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Abstract 

 

A comprehensive photophysical characterization of a bis-naphthalene derivative, L, was carried out in acetonitrile, using UV-Vis absorp-

tion, steady-state and time-resolved emission spectroscopy. It was found that in the 250-400 nm region, the absorption spectra showed two 

bands with maxima at ~ 220 nm and ~292 nm whereas the emission spectrum showed a band settled between 300 and 550 nm. A detailed 

time-resolved investigation (in the ps and ns time domain) showed that the fluorescence decay of L in dichloromethane was bi-exponential 

indicative of the presence of a ground-state equilibrium involving two species: monomeric (absorption of a single naphthalene unit) and 

dimeric. Upon addition of Cu2+, Zn2+, Cd2+ or Hg2+ metal cations in acetonitrile a quenching of the fluorescence emission was observed. 

From time-resolved data, it is shown that the fluorescence contribution of the species with the longest decay time was sensitive to the 

explored metal ions. 

Keywords: Naphthalene; chemical probes; metals; fluorescence quenching; time-resolved fluorescence; dimer. 

Metal cations are important for the functioning of the organism; however, when in excess they can cause serious health problems. In par-

ticular, excess of copper can cause severe health problems such as irritation, headaches, dizziness, nausea and diarrhea when ingested in 

small (yet excessive) amounts and ultimately can lead to liver, kidney damage and even death in large amounts. In turn, zinc in excess is 

associated with epilepsy, Alzheimer’s and Parkinson’s diseases, ischemic stroke and infantile diarrhea [1]. Accumulation of mercury in the 

body is responsible for several complications such as prenatal brain damage, serious cognitive and motion disorders and Minamata’s dis-

ease [2] while cadmium can lead to kidney disease, lung damage and fragile bones. 

The main source of these metals occurs through contaminated water and food due to pollution of soils and ground-waters. Due to the 

harmful effects of these metals (and others) and with the ultimate goal is of finding analytical sensors with wide applicability, capable of 
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detecting selectively small amounts of metal cation, preferably cheap and recoverable for subsequent application, more accurate ways to 

detect and determine their concentrations have been the subject of recent investigations.  

Molecular scale sensors (probes) emerge within this type of molecules; they consist in compounds that when interact with a given 

analyte cause a chemical change which in turn induces a change in a measurable property.  Depending on the measurable property, the 

probe can be classified as electrochemical, electronic, optic, etc. From these, particular attention must be given to the optic sensors, i.e., 

sensors that cause changes in optical parameters such as absorption, luminescence (fluorescence and/or phosphorescence), refractive index, 

etc. Within these parameters, inducing changes in the fluorescence emission is one of the more advantageous since fluorescence spectros-

copy is highly sensitive, it is easily performed [3], it does not require a reference nor the analyte is consumed [4], it has a quick response 

[5] and different assays can be designed based on different aspects of the fluorescence output (lifetime, intensity, anisotropy and energy 

transfer) [4]. 

 The interaction of a ligand to an analyte can induce several changes as (red or blue) shifts of the maxima band (from the absorption or/and 

emission spectra) which can induce color changes in the visible region, quenching or enhancement of the fluorescence spectra, appearance 

or disappearance of bands, etc. This changes can be caused by different mechanisms such as photoinduced electron or charge transfer (PET 

or PCT) [6,7], excimer or exciplex formation [8-10], fluorescence resonance energy transfer (FRET) [11], internal charge transfer (ICT) 

[12,13], excited state intramolecular proton transfer (ESIPT) [14,15], etc [16]. 

The synthesis of chemical probes highly sensitive and selective to the detection of transition metals (M) such as Cu2+, Zn2+, Cd2+ and 

Hg2+ ions has increasingly attracted the attention of several scientific fields [17] in particular medicine and environment [18]. 

Among the various methods for detecting cations, fluorescence spectroscopy is a technique widely used both for its versatility [6],  high 

sensitivity and selectivity [7,19]. Indeed, the detection ability is associated with the interaction between the unit responsible for the selec-

tive binding of ions - ionophore - and the unit which regulates the signal transduction -fluorophore, which may result in an increase/ de-

crease in the fluorescence intensity of the probe [6]. Several factors make fluorescence one of the most important ways for understanding 

the mechanisms of chemical events in the scope of recognition, amongst these are the possibility of studying it analytically, since this 

technique (i) is highly sensitive, (ii) does not consume the analyte, (iii) nor requires a reference [20]. The applications of fluorophores 

based on the naphthalene chromophore range from biological markers to the development of detection systems and materials for light-

emitting diodes. The naphthalene structure has a low molecular weight and its (spectroscopic and photophysical) properties strongly de-

pend on the number, type and position of substituent groups in the ring. Although the unsubstituted naphthalene is poorly fluorescent 

(F= 0.23 in cyclohexane) [21], if electrons donor and acceptor groups are placed, for example, in positions 2 and 6 of the naphthalene 

ring, a significant increase in fluorescence is obtained by intramolecular charge transfer [22]. 

An emissive molecular probe bearing two naphthalene units at the extremities was already investigated in the past by some of us [23]. 

The probe interaction with cations (such as Cu2+, Zn2+, Cd2+ and Hg2+) and anions (F-, Cl-, Br-, I- and CN-) was explored in DMSO where it 

showed to be remarkably selective for Cu2+ and to interact with CN- and F-. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 

 

3 

Following our research interest on the design of new emissive compounds [20,24-27] and metal complexes [28-30], in this work, the 

photophysical properties of another symmetric probe L, with two naphthalene units in the extreme as well, was described together with its 

interaction (aiming chemoselectivity) with Cu2+, Zn2+, Cd2+ and Hg2+ metal ions in acetonitrile. 

Compound L was synthesized according to the method previously reported by us [31]. Molecular probe L was found to be soluble in di-

chloromethane, dimethylsulfoxide, N,N’-dimethyl formamide, acetonitrile, ethanol, cyclohexane and dioxane and insoluble in water. In the 

solid state, L presents a brown color but within the concentrations of ligand in the solvents used, the solution is colorless. 

The presence of seven, properly positioned, donor atoms (N4O2S) in the ligand structure of L (Scheme 1) should give strong recognition 

ability towards different metal ions. In that case, the coordination ability of ligand L towards hydrated triflate salts of Cu2+, Zn2+, Cd2+ and 

Hg2+ was explored. For the preparation of the complexes [ML(CF3O3S)2].xH2O, ligand L (1 equiv.) and M(CF3O3S)2.xH2O (1 equiv.) 

(M= Cu2+, Zn2+, Cd2+ and Hg2+) were mixed in absolute ethanol. After 4h, the solvent was partially removed to ca. 5 mL and diethyl ether 

was infused into the residue resulting on the formation of a powdery precipitate that was separated by centrifugation and discarded [32]. 

The solid metal complexes were isolated from the evaporation of the remaining solutions. The complexes were characterized by elemental 

analysis, IR and MALDI-MS spectra [33]. MALDI-MS spectra of the metal complexes display peaks that confirm the formation of these 

species. In the IR spectra of the complexes, the band due to the [ν(C=O)] and [ν(N-H)] stretching modes are shifted to higher wavenumbers 

when compared to its position in the spectrum of the free ligand (IR (cm-1): ν= 1430 (C=C)ar, 1666 (C=O), 2980 (N-H)) [31]. Both effects 

suggest that in solid state the carbonyl and the amine groups presented on compound L could be involved in the coordination to the metal 

ion. 

 

 

Scheme 1. Synthetic route of the metal complexes derived from L. 

 

Figure 1 shows the (normalized) absorption and fluorescence (excitation and emission) spectra of ligand L in acetonitrile [34]. Due to its 

miscibility with water, we select acetonitrile as solvent for the development of the spectroscopic studies of L. A single band is observed in 

the absorption which matches (maxima at the same wavelength) with the excitation spectra collected at em= 350 nm. However, the excita-

tion spectrum is broader, clearly mirroring the presence of dimers or higher order aggregates. Very interesting is also to note that the exci-

tation spectra when collected at em= 450 nm, presents an “absorption” band between 300 and 425 nm (Figure 1). This is indicative that at 

longer emission wavelengths the absorption (although with a small molar extinction value) of a dimer is likely to be present. Indeed when 

exciting at the tail of the absorption band (330 nm) the obtained emission spectra is different than when excitation is at exc= 290 nm, see 

Figure 1 (right hand panel). 

The spectral and photophysical properties of L are summarized in Table 1 and include the molar extinction coefficient (), the fluorescence 

quantum yield (ϕF) and the radiative (kR) and radiationless (kNR) rate constants in several solvents. 
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In view of the values in Table 1, it can be seen that the F value is low, indicating that the fluorescence is not an efficient route for the 

deactivation of the excited state of L, which is further attested by the small kF value and high kNR value; moreover, although there are some 

differences in the F and F values, the main deactivation is made through the radiationless deactivation channel (kNR>> kF). This, however, 

is not limitative to observe the interaction of this fluorescent ligand with metal cations. 

 

Table 1. Absorption, emission and excitation wavelength maxima (λmax
abs, λmax

em and λmax
exc), together with molar extinction coefficient 

(ε), fluorescence quantum yield (ϕF), fluorescence lifetime (F), and fluorescence and non-radiative rate constants (kF and kNR) for the 

probe L in dichloromethane at T= 293 K. 

aObtained from the emission spectra collected at λexc= 285 nm, see Figure 1. 

bObtained from the emission spectra collected at λexc= 281 nm. 

cObtained from the excitation spectra collected at λem= 350 nm, see Figure 1. 

dObtained from the excitation spectra collected at λem= 450 nm, see Figure 1. 

eObtained from the excitation spectra collected at λem= 480 nm. 

fDominant component (associated to the monomer) of a bi-exponential decay; the additional decay time is of 0.81and 2.63 ns in acetoni-

trile and dichloromethane, respectively (see text for more details). 

g
FFFk  / . 

h
FFNRk  /)1(  . 

ND - not determined. 

 

A more detailed observation shows, however, that the absorption spectrum of L is red-shifted and broader when compared with naphtha-

lene itself [35].  

The presence of a dimer becomes more evident in the fluorescence decay obtained with excitation at 281 nm and collected at 340 nm 

and 500 nm (data not shown). In this case the global (simultaneous) analysis of the decays at 340 and 500 nm leads bi-exponential decays 

with the same decay times at and different pre-exponential factors. It is worth reminding that the pre-exponential factors mirror the concen-

tration at time zero of the associated species: the monomer and the dimer. Since the monomer emits preferentially at shorter wavelengths 

and the dimer at longer ones, the decay times should therefore be associated with a monomer species (shorter decay component) and 

dimeric (longer decay component). In addition, the absence of rising components (rise-time) suggests that the dimeric species is not 

formed in the excited state, but is already present in the ground state. 

Solvent λmax
abs (nm) λmax

em (nm) λmax
exc (nm)c λmax

exc (nm) ε292 nm (M
-1.cm-1) ϕF F (ns) kF

 (ns-1)g kNR
 (ns-1)h 

CH3CN 290 352a 292 297d ND 0.013 0.08f 0.163 12.3 

CH2Cl2 292 352b 296 319e 13081 0.009 0.17f 0.053 5.8 

DMSO 295 354b ND ND 15040 ND ND ND ND 

EtOH 291 351b 292 ND ND ND ND ND ND 
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Figure 1. From left to right. Normalized absorption, emission (λexc= 285 nm) and excitation spectra (λem= 350 and 450 nm) and normal-

ized emission (exc= 290 and 330 nm) of L in acetonitrile. 

 

Upon the addition of the metal ions Cu2+, Zn2+, Cd2+ and Hg2+ to an acetonitrile solution of L [36], the vibronic progression of the mono-

mer band (Figure 2) changes, which is indicative of the formation of a complex involving the metal M and the ligand L (with its absorption 

beneath the emission spectra of the monomer). 

Indeed, upon addition of different metal cations (M), a shift towards lower wavelengths in the absorption spectra likely due to a 

photoinduced charge transfer involving the metal and the ligand, MLCT [with sharp isosbestic points (Figure 2 right hand panels) at ~215, 

~230, ~250 and ~325 nm and, more evident, at ~290 nm] together with a quenching of the vibronically resolved fluorescence band (maxi-

mum at ~352 nm) was observed (Figure 2). Indeed, when a fluorophore contains an electron-donating group (eg. an amino group) conju-

gated to an electron-withdrawing group, it undergoes intramolecular charge transfer from the donor to the acceptor upon excitation by light 

[37]. The amino group of L plays the role of electron donor (within the fluorophore) and interacts with the cation; the latter reduces the 

electron-donating ability of this group. This results in the stabilization of the HOMO and therefore a higher (HOMO-LUMO energy differ-

ence is obtained) leading to a blue shift of the absorption spectrum together with a decrease of the molar absorption coefficient 

(photoinduced charge transfer PCT) [38]. 

From Figure 2 it can also be seen that the change in intensity of the absorption (increase at 275 nm and decrease and 310 nm) and emis-

sion (decrease) spectra with the incremental addition of ligand is found non-linear. Again, this is likely a result from the presence of a 

dimer (resulting from the formation of a complex between the metal and the ligand L). 

From Figure 2, it is also worth noting that the blue-shift in the absorption spectra upon addition of M seems to be independent on the na-

ture of the metal. Moreover, with the addition of the metal M, the ratio of the vibronic bands is changed; this, however, does not show a 

linear dependence with the incremental addition of M and is likely indicative of the presence/increasing contribution of a dimer resulting 

from the formation of a complex between the ligand L and the metal M. Indeed, if the quenching effect were only due to an electron or 

energy transfer from L to M it would induce a decrease of the fluorescence band as a whole; in contrast, an equilibrium L  ML will 
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promote a gradual change in the absorption (perceptible in Figure 3
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Figure 3) with a different contribution of L and ML at the excitation wavelength. This would produce a different ratio of the L and ML 

absorption and emission, which will induce a different vibronic progression of the (total) emission band. 

Further and detailed knowledge can be obtained from time-resolved fluorescence experiments. As showed above the fluorescence de-

cays were found to be bi-exponentials; see Table 1. The incremental addition of metal cation leads to non-significant changes on the decay 

time values. However, the same does not happen with the fractional fluorescence contribution of each species. The fractional contribution 

(Ci) of each species (when in presence of a bi- or higher order decays) is given by the following equation 

1

(%) 100i i
i n

i i

i

a
C

a






 


 Equation 1 

where n is the number of exponential terms, ai represents the contribution of each exponential term at t= 0 and i are the associated decay 

times. 
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Figure 2. From left to right: Absorption and emission (exc= 292 nm) spectra of L in acetonitrile with the addition of Cu2+, Zn2+, Cd2+ and 

Hg2+. Inset from absorption: Representation of the absorption at 275 and 310 nm as a function of [M]/[L]. Inset from emission: Represen-

tation of the fluorescence intensity at 370 nm as a function of [M]/[L]. The bold black and red lines correspond, respectively to [M]/[L]= 0 

and [M]/[L]= [M]/[L]max. [M]/[L]max= 3-5. [L]= 1×10-5 M. 

 

From Figure 3 it can be seen that although the ratio I/I0 is lower for the cadmium ion, the decrease is relatively small when compared to the 

other ions (from a I/I0 ratio of 0.45 for Cd2+ to 0.77 for Zn2+). However, in the case of the fractional contribution of the component 2 (asso-

ciated to the longer decay time), there is a clear departure of the value of Cd2+ with the value of 45% relative to the general constancy 
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found for L alone, Cu2+ and Zn2+ and Hg2+ with a value of ~30%. Since the contributions of C1 and C2 mirror the ground state contribu-

tions of each species if the C2 species decreases in contribution, the C1 increases proportionally. Therefore for L:Cd2+ the value is now 

55% vs. 70% for L alone and interacting with all the other metals.  
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Figure 3. I/I0 ratio (left hand panel) and %Ci (right hand panel) for free L in acetonitrile and in the presence of 1 equivalent of Cu2+, Zn2+, 

Cd2+ and Hg2+. 

 

The stability constants for the interaction of L with Cu2+, Zn2+, Cd2+ and Hg2+ were calculated using HypSpec software and are summa-

rized in 2 [39]. Taking into account these values, the sequence of the strongest interaction expected for L decreases in the follow order: 

Hg2+ > Cd2+ > Zn2+ > Cu2+. 

 

Table 2. Stability constants for probe L in the presence of Cu2+, Zn2+, Cd2+ and Hg2+ in acetonitrile for an interaction 1:1 (Metal/Ligand). 

 

 

 

 

 

Conclusions 

The spectral and photophysical characterization of a probe bearing two naphthalene units and its interaction with different metal ions 

(Zn2+, Cu2+, Cd2+ and Hg2+) was undertaken in acetonitrile. In all cases a blue shift in the absorption spectra and a quenching fluorescence 

emission of the ligand was observed. From time-resolved it is shown that the ligand L show a higher affinity towards the metal ion cadmi-

um in acetonitrile medium. Moreover, although probe L is apparently not selective for any of the metal ions studied, the different values of 

Interaction (M:L) 

 

Σ log β (Abs) Σ log (Emission) 

Cu2+ (1:1) 6.12  0.01 6.34  0.01 

Zn2+ (1:1) 6.73  0.01 6.84  0.01 

Cd2+ (1:1) 8.42  0.01 8.38  0.01 

Hg2+ (1:1) 9.94  0.01 9.97  0.01 
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I/I0 and emission contributions (from time-resolved data) for each of the emissive species obtained allow differentiating between Zn2+, 

Cu2+, Cd2+ and Hg2+. 
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