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Abstract 

 

Building retrofit plays an important role in reducing environmental loads associated with the building 

stock. The main goal of this article is to perform a comprehensive energy and environmental life-

cycle assessment (LCA) of the roof retrofit of a Portuguese single-family house integrating thermal 

dynamic simulation. A life-cycle model was developed to assess 27 alternative retrofit scenarios 

combining three types of insulation material (rock wool, extruded polystyrene and polyurethane 

foam), three insulation levels (40, 80 and 120 mm) and three types of frame material (wood, light 

steel and lightweight concrete). The functional unit selected for this study was1 square meter of 

living area over a period of 50 years. Life-cycle (LC) impact assessment results were calculated for 

six categories showing that wood scenarios had the lowest impacts (all categories). The use phase 

accounted for 60 to 70% of the LC impacts in all categories. The results also showed that for 

insulation thicknesses of 80 mm or more, the reduction in operational energy, due to a further 

increase of 40 mm, is not significant (5% or less), while the embodied impacts increase from 6 to 

20%. This article shows the importance of addressing the entire life-cycle of building retrofit to 

reduce environmental impacts by quantifying the marginal LC benefit of additional insulation levels 

and provides recommendations for optimal insulation levels for Mediterranean climates.  

 

Keywords: Building Retrofit; Environmental Impacts; Life-Cycle Assessment (LCA); Thermal 

Insulation Materials; Thermal Dynamic Simulation 
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1. Introduction 

 

European Union regulations were developed [1]–[3] to address the high contribution of the building 

sector in energy use and environmental impacts. They are focused on reducing the operational 

energy use of buildings (new and existing buildings), but disregard the environmental impacts 

associated with the entire life-cycle [4], [5]. The construction of new (low-energy) buildings has a 

great impact in the long term, but not much effect in the building stock overall energy use in the 

short term, since the rate of construction of new buildings in Europe is low [6], [7]. 

 

According to the EU Report on Energy Roadmap 2050 [8], building retrofit plays an important role in 

reducing the environmental loads currently associated with the building stock, thus appropriate 

techniques are needed to fulfill current demand for comfort and high standards of energy, as well as 

environmental efficiency. In order to reduce energy use and environmental impacts related to 

buildings, it is fundamental to introduce a design approach based on environmental sustainability, 

following a life-cycle (LC) perspective. Life-Cycle Assessment (LCA) can be used to identify the 

most critical components of the environmental performance of existing buildings and to evaluate the 

potential benefit of different retrofit measures.  

 

LCA has been implemented to residential buildings, with different goals. A range of studies 

compared different types of buildings [9]–[11], in different locations [12]–[14], or with different 

envelope solutions (exterior walls [15]; roofs [16], [17]). Other studies focused on comparing 

conventional and low energy houses [18]–[22]. Although most studies concluded that operational 

energy is by far the most important contributor to LC impacts of conventional buildings [9], [18], [19], 

[23], [24], Blengini and di Carlo [25] claimed that progressing towards low-energy buildings may 

change the relative importance of the different LCA stages (construction, operation and end of life). 

According to Sartori and Hestnes [19], the construction phase becomes increasingly significant as 

measures are implemented to reduce operational energy requirements. Stephan et al. [26] showed 

for a passive house in Belgium, using input-output-based hybrid inventory data, that embodied 
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energy can represent more than 70% of the total energy use (embodied and operational). Ghattas 

et al. [27] highlighted the importance of identifying the tipping point where LC impacts are 

minimized, as well as the balance between embodied and operational requirements when 

increasing energy efficiency in buildings. 

 

The main focus of LCA studies of buildings has been on new buildings. Few studies addressed the 

retrofit of residential buildings, primarily to evaluate energy efficiency measures, such as thermal 

insulation of the building envelope [11], [12]. The main goal of those studies was to improve the 

energy performance of buildings during the use phase, often neglecting embodied impacts during 

production and assembly of materials or constructive solutions (construction phase). Moreover, 

those studies were mainly developed for cold climates, where buildings have very different 

characteristics and energy requirements comparing to Mediterranean or hot climates [28], [29]. For 

instance, Fay et al. [30] demonstrated that, for a residential building in Australia, adding insulation 

represented a saving of less than 6% of the total embodied and operational energy of the building 

over a 100-year lifespan, concluding that there may be other strategies worth pursuing before 

additional insulation (the main strategy in cold climates).  

 

LCA studies for buildings located in Mediterranean climates are rare and focused on new buildings 

[13], [20], [31]–[35]. In the Portuguese context, Monteiro & Freire [15] studied the influence of 

different exterior walls solutions for a new single-family house. Silvestre et al. [36] addressed the 

recent European standards in the LCA of different insulation materials in exterior walls. Addressing 

the entire building, Bastos et al. [37] performed a life-cycle energy and greenhouse gas analysis of 

three multi-family buildings types from the 1940s in a residential area in Lisbon, Portugal. 

 

The occupancy level of a building influences the operational energy use and the contribution of the 

different phases to the overall  life-cycle of a building [38], [39]. De Meester et al. [40] and Azar & 

Menassa [41] emphasized the need to properly account for occupancy during the design phase to 
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provide more reliable building energy performance estimates. The integration of thermal dynamic 

simulation in LCA studies addresses the potential contribution of the occupants’ preferences not 

only in the operational energy use of buildings, but also in the assessment of trades-offs between 

embodied and operational energy [39]. Several studies used thermal dynamic simulation for 

operational energy calculation, focusing only on the energy performance of buildings during the use 

phase [10], [13], [42]–[44]; however, more recently, LCA and thermal dynamic simulation have been 

integrated to assess constructive solutions for new buildings [45]–[48]. To sum up, very few 

publications addressed the life-cycle of new single-family houses in a Mediterranean climate, 

integrating thermal dynamic calculations for operational energy requirements, and none considered 

the retrofitting of existing buildings. 

 

This article presents the environmental assessment of different roof retrofit scenarios of a 

Portuguese single-family house using an integrated life-cycle and thermal dynamic simulation 

assessment. A comprehensive analysis of alternative insulation materials and thickness levels was 

performed to identify optimal thickness levels minimizing life-cycle environmental impacts. This 

article is organized in four sections including this introduction. Section 2 presents the model and life-

cycle inventory, detailing the components of the retrofit scenarios. Section 3 analyses and discusses 

the main results. Finally, Section 4 draws the conclusions together and provides recommendations. 

 

2. Integrated LCA and Thermal Dynamic Simulation 

 

An integrated life-cycle approach combining LCA and thermal dynamic simulation was implemented 

to assess energy and environmental performances of roof retrofit scenarios. LCA addresses the 

potential environmental life-cycle (LC) impacts and is organized in four interrelated phases: goal and 

scope definition, life-cycle inventory (LCI), life-cycle impact assessment (LCIA) and interpretation 

(ISO 14040:2006) [49]. Thermal dynamic simulation was implemented to calculate operational 

energy requirements for the inventory analysis. 
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2.1 Goal and scope definition 

 

Roofs are a main priority in building retrofit, especially for buildings over 100 years old. The main 

goal of this study was to perform a comprehensive LCA of the roof retrofit of a Portuguese single-

family house. The various life-cycle processes were characterized to identify improvement 

opportunities in the energy and environmental performance of the roof retrofit. Thus, different roof 

retrofit scenarios were compared, exploring the influence of the insulation material and thickness on 

the overall LC performance of the building.  

 

A life-cycle model was developed for a semi-detached single-family house (with a living area of 279 

m2 organized in 4 floors) from the 1900s, located in Coimbra, central region of Portugal. The main 

features of the original building are massive stone walls (with 50 cm on average), single-glazed 

wood windows and a traditional wood frame roof. The roof retrofit process incorporates the 

replacement of frame material, interior and exterior coverings, as well as the incorporation of a 

thermal insulation layer. All scenarios assumed the replacement of the existing single-glazed 

windows by double-glazing and the exterior walls non-insulated due to their high thermal mass. 

 

This article focus on the second floor, since the roof retrofit mainly affects this floor (the reduction of 

operational energy requirements due to roof insulation ranged from 25 to 35% in the second floor, 

but for the other floors was less than 5%). The floors plans, section and main façade are provided in 

Figure 1.  

 

Fig. 1 goes about here 

 

The functional unit selected for this study was 1 square meter of living area over a period of 50 

years. The service life of a building is related to a range of factors, including the design of the 

building, construction methods and solutions, user behavior and maintenance strategy. Some of 
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those factors are difficult to predict, so this article follows many other studies that have also 

assumed a 50-year lifespan for buildings. (e.g. [9], [50]–[53]). 

 

2.2 Inventory analysis 

 

There are three LCI methods: process, input-output (IO) and hybrid. The hybrid approaches have 

emerged to combine the strengths and minimize the limitations of both process and IO LCI 

methods. The process-based LCI method is a bottom-up approach and provides more detail at the 

product level, which allows the analysis of each individual process. However, process-based data 

suffer from some limitations, such as the so-called ’truncation error’, associated with the definition of 

a finite system boundary [54], [55]. The IO-based LCI method is a top-down approach that generally 

appears as a “black box” [56], without providing detail of individual processes for each model [57]. 

IO-based data can provide a practically complete system and describe economic activities in a 

macro level [57], but the use of national average data for each economic sector or the conversion 

from economic data to energy may lead to several limitations. According to Müller and Schebek 

[58], IO-based LCI data may underestimate specific emissions while overestimating sector-specific 

aspects. The hybrid approaches can be superior in terms of system boundaries definition [57]; 

however it can be difficult to implement if there are no IO data available.  

 

This study implemented a process-based LCI to compare alternative processes within the same 

industry sector (inventories with the same level of incompleteness). Even though process-based LCI 

data can suffer from a systematic ‘truncation error’, comparative LCA studies can be considered as 

relatively insensitive to truncation error [57]. Moreover, classification and aggregation by sector used 

in IO-based LCI method does not allow modelling specific products or comparing similar products 

within one industry [54], [59], [60]. Both the IO- and hybrid-based methods require IO databases 

properly disaggregated to be used in process comparative analysis. Updated IO datasets are 

currently not available for Portugal. 
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Figure 2 presents the LC model which includes the following main processes: removal of the original 

roof components, construction phase of the new roof and use phase (heating, cooling and 

maintenance). The end-of-life phase of the new roof was not considered (more details in section 

2.4). The model and life-cycle inventory were implemented using SimaPro 7 software (www.pre.nl). 

Operational energy requirements were calculated using Energy Plus software [61].  

 

Fig.2 goes about here 

 

2.2.1 Embodied requirements 

 

The removal of the original components included dismantling and transport for recycling (roof tiles) 

or incineration (wood).  The original wood frame roof was considered to have been completely 

removed and replaced by a new roof. The construction phase of the retrofit process included the 

production of materials and transport to the site, as well as on-site processes: carpentry/joinery, 

assembly of the wood/steel/concrete structure, insulation and tile placement and interior coating 

(gypsum plaster board or stucco). Twenty seven roof retrofit scenarios (based on solar passive 

measures) were defined combining three types of frame material, three types of insulation material 

and three insulation levels, as presented in Table 1.  All the scenarios considered the same 

volumetric, slope and outer coat in ceramic tile, given that the character of the building, which dates 

from the early 1900s, is protected by municipal regulations and cannot be altered. 

 

Table 1 goes about here 

 

Table 2 presents the inventory for the alternative frame scenarios, per total roof area (84 m2) and 

per square meter. Scientific literature [62] and technical data were gathered from producers and 

contractors in order to calculate the quantities of materials required in each scenario. An additional 

5% of materials were considered to have been lost on site due to cutting and fitting processes. 

Material production was modeled based on Kellenberger et al. [63], which presented average 
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European LCI data. The main inventory data regarding material processing for the construction was 

obtained from Kellenberger; Spielmann; and Althaus [63]–[65].  

 

The delivery of construction materials to the building site assumed lorry (3.5 – 16t) and van (<3.5t) 

transportation, with European fleet average characteristics. Inventory data were obtained from 

Spielmann et al. and Hischier et al. [64], [66]. The construction material weights and shipping 

distances for the alternative roofs are presented in Table 3. Transportation distances, from the 

building site to the recovery (recycling, incineration) sites, as well as from the production site to the 

building site, were calculated on the basis of the locations of local material producers and 

contractors, assuming the nearest locations to the building site. 

 

Table 2 goes about here 

 

Table 3 goes about here 

 

2.2.2 Operational requirements 

 

The use phase included energy (heating, cooling, lighting and appliances) and maintenance 

requirements. A thermal dynamic simulation model was implemented to calculate the energy needs 

of the whole building. Each floor of the house was modeled as a thermal zone with different thermal 

behavior and a specific occupation pattern (internal heat gains and occupancy schedules). Kitchen 

and dining room are located on the basement floor (thermal zone 1); living room and office are 

located on the ground floor (thermal zone 2); and bedrooms are located on the first and second floor 

(thermal zone 3 and 4). As this research focused on the second floor, the operational energy 

considered was the heating and cooling requirements of this floor (thermal zone 4). The energy 

needs were calculated on an annual basis for the defined functional unit. A 12 kW heat pump, with a 

coefficient of performance (COP) of 3.6 for heating and 3.2 for cooling, was adopted for the heating 

and cooling system of the house. The heating season begins in November and ends in March and 
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the cooling season begins in May and ends in September. The heating and cooling set-points were 

fixed at 20ºC and 25ºC, respectively, and a natural ventilation rate of 0.6 air changes per hour was 

considered, in keeping with Portuguese building thermal regulations [2]. The primary energy 

conversion factor used to convert delivered energy to primary energy was 2.65, as defined by the 

CED method (more details in section 2.3) for the Portuguese electricity mix. 

 

The Portuguese climate is classified as a maritime temperate climate with a Mediterranean 

influence under the Köppen-Geiger classification system [67]. The building is located in the central 

region of Portugal where average temperatures in the winter range from 5ºC (night) and 15ºC (day). 

In the summer, the average temperatures range from 16ºC during the night and 29ºC during the 

day. Solar radiation levels in this city are about 1650 kWh/m2/year (http://solargis.info/). 

 

The main difference between a steady-state analysis and a dynamic approach is related to internal 

heat gains. A steady-state analysis usually assumes default values per area for internal heat gains 

(W/m2) [2]. On the other hand, in a dynamic approach, the internal heat gains are computed taking 

into account the number of estimated persons in each thermal zone (occupancy density) and their 

metabolic activity, as well as the schedules defined for lighting and appliances. This level of 

accuracy may influence several time-dependent variables of the building. For instance, the effect of 

thermal mass may differ depending on the level of occupancy (intermittent or permanent 

occupancy) or on the convective or radiant heating system defined. If a building with high thermal 

mass stays unoccupied for several hours (as the one studied in this article), it is necessary to use 

more energy (and takes more time) to achieve indoor thermal comfort conditions than in a building 

with low thermal mass [68].Thermal dynamic simulation also provides several very specific output 

variable reports [69] that allow for modeling the building according to its specific needs. 

 

A four-person family with a low occupancy level (representative of a Portuguese household) was 

considered, with loads mainly at night on weekdays and all day on weekends. This occupancy level 

consisted of an active couple who works outside the house during the day while their two children 
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go to school. It was also assumed that they will receive a guest one weekend per month (with the 

same occupation pattern as the other users during the weekend). The heating and cooling systems 

were only partially activated during occupied hours. The schedule defined for the second floor was 

from 6 to 8 am and from 10 pm to 12 am within the defined set-points, with a drop in temperature to 

18ºC at night during summer. 

 

The internal gains used for the simulation were the number of people, lights and appliances. The 

number of people varied from none to five according to the occupancy schedule defined for each 

day of the year. Lights were estimated at 5 W/m2 and appliances (computers, television, hair dryer 

and other small equipment) at 300 W (according to the schedule defined for each item of 

equipment). Hot water energy use was not considered since does not affect the thermal comfort of 

the house. Table 4 presents the energy requirements for the various insulation materials and 

thicknesses. 

 

Table 4 goes about here 

 

The main maintenance activities considered are associated with the conservation of the interior and 

exterior finishes of the building during the 50-year lifespan. The maintenance strategy is mainly 

corrective, i.e. the components were only replaced or repaired in case of deterioration or detection 

of anomalies. The maintenance activity schedule (service life of each component) for the roof was 

established based on data from Kellenberger et al. [63] and material producers. Table 5 presents 

the main assumptions for the inventory of maintenance activities, including interior painting of walls, 

varnishing of wood surfaces and plaster board replacement.  

 

Table 5 goes about here 
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2.3 Life-cycle impact assessment methods 

 

Two complementary LCIA methods were applied: CED (Cumulative Energy Demand) measured the 

non-renewable life-cycle primary energy requirement, in order to address energy resource 

depletion, while ReCiPe [70] assessed climate change (CC), ozone layer depletion (OLD), terrestrial 

acidification (TA), freshwater eutrophication (FE) and marine eutrophication (ME). Environmental 

impacts are presented at midpoint level (problem-oriented) in order to avoid the high uncertainty 

associated with impacts at endpoint level (damage-oriented). A brief description of the 

environmental categories is presented in Table 6. 

 

Table 6 goes about here 

 

2.4 Model simplifications 

 

Some simplifications were considered in the life-cycle model. The end-of-life scenario for the roof 

demolition assumed that i) residues were separated and treated in the same place, ii) waste was 

removed and transported to the incineration or recycling plant in only one trip. During the 

construction phase, appliances and transportation of workers to the construction site were not 

included, because they are expected to be minor in residential buildings [71]. The thermal 

resistance of insulation materials was assumed to be constant over the 50 years, since EU 

standards for thermal insulation products for buildings require that the aging process of the products 

is taken into account. The end-of-life phase of the new roof (dismantling scenarios and waste 

treatment) was not included because these are not accurately predictable and are considered of 

minor importance for single-family homes. Furthermore it represents less than 4% of the total 

environmental impacts of dwellings in  southern  European countries, according to one European 

study [71], 
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3. Results  

 

The main results from the integrated assessment are discussed and presented in this section. A 

scenario analysis for the roof retrofit was performed for both frame (section 3.1) and thermal 

insulation materials (section 3.2). The balance between embodied phase “cradle to gate” and use 

phase was assessed, as well as the tipping point where total life-cycle impacts reach a minimum 

value. The results addressed the four phases: removal of the original roof, construction of the new 

roof, maintenance and operational energy (heating, cooling, lighting and appliances). 

 

3.1. Frame material analysis 

 

Three alternative roof retrofit scenarios with different frame materials [wood frame (W), light steel 

frame (LS) and lightweight concrete slab (LWC)], and the same thermal insulation solution (40 mm 

rock wool) were each evaluated to assess the contribution of individual processes in the 

construction phase. The various scenarios were defined to have the same heat transfer coefficient 

(U-value) and thus similar heating and cooling requirements. The frame material influenced material 

production (different material composition), transport (different weights for different materials) and 

maintenance activities. 

 

Figure 3 presents LCIA results for the three frame materials. The results show that W is the 

scenario with the lowest environmental impacts among all categories. LWC is the scenario with the 

highest environmental impacts in four out of six categories. As far as eutrophication impacts are 

concerned, LS is the scenario with the highest environmental impacts, as a result of the galvanized 

steel process (steel with zinc coating).  

 

Use phase is the largest contributor in scenarios W and LS, for all categories, accounting for 40 to 

70%. For the LWC scenario, the construction phase is the most significant LC phase for three out of 

six categories, accounting for 30 to 65% of total LC impacts. Construction phase contribution is 
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nearly half of use phase to terrestrial acidification and freshwater eutrophication and almost 20% for 

the other categories. The contribution of demolition (< 3%) and maintenance (< 15%) phases is 

much less significant (all categories). 

 

Regarding primary energy, use phase accounts for 60% of total energy requirements in the W and 

LS scenarios, while LWC showed no significant difference between the energy requirements for 

construction and use phase (about 2%). These results provide a useful perspective on the influence 

of the frame material in the performance of the different LC phases. Depending on the frame 

material, the potential for reducing environmental impacts of building retrofit can shift from use 

phase to construction phase. Primary energy (CED non-renewable) results show high correlation 

with climate change (and to a less extent with terrestrial acidification and ozone depletion) but not 

with eutrophication (marine and freshwater). This is to be expected given that climate change, 

terrestrial acidification and ozone depletion impacts are mainly due to fossil energy use, which is 

itself characterized by CED non-renewable results. 

 

Fig. 3 goes about here 

 

Figure 4 details the contribution of the main processes and materials. The highest impacts are from 

transport, steel, concrete and zinc. Transport is the largest contributor to scenario W (25 to 50%) 

and to scenario LS (13 to 43%), followed by steel (10 to 30%). Lightweight concrete is the main 

contributor to the LWC scenario (26 to 54%), followed by steel (3 to 22%). The materials with the 

lowest environmental impacts are wood, oriented strand board (OSB) and stucco. 

 

Fig. 4 goes about here 
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3.2 Thermal insulation analysis 

 

This section assesses the influence of the thermal insulation material (RW, XPS or PUR) and its 

thickness (40, 80 and 120 mm) on the total life-cycle impacts of the roof retrofit with a selected 

frame material (wood). Firstly, total LC impacts for the various insulation materials and thicknesses 

are analyzed, in order to identify a tipping point, for which total LC impacts are minimized. Secondly, 

LCIA results for rock wool (40, 80 and 120 mm) are presented for the purpose of understanding the 

contribution of the various LC phases of the roof retrofit. Lastly, a comparative assessment of the 

various thermal insulation materials with a thickness of 80 mm (where lower LC impacts were 

observed for most environmental categories) is presented. 

 

Figure 5 presents total LC impacts (top line), as well as the impacts from both operational energy 

and the construction phase. Maintenance and demolition are not assessed in figure 5 since the 

insulation material does not influence them. A trend line (polynomial, order 2) was applied for total 

LC impacts (correlation between 95 and 98%, except for primary energy and marine eutrophication 

in PUR, around 90%). In all insulation materials there is a tipping point for climate change and 

primary energy that lies between 40 and 80 mm. This results from the high performance of the 

heating and cooling system (heat pump with COP=3.6) and from the Portuguese electricity mix, 

which has a large contribution of renewable energy. The tipping point for rock wool occurs for 

thicknesses less than 80 mm for all categories (less than 40 mm for ozone depletion, marine 

eutrophication and primary energy). The tipping point for PUR occurs for thicknesses of about 40 

mm, as well as for marine eutrophication. In the XPS scenarios, it always occurs for thicknesses 

greater than 120 mm (except for climate change and primary energy), which are not commonly used 

in Mediterranean climates. XPS shows very high ozone depletion impacts that result from  its 

production process, as discussed later in this section. 

 

The comparison between embodied and operational requirements (excluding lighting and 

appliances) shows that embodied requirements are more significant (about 30 to 50%) in four out of 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

15 

 

six categories (climate change, ozone depletion, marine eutrophication and primary energy). For the 

two other categories, embodied impacts only account for 20 to 35% of total LC impacts. For XPS 

and rock wool thicknesses larger than 120 mm, the embodied requirements become higher than 

operational requirements (climate change and primary energy). For PUR, the contribution of 

operational requirements is always more than embodied requirements. 

 

Fig. 5 goes about here 

 
 

Total LCIA results for rock wool (40, 80 and 120 mm) are presented in Table 7, which shows the 

impacts in the main life cycle phases of the roof retrofit (construction and use phase). A contribution 

analysis was performed to assess the impact of a further increase of 40 and 80 mm in the insulation 

levels. LC impacts are dominated by the use phase (45 to 70% of total LC impacts) followed by the 

construction phase (20 to 40%). The main contributor to the use phase is the heating, which 

accounts for 70% of total operational energy.  Cooling requirements accounts for only 8%, and 

lights/appliances account for 22%. Construction phase impacts for ozone depletion become more 

significant than operational energy impacts for thicknesses greater than 120 mm. 

 

The results also show that for insulation thicknesses of 80 mm or more, the reduction in operational 

energy is not significant (5% or less), while the embodied impacts increase from 6 to 20%. The most 

important absolute benefit is obtained when a 40 mm insulation layer is applied to roofs with no 

insulation, leading to a decrease in energy use of about 30%. Thus, the energy efficiency benefit of 

increasing the insulation thickness may not always offset the increase of environmental impacts 

associated with production. 

 

Table 7 goes about here 

 

A contribution analysis was performed for each thermal insulation material with 80 mm thickness 

(the option with the lowest LC impacts in most environmental categories, as discussed previously). 
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Figure 6 presents the LCIA results per LC phase. The results show that the PUR option has the 

lowest LC impacts in four out of six categories. For the remaining categories (primary energy and 

marine eutrophication), XPS has the lowest LC impacts. Rock wool has the lowest environmental 

impacts in the construction phase for half of the categories (climate change, primary energy and 

marine eutrophication), while PUR has the lowest impacts in the use phase (all categories). 

 

For the three insulation materials, the use phase results in the highest environmental impacts (55 to 

80% of total LC impacts), followed by the construction phase (20 to 40%). The main differences 

between the alternative insulation materials are due to production and transportation. 

 

Regarding the XPS option, the use phase accounts for only 3% of the LC impacts, while the 

construction phase accounts for 96%. The important contribution of XPS for ozone depletion is 

caused by the agent used in the extrusion process, namely hydrofluorocarbon (HFC-134a). 

Recently some XPS producers have started to use CO2 as the primary blowing agent as an 

alternative to HFCs [65], but this was not considered because no detailed inventory data was 

available for the XPS production process that is currently being used in Europe. Nonetheless, a 

preliminary analysis was performed, showing that the use of CO2 as the primary blowing agent 

could reduce the impact of material production from almost 97% to only about 11%. However, the 

thermal insulation properties of CO2 blown-foam would be significantly compromised [65]. 

 

Fig. 6 goes about here 

 
 

4. Discussion and conclusion 

 

This article assessed the environmental performance of the roof retrofit of a Portuguese single-

family house using an integrated life-cycle assessment and thermal dynamic simulation. A life-cycle 

model was developed including the implementation of a comprehensive inventory. Twenty-seven 
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alternative roof retrofit scenarios were assessed combining three types of frame material (wood 

frame, light steel frame and lightweight concrete slab), three types of insulation material: rock wool 

(RW), extruded polystyrene (XPS) and polyurethane foam (PUR), and three insulation levels (40, 80 

and 120 mm). Primary energy and five environmental categories were evaluated to identify critical 

aspects of these scenarios, as well as to identify hot spots and improvement opportunities.  

 

Wood frame scenarios presented the lowest environmental impacts in the construction phase. 

Lightweight concrete scenarios presented the highest environmental impacts in all categories, with 

the exception of freshwater eutrophication, where light steel frame scenarios had the highest 

impacts. The use phase (maintenance and operational energy) accounted for about 40 to 70% 

(depending on the scenario and impact category) of the LC impacts. PUR had the lowest LC 

impacts in 4 out of 6 categories. Rock wool had the lowest environmental impacts in the 

construction phase for climate change, primary energy and marine eutrophication. 

 

The results quantified the influence of incorporating thermal insulation as a retrofit measure in 

existing buildings. There was a very significant benefit associated with the improvement of the 

thermal envelope just by adding 40 mm of insulation in the roof (a reduction of 30% in the 

operational energy of the second floor). For insulation thicknesses of 80 mm or more, the reduction 

in operational energy is not significant (5% or less), while the embodied impacts increase from 6 to 

20% of. 

 

The integration of thermal dynamic simulation in LCA provides more robust and representative 

results by considering a more realistic use of the building and avoiding overestimating energy 

needs. In the dynamic approach, the internal heat gains are computed taking into account the 

number of estimated persons in each thermal zone (occupancy density) and their metabolic activity, 

as well as the schedules defined for lighting and appliances. 
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Some of the assumptions and simplifications of this study led to several limitations. First, the results 

were based on a single building (representative of a significant number of buildings in historical city 

centers) located in a maritime temperate Mediterranean climate, which may not be representative of 

other locations or building types. Second, process LCI data was used for a detailed comparative 

analysis, which may underestimate the impacts calculated as compared with IO-based LCA studies. 

Third, uncertainty associated with inventory data was not addressed. Fourth, in the thermal 

simulation model, the schedule defined for occupancy represents a typical Portuguese family, but 

does not take into account variability due to user behavior. Fifth, the variability in external 

temperatures throughout the year (and differences between years) due to climate change was also 

not taken into account in the thermal simulation model. Finally, uncertainty associated with some 

geometric simplifications and the use of a specific system to calculate heating and cooling 

requirements was also not addressed. 

 

The results can be useful for other real-life applications helping building designers, stakeholders 

(i.e., owners, operators), or policy makers to reduce energy and environmental impacts associated 

with building retrofit in Mediterranean climates. Drawing on the results, some recommendations can 

be provided to enhance the environmental performance of building retrofit, for instance the use of 

about 80 mm of insulation as a threshold in the roof retrofit of existing low occupancy buildings, 

such as family dwellings. Future work will follow the approach hereby presented to assess the 

influence of different occupancy patterns in buildings (residential and commercial buildings), to 

characterize the marginal LC performance of adding extra insulation and to identify adequate 

insulation thresholds. 
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Fig. 1. Front façade, section and plans of the single-family house 

 

Fig.2. Main processes of the model and system boundaries 

 

Fig. 3. Life-Cycle Impact Assessment for three frame materials: wood frame (W), light steel frame 

(LS) and lightweight concrete slab (LWC) (per functional unit: 1 square meter of living area over a 

period of 50 years) 

 

Fig. 4. Environmental and primary energy assessment of the main construction processes and 

materials: Three frame materials (per functional unit: 1 square meter of living area over a period of 

50 years) 

 

Fig. 5. Life-cycle environmental and primary energy assessment of the insulation options: rock wool 

(RW), extruded polystyrene (XPS) and polyurethane foam (PUR) (0, 40, 80 and 120 mm); per 

functional unit: 1 square meter of living area over a period of 50 years) 

 

Fig. 6. Life-Cycle Impact Assessment of the insulation materials: rock wool (RW), extruded 

polystyrene (XPS) and polyurethane foam (PUR) (80 mm); per functional unit: 1 square meter of 

living area over a period of 50 years) 
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Table 1 

Roof retrofit scenarios 

Retrofit 
Options  Number of 

scenarios 

Frame 
material 

Wood (W);  
Light Steel (LS); 

Lightweight Concrete 
(LWC) 

3 

Thermal 
Insulation 
material 

Rock wool (RW); 
Extruded Polystyrene 
(XPS); Polyurethane 

Foam (PUR) 

3 

Insulation 
level (mm) 40; 80; 120  3 

Total number of retrofit scenarios 27 (3 x 3 x 3) 
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Table 2 

Building materials inventory 

a) Frame material options  

     by Roof Area by Functional Unit 

 Roof Layers Material Units Thickness 
(mm) 

Total 
Weight 

(kg) 

Total 
Volume 

(m3) 

Weight 
(kg/m2) 

Volume 
(m3/m2) 

O
ri

g
in

al
 R

o
o

f Exterior Coating - ceramic tiles 840  2940 - 35 - 

Existing Wood Frame - secondary structure1 48+26+50 80*40/40*40 949 1.4 11.3 0.016 

 - rafters 12 80*160 630 0.9 7.5 0.011 

 - trusses 3 160*160 553 0.8 6.6 0.009 

Interior Coating - wood panels - 20 176 0.7 2.1 0.008 

W
o

o
d

 (
W

) 

Wood Frame - secondary structure1 48+26+50 80*40/40*40 1138 1.6 13.6 0.019 

 - rafters 12 80*160 756 1.1 9.0 0.013 

 - trusses 3 160*160 664 0.9 7.9 0.011 
Thermal Insulation (see table b) 
 - vapor control layer - 2 15 - 0.2 - 

Interior Coating - gypsum plaster board - 25 2117 4.4 12 0.05 

L
ig

h
t 

S
te

el
 (

L
S

) Light Steel Frame - steel battens 32 0.6 108 - 1.3 - 

 - main structure 20 2 999 - 11.9 - 

 - OSB - 15 794 1.3 9.5 0.02 
Thermal Insulation (see table b) 
 - vapor control layer - 2 15 - 1.2 - 

Interior Coating - gypsum plaster board - 25 2117 4.4 12 0.05 

L
ig

h
tw

ei
g

h
t 

C
o

n
cr

et
e 

(L
W

C
) 

Lightweight Concrete - pre-stressed beams 30 - 2336 0.8 27.8 0.01 

Slab - formwork concrete3 538 - 4515 - 53.8 - 

 - complementary concrete - - 8568 5.4 102 0.06 

 - reinforcement steel - - 556.4 - 6.6 - 
Thermal Insulation (see table b) 
 - vapor control layer - 2 15 - 1.2 - 

Interior Coating - stucco - 20 4234 3.4 50 0.04 
1 Secondary Structure: Sticks, Battens & Counter Battens 2 Extruded Polystyrene          3 Hollow Concrete 

 

b) Insulation material and thickness options 

 
  by Roof Area by Functional Unit 

Insulation material Thickness 
(mm) 

Thermal 
conductivity 
(W/(m.K)) 

Density 
(kg/m3) 

Total Weight 
 (kg) 

Total Volume 
(m3) 

Weight 
(kg/m2) 

Volume 
(m3/m2) 

Rock wool 40 
0.042 130 

459 3.5 5.5 0.04 
 80 917 7.1 10.9 0.08 
 120 1376 10.6 16.4 0.13 
Extruded Polystyrene 40 

0.037 35 
123 3.5 1.5 0.04 

 80 247 7.1 2.9 0.08 
 120 370 10.6 4.4 0.13 
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Polyurethane  foam 40 
0.026 35 

123 3.5 1.5 0.04 
 80 247 7.1 2.9 0.08 
 120 370 10.6 4.4 0.13 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Table 3 

Building materials: weight and transportation distances 

Construction Materials 
 

Mass 
(ton) 

Distance 
(km) 

Frame material 
   

Wood  0.9 90 

Steel light steel 1.1 115 

 other 0.6 10 

Concrete reinforced 6.9 10 

 
not 

reinforced 8.6 10 

Other components 
   

Roof Tile  2.9 50 

Rock wool 40 mm 0.5 145 

 
80 mm 0.9 145 

 120 mm 1.4 145 

Extruded polystyrene 40 mm 0.1 78 

 80 mm 0.3 78 

 120 mm 0.4 78 

Polyurethane foam 40 mm 0.1 110 

 80 mm 0.3 110 

 120 mm 0.4 110 

Vapor Control Layer  0.01 120 

Oriented Strand Board  0.8 90 

Gypsum Plaster Board  2.1 58 

Stucco  4.2 90 
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Table 4 

Energy requirements for the single-family house (SFH, 279 m2) and for the 2nd floor (70 m2) per insulation level and 

material in kWh/(m2.year) 

 

 No insulation Rock Wool (RW) Extruded Polystyrene (XPS) Polyurethane foam (PUR) 

Thickness 0 40 80 120 40 80 120 40 80 120 

Zone SFH 2nd SFH 2nd SFH 2nd SFH 2nd SFH 2nd SFH 2nd SFH 2nd SFH 2nd SFH 2nd SFH 2nd 

Heating 47.3 12.6 44.0 9.6 42.8 8.6 42.3 8.1 43.8 9.4 42.6 8.5 42.1 8.0 43.5 9.4 42.5 8.2 42.0 7.8 

Cooling 1.61 1.03 1.46 0.91 1.41 0.87 1.39 0.86 1.46 0.91 1.41 0.88 1.38 0.86 1.43 0.91 1.39 0.87 1.36 0.85 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Table 5 

Inventory of Maintenance 

 
Activity 

Density 
(kg/L) 

Area 
(m2) 

Volume 
(L) 

Mass 
including 

coats 
(kg)  

Material 
service life 

(years) 

Number of 
replacements 

Roof plaster board - 71 - 852 20 2 

interior paint 1.0 71 10 21 20 2 

  
interior 
varnish 

1.5 64 6 28 10 4 
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Table 6 

Description of the environmental impact categories referred to the ReCiPe method, at midpoint level. [54]  

 

Environmental 
Impact Category Description Unit 

Climate Change 
(CC) 

Climate change is the global warming potential. kg CO2 eq 

Ozone Depletion 
(OD) 

Ozone depletion accounts for the destruction of the stratospheric ozone layer 
by anthropogenic emissions of ozone depleting substances. 

kg CFC -11 eq 

Terrestrial 
Acidification (TA) 

Terrestrial acidification represents the environmental persistence (fate) of 
acidifying substances causing changes in acid deposition of the soil. kg SO2 eq 

Freshwater 
Eutrophication (FE) 

Freshwater eutrophication represents the environmental persistence of the 
emission of nutrients containing P. kg P eq 

Marine 
Eutrophication (ME) 

Marine eutrophication represents the environmental persistence of the 
emission of nutrients containing N. 

kg N eq 
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Table 7 

Life-Cycle Impact Assessment of three rock wool insulation thicknesses: 40, 80 and 120 mm (per functional unit: 1 m2 of 

living area over a period of 50 years) 

 Climate change (kg CO2 eq) Primary energy (MJ) 

  No 
insulation RW40 RW80 RW120 No 

insulation RW40 RW80 RW120 

Removal 4.3 (2%) 4.3 (2%) 4.3 (2%) 4.3 (2%) 33 (1%) 33 (1%) 33 (1%) 33 (1%) 

Construction 50 (21%) 59 (28%) 69 (32%) 78 (36%) 846 (24%) 1035 (32%) 1201 (37%) 1357 (41%) 

Operational 
Energy 160 (69%) 130 (61%) 120 (57%) 115 (53%) 2277 (65%) 1843 (57%) 1705 (52%) 1626 (49%) 

Maintenance 19 (8%) 19 (9%) 19 (9%) 19 (9%) 324 (9%) 324 (10%) 324 (10%) 324 (10%) 

Total 233  212  211  215  3479  3235  3263  3340  

   

 Terrestrial acidification (kg SO2 eq) Ozone depletion (mg CFC-11 eq) 

  No 
insulation RW40 RW80 RW120 No 

insulation RW40 RW80 RW120 

Removal 0.02 (1%) 0.02 (1%) 0.02 (1%) 0.02 (1%) 0.3 (2%) 0.3 (2%) 0.3 (2%) 0.3 (2%) 

Construction 0.23 (14%) 0.28 (20%) 0.34 (24%) 0.39 (28%) 4.9 (27%) 5.7 (34%) 6.4 (38%) 7.1 (41%) 

Operational 
Energy 1.29 (79%) 1.04 (73%) 0.96 (68%) 0.92 (65%) 10.4 (58%) 8.4 (50%) 7.8 (46%) 7.5 (43%) 

Maintenance 0.09 (6%) 0.09 (7%) 0.09 (7%) 0.09 (7%) 2.4 (13%) 2.4 (14%) 2.4 (14%) 2.4 (14%) 

Total 1.6  1.44  1.41  1.42  18.1  16.8  16.9  17.3  

   
 Freshwater eutrophication (kg P eq) Marine eutrophication (kg N eq) 

  No insulation RW40 RW80 RW120 No insulation RW40 RW80 RW120 

Removal 0.0004 (0.4%) 0.0004 (0.5%) 0.0004 (1%) 0.0004 (0.5%) 0.001 (3%) 0.001 (3%) 0.001 (3%) 0.001 (3%) 

Construction 0.014 (16%) 0.016 (22%) 0.019 (26%) 0.022 (30%) 0.012 (23%) 0.014 (29%) 0.017 (33%) 0.019 (37%) 

Operational 
Energy 0.066 (77%) 0.053 (71%) 0.049 (66%) 0.047 (63%) 0.033 (62%) 0.027 (54%) 0.025 (50%) 0.024 (47%) 

Maintenance 0.005 (6%) 0.005 (7%) 0.005 (7%) 0.005 (7%) 0.007 (12%) 0.007 (14%) 0.007 (14%) 0.007 (13%) 

Total 0.085  0.075  0.074  0.075  0.054  0.049  0.05  0.05  
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Section A

Front façade

Basement Ground floor First floor

Second floor (attic)

N
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INPUT

Removal of the

original roof

Transport

Building materials

production

Waste materials

(recycling/incineration)

Construction

solutions assembly

Transport

Raw

materials

Energy

Heating/Cooling

Lighting/Equipment

Maintenance

Raw

materials

Energy

Emissions

DEMOLITION

CONSTRUCTION

USE

Dismantlement
Waste materials & 

Emissions
Energy

Energy

OUTPUT

Waste materials 

(recycling/incineration) 

Emissions

Emissions

Waste materials 

(recycling/incineration) 

Transport

Embodied requirements Operational  requirements
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Highlights 

 

Integrated Life-Cycle Assessment and thermal dynamic simulation  

Thermal insulation optimal thickness minimizing LC environmental impacts 

Tipping point for LC impacts: 40-80 mm of insulation in Mediterranean climate 

There is no marginal LC benefit gained beyond 80 mm of insulation 

 


