment protocols

did not present signs of fibrosis or any hallmarks of later stages of

DOX toxicity. However, in the representative pictures of cardiac

slices, minor cytoplasmic vacuolization in the acute model (Fig. 2,

Panels A and B) and also minor increase in cellular volume in the

sub-chronic model (Fig. 2, Panels C and D) can be observed.

Livers were morphologically normal; however, minor centrilobu-

lar dilation was observed, while hepatocytes showed citoplasmic

heterogeneity due to vacuolization. Nevertheless, the vacuolization

was more prominent in slices from the sub-chronic model (Fig. 2,

Panels E–H). When renal slices were observed with hematoxylin

eosin (HE) stain, no differences were found between control and

treated group regardless of the treatment protocol used (Fig. 2,

Panels I–L).

In terms of tissue ultrastructure, electron micrographs of cardiac

slices from acutely treated animals (Fig. 3, Panel B and D) showed

a cellular structure not dissimilar to control (Fig. 3, Panel A and

C). The myofibrillar disorganization, cytoplasm vacuolization and

swollen mitochondria usually observed after DOX treatment in

other rodent models [26,27] were not present in the acute

treatment model (Fig. 3, Panels A–D). In fact, myofibrillar Z-

bands were well defined and with narrow A-bands (Fig. 3, Panels

C and D). Likewise, kidney electron micrographs were similar to

control counterparts (Fig. 3, Panels H–K). However, hepatic slices

presented more heterogeneous cytoplasm with high numbers of

vacuoles and lipid-like droplets (Fig. 3, Panel E). Moreover, liver

mitochondria from DOX acute treated animals appear to be

preferentially in the condensed conformation (Fig. 3, Panel G)

rather than the orthodox one observed in control micrographs

(Fig. 3, Panels D and F).

Regarding the sub-chronic model (Fig. 3, Panels L-X), cardiac

samples from treated animals also showed normal sarcomeres with

well-defined Z-bands and organized myofibrils (Fig. 3, Panels A–

D). Nevertheless, the cytoplasm appeared to present more

vacuolization (Fig. 3, Panel M) although mitochondrial morphol-

ogy was not dissimilar from control micrographs (Fig. 3, Panels L

and N). In liver tissue, the striking evidence is the abundance of

small vacuoles in the cytoplasm of hepatocytes from sub-

chronically treated animals (Fig. 3, Panel S) and, although

mitochondria appear to be greater in volume in some images,

the overall observation is that they are not different in morphology

when compared with saline treatments (Fig. 3, Panels P and R).

Mitochondria from renal slices appear in an intermediate

conformation between orthodox and condensed forms (Fig. 3,

Panel X).

Mitochondrial Bioenergetics
Mitochondrial bioenergetics was evaluated in the three tissues to

detect distinctive DOX-induced alterations. State 3 respiration

mimics an increase in workload which is observed in vitro after

ADP-induced simulation. State 4 respiration is observed after all

ADP is phosphorylated, representing a steady-state of the

respiratory chain, controlled mostly by the passive and unspecific

diffusion of protons through the inner mitochondrial membrane.

Similarly, the phosphorylation lag phase represents the time

needed for the phosphorylative system to convert all added ADP

to ATP, i.e., the time elapsed to mitochondrial repolarization after

ADP depolarization.

In the acute model, complex I-sustained mitochondrial state 3

respiration was increased in hepatic, decreased in renal and not

altered in cardiac fractions (14.765.5%, 5.362.0% and

4.465.3%, respectively; Fig. 3). However, despite equal variation

patterns observed for the lag phase, ranging from 13 to 17%

between tissues, there was no statistical difference between groups

(Table 4). The previous detected differences for complex I-

sustained mitochondrial state 3 respiration were absent when

substrates for complex II were used (4.166.0%, 5.967.9% and

6.766.7% for heart, liver and kidney, respectively). State 4

respiration, RCR and ADP/O remained unchanged in all

fractions regardless of the respiration substrate used (Figs. 3 and

4). The same was observed for all other parameters related to

mitochondrial membrane potential.

Cardiac mitochondria from sub-chronic DOX-treated animals

presented decreased state 3 respiration when using both respira-

tory complexes (15.864.9% and 12.863.6% for complex I and II,

respectively; Fig. 3) and lower state 4 respiration, although only

statistically significant when substrates for complex II were used

(12.066.6% and 19.864.2% for complex I and complex II,

respectively). Likewise and in a complementary manner, lag phase

was increased for both complex I- and complex II-sustained

respiration (10.766.0% and 13.165.5%, respectively; Table 4)

and DYmax was only slight, yet significantly, decreased when

substrates for complex II were used (1.160.5% and 2.260.6% for

complex I and II, respectively).

Hepatic and renal mitochondrial fractions behaved similarly,

both having decreased DYmax with complex I substrates

(1.960.5% and 1.660.4%, respectively; Table 5). Slower state 3

respiration (6.663.8%) in hepatic fractions and kidney

(12.664.2%) with complex I substrates was also measured. Along

with a decreased state 3 respiration, liver mitochondria also

showed a longer phosphorylative lag phase (27.1611.6%). RCR

Table 3. Echocardiogram parameters in the sub-chronic protocol.

IVS (mm)
LPWT
(mm) LVDd (mm) LVDs (mm)

LV mass
(mg) LVEF (%) FS (mm) AT s/d (bpm)

Model Treatment Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE

Sub-Chronic Saline (n = 4) 1.49 0.05 1.54 0.05 5.02 0.21 2.44 0.13 416.3 44.7 87.3 0.8 51.2 1.1 520.8 15.1

DOX (n = 4) 1.50 0.03 1.55 0.02 5.00 0.22 2.45 0.16 411.5 23.3 87.0 1.2 51.2 1.3 538.3 16.0

Differences between treatment groups were evaluated by non-parametric Mann-Whitney test due to their lack of normality (see Material and Methods for detailed
information). IVS – interventricular septum; LPWT – left posterior wall thickness; LVDd – left ventricular diastolic dimension; LVDs – left ventricular systolic dimension;
LVEF – left ventricular ejection fraction; FS – fraction shortening; AT s/d – arterial tension systole/diastole.
doi:10.1371/journal.pone.0038867.t003
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and ADP/O values were similar between control and treated

group in liver and renal mitochondrial.

Aconitase Activity
Aconitase activity was measured in all mitochondrial fractions

as a marker of oxidative stress [24]. Alterations in aconitase

activity were tissue-specific and treatment-dependent. The only

tissue that showed a decreased enzyme activity in the acute model

was the kidney (27.866.7%) while the activity remained unaltered

in the heart and liver (0.3611.8% and 15612.3%, respectively;

Table 5). Cardiac mitochondrial aconitase in the chronic model

was decreased by 21.567.7% in the DOX-treated group while

activity in the two other organs were unaltered (12.9615.6% and

5.469.0% for liver and kidney, respectively).

Discussion

The present work demonstrates that DOX treatment induced

different responses depending on the schedule protocol used.

Transaminases and total serum protein levels suggest that the

acute treatment affects the liver. Minor cytoplasmic vacuolization

observed in histological and electron microscopy of thin slices from

hepatic tissue may also suggest metabolic alterations in hepato-

cytes, which are supported by decreased triglyceride levels, despite

no alterations in plasma cholesterol (Table 2). Moreover, the slight

increase of state 3 respiration in the presence of complex I-linked

substrates (Fig. 4), which are the most important in a cellular

context, and adoption of the condensed mitochondrial conforma-

tion as seen by electron microscopy (Fig. 3), support the idea that

hepatocyte metabolism and viability are affected after the acute

treatment. Nevertheless, it is however unclear at the moment if

alterations in lipid metabolism can contribute to worsen the

cardiovascular fitness in treated animals. However, hyperlipidemia

was clearly observable in the sub-chronic treatment and liver

histology showed slightly more vacuolization that in the acute

model (Table 2 and Fig. 2), suggesting that altered lipid

metabolism may be a secondary response to drug treatment.

It is intriguing that sub-chronically-treated animals showed only

increase in plasma lipids, while other parameters and markers

were consistently decreased even those which are usually increased

in chronic exposure to DOX [16,28,29] (Table 2). Nevertheless,

because no substantial alterations in histology and ultrastructure

analysis were also detected (Fig. 2 and 3), we believe that the

organism of treated animals reached a new adaptive steady-state

following sub-chronic DOX toxicity. Nevertheless, organ alter-

ations may probably exist undetected which may lead to a

disrupted response when subjected to metabolic or physiological

stress.

Another interesting difference between treatments relates to

heart mass which was the only organ in both models to show an

alteration in this parameter. However, it was surprising to observe

a difference only in the acute model since hypertrophy is usually

reported along with DOX-induced cardiotoxicity [1,2,30]. Also

surprising was the 7% decrease in heart mass after 24 h of

treatment (Table 1). One hypothesis relates to apoptotic and/or

necrotic events associated with DOX peak dosage in the plasma

[29] and often observed in cardiac cells exposed to DOX [31].

Nevertheless, a previous work showed that a single injection of

10 mg/Kg DOX caused primarily a decrease in heart mass

followed by a restoration to control values [32], which may explain

why no alterations were observed in the sub-chronic model.

However, sample size in the mentioned study was too small for a

good interpretation of results. Nevertheless the authors explained

the weight recovery as an increase in cytoplasm volume and

Figure 2. Histological analysis of organs collected from rats
treated with DOX. No notorious differences or hallmarks of DOX
toxicity were found in the different tissues in both protocols. Panels
represent HE photographs of random chosen tissues: hearts present
minor cytoplasmatic vacuolization (Panel B) and cytoplasmatic dilata-
tion (Panel D); liver usually show minor cytoplasmatic vacuolization
(Panel F and H); no changes in kidneys (Panel J and L). Organs were
fixed in Bouin’s solution, processed through standard histological
procedures and stained with HE (for more information, see Material and
Methods).
doi:10.1371/journal.pone.0038867.g002
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dilated ventricles as a sign of hypertrophy, which was not observed

in our two models.

The loss of cardiac structure and deteriorated function usually

observed in long-term treatment with DOX [33,34] was not

present in our model, supporting the idea of unaltered organ

physiology. However, an interesting work performed on young

mice demonstrated that chronic DOX treatment did not result in

any sign of cardiomyopathy until animals were subject to a

stressful swimming protocol [11]. The dissimilarities between

studies, including our own, where no alterations in heart mass in

DOX-treated rats were detected and other reports where those

alterations were measured [8,11,35,36], may be explained by the

different rat strains used or by the fact that the alterations may

only be triggered in the presence of a physiological stress. In fact,

this idea is put in use in the clinical practice where general

diagnostic techniques for cardiac function, such as echocardio-

grams, are performed with increased workload and demands for

higher cardiac output increasing therefore the specificity of

screening and decreasing the number of false negatives [37,38].

In fact, the concept of normal organ physiology during resting

conditions but altered when submitted to a stressful event led us to

investigate mitochondrial function, since we can artificially

Figure 3. Cellular ultra-structure remains intact after acute or sub-chronic DOX treatment. No notorious differences or hallmarks of DOX
toxicity were found in the different tissues in both protocols. Panels represent electron microphotographs of randomly chosen tissues: hearts present
well-defined Z-bands and organized myofibrils (Panel C,D and L–O) and minor cytoplasmatic dilatation (Panel M and O); livers show cytoplasmatic
vacuolization (Panel E, G and S) and lipid-like droplets structures (Panel Q) and some mitochondria appear in the condensed conformation (Panel G);
renal mitochondria appear in an intermediated conformation between orthodox and condensed form (Panel X). Organs were fixed in 4%
gluteraldehyde and post-fixed in osmium (for more information, see Material and Methods).
doi:10.1371/journal.pone.0038867.g003
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stimulate this model system, by creating a pseudo-metabolic stress

by the addition of ADP. Furthermore, alterations of cardiac

mitochondrial function were already described [37]. Once again, a

different response to DOX treatment was observed in the two

models. Mitochondrial alterations, as assessed by oxygen con-

sumption and transmembrane electric potential, were noticeable

in both treatment protocols but the degree of effect and their

targets were distinct. If one assumes that the extension of statistical

significance of the 7 distinct end-points regarding respiration/

transmembrane electric potential (Table 4, Fig. 4 and 5) can

indicate the extension of treatment damage to mitochondria (total

of 14 parameters for tissue specificity, 21 for respiratory complex

specificity and 42 for model specificity) we can make the following

assumptions: a) Mitochondrial dysfunction is clearly more present

in the sub-chronic model with 11/42 parameters altered in

comparison to 2/42 in the acute, b) Cardiac mitochondria in the

acute model are the less affected population with 0/14 altered

parameters while both hepatic and renal mitochondria have at

least one (1/14) altered parameter, c) Contrarily, heart mitochon-

dria is the most affected group in the sub-chronic model with 6/14

altered parameters compared to the liver (3/14) and kidney (2/14)

and d) DOX-treatment also leads to more alterations in complex-I

sustained respiration with 2/21 and 8/21 altered parameters in

acute and sub-chronic model, respectively, in comparison to

complex-II sustained respiration which had 0/21 and 4/21 altered

parameters in same treatment schedules, respectively. It seems

therefore plausible to consider that mitochondrial bioenergetic

dysfunction, together with harmful effects of DOX on energy

substrate channeling, synthesis and availability [2,39] may be prior

and thus responsible for altered cardiac metabolism and structure

remodeling.

Oxygen consumption and calcium-loading capacity were

previously reported to be accurate markers for DOX-induced

mitochondriopathy [13,26,29,36,39]. Although some argue about

the sensitivity of mitochondrial bioenergetics parameters [15],

state 3 respiration was a good indicator for mitochondrial

dysfunction in this study since it uncovered differences between

tissues and treatment protocols. Importantly, changes in this

parameter were detected before changes in organ structure or

function occurred.

DOX is known for its futile redox cycle on mitochondrial

complex I [40]. DOX enhances the production of ROS which is

closely related to mitochondrial toxicity and further damage to cell

tissue. In the present study, activity of the tricarboxylic acid cycle

enzyme aconitase, an indirect but specific marker of oxidative

Table 5. Effects of DOX on mitochondrial aconitase activity.

Model Treatment Heart Liver Kidney

Mean SE Mean SE Mean SE

%

Acute Saline (n = 6) 100 13.1 100 12.5 100 12.7

DOX (n = 6) 100.3 12.8 85.0 18.9 72.2** 9.0

Sub-Chronic Saline (n = 5) 100 10.4 100 14.7 100 11.7

DOX (n = 5) 78.5* 14.5 112.9 25.9 105.4 12.4

Differences between treatment groups means within the same model were
evaluated by matched pairs Student’s t test to exclude the variability related to
mitochondrial isolation (see Material and Methods for detailed information).
*p#0.05;
**p#0.01 vs saline group of the same model. SE – standard error.
doi:10.1371/journal.pone.0038867.t005
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stress, was used. The profile of enzyme inhibition followed the

previous idea that DOX toxicity is treatment schedule and target-

specific; cardiac aconitase activity was decreased in the sub-

chronic model while it was unchanged in the acute (Table 5). The

results suggest increased cardiac mitochondrial oxidative stress in

the sub-chronic model but not in the acute; in this latter case,

only kidney mitochondria presented decreased aconitase activity.

This was rather surprising since we were expecting effects in both

models due to the fact that DOX accumulates rapidly in the

tissue and remains at high levels even after the treatment is ended

[41]. In fact, DOX-induced increase in oxidative stress is

exacerbated in long-term treatments since the primary damage

of reactive oxygen species (ROS) on mitochondrial DNA can lead

to a defective respiratory chain, increasing therefore the

productions of ROS. Nevertheless, we believe that oxidative

stress is indeed present in the acute model but perhaps

antioxidant enzymes were also up-regulated, as previously

described [42], although more work is needed in this regard.

Interestingly, most published works done by using animal models

and a single injection with higher DOX concentrations found

evidences of cardiomyopathy several days later [14,43,44,45].

Although this observation is not consistent with the well-known

late-onset DOX-induced cardiomyopathy, we believe that

previous studies combined with our present data suggest a

possible time window where strategies to counteract the drug

toxicity can be effectively applied.

To our knowledge this was the first time that a 7+1 week

treatment protocol was used in Wistar rats. Since different rat

strains differ in their metabolism and susceptibility to toxic agents

[46,47], data interpretation from the present work is not directly

comparable to previous data using other rat strains, including

Sprague-Dawley [8,15,26,35,36,48], which may present different

tolerance to DOX. Interestingly, the results from Sprague-Dawley

[6,9,27] and Wistar rats (our study) suggest that the former are

more susceptible to DOX cardiotoxicity. Although needed to be

confirmed by a new study, the differences between rat strains

corroborate the idea of polymorphism-driven susceptibility to

chemotherapy [49,50]. In fact, the same sub-chronic protocol in

Sprague-Dawley caused extensive ascites (Oliveira, personal

communication), a marker of heart failure, which was absent in

the present work.

Our data confirms once again the idea of a preferential toxicity

targeted to the heart although this was now clearly demonstrated

in a multi-organ experimental model. Moreover, mitochondrial

dysfunction is detected before detection of cardiomyopathy as

assessed by echocardiography, or morphological changes. Animals

appear to be mostly normal although presenting impaired cardiac

mitochondrial function, which may pre-dispose these organelles

for failure during stressful events. The results suggest that DOX

cardiotoxicity is better revealed when animals models or humans

are placed under stress, as referred in this study [11]. Stressful

events can include pregnancy, which has been described to present

a higher risk in survivors of childhood leukemia treated with DOX

[51].

In conclusion, our data confirms that mitochondrial dysfunction

is one major cause of DOX-selective cardiotoxicity and not a

consequence as sometimes is questioned [29,30]. The present work

is also the first to provide a three organ analysis of DOX toxicity

using two different experimental protocols in Wistar rats. DOX

did not cause substantial morphological or echocardiographic

alterations in the heart or any other organs analyzed, although

cardiac mitochondria showed alterations. Therefore, data con-

firms that mitochondrial alterations result from DOX treatment,

being more severe in the heart and which are dependent on the

treatment protocol. Thus, mitochondrial dysfunction is an early

marker of DOX toxicity, although it remains to be determined if

mitochondrial alterations in organs such as liver and kidney are a

direct effect of DOX on mitochondria or instead if they result from

secondary effects of DOX on other target tissues.

Supporting Information

Figure S1 PubMed results distribution of research
involving ‘‘doxorubicin’’ and ‘‘mitochondria’’ according
to tissue category. The Venn diagram presented in the figure

was elaborated after collecting data from the PubMed website

(assessment date February 27th) using specific #keywords to obtain

the desired output. Briefly, papers in the database that included

works related to the #drug and #mitochondria were retrived,

restricting the output for research performed in the defined #tissue,

excluding #reviews and works performed in #humans as long as

they are not indexed with other animals. Therefore, the base of the

search string was as follow: (((#mitochondria AND #drug) AND

#tissue) NOT #reviews) NOT #humans Further explanation

about each of the keywords is given in supporting Table 1. The

authors recognize that the present search string is not flawless;

however, the idea is to give the reader an overview of report

rankings across the selected tissues. In fact, we acknowledge the

fact that, for example, the keyword #humans will not include

recent reports since they are yet to be indexed to Medline.

(TIF)

Table S1 Description of keywords used in PubMed
search for construction of Venn diagram of Fig.5, as well
as the number of results retrieved with for each
corresponding keyword.
(DOCX)
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the non-parametric Wilcoxon matched pairs test was applied (see
Material and Methods for detailed information). *, p#0.05 vs saline
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succinate.
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